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Abstract

In this thesis the matrix product state(MPS) formalism is applied to simulate a device created
for remote detection in atomic spin chains. Although simulation of the full device quickly becomes
infeasible for direct algorithms, MPS allowed for highly accurate simulations while requiring only
modest computational resources. It has been verified that the simulation conserves energy and
maintains normalization. Furthermore, the simulation is shown to successfully perform both a
coherent real-time evolution and iteration towards the ground state. Thus MPS is a very promising
tool that has potential to serve as a guide for further experiment as well as a tool to understand
experimental results.
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1 Introduction

In physics, experiment and theory, including computation, are complementary ways of studying
phenomena and systems in nature. An interesting such system, which is the topic of this thesis,
is a chain of iron atoms which has been studied experimentally in the Otte group in Delft with an
emphasis on the time evolution of atomic spins[1]. One challenge of simulating such a quantum
system is that the dimensions of the Hilbert space scales exponentially with system size, rendering
direct simulations unfeasible for large systems.

In this thesis we simulate the system used in the experiment for the remote detection on atomic
spin chains. The device is a one-dimensional chain of Fe atoms that have spin 2[1]. The chain
consists of three parts: an input, an output, and a reset. Due to the number of atoms in the
system, direct simulation is limited to the input chain. This has been done in the Otte group
and their results will be used to verify an advanced, more powerful method used to simulate the
complete device.

In order to simulate the complete device efficiently the matrix product state (MPS) formalism
is used. This formalism allows us to limit the size of the Hilbert space we are simulating, resulting
in a smaller portion that scales polynomially as opposed to exponentially[2]. A crucial parameter,
χ, of the method controls the truncation of the Hilbert space. Both real-time evolution of the
system and iteration to the ground state have been applied to the system.

This work is a follow-up of the work previously done by Pim Vree, who has previously used
MPS to find the ground state energy of a spin- 1

2 Ising chain[3].

This thesis is structured as follows: chapter 2 contains the experiment, chapter 3 consists of
some mathematical concepts required to derive the MPS formalism. In chapter 4 we set up the
MPS formalism, and then we explain the time-evolution methods and computations in chapter 5.
The simulation results can be found in chapter 6, followed by a conclusion in chapter 7.
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2 Experiment

The aim to the experiment is to perform remote detection on an atomic spin chain with a
scanning tunneling microscope(STM)[1]. Often experimentalists want to measure the effect of
applying an excitation to an atom at a different point in the chain. Because of the speed at which
excitations move through a spin chain, it is often impossible to apply an excitation with the STM
tip and to move the tip to perform a measurement multiple atoms away. The experiment therefore
introduces a memory component that allows measurement of results seconds after the excitation
is applied. The experiment has been carried out by R. Elberste and D. Coffey in the Otte group
of TU Delft.

The device consists of three parts: an input, an output, and a reset. This can be seen in figure
1. In this case the input contains nin = 5, the ouput contains nout = 8, and the reset contains
nreset = 3 Fe atoms.

Figure 1: A chain of length 16 with nin = 5, nout = 8, nreset = 3. Full lines indicate a coupling of Ji and dashed
lines indicate a coupling of J ′.

The input of the device is where the excitation is applied. The output is used as the memory
component and stores the result for later measurement. The reset is used to return the system to
its initial state.

The chain that was tested consists of Fe atoms that behave as spin-2 particles, so each par-
ticle has 5 basisstates. Neighbouring particles inside of the same parts are all coupled anti-
ferromagnetically with a coupling of J = 0.7 meV . Neighbouring atoms between different parts of
the system are coupled ferromagnetically with a weaker coupling of J ′ = −0.05 meV . A magnetic
field has been applied in the z-direction to fix this as quantization axis.

The experimentalists require that the length of the full chain is even. This is to ensure that
the ground state is degenerate, which is important as a system will always move to the ground
state due to losses. If the ground state is not degenerate then the system will lose its memory
property because of always returning to the same state. They furthermore require that the length
of the input and reset chain is odd and that the length of the output chain is even. By doing so
they obtain a system where the difference between the degenerate ground states only occurs in
the output lead. The effect of this is that after an excitation of the input chain, it will relax to
its original state while the output chain can end up in either degenerate state depending on the
excitation.

The chain that is studied consists of an input chain of length 3 ≤ nin ≤ 9, and output chain of
length nout = 8 and a reset of length nreset = 3.

Hamiltonian

The experimental Hamiltonian consists of three term; a Zeeman splitting, an anisotropy term, and
a nearest neighbour coupling term. For a chain of length L the Hamiltonian is

Ĥ =

L∑
i

(ĤZeeman
i + ĤAnis

i ) +

L−1∑
i

ĤCoupling
i

with

ĤZeeman
i = gµb ~Bi · ~Si
ĤAnis
i = DSzi

2 + E(Sxi
2 − Syi

2
)

ĤCoupling
i = Ji(~Si · ~Si+1).
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The values of each constant in the Hamiltonian are listed in the table below. The definition and
explanation of the spin matrices will be given in section 3.3.

Table 1: Definition, explanation and numerical value of all the variables that are used in our model.

Variable Value Unit Explanation
g 2.11 dimensionless g-factor
µB 0.0578838 meVT−1 Bohr magneton
Bi 0.5-1 T Magnetic field strength
D -1.77 meV Anisotropy parameter
E 0.33 meV Anisotropy parameter
Ji 0.7 meV coupling between neighbouring states
J ’ -0.05 meV coupling between input-output-reset

As previously noted, the degeneracy in the ground state of the chain under this Hamiltonian
can be fully described by the output chain. For this purpose the 5 Ŝz eigenstates of each site
are labelled |−2〉 , |−1〉 , ..., |2〉. In the ground state the output chain can be in two-states: NA =
(2,−2, 2,−2, 2,−2, 2,−2) or NB = (−2, 2,−2, 2,−2, 2,−2, 2). The probability that the state of the
output chain switches from NA to NB or vice versa will be referred to as the switching probabilities.
In the experiment, the system is initialized in the ground state described by NA.

If the spin of two neighbouring particles in different chains is the same they are called “happy”.
Because of ferromagnetic coupling between different chains this is energetically favourable. If the
spins are different however, they are referred to as “unhappy”: this is energetically unfavorable. If
an excitation is applied to the input chain, then the NB state will be energetically favourable over
the NA state until the system relaxes to the ground state. All simulations will be performed with
the input in the happy state unless mentioned otherwise.

Throughout the experiment, the Sz operator is measured. This is used to estimate the switching
probabilities. For example if the system is in state NA then we expect for a measurement of Sz

on the first site of the output to give us the value 2~. If we are in state NB we would expect for a
measurement of Sz on the first site of the output to instead give us the value −2~.
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3 Mathematical Background

In this chapter we outline the main mathematical concepts that are required in setting up a
matrix product state(MPS) formalism. In particular the singular value decomposition and the con-
cept of matricization. We furthermore construct the spin matrices and introduce error estimation
through Richardson extrapolation.

All proofs related to the singular value decomposition can be found in the book “Foundations
of Data Science”[4].

3.1 The Singular Value Decomposition

Singular Vectors

Let A be a complex n ×m matrix of rank r. In order to derive the singular value decomposition
we first define the singular vectors of a A. We define v1, the first right singular vector of A, as
follows:

v1 = arg max
|v|=1

|Av|.

The arg max function returns the value, or in this case vector, for which the argument is maximal.
We use | . . . | to denote the euclidean norm. We furthermore define σ1(A) = |Av1| as the first
singular value.

The second right singular vector is then chosen similarly, but under an additional condition of
being orthogonal to the first singular vector:

v2 = arg max
v⊥v1,|v|=1

|Av|.

We denote σ2(A) = |Av2| as the second singular value.
In general the kth right singular vector is defined as:

vk = arg max
v⊥v1,v2,...,vk−1,|v|=1

|Av|

with singular value σk(A) = |Avk|.
As A is of rank r we note that there are r different singular vector and singular values. By

construction we also note that v1,v2, ...,vr are orthogonal.
Using the right singular vector vi we can also define the left singular vector ui:

ui =
1

σi(A)
Avi.

Theorem 1. The left singular vectors of A, u1,u2, ...,ur are orthogonal.

The orthogonality of both the left singular vectors and the right singular vectors will be im-
portant for performing fast calculations using matrix product states.

Singular Value Decomposition

We can now define the compact singular value decomposition:

Theorem 2. (Compact Singular Value Decomposition) Let A be a n ×m matrix with right sin-
gular vectors v1,v2, ...,vr, left singular vectors u1,u2, ...,ur, and corresponding singular values
σ1, σ2, ..., σr then:

A =

r∑
i=1

σiuiv
†
i
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We can write this sum in matrix notation as A = UΛV † where Λ is a diagonal matrix containing
the singular values and U and V are matrices whose columns are the left and right singular vectors
respectively. The † symbol is used to denote the Hermitian transpose. The following diagram
shows the structure of the matrices involved in the SVD:


(
n×m)

=




(
n× r)

 
(
r × r)

 
(
r ×m)

= UΛV †.

This matrix decomposition of A is not unique, however we can always construct the matrices such
that Λ contains the singular values in decreasing order. For the rest of this thesis we will assume
that this is the case.

Approximation

The SVD allows us to represent the matrix A in a more compact form through the means of
obtaining the best rank k approximation of the matrix. We define Ak as follows:

Ak =

k∑
i=1

σiuiv
†
i

This is clearly a matrix of rank k.
Under the Frobenius norm Ak is the best rank k approximation for A. This can be seen in the

following theorem:

Theorem 3. For any matrix B of at most rank k:

||A−Ak||F ≤ ||A−B||F

Schmidt Decomposition

We can use the singular value decomposition to obtain the following theorem[5]:

Theorem 4. (Schmidt decomposition) Let H = H1⊗H2 be a Hilbert space with H1 and H2 finite
dimensional Hilbert spaces with not necessarily the same dimension. Let w ∈ H normalized, then
there exist orthonormal sets {u1, ..., ur} ∈ H1 and {v1, ..., vr} ∈ H2 such that:

w =

r∑
i=1

αiui ⊗ vi

where αi are real, strictly positive, and normalized such that
∑
i |αi|2 = 1. We define r as the

Schmidt rank of the state.

3.2 Matricization

In general our wavefunction is described by a tensor. However, in order to apply the singular
value decomposition we require a matrix instead. Therefore, we need to transform the tensor
into a matrix that is appropriate for our calculations. The method we use is through matriciza-
tion/unfolding. Let X ∈ RI1×I2×...×In with Ii ∈ N for all 1 ≤ i ≤ n. The index il runs from 1
to Il. We define the k-mode matricization by mapping the element (i1, ..., ik−1, ik, ik+1, ..., in) to
(ik, j) with[6]:

j = 1 +

n∑
m=1,m 6=k

((im − 1)

m−1∏
l=1,l 6=k

Il) (1)
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Our resultant matrix will have dimensions Ik× (I1 · · · Ik−1Ik+1 · · · In). For ease of notation we will
write the resultant matrix of k-mode matricization of Xi1i2...in as Xik,(i1...ik−1ik+1...in).

In order to visualize this operation we introduce mode-k fibers[7]. The mode-k fibers are the
result of fixing each parameter save the kth. For a second order tensor the mode-1 fibers are the
columns for example. Figure 2 shows the three different mode-k fibers for a 3rd order tensor.

Figure 2: The different mode-k fibers for a third order tensor. Each cube in the base tensor is a value.

In practice mode-k matricization rearranges the mode-k fibers into a matrix. We can see this
from equation (1): each element in a specific mode-k fiber will share the same j value. We see that
the columns of the resultant matrix contain the fibers in reverse lexicographical order [8]. Figure
3 shows mode-2 matricization of a (4× 5× 3) tensor into a (5× 12) matrix.

Figure 3: Rearranging mode-2 fibers for mode-2 matricization of a third order tensor.

Canonical Matricization

Outside of k-mode matricization we also employ mode-(1,2,..,k) matricization, also known as mode-
k canonical matricization[8]. In this form of matricization we map an element (i1, ..., ik−1, ik, ik+1, ..., in)
to (l, j) with:

l = 1 +

k∑
m=1

((im − 1)

m−1∏
l=1

Il)

j = 1 +

n∑
m=k+1

((im − 1)

m−1∏
l=k+1

Il)

Our resultant matrix will be of dimensions (I1 · · · Ik)×(Ik+1 · · · In). As notation we write the mode-
k canonical matricization of Xi1i2...in as X(i1...ik),(ik+1...in), analogously to mode-k matricization.

Slices

Outside of matricization, we also introduce the concept of slices of third order tensors[7]. A slice
of a third order tensor is obtained by keeping one index constant. Slices were the first index of the
tensor is kept constant are known as horizontal slices. For the second and third index the names
are lateral and frontal slices respectively. This is shown in figure 4.
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Figure 4: The three types of slices that can be obtained from a third order tensor.

3.3 Spin Matrices

In chapter 2 we have seen that the Hamiltonian primarily consists of the spin operators Ŝx, Ŝy, Ŝz.
In order to perform calculations with these operators we need to obtain their matrix form. The
spin operator Ŝz is defined as seen here[9]:

Ŝz |s,ms〉 = ~ms |s,ms〉

We can see that |s,ms〉 are eigenstates of the Ŝz operator. To obtain the elements of our Sz matrix
we can simply perform the following inner product:

Sza,b = 〈s,ma| Ŝz |s,mb〉 .

Here a and b are the indices of the Sz matrix.

To obtain the Sx and Sy matrix we first define the Ŝ+ and Ŝ− operators. They are defined as
follows[9]:

Ŝ+ |s,ms〉 = ~
√
s(s+ 1)−ms(ms + 1) |s,ms + 1〉

Ŝ− |s,ms〉 = ~
√
s(s+ 1)−ms(ms − 1) |s,ms − 1〉

Here we note that since |ms| ≤ s we find that Ŝ+ |s,ms = s〉 = 0 and Ŝ− |s,ms = −s〉 = 0. the
matrices are constructed in the same way as for Sz. Using these matrices we can obtain the Sx
and Sy matrices through the following two equations[9]:

Sx =
S+ + S−

2

Sy =
S+ − S−

2i
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As the experiment concerns itself with spin 2 particles, these are listed below:

Sx =
~
2


0 2 0 0 0

2 0
√

6 0 0

0
√

6 0
√

6 0

0 0
√

6 0 2
0 0 0 2 0



Sy =
~
2


0 −2i 0 0 0

2i 0 −
√

6i 0 0

0
√

6i 0 −
√

6i 0

0 0
√

6i 0 −2i
0 0 0 2i 0



Sz = ~


2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2



This matrix representation of the system is not unique. The following commutation relations
must hold for any three spin matrices[9]:

[Sx, Sy] = i~Sz
[Sy, Sz] = i~Sx
[Sz, Sx] = i~Sy

with
[A,B] = AB −BA,

the commutator between A and B.

Richardson error estimation

If we use the numerical method Q(h) to approximate the unknown value M, then we can assume
that the following holds[10]:

M −Q(h) = cph
p +Ohp+1.

with cp 6= 0 and p ∈ N. This formula allows us to determine the value of p. We firstly note that
for sufficiently small values of h the effect of the O(hp+1) part is negligible. We can then compute
Q(h), Q(2h) and Q(4h) to obtain the following:

Q(2h)−Q(4h) = cp(2h)p(2p − 1),

Q(h)−Q(2h) = cp(h)p(2p − 1).

So we quickly obtain[10]:
Q(2h)−Q(4h)

Q(h)−Q(2h)
= 2p.

This formula will be used to test the order of the errors in time evolution of the chain. This allows
us to see if time evolution is implemented properly or not. We will state the expected order of
error in chapter 5. If Richardson estimation gives similar results to the expected error, then we
know that the implementation of the numerical methods works properly.
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4 Matrix Product States

It is our aim to simulate the time-evolution of long spin chains. The technique of MPS is very
helpful in this context. In this chapter we use MPS to drastically reduce the dimension of the
Hilbert space we consider in our calculations.

Let us consider a one-dimensional chain of particles with length L. For each site we denote the
orthonormal basis by {|ni〉}. We can write a given wave function as:

|Ψ〉 =
∑

n1,n2,...,nL

cn1,n2,...,nL
|n1, n2, ..., nL〉 .

With |n1, n2, ..., nL〉 = |n1〉 ⊗ |n2〉 ⊗ ... ⊗ |nL〉. Here we store our cn1,n2,...,nL
in the Lth-order

tensor C. If each site can be in d states, then C will contain dL elements. Thus, in order to
simulate an arbitrary given state we are required to store an amount of information that scales
exponentially with the length of the chain. This rapidly becomes unfeasible. One method to
approximate and simulate this wave function without storage requirements scaling exponentially
with length is through matrix product states.

4.1 The Matrix Product States Formalism

The matrix product states formalism heavily relies on the singular value decomposition. Our aim
is to write an element cn1,n2,...,nL

of the tensor C as

cn1,n2,...,nL
= Γn1Λ1Γn2Λ2...ΓnL

(2)

introducing a matrix Γni for each i and corresponding ni[11]. This is known as Vidal’s decompo-
sition.

Let C ∈ RI1,I2,...,IL be our coefficient tensor with Ii the number of states of site i. We will label
the states ni = 1, 2, ..., Ii. For convenience we denote it as C(1). Now let M = C[1] ∈ RI1×(I2...IL)

be the mode-1 matricization of C(1). We denote the rank of M as R1. We now apply a singular
value decomposition on M to obtain[11]:

mn1,(n2n3...nL) =

R1∑
r1=1

Un1,r1Λ(1)
r1,r1V

†
r1,(n2n3...nL).

We note U ∈ RI1×R1 , Λ ∈ RR1×R1 , V † ∈ RR1×(I2I3...IL). We now find that each row of U is related
only to a specific value of n1. We define each An1 vector by its respective row in U . This yields
us the I1 An1 matrices that belong to our state. We quickly note that these are all row vectors of
length R1

We now define C(2) = Λ(1)V †. We let M (2) = C[2] ∈ R(R1I2)×(I3...IL) with C[2] the mode-2

canonical matricization of C(2). We denote the rank of M (2) as R2 and apply a singular value
decomposition on M (2) to obtain[11]:

m(r1n2),(n3...nL) =

R2∑
r2=1

U(r1n2),r2Λ(2)
r2,r2V

†
r2,(n3...nL).

We note that R2 ≤ min (R1I2, I3I4...In). We now reshape U into a 3rd order tensor in RI2×R1×R2 .
The horizontal slices of this tensor will be denoted as An2

based on the value of the index n2 that
the slice belongs to. It is clear that An2

∈ RR1×R2 and that we have I2 of them, one for each
eigenstate of site 2.
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We let C(3) = Λ(2)V † and repeat this process until we have moved through the entire chain.
For each site of the chain that is not at an end we obtain a matrix and for the right end of the
chain we obtain a column vector. Upon completion we are left with:

cn1,n2,...,nL
= An1

An2
...AnL

This is known as the left canonical decomposition. To change it into Vidal’s decomposition we
use the Λ(i) matrices obtained in the process of writing the left canonical decomposition. Between
each Ani and Ani+1 we add Λ(i)(Λ(i))−1. We now write Γn1 = An1 and Γni = (Λ(i−1))−1Ani . This
yields:

cn1,n2,...,nL
= An1An2 ...AnL

= An1
Λ(1)(Λ(1))−1An2

Λ(2)...(Λ(L−1))−1AnL

= Γn1Λ(1)Γn2Λ(2)...ΓnL

It is clear that this is the same form as equation (2). The wave function in matrix product state
form becomes[11]:

|Ψ〉 =
∑

n1,...,nL

Γn1Λ1Γn2Λ2...ΓnL
|n1, n2, ..., nL〉

Properties

Vidal’s decomposition has several properties that turn out to be very helpful in simulations.
We firstly see that the Λ matrices are all diagonal. This directly follows from the singular value

decomposition. We also know that the singular values inside each Λ matrix are in decreasing order.
Furthermore normalization of the wave function means that ||Λ||F = 1, so we have

∑
i |λi|2 = 1.

We refer to the number of non-zero elements in a Λ matrix as its bond dimension.
The orthogonality of the left and right singular vectors also results in orthogonality in Vidal’s

decomposition. By the singular value decomposition we know that[11]:

L∑
i=1

(Γni)
†Γni = I

L∑
i=1

Γni
(Γni

)† = I

with I the identity matrix. These are known as the left-orthonormal and right-orthonormal con-
straints respectively. These constraints will be very important for time evolution and calculating
the expectation of operators.

In Vidal’s decomposition each Λi is a Ri × Ri matrix and each Γi is a Ri−1 × Ri matrix with
R0 = RL = 1. As such it is interesting to see what the maximum value of each Ri is. For each Ri
we find:

Ri ≤ min (Ri−1Ii, IiRi+1)

If we observe a chain where each site can be in d states we will see that a pyramid like structure
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appears. This can be seen below:

[
. . .

](
1×R1)

. . .
. . .
. . .


(
R1 ×R1)

. . . . .
. . . . .
. . . . .


(
R1 ×R2)


. . . . .
. . . . .
. . . . .
. . . . .
. . . . .


(
R2 ×R2)

...

...


. . . . .
. . . . .
. . . . .
. . . . .
. . . . .


(
RL−2 ×RL−2)

. . . . .
. . . . .
. . . . .


(
RL−2 ×RL−1)

. . .
. . .
. . .


(
RL−1 ×RL−1)

..
.


(
RL−1 × 1)

We note that in the worst case scenario we have max
i
{Ri} = d

L
2 if the chain is even length and

max
i
{Ri} = d

L−1
2 if the chain length is odd. As such the size of our largest Λi is at worst d

L
2 × dL

2 .

This indicates that we still require storage space that scales with dL. This is not surprising as we
have only rewritten the state into matrix product state form. In order to reduce the amount of
storage space used we have to make an approximation that is based on the area law.

4.2 Entropy and the Area Law

Entropy

In order to understand the area law we first need to have a notion of entropy. Entropy is a measure
of the uncertainty in the system[11]. We define the Von Neumann entropy of a quantum mechanical
system as

S = −Tr(ρ log2 (ρ)) (4)

with Tr() the trace and ρ the density matrix of the system defined as ρ = |Ψ〉 〈Ψ|. Since |Ψ〉 is a
dL column vector containing the coefficients Cn1,...,nL

, we know that ρ is a dL × dL matrix.
The Von Neumann entropy gives us information about the entanglement of a bipartite system,

that is, a system consisting of two parts. If we split our system into two parts A and B then the
entropy of entanglement between the subsystems is given by

S(ρA) = −Tr(ρA log2 (ρA))

S(ρB) = −Tr(ρB log2 (ρB))

S(ρA) = S(ρB) = S

with ρA = TrB(ρ) and ρB = TrA(ρ) the reduced density matrices. TrA and TrB denote partial
traces over the eigenstates of system A or B respectively. We apply an Schmidt decomposition to
rewrite our state as a sum of orthonormal states of A and B as follows:

|Ψ〉 =

r∑
i=1

λi |ui〉A ⊗ |vi〉B .

Here λi are the singular values of the Λ matrix that is between part A and B. Together with
equation (4), this leads to[11]:

S = −
∑
i

Tr(|λi|2 log2 (|λi|2))

From this formula we see that there is a relation between the entropy of the system and the singular
values. We note that for a system with low entropy the sum will generally have fewer large terms.
If we are in an state with S = 0 for example, we require λ1 = 1 and λi = 0 for i > 1. This tells us
that if we work with states that have low entanglement we will have singular values that quickly
decrease.
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Area law

For a general system, the Von Neumann entropy of the system follows a volume law[12]. This
means that if we double the volume of the system we find that the entropy of the system also
doubles. This then implies that if we perform calculations with a two times longer chain we will
find that there are on average twice as many larger singular values. Under specific conditions we
find something different though: if we are near the ground state of a system described by a gapped
local Hamiltonian the entropy of the system follows an area law instead. Gapped means that
there is a finite energy gap between the ground state and first excited state and local implies that
interactions only occur over short distances. These two conditions are both met by the Hamiltonian
described in the experiment as all interactions are only nearest neighbour interactions and there
is a finite energy gap between all non-degenerate states. So, if we are near the ground state of the
experiment we know that the entropy follows an area law.

The reason it is very important for the system to follow an area law is because it means that the
entropy is only determined by the area of the boundary of the system. For a 1-D chain this boundary
is always the same size meaning that for states that follow an area law S = constant. If the system
scales at least linearly, then it cannot be approximated efficiently by MPS[12]. Furthermore if we
start with a state near the ground state it will remain near the ground state during time evolution.
This means that we remain in the stay in a state that follows the area law. meaning that we can
restrict our available states from the entire Hilbert space to only area law states. This is depicted
in figure 5:

Figure 5: A depiction of the area law states inside of the full Hilbert space.

Truncation

To reduce our available states from the full Hilbert space to states that follow the area law we use
an an important empirical observation: for area law states the singular values tend to decrease
exponentially fast[13]. Although this is not rigorously proven, it has been proven that states with
exponentially decaying singular values follow an area law[14]. If the empirical observation holds
then smaller singular values can be neglected in simulations. We introduce a truncation parameter
χ. For each Λ at most the first χ singular values kept. The error associated with this truncation
can be bounded as follows:

|| |Ψ〉 − |ΨTrunc〉 ||22 ≤ 2

L∑
i=1

εi(χ).

εi(χ) is the truncation error of site i. ||.||2 denotes the L2-norm defined as:

||~z||2 =
√
|z1|2 + |z2|2 + ...+ |zn|2

with ~z an n-dimensional vector.
The following figure shows the first 50 singular values of the ground state of the system and a

random state. The chain used is a 5− 8− 3 chain and the singular values depicted are those from
Λ8, the center of the chain. j is used as the index of the singular value in the matrix.
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Figure 6: The singular values of the center Λ matrix for a chain of L=16. The ground state and a random state
are plotted.

We can see how the singular values of the ground state rapidly decrease whilst the singular
values of the random state remain around the same order of magnitude. As such we can assume
that for the experimental Hamiltonian the exponential decrease of singular values holds. For
χ = 15 we already find that the approximation of the ground state is very accurate, only losing
singular values that are of order 10−6. Meanwhile the approximation for the random state remains
inaccurate for all first 50 singular values, indicating how this truncation is only effective for states
that follow the area law.

4.3 Graphical Representation

One of the benefits of the matrix product state representation is that we can easily represent is
graphically. The following figure shows a graphical representation of a given matrix product state.

Figure 7: A graphical representation of a matrix product state.

We can see that the Γ matrices are shown in red and the Λ matrices are blue. The indices
of each matrix are shown by lines. Each Γni

matrix has one line free, this line represents the ni
index. Since the Λi are matrices they have two indices they also have two lines, these are both
used in matrix multiplication with the adjacent Γni

and Γni+1
. All Γni

matrices save the first and
last have three indices as each eigenstate of the site has a matrix associated with it. For the first
and last site there is no matrix, there is a row vector and column vector respectively instead.
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5 Time Evolution and Computations

In order to simulate how a system behaves over a given period in time we develop a time evo-
lution method that is applicable with MPS and that scales polynomially in time. We furthermore
discuss calculations in the MPS formalism such as the dot product.

Time evolution of a quantum wavefunction with a time independent Hamiltonian is described
by the following differential equation:

i~
d

dt
|Ψ(t)〉 = Ĥ |Ψ(t)〉

This is a system of dL equations. We find that:

|Ψ(t+ ∆t〉 = e−
iĤ∆t

~ |Ψ(t)〉 . (5)

The problem with evaluating the time evolution directly is that it scales exponentially in time for
longer chains. As such we have to employ a different method of time evolution. For this purpose we
use time-evolving block decimation (TEBD). This algorithm allows for time evolution that scales
polynomially with system size. As previously mentioned ~ = 1, meaning that we will remove it
from further calculations for clarity.

5.1 Time-Evolving Block Decimation

The idea behind TEBD is to make use of the fact that the Hamiltonian only contains nearest
neighbour interactions to split the Hamiltonian into parts[2]. Normally the Hamiltonian of a
system with L sites and d eigenstates per site will have dimensions dL × dL. This clearly makes
direct calculations for long chains impossible. Through splitting up the Hamiltonian we can handle
this calculation.

We start off by splitting Ĥ into two Hamiltonians: Ĥodd and Ĥeven. For convenience we will
write Ĥ =

∑L
i=1 K̂

[i] +
∑L−1
i=1 K̂ [i,i+1] as a shorthand. Equation (6) shows how we split Ĥ for a

chain of even length:

Ĥ =
L∑
i=1

K̂ [i] +
L−1∑
i=1

K̂ [i,i+1] = Ĥodd + Ĥeven (6a)

Ĥodd =
1

2

L−1∑
i=2

K̂ [i] +

L−1∑
i=1
odd

K̂ [i,i+1] + K̂ [1] + K̂ [L] (6b)

Ĥeven =
1

2

L−1∑
i=2

K̂ [i] +

L−1∑
i=2
even

K̂ [i,i+1] (6c)

For a chain of odd length K̂ [L] will instead be added into Ĥeven. The idea behind the split is to
ensure that the nearest neighbour interactions are split between Ĥodd and Ĥeven in alternating
fashion while the interactions that only depend on one atom are split symmetrically between
Ĥodd and Ĥeven. For the end of the chain the complete single site interactions are added to
the Hamiltonian that has a nearest neighbour interaction with the site itself. Since ˆHodd always
contains K̂ [1,2] we always add K̂ [1] to it for example.

We can try to visualize the split by observing which elements of each matrix are non-zero. We
plot Ĥ, Ĥodd, and Ĥeven for a chain with L = 4.



15

Figure 8: The locations where the three matrices are non-zero. Non-zero components are marked yellow. L =
4,d = 5.

We clearly see the effect of each nearest neighbour interaction. Ĥeven contains K̂ [2,3] and Ĥodd

contains K̂ [1,2] and K̂ [3,4]. We recognize this in the patterns, with nearest neighbour interactions
in Ĥodd being split into a part near the diagonal and a part farther away. Meanwhile interactions
of Ĥeven predominantly occur between this. We also note that in both cases the diagonals are
nearly completely non-zero, as a result of single site interactions.

Suzuki-Trotter

We now use Ĥodd and Ĥeven to split the e−iĤ∆t in two parts. Because the operators do not
commute this will result in an error. This is known as the Suzuki-Trotter 1 decomposition. The
approximation looks as follows[15]:

e(A+B)x = eAxeBx +O(x2)

We notice that this will result in a global error that is O(x). Applying the Suzuki-Trotter decom-
position yields:

e−iĤ∆t = e−iĤodd∆te−iĤeven∆t.

We now split Ĥodd and Ĥeven even further to obtain the individual nearest neighbour interactions
of every adjacent pair together with their single site interactions. We write these as Ô[i,i+1] =
K̂ [i,i+1] + 1

2 (K̂ [i] + K̂ [i+1]). For the edges we once again use the full K̂ [1] and K̂ [L] instead. We
write:

Ĥodd =

L−1∑
i=1
odd

Ô[i,i+1]

Ĥeven =

L−1∑
i=2
even

Ô[i,i+1]

The benefit of this is that all of the Ô[i,i+1] in Ĥodd commute with each other. The same holds
for Ĥeven. Therefore, we split both Ĥeven and Ĥodd up into their components and calculate each
component individually without further errors. Our final calculation for the time evolution is as
follows:

e−iĤ∆t =

L−1∏
i=1
odd

e−iÔ
[i,i+1]∆t

L−1∏
i=2
even

e−iÔ
[i,i+1]∆t

For the application of each O[i,i+1] operator onto a given state we note that the operator only
depends on the state of particles i and i+ 1. Therefore, we know that the operator will only have
effects on Γi,Λi, and Γi+1. During the calculation of O[i,i+1] we can thus restrict ourselves to the
subspace spanned by these sites. This means we only have to apply a size d2 × d2 operator as
opposed to a full size dL × dL operator. Through this entire method we have thus been able to
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eliminate the exponential scaling in the size of the Hamiltonian that occurs. Instead of using one
dL × dL matrix we now use L d2 × d2 matrices.

This can also be visualized graphically. Because the order in which the operators in Ĥodd are
applied does not matter, they are placed on the same line. This is also the case for Ĥeven. Figure

9 shows this form of time evolution. For clarity we use T [i,i+1] = e−iÔ
[i,i+1]∆t.

Figure 9: Odd-even time evolution of a matrix product state. L = 5

This form of time evolution is aptly named odd-even time evolution. A few decades ago, it was
known as a ”checkerboard decomposition” where discrete time steps and spin sites together span a
square lattice, which is viewed as a checkerboard of which the black fields contain the interactions
treated in the calculation.

Crank-Nicolson

In order to accelerate the calculations we approximate the two-site operator T [i,i+1]. One property
that we require of the approximation of our time evolution operator is that it is unitary. This is
required to preserve normalization of the state. The Crank-Nicolson operator is used a well-known
discrete form which preserves unitarity[16]:

e−
iÔ[i,i+1]∆t

~ =
I− iÔ[i,i+1]∆t

2

I + iÔ[i,i+1]∆t
2

+O(∆t3)

This yields a global error of O(∆t2). This also implies that for small ∆t, we expect for the error
to be dominated by the Suzuki-Trotter decomposition.

Truncation error

Time evolution gradually increases the bond dimension of the Λ matrices in a system[2]. As such
we constantly truncate the state down to χ × χ. This also means that for smaller values of χ we
will obtain a further error every time step.

By combining these errors we see that for large values of χ the global error will scale with
O(∆t). In this case Richardson estimation should yield p = 1. For small values of χ the global
error is highly dependant on the truncation error, this means we will likely find that Richardson
estimation yields different values for p.

5.2 Computations in the matrix product state formalism

As of now we have shown how we can reduce the time complexity from exponential in L to
polynomial. This section focuses on performing the actual calculations on a matrix product state.
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Application of a Single-Site Operator

Let us define the single site operator Ôi = I1 ⊗ I2 ⊗ ... ⊗ Ii−1 ⊗ Ô ⊗ Ii+1 ⊗ ... ⊗ IL. In order to
calculate the effect of this single-site operator we need to calculate the full matrix product. Doing
this calculation naively would be relatively slow. Because the operator only changes one site we can
do this calculation efficiently by first writing it in a simplified form. We split the wavefunction into
three parts, the sites to the left of where the operator acts, the site where the operators acts, and
the sites to the right of where the operator acts. To do so we perform a Schmidt decompositions.
We obtain:

|Ψ〉 =
∑
ni

∑
αi−1,αi

Λ
αi−1,αi−1

i−1 Γαi−1,αi
ni

Λαi,αi

i

∣∣ηαi−1

〉
A
|ni〉 |ηαi〉B

=
∑
ni

∑
αi−1,αi

Θαi−1,αi
ni

∣∣ηαi−1

〉
A
|ni〉 |ηαi〉B (7a)

|ηαi
〉A =

∑
n1,...,ni

∑
α1,...,αi−1

Γα1
n1

Λα1,α1

1 Γα1,α2
n2

Λα2,α2

2 ...Γαi−1,αi
ni

|n1, n2, ..., ni〉 (7b)

|ηαi
〉B =

∑
ni+1,...,nL

∑
αi+1,...,αL

Γαi,αi+1
ni+1

Λ
αi+1αi+1

i+1 ...ΓαL−1,αL
nL

|ni, ni+1, ..., nL〉 . (7c)

We now update the middle part by using the following unit operator: I =
∑
n′i
|n′i〉 〈n′i| and let Ôi

act on it.

Ôi |Ψ〉 =
∑
ni

∑
αi−1,αi

∑
n′i

Θαi−1,αi
ni

〈n′i| Ôi |ni〉
∣∣ηαi−1

〉
A
|n′i〉 |ηαi

〉B

=
∑

αi−1,αi

∑
n′i

Θ̃
αi−1,αi

n′i

∣∣ηαi−1

〉
A
|n′i〉 |ηαi

〉B

with:
Θ̃
αi−1,αi

n′i
=
∑
ni

Θ
αi−1,αi

n′i
〈n′i| Ôi |ni〉 . (8)

We simply have to return to MPS form using a transformation:

Γni
→ Γ̃ni

= (Λi−1)−1Θ̃ni
(Λi)

−1

We see that the application of a single site operator only ends up changing Γni
to Γ̃ni

.

Application of a Two-Site Operator

The application of a two-site operator Ôi,i+1 understandably is very similar to that of a single site
operator. We once again split the chain into three pieces[17]:

|Ψ〉 =
∑

ni,ni+1

∑
αi−1,αi,αi+1

Λ
αi−1,αi−1

i−1 Γαi−1,αi
ni

Λαi,αi

i Γαi,αi+1
ni+1

Λ
αi+1,αi+1

i+1

∣∣ηαi−1

〉
A
|ni, ni+1〉

∣∣ηαi+1

〉
B

=
∑

ni,ni+1

∑
αi−1,αi+1

Θαi−1,αi+1
ni,ni+1

∣∣ηαi−1

〉
A
|ni, ni+1〉

∣∣ηαi+1

〉
B
, (9)

followed by entering the unit operator I =
∑
n′i,n

′
i+1

∣∣n′i, n′i+1

〉 〈
n′i, n

′
i+1

∣∣ and applying the operator

Ôi,i+1.

Ôi,i+1 |Ψ〉 =
∑

ni,ni+1

∑
αi−1,αi+1

∑
n′i,n

′
i+1

Θαi−1,αi+1
ni,ni+1

〈
n′i, n

′
i+1

∣∣ Ôi,i+1 |ni, ni+1〉
∣∣ηαi−1

〉
A

∣∣n′i, n′i+1

〉 ∣∣ηαi+1

〉
B

=
∑

αi−1,αi+1

∑
n′i,n

′
i+1

Θ̃
αi−1,αi+1

n′i,n
′
i+1

∣∣ηαi−1

〉
A

∣∣n′i, n′i+1

〉 ∣∣ηαi+1

〉
B
.
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Here we introduced:

Θ̃
αi−1,αi+1

n′i,n
′
i+1

=
∑

ni,ni+1

Θαi−1,αi+1
ni,ni+1

〈
n′i, n

′
i+1

∣∣ Ôi,i+1 |ni, ni+1〉 (10)

analogously to the single-site operator.
The main difference between the application of a two-site operator and a single-site operator

is that we have to perform a SVD before we can return to MPS form. As such we reshape Θ̃ to a
matrix using canonical matricization and perform a SVD.

Θ̃
αi−1,αi+1

n′i,n
′
i+1

→ Θ̃(n′iαi−1),(n′i+1αi+1) → U(n′iαi−1),α′i
Λ̃
α′i,α

′
i

i Vα′i,(n′i+1αi+1)

We transform U and V into third order tensors and take the horizontal slices analogously to the
derivation of MPS. This yields us the Uni matrices and the Vni+1 matrices. We truncate these

resulting matrices and Λ̃i to be χ×χ if required. Λi is updated to Λ̃i. The updated Γni and Γni+1

matrices are obtained as follows:

Γ̃ni
= (Λi−1)−1Uni

Γ̃ni+1 = Vni+1(Λi+1)−1

Figure 10 depicts this process:

Figure 10: The application of a two-site operator to sites i and i+1.

Expectation of a Single-site and Two-site Operator

To find the expectation of a single-site operator we are required to calculate 〈Ψ| Ôi |Ψ〉. To do so
we utilize Θ and Θ̃ from equations (7a) and (8). The expectation is:

〈Ψ| Ôi |Ψ〉 =
∑

αi−1,αi

∑
ni

(Θ
αi−1,αi

n′i
)†Θ̃

αi−1,αi

n′i

Likewise we find the expectation of a two-site operator using the Θ and Θ̃ from equations (9) and
(10).

〈Ψ| Ôi,i+1 |Ψ〉 =
∑

αi−1,αi+1

∑
ni,ni+1

(Θ
αi−1,αi+1

n′i,n
′
i+1

)†Θ̃
αi−1,αi+1

n′i,ni+1

The graphical representation of these calculations is visible in figure 11.
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Figure 11: The expectation of a single-site operator and a two-site operator.

Dot product

In order to verify that a given state is normalized we require a fast method to calculate a dot
product. We will look at the general calculation of 〈Ψ1|Ψ2〉 with |Ψ1〉 and |Ψ2〉 different states.

Although the simplest method would be to perform the calculation in one step, this is not the
optimal method as computation costs scale exponentially with system size. We instead use the
zip-up method to perform the calculation in polynomial time[2].

The zip-up method consists of starting at the edge of the chain and creating a matrix M1. We
start at the left edge. We denote |Ψi〉 =

∑
n1,...,nL

Γn1,iΛ1,iΓn2,iΛ2,i...ΓnL,i |n1, n2, ..., nL〉i.

M
α′1,α
1 =

∑
n1

(Γ
α′1
n1,1

)†Γα1
n1,2

(Λ
α′1,α

′
1

1,1 )†Λα1,α1

1,2 .

We then create M2 by adding site 2 to the product:

M
α′1,α
2 =

∑
n2

∑
α′1,α1

M
α′1,α
1 (Γ

α′1α
′
2

n2,1
)†Γα1α2

n2,2
(Λ

α′2,α
′
2

2,1 )†Λα2,α2

2,2 .

This process repeats until we reach the end of the chain. Figure 12 shows the difference between
the methods.

Figure 12: The naive method of calculating the dot product compared to the more efficient zipping method.
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6 Data Analysis

In this chapter we analyze the results of simulations using MPS. We start with verifying that
the global error is O(∆t), followed by a comparison between direct simulation for a short chain
and MPS. We will analyse the energy of the system and the expectation of the operator Ŝz to get
a better understanding of the systems behaviour.

The code for the MPS simulations can be found on the gitlab page in appendix A.

6.1 Richardson and comparison

The error we obtain through Richardson error estimation is expected to be of order 1 for large
enough χ. If the truncation error can be neglected then the primary source of error will be due to
the Suzuki-Trotter expansion, which has global error O(∆t). We retrieve this result. If χ is chosen
to be relatively small however, this result is not retrieved, most likely due to the truncation. In
this case p ≈ 0.4.

For the comparison between direct simulations and simulations using MPS we use the simu-
lations done by the experimentalists themselves. Because direct simulations are only possible for
short chains, we simulate the first 5 atoms of a 5−8−3 chain. Unless explicitly stated we consider
the input chain to have length 5. The effects of the output and reset chain are approximated by
a constant coupling. Although this is not necessarily realistic, it allows for verification that the
MPS method obtains correct results.

Figure 13 compares the expectation of Ŝz for a direct simulation and 4 MPS simulations. In
these plots an excitation Ŝ− is applied to atom 1, the left-most atom. The 4 MPS simulations have
been chosen to highlight the rate of converge of the method.

(a) Direct simulation

(b) χ = 2 (c) χ = 5

(d) χ = 8 (e) χ = 10

Figure 13: Matrix product state simulations for a variety of χ values. These simulations were completed with
T=2500 timesteps
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We notice that increasing χ rapidly yields to better convergence. For χ = 2 we recover practi-
cally nothing from the direct simulation whilst χ = 8 already yields nearly indistinguishable results
if plotted as above. This indicates that the MPS formalism is very effective for simulating this
chain. It also verifies that the excitation does not cause us to shift into a state that does not follow
an area law. This is important since we can only simulate area law states.

Below are four plots in which we focus on the measurement of the leftmost particle. In each
plot we compare the results from the direct simulation with that of the MPS simulation.

(a) χ = 2 (b) χ = 5

(c) χ = 8 (d) χ = 10

Figure 14: Comparison of expectation of Ŝz of site 1 from MPS simulation to direct simulation for varying χ.
These simulations were completed with T=2500 timesteps.

Figure 14 gives us a clearer picture of how quickly the MPS simulations converge. Once
again χ = 2 gives highly inaccurate results, but we can now also easily note that the results
for χ = 5 diverge relatively quickly. For values as low as χ = 8 we find that the results are highly
accurate, only for a few points can we see the divergence. The results for χ = 10 are nearly
indistinguishable from the direct simulations, showcasing how MPS simulations can achieve high
fidelity with relatively few singular values.

Switching probabilities

We can use these results to determine which excitations are likely to cause the chain to flip. For
this purpose we time average 〈Ŝz〉 for the atom nearest to the output for the first 20 ps and plot
2 minus the result. We compare MPS simulation to direct simulation.
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(a) MPS Simulation (b) Experimental results and direct calculation. Rings:
Direct simulation results. Red dots: switching probabil-
ity for happy input. Yellow dots: switching probability
for unhappy input.

Figure 15: The effect of applying an excitation at the given atom on the atom nearest to the output. The sites
are labeled depending on how far they are from the output.

In figure 15b we see two dotted lines that connect points and a number of empty rings. The
rings are results from a direct simulation and the points are experimental results. The red points
show the switching probability if an excitation is applied to a happy input state and the yellow
points show the switching probability if an excitation is applied to an unhappy input state.

The sites are labeled depending on how far away they are from the output chain, with A
being the nearest and E being the farthest. It is not surprising that an excitation of atom A
yields a significant chance for the expectation of atom A to drop. We see that the effect of the
excitations decreases as they move further from the output chain. This implies that we also find
a lower switching probability from excitations further from the output chain. This is in line with
experimental results.

We can also create the same plot with an input chain of length 3 instead. The result of doing
so is shown below:

(a) MPS Simulation (b) Experimental results and direct calculation. Rings:
Direct simulation results. Red dots: switching probabil-
ity for happy input. Yellow dots: switching probability
for unhappy input.

Figure 16: The effect of applying an excitation at the given atom on the atom nearest to the output. The sites
are labeled depending on how far they are from the output. L = 3
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We notice that the behaviour is different from an input chain of length 5. Instead of a gradual
decrease we find that an excitation on atom C actually has more effect on atom A than an excitation
on atom B. This is also in line with experimental results.

6.2 Analysis of full chain

The main benefit of the MPS formalism is of course that we can simulate long chains. Whereas
we previously only simulated a chain of length 5 where the output chain and reset chain were
approximated by a constant coupling, we will now perform the calculations with a full chain.

We start of by approximating the ground state of the system. To do so we utilize imaginary
time evolution. If we replace t by −iτ in equation (5) we find that each eigenstate |Ψn〉 inside
of our full state is multiplied by e−Enτ . Thus we immediately note that the coefficient of the
eigenstate with the lowest energy decreases the slowest or increases the fastest depending on the
sign of the energy. Therefore, we can iterate to the ground state of the system using imaginary
time evolution and normalization. This is important because the real experiment starts with a
system in the ground state. we have to ensure that we iterate to the ground state before applying
an excitation.

The figure below shows how the energy in the chain decreases as we move towards the ground
state. The behaviour is expected to be close to exponential, only deviating from exponential due
to renormalization of the state.

Figure 17: Energy of the chain throughout imaginary time evolution to the ground state. The Initial state is a
random state.

In this case we start with a state that is completely random. This means that the initial energy
will generally be high and that the state does not follow an area law. Nevertheless we see the
expected behaviour of imaginary time evolution: near exponential decay to the ground state.

Since we approximately know what the ground state looks like we can start with a system that
is in a state near the ground state. This allows for significantly faster convergence. It also allows
us to choose a state that evolves towards the NA ground state. If we begin with a random state
we will end up in a superposition of state NA and NB . As the experiment starts in the NA state,
this would result in problems for the simulation. With this in mind, the state that we will perform
imaginary time evolution on is the (2,−2, 2, ...) state.

Normalization

In order to ensure that the error related to truncation is not too high we can observe the norm
of the state. In a real quantum system this will always be equal to 1 because we require that
| 〈Ψ|Ψ〉 |2 = 1. Depending on our truncation parameter χ we can start to deviate from it. If we
want to ensure that our simulations are realistic we require a large enough χ that our normalization
remains relatively close to 1.

In the following figure we show how the norm of a state changes during time evolution for
several values of χ. The state that we are plotting is a state where an excitation is applied to the
first site.
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Figure 18: The normalization of a state throughout time evolution for χ = 5, 10, 15.

We see the expected behaviour. For χ = 5 we find that normalization is not maintained while
χ = 10 and χ = 15 maintain normalization significantly better. We note that at the start of the
simulation the norm of the state is actually larger than 1. This is of no significant concern however
as the error is in the order of 10−4. We find that χ = 10 is a reasonable truncation parameter for
most calculations. Thus it will be used unless stated otherwise. The last property that we have to
verify is that the energy in the chain is conserved throughout real time evolution.

Energy conservation

Because the chain we are simulating is a closed system, conservation of energy requires us to find a
constant total energy. It is thus important to ensure that this is approximately true. Due to errors
from the Suzuki-Trotter decomposition and the Crank-Nicolson method we will of course slightly
oscillate around the true value. Furthermore, truncation of the state will affect the energy. With
this in mind we will show the energy in two situations: with and without normalization. This gives
us an idea of what the effect of truncation is on the energy of the system while simultaneously
allowing us to see if energy is conserved. Figure 19 shows this.

Figure 19: Total energy inside of a 5-8-3 chains after an excitation on site 1.

We see behaviour that should occur. Both of the lines oscillate a bit due to errors as expected.
We can clearly see the effect of losing normalization on the orange line, with the energy slowly mov-
ing towards zero and the normalization of the state does the same. The normalized state remains
a lot closer to constant, with the value slowly becoming more negative. This decrease indicates
that the truncation has a tendency to remove higher energy eigenstates. This is unsurprising
considering that the area law holds for low energy states.

We can also use figures 17 and 19 to find the energy change that is related to an excitation
of site 1. We find ∆E = 6.55 meV , once again confirming that an excitation on site 1 does not
increase the energy significantly. As such the area law holds for this excited state, as was previously
seen from the analysis of the normalization of the state.

Excitation on particle 1

The first simulation of the experiment we want to perform is an excitation of particle 1. This
allows us to see how accurate the direct calculation with the approximation of constant coupling
was.
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(a) Direct (b) Full 5-8-3 chain with MPS

Figure 20: Comparison between direct simulation of the input chain and MPS simulation of the full chain.

We see that up to 40 ps the behaviour is nearly identical. beyond this time we observe that
the measurements for site 5, the site closest to the output, are starting to differ. This is in line
with what we would expect. The error from assuming a constant coupling between the input and
output should primarily be noticeable at site 5. We also see the differences for site 4, however
these are already quite subtle. We furthermore find that the behaviour of the rest of the chain is
modelled very well by the direct simulation.

Energy transfer

One result that the experimentalists could not easily explain was related to the switching proba-
bility of a system with the input chain in the unhappy state. If the system is initially in the happy
state, then they expected for an excitation to be able to move the system to an unhappy state.
for a system where the input chain is in an unhappy state, their expectation was that the system
would not switch after an excitation as switching would not be energetically favourable. They did
however find that there was a switching probability.

In order to try to explain what occurs we can look at the energy transfer through the chain. It
could be that part of the excitation moves from the input chain to the output, possibly affecting
the state of the output. If this is the case we would expect for there to be an increase in energy in
the output chain. If this does not occur then we can rule out energy tunneling into the output as
a major contribution to the switching probability.

We will observe the energy in each of the three parts of the chain; the input, the output, and
the reset. In doing so we only consider the single-site operators and the two-site operators that act
between two sites of the same part. The energy in the coupling between parts is neglected. This
means that the total energy that is plotted is not conserved. Furthermore, we only plot the relative
difference in the energy of the chain between the start of the simulation and the given point in
time. This means that the energy of each part of the chain starts at zero, allowing us to see the
transfer of energy more clearly. We perform the calculation for both the situation where the input
chain is happy and where the input chain is unhappy. Because the energy changes are small for
the excitation of the unhappy chain, we continuously normalize the state to limit the effects of
truncation. We additionally use χ = 15 and decrease the size of the time-steps for calculations on
the unhappy chain. Figure 21 shows how energy moves though the 5-8-3 chain.

(a) Happy (b) Unhappy

Figure 21: How energy moves through a 5-8-3 chain after an excitation on site 1 for the situation where the input
is happy and unhappy.

For the excitation in the happy chain it is immediately clear that the energy in the input chain
and the energy in the output chain nearly mirror each other. They both behave very similarly as
you would expect from energy conservation.
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The excitation in the unhappy chain behaves very differently. The energy scales are quite
small, so the oscillations are likely due to numerical errors as opposed to the actual behaviour of
the chain. We clearly see that the total plotted energy is not conserved, as previously mentioned
this could be related to neglecting the coupling between chains for energy calculations.

The energy transfer after 100 ps is approximately equal to 1.5 meV for the happy chain. This
is about a fourth of the energy of the full excitation. We thus find that most of the energy from
the excitation remains inside of the input chain. If we focus on the first 20 ps we find that less
than 0.02 meV has transferred into the output chain. This is a small fraction of the total energy
of the excitation, meaning it likely has little effect on the switching rate.

For the unhappy chain we find an even lower amount of energy transfer. Due to the size of the
numerical errors it is not realistically possible to obtain a good measure for the amount of energy
that has transferred to the output chain. We find that the mean energy transferred to the output
chain is 0.0001 meV . This is certainly small enough that we can assume that nearly no energy
moves from the input chain to the output chain. This is in line with the results about in the
experiment, where an excitation on site 1 results in a low switching rate from unhappy to happy.

Interestingly enough the energy of the reset chain does not change significantly. This appears
to imply that the excitation never reaches the reset chain. We can verify this quite easily by
comparing the relative energy change of the output chain to that of the first half of the output
chain. We do this for the situation where the input is happy. This can be seen in the following
figure:

Figure 22: The relative energy change of the output chain compared to that of the first half of the output chain.

There is only a very slight amount of energy that ends up in the right half of the output chain.
This is a sign that the reset chain has relatively little effect on the result of the excitation. For the
sake of the experiment this is very important to verify, as the point of the reset chain is to reset
the system.

We can do a similar analysis for a 3-8-3 chain. In the case of a 3-8-3 chain the excitation results
in a very different looking transfer of energy through the chain. Figure 23 shows how energy
transfers through a 3-8-3 chain. We plot this for 200 ps instead of 100 ps:

(a) Happy (b) Unhappy

Figure 23: How energy moves through a 3-8-3 chain after an excitation on site 1.

The energy appears to transfer from the input to the output and back nearly periodically. This
goes against expectations. We would expect for the excitation to travel through the full chain and
affect the reset chain, but instead it appears to simply return from the output chain to the input
chain. The period of this oscillation is approximately 100 ps.

There furthermore appears to be a gradual decrease in the energy in the input chain and a
gradual increase in energy of the output chain. This tells us that outside of the periodic behaviour
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there could also be additional transfer of energy. It may however also be part of a significantly
slower oscillation. Further analysis regarding the shape of the oscillation is beyond the scope of
this project.

We find that for a 3-8-3 chain with happy input the energy transfer peaks at around 2 meV ,
about a third of the excitation. After 20 ps approximately 0.24 meV has transferred to the output
chain. This is approximately 3.7% of the energy of the excitation. This is of a similar order of
magnitude as the energy of the coupling, indicating that it could very well have a notable effect.

The unhappy chain can also provide us with some information. For the first 20 ps the mean
energy transferred is equal to 0.012 meV . This is a reasonable amount more than for an unhappy
5-8-3 chain. That being said, it is still an order of magnitude smaller than the energy in the
coupling between sites. It is unlikely that this effect alone would explain the unexpectedly high
switching rate from unhappy to happy. To understand if this energy transfer has a significant
effect, further analysis would have to be done.
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7 Conclusions

Our results show that the MPS formalism is a very powerful method for simulating long chains
of quantum particles that would otherwise be impossible to analyse numerically. It allows for rela-
tively fast and accurate simulations of systems near the ground state using a truncation parameter
as low as χ = 10 for the spin-2 chains analysed. We found that normalization is nearly completely
maintained for high enough χ, losing only about 0.2% of the state after 100 ps for χ=10. En-
ergy is furthermore nearly completely conserved, with losses that appear to be connected to loss
of normalization. The method reproduces the results of direct simulation and provides further
insights into physical properties such as energy transfer through the system. Although the current
algorithm is limited to one dimensional systems near the ground state, we consider MPS highly
advantageous to direct simulations where applicable.

In order to further improve MPS simulations one may consider including decoherence into the
method. In real-life experiments decoherence damping will always play a role, this is ignored by
our current implementation of MPS. These effects may be explored through a variety of methods
such as quantum jumps. Especially for long duration simulations the effects of adding damping
and decoherence can prove to be greatly beneficial for comparison with experiments, where these
cannot be switched off.

Furthermore, an interesting extension is that to two dimensions, which is possible for highly
anisotropic interaction or with weak nonlocal interactions. For this, swap operators can be in-
troduced. Using MPS on 2-dimensional systems has already been utilized to obtain the ground
state of systems, however time-evolution of 2-dimensional systems using MPS is still relatively
unexplored.

A last topic of further research would be to fully analyze the transfer of energy through a chain
with the help of MPS. This could allow for a better understanding of how to limit these effects.
Unintended energy transfer to the output chain can result in noise, undermining the purpose of
the device.
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Appendix

Appendix A: The code

All code used for the simulations can be found in the following gitlab repository:
https://gitlab.com/JustinBGIT/justin-bep-matrix-product-states/-/tree/master

The code allows for real time evolution and imaginary time evolution for a chain of arbitrary size.

https://gitlab.com/JustinBGIT/justin-bep-matrix-product-states/-/tree/master
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