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This paper describes a method of calculating exciting forces on free or 
fixed bodies in waves and its application to some examples. The method lays 
upon an accurate computation of the transitory pressures applied by a potential 
flow on a submerged body. 

The calculation may be used for the case of a free body in complex waves. 

First, we give the calculation hypothesis on flow conditions and the formulae 
which proceed from assumptions. 

Second, we give the computation results on well known examples. 

• 

• 

On set parallel flow around a sphere, 

Fixed triaxial ellip~oId in waves • 

Third, we apply this method to a free caisson, steadied by schematic moor­
ing device in stationnal waves computed with second orders term. 
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1. INTRODUCTION 

Sogreah has investigated a wide variety of hydraulic problems during 
its lifetime, among which especially the effects of waves on marine 
structures and both immersed and non-immersed floating bodie8. 

With the advent of computers, digital computation proved itself a 
valuable adjunct to scale model research, and mathematical models are 
now being used instead of physical ones for certain applications. 

Sogreah has developed a method for the calculation of flow around an 
immersed body and has used it to determine wave forces acting on a floating 
platform caisson. 

The immersed body flow computation method described here is a 
conventional one assuming potential flow which can be represented by a 
single-layer potential. The original feature of the Sogreah investigation, 
however, is that it more specifically considered transient-state pressures 
and forces with a view to determining the behaviour of an immersed body 
under complex wave conditions. This method gives the response of a body 
immersed at a given depth to waves that are chromatic as regards height 
and phase, and it can be confirmed in this case by comparison with scale 
model tests. It is particularly useful as a means of studying the behaviour 
of an immersed body in complex wave conditions, and it scores over the 
physical model in that it enables any complex waves given by their spectrum 
to be investigated for either finite or infinite depth assumptions. 

This note gives the confirmation of the method for simple bodies 
(sphere, ellipsoid) and describes its application to the motion of a 
single caisson suitably anchored for stability and exposed to Atlantic 
swell conditions. 
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2. DESCRIPTION OF THE i'IJETHOD - THEORETICAL STUDY 

2.1 Remark 

As the calculation method used in this study is quite conventional, 
the mathematical formulation of the problem will be discussed very briefly 
and only the basic formulae required to understand the method will be 
mentioned. We have applied this method to the special case of the 
determination of wave forces acting on an immersed body, but it is also 
suitahle for other two - or three - dimensional flow problems. 

We have supposed that the viscosity forces are low and do not perturb 
the flow around the body, and that the speeds and pressures on the body 
surface are identical both in ideal fluid and in viscous fluid. 

This assumptions involv$ that the body motions are slow and of the 
same order of magnitude as the water motions. We will not take into account 
the wake effects which can occur in certain places of the body. 

On the other hand, it is possible to take in account the drag and lift 
effects either as a whole,or with the aid of a shear term in each point of 
the body, this term being a function of the relative water body speed. 

Then again, we have not taken in account the influence - on the flow 
characteristics - of the free surface distortion owing to the presence of 

**the body. 

This limitation leads us to the following point. This method is merely 
valid when the immersed body stands at a depht more than about twice the 
body height. 

2.3 Type of flow 

The water is considered as an incompressible fluid in irrotational 
motion, so that the flow fs derived fror1 a potential q; which is the 
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solution of the Laplace equation : 

o (2.1 ) 

The fluid velocity at any point is 

VF == - grad qi (2.2 ) 

ltlithout a body, the flow is simply the motion of the water, and the 
above assumptions require that we consider a wave scheme of potential qiH 

Determination of the flow is then a matter of solving an exterior 
Neumann problem, Le. the determination of a harmonic function qi which 
is regular at infinity, knowing the normal derivative dqi/dn on the body 
surface E. 

2.4 E~~~~~~~~~~~~_~~_g~~~~~~~~ __ ~ 

the 
the 

The given condi tion d~/dn at point 1'1 

normal velocity components for point ~1 

fluid velocity at that point are equal, 

dqi 
= - (V dn c 

on surface E is met when 
associated with the body and 

i. e. : 

As the potential satisfies the Laplace equation we can apply the 
principle of superimposed flows and break down the overall potential qi 
into the three following elementary potentials : 

hence 

giving the flow of water without the body, 

giving the flow of water around the body, which is assumed 
to be stationary under the influence of qiH' 

giving the flow of water due to the motion of the body in 
calm water. 
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** 

** 

** 

Potentials ~PR and ~p0 are expressed conventionally by a single­
layer potential of respectiveVdensities 0PR and OPe ' i.e. : 

~PR (p) ,l)E 
0pR (Ill) 

ds (N) (2.5) = 
IBPI 

rr OPe (J"l) 
~PC (p) = I I IhPI ds (l~) (2.6) 

JJ 

The source densities 0PR ~n~ 0pC are solutions of the Fredholm 
equation with the given condltlon d~/dn 

21t 0pc (p) + ffE °pc 
( IVl ) MP.;-( P ) 

IMP!3 
ds (I1) = evc + QA Cl'I] n (p) 

21t 0pR (p) + ffE °pR 
(N) MP. ;( p) 

IMPI 3 
ds (1'1) = - VR 

(p) n (p) (2.8 ) 

Potential ~PC only depends on the velocity of the body and can be 
expressed as a function of unit potentials ~1 ' ~? ' ~) , X1 ' X2 ' X3 (ref 1) 

~PC + 

Potentials ~1 ' ~2 ' <fJ ' X1 ' X2 ' X3 are calculated once and for 
all for the body surface area E • Potential ~ is calculated for any 
moment of time in terms of the position of the PR body and wave 
conditions. 

Knowing the overall flow potential the water pressure point -
especially on the b0dy surface - can be calculated by the following 
formula : 

P = Po + p ( gz 

- 5 -

o~ 

+-­ot 
V 2 

-L) 
2 

(2.10) 



Integrating pressure over the surface,area E gives the wave force 
and moment resultants on the body at any instant of time, i.e. : 

FH = - ffE P(IVI) ;- (M) ds (M) 
~ 

~ = -If E 
P(M) [CM

A
;- (M)] ds (M) 

) 

P(X,Y,Z) 

Figure 1 ~ The body surface. Notation used in describing the potential due to a surface 
source density distribution. 

(2.11) 

The forces are calculated along the body axes. Integration of the 
pressure term pgz gives the buoyancy force and will not be carried out. 

The pressure term ~/dt gives the forces at wave period and takes 
the motion of the immersed body into account. These forces are much 
greater than those due to the pressure term VF2/2 representing the 
surface attraction effect. In certain cases where only body motion at 
the wave period is considered the velocity term can be considered 
negligible compared to the pressure term ~/ot. 
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The pressure term d~/ot is the sum of derivatives 

and 

the last of which is as follows 

(2.12 ) 

By integrating this term over surface area E the twenty-one added 
mass coefficients (ref 2) can be calculated, which are of the following 
form : 

(2.13 ) 

If the added mass coefficients of the body are known, the calculation 
method used can be checked. 

3. CALCULATION METHOD 

The basic problem involved in determining the flow around an immersed 
body is to solve the Fredholm (2.7) and (2.8) equation, which generally 
defies analytical solution. Its digital solution method is conventional 
and consists in replacing the Fredholm integral by a linear system of n 
equations with n unknowns. 

This system is obtained by replacing the continuous functions defined 
on the body surface E by their values at n points on the surface and 
by calculating the integrals by summation over the n considered points. 

3.1 Q~~~~~!~~~!~9E_:_~EE~~~~~~!~_~9~~_~~!~E~!~~E 

Tn order to solve the Fredholm equation (2.7) and(2.8) we divide the 
body o:;urface area into n surface elements ("facets ll

) (fig. 1) def-i.ned 
by the following : 
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(i) Facet area 6s~ 

(ii ) The vector normal to the facet n I., 
The facet centre MI., 

The ~-th facet is dete~mined by its circumference r~ ; the 
components of vector n L and the facet area are then given by the 
following integral : 

== (3.1) 

The centre of the i-th facet (M ) has been assumed to coincide with 
the centre of gravity of the project!on of the facet on a plane perpendicular 
to the mean normal given by formula (3.1), i.e. : 

I CI'l12 dt 

The integrals we have to use are of the following type 

ffr. f (r-i) ds (M) or ffr. f (Ill,}') ds (M) 

We shall calculate these integrals by summing over all n body 
facets, i.e. : 

fIr. 
n 

f (N) ds (M) == r. f (MI.) ds ~ 
~= 1 ( , 

n fIr. f (H, p) ds (M) == r. f (r4L,Nj) ds~ 
1.='1 

3.2 De!~E~~E~!~~E_~f_!~~_f~~!_~E~~~~_!~~_E~~~ 
The characteristic flow quantities (source density, potential, 

velocity and pressure) are calculated at the centre of the n facets 
defining the body. 
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The Fredholm integral is calculated by summation and the source 
density at the centre of the facets is determined by solving the 
following linear system 

n 
OSI. + E KLj aj osj 

j=1 
== 

2 1't 

where Kl.j is the general term of a square matrix of rank n • This 
term solely depends on the body characteristics and is calculated in 
terms of the quantities defining each facet, i.e. : 

Kl.j 

The linear equation system was solved by inverting the matrix 
A :::: I + K • 

The quantity 

V
H 

] Ii Os I. 
I. 1. 

(3.5) 

can be accurately calculated for any instant of time and any point on the 
body. 

Knowing the inverted matrix A- 1 it is easy to find a OSI., and 
the values for a provide a practical means of determiningl.the flow 
around the body, tor the potential and velocities can be calculated from 
the source densi tie.s by. simple summation over the body surface r: , from 
which the pressure at each point on the body are then found. 

3.3 ~~2~~~~E!~!~~E_~!_~~~~ 
In order to determine the effect of waves on the body, we must 

introduce a wave scheme ensuring adequate representation of the motion 
of the water at any instant of time and at any point. A wave scheme of 
potential ~H was aciopted for the purpose, in which complex waves are 
represented by a certain number of elementary waves whose heights and 
pulsations were selected to ensure adequate representation of the complex 
wave spectrum. By this method, given recorded waves can be reproduoed. 
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The wave potential is given by the following formula 

= 

I 1.-1 

sl.n (Wl.t - K LX + ~ ) 
I. 

(3.7) 

E E A A
" - (KI. - Kj)z 

I. J WI. e sl.n [(WI. - wj)t - (K~-Kj)x + ~ - ~.] 
I. J 1.=1 j=1 

where I is the wave component number. 

The (3.7) formula alows the explicit computation of the datas required 
for the <]?PH potential computation. 

The wave spectrum is parted in ten equal energy band. This sharing 
gives a satisfactory repruduction of the statistical properties of waves. 

4. REi'lARKS ON THE COiViPUTATIO~ PR()GRAJ.VlfiiE 

4.1 General considerations 

• With the computation programme used to determine the effects of waves 
on ~n immersed caisson all the intermediate quantities required to calculat­
ed the forces can also be determined, i.e. source density, potential, water 
velocity and pressure. Our purpose in using this programme was to follow 
the various computation phases and to establish the degree of accuracy of 
the method by comparisons considering cases known by analytical calculation. 

On the other hand, we intended to show how a method of this type can 
be used for very varied appiicatlons both for the investigation of transient 
wave effects as considered here and for the determination of water velocitiee 
at a given point of a fixed body immersed in a known flow. 

We would like to draw attention to the following remarks regarding 
the application of the computation method in this paper to the case of an 
immersed body under wave condition 

Forces F due to the d<]?/dt pressure term are linear functions of 
the Ql,. values T 
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The intermediate summations can be done once and for all and 
calculation of these forces boils down to the following summation 

F 
cp = (4.1 ) 

v=2 
...l. Forces FV due to 2 pressure terms are not linear functions of 

the Q values, however, which makes it necessary to also calculate the 
velocities in between. 

The calculation of FV ' therefore, will take about n times 
longer than for F • 

cp 

Where FV is negligible compared to F 
second-order wave effects are not to be cP 
computation time cane be reduced considerably by 
considering a first-order wave formulation. 

and especially where 
considered, the 
neglecting FV and 

The immersed body wave force computation programme was written in 
Fortran IV and is being used with IBM 360-65 equipment. All the 
computations are done with central storage and we have limited the 
number of facets (surface elements) defining the body to 190. A body 
with a place of symmetry can be divided up into 270 facets. 

The mathematical model comprises three main programmes in the 
following sequence : 

(i) The body characteristics computation programme, which calculates 
t~1 matrix of the Fredholm equation K and gives the inverted form 
A of the corresponding matrix A :::: I + K • 

(ii) The programme for computing tables Band C from A- 1 , which 
enables the velocities and forces to be calculated by formulas 
(4.1) and (4.2). 
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(iii) The programme to compute the wave forces and immersed body motion 
for various wave characteristics from tables Band C. 

The computation times given below for these three phases are only 
a rough indication. For a body divided into 60 facets, these times are 
as follows : 

• Computation and inversion of matrix A •••••• minute • 

Computation of tables Band C 3 minutes. 

Time to compute forces F'cp and to determine body motion, for 
a first-order approximation of complex waves represented by 
eight rays.................................. 0.02 second per time ste] 

Time to compute FV and F for a second-order approximation 
of complex waves represente~ by eight rays.. 0.5 second per time stepi 
(i.e. very much longer than above). 

5. COMPARISON BETltlEEN CONpufl'ED AN]) ANALYTICAL DATA 

In order to establish the accuracy of the method descriiJed in the 
previous section J we applied it to simple bodies for which some of the 
calculations can be done al~lytically. 

In the comparison with analytical solutions, the flow itself (i.e. 
source censity, potential, velocities, added mass coefficients) and wave 
effects on the body (heaving, rolling, pitching and yawing force coefficientE 
were considered. 

As a general rule we chose a nQmber of facets glvlng and accuracy of 
one to two per cent for the calculated values, vA1ich we considered to be 
adequate for the wave calculati0ns. 

As the w~ve characteristics are approximate, it did not SeEm necessary 
to require more accurate computations. This enables us to acnieve very short 
computation times, and so to represent the history of the studied phenomena 
during a time sufficiently long to reproduce their random aspects. 

5.1 Study of a sE~~~~ 

As flow around a sphere is a very well-known subject, this seemed a 
reasonable choice for the initial comparisons. 
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The sphere was divided up as shown in Fig. 2 , and though this is 
not the best method of subdivision, it is the one generally used for 
long bodies. In the considered example, the sphere was divided into 
162 facets bounded by meridians and parallels of latitude every 20 degrees. 

x 

z 

Figure 2 ~ The approximate representation of the sphere. 
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5.1.1 Sphere in uniform steady flow 

0.12 

Two uniform flows of unit velocity are considered, one along Cy 
and the other along Cz • We know the theoretical flow around the 
sphere in this case, and comparing this with the analytical solution 
in Fig. 3 we observe the following 

'f Potential function 'f Polentia! fundion 
<r Surface source denliily 

V Velocity 
<:r Surface source density 
V Velocity 

+ Computed lOolulion 

- Analytic lOolution 

0.12 

+ Computed lOolution 

-Analytic solution 
V 

1.S 

0.1 10 0.1 10 1.0 

O.OS S QOS S O.S 

o. 0 

Figure 3 - Co~parison of analytic anj calculated values on a s~here for an onset uniform flow. 

Source density and potential computation accuracy is satisfactory, 
there being less than 1 per cent error between computed and theoretical 
data throughout. The computed velocities are less satisfactory, however, 
as they differ from the theoretical values by as much as 5 per cent at 
certain points. 

The difficulty of obtaining accurate velocity data is due to the 
[MI. l'lj]3 term in the denominator of the velocity computation formula. 
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We have not attempted to improve the velocity computation method yet as 
the corresponding force term is nearly always small enough to be neglected 
with respect to the forces at wave period. 

Velocity computation accuracy can be improved either by increasing 
the number of facets or by improving the velocity integration formula by 
extrapolating the source densities. We intend to tryout this second 
method for future problems as it does not result in an excessive increase 
in computation time. 

5.1.2 Sphere in unsteady flow A dded mass coefficients 

The inertia tensor for the water set in motion by the body is 
symmetrical and defined by twenty-one coefficients (ref. 2). 

For a body with three planes of symmetry this tensor becomes the 
main diagonal, and in the case of a sphere it is as follows : 

P = Q == R 

= .BY 
2 

:::::; 0 

The theoretical and computed date compare well for a sphere with a 
radius of 5 metres, with differences alvays less than 2 per cent, as 
follows : 

Quantity Theoretical value Computed value 

A :::::; KxpV 261.8 :::::; 0,5 pV 257.4 = 0,4916 pV 

B = KypV 261.8 == 0,5 pV 256.8 == 0,4904 pV 

C == KzpV 261.8 :::::; 0,5 pV 256.6 = 0,4901 pV 
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5.2.1 Some ellipsoid characteristics can be obtained by analytical methods. 

Lamb (ref. 3) gives the values of Green's integrals which allow 
the computation of A, B, C, P, Q, R • 

On the other hand, in the case of a tri-axial ellipsoid, Newman 
(Ref. 4) gives calculation formulae for the pTessure term ~/dt forces, 
produced by monochromatic waves. 

The comparison between our mathematical model and the analytical 
results is done for an ellipsoid determined by 120 facets. 

5.2.2 Added mass coefficients 

All the terms but those of the main diagonal of the inertia tensor 
are equal to zero. Tile have put the theoretical data computed from Lamb's 
formulae and the mathematical model data in a table (Fig. 4). 

ANALYTIC DATA COMPUTED DATA 

A 90 T = 0.0192 V"p 88 T = 0.0188 V • r 
B 4880T = 1.04"3 Vxp 4970T = 1.052 V"P 

C 4150 T = 0,8881 V" P 4270T =0.914V .p 
P 275 Txm 1 264 T x m1 

Q 1 935 000 T x m 1 1991 000 T x m 1 

R 2281000 T x m2. 2 344000 T x m' 

04=5Q,OO m r =1 
Elllp~old 0t= 4.50m 

V =4710 m3 
0,= 5,00 m 

Figure 4 - Added mass coefficients for tri-axial ellipsoid. 
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5.2.3 1tlaves forces on an ellipsoid - Exciting force coefficients 

Newman gives theoretical formulae for the heaving, rolling, pitching, 
yawing coefficients (Cz, Cxx, Cyy, Czz) in the case of a triaxial 
ellipsoid. These formulae are more general than those of Havelock (Ref. 5) 
in which only a spheroid is taken in account. 

In the latter case, Newman assumes that the body is in a fixed 
position. We have taken the same assumptions, i.e. for the ellipsoid 
computation : 

The major axis parallel to the wave direction with various wave 
period (6,7,8,9, 10, 12 sec.) ; 

The major axis at 30, 60 and 90 degrees to the wave direction and 
with two wave periods (8 and 10 sec.) ; 

The mathematical model gives the exciting forces on the ellipsoid 
in waves, from which we find the coefficients Cz, Cxx, Cyy and Czz 
using the following formulae 

Fz pg VAX e - Kz Cz cos wt = 

jVJx pg 1 VAK e - Kz Cxx sin wt ( 
- Kz (5.3 ) My = -pg 1 VAK e Cyy sin wt ) 

Mz = -pg 1 VAK e - Kz Czz wt cos 

It is known that for) .. ;t tending to infinity the limit of Cz is 

1 + K = (p If + C) / p V 
z 

and the pitching coefficient Cyy decreases and tends to zero. F~;·. 5 
shows this very clearly. 
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I~ 
! Jill 

0.5 1. 1.5 2. 
I I I 

2.5 3. AIL .. 
6 7 8 10 12 14 T u'cond" 

C z Heaving force coefficient 

Cyy Pitchin 9 mome nt co .. fficient + C omp uted sol ution 

L Length of ellipsoid 

).. Wavelength 
-- Analytic sol ution 

T Wave period 

Figure 5 - Heaving force and pitching moment coeffic ierotsfor varying 'AIL 

For the same reasons, the 
ellipsoid broadside on to the 
that the value of coefficient 

heaving force acting on an elongated 
waves is independent of wave period, 

Cz is 

= 
C +--

pV 

This property shows up well in the computations. 
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Cxx 
0.0015 

0.00125 

0.001 

0.00075 

0.0005 

0.00025 

Cz 
2. 

1.5 

1. 

0.5 o 

IJ 
I ! 

1: 8$0 

--Analytic solution 

+ Computed Soolution 

30 60 

Cyy 
MO 

0.25 

020 

0.15 

0.10 

0.05 

90 't' 0 30 

Czz 
MO 

Figure 6 - Heaving force and roll ing, 'pitching and yawing moment coefficients for 
varying directi ons. 
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The results are shown in figures 5 and 6. They show quite close 
agreement, the computation error being less than 3 per cent. 

From the satisfactory agreement between of the various results 
and the theoretical data it can be concluded that our computation 
method is adequ~te for the ¢~/ot pressure term. 

6. THE EFFECT OF WAVES ON AN Ll[i'1EHSED CAISSON 

6.1 The effect of waves on an i'nmersed caisson can be considered from 
two aspects, as follows 

(i) An aspect associated with forces of the first order, which are 
periodic, rave the same period as the waves and are proportional 
to wave height. These forces erA elf consideraule magnitude and 
give rise to movements which cannot be eliminated by any fo~~ of 
anchoring or other stabilisation method. The corresponding movements 
are usually periojic, with the body oscillating about a mean position. 
The sole purpose of anchorings is to correct deviations from this mean 
position, but considerable deviations may nevertheless occur, even 
with a taut hawser, to the point of causing it to break. It is 
important to know whether such situations are likely to arise and to 
have a very sound statistical knowledge of these movements. 

(ii) An aspect associated with second-older forces, by which we mean any 
forces that are non-periodic or with a period in excess of 30 seconds. 
The force of attraction on the surface, effects due to second-order 
terms in wave representation and various force and motion coupling 
cases are considered to come under this heading. 

We have now seen the various aspects of wave action on a submerged 
body of any shape : the method we have described is equally sui table for 
the determination of forces of the first and second orders and provides 
a very thorough means elf investigating wave action on an immersed body. 

For the caisson discussed in this paper we have c()nsidered first-order 
forces and more sl~cifically the motion of a free caisson under complex 
wave action. 

The coml)Utation method can also be used to calculate forces on a 
caisson in forced motion, which is the yase if the caisson submerged, 
is part of a comple~ structure such as a drilling platform. 
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6.2 Caisson characteristics 

The outlines of the considered caisson are shown in Fig. 7. 

y 

Figure 1 - Caisson outl ine 

-~ 
X 

y . 
. ~ ----l--­

·c 
I . 
t z 

Its characteristic dimensions are as follows 

Ler;gth 

Breadth 

Height 

Volume 

40 metres 

20 metres 

10 metres 

6110 cubic metres. 

63 Added mass coefficients 

As the considered caisson has three planes of symmetry only the 
coefficients of the main diagonal are not zero. From the results obtained 
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for the sphere and ellipsoid it can be estimated that the values are 
accurate to within 3 per cent (Fig. 8)., 

CAISSON 

V=6110mJ 

r =1 

A 

B 

C 

P 

Q 

R 

COMPUTED DATA 

931 T= O.152Vx p 

2 ~ 00 T= O.39~Vx f 

7 ~80T= 1.225VlCp 

1t7 100Txm2 

~ 1 ~ 90 o TlCrn 2 

1 02 600Txm 2 

Figure 8 - Added mass coefficients for caisson. 

Fig. 9 shows the force of attraction toward the surface and 
Fig. 10 and 11 the amplitudes of the first-order forces on the 
caisson due to 2 m waves (crest to through height). It will be 
noted that the attraction force is invariably less than 50 sthenes, 
which is negligible compared to the first-order forces. 

The attraction force is due to the difference between flow velocities 
over the top and bottom caisson surfaces and is proportional to the 
difference between the squares of these velocities. It remains constant 
during a wave period; its magnitude is proportional to wave height and 
v~~ ;_es with depth of submersion according to a e-2Kz law. In calculating 
thl forces the caisson is assumed to be held stationary at a depth of 
15 metres below the surface. 
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Figure 11 - Heaving force and rol1In~. pitching and yawing ~0ments for various directions. 
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Figure 13 - Heaving force and rolling, pitching and yawing moment coefficients for various directions. 

Coefficients CZ, CXX , Cyy and Czz were calculated from the 
forces by formulae (5.3) and taking the biggest length of the caisson 
for L. 

Figs. 12 and 13 show how these coefficients vary with the waves and 
caisson position. 
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Figure 14 - EnarYl wave spectrum representing an Atlantic type swell. 

The computation method described in this paper was u 3d to determine 
the motion of a free caisson maintained at a depth of 15 metres by a 
schematic anchoring at its centre of thrust. The tension displacement 
relation ship for this anchoring is linear. 

The considered complex waves are given by their energy spectrum 
(Fig 14) which is divided into ten constant-energy bands. This· spectrum 
represents an Atlantic-type swell with an average period of 14 seconds. 

Caisson heaving and pitching motion, corresponding wave forces and 
the difference in the free surface level vertically above the centre of 
thrust are all plotted in Fig. 15. It will be noted that as the caisson 
dimensions are small compared to the wave length, its motion is in phase 
with the wave motion. A low-frequency motion is supe:imposed upon the 
motion in phase with the coaves at a period close to the natural period 
of the system comprising the caisson and anchoring. 

For this test, the caisson wa placed with its major axis in the wave 
direction and only one wave direction was considered. Use of the computation 
p10gramme is not limited to this one case, however, and we have successfully 
applied it to the motion of a free caisson facing in any direction subjected 
to multi-directional waves. 
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CONCLUSION 

This study resulted in the design of a mathematical model for the 
computation of wave forces on body of any shape with and without sharp ** edges submerged at an adequate depth. 

It is proposed to develop this model for calculations at any depth 
and allowing for free surface effects. 

The model can already cope with viscosity forces w~ich are computed 
from local friction coefficients and vary as the square of velocity. 

Complete mathematical models of complex structures (e.g. semi-submer­
sible drilling platforms) can thus be constructed for use in calculating 
real life wave forces and motion.i3implifyirg flow assumptions have to be 
made, however, especially as regards the mutual action of the structural 
members, and this leads to certain approximations which can then be 
narrowed down by carrying out a few tests on a model under monochromatic 
wave conditions. 
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LIST OF SYrvIBOLS 

Wave height 

Added mass coefficients 

Heaving finDe coefficient 

Rolling moment coefficient 

Pitching moment coefficient 

Yawing moment coefficient 

Heaving force 

Force due to the pressure 

Force due to the pressure 

. Acceleration of gravity 

Wave number 
Length of body 

term 

term 

M?/Cft 

Vl/2 

Unit vector normal to an element 

Unit vector normal to the i-th element 

Total pressure 

Rolling, pitching and yawing moments 

Time 

Wave period 

Virtual inertia coefficients 
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VF 
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~ 

~H 

~PH 

~PC 

WI. 

Q 

<Jl1 ' <Jl2 

X1 ' X2 

<VI. 

<V 

'<Jl.3 
' X3 

Volume of immersed body 

Fluid velocity vector 

Buoyancy centre velocity vector 

Wave induced fluid velocity 

Velocity components 

Angular velocity components 

Depth of submergence 

Components of the unit normal vector 

Area of the i-th surface element 

Circumference of a surface element 

Angle of pitch 

Wavelength 

Fluid density 

Area of body surface 

Surface source density 

Overall potential 

Potential due to incident wave 

Potential due to the presence of a fixed 
body in waves 

Potential due to the body motion 

Wave angular frequency 

Angular velocity 

Potentials associated to unit velocity components 

Wave phase angle 

Heading of immersed body 
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USED UNITS 

Time Second 

Lenght Netre 

Mass Metric ton 

* Force Sthene == 103 Newton 
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DISCUSSION ON PAPER 12 

J. B. MILLER 

University of Manchester, England 

The authors neglect the influence of the body on the free surface 

motion and hence they have to assume that the depth of the body is more 

than twice its vertical height. This restriction can be removed if the 

source potential function is modified to satisfy the free surface bound­

ary conditions. 

We take horizontal co-ordinates x and y in the mean free surface and 

as vertical co-ordinate, z, measured positive downwards. A fluctuating 

source with strength varying as <:S cos I.J.J tat x = a, y b, z '" f pro-

duces diverging waves at infinity. The potential which satisfies the 

boundary conditions for infinitesimal height waves is, 

= <:s [ 

c:>:> 

dk J ¢(x, t) 
1 / ill -k( z+f) J (kR) y, z, .;. - PV 

u-k 
e 

r 0 
0 

+ C) a n: u -u (z+f) 
J (uR) sin tA..) t, e 

0 

where u 
2 

c:r /g, 

J is the Bessel function the first kind and order zero, 
o 

R J (x_a)2 + 

r J (x-a/ + 

2 ' 
(y-b) , 

2 
(y-b) + (Z_f)2; 

cos c..J t + 

and PV indicates that the Cauchy principal value of the integral is to be 

taken. 

A similar expression can be obtained for the case of finite depth, 

see Thorne (1953). 

This expression can be used in place of l/IMP\ in equation (2.5) and 

(2.6) of the paper. The solution for the source densities CipH and dOpC 
would then be obtained from suitably modified versions of equations (2.7) 

and (2.8). 
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The Cauchy principal value integral can be evaluated by contour integra­

tion and this will increase the time taken to set up matrix A, but the 

time penalty incurred should not be too great. 

The conditions under \<'Jhich the authors' solution is valid may be 

determined from this expression. If the depth of the source, f , is 

greater than half a wave length then the extra terms will be negligible. 

But at this depth we do not expect any appreciable wave motion, so it 

would appear that the extra terms should always be considered. However, 

the strength of the sources on a body must su~ to zero, and if the body is 

sufficiently deep the potentials due tc the sources will cancel at the 

surface, and it will not be necessary to consider the extra wave terms. 

This, of course, is the condition the authors impose. 

Ref.: Thorne, R.C., Multipole expansions in the theory of surface waves, 

Proc. Camb. Phil. Soc., Vol. 49, 1953, pp. 707 - 716. 
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