
Faculty of Electrical Engineering, Mathematics and Computer Science

Signal Processing Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

https://sps.ewi.tudelft.nl/

SPS-2025-5174821

M.Sc. Thesis

Adaptive Compression of Deep Learning Models
for Edge Inference via Bayesian Decomposition

and Quantization Gates

Joris van de Weg

Abstract

With the growing developments in Artificial Intelligence (AI), deep learn-
ing models have become an attractive solution for industrial applications
such as machine health monitoring and predictive maintenance. To en-
able real-time analysis and reduce reliance on cloud infrastructure, it is
often more practical to process sensor data directly on edge devices. How-
ever, while deep learning models offer improved performance, their high
memory and computational demands often exceed the limited resources
of edge devices. Moreover, compression requires a lot of hyperparameter
tuning, which is unique for each model, layer, and application. To ad-
dress these limitations, this work utilizes dynamic Bayesian compression,
which reduces model size and computational costs. By introducing learn-
able gate variables that control the quantization precision and the rank of
decomposed factors, the model can adaptively determine the most efficient
configuration for each layer during training. This results in a more flexi-
ble, end-to-end trainable compression scheme that maintains performance
while significantly improving deployability on edge devices.

Adaptive Compression of Deep Learning Models for
Edge Inference via Bayesian Decomposition and

Quantization Gates

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Electrical Engineering

by

Joris van de Weg
born in Nieuwerkerk aan den IJssel, The Netherlands

This work was performed in:

Signal Processing Systems Group
Department of Microelectronics
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright© 2025 Signal Processing Systems Group
All rights reserved.

Delft University of Technology
Department of

Microelectronics

The undersigned hereby certify that they have read and recommend to the Faculty of Electri-
cal Engineering, Mathematics and Computer Science for acceptance a thesis entitled “Adap-
tive Compression of Deep Learning Models for Edge Inference via Bayesian Decomposi-
tion and Quantization Gates” by Joris van de Weg in partial fulfillment of the requirements
for the degree of Master of Science.

Dated: 12/09/2025

Chairman:
prof.dr.ir. Justin Dauwels

Advisor:
ir. Sinian Li

Committee Members:
dr.ir. Jie Yang

iv

Abstract

With the growing developments in Artificial Intelligence (AI), deep learning models have
become an attractive solution for industrial applications such as machine health monitoring
and predictive maintenance. To enable real-time analysis and reduce reliance on cloud infras-
tructure, it is often more practical to process sensor data directly on edge devices. However,
while deep learning models offer improved performance, their high memory and computa-
tional demands often exceed the limited resources of edge devices. Moreover, compression
requires a lot of hyperparameter tuning, which is unique for each model, layer, and applica-
tion. To address these limitations, this work utilizes dynamic Bayesian compression, which
reduces model size and computational costs. By introducing learnable gate variables that
control the quantization precision and the rank of decomposed factors, the model can adap-
tively determine the most efficient configuration for each layer during training. This results in
a more flexible, end-to-end trainable compression scheme that maintains performance while
significantly improving deployability on edge devices.

v

vi

Acknowledgments

I would like to express my gratitude to my supervisor, Justin Dauwels, for his insightful guid-
ance and support throughout this project. His expertise and feedback have been invaluable in
shaping the direction of my thesis.

I am also deeply thankful to Sinian Li for her constant willingness to help and for generously
sharing her knowledge whenever I had questions. Her encouragement and constructive input
made a real difference in the progress of this work.

I would further like to thank Jie Yang, for kindly taking the time to serve on my thesis
committee and for their valuable feedback and contributions.

Beyond academia, I would like to express my appreciation to my family. I would like to
thank my mom and dad for their continuous support, love, and care. I cannot forget to thank
my brother and sister, for whom I always strive to be better.

I am also very grateful to my dear roommate, Daan, for taking care of me during the stress-
ful periods of this thesis with food and support. Furthermore, I want to thank my friends
from before university, as well as those I met during my bachelor’s and master’s, for their
companionship, encouragement, and fun moments they brought throughout the years.

Finally, I would like to specially thank Burcu for making my days brighter, keeping me
motivated, and for her unconditional support.

Joris van de Weg
Delft, The Netherlands
12/09/2025

vii

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Compression Techniques . 2

1.1.1 Knowledge Distillation . 3
1.1.2 Quantization . 3
1.1.3 Tensor Decomposition . 3
1.1.4 Pruning . 5

1.2 Research Questions . 6
1.3 Thesis Outline . 6

2 Background on Random Forest 9

3 Methodology 13
3.1 Decomposition . 13

3.1.1 Matrix Multiplication . 13
3.1.2 Convolutional Operations . 20

3.2 Quantization . 24
3.2.1 Uniform Quantization . 24
3.2.2 Controllable Quantization . 25

3.3 Gate Variables . 27
3.4 Loss Function . 30

3.4.1 Derivation of the ELBO . 31
3.4.2 Definition of ELBO . 32
3.4.3 Derivation of the KL Divergence . 32
3.4.4 Definition of the Loss Function . 35

4 Experimental Framework 37
4.1 Datasets . 37
4.2 Experimental Setup . 39
4.3 Metrics . 42

5 Experimental Results 45
5.1 Gate Utilization - PU Dataset . 45
5.2 Compression Sensitivity & Comparison - CWRU Dataset 47
5.3 Compression Sensitivity - PU Dataset . 47
5.4 Comparison - PU Dataset . 52

6 Discussion 57

ix

7 Conclusion 61

A Additional Dataset Results 67
A.1 Compression Sensitivity - CWRU Dataset 67
A.2 Comparison - CWRU Dataset . 69

x

List of Figures

1.1 Strategies for model size reduction. 2

2.1 Decision tree visualization. 9

3.1 Illustration of gated low-rank decomposition. 18
3.2 Effective truncation using gated decomposition. 19
3.3 Gated interaction-based decomposition. 19
3.4 1D convolution for a single filter . 21
3.5 Structure of the Conv1D weight tensor. 21
3.6 Two-step convolution layer. 22
3.7 Illustration of gated two-step convolution. 23
3.8 Uniform quantization. 25
3.9 Residual error in quantization. 26
3.10 Sigmoid mapping from logit to gate probability. 28
3.11 Effect of temperature on the sigmoid function. 29

5.1 Gate activations for a low λd and low λq . 45
5.2 Gate activations for a low λd and higher λq 46
5.3 Gate activations for a high λd and lower λq 46
5.4 Gate activations for a high λd and high λq 47
5.5 Base–SVD accuracy trade-off under varying λd 48
5.6 Base–Tucker accuracy trade-off under varying λd 49
5.7 Compact–SVD accuracy trade-off under varying λd 50
5.8 Compact–Tucker accuracy trade-off under varying λd 51
5.9 Accuracy–compression trade-offs across model types 52
5.10 Best λd: accuracy–model size . 53
5.11 Best λd: accuracy–FLOPs . 53
5.12 Best λd: accuracy–inference time . 54

A.1 CWRU Base–SVD accuracy trade-off under varying λd 67
A.2 CWRU Base–Tucker accuracy trade-off under varying λd 68
A.3 CWRU best λd: accuracy–model size . 69
A.4 CWRU best λd: accuracy–FLOPs . 69
A.5 CWRU best λd: accuracy–inference time . 70

xi

xii

List of Tables

4.1 Class structure comparison for CWRU and PU Datasets. 38
4.2 Model architecture with parameter counts 41
4.3 Inner dimensions and parameter counts . 41

5.1 Accuracy and compression ratios . 55
5.2 FLOPs and inference time . 55

A.1 Accuracy and compression ratios (CWRU) 70
A.2 FLOPs and inference time (CWRU) . 70

xiii

xiv

Introduction 1
Over the last decade, Artificial Intelligence (AI) models have shifted from being an academic
pursuit to a very accessible everyday tool for everyone. Systems such as ChatGPT show
that with sufficient parameters, data, and computing power, deep learning can effectively
generalize across language, vision, and other domains [1]. The breakthroughs are possible
due to the transformer architecture [2] and the continued scaling of the models. These very
large ‘foundation’ models need to be supported by central cloud centers for both training
and inference. While the ‘bigger is better’ movement of foundation models dominates the
headlines, a complementary trend is quietly unfolding under the radar: Edge AI.

Edge AI is the practice of applying AI algorithms on local devices as close to the data source
as possible. This practice makes real-time inference possible, where latency, bandwidth, and
privacy risks are minimized [3]. Driven by the increase in usage of and research on AI, com-
puting at the edge level is becoming increasingly important for the scaling and modernization
of business operations. According to a recent survey, 83% of industry leaders believe that
edge computing will be essential for staying competitive over the next decade [4]. It is not a
surprise that the industrial sector will experience this shift as manufacturing alone accounts
for about 15% of the global GDP (Gross Domestic Product) [5].

Many complex systems consisting of various machinery and components are used in the
industrial sector. In many of these systems, component failure can lead to costly downtime
and reduced operational efficiency [6]. Consequently, continuous and accurate condition
monitoring of industrial machines is essential. Modern industrial machines are equipped
with various sensors that generate time series data, which are sequences of measurements
collected over time that reflect the operating conditions [7]. To achieve real-time analysis
and reduce the dependency on cloud infrastructure, it is more practical and desirable to put
the processing of the machine’s sensor data directly on Edge Devices.

However, these Edge Devices embedded within or close to machines are resource-limited,
meaning they have strict memory and computational capacity constraints [3, 8]. A com-
mon approach is the use of shallow machine learning models combined with expert features.
These models are small in terms of their computations and memory; thus, they are well-suited
for deployment on Edge Devices. However, because of their simplicity, they may lack the
necessary capacity to effectively process data from complex environments. This limitation
can be solved by deep learning models, as they have a greater capacity to learn complex and
meaningful patterns [9, 10]. Yet, this improved performance comes at the cost of significantly
higher memory and computational demands, which can easily exceed the limits of an Edge
Device. Therefore, when using deep learning methods in resource-constrained environments,
it is necessary to make the model as small as possible in terms of memory and computational
needs, while maintaining performance.

1

A deep learning model is a collection of operations organised in layers, where each layer
consists of weights. These weights are learned during training, and their number directly
impacts the size of the model and how many computations are required to give an output [9].
Thus, when compressing the model, the goal is to reduce the memory needed to store the
model and to simplify the computations it performs. This challenge can be approached by
using different compression techniques.

1.1 Compression Techniques

The compression of models is a significant and interesting research area, not only for edge
deployment but for the whole AI field. The first and most straightforward way to achieve
compression is by designing a model as compact as necessary to fit the constraints by reduc-
ing the inner dimensions. However, this compact model may lack the capacity to match the
best possible model in terms of accuracy, resulting in undesired results. This approach is not
always the most suitable one, depending on the model requirements. The other alternative is
to compress the better-performing model in terms of its memory and/or computational needs
by changing its architecture or numerical representation [11, 12].

A legitimate first thought one could have is that compression would lead to lower perfor-
mance. Counter-intuitively, compression can actually lead to better-performing models with
higher accuracy and more robust performance [13]. This is because ‘large’ models can cap-
ture more diverse and complex patterns, which can be preserved even after compression.
Compressed models can therefore outperform compact models that were designed to fit the
constraints of an Edge Device. The main compression methods are tensor decomposition,
quantization, knowledge distillation (KD), and pruning. Each of these technique reduce the
model’s memory and/or computational needs in distinct ways [14]. A diagram showing these
methods is displayed in Figure 1.1.

Model Size
Reduction

Apply
compression

methods

Compact model Tensor
Decomposition

Quantization

Knowledge
Distillation

Pruning

Figure 1.1: Strategies for model size reduction, including compact model design and post-training
compression methods.

In the following sections, these four techniques are explained in detail.

2

1.1.1 Knowledge Distillation

KD is the method of mimicking the behaviour of a ‘best’ performing model, the teacher, with
a smaller compact model, the student. This process can be done in multiple ways. First, there
is response-based KD, where the soft output probabilities of the student model are matched
to the teacher model [15, 16]. The other two families of KD guide the student even more by
aiming to align their internal processes with those of the teacher model. This can be feature-
based, where the student is trained to have the same output features at specific layer blocks
from the teacher model. Another practice is to mimic the teacher indirectly by matching
relations between features, instead of matching them directly, which is relation-based KD.

KD has been shown to achieve higher accuracies, and this type of training works better
than training a model with hard labels alone [15, 16, 17]. However, this method requires
a sufficiently trained teacher model, an additional distillation step, and modifications to the
architecture to allow the transfer of knowledge. Moreover, KD is sensitive to a mismatch in
capacity between student and teacher, as a very large teacher model can negatively affect the
KD process [18]. Therefore, KD is an effective but delicate practice, making it inflexible.
As a result, KD is not always a practical strategy to employ for Edge Devices, since their
dynamic operating environments often require costly retraining.

1.1.2 Quantization

The second method of compression is quantization, which changes the numerical represen-
tation of the model parameters from 32-bit floating-point to lower-bit fixed-point formats.
Changing the precision of parameters significantly reduces the model’s memory space, which
is very useful for Edge AI applications [13]. Moreover, when the Edge Device has the ability
to perform calculations with lower bit representations, it results in a speed up of the inference
path and therefore decreased latency[19]. However, as one might expect, reducing precision
can lead to degradation in accuracy, particularly in models with many concatenated lay-
ers, where quantization errors accumulate through consecutive layers [20]. To mitigate this,
post-training quantization and quantization-aware training should be used to retain model
performance while benefiting from compression [13].

Furthermore, applying mixed quantization can further optimize the process. One layer could
be influential to the performance when changed to a lower numerical precision, in comparison
to some layers which are more sensitive and thus need a higher-bit format [21]. Similarly to
KD, but to a lower extent, fine-tuning or retraining a quantized model is not as simple, and
finding the right quantization levels for every layer will become a computationally expensive
problem [20].

1.1.3 Tensor Decomposition

Tensor decomposition is another powerful tool for model compression. It works by factor-
izing high-dimensional weight tensors (higher order matrices) into lower-dimensional com-
ponents [22]. In simpler terms, it is the collection of methods that represents a big weight
tensor as a multiplication of smaller tensors or matrices. For compression purposes, the goal

3

is to make these components sufficiently small in terms of their number of parameters, result-
ing in a structured reduction in parameters. These methods not only lead to smaller models
but can also decompose and optimize intensive matrix operations, which are very helpful
for reducing latency in real-time applications. Tensor decomposition can be categorized into
three families: Canonical Polyadic (CP) decomposition, Tucker decomposition, and Tensor-
Train (TT) decomposition [23]. CP decomposition represents a tensor as a sum of rank-one
components; it is simple, but it can achieve a significant compression rate [24]. Tucker de-
composition breaks the tensor down into smaller cores by introducing a small tensor along
each of its dimensions, making it a flexible method [25]. The last family, TT decomposition,
decomposes a tensor into a series of cores and has been shown to be extremely effective for
very large matrices and tensors [26]. Unlike the other two decompositions, the family of
TTs can be of a complex structure, making them harder to implement on simple hardware.
The main issue shared by all three of the techniques is related to how the inner ranks (di-
mensions) of the decompositions are chosen. There are multiple ways to determine the inner
rank, but these methods are delicate processes that require a significant amount of time or
rely on human input. However, when the ‘right’ inner dimension is found and chosen, tensor
decomposition can show high compression ratios.

To reduce the loss of information from the tensor decomposition-based compression, Yin et
al. [27] framed the decomposition problem as an optimization problem with constraints on
the tensor rank using the Alternating Direction Method of Multipliers (ADMM) method. By
first training the model to have a low-rank structure and then converting it into a TT, their
experimental results showed compression ratios of 2.3× and 2.4×, while maintaining or even
improving classification accuracy. It solves the issue of weight matrices not being of a low-
rank nature. A different approach named hierarchical Tucker-2 (HT-2) decomposition was
proposed by Gabor et al. [28]. Unlike standard tensor decomposition techniques, HT-2 fur-
ther factorizes the convolutional kernel weight tensors into multiple low-rank components,
offering better compression with minimal accuracy loss. So, by carefully designing factor-
izations, the performance can exceed that of other state-of-the-art methods, such as pruning
and quantization. The method is shown to be especially effective for CNN models trained on
CIFAR-10 and ImageNet.

Recent work has shown that combining the compression methods of quantization and tensor
decomposition can often show even more promising results. It reduces both the number and
the precision of the weights, which define the model’s size. For example, by integrating 8-bit
integer quantization and low-rank representations, Olutosin et al. [29] achieved a 57× re-
duction in model size compared with 4× and 17× compression factors that would have been
achieved with either using only quantization or TT decomposition methods, respectively.
Alnemari et al. [30] proposed a compression framework that integrates tensor decomposi-
tion methods, such as CP, Tucker, and TT, with binary neural networks. Their experiments
showed that this joint approach achieved compression rates up to 168×. Although it can reach
high levels of compression due to the binary layers, it struggles to maintain performance. The
main takeaway is that these results demonstrate that quantization and decomposition act as
complementary compression strategies, offering the best trade-off between compactness and
accuracy.

4

1.1.4 Pruning

The last technique, pruning, removes weights, neurons, or even entire channels that con-
tribute little to nothing to the final output. This removal of unimportant parts can be per-
formed during or after training. Unstructured pruning is a simple technique that sets unim-
portant weights to zero, creating sparse matrices, which in turn makes storage and compu-
tation more efficient. Then there is structured pruning, on which there has been more focus
in recent research, as it removes complete blocks from the layers [31]. It can be used for
more aggressive compression of models. Determining which parts of the layers are unneces-
sary can be based on the magnitude of the weights, sensitivity analysis, or the application of
learnable masks that learn what to remove [32]. Pruning based on magnitude is not always
as effective; also, sensitivity analysis with pruning is a time-consuming matter. The learnable
mask approaches, on the other hand, are very interesting because they reduce the need for
user-defined rules and can be automatically applied to different datasets. Learnable mask
methods refer to approaches that learn a mask controlling the pruning of parts of the layers
through standard gradient-based optimization. The strength of pruning is thus dependent on
how the loss function, the regularizer, is defined. Therefore, it does not require any trial-and-
error iterations to find the best pruning settings, making it highly attractive for saving time.
With human intervention removed and a completely data-driven model, it can even lead to
better results, provided that the right regularizer is chosen. Pruning can thus also refer to the
process by which the model decides the size of its layers, and it can even be extended to other
compression methods mentioned earlier.

Bayesian Bits [33] is an excellent example of this principle, as it employs dynamic, learnable
gating mechanisms through which pruning is performed to control the level of quantization.
To be more precise, for every layer, the method rewrites each weight as a summation of dif-
ferent quantization levels. Each level is controlled by these gates, where, during training, the
precision can be increased or decreased following a loss function. This mechanism enables
the model to balance accuracy and compression based on the data without manually find-
ing the optimal layer quantizations. Bayesian LoRA [34] advances this idea by extending
the Bayesian Bits pipeline with learnable masking for decomposition in the LoRA frame-
work. The original LoRA [12] was introduced to fine-tune large transformer models through
a trainable low-rank decomposition. Through this, the number of trainable parameters, mem-
ory footprint, and computational costs are reduced drastically. As mentioned earlier, deciding
on an inner rank is a delicate matter, and by allowing the model itself to prune the dimensions
during decomposition, the model can find the optimal decomposition. Both papers [33] and
[34] had promising results, maintaining accuracy while achieving a significant reduction in
the number of basic operations per second and model size.

Although Edge Devices do not run large models such as those mentioned in Bayesian LoRA,
the main insights and principles can still be of great value for edge computing purposes.
Models designed for Edge Devices, to perform sensor-based tasks, mainly consist of convo-
lutional layers and dense layers [35]. Recent work has shown that attention mechanism-based
architectures, as introduced in transformers [2], are emerging as an essential component in
the edge domain [36, 37]. Moreover, the approach will be extended to convolutional layers, a
critical component for sensor-based tasks. To the best of our knowledge, there is currently no

5

work that provides a comprehensive compression framework for these deep learning meth-
ods, unifying Bayesian compression with learnable gates to dynamically control by pruning
the quantization and decomposition. By allowing models to control which components to
remove and which precision to use, the optimal compression can be discovered. This con-
tributes to making the compression of deep learning models for edge computing both practi-
cal and flexible.

1.2 Research Questions

The research carried out in this thesis is guided by key research questions. These questions
influenced the design of the methodology and shaped the evaluation of the results. The main
and sub-research questions that guide this thesis are defined as:

Main Research Question: How can deep learning models with complex layers be com-
pressed through adaptive methods that reduce memory and computation while preserving
inference performance on resource-constrained edge devices?

Sub Research Questions:

• How effectively can adaptive compression methods balance model complexity with
resource constraints during inference on edge devices?

• How can hardware constraints, such as maximum model size, be incorporated into the
compression objective?

• To what extent do compressed deep learning models outperform shallow machine learn-
ing baselines on edge-relevant metrics such as accuracy, computation, and memory?

• How do quantization and decomposition interact within a joint gate-based framework,
and what advantages does joint optimization provide over isolated or sequential com-
pression?

1.3 Thesis Outline

The structure of the thesis is as follows:

Chapter 2: Background on Random Forest
This chapter covers materials that are not directly related to the project but are necessary to
understand the methodology and results. The shallow machine learning method used as a
baseline for comparing the proposed compression method is described.

Chapter 3: Methodology
This chapter explains the details of how the proposed compression method works. It de-
scribes the inner workings of decomposition for the mentioned deep learning blocks, quan-
tization, gate variables that control the compression, and the definition of the loss function
through a Bayesian perspective.

6

Chapter 4: Experimental Framework
This chapter provides an elaboration of the dataset, the definition of the model architecture
used to test the compression method, and the metrics used for assessment.

Chapter 5: Experimental Results
As the chapter name suggests, the achieved results are presented, providing insight into the
performance and characteristics of the compression method.

Chapter 6: Discussion
This chapter provides a summary of all the results and discusses the strengths and short-
comings of the dynamic compression method. This chapter serves as a critical eye to the
research.

Chapter 7: Conclusion
This chapter concludes the thesis by summarizing the main insights gained from the research
and experiments. Additionally, this chapter discusses potential directions for future research
in model generation for edge computing.

7

8

Background on Random Forest 2
As mentioned in Chapter 1, classical machine learning methods are often used for the appli-
cation of Edge Devices. This chapter will define the Random Forest model, which will be
used as a reference later in this work.

Random Forest is an ensemble learning technique, meaning it combines multiple models
to make one prediction. For Random Forest, this model is the decision tree, which can be
applied for classification or regression [38]. A single decision tree splits the input space
X ⊆ Rd into regions that are orthogonal to a dimension axis. Each of these regions refers to
a classification label, which makes the decision tree a piecewise constant function. Thus, the
output of the model is determined by finding which region the input sample falls under. A
simple visualization of this model and its regions is shown in Figure 2.1.

Figure 2.1: Visualization of the decision tree partitioning in feature space and its corresponding deci-
sion tree.

This decision tree is iteratively built by recursively performing binary splits on the dataset,
partitioning it into regions until an end condition is met. A split divides the feature space
by checking the condition whether a feature lies on one side or the other of a threshold θ.
This split creates two subsets, resulting in a left (L) and right (R) child node as shown in
Figure 2.1. Every child node contains a part of the total datasetD, which can be defined as:

DL = {D | xi, j ≤ θ}, DR = {D | xi, j > θ}. (2.1)

The goal of splitting is to maximize the separation between the classes, thus creating nodes
where there is mainly one class present. The purity of a node can measure the effectiveness

9

of this separation. The contrary of purity, impurity, can be represented by, for example, the
Gini index [38]. It quantifies the total variance over all the possible classes within a node and
is calculated as:

G(n) =
K∑

k=1

p̂n,k(1 − p̂n,k). (2.2)

Here, p̂n,k represents the proportion of samples in node n that belong to the k-th class. So, the
Gini index will become zero when a node contains samples solely from one class, making it
a pure node. In decision trees, the focus lies on minimizing this impurity by splitting further
and further. To generate a tree where its end nodes (leaves) are as pure as possible, every
split should identify the dimension and its associated threshold that maximizes the reduction
in impurity. This optimal split s∗ and the impurity reduction ∆G(n, s) are defined as:

s⋆ = (j, θ) = arg max
(j,θ)
∆Gn(j, θ), ∆G(n, s) = G(n) − pL G(nL) − pR G(nR). (2.3)

Here, j and θ represent the dimension and its associated threshold for the best possible split.
The child proportions pL and pR are used to calculate the reduction in impurity and are
calculated as:

pL =
|D|

|DL|
, pR =

|D|

|DR|
. (2.4)

Here |D| is the total number of samples in the parent node, and |DL/R| is the total number of
samples in the child node. The splitting will stop when the impurity G becomes zero, the
minimum leaf size is reached, or the maximum tree size is met.

Decision trees have advantages in being interpretable and computationally efficient. It re-
quires little data preparation as it does not require feature scaling [39]. They can outperform
linear models when a non-linear relationship exists in the data. Decision trees are thus simple
to understand and to use, but they have some limitations. Because the splits are made perpen-
dicular to an axis (input dimension), decision trees are sensitive to how the data is rotated,
making them unstable. At this point, ensemble methods can be introduced, which can reduce
variance by averaging the classification over many models.

As mentioned previously, an ensemble method combines multiple models to generate an out-
put. Making a Random Forest model starts with bagging. It is the process of generating
different datasets (samples) by bootstrapping, which is the random resampling of the main
dataset. Each of these so-called bootstrap samples is the same size as the original dataset, but
can contain duplicate or missing observations. Every bootstrap sample is then used to train
a decision tree, and then each decision tree votes together to form a final classification. To
further improve the robustness and decorrelate the trees, an additional component of random-
ness is introduced. Instead of considering all feature dimensions to find the optimal split s∗,
a subset of all the features is randomly chosen. This means that trees will explore different
splitting thresholds, making them more diverse from one another. Therefore, Random Forest
combines bagging with the random selection of features, resulting in a more robust model.
This process can be explained as

f̂RF(x) = mode
{
fb(x; D∗b)

}B
b=1 , (2.5)

10

where each fb is a decision tree trained on a bootstrap sampleDb of the original dataset, and
at each split fb uses a random subset of features. The final classification is determined by
identifying the most frequent prediction among all trees, which is referred to as the mode.

As this chapter has shown, the inner workings of the Random Forest are quite straightforward.
It depends only on integer additions and comparisons, and its computational costs scale with
the product of the tree depth and the number of trees O(B · depth). As only one path is
followed for every tree, the inference path is highly efficient. Secondly, despite its relatively
simple architecture, it can be state-of-the-art in accuracy for a variety of applications. A
study from Fernández Delgado [40] compared the performance of 179 classifiers from 17
families over 121 datasets. The paper showed that the highest accuracy was achieved using
a Random Forest-based classifier. Moreover, the top five best-performing classifiers were
from the Random Forest family. Their only shortcoming is the model size. When many
tree models (high B), which are also large themselves (high depth), are used, the overall RF
model can grow large.

In conclusion, Random Forest is an efficient and effective shallow machine learning model,
possibly the best for edge-based computing. It is robust to noise and overfitting, and it can
outperform linear models when non-linear relationships are found in the data. Although the
model can grow larger, its inference process will still be the most efficient out of all other
types of models. Therefore, Random Forest is used as a model to beat in terms of accuracy
and model size.

11

12

Methodology 3
This chapter covers how different layers of a deep learning model are dynamically com-
pressed with decomposition and quantization methods. After the compression methods are
established, the gate variables and the loss function, which control the compression, are ex-
plained.

3.1 Decomposition

Decomposition is the process of representing a matrix or tensor as a product of smaller and
therefore more manageable factors. As mentioned in Chapter 1, it is a commonly used
method for compressing neural networks, as it can effectively reduce the number of param-
eters and computational costs. There are different types of operations that define layers, and
therefore, the possible decompositions differ. The first and most fundamental type of opera-
tion found in models is matrix multiplication, which performs a linear transformation. It is
a standard and essential part of many layers, like dense layers and self-attention layers. The
second one is the convolutional operations. The following subsections will explain how these
two operations can be decomposed for compression purposes.

3.1.1 Matrix Multiplication

The matrix multiplication is a linear transformation that maps the input space to a different
vector space or representation. Dense layers are one of the most commonly seen components
in deep learning architectures, which use this linear transformation at their core. Given an
input matrix X ∈ Rl×m, the same linear mapping is performed for every row, and the dense
layer is mathematically represented as:

Z = XW + 1lb⊤, Y = ϕ(Z). (3.1)

Here, W ∈ Rm×o is the weight matrix and b ∈ Ro is the bias vector, which are learnable
parameters of the layer. To apply the bias transformation to every row, the bias vector is
multiplied by 1ℓ ∈ Rℓ, which is a column vector consisting of ones. To create a dense layer
capable of learning complex relationships that are beyond the capacity of linear mappings, an
element-wise non-linear function ϕ(·) is used. The layer provides the model with the ability
to learn powerful transformations between input and output features. Every input dimension
contributes to every output dimension so that the layer can capture global interactions across
the feature space.

Another type of layer, which also uses this simple matrix multiplication, is the multi-head
attention (MHA) mechanism found in the Transformer architectures [2]. The attention layer

13

projects the input into three separate spaces, which are queries (Q), keys (K), and values (V),
each obtained via a dense linear transformation:

Q = XWQ, K = XWK , V = XWV . (3.2)

Here, WQ,WK ∈ R
m×dk and WV ∈ R

m×dv are the learnable weight matrices that project the
input. The output of the attention mechanism is then computed as a weighted combination of
these value vectors, where the similarity between queries and keys determines the weights.
The core computation of self-attention is represented as:

Attention(X) = softmax
(
QK⊤
√

dk

)
· V, Y = Attention(X) WO. (3.3)

The dot-product attention scores are scaled by
√

dk to prevent large values that could push the
softmax towards extreme outputs. Finally, WO ∈ R

dv×m is the output projection, which maps
the attention output back to the model’s original dimension. In contrast to dense layers, self-
attention does not treat all input features equally; instead, it dynamically focuses on the most
relevant parts of the input for each position. By adaptively weighting interactions, attention
layers excel at modeling long-range dependencies that would be difficult to capture with fixed
transformations alone, such as those in dense layers.

Both layers rely primarily on the same underlying linear transformation between an input
matrix X and a weight matrix W as seen in Equations (3.1) and (3.2). Although the struc-
tural role of both layers differs, their storage and computational needs mainly depend on the
dimensionality of their weight matrices. For the dense layer, the parameter count Ndense is
dependent on the learnable weight matrix W and bias b:

Ndense = m · o︸︷︷︸
W

+ o︸︷︷︸
b

. (3.4)

The dominant computational cost arises from multiplying the input matrix X with the weight
matrix W, which requires O(ℓmo) operations. The cost scales linearly with the input length
ℓ. For the attention mechanism, the situation is similar but involves multiple projection ma-
trices, which results in a parameter count of:

NMHA = m · dk︸︷︷︸
WQ

+m · dk︸︷︷︸
WK

+m · dv︸︷︷︸
WV

+ dv · m︸︷︷︸
WO

. (3.5)

The computational cost of the MHA layer consists of the input projections to obtain Q,K
and V, the dot-product attention, and the final linear output projection:

O
(
ℓ(2mdk + mdv)︸ ︷︷ ︸

input projections

+ ℓ2(dk + dv)︸ ︷︷ ︸
dot-product attention

+ ℓ dv m︸︷︷︸
output projection

)
(3.6)

Equation (3.6) shows that the computational load of the attention layer depends primarily on
two factors. First, the input sequence length ℓ scales the number of operations linearly for
the input/output projections and quadratically for the dot-product operation. This term cannot
be reduced through compression, as it is determined by the previous layer or the input data

14

itself. The second factor concerns the terms related to the dimensions of the weight matrices,
which can be modified within the layer. For simplicity, it will be assumed that ℓ is much
smaller than the weight dimensions, making matrix projections the dominant contributor to
the computational cost. Therefore, the matrix multiplication X ·W becomes the main target
for compression to effectively reduce computational cost. This compression will be achieved
by applying decomposition on W, separating it into a product of smaller matrices.

There are various methods to decompose the linear transformation step, but not all of them are
suitable for deployment on Edge Devices. For example, the TT decomposition, introduced in
section 1.1.3, can aggressively reduce the number of parameters in high-dimensional weight
tensors by representing them as a product of low-rank 3D tensors, known as TT-cores [20,
13]. For a d-dimensional tensorA ∈ Rn1×n2×···×nd , TT decomposition is formally written as:

A(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id), (3.7)

where each Gk(ik) is a matrix of size rk−1 × rk, and the sequence (r0, r1, . . . , rd) defines the
TT-ranks with r0 = rd = 1. To allow the TT to exploit multi-dimensional correlations,
it is beneficial to reshape a 2D weight matrix W ∈ Rm×o into a higher-order tensor, such
that it would lead to a significant parameter decrease. However, this reshaping introduces
additional computational costs during inference, as the TT needs to be contracted back to
enable multiplication with the input. This overhead will most likely outweigh the benefits
in latency-constrained environments, such as Edge Devices. For this reason, W will not
be reshaped in this work, and a TT will be, in this case, reduced to only two cores, which
is equivalent to a standard matrix factorization. Consequently, the focus will shift to these
simpler decompositions that are specifically designed for matrices.

These ‘simple’ decompositions for matrices can be distinguished into two broad categories
based on their structural characteristics: low-rank factorizations and interaction-based fac-
torizations that allow for component interactions.

Low-Rank Factorization

Low-rank factorization approximates the weight matrix as the product of two smaller matri-
ces as:

W ≈ AB, (3.8)

where A ∈ Rm×r and B ∈ Rr×o, and r denotes the inner rank. For compression and edge
deployment, r should be much smaller than the dimensions m and o of W, such that the
structure reduces both the number of parameters and the number of operations required dur-
ing inference.

This simple form is efficient and effective, but a practical modification can be suggested to
make it more suitable for training. By introducing an intermediate diagonal matrix E ∈ Rr×r,
the model can directly adjust the scaling of each latent component of A and B [34]. The
decomposition is then defined as:

W ≈ AEB. (3.9)

15

Here, E is the diagonal matrix containing the scaling elements for every component in A and
B, and it is defined as:

E = diag(e), e = [s1, s2, . . . , sr]T . (3.10)

The definition, shown in Equation 3.9, can be interpreted as the summation of rank-1 matri-
ces, which closely resembles the singular value decomposition (SVD) and CP decomposition.
SVD is a matrix factorization that expresses a matrix as the product of two orthogonal ma-
trices and a diagonal matrix of singular values, whereas CP decomposition was previously
explained in section 1.1.3. The formation of E allows the model to independently control the
importance of each rank-1 component without changing the underlying directional vectors in
A and B. This decoupling between magnitude and direction has been shown to lead to better
expressiveness, faster convergence, and higher accuracy [41]. However, in cases where the
model’s task is relatively simple, this difference in performance becomes less prominent.

Interaction-Based Factorization

When E in Equation 3.9 is changed from a diagonal matrix to a full core matrix, the latent
components in A and B are no longer independent but can interact with one another. This
will be referred to as interaction-based factorization, an extension of the low-rank factoriza-
tion that retains the same overall structure, but with E ∈ Rr×r being a full core matrix. This
formulation resembles the matrix form of the Tucker decomposition and offers a greater rep-
resentational capacity and compression by modelling dependencies between different com-
ponents. However, this increase in complexity makes the factorization more challenging to
optimize effectively.

Low-rank and interaction-based factorizations do not guarantee a reduction in the number
of parameters of W. To achieve a significant decrease, as needed for model compression,
truncation needs to be applied.

Truncation

The core idea behind compression by decomposition is to select the inner rank r such that the
decomposition of the weight matrix adopts a low-rank structure, thereby reducing the number
of parameters. However, an exact decomposition does not reduce this rank itself. To achieve
compression, it is typically combined with truncation, which discards components of lower
importance, therefore reducing the rank. A common approach is to decompose a pre-trained
weight matrix W and then truncate it, reducing r while attempting to preserve as much of the
original representation as possible. For example, when decomposing the matrix with SVD,
truncation is achieved by removing the smallest singular values and their associated eigen-
vectors. However, in the application of edge inference, this two-step static approach is less
practical.

First of all, applying truncation on the decomposed weight matrix does not guarantee that
it can be represented as a low-rank structure. Weight matrices do not have to be low-rank,
meaning that their singular values decay slowly; thus, most components contribute signifi-
cantly to the representation. As a result, the aggressive removal of components is not possible

16

without a significant reduction in the representational capacity. In these scenarios, the de-
composed matrix cannot be compressed meaningfully while still maintaining accuracy. An
alternative approach is to impose a low-rank constraint during training on the weight ma-
trix generation, which encourages a clear distinction between essential and negligible com-
ponents, making the truncation process easier. However, this approach introduces a high
dependence on the chosen strength of the low-rank constraint, which can be different for ev-
ery layer, complicating the training process. While any performance loss resulting from the
truncation can be mitigated through fine-tuning, this does not guarantee the recovery of lost
performance when the truncation is too aggressive. Therefore, the model should learn both
the decomposition and the effective truncation simultaneously during training to effectively
compress the model. In this approach, the weight matrices A, E, and B as in Equation 3.9
will become trainable parameters, enabling the model to optimize the rank and scaling of
every component in an end-to-end manner.

Before explaining the mechanism that enables the model to control the truncation, the overall
architecture must be defined. The weight matrix will be replaced by a factorized series,
represented by the effective weight matrix defined as:

Weff = A · E · B. (3.11)

The compression achieved by this approach depends directly on the chosen inner rank r.

For the low-rank formulation, where E is a diagonal matrix, the number of learnable pa-
rameters is:

Np = m · r︸︷︷︸
A

+ r︸︷︷︸
E

+ r · o︸︷︷︸
B

= r · (m + o + 1). (3.12)

To make sure the decomposition does not introduce more parameters than the original weight
matrix, an upper bound for the inner rank must be enforced. Using the expression for Ndense

from Equation 3.4 and Np from Equation 3.12 , the upper bound is be defined as:

rmax =

⌊ m · o
m + o + 1

⌋
, (3.13)

where ⌊·⌋ is the floor operator that ensures the bound is an integer.

For the interaction-based formulation, where E is a full r × r matrix, the number of param-
eters becomes:

Np = m · r︸︷︷︸
A

+ r · r︸︷︷︸
E

+ r · o︸︷︷︸
B

= r · (m + o + r). (3.14)

For this scenario, the upper bound on r is derived by solving r · (m + o + r) ≤ m · o:

rmax =

−(m + o) +
√

(m + o)2 + 4 · m · o
2

 . (3.15)

The formulations of Np and rmax for both decomposition types ensure that the number of
parameters does not exceed that of the weight matrix. However, while these upper bounds
constrain the maximum possible rank, the actual effective rank should ideally be learned
dynamically during training, allowing the model to balance expressiveness and compression.

17

Controllable Decomposition

The previous subsections have explained how a weight matrix W can be compressed by
replacing it with a low-rank decomposition. As discussed, the level of compression is depen-
dent on the inner rank r, which determines the dimensionality of the total structure. To give
the model control over this rank, so-called gate variables are introduced, denoted with g. A
gate variable is a binary element that can be either active or inactive, effectively switching
components on or off. For this section, it is sufficient to understand that the model is capable
of changing the state of these gates. The complete explanation and role of gate variables will
be discussed in detail later in Section 3.3.

To dynamically control the inner rank, each latent component is coupled to a gate variable,
except for one that remains active, which ensures the layer always produces an output. The
gates will thus be enforcing selective pruning on the decomposition structure. The vector of
gate variables g, containing rmax number of gates, is defined as:

gT =
[
1 g1 g2 g3 . . . grmax

]
, (3.16)

where gi ∈ {0, 1}. As explained, the leading element is fixed to 1 to guarantee at least one
active path. With this gating mechanism, the formulation of the effective weight matrix
becomes:

Weff = A · diag(g ⊙ e) · B, (3.17)

where ⊙ denotes the element-wise multiplication, which mimics the behaviour of truncation
of the matrices. In other words, if a gate is inactive (gi = 0), the corresponding singular
component ei is suppressed, and the associated column in A and row in B no longer con-
tribute to the reconstruction. Vice versa, active gates (gi = 1) ensure that their corresponding

: gate on
: gate off

Figure 3.1: Illustration of the gating mechanism applied to a low-rank decomposition. Each column
of A and row of B corresponds to a latent component, modulated by the diagonal entries of E. The
gates (red: inactive, green: active) control whether each component contributes to the effective weight
matrix. One gate is always on to ensure stable training.

18

Figure 3.2: Resulting truncated decomposition after gates deactivate certain components. Inactive
components (red) are pruned away, leaving a reduced decomposition (Ã, Ẽ, B̃) that defines the effec-
tive weight matrix. This dynamic pruning provides the model with adaptive control over the rank.

components contribute to the effective weight matrix. In this way, the model gains the ability
not only to learn the decomposition parameters but also to determine which latent compo-
nents are necessary for the task. The process of selectively activating or deactivating latent
components is illustrated in Figure 3.1 and Figure 3.2.

For the interaction-based formulation, E is a full core matrix of size rmax × rmax. Therefore, it
requires an extended gating mechanism consisting of two independent gate vectors g1 and g2

that control the rows and columns of E, respectively. Therefore, the corresponding effective
weight matrix is:

Weff = A ·
(
diag(g1) · E · diag(g2)

)
· B. (3.18)

: gate on
: gate off

Figure 3.3: Gated interaction-based decomposition. The latent components in A and B are connected
through the full core matrix E. Two gate vectors control the decomposition: g1 for the rows and g2

for the columns. Inactive gates (red) block corresponding rows/columns in the core, thereby pruning
away unused interaction paths, while active gates (green) allow information flow.

19

With this formulation, the model can deactivate entire rows or columns of the core matrix,
ensuring that certain latent interaction paths do not contribute to the final weight matrix. This
gives the model the ability to not only learn which components are important, but also which
cross-component interactions are necessary for representing the data. A graphical illustration
of this mechanism is given in Figure 3.3.

3.1.2 Convolutional Operations

Another frequently used and powerful operation block in deep learning architectures is the
convolutional layer. Unlike dense layers, convolutional layers are very effective for extracting
local patterns in the data due to their ability to focus on small parts of the data by using the
same filter over the input. This layer makes it possible for the model to detect recurring
structures, and this makes convolutional operations essential for sensor applications. In this
thesis, the focus is on one-dimensional convolution layers (Conv1D), which are especially
suitable for processing sequential input data such as time series. Conv1D operates by sliding
a learnable filter, also called a kernel, over the input sequence and performing a discrete
convolution at each time step.

The layer receives input X ∈ RT×Cin , where T is the number of time steps and Cin is the
number of input channels (or features). The layer applies Cout learnable filters W(j) ∈ Rk×Cin ,
each with a temporal window size of k, where j ∈ {1, . . . ,Cout} indexes the filters. A single
filter j produces an output vector y(j) ∈ RT by convolving over the input for each time step.
The output at time step t ∈ {1, . . . ,T } is computed as:

y(j)
t = ϕ

 k−1∑
ℓ=0

W(j)
ℓ · xt+ℓ−⌊k/2⌋ + b(j)

 , (3.19)

where:

• xt+ℓ−⌊k/2⌋ ∈ R
Cin is the input vector at offset t + ℓ − ⌊k/2⌋,

• W(j)
ℓ ∈ R

Cin is the weight vector at kernel position ℓ of filter j,

• b(j) ∈ R is the bias term for filter j,

• ϕ is a non-linear activation function, such as ReLU.

A visualization of the convolution operation found in Equation 3.19 is further illustrated with
Figure 3.4.

20

x1,1 x1,2 x1,3 · · · x1,Cin

x2,1 x2,2 x2,3 · · · x2,Cin

x3,1 x3,2 x3,3 · · · x3,Cin

x4,1 x4,2 x4,3 · · · x4,Cin

...
...

...
. . .

...

xT,1 xT,2 xT,3 · · · xT,Cin





X ∈ RT×Cin

y(j)
1

y(j)
2

y(j)
3

y(j)
4

...

y(j)
T





y(j) ∈ RT×1

Filter W(j)

Figure 3.4: Graphical explanation of the 1D convolution in Equation (3.19). The input X ∈ RT×Cin

is convolved with filter W(j) to produce the single-filter output y(j) ∈ RT×1. Each element y(j)
t results

from a weighted sum over a local temporal window of the input (size k) across all Cin channels,
followed by the nonlinearity ϕ(·).

Applying all Cout filters to the input matrix X results in the full output of the convolutional
layer, which is given by:

Y = [y(1), y(2), . . . , y(Cout)] ∈ RT×Cout . (3.20)

In Y, each row corresponds to a time step and each column corresponds to the output of a
filter. For simplicity, and to express the convolutional operation more compactly, the process
can also be expressed as:

Y = X ∗W + b, (3.21)

where W ∈ Rk×Cin×Cout is the full weight tensor of the layer, illustrated in Figure 3.5, and ∗
denotes a 1D convolution.

Figure 3.5: Visualization of the weight tensor W ∈ Rk×Cin×Cout used in a Conv1D layer. The kernel
has a temporal dimension k, spans all Cin input channels, and is repeated for each of the Cout output
filters.

21

The total number of trainable parameters in a Conv1D layer is:

Nconv1D = Cin ·Cout · k︸ ︷︷ ︸
regular conv

+ Cout︸︷︷︸
bias

. (3.22)

The first term represents the weights of the kernels, and the second term corresponds to one
bias per output filter. When both the number of input channels Cin and the number of output
channels Cout are large, the memory and computational footprint can become too significant
due to the higher parameter count. To mitigate this problem, just like with the simple linear
transformation, the convolution operation can be dynamically truncated. However, directly
changing the number of filters also alters the output matrix Y, since its dimensionality de-
pends on Cout. To ensure the output dimensionality remains unaffected by the compression
mechanism, the layer must first be reformulated as a two-step convolutional structure.

The two-step convolution can be seen as the low-rank factorization of the convolutional ker-
nel. Instead of directly learning a large kernel W of shape k ×Cin ×Cout for one convolution,
the operation is decomposed into two consecutive layers. The first 1D convolution works the
same as described in Equation 3.19, but, ideally, with a reduced number of filters r, referred
to as the low-rank temporal convolution. The second step is a so-called pointwise convolu-
tion, which has a kernel size of 1 and performs a linear projection from the r intermediate
channels back to the desired proposed Cout outputs without changing the temporal resolution.
The aim of this decomposition is to enable the compression layer while making sure it main-
tains the same capabilities as a standard convolution and ensuring consistency in the model’s
output. Figure 3.6 illustrates this decomposition.

Conv1D Conv1D

Figure 3.6: Two-step convolution layer. The first step applies a temporal convolution with reduced
rank r, followed by a pointwise (1 × 1) convolution that projects back to the output dimension Cout,
ensuring fixed dimensionality while enabling compression.

This operation can be expressed as:

Y =
(
ϕ
(
X ∗W(1)

))
∗W(2) + b, (3.23)

where:

• W(1) ∈ Rk×Cin×r is the kernel of the temporal convolution,

• W(2) ∈ R1×r×Cout is the pointwise kernel that linearly combines the r intermediate chan-
nels,

• b ∈ RCout is the bias vector,

• ϕ is a non-linear activation function inserted between the two steps.

22

Truncation

In the same manner of matrix decomposition, the inner rank r of the two-step convolution
decides the strength of compression. The total number of parameters in the decomposed
convolution layer is:

Np = Cin · r · k︸ ︷︷ ︸
temporal conv

+ r ·Cout︸ ︷︷ ︸
pointwise conv

+ Cout︸︷︷︸
bias

= r · (Cin · k +Cout) +Cout. (3.24)

To make sure that the parameter count of the factorized kernels does not exceed the original
full-rank kernel, the upper bound on r is defined as:

rmax =

⌊
Cin ·Cout · k
Cin · k +Cout

⌋
. (3.25)

Controllable Decomposition

Similar to the matrix decomposition discussed in Section 3.1.1, the gate variables can be
introduced to control the effective decomposed convolution. Each filter in the low-rank con-
volution is associated with a gate, which will give the model the ability to keep or deactivate
certain filters during training. The vector g contains all the gate variables, thus for all filters.
Since the output of the first low-rank convolution depends on the number of filters active,
the kernel size of the pointwise convolution also changes dynamically. This is achieved by
applying the same gates inside each kernel of the pointwise convolution, which effectively
masks out the inactive filter. This gating can be expressed as a channel-wise mask on the
pointwise kernel:

: gate on
: gate off

Figure 3.7: Illustration of the gating mechanism applied to a two-step convolutional layer. The first
convolution W(1) projects the input into rmax intermediate channels. A gate vector g determines which
of these channels remain active: inactive gates (red) prune the corresponding filters, while active
gates (green) allow information flow. The pointwise convolution W(2) then combines only the active
channels to produce the final Cout outputs. This enables dynamic compression of the convolutional
kernel while preserving the output dimensionality.

23

W̃(2)[:, i, :] = gi ·W(2)[:, i, :] for i = 1, . . . , rmax, (3.26)

where W̃ (2) represents the the adjusted pointwise kernel after gating. This is then combined
with the temporal layer, which results in the overall output:

Y =
(
ϕ
(
X ∗W(1)

))
∗ W̃(2) + b. (3.27)

The visual representation of the total gating process, as described in Equation 3.27, can be
found in Figure 3.7. This approach allows the model to dynamically adjust the number of
active filters during training, guided by the optimization objective, which will be discussed
later. As a result, it encourages parameter efficiency by suppressing unnecessary filters while
retaining the expressive power of the original full-rank convolution.

In summary, the decomposition of deep learning layers provides a great tool for reducing
the number of parameters and computation while retaining expressive capacity. The level of
compression of these decompositions is dependent on inner rank r and can differ per layer.
Therefore, by introducing gate variables to deactivate or activate components from the de-
composition, the model can dynamically find the optimal dimensionality for every layer. The
gating mechanism can thus be interpreted as a form of pruning, applied dynamically during
training rather than post hoc. This paves the way for hardware-aware model compression,
where the parameter budget can be directly enforced or penalized during optimization.

3.2 Quantization

The second method to compress the model is through quantization. It is a fundamental tech-
nique that lowers the precision level of parameters as fewer bits are required to represent
weights, thereby reducing the storage space required. To enable controllable quantization
within the model, the standard formulation needs to be rewritten and extended, such that the
quantization process itself can be adjusted during training. This section will define uniform
quantization and how it is altered to the controllable formulation.

3.2.1 Uniform Quantization

Every layer contains a weight matrix W which consists of elements/weights (x) ranging from
α to β. Standard uniform quantization divides this range, [α, β], into equal intervals separated
by boundary values. Each weight is mapped to the nearest representative value from this set
of boundary values, also referred to as quantization levels. The step size s defines the distance
between every level and is computed as:

s =
β − α

2b − 1
, (3.28)

where b is the bitwidth, the number of bits per weight to represent each quantized value, and
2b is the number of available quantization levels. With the step size, every weight x can be
transformed into a quantized weight xq by rounding it to the nearest level as:

xq = s
⌊ x

s

⌉
, (3.29)

24

with ⌊·⌉ denoting the round-to-nearest-integer function. The resulting xq is the closest rep-
resentable value to x on the quantized grid. This process is visualized in Figure 3.8 shown
below.

......

Figure 3.8: Uniform quantization. The weight range [α, β] is divided into intervals of equal width s.
A weight x is mapped to the nearest quantization level xq, which lies on the discretized grid defined
by the step size. This discretization reduces precision while compressing the representation.

While uniform quantization is simple, there are some disadvantages to this way of compres-
sion.

First of all, its effectiveness is heavily dependent on selecting the most fitting values for
α, β, and b. Uniform quantization is usually applied on a pre-trained model, from which its
corresponding α and β can be deduced and defined. The most effective bitwidth is then found
through grid search optimization. However, the chosen configuration may not be optimal,
which, in combination with the accuracy degradation introduced by quantization, can result in
additional performance loss. To mitigate the performance degradation, fine-tuning following
quantization is commonly applied. However, it may only partially recover the lost accuracy.

Secondly, the optimal quantization parameters, α, β, and b, can differ across different lay-
ers. Applying the same quantization uniformly across all layers may lead to second-rate
results. Deriving layer-specific values can improve the quantized model’s performance, but
it increases the number of hyperparameters to tune. This process becomes computationally
expensive and impractical when working with deeper networks. These limitations motivate
the need for a more adaptive quantization mechanism.

3.2.2 Controllable Quantization

Thus, uniform quantization lacks adaptability by fixing the hyperparameters and allows for
differences between the training and inference behaviours, making it a static process. To
overcome this, the quantization will be reformulated as a dynamic and controllable quan-
tization. The model itself will learn the appropriate values for α, β, and b for each layer
during training. To be more specific, these parameters will no longer be fixed but will be-
come learnable variables [33]. Instead of mapping weights as Equation 3.29, this method
will decompose the quantization into a sequence of residual corrections, each corresponding
to a higher level of precision.

Applying quantization to a weight x at a given bitwidth bn yields xbn , which most likely
differs from the original value. Logically, choosing a higher bitwidth, bn+1, will result in

25

an improved approximation xbn+1 . The difference between these two approximations will be
referred to as the residual error ϵ:

ϵbn+1 = xbn+1 − xbn → xbn+1 = xbn + ϵbn+1 . (3.30)

This relationship makes it possible to express the higher-precision quantized value xbn+1 as
the sum of a lower-precision value plus residual corrections. This process is illustrated in
Figure 3.9 below.

......

Figure 3.9: Residual error in quantization. Quantizing x with bitwidth bn yields xbn , while a higher
bitwidth bn+1 produces xbn+1 , which is closer to the original value. The difference ϵbn+1 = xbn+1 − xbn

represents the residual correction, which refines the lower-precision approximation.

To make the quantization controllable for the model, this additive property must hold, which
is not guaranteed.

As briefly mentioned earlier, the step size defines the distance between every possible quan-
tization level to which a numeric value can be mapped. The set that contains all these levels
for a certain bitwidth b is defined as:

Qb =
{
α + k · sb

∣∣∣ k ∈ {0, 1, . . . , 2b − 1}
}

(3.31)

The additive property defined in Equation 3.30 remains only valid if the quantization levels
at bitdwidth bn, Qbn , are a subset of those at bn+1, Qbn+1:

Qbn ⊆ Qbn+1 . (3.32)

This property is fulfilled when the step size sbn is an integer multiple of the step size sbn+1:

sbn

sbn+1

∈ N ⇐⇒
2bn+1 − 1
2bn − 1

∈ N. (3.33)

In other words, the property is ensured when the quantization levels set for a higher bitwidth
partially overlap with the previous quantization level set and insert new ones in between them
consistently. The largest set of bitwidths for which this holds is b ∈ 2, 4, 8, 16, 32.

The residual error ϵbn+1 is computed by quantizing the remaining difference between the orig-
inal value and its current approximation:

ϵbn+1 = sbn+1

⌊
x − xbn

sbn+1

⌉
, (3.34)

26

where sbn+1 is the step size associated with bitwidth bn+1. The step size is recursively defined
as:

sbn+1 =
sbn

2b + 1
, (3.35)

where b is the base number of bits added at each stage, which is b = 2 in the case of dou-
bling. Combining everything, the quantization can be represented as a summation of the base
quantization and error residuals ϵbn .

xq = x2 + ϵ4 + ϵ8 + ϵ16 + ϵ32. (3.36)

Now that the quantization is rewritten (Equation 3.36), it can be made controllable for the
model by introducing gate variables. For quantization purposes, they are denoted as g. Ex-
actly as for the decomposition described in Section 3.1, these variables are binary and are con-
trolled by the model. By adding a gate variable, gi for each precision level, i ∈ {4, 8, 16, 32},
the model can enable and disable residual components. The adjusted and controllable ex-
pression for the quantization is defined as:

xq = x2 + g4 (ϵ4 + g8 (ϵ8 + g16 (ϵ16 + g32ϵ32))) . (3.37)

In this nested structure, a higher precision can only be reached if the preceding gates are all
active. This design enables the model to adaptively trade off precision and efficiency, learning
where representation is beneficial while suppressing unnecessary bitwidth expansions.

3.3 Gate Variables

The previous sections 3.1 and 3.2 introduced how gate variables can control the dimensional-
ity of layers and the precision of their parameters. This section will go into how these gating
variables are defined and learned during training.

As mentioned before, the gate variable gi acts like a switch that can either be turned on,
gi = 1, or off, gi = 0. However, using such a binary mechanism would make the system
non-differentiable and incompatible with gradient-based optimization. To make it possible
for the model to learn whether a gate should be active or not, the gate should be a continuous
variable that is differentiable. To achieve this, the sigmoid function is used as it maps a
real-valued ϕi to the interval (0, 1):

pi = σ(ϕi) =
1

1 + e−ϕi
, (3.38)

with pi ∈ (0, 1) and ϕi is learnable prameter for the model. Intuitively, if a decomposition
or precision component contributes positively to the accuracy, then the model should push
ϕi during the training process to a higher value. A higher value will make the corresponding
gate pi approach 1 as seen in Figure 3.10. Vice versa, for a gate that should be turned off, its
ϕi should be shifted to a low value, such that sigmoid maps it to close to 0.

27

Figure 3.10: Sigmoid mapping from logit to gate probability. The learnable logit ϕi is transformed by
σ(·) into pi ∈ (0, 1), which can be interpreted as the probability that gate i is active. Larger ϕi produces
larger pi.

Although the relaxation by the sigmoid function gives differentiability, the model still needs
discrete gates in the forward pass. This switch effect is required to define the effective model
structure, which ensures that the outputs only depend on the active components. A straight-
forward approach would be to set a threshold, and consider the gates active if their prob-
ability are above this value. However, for a better exploration of ϕi and reducing its early
convergence to suboptimal values, a stochastic Bernoulli sampling scheme is used during the
training phase:

gi ∼ Bernoulli(pi). (3.39)

This introduces randomness, discouraging co-adaptation in the same way as structured
dropout, and improves the generalization of the model. In conclusion, there is a greater
need for the architecture to be stable, so a deterministic hard decision threshold is suited:

ĝi =

1 if pi > τ

0 otherwise
(3.40)

Under the assumption that the cost of activating an ineffective gate and the cost of deactivat-
ing a useful one are the same, τ = 0.5 is the neutral and unbiased choice.

Nevertheless, this sampling of gi is non-differentiable. To make back propagation possible,
the gradient of the Bernoulli sampled gate can be approximated by a differential version us-
ing a straight-through estimator (STE). This approach replaces the backward pass function
with a differentiable surrogate, while leaving the forward pass unchanged. The forward com-
putation will thus still use the sampled binary gate gi. The backward computation will use
the differentiable probability pi through STE. The straight-through estimator is defined as:

g̃i = gi + pi − stop gradient(pi), (3.41)

which means,
∂g̃i

∂ϕi
=
∂pi

∂ϕi
. (3.42)

In these equations, g̃i is the pseudo-binary gate, which acts as a binary gate during inference
but has a gradient as if g̃i = pi:

g̃i =

gi (used in the forward pass)
pi (used for gradient computation in the backward pass)

(3.43)

28

To encourage early-stage exploration and confident decisions later, a temperature variable T
is introduced into the sigmoid function. It will control the flattening strength on the sigmoid
function as:

pi = σ
(
ϕi

T

)
. (3.44)

When a relatively higher T is applied, the sigmoid function becomes flatter and thus the
probabilities will be pushed closer towards 0.5. In combination with Bernoulli sampling, this
will increase the stochasticity during training. In simpler words, the model will explore more
gate configurations instead of committing to one direction. A relatively lower T will make
the probabilities out of the sigmoid function behave more sharply, approaching 0 or 1 for
more values of ϕ. These effects of temperature scaling are illustrated in Figure 3.11.

Figure 3.11: Effect of the temperature T on σ(ϕ/T).

To ensure that a wide range of configurations is explored during the initial training phase and
gradually converges to more decisive selections, the temperature is initialized at a high value
and steadily decreased. This temperature scheduling is defined as:

T = max(Tmin, α
kT0), (3.45)

where T0 is the initial temperature, α ∈ (0, 1) is the decay rate and k refers to the update step.
The lower bound Tmin is there to ensure that the temperature does not become close to zero.

To summarize the essence, the gating mechanism is defined by the temperature-controlled
sigmoid and Bernoulli sampling

pi = σ
(
ϕi

T

)
, gi ∼ Bernoulli(pi). (3.46)

This stochastic gating ensures that the model does not overcommit to specific gates too early
in the training process and encourages regularization. From a compression standpoint, the
gates allow the model to choose which components and precision are needed adaptively
through the loss function. There is no need for manually set hyperparameters or fixed struc-
ture definitions. The network learns which layers require additional dimensionality and a
higher precision, and which ones can be compressed further. After training, the learned gat-
ing provides insight into which layers are sensitive to compression, helping to understand the
model’s behaviour and offering additional insights. The level of compression will be defined
by the loss function, which will be the topic of the next section.

29

3.4 Loss Function

To ensure the model compresses itself, it should be optimized not only for the task at hand
but also for minimizing its size and computational requirements. Therefore, the loss function
for the model must be a balance between performance and compression. This section will
define how this balance is derived.

When using gate variables, they are seen as stochastic latent variables whose values are not
deterministic but must be inferred during training. As described in Section 3.3, the stochas-
tic nature enables flexible model capacity, allowing the network to dynamically adjust the
structure used to process each input. The structure is thus dependent on random variables
drawn from a learnable distribution. In supervised problems, the goal is to predict the target
variables y given an input x and the model parameters. With stochastic gates, however, this
relationship also depends on the latent variables z. For cleaner and standard notation, the
collection of all gate variables is represented as z. Therefore, the deterministic formulation
has to be rewritten as a Bayesian formulation:

p(y | x) =
∫

p(y | x, z; θ) p(z) dz. (3.47)

Here, θ represents all deterministic model weights and z the latent binary gates. The function
p(y | x, z; θ) is the likelihood of the model predicting y given gates z and parameters θ, and
p(z) is the prior. Together they define the marginal likelihood p(y | x), also referred to as the
model evidence, shown in Equation 3.47. It is the probability that the model assigns to the
input data (y, x) after averaging over all possible gating patterns, weighted by the likelihood
of the pattern occurring. In simpler terms, it gives an estimate of how likely it is to observe
that the model will predict output y for input x, considering both the deterministic and latent
variables. Therefore, during training, the goal is to maximize the marginal likelihood, which
encourages the model to make, on average, correct predictions.

The prior is chosen by the model designer, and it should reflect any beliefs and properties
about the model parameters. In the context of compression, the goal is to minimize the
number of gates turned on. However, once the data has been observed, the prior can be
updated after seeing both the input and the output. This is quantified by the posterior, which
can be defined using Bayes’ rule:

p(z | x, y) =
p(y | z; θ) p(z)

p(y | x)
. (3.48)

The posterior combines the prior p(z), the assumption about the gating variables, with the
likelihood p(y | z; θ), which quantifies how well each gating configuration explains the ob-
served data. The denominator, p(y | x), is the earlier defined marginal likelihood, ensuring
the posterior is properly normalized. In summary, the posterior p(z | x, y) encodes the up-
dated beliefs about the gates after observing the data. The marginal likelihood is then denoted
as:

p(y|x) ≈
∫

p(y|z; θ) p(z|x, y) dz. (3.49)

30

Finding the posterior distribution is the key in Bayesian Machine learning, but in most cases,
it is intractable and computationally infeasible. Looking at Equation 3.48, the denominator
requires computing the marginal likelihood, which is the integral over all possible model pa-
rameter combinations (see Equation 3.47). When working with deep models consisting of
a large number of parameters, there will be an infinite number of combinations to integrate
over. Therefore, to evade this, the posterior is approximated by a variational distribution
denoted as q(x|z; ϕ). This variational posterior is tractable and replaces the prior in Equa-
tion 3.47, leading to:

p(y|x) ≈
∫

p(y|z; θ) q(z|x; ϕ) dz. (3.50)

Thus, the goal is to make the variational posterior q(z|x) as close as possible to the true
posterior p(z|x). The discrepancy, the difference, between two distributions can be measured
by the Kullback-Leibler (KL) divergence:

KL (q(z|x) ∥ p(z|x)) = Eq(z|x)

[
log

q(z|x)
p(z|x)

]
. (3.51)

3.4.1 Derivation of the ELBO

As mentioned, the overall goal is to find the model parameters and latent variable configura-
tions that maximize the marginal likelihood as defined in Equation 3.47, which is intractable.
Therefore, the function Equation 3.49 is maximized with the tractable variational posterior.
Although it is tractable, it is calculated as a sum of products, which can be numerically un-
stable and is hard to optimize for. Consequently, it is common to maximize the logarithm of
the marginal likelihood instead, which turns products into sums:

log p(y | x) = log
∫

q(z | x; ϕ)
p(y, z | x; θ)
q(z | x; ϕ)

dz. (3.52)

Taking the logarithm of the marginal likelihood makes this function concave, but the log
remains outside the integral, which is hard to compute. This difficulty is solved by applying
Jensen’s inequality, written as:

log(E[X]) ≥ E[log(X)]. (3.53)

It states that the expectation of a concave function is less than or equal to the function of the
expectation, which results in a tractable lower bound:

log p(y | x) ≥
∫

q(z) log
p(y, z | x; θ)

q(z)
, dz = Eq(z|x)

[
log p(y, z | x; θ) − log q(z)

]
. (3.54)

This right-hand side can then be maximized as a replacement objective, known as the Evi-
dence Lower Bound (ELBO). With the chain rule property shown in Equation 3.55

p(y, z | x; θ) = p(y | z, x; θ) p(z), (3.55)

and by recalling Equation 3.51, the ELBO can be even further decomposed as:

Eq(z|x)
[
log p(y, z | x; θ) − log q(z)

]
= Eq(z|x)

[
log p(y | z, x; θ)

]
− KL (q(z)∥p(z)) = ELBO.

(3.56)

31

3.4.2 Definition of ELBO

The first term of the ELBO, which is:

Eq(z|x)[log p(y | z; θ)], (3.57)

captures how well the model fits the data. In other words, it measures how well the model
can predict the observed labels under different gate configurations. Since the expectation over
q(z) is non-computable for large models, it is approximated using Monte Carlo sampling. For
the loss function Equation 3.85, the gating mask is sampled for each input in the batch, and
the log-likelihood is averaged over the batch:

1
N

N∑
i=1

log pθ(yi | xi, zi), (3.58)

where each zi ∼ q(z). This is the average log-likelihood across the batch, which is the same
as the categorical cross-entropy, the standard loss component for multi-class classification
problems. The second term in the ELBO is:

KL (q(z) ∥ p(z)) . (3.59)

As defined earlier, this is the KL divergence, which acts as a regularizer. This controls the
model’s compression through the latent gates and penalizes overfitting by discouraging the
variational posterior and the prior from deviating.

3.4.3 Derivation of the KL Divergence

As defined in Section 3.3, the gating variables are Bernoulli random variables, and the distri-
bution over the gates can be fully specified by their respective activation probabilities. This is
for both the prior p(z) and the variational posterior q(z). The prior over a single gate variable
is

p(z) = Bern(z; π), where π = Pp(z = 1). (3.60)

Here, π = p(1) is the prior probability of the gate being active. The variational posterior is

q(z) = Bern(z; r), where r = Pq(z = 1). (3.61)

Here, r = q(1) is the probability under the variational posterior that the gate is active and is
learned and therefore is data-dependent. Then, the KL divergence Equation 3.51 is defined
as follows:

DKL(q(z) ∥ p(z)) =
∑

z∈{0,1}

q(z) log
q(z)
p(z)

(3.62)

= q(1) log
q(1)
p(1)
+ q(0) log

q(0)
p(0)

(3.63)

= r log
r
π
+ (1 − r) log

1 − r
1 − π

. (3.64)

32

By grouping the entropy terms as:

H(q) = −r log r − (1 − r) log(1 − r), (3.65)

the KL divergence can be simplified to:

DKL = −H(q) + r(− log π) − (1 − r) log(1 − π). (3.66)

In the context of Bayesian Bits [33] and many compression methods, the prior is chosen to
encourage sparsity (compression), as

π = p(1) = e−λ, (p(z) = Bern(z; e−λ) (3.67)

Here, λ > 0 is the sparsity parameter selected, and the KL divergence will explicitly depend
on it:

DKL(q(z) ∥ p(z)) = −H(q) + r(− log e−λ) − (1 − r) log(1 − e−λ). (3.68)

When high sparsity is enforced by λ ≫ 1, the log(1 − e−λ) term and entropy term can be
approximated to zero. Therefore, the estimation of the KL divergence becomes:

DKL(q(z) ∥ p(z)) = λ · r = λ · q(z). (3.69)

As discussed at the beginning of this chapter, there are two different types of gating mecha-
nisms, independent gates (Section 3.1) and dependent gates (Section 3.2). This difference of
properties changes when the total KL divergence:

DKL(q(z) ∥ p(z)), where z = (z1, z2, . . . , zL), (3.70)

is calculated for L gating variables.

Independent Gates

When all the gates are independent, the prior and variational posterior are constructed as fully
factorized Bernoulli distributions.

p(z) =
L∏
ℓ=1

p(zℓ), q(z) =
L∏
ℓ=1

q(zℓ), (3.71)

where each p(zℓ) and q(zℓ) are Bernoulli distributions, as defined earlier. The joint KL diver-
gence between the full variational posterior and prior over all gates is defined by

DKL(q(z) || p(z)) =
∑

z∈0,1L

q(z) log
q(z)
p(z)

(3.72)

Given the product structure, the numerator and denominator inside the log also factorize:

q(z)
p(z)
=

L∏
ℓ=1

q(zℓ)
p(zℓ)
, (3.73)

33

and results in:

log
q(z)
p(z)
=

L∑
ℓ=1

log
q(zℓ)
p(zℓ)
. (3.74)

Now, the sum over all possible gate configurations z can be rewritten as:

DKL(q(z) || p(z)) =
∑

z

q(z)
L∑
ℓ=1

log
q(zℓ)
p(zℓ)

(3.75)

=

L∑
ℓ=1

∑
z

q(z) log
q(zℓ)
p(zℓ)
. (3.76)

Due to independence, for any fixed ℓ, the sum over all z of q(z) times a function of zℓ reduces
to the marginal expectation over zℓ:

∑
z

q(z) log
q(zℓ)
p(zℓ)

=
∑

zℓ

q(zℓ) log
q(zℓ)
p(zℓ)

=

L∑
ℓ=1

DKL(q(zℓ) || p(zℓ)). (3.77)

Therefore, the joint KL divergence for L independent gates decomposes into a sum over the
gates:

DKL(q(z) || p(z)) =
L∑
ℓ=1

DKL(q(zℓ) || p(zℓ)) ≈
L∑
ℓ=1

rℓλ. (3.78)

Hierarchical Gates

However, for more sophisticated setups, such as quantization-aware pruning, the activation of
higher-order gates depends on the activation of lower-order gates. To take these dependencies
into account, the total probability will be derived using the chain rule of probability, resulting
in conditional distributions:

q(z) = q(z1)
J∏

j=2

q(z j | z j−1). (3.79)

Here, z1 represents the base gate variable, which corresponds to the lowest precision quan-
tization bit. Higher-indexed z j gates represent finer quantization bits that are only meaning-
ful if the preceding gate z j−1 is active. Starting from the definition of the KL divergence
Equation 3.72, and by substituting the product of conditionals, and using properties of the
logarithm, the KL divergence is expanded as follows:

DKL(q(z) || p(z)) =
∑

z

q(z)

log
q(z1)
p(z1)

+

J∑
j=2

log
q(z j | z j−1)
p(z j | z j−1)

 (3.80)

=
∑

z1

q(z1) log
q(z1)
p(z1)

+

J∑
j=2

∑
z

q(z) log
q(z j | z j−1)
p(z j | z j−1)

. (3.81)

34

Here, J is the total number of gates in this hierarchical structure. This expression can be
rewritten as a sum of marginal and conditional KL divergences:

DKL(q(z) ∥ p(z)) = DKL(q(z1) ∥ p(z1))

+

J∑
j=2

Eq(z1,...,z j−1)

[
DKL

(
q(z j | z j−1) ∥ p(z j | z j−1)

)]
, (3.82)

where Eq(z1,...,z j−1)[·] denotes the expectation with respect to the joint distribution over all parent
gates under the variational posterior q. This is the same as scaling the KL divergence with
the probability that all parent gates are turned on:

Eq(z1,...,z j−1)

[
DKL

(
q(z j | z j−1) ∥ p(z j | z j−1)

)]
=

 j−1∏
k=1

q(zk = 1)

 DKL

(
q(z j | z j−1 = 1) ∥ p(z j | z j−1 = 1)

)
.

(3.83)
Resulting in:

DKL(q(z) ∥ p(z)) ≈
J∑

j=1

λq

 j∏
k=1

q(zl,k = 1)

 (3.84)

3.4.4 Definition of the Loss Function

By maximizing the LELBO defined in Equation 3.56, the model can be found that gives an
accurate prediction and finds a good approximation to the true posterior. In deep learning,
however, training is usually a minimization problem. Therefore, the loss function used during
optimization is defined as the negative ELBO:

Ltotal = −ELBO = − log pθ(y | x, zi),+KL (q(z) ∥ p(z)) (3.85)

Finally, with this total loss function and the conclusion regarding the KL divergence term, it
can be described as three components for clarity:

Ltotal = LCE + λq · LQ + λd · LD (3.86)

Here:

• LCE is the cross-entropy loss.

• LQ is the penalty associated with quantization.

• LD is the penalty associated with decomposition.

• λq and λd are scalar hyperparameters associated with controlling prior. Therefore, in
a more practical sense, they control the trade-off between accuracy and compression.
The higher λ, the higher the compression.

35

The decomposition penalty, corresponding to independent gates as discussed in this section,
is:

LD =
1
|SD|

∑
l∈SD

1
|Gl|

∑
g∈Gl

q(zl,g = 1). (3.87)

Here, SD represents the set that contains every layer l whose structure has been decomposed,
combined with the gating mechanism. Every layer l contains gates zl,g which are defined by
their set Gl. This part of the loss function calculates, in combination with λd, the total KL
divergence loss. The strength of penalizing the independent gates having a high probability
of being turned on is dependent on the prior definition.

The quantization penalty, corresponding to hierarchical gates, is:

LQ =
1
|SQ|

∑
l∈SQ

1
|B|

∑
j∈B

 j∏
k=1

q(zl,k = 1)

 . (3.88)

Likewise, the SQ refers to the set that contains every layer l where quantization using gates
is applied. B is the set of bitwidths for every layer, which is {2, 4, 8, 16, 32}. The function
iterates over all layers, aggregates the probability of every gate, and divides this total by the
total number of gates. Similarly, in combination with the prior’s parameter λq, LQ represents
the KL divergence. The strength of compression depends on the chosen prior.

By including both types of KL regularization in the loss, the model is encouraged to be simul-
taneously sparse while maintaining high task performance. The separation of the parameters
also offers flexible control over the relative importance of quantization and decomposition
penalties, and can be tuned according to the desired accuracy/compression trade-off. In prac-
tice, λq and λd are found on validation performance. When both hyperparameters are chosen
too large, the model will be forced to be very small, but this will come at the cost of accu-
racy. When chosen too large, vice versa. This trade-off will be discussed more in depth in
Chapter 5.

36

Experimental Framework 4
Putting all the components together discussed in Chapter 3, the proposed framework will
be referred to as Bayesian Joint Compression (BJC). This chapter presents the experimental
framework used to evaluate the BJC. It begins by describing the datasets used for training
and evaluation. Then, the experimental setup, including the input configuration and model
definitions, is explained. Finally, the evaluation metrics are given.

4.1 Datasets

To evaluate the proposed compression framework for Edge AI scenarios, two benchmark
datasets for bearing fault detection are used: the Paderborn University (PU) Dataset [42] and
the Case Western Reserve University (CWRU) Dataset [43]. Both datasets consist of a large
collection of time series vibration data measured under various operational conditions and
fault types, making them ideal for evaluation and comparison [44]. CWRU is the most fre-
quently used benchmark for machine learning–based fault diagnosis because of its relatively
large number of fault settings [45]. However, a limitation of the CWRU Dataset is that many
studies achieve almost perfect classification accuracy on their models [46]. This saturation
limits the ability to study the (subtle) performance differences, such as the impact of com-
pression methods across different hyperparameter settings. On the other hand, the PU Dataset
has been identified as a more challenging classification task due to its more overlapping class
distributions [47]. While it is capable of achieving high accuracies, it never reaches perfect
accuracy, better reflecting real-world scenarios. Therefore, the CWRU Dataset is important
for its comparability and class diversity, while the PU Dataset ensures that conclusions can be
drawn under more realistic conditions. Together, they provide a balanced evaluation setting.

A bearing is a crucial component in the industry that reduces friction between two surfaces
in contact [45, 42]. Without bearings, the direct contact between surfaces would generate
significant heat due to friction. Bearings can be found in every machine with moving parts,
such as electric motors, cars, and wind turbines. They handle rotating motion by using balls
as their rolling element. In short, they convert a sliding motion into a rolling motion, which
is much more durable and energy-efficient. The bearing consists of three different parts:

• Inner Race: The inner ring of the bearing, which rotates along with the shaft it is
mounted on.

• Outer Race: The outer ring of the bearing, which is stationary and houses the rolling
balls.

• Rolling Elements (Balls): The rolling elements rotate between the inner and outer races,
enabling smooth motion while reducing friction.

37

The goal of these datasets is to perform condition monitoring and detect health status through
real-time analysis. The decline in performance can be caused by faults in each of the three
elements, with varying severities, and may result from different failure mechanisms.

The CWRU Dataset contains time series vibration data of bearings, with faults introduced
in all three bearing components, where each fault can have different fault diameters. These
diameters can be of four levels, 0.007′′, 0.014′′, 0.021′′, and 0.028′′, thus separating different
levels of damage. However, due to the availability in the dataset, only the first three damage
levels are considered for the classification process, resulting in a total of 10 classes: nine fault
classes and one healthy class [43].

The PU Dataset contains a wide range of fault types and damage modes, even more so than
the CWRU Dataset. It includes the main mode and origin of the damage, which are catego-
rized into two groups [42]:

• Pittings: The formulation of small craters, or pits, on the bearing. They are caused by
repeated use and thus are a sign of fatigue. They can be on the outer ring and the inner
ring.

• Indentations: Localized surface depressions or impressions. They are the result of
immediate or localized force, moments of stress.

It further differentiates faults by their origin (presence in the inner race, outer race, or both
components) and by the extent of the damage, making the dataset considerably more de-
tailed than CWRU. Certain fault combinations are well-represented, whereas others appear
only once, resulting in an imbalanced dataset for some classification tasks. To ensure that
the evaluation is fair and comparable, this work considers only the main fault modes. Fur-
thermore, since the inner race contains only one distinct type of fault, the dataset is reduced
to six classes, one healthy class and five faulty classes [42]. This selection ensures that the
classification task remains challenging, while avoiding a severe class imbalance that would
otherwise bias the analysis. Another advantage of the PU Dataset is its great availability
of time-series measurements from multiple sensors, including vibration, current, and torque

Table 4.1: Comparison of class structures used in this work for the CWRU and PU Datasets.

Class CWRU (fault type and diameter) PU (fault type and origin)

1 Healthy Healthy
2 Inner race fault (0.007”) Inner race fault (pitting)
3 Inner race fault (0.014”) Outer race fault (pitting)
4 Inner race fault (0.021”) Outer race fault (indentation)
5 Outer race fault (0.007”) Combined fault (inner + outer, pitting)
6 Outer race fault (0.014”) Combined fault (inner + outer, indentation)
7 Outer race fault (0.021”) –
8 Ball fault (0.007”) –
9 Ball fault (0.014”) –

10 Ball fault (0.021”) –

38

signals. However, this work will only use vibration data, as it is the most widely adopted sig-
nal type in the literature and allows for comparability with existing studies [44, 48]. The PU
Dataset also includes measurements from artificially damaged bearings; however, our pre-
liminary experiments have shown that these samples do not significantly impact the model,
as they do not represent realistic degradation patterns. Therefore, bearing samples with ac-
tual damages from accelerated lifetime tests are used for training and evaluating the models.
For performance evaluation, each dataset was split into five different train–test sets, and the
results of every fold were saved. An overview of the resulting class structure for both datasets
is presented in Table 4.1.

4.2 Experimental Setup

In this section, the experimental setup for the bearing fault classification task will be defined.
The focus will be on explaining how the datasets are used and which models will be used for
the evaluation.

To investigate the influence of the initial model size and the optimal choice for compression,
two models with identical frameworks but different dimensionalities are trained for each
dataset. Firstly, there is the base model, which is optimized for maximum accuracy using the
minimal needed dimensions. Secondly, the compact model is designed to be much smaller,
while allowing for the accuracy to be lower in comparison with the baselıine model. Both
will be compressed with the proposed framework, and their performance will be assessed for
multiple metrics, which will be discussed in Section 4.3. The dimensionality of this general
model differs per task and dataset, but the framework remains consistent.

Input

The first element of the model is the input layer. When dealing with raw sensor data mea-
sured from a bearing, deep learning methods are usually applied directly. This means that
the model itself learns the features during training, thus not relying on predefined features.
However, using statistical features can be quite advantageous in the context of Edge Devices
for multiple reasons. First of all, dealing with raw data requires deeper architectures, and its
first layers require a high amount of parameters and computations to retain the most mean-
ingful characteristics about the time series. Therefore, by first applying feature extraction
through statistical features, the input data is compressed, and logically, the model is reduced
in dimensionality. Secondly, there is a lot of research on which features are practical and
most effective for bearing fault detection [49]. Lastly, it is not uncommon to combine statis-
tical features with deep learning models. The model can be improved to be more robust and
build upon the given features, and does not have to discover the indicators from the raw data.
[49, 50]. Therefore, given that the research focus is on compression, and to outperform shal-
low machine learning models in accuracy and compactness, statistical features as the input
are the more suitable choice.

To increase the number of training samples, every recording in the datasets is split into non-
overlapping segments of two seconds. To enable the model to detect changes in this vibration

39

signal, each of these two-second sequences is divided into T non-overlapping windows, and
for each window F statistical features are extracted. The input layer will therefore receive
a matrix of T × F consisting of feature vectors, each associated with a different timestamp.
This input should provide a compressed but informative description of the signal.

Each feature vector consists of F elements. The statistical features used for training and eval-
uating the model include common time-domain indicators and more domain-specific ones
often used in vibration analysis. The time-based features are mean, standard deviation, min-
imum, maximum, skewness, and kurtosis. The features derived from research in vibration
classification include the root mean square (RMS), clearance factor, crest factor, and the de-
rived combinations, maximum-mean, and maximum–minimum difference. These features
have been proven effective in classifying vibration signals of bearings [49].

Model Definition

The models and their compressed versions follow the same structure, meaning they consist
of the same layers but not necessarily the same dimensionality. It is designed to create a
balance between high accuracy and compactness.

The input matrix is received by the convolutional layer block, which is used to extract low-
level temporal features. This block contains two consecutive 1D convolutional layers. As
described in Section 3.1, convolutional layers are well-suited for capturing local correlations
across time windows. This makes them an effective first-layer choice for the processing of
the input matrix. This block is then followed by the Global Average Pooling (GAP), which
reduces the temporal dimension by averaging across time steps. This dimensionally reduced
output will be the input for the next element of the model, the MHA layer. It is common for
attention mechanisms to operate on inputs containing many time step sequences, as they are
powerful in capturing long-range dependencies. However, because the classification task is
relatively simple, experiments have shown that the GAP placed between the convolution and
MHA blocks improves performance. The GAP reduces the dimensionality, which would oth-
erwise be too high, and promotes better generalization. This is also beneficial from a model
compression perspective, because a reduction in T reduces the number of computations (see
Section 3.1.1). The second convolutional layer contains the number of filters required to
match the same dimensionality as the attention layer. After attention, a feed-forward neu-
ral (FFN) block is applied, consisting of two dense layers. The intended task for this block
is to take the features from attention and transform them into a more useful representation.
Finally, the output layer is a fully connected dense layer that projects the high-dimensional
output of the FFN onto the C-class output space. Each corresponds to a different health di-
agnosis, as listed in Table 4.1. An overview of the model layers, including their input/output
dimensions and the number of parameters, is shown in Table 4.2. Here, T refers to the num-
ber of windows per input per sample, and F refers to the number of features per window. c
represents the number of filters in the first convolutional layer, D is the dimensionality of the
attention layer, and M is the hidden dimension of the FNN block.

The model, designed to maximize classification performance, is therefore rather large in
terms of the number of parameters and total computations, and is referred to as the base

40

Layer In→ Out (channels) Output shape Parameters

Input F → F (T, F) –

Conv1D F → c (T, c) (KF + 1) c

Conv1D final c→ D (T − (K − 1),D) (Kc + 1) D

GlobalAvgPool1D – (D) –

Reshape – (1,D) –

Multi-Head Attention D→ D (1,D) 4D2 + 4D

Feed-Forward Dense1 D→ M (1,M) DM + M

Feed-Forward Dense2 M → D (1,D) MD + D

GlobalAvgPool1D – (D) –

Dense (head) D→ C (C) DC +C

Table 4.2: Layer structure of the CNN-Transformer model, showing input–output dimensionality,
output shapes, and parameter counts for the parametrized layers.

model. It will serve as a reference for the best-performing model in terms of accuracy for the
classification problem. Then there is the compact model, which is designed to significantly
reduce the number of parameters while sacrificing a slight decrease in classification accuracy
compared to the base model. It provides a lightweight structure suitable for real-time or
resource-constrained applications. The compact model uses the same building blocks as the
base model but is optimized for smaller dimensionalities over all layers. The compression
on both models should indicate whether it is more advantageous to compress the best model
that can be designed or a more compact model. Table 4.3 defines the inner dimensions c, D,
and M used in the base and compact model for the PU and CWRU Datasets.

Dataset c D M Total parameters

PU (base) 32 64 64 32,902

PU (compact) 32 16 16 4,438

CWRU (base) 16 32 32 8,906

CWRU (compact) 8 16 16 2,538

Table 4.3: Architectural hyperparameters defining the inner dimensions of the CNN-Transformer
models (c: convolutional filters, D: attention dimension, M: feed-forward dimension) for the PU and
CWRU Datasets, along with the resulting total parameter counts.

The Random Forest model will be used as the benchmark shallow machine learning model to
beat. Its hyperparameters were selected through a grid search to ensure fair comparison with
the deep learning model. As discussed in Chapter 2, Random Forests are one of the most
effective shallow machine learning models for environments that are resource-constrained.
Due to its simple nature, the computational load is almost negligible compared to deep learn-
ing methods. It has also been demonstrated to be the most effective model for vibration-based

41

fault diagnosis. This makes Random Forest a strong benchmark for evaluating the benefits
of the proposed compressed deep learning models.

4.3 Metrics

Four key metrics are used to assess the performance of the proposed dynamic compression
method. The metrics, number of parameters, storage cost, computational cost, and inference
time are described below:

Number of Parameters

The most straightforward metric for evaluating the model’s compression is the number of
trainable parameters. The parameter count is given by

Ntotal =
∑
l∈L

Nl, (4.1)

where Nl is the number of parameters in layer l. While informative, this metric will only
reveal the effects of the decomposition and the influence of λd, since quantization effects
cannot be perceived. Furthermore, the number of parameters does not provide the necessary
insights for deployment on resource-limited hardware. A model with fewer parameters can
still require large amounts of memory if those parameters are stored in high-bit formats. The
same applies when a model with a relatively large parameter count can still be deployed if it
is quantized to low bit-widths. Therefore, the number of parameters will serve as a baseline
metric. In the following chapter, results will be shown with the term ’effective number of
parameters’. As the only parameters that are counted are the ones that are associated with
active gates, and therefore contribute to the effective output.

Parameter Storage

To build upon the parameter count metric, the most realistic measure of joint compression is
the model’s memory footprint, which represents its size. Minimizing the model size while
maintaining accuracy is the core goal of this compression method. The number of bits needed
to store all the parameters of the model can be described as:

Storage =
∑
l∈L

bl · Nl, (4.2)

where bl denotes the bit-width used to quantize the layer l. This metric accounts for both the
reduction in Nl because of pruning the decomposition structure and the decrease in bl due to
quantization. Therefore, the model’s size provides the most insightful information regarding
compression and deployment on hardware-constrained devices.

Floating Point Operations

Floating-point operations (FLOPs) quantify the total number of arithmetic operations per-
formed in one forward pass. This metric will serve as a measure of computational efficiency.

42

The quantization introduces an overhead, as the parameters are converted from their low-
precision representation to 32-bit. The decomposition pruning decreases this overhead, as
the fewer parameters there are, the lower the overhead computations are. Moreover, due to
the upper bound on the decomposition, the model is guaranteed to decrease in operations,
aside from the overhead. This metric is therefore chosen to illustrate this trade-off and ana-
lyze the reduction in computation.

Inference Time

Lastly, the inference time is also taken into account. While FLOPs can provide a hardware-
independent estimate of complexity, the actual runtime depends on other factors. Decompo-
sition reduces the number of parameters but increases the number of steps within the model,
which can lead to higher latency. Similarly, quantization introduces an additional step before
using any weight matrix, which can also raise the inference time. It will therefore reflect
whether the theoretical saving in parameters, storage, and FLOPs will also result in a practi-
cal performance gain. The inference time will be measured over many runs to achieve a fair
estimate.

Together, along with accuracy, these four metrics capture different aspects of compression:

• Number of Parameters: Structural reduction.

• Parameter Storage: True memory footprint.

• FLOPs: Computational complexity.

• Inference Time: Empirical performance during deployment.

By analyzing these metrics together, the compressed models can be evaluated not only for
their compactness and accuracy but also to determine if they are a practical improvement in
resource-constrained environments.

43

44

Experimental Results 5
This chapter presents the experimental results obtained by applying the dynamic Bayesian
Joint Compression (BJC) framework on the defined Base and Compact models. To systemat-
ically explain the different compression strategies, the results will be divided into four parts.

First, to illustrate how the gates behave and what layers are important, the number of active
gates per layer is plotted. This is done for a few different values of λd and λq. Secondly,
for each compression scenario, whether the factorization is of SVD or Tucker structure, and
for each initial model size, the performance will be shown for many different regularization
combinations. Another goal is to identify and determine the best-performing λq for each
model. Thirdly, the optimal quantization parameters for each of the four scenarios are pre-
sented together in one figure, allowing for a conclusion on the influence of initial model
dimensions. Finally, the best-performing compressed models are compared with each other
and the random forest model.

5.1 Gate Utilization - PU Dataset

To understand how the decomposition and quantization gates respond to various regulariza-
tion strengths, the active gate fractions are shown per layer for four settings of λd and λq.
When both regularization terms are weak, the model should have many active gates, and in-
creasing one should affect its corresponding domain. Therefore, a higher λd will make sure
that the number of parameters is reduced. Moreover, a higher λq should force the model
size to be more heavily compressed. The results presented in this section aim to demonstrate
the difference in outcome when one parameter is changed while the other is kept constant.
The results are shown for the compression of the Base model, where the weight matrices are
replaced with Tucker structures.

Conv1

Conv (fin
al) Q K V

MHA Output
FFN

1
FFN

2
Output

0.0

0.2

0.4

0.6

0.8

1.0

De
co

m
po

sit
io

n
ac

tiv
e

fra
ct

io
n

Active decomposition fractions & quantization levels (mean ± std) BJC Base - Tucker (d=0.01, q=0.01)
1.00 1.00

0.04 0.04

1.00 1.00 1.00 1.00 1.00

0.04 0.04

1.00 1.00 1.00 1.00 1.00

Rank-1 Rank-2 Quantization (bits)

2
4

8

16

32

Se
le

ct
ed

 q
ua

nt
iza

tio
n

le
ve

l (
bi

ts
)

16 16

2 2

8 8 8 8 8

Figure 5.1: Mean fraction of active gates for decomposition and quantization per layer in the case of
λd and λq being low (± standard deviation (std)).

45

Figure 5.1 shows the Base model after compression using low regularization values. The
inner ranks of the full interaction-based decomposition show that almost all layers have al-
most all their gates turned on. The query and key are the only weight matrices that have
been minimized. The gates associated with quantization behave differently. Every layer has
been compressed to some degree with quantization. In comparison to decomposition, which
has not decreased the parameter count in many layers, the quantization element ensured the
model is overall represented in a lower precision.

Conv1

Conv (fin
al) Q K V

MHA Output
FFN

1
FFN

2
Output

0.0

0.2

0.4

0.6

0.8

1.0

De
co

m
po

sit
io

n
ac

tiv
e

fra
ct

io
n

Active decomposition fractions & quantization levels (mean ± std) BJC Base - Tucker (d=0.01, q=1.0)
1.00 1.00

0.04 0.04

1.00 1.00 1.00 1.00 1.00

0.04 0.04

1.00 1.00 1.00 1.00 1.00

Rank-1 Rank-2 Quantization (bits)

2
4

8

16

32

Se
le

ct
ed

 q
ua

nt
iza

tio
n

le
ve

l (
bi

ts
)

6 ± 2.0

4
2 2 2 2 2 2

3 ± 1.0

Figure 5.2: Mean fraction of active gates for decomposition and quantization per layer in the case of
λd being low and λq being high (± std).

When the λq is increased, Figure 5.2 shows the expected behaviour. The precision levels of
the stored weight matrices are significantly decreased. λq remains unchanged, and therefore
the gates converge to the same highly active configuration as in the previous scenario.

Conv1

Conv (fin
al) Q K V

MHA Output
FFN

1
FFN

2
Output

0.0

0.2

0.4

0.6

0.8

1.0

De
co

m
po

sit
io

n
ac

tiv
e

fra
ct

io
n

Active decomposition fractions & quantization levels (mean ± std) BJC Base - Tucker (d=5.0, q=0.01)

0.57

0.32

0.04 0.04 0.05 0.05 0.04 0.04

0.20

0.04 0.04 0.04 0.04 0.05 0.04

0.20

Rank-1 Rank-2 Quantization (bits)

2
4

8

16

32

Se
le

ct
ed

 q
ua

nt
iza

tio
n

le
ve

l (
bi

ts
)

16 16

2 2

8 8 8 8 8

Figure 5.3: Mean fraction of active gates for decomposition and quantization per layer in the case of
λd being high and λq being low (± std).

Then, when the regularization parameter of the factorization is increased, many more gates
are deactivated. The layers that contain the most active gates are the convolutional layers and
the output layer, as can be seen in Figure 5.3.

46

Conv1

Conv (fin
al) Q K V

MHA Output
FFN

1
FFN

2
Output

0.0

0.2

0.4

0.6

0.8

1.0
De

co
m

po
sit

io
n

ac
tiv

e
fra

ct
io

n

Active decomposition fractions & quantization levels (mean ± std) BJC Base - Tucker (d=5.0, q=1.0)

0.51

0.24

0.04 0.04 0.04 0.04 0.04 0.04

0.20

0.04 0.04 0.04 0.04 0.04 0.04

0.20

Rank-1 Rank-2 Quantization (bits)

2
4

8

16

32

Se
le

ct
ed

 q
ua

nt
iza

tio
n

le
ve

l (
bi

ts
)

4 4
2 2 2 2 2 2

4

Figure 5.4: Mean fraction of active gates for decomposition and quantization per layer in the case of
λd and λq being high (± std).

Finally, when both regularization parameters are high, the model will be compressed more
significantly by sacrificing some accuracy. Figure 5.4 shows this scenario.

These four scenarios have shown the effect of the decomposition and quantization regulariza-
tion terms. However, Figures 5.1 to 5.4 do not reflect the model’s performance. Deactivating
almost all gates with high λd and λq values will not yield the desired accuracy. The following
sections will show where the balance lies between accuracy and compression.

5.2 Compression Sensitivity & Comparison - CWRU Dataset

The experimental results for the CWRU dataset are presented in the Appendix A. Analysing
the results will show the same overall characteristics as those obtained on the PU Dataset,
and the same conclusions can therefore be drawn. For the sake of clarity and conciseness,
the main body of this thesis will only focus on the PU Dataset. This choice is further mo-
tivated by the fact that PU poses a more challenging classification problem as mentioned in
Section 4.1. As a result, the PU experiments provide a more realistic benchmark and make
the impact of compression methods more evident, which is why they are emphasized in the
main discussion.

5.3 Compression Sensitivity - PU Dataset

In this section, the effect of the decomposition regularization parameter λd on compression
is demonstrated, while keeping the quantization regularization parameter λq fixed. This is
done for multiple λq, also to understand the behaviour of dynamic quantization. For each
model type, the results show the test accuracy of the compressed models against the number
of parameters and model size. Therefore, this section will serve as a sensitivity analysis for
every model, showing how changing the λd and λq influences the accuracy of the model.
FLOPs and inference time are not as valuable in this stage and are therefore not discussed in
this section.

Figures 5.5a and 5.5b show the results of the compressed Base model for various regulariza-
tion parameters. For the Figure 5.5a, the first thing that can be noticed is that for the same λd,

47

the accuracy is lower for higher λq. Secondly, the Base model can be compressed in terms of
parameters by almost 3× before a reduction in accuracy. Figure 5.5a shows the model sizes in
Bytes, which, as explained in Section 4.3, is the fairest metric for evaluating compression, as
it takes into account both the reduction in parameters and the precision level. As can be seen,
the higher λq, the lower the model size becomes. Another remarkable characteristic is that,
to a certain degree, the λq can be increased without a significant drop in accuracy. Lastly, the
results demonstrate that a 10× reduction in model size is possible without compromising the
accuracy of the Base models.

1046 × 103 2 × 104 3 × 104

Effective Parameters

0.90

0.92

0.94

0.96

Te
st

 A
cc

ur
ac

y

Accuracy-parameter count trade-off under varying d (with fixed q)

BJC Base (SVD), q=0.01
BJC Base (SVD), q=0.10
BJC Base (SVD), q=0.50
BJC Base (SVD), q=1.00
BJC Base (SVD), q=5.00
Base

(a) Accuracy vs. Parameters

103 104 105

Model Size (Bytes)

0.90

0.92

0.94

0.96

Te
st

 A
cc

ur
ac

y

Accuracy-model size trade-off under varying d (with fixed q)

BJC Base (SVD), q=0.01
BJC Base (SVD), q=0.10
BJC Base (SVD), q=0.50
BJC Base (SVD), q=1.00
BJC Base (SVD), q=5.00
Base

(b) Accuracy vs. Model Size

Figure 5.5: Accuracy trade-offs for the BJC Base–SVD. Each curve corresponds to a fixed quantiza-
tion regularization λq (see legend), while the trajectories are obtained by varying the decomposition
regularization λd over 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 5.0.

48

104

Effective Parameters

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975
Te

st
 A

cc
ur

ac
y

Accuracy-parameter count trade-off under varying d (with fixed q)

BJC Base (Tucker), q=0.01
BJC Base (Tucker), q=0.10
BJC Base (Tucker), q=0.50
BJC Base (Tucker), q=1.00
BJC Base (Tucker), q=5.00
Base

(a) Accuracy vs. Parameters

103 104 105

Model Size (Bytes)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Te
st

 A
cc

ur
ac

y

Accuracy-model size trade-off under varying d (with fixed q)

BJC Base (Tucker), q=0.01
BJC Base (Tucker), q=0.10
BJC Base (Tucker), q=0.50
BJC Base (Tucker), q=1.00
BJC Base (Tucker), q=5.00
Base

(b) Accuracy vs. Model Size

Figure 5.6: Accuracy trade-offs for the BJC Base–Tucker. Each curve corresponds to a fixed quanti-
zation regularization λq (see legend), while the trajectories are obtained by varying the decomposition
regularization λd over 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 5.0.

When the decomposition is of the Tucker structure, it behaves differently from the SVD
structure. Figure 5.6a shows that the compression method does not reduce the number of
parameters very effectively. As can be seen from the figure, for many small λd, the number
of parameters remains unchanged. Then, for a certain higher λd, the parameters are reduced,
but so is the accuracy. The decomposition proves to be less flexible in reducing, when it
should be possible, as seen in the SVD case. Then, Figure 5.6b shows that the quantization
strength can be increased without compromising accuracy. Although there is this inflexibility
in the reduction of weights, the compression using the Tucker structure can achieve the same
accuracy as the Base model.

49

2 × 103 3 × 103 4 × 103

Effective Parameters

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98
Te

st
 A

cc
ur

ac
y

Accuracy-parameter count trade-off under varying d (with fixed q)

BJC Compact (SVD), q=0.010
BJC Compact (SVD), q=0.050
BJC Compact (SVD), q=0.100
BJC Compact (SVD), q=0.500
BJC Compact (SVD), q=1.000
Compact

(a) Accuracy vs. Parameters

104

Model Size (Bytes)

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Te
st

 A
cc

ur
ac

y

Accuracy-model size trade-off under varying d (with fixed q)

BJC Compact (SVD), q=0.010
BJC Compact (SVD), q=0.050
BJC Compact (SVD), q=0.100
BJC Compact (SVD), q=0.500
BJC Compact (SVD), q=1.000
Compact

(b) Accuracy vs. Model Size

Figure 5.7: Accuracy trade-offs for the BJC Compact–SVD. Each curve corresponds to a fixed quan-
tization regularization λq (see legend), while the trajectories are obtained by varying the decomposi-
tion regularization λd over 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 5.0.

The next results are for the compression of the Compact model, shown in Figure 5.7a. The
first thing that can be derived is that the number of parameters does not decrease when λd is
increased. Unlike the BJC Base Tucker case, for the Compact model, it is not unexpected.
The model is designed to have performance comparable to the Base model while being as
compact as possible. A reduction in parameters would only lead to a degradation in accuracy.
The model size, as in previous scenarios Figure 5.7b, shows that for higher λq, the model size
can further decrease without much accuracy loss. Therefore, the compression does not focus
on compression in terms of parameters, but rather on precision.

50

2 × 103 3 × 103 4 × 103

Effective Parameters

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975
Te

st
 A

cc
ur

ac
y

Accuracy-parameter count trade-off under varying d (with fixed q)

BJC Compact (Tucker), q=0.010
BJC Compact (Tucker), q=0.050
BJC Compact (Tucker), q=0.100
BJC Compact (Tucker), q=0.500
BJC Compact (Tucker), q=1.000
Compact

(a) Accuracy vs. Parameters

103 104

Model Size (Bytes)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Te
st

 A
cc

ur
ac

y

Accuracy-model size trade-off under varying d (with fixed q)

BJC Compact (Tucker), q=0.010
BJC Compact (Tucker), q=0.050
BJC Compact (Tucker), q=0.100
BJC Compact (Tucker), q=0.500
BJC Compact (Tucker), q=1.000
Compact

(b) Accuracy vs. Model Size

Figure 5.8: Accuracy trade-offs for the BJC Compact–Tucker. Each curve corresponds to a fixed
quantization regularization λq (see legend), while the trajectories are obtained by varying the decom-
position regularization λd over 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 5.0.

Finally, Figure 5.8a and Figure 5.8b present the results for compressing the Compact model.
Similar to the results of the compression of the Base model with the Tucker structure, the
accuracy changes very drastically when the λd becomes very high. As for the number of pa-
rameters, an immediate decrease in the accuracy for higher λd is not unexpected and is in line
with Figure 5.7. The model size again shows that compression under a high quantization reg-
ularization parameter yields higher accuracy than under a high decomposition regularization
parameter.

51

5.4 Comparison - PU Dataset

To further analyze the difference between compressing a Base model and a Compact model,
the best-performing values of λq are chosen and compared. For the SVD structure, the best
compression while preserving accuracy is obtained with λq = 0.1. For the Tucker structure,
this value is λq = 0.5. These values remain the same for both the Base and Compact models.
The corresponding accuracy–compression curves for varying λd are shown in Figure 5.9.

103 104 105

Model Size (Bytes)

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Te
st

 A
cc

ur
ac

y

Accuracy-model size trade-off under varying d (with fixed q)

BJC Base (SVD), q=0.1
BJC Base (Tucker), q=0.5
BJC Compact (SVD), q=0.1
BJC Compact (Tucker), q=0.5
Base
Compact

d=0.05

d=0.01

d=0.05

d=0.01

Figure 5.9: Accuracy–model size trade-offs across all configurations (Base–SVD, Base–Tucker, Com-
pact–SVD, Compact–Tucker) under varying λd with best found λq.

There are several important observations which can be drawn from Figure 5.9. Firstly, the
compression of the Base model results in a model that is roughly 2× smaller than the com-
pactly designed model, while maintaining comparable accuracy to the original Base model.
This suggests that the compression of the larger Base model can outperform a compact design
in terms of both size and accuracy. However, the high dimensionality of the Base model also
limits how far it can be compressed without a loss in accuracy. In contrast, when the com-
pression framework is applied to the Compact model, even further compression is possible,
extending beyond the compression achieved by the Base model.

In Figure 5.9, the decomposition regularization factor associated with the highest mean ac-
curacy recorded is visualized. To make the results further interpretable, these λd associated
with the best trade-off between accuracy and model size will only be focused on. With the re-
sults more focused displayed, they can be compared to the best-performing shallow machine
learning model, the Random Forest model. This is shown in Figure 5.10.

52

104 105

Model Size (Bytes)

0.94

0.95

0.96

0.97

Te
st

 A
cc

ur
ac

y

Accuracy-model size trade-off for optimal d and q

BJC Base (SVD), q=0.1, d=0.05
BJC Base (Tucker), q=0.5, d=0.01
BJC Compact (SVD), q=0.1, d=0.05
BJC Compact (Tucker), q=0.5, d=0.01
RandomForest
Base
Compact

Figure 5.10: Per-configuration results at the selected λd: accuracy versus model size. Points are mean
± std across splits.

103 104 105

FLOPs

0.94

0.95

0.96

0.97

Te
st

 A
cc

ur
ac

y

Accuracy-compute cost (FLOPs) trade-off for optimal d and q

BJC Base (SVD), q=0.1, d=0.05
BJC Base (Tucker), q=0.5, d=0.01
BJC Compact (SVD), q=0.1, d=0.05
BJC Compact (Tucker), q=0.5, d=0.01
RandomForest
Base
Compact

Figure 5.11: Accuracy versus computational cost (FLOPs) at the selected λd values for all configura-
tions. Points indicate mean ± std across splits.

Figure 5.11 show the accuracy against floating-point operation counts at the optimal λd and
λq. The proposed framework makes sure that a lower bound is imposed on the number of
parameters to ensure that the memory needs do not exceed those of the original model. The
number of parameters also mainly decides how many operations the model needs for one
forward pass. Therefore, the upper bound also confirms that the number of operations is not
higher than that of the Base models. The figure demonstrates that the raw computation count

53

does not grow, but the internal complexity of the model does increase due to the decomposi-
tion into additional sublayers.

10 1 100

Inference Time (s)

0.94

0.95

0.96

0.97

Te
st

 A
cc

ur
ac

y

Accuracy-inference time trade-off for optimal d and q

BJC Base (SVD), q=0.1, d=0.05
BJC Base (Tucker), q=0.5, d=0.01
BJC Compact (SVD), q=0.1, d=0.05
BJC Compact (Tucker), q=0.5, d=0.01
RandomForest
Base
Compact

Figure 5.12: Per-configuration results at the selected λd: accuracy versus inference time (latency).
Points are mean ± std across splits.

The increased depth of the decomposed networks has a direct effect on inference latency.
As shown in Figure 5.12, the compressed model generally requires a longer time to perform
classification than their uncompressed version. It can be concluded that the compressed
model takes longer to produce an output. Interestingly, Tucker-based models seem to have
a lower latency compared to the SVD-based ones. However, this increase in latency is, in
absolute terms, not very significant and would not affect practical deployment.

The main results of the shown experiments are summarized in Tables 5.1 and 5.2. The table
compares baseline models with their compressed counterparts under different decomposi-
tion and quantization settings. In this chapter, the best-performing regularization factors that
preserved the model accuracy were highlighted. However, to enable a fair comparison be-
tween the Base and Compact architectures, an additional compressed Base model is added
that matches the accuracy of the Compact model while achieving the highest degree of com-
pression.

54

Table 5.1: Comparison of models in terms of test accuracy, parameter count, model size, and com-
pression ratios relative to their original model (Base or Compact). CR-Params = compression ratio on
parameters; CR-Size = compression ratio on model size. The compression models their regularization
parameters are defined as (λq,λd).

Model Type Test Accuracy Parameters Model Size (Bytes) CR-Params CR-Size
Random Forest 0.967 ± 0.007 17,211 ± 5,164 68,846 ± 20,656 – –
Base 0.968 ± 0.004 32,902 ± 0 131,608 ± 0 - -
Compact 0.962 ± 0.017 4,438 ± 0 17,752 ± 0 - -
BJC Base SVD (0.1,0.05) 0.968 ± 0.004 21,481 ± 304 12,629 ± 55 1.53 10.42
BJC Base SVD (0.5,1.0) 0.966 ± 0.014 12,494 ± 182 4,951 ± 291 2.63 26.58
BJC Base Tucker (0.5,0.01) 0.968 ± 0.005 24,273 ± 0 10,004 ± 472 1.36 13.16
BJC Compact SVD (0.1,0.05) 0.963 ± 0.007 3,834 ± 31 3,064 ± 16 1.16 5.79
BJC Compact Tucker (0.5,0.01) 0.950 ± 0.012 3,717 ± 0 2,388 ± 316 1.19 7.43

Table 5.2: Comparison of models in terms of test accuracy, FLOPs, and inference time. The compres-
sion models their regularization parameters are defined as (λq,λd).

Model Type Test Accuracy FLOPs Inference Time (s)
Random Forest 0.967 ± 0.007 770.400 ± 216.548 0.014 ± 0.004
Base 0.968 ± 0.004 318,420 ± 0 0.421 ± 0.098
Compact 0.962 ± 0.017 102,612 ± 0 0.362 ± 0.017
BJC Base SVD (0.1,0.05) 0.968 ± 0.004 320,818 ± 1,214 1.094 ± 0.156
BJC Base SVD (0.5,1.0) 0.966 ± 0.014 284,940 ± 728 0.973 ± 0.042
BJC Base Tucker (0.5,0.01) 0.968 ± 0.005 332,096 ± 0 0.704 ± 0.004
BJC Compact SVD (0.1,0.05) 0.963 ± 0.007 100,463 ± 124 0.739 ± 0.052
BJC Compact Tucker (0.5,0.01) 0.950 ± 0.012 100,032 ± 0 0.638 ± 0.006

55

56

Discussion 6
Chapter 5 has shown the compression of many different model configurations. This chapter
presents, interprets, and compares the main findings, while also explaining the trade-offs,
limitations, and future work.

Table 5.1 shows the key results for the PU Dataset. The first thing that can be derived is that
the compression of the Base and Compact models behaves differently. The Base model can
be aggressively compressed in both parameters and precision, where the Compact model is
mainly compressed in terms of quantization. When compressing the Base model, there is the
possibility for a factor of 2 reduction in the parameters without affecting the accuracy. In
combination with quantization, the compression of the Base model, aimed at maintaining ac-
curacy, results in a 10 to 13 times reduction in model size. The results for the compression of
the Compact model, however, show that the number of parameters cannot be reduced without
sacrificing performance. This outcome is most definitely caused by the model being already
optimized in terms of parameters. The Compact models exhibit a parameter reduction of
approximately 1.2×, which is most likely due to the upper bound imposed on the inner rank.
The main compression of Compact models is therefore primarily dependent on quantization,
resulting in a compression ratio of 5.8 to 7.4.

The Base model has a very large architecture, but when compressed, it can become relatively
small. Table 5.1 showed that when the Base model is combined with the correct high regu-
larization parameters, the model can match the compression of a Compact model. However,
with this accuracy, a higher standard deviation is coupled with it, making the compression
effectiveness more uncertain. This limitation is not unexpected, as the layers of their inner
ranks must be lower than those of a Compact compressed model. Therefore, when the goal
is aggressive compression, it would be more effective to compress a model that is already
small. One more important observation from Table 5.1 is that the compression of Compact
models returns a more robust model with the possibility of a slightly higher accuracy. Due
to the decomposition, the model can capture the patterns of the data better, yielding a higher
accuracy.

Another important aspect of this thesis concerns the decomposition method. When the BJC
utilizes the SVD structure to replace the weight matrices, the compression effectively re-
duces the parameters without compromising accuracy, as shown in Figure 5.5a. The results
generated for the Tucker structure decomposition, as shown in Figure 5.6a, do not appear
to offer a benefit in reducing the inner ranks. However, the models compressed using the
Tucker structure are about 20% smaller in model size, while achieving the same accuracy.
Thus, the Tucker structure enables the model to utilize lower precision levels for its layers.
Therefore, keeping the parameter count high in combination with a complex structure, such
as Tucker, the layers can be quantized even further. This phenomenon is not expected, due

57

to the initial belief that the high level of interactions would make it possible for the model to
be compressed further. Consequently, another strong possibility is that the two-dimensional
gate control is too complex for the model to make use of effectively, as there are more gates
to learn. This makes the model more focused through quantization.

FLOPs and inference time are metrics that one would expect to behave similarly, decreasing
when the number of parameters is reduced. However, this is not seen in the results shown
in Figures 5.11 and 5.12, and Table 5.1. Although the FLOPs indeed decrease when the
parameters are reduced and are not increased with the compression framework, the inference
time is doubled. The fact that the forward pass takes longer is caused by the increased number
of steps within a layer and the extra computational overhead required for recomputing the
quantized matrices back to their full precision. As explained in Section 3.2, quantization acts
as a reducer in the footprint of parameter storage; however, when the weight matrices are
needed, they are computed to full precision.

Then, the results have shown that the used deep learning structure slightly outperforms the
Random Forest model in terms of accuracy (see Figure 5.10). Without any compression, the
Base model is about twice as large as the RF model. When compressing the Base model,
the BJC maintains accuracy while making the model significantly smaller, outperforming the
shallow model in both accuracy and model size. Although joint compression can lead to a
model with fewer parameters and a smaller size, its computational efficiency cannot match
that of the Random Forest model. This, in combination with the matching accuracy, makes
the reasoning for the deep learning approach for this use case more questionable.

Having outlined the key findings, the BJC method used to generate the results has some re-
marks of its own that are not directly visible. First of all, the choice of the regularization
factors is an essential step in finding an effective compressed model. The figures shown in
Chapter 5 demonstrate that selecting the ‘right’ values requires an extensive grid search. On
the other hand, this process does not require a lot of human intervention, as the only in-
put choice is the model itself. Second, the decomposition method is defined by gates that
are independently connected to each other. In the original work (Bayesian LoRa), these
gates were dependent on each other, meaning that if the earlier component were deactivated,
the subsequent gates would also be deactivated. The same principle is used to control the
quantization level. This change would put the focus more on model compression, which is
desirable for the sake of aggressive reduction in model size. However, this nature is logical
for quantization, but for decomposition, exploration is essential. Through hierarchical gates,
the decomposition is limited during training, which does not guarantee that the compressed
model will maintain the desired accuracy. However, as was seen in the results, the com-
pression of the model was mainly caused by the quantization. Therefore, it might have been
the better choice for maintaining accuracy and simplicity, but it did most likely not benefit
compression. This could also be extended to the CNN layers.

Lastly, some choices were made for the model initialization, which could have influenced the
results. The BJC first defines the model architecture by placing upper bounds on the inner
rank of the factorizations. However, it ensures that the compressed model is always smaller
than the original model, even when λd and λq are close to zero. However, this procedure

58

assumes that the initial layer dimensions are already well chosen. This assumption holds
when the Base model is relatively large, since most layers then provide sufficient capacity.
But, for cases where the optimal architecture would require expanding certain layers while
aggressively pruning others, this fixed upper-bound initialization may no longer be ideal, as
it restricts the model’s flexibility to adapt its structure in a fully data-driven manner.

Secondly, the model structure also depends on the initialization of the gates. In the chosen
setup, the gates are initialized to be activated. This allows the model to explore many pos-
sible configurations during training, and then to gradually compress itself through the loss
function, which encourages sparsity. Although this strategy encourages preserving higher ac-
curacy, it places the entire responsibility for compression on the loss function and the training
parameters. If these are not set to optimal values, the model will stay either too large or be
compressed too heavily. Choosing a different strategy could provide a better balance.

During this work, some doubts arose regarding the optimal data splitting strategy. Since
the datasets are created by measuring different bearings, a split based on bearing IDs would
more realistically reflect real-world deployment. As in real-world situations, models are
expected to generalize to unseen machines. However, most studies split the dataset through
random sampling. This can cause data leakage, as train and test sets most likely contain
samples from the same bearing, which present the same behaviour. With self-conducted
experiments, the Base model achieved an accuracy of around 60%. Further exploration of
this is left for future work. On the other hand, the main goal of this thesis was to evaluate the
proposed compression method and demonstrate that accuracy can be largely preserved under
compression. Therefore, this optimistic accuracy does not undermine the contribution of this
work.

59

60

Conclusion 7
Edge AI refers to the practice of deploying AI algorithms directly on local devices that are
close to the data source. While the application may differ, the devices themselves are typi-
cally resource-constrained in terms of memory and computational power. To still be able to
use deep learning on such devices, models must therefore be compressed and optimized to
fit within the hardware limitations, while still preserving as much predictive performance as
possible. Standard solutions for Edge AI, however, are typically static and depend heavily on
manual intervention.

This limitation has highlighted the need for an end-to-end adaptive framework that can in-
tegrate multiple compression methods and automatically adjust the model to meet hardware
and application requirements, which this thesis addresses by introducing the Bayesian Joint
Compression (BJC) framework. BJC adaptively combines decomposition and quantization
into a single model. By using Bayesian gate mechanisms, BJC automatically determines dur-
ing training which components to prune and which precision levels to apply, thus effectively
balancing accuracy and efficiency without requiring extensive manual intervention.

The results in Chapter 5 demonstrate that BJC can effectively compress the model size while
maintaining accuracy, even improving its robustness, and without increasing the computa-
tional load. BJC can adeptively control the effective rank via λd and the bit-precision via
λq. With higher values for the regularization parameters λd and λq, which control the prun-
ing strengths of decomposition and quantization, the model can be aggressively compressed,
with a small, almost negligible reduction in accuracy. Moreover, the experiments confirm that
while quantization is the dominant driver of compression, decomposition provides the flexi-
bility to compress the model further when needed. Together, these findings directly address
the main research question of this thesis introduced in Section 1.2. By combining quantiza-
tion and decomposition within an adaptive Bayesian framework, BJC can achieve significant
reductions in parameter count, memory size, and FLOPs, while preserving classification per-
formance. These results indicate that end-to-end, joint compression strategies represent a
promising direction for enabling the practical deployment of deep learning on edge devices.

Additionally, the sub-research questions stated in Section 1.2 can also be addressed. First,
BJC enables compression by adaptively balancing and tuning the regularization parameters.
Low values preserve model capacity, while higher values lead to aggressive compression with
only a slight reduction in accuracy. Secondly, although this work did not integrate any direct
hardware constraints, the definition of the loss function allows such an extension. Constraints
such as maximum model size can be relatively easily integrated as an additional term in the
loss function. As stated in the Chapter 6, this would allow compression to be directly guided
by device-specific requirements. The third sub-question covers whether the compression
method is a good alternative to a simple machine learning model, standard for constrained

61

devices. It does outperform shallow machine learning methods, such as Random Forest, in
terms of both accuracy and compact model size. Although the Random Forest is superior in
the number of computations of the forward pass, the BJC is a much better choice in all other
metrics. Lastly, the results highlighted that quantization was the most important for thorough
compression. Furthermore, decomposition is required for a more aggressive compression or
when the model itself is not compact. Therefore, joint optimization of both methods results
in a better compression-accuracy trade-off. To further extend on the research question, this
work has shown that the initial dimensions of the model influence the accuracy and model
size trade-off. Although a compact model may not reach the test accuracy of a larger one,
it can achieve a significantly smaller size while maintaining higher accuracy under the same
size constraint as the larger model.

This chapter is concluded by outlining several possible directions for future research:

• Firstly, an important extension would be to explore the effects of using a hierarchical
gate structure for the decomposition component, rather than relying solely on indepen-
dent gating mechanisms. As discussed in Chapter 6, hierarchical gates could enforce
more aggressive compression, but they may also risk limiting the model’s ability to
preserve accuracy. Investigating this balance would provide insights into whether hier-
archical decompositions offer a practical advantage in BJC-based compression.

• Second, it would be valuable to evaluate the method on a broader range of bench-
mark datasets commonly used in the compression literature. Most studies on neural
network compression rely on large-scale datasets, whereas the PU and CWRU Datasets
are domain-specific to bearing fault detection. Extending the evaluation to more widely
adopted benchmarks would make it easier to compare BJC directly with other state-of-
the-art compression methods.

• Thirdly, in the proposed BJC framework, the weight matrices have to be recomputed at
every forward pass, as they are stored in a lower precision level. However, it does not
exploit the fact that many edge devices support low-bit computation. This would not
only improve efficiency but also reduce latency.

• Lastly, the BJC framework is designed as an end-to-end approach without the need for
pre-training. However, to further improve the accuracy and possibly the compression, it
could be advantageous to use a pre-trained model as the input of the framework to have
a better starting point. Moreover, for the application of Edge AI, it would be interesting
and valuable to develop a tool that automatically converts an existing model into its
compressed version. Such a tool would simplify deployment in real-world scenarios
by compressing and fine-tuning models for edge devices without requiring extensive
retraining or manual adjustments.

In conclusion, this work offered a solid groundwork for future research. The findings of adap-
tive BJC demonstrated that a deep learning model can be compressed effectively in terms
of memory footprint, without increasing its computational costs, while preserving accuracy
more robustness. This framework, therefore, opens promising directions for practical com-
pression and deployment of models on resource-constrained edge devices across a wide range
of tasks.

62

Bibliography

[1] S. Minaee, T. Mikolov, N. Nikzad, M. A. Chenaghlu, R. Socher, X. Amatriain, and
J. Gao, “Large language models: A survey,” ArXiv, vol. abs/2402.06196, 2024.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” 2023.

[3] R. Singh and S. S. Gill, “Edge ai: A survey,” Internet of Things and Cyber-Physical
Systems, vol. 3, p. 71–92, 2023.

[4] S. Jaber, J. Soldatos, and R. Rao, “2024 state of edge ai report: Exploring the dynamic
world of edge ai applications across industries,” tech. rep., DATEurope in collaboration
with tinyML Foundation, May 2024. Accessed: 2025-07-09.

[5] World Bank, “Manufacturing, value added (Accessed: 2025-07-09.

[6] D. S. Thomas and B. A. Weiss, “Economics of manufacturing machinery maintenance:
A survey and analysis of u.s. costs and benefits,” Tech. Rep. 100-34, National Institute
of Standards and Technology, Gaithersburg, MD, June 2020. Accessed August 21,
2025.

[7] T. P. Carvalho, F. A. A. M. N. Soares, R. Vita, R. da P. Francisco, J. P. Basto, and
S. G. S. Alcalá, “A systematic literature review of machine learning methods applied
to predictive maintenance,” Computers & Industrial Engineering, vol. 137, p. 106024,
2019.

[8] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,”
IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.

[9] Z. Zhu, Y. Lei, G. Qi, Y. Chai, N. Mazur, Y. An, and X. Huang, “A review of the applica-
tion of deep learning in intelligent fault diagnosis of rotating machinery,” Measurement,
vol. 206, p. 112346, Jan 2023.

[10] O. Surucu, S. A. Gadsden, and J. Yawney, “Condition monitoring using machine learn-
ing: A review of theory, applications, and recent advances,” Expert Systems with Appli-
cations, vol. 221, p. 119738, Jul 2023.

[11] E. Memmel, C. Menzen, J. Schuurmans, F. Wesel, and K. Batselier, “Position: Tensor
networks are a valuable asset for green ai,” 2024.

[12] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen,
“Lora: Low-rank adaptation of large language models,” 2021.

[13] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and hardware accelera-
tion for neural networks: A comprehensive survey,” Proceedings of the IEEE, vol. 108,
no. 4, pp. 485–532, 2020.

63

[14] Y. Tang, Y. Wang, J. Guo, Z. Tu, K. Han, H. Hu, and D. Tao, “A survey on transformer
compression,” 2024.

[15] A. Moslemi, A. Briskina, Z. Dang, and J. Li, “A survey on knowledge distillation:
Recent advancements,” Machine Learning with Applications, vol. 18, p. 100605, 2024.

[16] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A survey,” Interna-
tional Journal of Computer Vision, vol. 129, p. 1789–1819, Mar 2021.

[17] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
2015.

[18] J. H. Cho and B. Hariharan, “On the efficacy of knowledge distillation,” CoRR,
vol. abs/1910.01348, 2019.

[19] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A survey of
quantization methods for efficient neural network inference,” 2021.

[20] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and hardware accelera-
tion for neural networks: A comprehensive survey,” Proceedings of the IEEE, vol. 108,
no. 4, pp. 485–532, 2020.

[21] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware automated quanti-
zation with mixed precision,” 2019.

[22] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Review,
vol. 51, no. 3, pp. 455–500, 2009.

[23] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic, “Tensor net-
works for dimensionality reduction and large-scale optimization: Part 1 low-rank ten-
sor decompositions,” Foundations and Trends® in Machine Learning, vol. 9, no. 4–5,
p. 249–429, 2016.

[24] C. Yang and H. Liu, “Stable low-rank cp decomposition for compression of convolu-
tional neural networks based on sensitivity,” Applied Sciences, vol. 14, no. 4, 2024.

[25] M. Gabor and R. Zdunek, “Compressing convolutional neural networks with hierarchi-
cal tucker-2 decomposition,” Applied Soft Computing, vol. 132, p. 109856, 2023.

[26] M. Gabor and R. Zdunek, “Convolutional neural network compression via tensor-
train decomposition on permuted weight tensor with automatic rank determination,”
in Computational Science – ICCS 2022 (D. Groen, C. de Mulatier, M. Paszynski, V. V.
Krzhizhanovskaya, J. J. Dongarra, and P. M. A. Sloot, eds.), (Cham), pp. 654–667,
Springer International Publishing, 2022.

[27] M. Yin, Y. Sui, S. Liao, and B. Yuan, “Towards efficient tensor decomposition-based
dnn model compression with optimization framework,” 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), p. 10669–10678, Jun 2021.

[28] M. Gabor and R. Zdunek, “Compressing convolutional neural networks with hierarchi-
cal tucker-2 decomposition,” Applied Soft Computing, vol. 132, p. 109856, Jan 2023.

64

[29] O. A. Ademola, P. Eduard, and L. Mairo, “Ensemble of tensor train decomposition and
quantization methods for deep learning model compression,” 2022 International Joint
Conference on Neural Networks (IJCNN), p. 1–6, Jul 2022.

[30] M. Alnemari and N. Bagherzadeh, “Ultimate compression: Joint method of quanti-
zation and tensor decomposition for compact models on the edge,” Applied Sciences,
vol. 14, no. 20, 2024.

[31] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag, “What is the state of neural network
pruning?,” 2020.

[32] Y. He and L. Xiao, “Structured pruning for deep convolutional neural networks: A
survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 46,
p. 2900–2919, May 2024.

[33] M. van Baalen, C. Louizos, M. Nagel, R. A. Amjad, Y. Wang, T. Blankevoort, and
M. Welling, “Bayesian bits: Unifying quantization and pruning,” 2020.

[34] C. Meo, K. Sycheva, A. Goyal, and J. Dauwels, “Bayesian-loRA: LoRA based pa-
rameter efficient fine-tuning using optimal quantization levels and rank values trough
differentiable bayesian gates,” in 2nd Workshop on Advancing Neural Network Train-
ing: Computational Efficiency, Scalability, and Resource Optimization (WANT@ICML
2024), 2024.

[35] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding,” 2016.

[36] N. Setyawan, C.-C. Sun, M.-H. Hsu, W.-K. Kuo, and J.-W. Hsieh, “Microvit: A vision
transformer with low complexity self attention for edge device,” in 2025 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), p. 1–5, IEEE, May 2025.

[37] S.-K. Yeom and T.-H. Kim, “Uniform: A reuse attention mechanism optimized for
efficient vision transformers on edge devices,” 2024.

[38] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learn-
ing: with Applications in R. Springer Texts in Statistics, Springer, 2013.

[39] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow: Con-
cepts, Tools, and Techniques to Build Intelligent Systems. Sebastopol, CA: O’Reilly
Media, 2nd ed., 2019.

[40] M. Fernandez-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we need hundreds
of classifiers to solve real world classification problems?,” Journal of Machine Learning
Research, vol. 15, pp. 3133–3181, 10 2014.

[41] Q. Zhang, M. Chen, A. Bukharin, N. Karampatziakis, P. He, Y. Cheng, W. Chen,
and T. Zhao, “Adalora: Adaptive budget allocation for parameter-efficient fine-tuning,”
2023.

65

[42] C. Lessmeier, J. K. Kimotho, D. Zimmer, and W. Sextro, “Condition monitoring of
bearing damage in electromechanical drive systems by using motor current signals of
electric motors: A benchmark data set for data-driven classification,” PHM Society
European Conference, vol. 3, Jul 2016.

[43] C. W. R. University, “Case western reserve university bearing data center.” https:
//engineering.case.edu/bearingdatacenter, 1997.

[44] D. Neupane and J. Seok, “Bearing fault detection and diagnosis using case western re-
serve university dataset with deep learning approaches: A review,” IEEE Access, vol. 8,
pp. 93155–93178, 2020.

[45] Z. Zhu, Y. Lei, G. Qi, Y. Chai, N. Mazur, Y. An, and X. Huang, “A review of the applica-
tion of deep learning in intelligent fault diagnosis of rotating machinery,” Measurement,
vol. 206, p. 112346, 2023.

[46] T. Saghi, D. Bustan, and S. S. Aphale, “Bearing fault diagnosis based on multi-scale
cnn and bidirectional gru,” Vibration, vol. 6, no. 1, pp. 11–28, 2023.

[47] B. Zhang, F. Li, N. Ma, W. Ji, and S.-K. Ng, “Open set bearing fault diagnosis with do-
main adaptive adversarial network under varying conditions,” Actuators, vol. 13, no. 4,
2024.

[48] Y. Chen, M. Rao, K. Feng, and M. J. Zuo, “Physics-informed lstm hyperparame-
ters selection for gearbox fault detection,” Mechanical Systems and Signal Processing,
vol. 171, p. 108907, 2022.

[49] C. Grover and N. Turk, “Optimal statistical feature subset selection for bearing fault
detection and severity estimation,” Shock and Vibration, vol. 2020, no. 1, p. 5742053,
2020.

[50] D.-T. Hoang and H.-J. Kang, “A survey on deep learning based bearing fault diagnosis,”
Neurocomputing, vol. 335, pp. 327–335, 2019.

66

https://engineering.case.edu/bearingdatacenter
https://engineering.case.edu/bearingdatacenter

Additional Dataset Results A
A.1 Compression Sensitivity - CWRU Dataset

2 × 103 3 × 103 4 × 103 6 × 103

Effective Parameters

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

Accuracy-parameter count trade-off under varying d (with fixed q)

BJC Base (SVD), q=0.010
BJC Base (SVD), q=0.100
BJC Base (SVD), q=0.500
BJC Base (SVD), q=1.000
BJC Base (SVD), q=5.000
Base

(a) Accuracy vs. Parameters

103 104

Model Size (Bytes)

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

Accuracy-model size trade-off under varying d (with fixed q)

BJC Base (SVD), q=0.010
BJC Base (SVD), q=0.100
BJC Base (SVD), q=0.500
BJC Base (SVD), q=1.000
BJC Base (SVD), q=5.000
Base

(b) Accuracy vs. Model Size

Figure A.1: Accuracy trade-offs for the CWRU Base–SVD. Each curve corresponds to a fixed quan-
tization regularization λq, while trajectories are obtained by varying the decomposition regularization
λd.

67

103 104

Effective Parameters

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y
Accuracy-parameter count trade-off under varying d (with fixed q)

BJC Base (Tucker), q=0.010
BJC Base (Tucker), q=0.100
BJC Base (Tucker), q=0.500
BJC Base (Tucker), q=1.000
BJC Base (Tucker), q=5.000
Base

(a) Accuracy vs. Parameters

103 104

Model Size (Bytes)

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

Accuracy-model size trade-off under varying d (with fixed q)

BJC Base (Tucker), q=0.010
BJC Base (Tucker), q=0.100
BJC Base (Tucker), q=0.500
BJC Base (Tucker), q=1.000
BJC Base (Tucker), q=5.000
Base

(b) Accuracy vs. Model Size

Figure A.2: Accuracy trade-offs for the CWRU Base–Tucker. Each curve corresponds to a fixed
quantization regularization λq, while trajectories are obtained by varying the decomposition regular-
ization λd.

68

A.2 Comparison - CWRU Dataset

103 104

Model Size (Bytes)

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Te
st

 A
cc

ur
ac

y

Accuracy-model size trade-off for optimal d and q

BJC Base (SVD), q=1.0, d=5.0
BJC Base (Tucker), q=1.0, d=0.5
SVC
RandomForest
Base
Compact

Figure A.3: Per-configuration results at the selected λd: accuracy versus model size. Points are mean
± std across splits.

103 104 105

FLOPs

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Te
st

 A
cc

ur
ac

y

Accuracy-compute cost (FLOPs) trade-off for optimal d and q

BJC Base (SVD), q=1.0, d=5.0
BJC Base (Tucker), q=1.0, d=0.5
SVC
RandomForest
Base
Compact

Figure A.4: Accuracy versus computational cost (FLOPs) at the selected λd values for all configura-
tions. Points indicate mean ± std across splits.

69

10 3 10 2 10 1 100

Inference Time (s)

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Te
st

 A
cc

ur
ac

y

Accuracy-inference time trade-off for optimal d and q

BJC Base (SVD), q=1.0, d=5.0
BJC Base (Tucker), q=1.0, d=0.5
SVC
RandomForest
Base
Compact

Figure A.5: Per-configuration results at the selected λd: accuracy versus inference time (latency).
Points are mean ± std across splits.

Table A.1: Comparison of models on the CWRU dataset in terms of test accuracy, parameter count,
model size, and compression ratios relative to the uncompressed Base model. CR-Params = compres-
sion ratio on parameters; CR-Size = compression ratio on model size. The compression models are
defined by regularization parameters (λq, λd).

Model Type Test Accuracy Parameters Model Size (Bytes) CR-Params CR-Size
SVC 0.974 ± 0.025 617 ± 154 2,467 ± 614 – –
Random Forest 0.952 ± 0.025 1,269 ± 1,140 5,078 ± 4,559 – –
Base 0.993 ± 0.009 8,906 ± 0 35,624 ± 0 1.00 1.00
Compact 0.974 ± 0.043 2,538 ± 0 10,152 ± 0 3.51 3.51
BJC Base SVD (λq=1.0, λd=5.0) 0.994 ± 0.009 2,086 ± 140 811 ± 70 4.27 43.93
BJC Base Tucker (λq=1.0, λd=0.5) 0.994 ± 0.009 6,265 ± 276 2,069 ± 72 1.42 17.22

Table A.2: Comparison of models on the CWRU dataset in terms of test accuracy, FLOPs, and infer-
ence time. The compression models are defined by regularization parameters (λq, λd).

Model Type Test Accuracy FLOPs Inference Time (s)
SVC 0.974 ± 0.025 2,278 ± 315 0.001 ± 0.001
Random Forest 0.952 ± 0.025 202 ± 188 0.004 ± 0.003
Base 0.993 ± 0.009 91,928 ± 0 0.716 ± 0.071
Compact 0.974 ± 0.043 29,112 ± 0 0.666 ± 0.031
BJC Base SVD (λq=1.0, λd=5.0) 0.994 ± 0.009 48,616 ± 4,285 1.155 ± 0.053
BJC Base Tucker (λq=1.0, λd=0.5) 0.994 ± 0.009 92,237 ± 1,656 1.885 ± 0.233

70

	Abstract
	Acknowledgments
	Introduction
	Compression Techniques
	Knowledge Distillation
	Quantization
	Tensor Decomposition
	Pruning

	Research Questions
	Thesis Outline

	Background on Random Forest
	Methodology
	Decomposition
	Matrix Multiplication
	Convolutional Operations

	Quantization
	Uniform Quantization
	Controllable Quantization

	Gate Variables
	Loss Function
	Derivation of the ELBO
	Definition of ELBO
	Derivation of the KL Divergence
	Definition of the Loss Function

	Experimental Framework
	Datasets
	Experimental Setup
	Metrics

	Experimental Results
	Gate Utilization - PU Dataset
	Compression Sensitivity & Comparison - CWRU Dataset
	Compression Sensitivity - PU Dataset
	Comparison - PU Dataset

	Discussion
	Conclusion
	Additional Dataset Results
	Compression Sensitivity - CWRU Dataset
	Comparison - CWRU Dataset

