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SUMMARY

This paper describes a method of calculating exciting forces on free or
fixed bodies in waves and its application to some examples. The method lays
upon an accurate computation of the transitory pressures applied by a potential
flow on & submerged body.

The calculation may be used for the case of a free body in complex waves,

First, we give the calculation hypothesis on flow conditions and the formulae
which proceed from assumptions.

Second, we give the computation results on well known examples.

« On set parallel flow around a sphere,

o« Fixed triaxial ellipsoid in waves.

) Third, we apply this method to a free caisson, steadied by Schematic moor=
ing device in stationnal waves computed with second orders term.




INTRODUCTION

Sogreah has investigated a wide variety of hydraulic problems during
its lifetime, among which especially the effects of waves on marine
structures and both immersed and non-immersed floating bodies.

With the advent of computers, digital computation proved itself a
valuable adjunct to scale model research, and mathematical models are
now being used instead of physical ones for certain applications.

Sogreah has developed a method for the calculation of flow around an
immersed body and has used it to determine wave forces acting on a floating
platform caisson.

The immersed body flow computation method described here is a
conventional one assuming potential flow which can be represented by a
single-layer potential. The original feature of the Sogreah investigation,
however, is that it more specifically considered transient-state pressures
and forces with a view to determining the behaviour of an immersed body
under complex wave conditions. This method gives the response of a body
immersed at a given depth to waves that are chromatic as regards height
and phase, and it can be confirmed in this case by comparison with scale
model tests, It is particularly useful as a means of studying the behaviour
of an immersed body in complex wave conditions, and it scores over the
physical model in that it enables any complex waves given by their spectrum
to be investigated for either finite or infinite depth assumptions,

This note gives the confirmation of the method for simple bodies
(sphere, ellipsoid) and describes its application to the motion of a
single caisson suitably anchored for stability and exposed to Atlantic
swell conditions.
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2. DESCRIPTION OF THE METHOD - THEORETICAL STUDY

2.1 Remark

As the calculation method used in this study is quite conventional,
the mathematical formulation of the problem will be discussed very briefly
and only the basic formulae required to understand the method will be
mentioned, We have applied this method to the special case of the
determination of wave forces acting on an immersed body, but it is also
suitable for other two = or three - dimensional flow problems,

2.2 Physical assumptions

We have supposed that the viscosity forces are low and do not perturd
the flow around the body, and that the speeds and pressures on the body
surface are identical both in ideal fluid and in viscous fluid.

This assumptions involves that the body motions are slow and of the
same order of magnitude as the water motions. We will not take into account
the wake effects which can occur in certain places of the body.

On the other hand, it is possible to take in account the drag and 1ift
effects either as a wholesor with the aid of & shear term in each point of
the body, this term being a function of the relative water body speed.

Then again, we have not taken in account the influence - on the flow
characteristics ~ of the free surface distortion owing to the presence of

sksk the body.,

This limitation leads us to the following point. This method is merely
valid when the immersed body stands at a depht more than about twice the
body height.

2,5 Type of flow

The water is considered as an incompressible fluid in irrotational
motion, so that the flow is derived from a potential @ which is the




solution of the Laplace equatiocn :
A @ = 0 (2.1)
The fluid velocity at any point is :

VF = - grad & (2.2)

Without a body, the flow is simply the motion of the water, and the
above assumptions require that we consider a wave scheme of potential @H

Determination of the flow is then a matter of solving an exterior
Neumann problem, i.e. the determination of a harmonic function & which
is regular at infinity, knowing the normal derivative @@/dn on the body
surface I .

2.4  Determination of potential &

The given condition d®/dn at point © on surface £ is met when
the normal velocity components for point M associated with the body and
the fluid velocity at that point are equal, i.e. :

a® — .
rriais (Vc + QACM) n (i) (2.3)

As the potential satisfies the Laplace equation we can apply the
principle of superimposed flows and break down the overall potential &
into the three following elementary potentials :

@H giving the flow of water without the body,
QPH giving the flow of water around the body, which is assumed
to be stationary under the influence of @H ’
QPC giving the flow of water due to the motion of the body in
calm water.
hence :
® = &, + d__. + & (2.4)




Potentials & and @ are expressed conventionally by a single-
layer potential of respectlve den51t1es Opy and Opp ieces

sk i opy ()
oy (P) = sz i ds (m) (2.5)
rr op (1)
¥% 3k o0 (P) =/ Tl ds (M) (2.6)
The source densities ¢ and Ope  BTe solutions of the Fredholm
equation with the given &ondition a®/dn

21 Gp (p) +‘[]; L () ﬁf;i?gl = [V + Q Ci] n (2,7)
2m gy (P) *ffz Opy (1) M ds (M) = - TfH () 7 (P) (2.8)

|p|”

Potential & o only depends on the velocity of the body and can be
expressed as a function of unit potentials Fg 0 P 0 P9 Xy 0 Xy s X3 (ref 1)

@PC = ug, + Ve, + W¢3 + PX1 +aqy, + rxs (2.9)

Potentials P o0 P ¢3 s Xy 0 Ap s 13 are calculated once and for

all for the body surface area ¥ . DPotential & is calculated for any
moment of time in terms of the position of the PH body and wave
conditions,

2.5 Determination of wave forces acting on the body

Knowing the overall flow potential the water pressure point -
especially on the body surface - can be calculated by the following

formila :
o) VF2
X% % P = Po + p(gz+6¥—-é-—) (2.10)




Integrating pressure over the surface-area I gives the wave force
and moment resultants on the body at any instant of time, i.e. :

tf
|

L= ‘ffz (M) m (M) ds (M)

(2.11)

R

Wy = _ffz P(M) [EMA}'{ (m)] as (m)

P(gxz)

Figure 1 ~ The body surface. Notation used in describing the potential due to a surface
source density distribution,

The forces are calculated along the body axes. Integration of the
pressure term pgz gives the buoyancy force and will not be carried out.

The pressure term OQ/Gt gives the forces at wave period and takes
the motion of the immersed body into account. These forces are much
greater than those due to the pressure term VF2/2 representing the
surface attraction effect. In certain cases where only body motion at
the wave period is considered the velocity term can be considered
negligible compared to the pressure term 08/3t .
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Note : The pressure term 0®/0t is the sum of derivatives :

E?E , Effﬁ and E?EQ s
ot ot ot

the last of which is as follows :

0
______ai’c = uley +vigy twlegy Ty talyy vrx (2.12)

By integrating this term over surface area I the twenty-one added
mass coefficients (ref 2) can be calculated, which are of the following

form :
A = ffqa ¢ ds (2.13)
> 1

_If the added mass coefficients of the body are known, the calculation
method used can be checked,

CALCULATION METHCD

The basic problem involved in determining the flow around an immersed
body is to solve the Fredholm (2.7) and (2.8) equation, which generally
defies analytical solution. Its digital solution method is conventional
and consists in replacing the Fredholm integral by a linear system of n
equations with n unknowns,

This system is obtained by replacing the continuocus functions defined

on the body surface I by their values at n points on the surface and
by calculating the integrals by summation over the n considered points,

Discretisation - Approximate body definition

In order to solve the Fredholm equation (2.7) and(2.8) we divide the
body surface area into n surface elements ("facets") (fig. 1) defined
by the following :




(i) Facet area &sy
(ii) The vector normal to the facet 'HL .

The facet centre ML

The u~th facet is determined by its circumference rn s the
components of vector n, and the facet area are then given by the
following integral :

L

o

ES m"f M) o= CH. ars .
ni 684, JJast n (u) ds (M) jFL CMA aL (3 1)

The centre of the i-th facet (M ) has been assumed to coincide with
the centre of gravity of the projection of the facet on & plane perpendicular
to the mean normal given by formula (3.1), i.€. ¢

TH , n bsy = ff CH, nds = -'1'{‘ laﬂz-‘i—i (3.2)
W ésy A 2 JFL

The integrals we have %o use are of the following type :

j]; £ (M) as (M) or jy; £ (Mp) ds (M) (3.3)

We shall calculate these integrals by summing over all n body
facets, i.e. :

[]; £ (1) ds (M) = g £ (M,) dsu
=1

.
(3.4)

R N

- n
sz £ (i,P) ds (M) = £ f (M,Mj) dsy
L:1

362 Determination of the flow around the body

The characteristic flow quantities (source density, potential,
velocity and pressure) are calculated at the centre of the n facets
defining the body.
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The Fredholm integral is calculated by summation and the source
density at the centre of the facets is determined by solving the
following linear system :

n e

A R I - e =
°, bsi + 35’ Kvj o 68 = - [Vc + QA CML VHL] n bsy (3.5)

where KiJ is the general term of a square matrix of rank n . This
term solely depends on the body characteristics and is calculated in
terms of the quantities defining each facet, i.e. :

. 1 My M e
Kvj = > mg ny 8sy (3.6)

The linear equation system was solved by inverting the matrix
A:I+K;

The quantity :

1 re = o = 4
m— —— |7 -
Qu - [VC +09, CH VHL] n, bsu

AW

can be accurately calculated for any instant of time and any point on the
body.

Knowing the inverted matrix it s easy to find ¢ &sy , and
the values for ¢ provide a practical means of determiningbthe flow
arcund the body, For the potential and velocities can be calculated from
the source densities by.simple summation over the body surface 3% , from
which the pressure at each point on the boedy are then found.

Representation of waves

In order to determine the effect of waves on the body, we must
introduce a wave scheme ensuring adequate representation of the motion
of the water at any instant of time and at any point. A wave scheme of
potential &, was adopted for the purpose, in which complex waves are
represented ©~ by a certain number of elementary waves whose heights and
pulsations were selected to ensure adegquate representation of the complex
wave spectrum. By this method, given recorded waves can be reproduced.




4.

The wave potential is given by the following formula :

I
o, = Afzgk e~ F*% oin (ot = Kux + ¢L)
v=1
(3.7)
I - : ,
- I £ AL Ajwioe (ke - X3)z sen [(w0 = w3)t - (Ku-Kj)x + ¢ - ¢j]
v=t j=t

where 1 1is the wave component number,

The (3.7) formula alows the explicit computation of the datas required
for the @PH potential computation.

The wave spectrum is parted in ten equal energy band. This sharing
gives a satisfactory repruduction of the statistical properties of waves,

REJARKS ON THE COMPUTATION PROGRAMME

General considerations

o« With the computation programme used to determine the effects of waves
on an immersed caisson all the intermediate quantities required to calculat-
ed the forces can also be determined, i.e. source density, potential, water
velocity and pressure. Our purpose in using this programme was to follow
the various computation phases and to establish the degree of accuracy of
the method by comparisons considering cases known by analytical calculation.

On the other hand, we intended to show how a method of this type can
be used for very varied applications both for the investigation of transient
wave effects as considered here and for the determination of water velocities
at a given point of a fixed body immersed in a known flow.

We would like to draw attention to the following remarks regarding
the application of the computation method in this paper to the case of an
immersed body under wave condition :

Forces F_ due to the d@/dt pressure term are linear functions of
the QL values?
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The intermediate summations can be done once and for all and
calculation of these forces boils down to the following summation :

— n -
Fo = Iy Cv (4.1)
V§2
Forces F,, due to -~ Dpressure terms are not linear functions of

the Q@ values, however, which makes it necessary to also calculate the
veloctties in between.

L

Brj Qi (4.2)

]

Fj

The calculation of Fv
longer than for F¢ N

Where F is negligible compared to F and especially where
second~order wave effects are not to be ¢ considered, the
computation time cane be reduced considerably by neglecting F and
considering a first-order wave formulation.

, therefore, will take about n times

4,2 Features of the programme

The immersed body wave force computation programme was written in
Fortran IV and is being used with IBM 360-65 equipment. All the
computations are done with central storage and we have limited the
number of facets (surface elements) defining the body to 190. A body
with a place of symmetry can be divided up into 270 facets,

The mathematical model comprises three main programmes in the
following sequence :

(i) The body characteristics computation programme, which calculates
tE? matrix of the Fredholm equation X and gives the inverted form
of the corresponding matrix A = I +K .,

(ii) The programme for computing tables B and € from A-1 , which

enables the velocities and forces to be calculated by formulas
(4.1) and (4.2).
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5.1

(iii) The programme to compute the wave forces and immersed body motion
for various wave characteristics from tables B and C .

The computation times given below for these three phases are only
a rough indication. For a bedy divided into 60 facets, these times are
as follows :

« Computation and inversion of matrix 4 ...... 1 minute,
» Computation of tables B and C .seceess..e > minutes.

. Time to compute forces ¥ and to determine body motion, for
a first-order approximation of complex waves represented by
elght TBYS sevesscscsssesssssnoscoscsssscnses .02 second per time ste;

« Time to compute F& and F. for a second-order approximation
of complex waves representeg by eight rays .. 0.5 second per time step,
(i.e. very much longer than above).

COMPARISON BETWEEN COMPUTED AND ANALYTICAL DATA

In order to establish the accuracy of the method described in the
previous section, we applied it to simple bodies for which some of the
calculations can be done analytically.

In the comparison with analytical solutions, the flow itself (i.e.
source censity, potential, velocities, added mass coefficients) and wave
effects on the body (heaving, rolling, pitching and yawing force coefficients
were considered,

As a general rule we chose a number of facets giving and accuracy of
one to two per cent for the calculated values, which we considered to be
adequate for the wave calculations,

As the wave characteristics are approximate, it did not Seem necessary
to require more accurate computations. This enables us to acnieve very short
computation times, and so to represent the history of the studied phenomena
during a time sufficiently long to reproduce their random aspects.

Study of a sphere

As flow around a sphere is a very well-known subject, this seemed a
reasonable choice for the initial comparisons,.
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The sphere was divided up as shown in Fig. 2 , and though this is
not the best method of subdivision, it is the one generally used for
long bodies. In the considered example, the sphere was divided into
162 facets bounded by meridians and parallels of latitude every 20 degrees.,

RS TN (A S

P4

Figure 2 ~ The approximate representation of the sphere,
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5¢1¢1 Sphere in uniform steady flow

N

in Fig. 3 we observe the following

b
2

S
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T4

0.42+
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¢ 4

Two uniform flows of unit velocity are considered, one along Cy
and the other along Cz . We know the theoretical flow around the
sphere in this case, and comparing this with the analytical solution
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Figure 3 ~ Comparison of analytic and calculated values on a sphere for an onset uniform flow,

Source density and potential computation accuracy is satisfactory,
there being less than 1 per cent error between computed and theoretical
data throughout. The computed velocities are less satisfactory, however,
as they differ from the theoretical values by as much as 5 per cent at
certain points.

The difficulty of obtaining accurate velocity data is due to the
[My 13]? term in the denominator of the velocity computation formula,
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5.1.2

We have not attempted to improve the velocity computation method yet as
the corresponding force term is nearly always small enough to be neglected
with respect to the forces at wave period.

Velocity computation accuracy can be improved either by increasing
the number of facets or by improving the velocity integration formula by
extrapolating the source densities. We intend to try out this second
method for future problems as it does not result in an excessive increase
in computation time.

Sphere in unsteady flow Added mass coefficients

The inertia tensor for the water set in motion by the body is
symmetrical and defined by twenty-one coefficients (ref, 2).

For a body with three planes of symmetry this tensor becomes the
main disgonal, and in the case of a sphere it is as follows :

R
P = Q =R = 0 S

The theoretical and computed date compare well for & sphere with a
radius of 5 metres, with differences alvays less than 2 per cent, as
follows :

Quantity Theoretical value Computed value
A = KypV 261.8 = 0,5 pV 257.4 = 0,4916 pV
B = KypV 261.8 = 0,5 pV 256.8 = 0,4904 pV
C = KzpV 261.8 = 0,5 pV 256,6 = 0,4901 pV
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5.2 Tri-axial ellipsoid study

5.2.1 Some ellipsoid characteristics can be obtained by analytical methods,

Lamb (ref. 3) gives the values of Green's integrals which allow
the computation of A, B, C, P, Q, R .

On the other hand, in the case of a tri-axial ellipsoid, Newman
(Ref. 4) gives calculation formulae for the pressure term /ot forces,
produced by monochromatic waves.,

The comparison between our mathematical model and the analytical
results is done for an ellipsoid determined by 120 facets,

5.2.2 Added mass coefficients

All the terms but those of the main diagonal of the inertia tensor
are equal to zero. We have put the theoretical data computed from Liamb's
formulae and the mathematical model data in a table (Fig. 4).

ANALYTIC DATA

COMPUTED DATA

90 T = 00192 VxP

88T =00188 V = ¢

4880 T =1.0443 Vxp

49707 =1.052 Vxp

4150 T = 0.8881 Vap

42707 0914 V xf)

275 Txm?

264 T xm®

1935000 T x m?

1994000 T xm?

IOl vlojm|»

2281000 Txm?

2344000 T xm?

a,=5000 m f):‘f
Ellipsoid = 450m 3
ag= 500m V=4710m

Figure & - Added mass coefficients for tri-axial ellipsoid,
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5.2.—5

Waves forces on an ellipsoid - Exciting force coefficients

Newman gives theoretical formulae for the heaving, rolling, pitching,
yvawing coefficients (Cz, Cxx, Cyvy, Czz) in the case of a triaxial
ellipsoid. These formulae are more general than those of Havelock (Ref. 5)
in which only a spheroid is taken in account.

In the latter case, Newman assumes that the body is in a fixed
position, We have taken the same assumptions, i.e. for the ellipsoid
computation :

The major axis parallel to the wave direction with various wave
period (6, 7, 8, 9, 10, 12 sec.)

The mzjor axis at 30, 60 and 20 degrees to the wave direction and
with two wave periods (8 and 10 sec.) H

The mathematical model gives the exciting forces on the ellipsoid
in waves, from which we find the coefficients Cz, Cxx, Cyy and Czz
using the following formulae :

Kz

Fz = pg VAK e~ Cz cos wt
- Kz .

Mx = pg L VAK e Cxx sin wt 2

My =-pg L VAK e Kz Cyy sin wt S (5.3)
- Kz

Mz = -pg L VAK e Czz cos wt

@

It is known that‘for‘x/i tending to infinity the limit of Cz is
— /
i +X = (v +C)/pV

and the pitching coefficient Cyy decreases and tends to zero., Fis. 5
shows this very clearly.
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2 0.2
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L /,//
o | CZ
1 0.4
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[ 7 8 10 12 14 Treconds

C, Heaving force coefficient

Cyy Fitching moment coefficient + Computed solution
L Length of ellipsoid
X Wavelength

T Wave periocd

——— Analytic solution

Figure 5 - Heaving force and pitching moment coefficientsfor varying K/Yl

For the same reasons, the heaving force acting on an elongated
ellipsoid broadside on to the waves is independent of wave period, so
that the value of coefficient Cz is

1 1 ¢
+K = 4
7 oV

This property shows up well in the computations,
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Analytic solution

+ Computed solulion

CZ
2.

//‘
15 o

/:85

s
0 30 60 90 Wiegrees
Cox b CY Y €2z
0.0045 030 030 ,
1—/‘—\
000125 025 025
0,004 020 AN \ 020 ﬁ \

T::as/‘ T-8s T=8s
045 045 -

000075 4

A
00005 / 040 \ 010
//%: T:10x\ . T=ADs

0.00025 A — 0.05

0 30 60 90V% O ECH 60 90% 30 60 90 Yiegrees

Figure 6 - Heaving force and rolling, pitching and yawing moment coefficients for
varying directions,
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6.1

The results are shown in figures 5 and 6. They show quite close
agreement, the computation error being less than % per cent,.

From the satisfactory agreement between of the various results
and the theoretical data it can be concluded that our computation
method is adequzte for the 92/3t pressure term,

THE ETFFECT OF WAVES ON AN IMMERSED CAISSON

The effect of waves on an immersed caisson can be considered from
two aspects, as follows

(i) An aspect associated with forces of the first order, which are
periodic, have the same period as the waves and are proportional
to wave height, These forces are of consideratle magnitude and
give rise to movements which cannot te eliminated by any form of
anchoring or other stabilisation method. The corresponding movements
are usually periodic, with the body oscillating about a mean position.
The sole purpose of anchorings is to correct deviations from this mean
position, but considerable deviations may nevertheless occur, even
with a taut hawser, to the point of cawsing it to break. It is
important to know whether such situations are likely to arise and to
have a very sound statistical knowledge of these movements.

(ii) An aspect associated with second-order forces, by which we mean any
forces that are non-periocdic or with a period in excess of 30 seconds,
The force of attraction on the surface, effects due to second-order
terms in wave representation and various force and motion coupling
cases are considered to come under this heading.

We have now seen the various aspects of wave action on a submerged
body of any shape : the method we have described is equally suitable for
the determination of forces of the first and second orders and provides
a very thorough means of investigating wave action on an immersed body,

For the caisson discussed in this paper we have considered first-order
forces and more specifically the motion of a free caisson under complex
wave action.

The computation method can also be used to calculate forces on a

caisson in forced motion, which is the ¢ase if the caisson submerged,
is part of a comples structure such as « drilling platform.
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6ol Caisson characteristics

The outlines of the considered caisson are shown in Fig. 7.

|
|
{
Y
|

B LA ->.L€_-_J-__- -__
C X iC

v

z Z

- s - onade

2

Figure 7 - Caisson outline

Its characteristic dimensions are as follows :

. Length : 40 metres
+ Breadth : 20 metres
« Height : 10 metres

. Volume : 6110 cubic metres.

663 Added mass coefficients

As the considered caisson has three planes of symmetry only the
coefficients of the main diagonal are not zero. From the results obtained
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6.4

for the sphere and ellipsoid it can be estimated that the values are
accurate to within 3 per cent (Fig. 8)..

COMPUTED DATA

9317 0.1S2fo
V=-6110md 7 480T=1.225Vxp

47 100Txm?2

f=1

414 900Txm?2

IO V|0l >

102 600Txm?

Figure B - Added mass coefficients for caisson,

Computation of Cz , Cxx , Cyy and Czz - Computation of forces

Fig. 9 shows the force of attraction toward the surface and
Fig. 10 and 11 the amplitudes of the first-order forces on the
caisson due to 2 m waves (crest to through height). It will be
noted that the attraction force is invariably less than 50 sthenes,
which is negligible compared to the first-order forces.

The attraction force is due to the difference between flow velocities
over the top and bottom caisson surfaces and is proportional to the
difference between the squares of these velocities., It remains constant
during a wave period ; its magnitude is proportional to wave height and
v..'es with depth of submersion according to a e~2Kz law. In calculating
the forces the caisson is assumed to be held stationary at a depth of
15 metres below the surface.
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Force of attraction
on the surface ghenes
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Figure 9 - Force of attraction toward the surface for varying )»/"-
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Figure 10 - Heaving force and pitching moment for varying )\/L
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Figure 11 = Heaving furce and relling, pitching and yawing moments for various directions,
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Figure 12 - Heaving force and pitching moment coefficients for various X/L
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Figure 13 - Heaving force and roliing, pitching and yawing mement coefficients for various directions,

Coefficients Cz , Cxx , Cyy and Czz
forces by formulae (5.3) and taking the biggest length of the caisson

for L,

were calculated from the

Figs., 12 and 13 show how these coefficients vary with the waves and

caisson position,
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Figure 14 = Enery, wave soectrum representing an Atlantic type swell,

Caisson motion when immersed under complex waves

The computation method described in this paper was u =34 to determine
the motion of a free caisson maintained at a depth of 15 metres by a
schematic anchoring at its centre of thrust. The tension displacement
relation ship for this anchoring is linear,

The considered complex waves are given by their energy spectrum
(Fig 14) which is divided into ten constant-energy bands, This spectrum
represents an Atlantic~type swell with an average period of 14 seconds,

Caisson heaving and pitching motion, corresponding wave forces and
the difference in the free surface level vertically above the centre of
thrust are all plotted in Fig., 15, It will be noted that as the caisson
dimensions are small compared to the wave length, its motion is in phase
with the wave motion. A low~frequency motion is supe:imposed upon the
motion in phase with the coaves at a period close to the natural period
of the system comprising the caisson and anchoring.

For this test, the caisson wa placed with its major axis in the wave
direction and only one wave direction was considered, Use of the computation
programme is not limited to this one case, however, and we have successfully
applied it to the motion of a free caisson facing in any direction subjected
to multi-directional waves,
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CONCLUSION

This study resulted in the design of a mathematical model for the
computation of wave forces on body of any shape with and without sharp
skok edges submerged at an adequate depth.

It is proposed to develop this model for calculations at any depth
and allowing for free surface effects.

The model can already cope with viscosity forces which are computed
from local friction coefficients and vary as the square of velocity.

Complete mathematical models of complex structures (e.g. semi-submer-
sible drilling platforms) can thus be constructed for use in calculating
real life wave forces and motionSimplifyirg flow assumptions have to be
made, however, especially as regards the mutual action of the structural
members, and this leads to certain approximations which can then be
narrowed down by carrying out a few tests on a model under monochromatic
wave conditions,

000
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LIST OF 3SYMBOLS

244 Wave height

A, B, C, P, Q, R. Added mass coefficients

Cz Heaving force coefficient

Cxx Rolling moment coefficient

Cyy Pitching moment coefficient

Czz Yawing moment coefficient

Fz Heaving force

?& Force due to the pressure term éé/épt
§ﬁ Force due to the pressure term VF2/2

g JAcceleration of gravity

K Wave number

L Length of body

E Unit vector normal to an element

Py Unit vector normal to the i~th element
P(1t) Total pressure

Mx, My, ¥z, Rolling, pitching and yawing moments

t Time

TL Wave period

ke » kv oy ko, Virtual inertia coefficients
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v Volume of immersed body

-\7‘5‘ Fluid velocity vector

Vc Buoyancy centre velocity vector

-V-H Wave induced fluid velocity

Uy Vo W Velocity components

pr Q5 T Angular velocity components

Z Depth of submergence

Xy By ¥ Components of the unit normal vector

8s Area of the i-th surface element

TL Circumference of a surface element

8 Angle of pitch

A Wavelength

p Fluid density

z Area of body surface

g Surface source density

O Overall potential

oy Potential due to incident wave

@PH gotem’:ial due to the presence of a fixed
ody in waves

CDPC Potential due to the body motion

wt Wave angular frequency

[} Angular velocity

$10 % 9)3 Potentials associated to unit velocity components

Xy 2 X v X3

b, Wave phase angle

¢ Heading of immersed body
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USED UNITS

Time ¢+ Second
Lenght : Metre
Mass : Metric ton

% Force : Sthene = 103

Newton

o0o
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DISCUSSION ON PAPER 12

J. B. MILLER

University of Manchester, England

The authors neglect the influence of the body on the free surface
motion and hence they have to assume that the depth of the body is more
than twice its vertical height. This restriction can be removed if the
source potential function is modified to satisfy the free surface bound-
ary conditions.

We take horizontal co-ordinates x and y in the mean free surface and
as vertical co-ordinate, z, measured positive downwards. A fluctuating
source with strength varying as ocos «wtatx=3a, y=5b, 2z = pro-
duces divérging waves at infinity. The potential which satisfies the

boundary conditions for infinitesimal height waves is,

o
Blx, v, z, ) = 0'[ L_py j/ Ltk e_k<z+f> J (kR) dk] cos et +
r 2 u-k o
+ camn v e—U(Z+f> I (UR) sin wot,

where v = CFE/g,
JO ig the Bessel function the first kind and order zero,
R= [ (ea) + (5-0)%,
re Ja)? (507 b (-0)2,

and PV indicates that the Cauchy principal value of the integral is to be

taken.

A gimilar expression can be obtained for the case of finite depth,
see Thorne (1953).

This expression can be used in place of 1/|MP} in equation (2.5) and
(2.6) of the paper. The solution for the source densities CYPH and chC

would then be obtained from suitably modified versions of equations (2.7)

and (2.8).




The Cauchy principal value integral can be evaluated by contour inftegra-
tion and this will increase the time taken to set up matrix A, buti the
time penalty incurred should not be too great.

The conditions under which the authors' solution is valid may be
determined from this expression. If the depth of the source, f , is
greater than half a wave length then the exira terms will be negligible.
But at this depth we do not expect any appreciable wave motion, so it
would appear that the extra terms should always be considered. However,
the sirength of the sources on a body must sum to gero, and if the body is
gsufficiently deep the potentials due to the sources will cancel at the
surface, and it will not be necessary %o consider the extra wave terms.

This, of course, is the condition the authors impose.

Ref.: Thorne, R.C., Multipole expansions in the theory of surface waves,

Proc. Camb. Phil. Soc., Vol. 49, 1953, pp. 707 - 716.




