
Control Network of Bi-Directional
DC/DC Converters

Maxim Marchal, Matthijs Poot,
Martijn Vermeulen

Ba
ch

elo
rG

ra
du

at
io

n
Th

es
is

Control Network of Bi-Directional
DC/DC Converters

Bachelor Graduation Thesis

Maxim Marchal, Matthijs Poot, Martijn Vermeulen
4360842, 4342569, 4390784

June 19, 2017

Faculty of Electrical Engineering, Mathematic and Computer Science (EEMCS)
Delft University of Technology

Executive Summary

This document is the bachelor graduation thesis of BAP Group B1. Together with BAP Group
B2, the objective of this project was to create a network of bi-directional flyback DC/DC con-
verters. This document is specifically concerned with the control network, which must read the
current and voltage signals from the converter and display it on a website. On this website the
user is able to change the power flow of the converters.

To accomplish this, the control network consists of three parts: Server, Master and Slave.
The slave is a microcontroller connected to the power converter which reads and sends control
signals from and to the converter; it is able to change the outputs of the converter. Next, the
master is a mini computer which is the commander in chief of the network. All microcontrollers
are connected to this unit, and the master passes this data through to the server. The server
shows all data acquired from each individual slave and the user can change the power output
of all the power converters connected to the designed system.

To check these features, five design requirements need to be met: Robustness, Modularity,
Expandability, Interactivity, Power Management. Robustness is the system being able to run
for years without failure. Modularity; connecting new microcontrollers with simple automatic
setup. Expandability; future proofing the network so other teams can take over and expand the
system and the ease of reproducing the designed system. Interactivity; which is visualizing all
commands and output of the system for the user to easily understand. Finally, power manage-
ment; the system being able to control the power flow of all connected DC/DC converters and
the power throughput in the entire system.

The design of the control network needs to account for the design requirements, therefore several
decision were made: The slave microcontroller was chosen based on group experience to ensure
progress and the programming language C so future groups could easily continue expanding
with a very capable language. Furthermore, the slave can decide what to do with the connected
device, thus changing its power output, using a Finite State Machine, independently of the
master. Furthermore, the communication protocol between the slave and master is I2C due to
its simplicity and flexibility as it communicates using only a clock and data signal. Finally, the
data retrieved by the master should be uploaded every second to the server to ensure there was
’real time’ output for the end user.

The delivered prototype is robust, expandable, and resembles the designed system. However,
the system was not tested in combination with the converters power connected to the slave
microcontrollers. To account for this fact, several tests were done using similar output charac-
teristics as the converter. Therefore, the system is able to perform its core tasks and thus, a
frame work for future research is completed.

Control Network of Bi-Directional DC/DC Converters

Table of Contents

1 Problem 1
1-1 Problem Scope . 1
1-2 Technical Review . 2

1-2-1 Energy infrastructures . 2
1-2-2 Energy control networks . 2
1-2-3 Ensuring network reliability . 2
1-2-4 Data Visualization . 2

1-3 Design Requirements . 3
1-3-1 Robustness . 3
1-3-2 Modularity . 3
1-3-3 Expandability . 3
1-3-4 Interactivity . 4
1-3-5 Power Management . 4

2 Design 5
2-1 Overview . 5
2-2 Slave . 6

2-2-1 Selecting a Microcontroller Unit . 6
2-2-2 Communication with the Single Board Computer 7
2-2-3 Measuring Voltages and Currents . 9
2-2-4 Control Signals . 10
2-2-5 State of Charge Determination . 12

2-3 Master . 14
2-3-1 Single Board Computer . 14
2-3-2 Connecting with the Slaves . 14
2-3-3 Power management & Control . 15
2-3-4 Online Connection . 16
2-3-5 Code Implementation . 17

2-4 Server . 19
2-4-1 Data Storage & Parsing . 19
2-4-2 User Interface . 19
2-4-3 Code Implementation . 20

2-5 Use . 21

Control Network of Bi-Directional DC/DC Converters

Table of Contents iii

3 Evaluation 22
3-1 Overview . 22
3-2 Prototype . 23

3-2-1 Slave . 24
3-2-2 Master . 26
3-2-3 Server . 28

3-3 Testing & Results . 30
3-3-1 Robustness . 30
3-3-2 Modularity . 30
3-3-3 Expandability . 31
3-3-4 Interactivity . 31
3-3-5 Power Management . 31

3-4 Assessment . 34
3-5 Next Steps . 35

Appendices 40

A Appendix A: Slave Source Code 41

B Appendix B: Master Source Code 57

C Appendix C: Server Source Code 73

Control Network of Bi-Directional DC/DC Converters

Problem

1-1 Problem Scope

Historically, in electric grids, energy demands were small and predictable, while the energy sup-
plies were large. Nowadays, new complex, unpredictable energy sources like solar panels and
windmills are added to the system and the energy consumption is rising more and more, while
the energy infrastructures are still the same. Loads connected to the network assume that the
grid is an infinite bus, meaning it can provide an infinite amount of power. However, when
too many loads are connected and the consumption exceeds the supply, the energy system can
start malfunctioning or even have a blackout. Current electric grids do not make use of all the
technologies available in the 21st century, which could prevent such malfunctioning and create
better energy systems.

In new systems, not only power, but also information is exchanged in the infrastructure. This
allows analysis of the power flow, and control and scheduling of the enclosed system. Energy
demands can be adjusted to meet the available supplies, whereas in the current energy systems,
demand is not controllable.

This Bachelor Graduation Thesis focuses on a control network of DC/DC power converters.
The practical goal will be to create a system that is able to monitor and control an electric bike
charging station at the University of Technology in Delft. This involves designing a system that
can potentially:

• Control power converters with control signals coming from microcontrollers.

• Connect all the microcontrollers to one master computer.

• Control energy throughput over all power converters.

• Output data of all statuses of the converters externally and saving the data for analysis.

• Control all power converters externally, using the master and a web server.

Control Network of Bi-Directional DC/DC Converters

1-2 Technical Review 2

1-2 Technical Review

1-2-1 Energy infrastructures

Currently, in the electrical grids, big power plants deliver the power to the electrical grid [1].
The AC power delivered from the plants is transformed into a lower voltage numerous times,
until it reaches the customer. No information about demand is transferred back to the suppliers,
thus, current electrical grids are a one-way flow system.

1-2-2 Energy control networks

In the last few years, more attention is paid to integrating more information into the power
grids. Some even try to integrate electricity smart grids into an overall smart energy system
[2] and show the benefits of such a smart multi-energy grid [3]. Also web-based dispatcher
information systems [4] have been presented before.

1-2-3 Ensuring network reliability

When designing a smart grid, one must regulate the charging to prevent unexpected problems
such as continuous charging of the system, which causes stress on the entire network for too
many connected devices. In the paper ’Smart EV charging schedules’ [5] several intelligent
algorithms are already explored with time scheduled charging. Furthermore, using Vehicle to
Grid power suggests discharging the Electronic Vehicle (EV) when unused such as 3 AM in the
morning, to add additional power to the grid. And charging the EV back when the grid is more
’relaxed’, when there is more available power such as the sun powering the solar panels. Thus
reduce the maximum level of stress on the network.

1-2-4 Data Visualization

The mini computer gathers information from all the slave units and can produce several inter-
esting figures for both the user and the network administrator. One of the goals of this project
is to provide insight into the information that is gathered.
Data visualization software and hardware for energy is abundantly present on the market; to
name a few: Toon from Eneco [6] and the Nest smart thermostat [7]. These devices make
electricity and gas consumption visually attractive and give customers valuable insight in their
energy consumption.
During the previous year, electrical engineering students at the TU Delft preceded this group
and already did the ground work for the master controller and data visualization. The server
part of the project aims to optimize what has already been done using previous years work [8]
[9] [10].

Control Network of Bi-Directional DC/DC Converters

1-3 Design Requirements 3

1-3 Design Requirements

The control network will be designed with the following five requirements:

• Robustness

• Modularity

• Expandablity

• Interactivity

• Power Management

Here follows a description of what is required of each and if possible, how it can be measured:

1-3-1 Robustness

The control system of itself is relatively easy to build, however, the challenge of the project is
in the robustness of the system. One of the less obvious challenges of making this system work
is ensuring reliability for an indefinitely long period of time. Other groups using the master
computer have encountered issues involving the system crashing after a time period of typically
Tcrash = 3 − 4 hours [8][9][10]. Special care has to be taken when it comes to error handling
and memory management. Error handling is the ability to deal with exceptions, for example
a disruption in the internet connection of the devices. Memory management is primarily con-
cerned with small memory leaks, which (in the long run) will accumulate and cause the system
to run out of memory. [11] and [12] provide information about how to approach this problem.

Since the master computer is in use for design and testing purposes most of the time, it is
impractical to let it run for multiple weeks or months without human intervention. However, it
is sensible to state that if Tcrash is above a certain threshold value, its value will tend to infinity.
Taking into account the typical value of Tcrash of the previous groups (three to four hours), the
threshold value is set to 25 · Tcrash,typ, which is one hundred hours.

1-3-2 Modularity

The system must be able to connect at least ten slaves and must do so without human inter-
vention (except for someone who connects a power cable to each slave). The first application
the system will be used in is the electric bike solar charging station, which is already built in
front of EWI at the TU Delft. The amount of ten slaves is derived from a reasonable maximum
amount of bicycles connected to an e-bike charging station. Having the ability to add and
remove parts of the system on the go without having to redesign it, is advantageous, because it
creates flexibility and reduces maintenance costs.

1-3-3 Expandability

This project is part of the Solar E–bike station led by Dr. Ir. P. Bauer [13]. Therefore it is
important for future project to improve and increase the number of functions. A new team must
be able to quickly understand the system, thus the code must be easily readable and expandable.
This means all design choices should take expanding the system as the main criteria.

Control Network of Bi-Directional DC/DC Converters

1-3 Design Requirements 4

Figure 1-1: Solar E-bike Station at the TU Delft

1-3-4 Interactivity

For the purpose of the E–bike station, it is useful if the voltage and current outputs of the
converters can be retrieved remotely through an internet connection. The requirement for the
interactivity of the prototype is that anyone with an internet connection can retrieve the volt-
ages and currents of all the converters that are connected, as well as modify the state of the
converters (On, Off, and the direction of power flow).

Additionally, when a consumer charges his/her bike, it should be easy to understand the fea-
tures of the system. Because this thesis is not part of a bachelor of arts, the main focus will be
functionality and ease of use, without complicated and subjectively attractive control panels.

1-3-5 Power Management

Today, the regulatory systems adhere the principle "supply-follows-demand" [14]. This essen-
tially involves ’demand prediction’. Such a system is a one way system with generation planning.
However, with limited energy certainty, this principle can put a lot of strain on the power source,
like a battery, if a large amount of power is required. Therefore, the solution is "demand-follows-
supply", where the control system regulates the output based on the available supply of energy
in the electrical system.

To test this requirement, the system must be able read out and adjust the maximum power
output per microcontroller and change the output of the all other slaves accordingly either by
user or autonomously. This feature will ensure the possibility of future, proper power manage-
ment in systems based on the designs proposed in this project.

Control Network of Bi-Directional DC/DC Converters

Design

2-1 Overview

The network of bi-directional flyback DC/DC converters consists of four parts:

1. Bi-directional Flyback DC/DC Converter [15], a printed circuit board (PCB)

2. Slave Microcontroller

3. Master Single Board Computer

4. Server

This thesis exists of points two to four, with the power converter being designed by the other
half of the group. This project is a control network of slave microcontrollers which regulate the
power output of the converters. The power regulation can be done either by the slave itself or
it can be overwritten by the master computer. The master, acting as a central hub, connects to
all slaves and processes the gathered information from all the slaves and sends this information
to a web server, which is accessible using an Internet connection. The server is also capable of
sending commands to the master, which on its turn will send instructions to the slave. Via a
website, a user can control the power output of all converters connected and read how much
current and voltage is flowing through the converters.

A detailed design description of each individual component will now follow.

Figure 2-1: Overview of designed system

Control Network of Bi-Directional DC/DC Converters

2-2 Slave 6

2-2 Slave

Figure 2-2: The ’slave’, as part
of the system in figure 2-1

The core task of the microcontroller is to con-
trol the currents and voltages that flow through
the bi–directional flyback converter as well as pro-
viding information about the device that is con-
nected to the converter. The microcontroller should
control the PCB output and find out the cur-
rent State of Charge (SOC) or proper nominal
power consumption of the device attached to the
PCB.

To perform its task, the microcontroller must:

• Be able to receive and interpret commands from
a master (section 2-2-2).

• Provide the master controller with measurements
of the input and output currents and voltages that
are present on the converter PCB (section 2-2-3).

• Provide the bi–directional flyback converter with
necessary control signals to alter the power flow
(section 2-2-4).

• Provide information about the SOC of the device
that is connected to the converter (section 2-2-5).

In this chapter, the implementation of these tasks is described in detail. Design considerations
that have been made are mentioned explicitly, including the selection of a suitable microcon-
troller.

2-2-1 Selecting a Microcontroller Unit

As shown in figure 2-1, there is communication between the slave and the power converter of
BAP Group B2. Between these two system is were this project is divided. To be exact, the
decision was made to let the control network design all digital signals, and the power team to
design all analog signals.

In order to perform its core tasks, the microcontroller Unit (MCU) must feature Pulse Width
Modulation (PWM) hardware, due to the features explained in section 2-2-4, as well as an
Analog to Digital Converter (ADC) module, because of the input signals, explained in section
2-2-3. Hardware that facilitates communication is also required. MCUs with a large userbase
are preferred, due to the fact that this makes it convenient for other engineers to familiarize
themselves with the software and thus be able to create designs with this project at its core.
There is a plethora of options available when it comes to picking one that is suitable for this
purpose. Some possibilities are presented in the section below.

Options

TheTI C2000 family is attractive due to the fact that it makes use of Control Loop Acceleration
to service time-critical control loops, while the main CPU is free to perform miscellaneous tasks

Control Network of Bi-Directional DC/DC Converters

2-2 Slave 7

such as communication and diagnostics [16]. Furthermore, Texas Instruments provides software
for this board that is especially designed for control applications [17]. The TMS320F2027 board
of this family features seven 12–bit ADC channels and 4 PWM–channels.

Another possibility is the Arduino Nano [18], which features eight 10–bit ADC–channels
and 6 PWM–channels. The advantage of this unit is that it has a very large userbase. This is
advantageous because code written by the Arduino community can be used. The availability
of many Arduino libraries makes this option viable. A downside to this option is the fact that
Arduinos are programmed in a high level language; this makes it harder to understand the
inner workings of the written code. Besides, the Arduino libraries are not always as efficient
and waste RAM and CPU cycles [19].

NXP Semiconductor’s LPC1343 (an ARM cortex M3 board) is an option as well. The LPC1343
is a basic 32 bit MCU with 8 ADC-channels and 5 PWM–channels. It is programmable through
a CodeBlocks plugin via a USB connection. While the quality of this board does not soar over
the other options, it is chosen because of the extended experience the project group has with it.
The datasheet for this microcontroller can be found in [20]. The fact that this microcontroller
is used in the Electrical Engineering Bachelor program at the University of Technology in Delft
makes it a convenient choice for future projects based upon this project, as all students will
have experience with this type of controller.

The LPC1343 is programmed in C [21], a low–level language that is versatile, fast and highly
portable. Since most microcontrollers are able to use C, the decision to use this language was
made, to make it possible to deploy the code to other microcontrollers as well, while only need-
ing to make minor changes in the setup. Compilation of the code is done with a GCC compiler
for ARM which is embedded into Code::Blocks (an integrated development environment). Pro-
gramming is done by flashing the machine code onto the board using special executables. The
GCC compiler, Code::Blocks plugin and the special executables are all provided by the Com-
puter Architecture and Organisation (EE3D11) course lab of the TU Delft [22]. Finally, due
to the requirement of scalability, future versions must be able to download and use the written
code.

2-2-2 Communication with the Single Board Computer

I2C

The communication method that is used for this task is the Inter Integrated Circuits (I2C) pro-
tocol [23]. This is a two–wire communication protocol where one controller can issue commands
to a number of listeners. In I2C lingo, these are called master and slave respectively.

There is a number of reasons why I2C is chosen as the communication method. Firstly, it
has a very low overhead since the setup involves connecting just two wires and a common
ground. Furthermore, by exploiting the fact that the wires are connected via a pull up resistor
to VDD, a high number of slaves can be pooled together on the same bus. In the used configu-
ration, more than the ten required slaves, a requirement from section 1-3, can be controlled by
the single board computer.

One limitation of the usage of I2C is the limit of one byte per package. This is accounted
for by using a custom designed I2C protocol. This protocol makes the sender split the large,
multiple–byte integer in parts of one byte. These bytes are saved in a buffer. When all the data
needed is sent and received, the different bytes are combined to integers with more bits.

Control Network of Bi-Directional DC/DC Converters

2-2 Slave 8

Master Requests and Commands

The master is capable of requesting data from slaves as well as writing data to them. The first
byte that is sent to a slave is always a state byte. This informs the slave about the intentions
of the master. Then, a byte is sent by either the slave or the master (depending on what the
state byte was). This byte contains the length of the information that is to be sent or received.
Subsequent bytes that travel along the I2C bus contain the necessary data. When the full
message is sent, the data is processed by either the master or the slave.

Dynamic address allocation

The communication between the master and its numerous slaves is designed with modularity as
its foundation. Any given converter should be able to connect to a network that has a master
regulating the I2C bus, even if many slaves are already connected. Therefore, it is necessary to
implement a dynamic address allocation protocol. Normally, an address is assigned to a listen-
ing device when manufactured, but when multiple devices with the same address are connected
and listening on the same bus, data transfer is corrupted. The master should assign an unused
address to a listening device when it first connects. The slave microcontrollers are programmed
to listen to the same address at first. Then, when it connects to the master, the master will
send a new, unused address back to slave. The slave will then change the address it is listening
to, to the newly sent address.

One foreseen problem with this technique, is that upon connecting two new slaves at the same
time, there is a chance both will receive the same address making future communication with
either of these two slaves impossible. A possibility to diminish the probability of occurrence of
the above-mentioned situation, is to limit the time period in which the slave is listening to the
master to some smaller period with random time intervals. When multiple slaves are connected
at the same time, but start listening at random intervals, the chance of these periods of the
distinct slaves colliding will decrease. Random time intervals in between communication signals
are widely applied in combination with collision detection in various communication networks
and has been shown to be a reliable protocol, even when a high amount of slaves are trying to
connect [24].

For this design, it is chosen not to implement the option of time intervals for listening to
the master. It is assumed that the users of the first prototypes will be well informed of this
issue, as this problem only occurs when first connecting the converter and not the devices con-
nected to the PCB. Not implementing the random time periods on its part removes possible
increase in detection time. The possible increase in detection time is caused by the facts that
the master will not be scanning for new slaves continuously. Consequently, it is possible that
the slave microcontroller was not listening to the I2C bus at the moment the master tried to
connect.

Possible commands

The custom I2C protocol that was developed for this project features several commands that
the slave software recognizes. These can be separated in two different categories: commands in
which information flows from the slave to the master and commands where it flows the other
way around.

Master to Slave commands occur when the master wishes to control certain variables in
the slave. All commands of this type are listed below:

Control Network of Bi-Directional DC/DC Converters

2-2 Slave 9

State Description
VOLT_READ_STATE The maximum output voltage is set equal to the pay-

load received
CURRENT_READ_STATE The maximum output current is set equal to the pay-

load received
TURN_ON_OFF The master turns the slave on or off
MASTER_SET_DIRECTION The master sets the direction of power flow on the

converter.
SET_PWM_X_STATE Overwrites the duty cycle of either PWM–channel 1

or 2.
NEW_ADDRESS_STATE The 7–bit address of the I2C–module is set equal to

the payload. This is illustrated further in section 2-2-2

Slave to Master commands occur when the master wishes to retrieve information that is
gathered by the slave. All commands of this type are listed below.

State Description
READ_POWER_STATE The slave tells the master whether it is turned on or

off
READ_PWM_X_STATE The duty cycle of PWM signal X is transmitted to the

master
VOLT_X_WRITE_STATE The voltage at the input of the converter (X = 1) or

the output of the converter (X = 2) is transmitted to
the master

CURRENT_X_WRITE_STATE The current at the input of the converter (X = 1) or
the output of the converter (X = 2) is transmitted to
the master

READ_CHARGE_STATE The state in which the FSM is (see section 2-2-4 is
transmitted to the master

READ_POWER_STATE The slave tells the master whether the converter is
turned on or off

READ_PWM_X_STATE The duty cycle of PWM–channel 1 or 2 is sent to the
master.

2-2-3 Measuring Voltages and Currents

The converter PCB provides the microcontroller with four separate analog signals between 0
and 3.3V. These signals represent the following physical quantities:

1. Input voltage (Vin).

2. Output voltage (Vout).

3. Input Current (Iin).

4. Output Current (Iout).

The true currents that are flowing are related to the voltage signal through a transresistance
value Rmeasure. The true voltages on the terminals are related to the voltage signal through a
constant Kmeasure. The signals are converted to the digital domain via the MCU’s ADCs.

Control Network of Bi-Directional DC/DC Converters

2-2 Slave 10

Figure 2-3: I-V curves of a typical Lithium–ion battery. Adapted from [25].

The Olimex LPC1343 comes packed with an ADC with a resolution of at most 10 bits. The
software can connect the ADC to 8 different channels. The sampling frequency is adjustable,
but is limited to 409 kHz.

The noise introduced by quantization is uniformly distributed across
[
−LSB

2 ,+LSB
2

]
. The volt-

ages on the converter are between 0 and 50 Volts. The Least Significant Bit (LSB) is calculated
using equation 2-1.

LSB = |Vmax − V min|
2N

(2-1)

where N is the number of bits. With Vmax = 3.3V and Vmin = 0V , this equation evaluates to
an ADC resolution of 49 millivolts. The noise introduced by quantization can thus be modeled
as a uniform distribution with µ = 0 V and σ2 = 2.0× 10−4 V 2. This fact is later exploited in
section 2-2-5.

Since the microcontroller is operating near a DC/DC converter that is operating at high fre-
quencies, it is possible that the sensors pick up high frequency noise. This can destabilize the
control FSM, which is undesirable. Therefore, the sensor values are filtered by summing over
the last N samples and taking the average. This is sometimes called a moving average filter.

2-2-4 Control Signals

Composition of signals

When the controller receives all the incoming voltage and current measurements, the correct
output control signals need to be defined. These output control signals will be sent back to the

Control Network of Bi-Directional DC/DC Converters

2-2 Slave 11

power converter so that the PCB regulates the power flow correctly. The integrated circuits on
the PCB that regulate the power flow, require a DC voltage signal as control. This signal will
be compared to a reference voltage. The resulting output will be a portion of the maximum
available output. This portion of output is related to the ratio of the control signal and the
reference signal given to the integrated circuit on the PCB.
The chosen microcontroller is not able to output a continuous analog voltage. Instead, a digital
PWM signal is sent to one of the controllers output. The digital signal is then connected to
a digital to analog converter (DAC) on the PCB, which will give an analog reference control
signal. By changing the duty cycle of the PWM signal, the analog output of the DAC is changed
to the average value across one period of the PWM signal [26].
Bidirectionality is enabled by switching the input and output depending on the direction vari-
able. This way, power can flow in both directions depending on the value of a user–defined
variable.

Determining correct output

When a voltage is sensed at the terminals of the converter, this means a device was connected.
At this point, there are two possibilities. The first possibility is that the load is purely resistive,
meaning it will have a constant voltage–current relationship when a voltage is applied. This
type of load requires a constant DC–voltage.
When a battery is connected, the process requires a more sophisticated control system. Figure
2-3 shows the charging pattern of a typical Li–ion battery cell. When voltage is low, it can be
seen that the current supplied is constantly high. The voltage rises during this time and when it
reaches the threshold value, the current is throttled. This is called ’Constant Current, Constant
Voltage Charging’ and it is the foundation for the control system that is employed in the system.

The diagram of figure 2-4 shows the charging algorithm that is running on the microcontroller.
The states are to be interpreted as follows:

The reset state is where the converter is idle. The output current is set to 0. Whenever
the Open Circuit Voltage exceeds the threshold value, this means that a load has been con-
nected to the converter. The next state will then be V_ramp, and charging will commence.

During the V_ramp state, the voltage is incremented over time. If the current reaches the
maximum allowable value, V_nominal is entered. In V_nominal, the output voltage is kept
constant. This is where most of the charging happens. When the output current dips below a
certain threshold value, V_pinch off is entered. This state transition happens in figure 2-3 at
ChargeT ime = 1hr.

V_pinch off is what is called the Constant Voltage state in most literature. This name
is not used here, because the voltage of the charging battery is increasing, albeit slowly. Only
when the battery is fully charged, the voltage will be constant. This event (the voltage being
constant) is detected by using a technique as described in algorithm 1. This algorithm counts
how many consecutive cycles the voltage of the load has been steady. When this has happened,
the state will change to Done. When the control system is in the state Done, this indicates the
charging process is finished. The current is set to zero so that no overcharging occurs. When
the charged device is disconnected from the converter, the system returns to the reset state.

Control Network of Bi-Directional DC/DC Converters

2-2 Slave 12

Algorithm 1 Tracking the output voltage
Vtrack ← N
while State = Vnominal do

if Vnow ≤ Vprevious then
Vtrack ← Vtrack − 1

end if
if N = 0 then

state← Vnominal

end if
end while

Figure 2-4: Finite State Diagram of the charging process.

2-2-5 State of Charge Determination

The SOC of a battery system is information of considerable importance, since it provides users
with information about how much energy they have received from the system. Several methods
for determining the SOC have been proposed in the past. These include: Coulomb counting,
Kalman Filtering and the voltage method [27]. With state of the art technology, a mean error
of 3% is achievable [28].

Kalman Filtering

The Kalman Filter is an algorithm to estimate the inner states of a dynamic system [29]. It
requires a suitable model for the battery and a precise identification of the parameters. These
parameters are not available during this project, which is the reason why the Kalman Filter
will not be used to determine the SOC.

Control Network of Bi-Directional DC/DC Converters

2-2 Slave 13

Voltage Method

The SOC of a battery can be determined using a discharge test under controlled conditions. The
reading of the battery voltage can be converted to an equivalent SOC using a known discharge
curve. However, this voltage is dependent on the battery current due to the battery’s electro-
chemical kinetics and temperature [27]. Measuring the battery’s temperature is a convoluted
process and it is not worth considering when other methods are available.

Coulomb Counting

By integrating the current that is injected into the battery pack, the total charge that is supplied
to the battery can be calculated, which provides information about difference between the
initial and final SOC. This method has a disadvantage: offsets in sensor values can accumulate
over time due to the integration of this value. Another problem is that the initial SOC is
not determined by knowing only the integrated current. Nevertheless, this method is easy to
implement and requires no knowledge about the temperature and other specific parameters
of the battery. By determining the error that is introduced by the accumulation of sensor-
inaccuracy and offset, it can be decided whether this method is feasible.
From section 2-1, it was concluded that the error introduced by quantization is uniformly
distributed with µ = 0. Let xk be the true voltage at measurement instant k. Then, the voltage
that is measured at time instant k is equal to x̂k = xk + nk + C, where nk is the noise voltage
at time instant k and C is the constant offset of the sensor. Integrating x̂k over k yields:

k=N∑
k=0

xk =
k=N∑
k=0

xk +
k=N∑
k=0

nk +
k=N∑
k=0

C (2-2)

Assuming N is large, the definition of mean value can be used to eliminate the quantization
noise term:

1
N

k=N∑
k=0

x̂k = µn = 0 (2-3)

Where µn is the expected value of the quantization noise. Recall that this quantity is equal to
zero (see section 2-2-3).
The constant error term consists partly of the sensors bias. This term can be calculated by
shorting the input sensor to ground and measuring the voltage it measures. This output is
averaged over N samples (where N ≈ 1000). The average value that the sensor measures when
it is connected to ground is 3.7mV. By subtracting this value from every measurement, the
sensor bias can be accounted for.

In conclusion, Coulomb counting is useful in determining the difference in SOC. By using
equation 2-4, the amount of energy that is added to the device connected to the converter can
be calculated.

∆E =
N∑

k=0
Pk∆t (2-4)

where Pk = VkIk and ∆t is the time between measurements k and k − 1.

Even though it is not possible to determine the exact SOC of a battery through the use of
Coulomb counting, it is possible to know how much energy was added during a cycle.

Control Network of Bi-Directional DC/DC Converters

2-3 Master 14

2-3 Master

Figure 2-5: The ’master’, as
part of the system in figure 2-1

In this design, a top–level master single board computer
is implemented. The master is central in the design of
the system, and the brain of the network. It receives
and sends the information, which it translates to work-
able data for the microcontroller and server. Its core
tasks are:

• Reading the statuses of all the connected slaves
on the I2C bus.

• Outputting these statuses locally.

• Being able to control the connected slaves, either
decided locally or due to a command from the
web server.

• Sending the statuses to a web server.

2-3-1 Single Board Computer

The chosen single board computer is the ODROID C1+[30]. The ODROID is a versatile, robust
and cheap single board computer that fits well in the configuration of this project, as it has I2C
capabilities, is able to run the program designed and can be easily connected to the internet
using the Ethernet port on the board. Moreover, the ODROID was used in previous, comparable
projects as well [9], thus making it a confident choice. Furthermore its has a relatively low cost
yet high performance and quick Internet connection.
The Internet connection is an important part of the system as the computer will create a local
dashboard that exchanges information with a TU Delft server. The information on this server
consists all the previous power flow characteristics on the system. Saving this information
enables the possibility of analysis and prediction, features that might be realized in future
designs.

2-3-2 Connecting with the Slaves

Communication protocol

The protocol for communication was described in 2-2-2. Every byte received from the slave will
be saved correspondingly for further use.

Scanning for connected slaves

Before the master is able to communicate with the slaves using the defined protocol, the ad-
dresses of the slaves need to be known. The master will send a single byte to every address
in the predefined address range. If a slave is connected and listening, it will respond with an
acknowledgement signal when a byte is sent to the slave’s address. The master will save this
particular address, as it is associated with a connected converter.

Control Network of Bi-Directional DC/DC Converters

2-3 Master 15

Modularity

One of the main aspects of this design is the modularity. Multiple slaves can be added on the
communication bus and the master will dynamically add the devices to its memory to control
and observe from that point on.
Every slave device with I2C enabled will have its 7 bit address that it will respond to when
called for by the master. As stated before in 2-2-2, this setup works with dynamic address
allocation. The master has a predefined subset of possible address, with one general address
assigned to every slave when first connected. Used addresses are stored in the master and a
new unused address will be assigned to a newly connected slave.

Reliability

Both the master and the slave should continue working when disconnected to ensure robustness.
All the connected parts of the system are able to function autonomously, except the hardware
part of the bi-directional flyback DC/DC converter.

The source code of the master was written in C++[31]. This programming language was cho-
sen because of its many object-oriented programming features and prior experience with this
language. Especially for one of the purposes of the project, namely being able to easily add
multiple converters to one master, programming using objects and classes is very useful. Apart
from usefulness, using C++, with classes and its Standard Library function and data structures
[32] ensures that there will be no memory leakage and the program will be able to run contin-
uously, as long as there is an active power supply to the master. The code is designed in a way
that there is no dynamic memory allocation [33] (and thus not having to deallocate memory
manually), reducing the risks of failures even further, whilst keeping all the desired features.

2-3-3 Power management & Control

Reading status

The main feature of the master is reading the status of every connected slave and parsing this
information for further use. In this project, the output is given in simple text format, however,
user friendly user interfaces can be used to output the data as well, as shown in literature [8].
But, most users will use the web pages on the server, which are easily accessible with any device
with a web browser, such as a mobile phone.

Controllable features

Beside data coming from the slave going to master, a reversed data stream is also possible.
Possible functions to call from the master include, but are not limited to: powering off the
slave, limiting the output and set the direction of the power flow. This is further clarified in
2-3-4.

Maximum power output & other applications

Combing both the abilities of reading statuses and the controllable features, more advanced
commands can be implemented. One of these implementation would be a maximum power
output across multiple connected devices. This setup of devices creates the ability to manage
power more precisely and more conveniently.

Control Network of Bi-Directional DC/DC Converters

2-3 Master 16

As real life example, a setup with multiple electric bikes as loads and a solar panel as power
source can be realized. When the power from the power source is not enough to fully charge
both loads, trade-offs can be made by the master to keep the setup running, even if it would be
at a lower power rate.

2-3-4 Online Connection

Protocol

To keep flexibility, the master uses JavaScript Object Notation (JSON) [34] to serialize the
data that needs to be sent and then send it as a simple text package to the server. Using
JSON does not limit the size of the data packages that are sent. Consequentially, this suits our
demands, as the amount of slaves connected to the master and amount of data needed to be
sent is variable-sized.

Logging status

The master sends a JSON package containing two arrays of information to the server. The
first array actually is a multidimensional array, because it contains an array with all the integer
variables (such as voltages, currents and power state) of a single connected slave. The second
array in the JSON package is a simple integer array containing the corresponding I2C slave
addresses of the connected converters. For the sake of interactivity, it is important to update
the data in real time, thus once every second should be enough.

Receiving control signals

It is possible for the master to receive a JSON data package from the server as well. The
message contains three variables.

• Slave address

• Instruction type

• Data to be transferred, if instruction type requires a value (e.g., a maximum voltage
output)

On receiving this data, the master decides which instruction needs to be sent to which slave.

Control Network of Bi-Directional DC/DC Converters

2-3 Master 17

2-3-5 Code Implementation

Having defined the features of the master computer in the previous section, this subsection will
describe how these features interact. A Nassi-Schneiderman diagram [35] of the workings of
the master is shown in figure 2-6. The diagram elucidates the functioning in pseudocode. The
numbers in between the parentheses (), will point to the code section in the figure.

The master starts with storing the server URLs (1). Then the master starts scanning for
connected slaves. If no slave is connected, the master will keep scanning for slaves. After a
list of connected slaves is known and if any slave is connected, the master device will read all
the statuses from the connected slaves (2). The statuses get updated locally every iteration.
The next operations depend on the predefined checking thresholds. Not every operation is done
every iteration. The two possible operation are sending the data to the server (3) and checking
for a new instruction from the server (4). When the counters for one of the two operations
exceed the thresholds, the corresponding function is executed. When sending the data, all the
received statuses are stored into one data package (as described in section 2-3-4) and sent to
the server. On checking for an instruction, if there was a new instruction, the instruction will
be parsed and using the protocol described in 2-2-2, the instruction is sent to the right slave.
The master will then loop the steps mentioned above.

Scanning the I2C bus does not have to happen every iteration, due to the fact that the converter
will work autonomously without a connection to the master as well. To save time and conse-
quently have a faster rate of reading statuses, scanning the happens once after a predefined
number of iterations (5).

Control Network of Bi-Directional DC/DC Converters

2-3 Master 18

Figure 2-6: Nassi–Shneiderman diagram of the functioning of the master

(1)

(2)

(3)

(4)

(5)

Lower case words connected with underscores are variables. Upper case words with underscores are predefined
values.

Control Network of Bi-Directional DC/DC Converters

2-4 Server 19

2-4 Server

Figure 2-7: The ’server’, as part of the system in figure 2-1

The server is the third part of this project. The concept ’server’ will be the component that is
accessible with an Internet connection and can be viewed in a web browser. It will be a web
server with a database to store all the data sent from the master. All the real-time statuses
from the converters are available on a web page, which parses the last sent data and displays
it in a convenient way. The user is also able to send different instructions to the devices from
this web page.

2-4-1 Data Storage & Parsing

The master sends its statuses as a single package (see section 2-3-4) to the server URL as post
data [36]. This data package is then stored as text together with an index number and a time
stamp as a row in a table of a MySQL [37] database. The data from this MySQL row is then
retrieved by the web page and used to display the current status. MySQL is considered the
second most popular database engine [38] and due to its wide support across many web hosts,
it is used for this project.

The advantage of saving all the received data into a database, is that there is a possibility
to retrieve all the historical data and analyze it, for the sake of future prediction of power flows.
This makes a contribution to the Power Management part of the design requirements 1-3.

2-4-2 User Interface

Mobile users will be the main users of the web page. Therefore, a convenient user interface
is necessary to enable the full capabilities of the project. However, due to the fact that an
interface is not particularly the scope of this thesis, only a basic interface was designed, with a
limited set of features. These features will mainly be used to show the functionality of a future
prototype.

Main View

The main page of access should provide an overview of connected slaves and a directory to the
current setup. Furthermore it contains a clock which is updated each time the Master data is
uploaded to the server. If the clock does not correspond to the actual time/it stopped working,
this indicates the ODROID has crashed or is not able to connect to the assigned web server.

Control Network of Bi-Directional DC/DC Converters

2-4 Server 20

Features

When a user accesses the interface of the designed system, these must be the required features:

• Select the converter the user is using

• Read out the current status of that particular converter

• Turn this converter on/off

• Switch the direction of power flow

• Set the maximum power output

All the above-mentioned feature will be realized using large, user-friendly buttons on the web
page. The maximum power flow can be adjusted using sliders on the page.

2-4-3 Code Implementation

The server is designed using PHP [39]. PHP is a server side programming language and is
capable of interacting with the MySQL databases of the host as well. The server and master
are connected through two given URLs. The master sends its data to the receiving URL of the
server. This data is then put in the MySQL table.

To access the data, a user visits the homepage of the project. This page retrieves the lat-
est entry of the MySQL table and then parses it and displays it as HTML [40] & JavaScript
[41], which is displayed in the web browser.

Control Network of Bi-Directional DC/DC Converters

2-5 Use 21

2-5 Use

The control network can be utilized in a variety of sectors. This is attributable due to the fact
that the system is scalable and designed in a modular fashion. This allows other projects in
other fields, for example automotive, to apply and expand the design presented in this design
report.

The network is to be used in a solar powered E–bike charging station. The station contains ap-
proximately four converters. When the user has plugged in their E–bike, it will begin charging
the battery. They can then visit the website (www.bap2017b.tk) to monitor how much energy
was deposited into their device.

Control Network of Bi-Directional DC/DC Converters

www.bap2017b.tk

Evaluation

3-1 Overview

This chapter describes the final results of the designed system. This includes testing of the pro-
totype and validating if the specifications are met. As of writing the thesis, the converter was
not yet finished to test with the control network, therefore, the system currently is similar to
figure 3-2. To measure if design requirements, several test setups were implemented to validate
the system. In table 3-1 the design requirements of section 1-3 with summary are shown. Valida-
tion of the specifications are described in Boolean, thus either true or false if it is working or not.

Requirement Description
Robustness System must be able to run for seven consecutive days without crashing
Modularity Connecting of new slaves, while the network maintains the same level of

performance
Expandability Code should be structured and easy to grasp concepts for future teams

to expand
Interactivity Data communication from slave input to server output and visualization

for end-user
Power Management Adjustable power output for each connected slave by either the control

system on the microcontroller or by the user on the website

Table 3-1: Design Requirements Summary

Control Network of Bi-Directional DC/DC Converters

3-2 Prototype 23

3-2 Prototype

Figure 3-1: Prototype with three connected slaves

The finalized prototype is shown descriptively in figure 3-2. The purpose of the device is to
register input current and voltage signals of a device connected to the slave, in this case the
converter designed by the other half of BAP Group B. Then, this slave is able to autonomously
process this data to determine if connected device is either a active or passive source. If it is a
passive source, for example a bicycle battery, the slave will use a FSM to supply it with power
until it is full. Using the LEDs on the slave, several light patterns were created to visualize the
state the slave finds itself in: searching, supplying power and withdrawing power.

The Master also receives the input data using the I2C protocol. Furthermore it can change
the power output from nothing to maximum output. Furthermore this output can be controlled
by a user by accessing the website and manually altering the power flow. The website shows
all slaves registered with corresponding output and input signals at the master. Finally the
website shows if the computer is still running.

All the designs in chapter 2 were implemented by programming in different programming lan-
guages, on different controllers and machines. The code for the slave microcontroller was written
in C [21]. The source code for the master was written in C++[31] and the server was imple-
mented on a web server using MySQL [37], HTML [40], PHP [39] and JavaScript [41] .
All the code is to be found in appendices A, B and C. All the written programs are reflections
of the designs and the control flows are elucidated using comments in the code itself. Only
specific code design choices are highlighted in the next sections, as it not necessary to go over
structure of the code, as explained in chapter 2, again.

Control Network of Bi-Directional DC/DC Converters

3-2 Prototype 24

Figure 3-2: Final System schematic as shown in figure 3-1

3-2-1 Slave

The code that is programmed on the slave can be found in appendix A. It is written in C
and makes use of several libraries which allow the code to run on the chosen microcontroller
(LPC1343). These libraries are provided by the manufacturer, and contain device specific in-
formation.

The microcontroller must perform tasks in parallel, such as communication with the master
and controlling the PWM duty cycles. With a procedural programming language like C, this
can be tricky because every line of code is executed after the other. For this reason, Interrupt
Service Routines (ISRs) are employed throughout the code. ISRs are procedures that are ex-
ecuted upon specific events. An example is when the I2C senses a start condition on the bus;
the module will issue an interrupt, which will trigger the I2C interrupt routine. This function
can be custom–made by the programmer. The advantage of these constructs is that they are
executed asynchronously, which allows procedural languages to execute in quasi–parallel. An-
other advantage is that the code can be structured more neatly by placing the ISR–functions
into a separate file, and thus keeping the main function compact and readable.
Examples of modules that are coded using ISRs are:

I2C

The I2C communication with the master operates in the background by writing the functionali-
ties inside of the ISR. In this subprocedure, the interrupt status code is read out and depending
on what this code was, the correct bits in the I2C–module are (re)set.

Timers

In the prototype, different types of LED patterns are programmed to be displayed, depending
on what state the Finite State Machine is in. For example, when nothing is connected, the LEDs
are turned on one by one signifying that the microcontroller is ‘scanning’ for a load. When a
load is connected, the number of LEDs that is on increases periodically, signifying that the load
is receiving energy.

Control Network of Bi-Directional DC/DC Converters

3-2 Prototype 25

Figure 3-3: Prototype of three connected slaves to the master. On the left: the ODROID single
board computer. On the right: three LPC1343 microcontrollers.

These functions are implemented to enable debugging; since the microcontroller does not have
an HDMI or VGA port, it can be difficult to keep track of what is happening inside the MCU.

PWM

The two PWM–channels are controlled through a 32–bit counter and several 32–bit match reg-
isters (MR). A match register is set equal to the period of the PWM–signal (expressed in clock
cycles of the main CPU). Another match register is set equal to the duty cycle multiplied by the
period. Then, using the routine described in figure 3-4, the PWM output is set either low or high.

In the main code (appendix A.1), it can be seen that many variables are declared globally.
This is done for two reasons. Firstly, the interrupt service routines described in the sections do
not take arguments (since they are never called directly by the programmer). Thus, these ISRs
can only read and write global and local variables. By making variables globally available, the
ease of use of ISRs is greatly increased.
Another reason to declare globals is to make the code appear more tidy. Custom functions do
not require excessive amounts of input arguments, which makes code far more readable.

Control Network of Bi-Directional DC/DC Converters

3-2 Prototype 26

Figure 3-4: Nasi-Schneidermann diagram of how the PWM signals are generated. Adapted from
[22]

3-2-2 Master

The source code of the master is to be found in appendix B.

Structure

The master program consists of five different parts. The main code and four classes (master-
mind, power_manager, slave_list, slave_handler). These classes are designed to break a bigger
problem into smaller sub-problems. Breaking up pieces of functionality into their own classes
and encapsulating all the logic makes the easier to maintain, test and reuse different parts of
the features. This adds to the expandability 1-3-3 part of the project. The main code is the
top-level control loop. Then, the mastermind class keeps all of high-level functions as shown in
figure 2-6. To make all these functions possible, the other classes (power_manager, slave_list,
slave_handler) are used. The power_manager class implements all the commands and request
from section 2-2-2. The class slave_list is a designed to keep track of all the connected convert-
ers in a organized way. And the class slave_handler implements all the communication at the
lowest level.

Control loop

As seen in figure 2-6, not every operation is executed every iteration of the main loop. The
thresholds and timing is defined in lines 6-9 in B.1. The main loop will scan for slaves after
60 iterations, will check for a new instruction coming from the user every iteration and send
the status to the server every 3 iterations. These compromises have been made in a way that
the user has almost continuous output (> 1 Hz refresh rate) on the web page and even faster

Control Network of Bi-Directional DC/DC Converters

3-2 Prototype 27

Figure 3-5: The ODROID is the master

response of instructions. Output faster than 1 second is found to be not useful, as the user
cannot respond faster than a second and analysis is more focused on steady state behaviour.

Sending & receiving data

To encode the data that needs to be sent in a JSON package (section 2-3-4), [42] is used. This
library allows the programmer to parse JSON package with only one header file included.
To send the encoded data to the server, cURLpp is used [43]. The maximum time-out for the
request is set to 5 seconds. When the package is not sent or received correctly, the request is
stopped and the master continues without using the Internet connection.

The master receives its instruction types as strings. Examples for instruction strings are: ’write-
voltage’ or ’turnoff’. One of the disadvantages of strings in C++is that they can not be used
inside of the switch statement in line 229 of listing B.3. Therefore, the strings have to be
converted to numbers, which is done in lines 5-27 (in B.3 again).

I2C

For the I2C communication, the library WiringPi [44], a I2C for single board computers is used.
This enables writing and reading bytes from the communication bus with only one line of code.

To work around the fact that this communication protocol is only capable of sending one byte
at a time, the designed protocol from section 2-2-2 is implemented. To split the values that
need to be sent into bytes, a bit mask and then a shift is used to get correct parts, as shown for
example in line 16 in code B.5.

Control Network of Bi-Directional DC/DC Converters

3-2 Prototype 28

3-2-3 Server

The source code of the server is to be found in appendix C.

Interaction with the user

The main accessible pages of the website contain an overview of the currently connected slave
and a page with instructions and status of one specific connected controller. The pages consists
of a static ’skeleton’ of <div> tags (lines 26-44 in C.1 & lines 106-196 in C.2, which compose
the layout of the website.
Using jQuery [45], a JavaScript library designed to simplify client-side scripting, the web page
loads the latest status of all the slaves as a JSON package, parses it and dynamically adds new
elements to the static frame of the main page. This status is loaded every 500 milliseconds
(line 61-91 in listing C.1). For every slave connected, it adds a new button to navigate to the
converter page, as shown in figure 3-7.
On the page with instructions and status of a single controller, the latest status for that specific
controller is parsed and shown. The following instructions are possible to execute by tapping a
button on that page:

• Turn on

• Turn off

• Switch direction

• Set maximum voltage (with a slider for the amount)

• Set maximum current (with a slider for the amount)

On tapping a button, the correct instruction will be uploaded to the database to later be received
by the master (line 14-77 in C.2).
The buttons and layout are put together by using Bootstrap [46], Font Awesome [47], jQuery
UI [48] and range-touch [49]. Combining all these libraries creates a mobile-user friendly web
page with fast response.

Interaction with the master & database

In every interaction with the MySQL database, the configuration file in C.3 is called to make
the connection. After the connection is made, request to the specific data where the data is
stored can be made.
When the users executes a new instruction, the target slave address, instruction type and data
to be sent along with the instruction is sent from the user page to a server page (listing C.7).
This page then stores this data in a table called ’instructions’ in the database. When a new
instruction is added, the list of recipients of the instructions is emptied.
The file from listing C.4 is loaded by the master to check for new instructions. When it has
loaded the new instruction, this master IP gets stored into a list of recipients, so no instructions
are received double and executed without any use. This feature also allows to add multiple
masters to the same database in later design iterations.
To get dynamic output on the user pages, the server side script listed in C.6 displays the latest
status received by the server. The master adds this status by posting its status to the server
page listed in C.5.

Control Network of Bi-Directional DC/DC Converters

3-2 Prototype 29

Extra feature

As an extra feature, an additional directory takes the user to a 3D model of the charging station.
Here the model can be viewed using rewritten code of [50]. The 3d image has been made in
Microsoft 3D builder [51].

Control Network of Bi-Directional DC/DC Converters

3-3 Testing & Results 30

3-3 Testing & Results

The design requirements of section 1-3 are evaluated in this section.

3-3-1 Robustness

In order to put the robustness of this system to the test, the ODROID is connected to two
microcontrollers. Sensor data from both microcontroller is read out every second and stored in
a database. Then, the system is left alone for one hundred hours.

This longest test was carried out during a period of time that the access to the ODROID
was limited. The test started on Wednesday may 24th, 16:00 and ended on Monday may 29th

10:00. The ODROID had been running for 114 hours, and was still running. At this time the
test was terminated. The system has passed the robustness requirement, and a lower bound on
the crash time has been obtained, namely Tcrash < 114h.

3-3-2 Modularity

To test whether the prototype is expandable with minimal human interference, ten microcon-
troller units are connected to the ODROID. Each MCU is powered via a USB–cable. The SDA
and SCL ports are connected to a bus located on a breadboard.

Testing was done using seven external LPC1343 boards that were supplied by the EE3D11
practical. Unfortunately, connecting any of these boards to the I2C bus caused the bus to
malfunction. The reason for this was the fact that previous soldering on these boards caused a
large capacitance, jamming the communication (see figure 3-6).

Connecting three boards (which did not have bad soldering) to the bus did produce the

Figure 3-6: One of the ‘dirty’ microcontroller boards. The soldering causes a high capacitance,
which jams the I2C bus.

wanted results. In summary, this test proved inconclusive due to the lack of enough clean
microcontroller boards.

Control Network of Bi-Directional DC/DC Converters

3-3 Testing & Results 31

3-3-3 Expandability

During the design process a lot of time was taken to make sure the system is easily expandable
and therefore future-proof. Furthermore it should also be easy to grasp the ideas and expand
upon the foundation build in this project. Several design choices confirm this fact:

• Data communication between master and slave using I2C protocol, which is not only
robust but also enables easy connection with new devices. The code is written to expand
on the number of commands if the future designer deems this necessary.

• Programming the microcontroller in C, since this is a common language widely used in
computer architecture especially at the TU Delft Electrical Engineering department.

• Programming the mini computer in C++, which is an enhanced version of C which in-
troduces object oriented programming. This makes communications protocols easy to
comprehend for new groups.

3-3-4 Interactivity

Through the link www.bap2017b.tk, anyone with an active Internet connection can view the
slaves that are currently attached to the ODROID.

Figure 3-7 shows the main page of the site. There is a clickable button for ever slave de-
vice that is connected. Clicking one of these buttons brings the user to a page where they can
set the maximum voltage and current, change the direction of power flow (if possible), and turn
the converter on or off.

To verify the interactivity requirement, access to the website is tested via a Windows PC,
an Android smartphone and an iPhone. Each of these devices can access the website and use
all of its features.

3-3-5 Power Management

To control power management, the microcontroller can set the converter’s voltage and set its
maximum output current. The converter provides the microcontroller with the input and out-
put voltages and currents, which are processed by the Finite State Machine.
The microcontroller sends these quantities to the master via the I2C protocol, where they are
displayed on the website. Via the website, the maximum voltage and current can be set.
To simulate these two functions, two separate tests were implemented:

The test setup described below is to validate whether the control loop (dictated by the FSM)
does what it is expected to do.
To verify this for battery–type loads, a simple resistor-capacitor (RC) circuit was made. This
consisted of a resistor placed parallel with a capacitor seen in figure 3-8. It can be considered a
battery, because applying a voltage to it will charge it. This method is from Electrical Energy
Conversion Practical [52]. The converter PCB was not available yet, so it was simulated by
passing the PWM–signal through a lowpass filter. By doing so, the DC–component of the signal
is extracted and the following relationship is:

Vo ∝ D (3-1)

Control Network of Bi-Directional DC/DC Converters

www.bap2017b.tk

3-3 Testing & Results 32

Figure 3-7: The main window of the web page.

where D is the duty cycle.
This setup also shows a DAC separately so the microcontroller can read the changing power
flow direction. With the test setup, no current flow can be measured directly. The current
measurement is thus performed manually, by connecting the current measurement pin to 3.3V
and ground.

The eight LEDs on the LPC1343 board are configured by software to blink in a certain pattern
depending on the state the FSM is in. By looking at these blinking patterns, it was possible to
determine that the states were looped through as expected, confirming that the FSM is func-
tioning as expected.

To test whether the voltage measurements are sent to the master correctly, the voltage across
the RC–network is measured using a multimeter with a precision of ±0.1mV. The voltage mea-
sured by this device was compared to the voltage displayed on the webpage. The mean deviation
between the two values was 10 mV, which proves that the correct voltages are being transmitted
to the master.

The conclusions that can be drawn from these two test setups are:

1. The system’s FSM is moving along its states as expected.

2. The measurements of the control signals are sent to the master with an accuracy of
±10mV .

To verify the expected behaviour for a resistive load, a resistor was attached to the output of the

Control Network of Bi-Directional DC/DC Converters

3-3 Testing & Results 33

Figure 3-8: RC Circuit to simulate a battery.

simulated converter PCB. When this happens, the voltage quickly ramps up to the maximum
value, as is to be expected. Nevertheless, it has to be taken in consideration that not all resistive
loads require the same voltage level.

With these two setups, several conclusions can be drawn:

1. The states of the Finite State Machine are being walked through as is to be expected from
its design.

2. When a load is being supplied with power by the simulated converter PCB and the
direction variable is changed, this load is no longer being supplied with power. This
confirms that the microcontroller software correctly implements the bi–directional power
flow that it is programmed to do.

At the time of writing the thesis, it was not yet possible to connect the control network with
the converter of the other group. If this were possible, the following test setup would have
been used to show the bi–directionality of the system shown in figure 3-9. This would show the
bi–directional characteristic in combination the adjustable power output at the converters.

Figure 3-9: Test setup for control network combined with bi–directional converter

Control Network of Bi-Directional DC/DC Converters

3-4 Assessment 34

3-4 Assessment

Section 1-1 described the challenges of the control network in combination with the DC/DC
converter. After the prototype was developed, it can regulate the power control signals from
microcontrollers. Furthermore, all the microcontrollers can be connected to one master com-
puter, which controls energy throughput over all power converters. The output data of all slaves
is saved, however, the system does not (visually) analyze the power consumption data. The
power converters were not yet connected to the network and thus it is not yet verified whether
the actual PCB can be controlled via the network.

However, the realized prototype shows the potential of the designed control network of DC/DC
converters. The testing results show that the system is robust and expandable. The setup was
able to keep running without errors for the required test intervals.

All the necessary features to do the desired power management are present in the system,
but is not set up and tested for real-life use yet. It is possible to externally control the different
connected controllers and its control signals, but due to the fact that have not been combined
with the power converter PCBs, no real power flow management has been done yet.

No SOC determination method is implemented as proposed in 2-2-5. Unfortunately, the first
application of the system was meant to involve charging batteries, so this feature was desirable.
However, the method of output determination implemented, as given in section 2-2-4, suffices
for determining the nominal voltage of a load or battery connected. Together with the possible
commands from the user, this design can be used in the desired application, an electrical bike
charging system.

The interactivity of the system suffices as well, as the user is able to access the control website
from any device with a web browser and Internet connection. The user interface is not meant
for a bigger userbase yet, as it is not as convenient as interfaces reviewed in 1-2-4. The current
interface enables total control the networks currents and voltages, as where some features should
be secluded in future designs and replaced by simpler, safe control options, depending on the
type of user (e.g. only turning on/off the charger).

Overall, the created framework for the control network is functioning as desired and shows
potential as framework for future projects.

Control Network of Bi-Directional DC/DC Converters

3-5 Next Steps 35

3-5 Next Steps

The control network was designed for expandablity for future use. As explained in section 2-5,
the project can be used in a number of different applications so future projects could expand
on what is possible with the ground work layed out.

The robustness of the system should be tested under more stressful conditions. In section
3-3-1, the system was tested with three slave devices connected. It is worth exploring if the
same uptime can be achieved while more than three devices are connected.

Testing the modularity (section 3-3-2) proved inconclusive for more than three slave devices,
due to the unavailability of more ‘clean’ microcontrollers. It is of considerable importance that
the design can be verified for at least ten devices. Hardware on the microcontroller boards
allows software to multiplex I2C channels ([20] Table 216). With this technique it is possible to
simulate multiple MCUs on a single microcontroller.
If it proves impossible to connect the minimum amount of slave units on the same bus at a
frequency of 100 kHz, it can be worth investigating if reducing the bus frequency can decrease
communication latency. As a last resort, other communication protocols can be explored.

The interactivity of the website could be greatly expanded upon by adding more features to ap-
peal to the user visually. The interface could be designed for specific purposes. So, for instance,
the State of Charge could be uploaded and visualized on the website, when the energy system
involves charging batteries. Additionally, when used in a solar charging station, a function could
be added that calculates the time that remains until units are fully charged (based on the sun’s
intensity).

Currently, power management is achieved by manually setting the voltages and currents for
each connected converter. In future iterations, the design can be altered so that the user only
needs to set a maximum power value. The software could then automatically calculate the cur-
rents and voltages for each slave unit such that the total power drawn is less than the maximum
power that is set. This is especially useful in applications where peak loads are much larger than
the average load. Having the possibility to ‘smooth out’ the peak consumption is advantageous
because systems can be designed for lower peak loads, reducing their cost drastically.
Another field where power management is useful, is in systems that are driven by unpredictable
power sources, like solar and wind energy.

Control Network of Bi-Directional DC/DC Converters

Bibliography

[1] “Netherlands_gb_dl_33pct_v10_161231_hires,” https://www.tennet.eu/fileadmin/
user_upload/Company/Publications/Gridmaps/ENG/Gridmap_Netherlands_ENG.pdf,
(Accessed on 06/15/2017).

[2] H. Lund, A. N. Andersen, P. A. Ã~stergaard, B. V. Mathiesen, and D. Connolly,
“From electricity smart grids to smart energy systems â€“ a market operation
based approach and understanding,” Energy, vol. 42, no. 1, pp. 96 – 102,
2012, 8th World Energy System Conference, WESC 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0360544212002836

[3] P. Mancarella, “Smart multi-energy grids: Concepts, benefits and challenges,” in 2012
IEEE Power and Energy Society General Meeting, July 2012, pp. 1–2.

[4] S. Eren, D. Küçük, C. Ünlüer, M. Demircioĝlu, Y. Arslan, and S. Sönmez, “A web-based
dispatcher information system for electricity transmission grid monitoring and analysis,”
in 2015 9th International Conference on Electrical and Electronics Engineering (ELECO),
Nov 2015, pp. 986–990.

[5] G. Lacey, G. Putrus, and E. Bentley, “Smart ev charging schedules: supporting the grid
and protecting battery life,” IET Electrical Systems in Transportation, vol. 7, no. 1, pp.
84–91, 2017.

[6] “Toon, de slimme thermostaat,” https://www.eneco.nl/toon-thermostaat/, (Accessed on
06/15/2017).

[7] “Meet the nest learning thermostat | nest,” https://nest.com/thermostat/
meet-nest-thermostat/?from-chooser=true, (Accessed on 06/15/2017).

[8] D. Brouwer and D. Veselka, “Project sunrise gebruikersinterface voor het e-bike oplaadsta-
ton,” Master’s thesis, Delft University of Technology, 6 2016, groep D, Team HTML.

[9] T. H. en Job van Staveren, “Project sunrise gebruikersinterface voor het e-bike oplaadsta-
ton,” Master’s thesis, Delft University of Technology, 6 2016, groep D, Team ODROID.

[10] A. el Mehdi and T. de Moor, “Project sunrise gebruikersinterface voor het e-bike oplaad-
staton,” Master’s thesis, Delft University of Technology, 6 2016, groep D, Team Server.

Control Network of Bi-Directional DC/DC Converters

https://www.tennet.eu/fileadmin/user_upload/Company/Publications/Gridmaps/ENG/Gridmap_Netherlands_ENG.pdf
https://www.tennet.eu/fileadmin/user_upload/Company/Publications/Gridmaps/ENG/Gridmap_Netherlands_ENG.pdf
http://www.sciencedirect.com/science/article/pii/S0360544212002836
https://www.eneco.nl/toon-thermostaat/
https://nest.com/thermostat/meet-nest-thermostat/?from-chooser=true
https://nest.com/thermostat/meet-nest-thermostat/?from-chooser=true

37

[11] D. L. Heine and M. S. Lam, “A practical flow-sensitive and context-sensitive c and
c++ memory leak detector,” in Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, ser. PLDI ’03. New York, NY, USA:
ACM, 2003, pp. 168–181. [Online]. Available: http://doi.acm.org/10.1145/781131.781150

[12] C. Erickson, “Memory leak detection in embedded systems,” Linux J., vol. 2002, no. 101,
pp. 9–, Sep. 2002. [Online]. Available: http://dl.acm.org/citation.cfm?id=566949.566958

[13] P. Bauer, “Solar e-bike station,” http://www.ewi.tudelft.nl/en/the-faculty/
departments/electrical-sustainable-energy/dc-systems-energy-conversion-storage/
research/solar-e-bike-station/.

[14] H. la Poutre, “Smart grid and ict,” 2016.

[15] T. Gerrits, G. Koolman, and B. van der Werk, “Design of a bi–directional flyback dc/dc
converter,” Master’s thesis, Delft University of Technology, June 2017, groep B.

[16] Wikipedia, “Texas instruments tms320 — wikipedia, the free encyclopedia,” 2017, [Online;
accessed 1-June-2017]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Texas_Instruments_TMS320&oldid=765888736

[17] “Controlsuite controlsuite™software suite: Essential software and development tools
for c2000™microcontrollers | ti.com,” http://www.ti.com/tool/controlsuite, (Accessed on
06/01/2017).

[18] “Arduino - arduinoboardnano,” https://www.arduino.cc/en/Main/ArduinoBoardNano,
(Accessed on 06/01/2017).

[19] “Why i’m ditching the arduino software platform - alan’s ramblings,” http://bleaklow.
com/2012/02/29/why_im_ditching_the_arduino_software_platform.html, (Accessed on
06/18/2017).

[20] NXP, “Um10375 datasheet,” https://blackboard.tudelft.nl/bbcswebdav/
pid-2765680-dt-content-rid-9451117_2/courses/40206-161703/UM10375.pdf, June 2009,
(Accessed on 06/14/2017).

[21] B. W. Kernighan, The C Programming Language, 2nd ed., D. M. Ritchie, Ed. Prentice
Hall Professional Technical Reference, 1988.

[22] X. van Rijnsoever, Lab Manual Computer Architecture and Organisation, March 2017.

[23] F. Leens, “An introduction to i2c and spi protocols,” IEEE Instrumentation Measurement
Magazine, vol. 12, no. 1, pp. 8–13, February 2009.

[24] E. Ziouva and T. Antonakopoulos, “Csma/ca performance under high traffic conditions:
throughput and delay analysis,” Computer Communications, vol. 25, no. 3, pp.
313 – 321, 2002. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0140366401003693

[25] Unknown, “Charging lithium-ion batteries,” http://batteryuniversity.com/learn/article/
charging_lithium_ion_batteries, 2010.

[26] F. Zhou and W. Xiong, “Using pwm output as a digital-to-analog converter on dsp,” in
2010 International Conference on System Science, Engineering Design and Manufacturing
Informatization, vol. 2, Nov 2010, pp. 278–281.

Control Network of Bi-Directional DC/DC Converters

http://doi.acm.org/10.1145/781131.781150
http://dl.acm.org/citation.cfm?id=566949.566958
http://www.ewi.tudelft.nl/en/the-faculty/departments/electrical-sustainable-energy/dc-systems-energy-conversion-storage/research/solar-e-bike-station/
http://www.ewi.tudelft.nl/en/the-faculty/departments/electrical-sustainable-energy/dc-systems-energy-conversion-storage/research/solar-e-bike-station/
http://www.ewi.tudelft.nl/en/the-faculty/departments/electrical-sustainable-energy/dc-systems-energy-conversion-storage/research/solar-e-bike-station/
https://en.wikipedia.org/w/index.php?title=Texas_Instruments_TMS320&oldid=765888736
https://en.wikipedia.org/w/index.php?title=Texas_Instruments_TMS320&oldid=765888736
http://www.ti.com/tool/controlsuite
https://www.arduino.cc/en/Main/ArduinoBoardNano
http://bleaklow.com/2012/02/29/why_im_ditching_the_arduino_software_platform.html
http://bleaklow.com/2012/02/29/why_im_ditching_the_arduino_software_platform.html
https://blackboard.tudelft.nl/bbcswebdav/pid-2765680-dt-content-rid-9451117_2/courses/40206-161703/UM10375.pdf
https://blackboard.tudelft.nl/bbcswebdav/pid-2765680-dt-content-rid-9451117_2/courses/40206-161703/UM10375.pdf
http://www.sciencedirect.com/science/article/pii/S0140366401003693
http://www.sciencedirect.com/science/article/pii/S0140366401003693
http://batteryuniversity.com/learn/article/charging_lithium_ion_batteries
http://batteryuniversity.com/learn/article/charging_lithium_ion_batteries

38

[27] M. Murnane and A. Ghazel, “A closer look at state of
charge and state health estimation techniques,” http://www.
analog.com/media/en/technical-documentation/technical-articles/
A-Closer-Look-at-State-Of-Charge-and-State-Health-Estimation-Techniques-....pdf,
2013, (Accessed on 06/01/2017).

[28] O. Gérard, J.-N. Patillon, and F. d’Alché Buc, Neural network adaptive modeling of
battery discharge behavior. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp.
1095–1100. [Online]. Available: http://dx.doi.org/10.1007/BFb0020299

[29] W. Z. Caiping Zhang and S. M. Sharkh, “Estimation of state of charge of lithium-ion
batteries used in hev using robust extended kalman filtering,” http://www.mdpi.com/
1996-1073/5/4/1098/htm, 2012, (Accessed on 06/06/2017).

[30] “Odroid | hardkernel,” http://www.hardkernel.com/main/products/prdt_info.php?g_
code=G143703355573&tab_idx=2, (Accessed on 06/06/2017).

[31] B. Stroustrup, The C++ Programming Language, 3rd ed. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2000.

[32] N. M. Josuttis, The C++ standard library: a tutorial and reference. Addison-Wesley,
2012.

[33] “new operator (c++),” https://msdn.microsoft.com/en-us/library/kewsb8ba(VS.71).aspx,
(Accessed on 06/18/2017).

[34] D. Crockford, “The application/json media type for javascript object notation (json),”
2006.

[35] I. Nassi and B. Shneiderman, “Flowchart techniques for structured programming,” ACM
Sigplan Notices, vol. 8, no. 8, pp. 12–26, 1973.

[36] “Post (http) - wikipedia,” https://en.wikipedia.org/wiki/POST_(HTTP), (Accessed on
06/08/2017).

[37] M. Widenius and D. Axmark, Mysql Reference Manual, 1st ed., P. DuBois, Ed. Sebastopol,
CA, USA: O’Reilly & Associates, Inc., 2002.

[38] “Db-engines ranking - popularity ranking of relational dbms,” https://db-engines.com/en/
ranking/relational+dbms, (Accessed on 06/18/2017).

[39] “Php: Hypertext preprocessor,” https://secure.php.net/, (Accessed on 06/19/2017).

[40] “Iso/iec 15445:2000(e) iso-html,” https://www.scss.tcd.ie/misc/15445/15445.html, (Ac-
cessed on 06/19/2017).

[41] Wikipedia, “Javascript — wikipedia, the free encyclopedia,” https://en.wikipedia.org/w/
index.php?title=JavaScript, 2017, [Online; accessed 19-June-2017].

[42] N. Lohmann, “Github - nlohmann/json: Json for modern c++,” https://github.com/
nlohmann/json, (Accessed on 06/19/2017).

[43] J.-P. Barrette-LaPierre, “curlpp by jpbarrette,” http://www.curlpp.org/, (Accessed on
06/19/2017).

[44] G. Henderson, “Wiringpi,” http://wiringpi.com/, (Accessed on 06/19/2017).

[45] “jquery,” https://jquery.com/, (Accessed on 06/19/2017).

Control Network of Bi-Directional DC/DC Converters

http://www.analog.com/media/en/technical-documentation/technical-articles/A-Closer-Look-at-State-Of-Charge-and-State-Health-Estimation-Techniques-....pdf
http://www.analog.com/media/en/technical-documentation/technical-articles/A-Closer-Look-at-State-Of-Charge-and-State-Health-Estimation-Techniques-....pdf
http://www.analog.com/media/en/technical-documentation/technical-articles/A-Closer-Look-at-State-Of-Charge-and-State-Health-Estimation-Techniques-....pdf
http://dx.doi.org/10.1007/BFb0020299
http://www.mdpi.com/1996-1073/5/4/1098/htm
http://www.mdpi.com/1996-1073/5/4/1098/htm
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143703355573&tab_idx=2
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143703355573&tab_idx=2
https://msdn.microsoft.com/en-us/library/kewsb8ba(VS.71).aspx
https://en.wikipedia.org/wiki/POST_(HTTP)
https://db-engines.com/en/ranking/relational+dbms
https://db-engines.com/en/ranking/relational+dbms
https://secure.php.net/
https://www.scss.tcd.ie/misc/15445/15445.html
https://en.wikipedia.org/w/index.php?title=JavaScript
https://en.wikipedia.org/w/index.php?title=JavaScript
https://github.com/nlohmann/json
https://github.com/nlohmann/json
http://www.curlpp.org/
http://wiringpi.com/
https://jquery.com/

39

[46] “Bootstrap · the world’s most popular mobile-first and responsive front-end framework.”
http://getbootstrap.com/, (Accessed on 06/19/2017).

[47] “Font awesome, the iconic font and css toolkit,” http://fontawesome.io/, (Accessed on
06/19/2017).

[48] “jquery ui,” https://jqueryui.com/, (Accessed on 06/19/2017).

[49] dwyl, “Github - dwyl/range-touch: Use html5 range input on touch devices (iphone,
ipad & android) without bloatware!” https://github.com/dwyl/range-touch, (Accessed
on 06/19/2017).

[50] M. Wieser, “Webgl 3d model view using three.js,” https://manu.ninja/
webgl-3d-model-viewer-using-three-js, (Accessed on 06/16/2017).

[51] “3d builder,” https://www.microsoft.com/nl-nl/store/p/3d-builder/9wzdncrfj3t6, (Ac-
cessed on 06/19/2017).

[52] P. I. P. Bauer, “Ee2e11 electrical energy conversion student manual,” 2015-2016.

Control Network of Bi-Directional DC/DC Converters

http://getbootstrap.com/
http://fontawesome.io/
https://jqueryui.com/
https://github.com/dwyl/range-touch
https://manu.ninja/webgl-3d-model-viewer-using-three-js
https://manu.ninja/webgl-3d-model-viewer-using-three-js
https://www.microsoft.com/nl-nl/store/p/3d-builder/9wzdncrfj3t6

Appendices

Control Network of Bi-Directional DC/DC Converters

Appendix A: Slave Source Code

Listing A.1: main.c
1 /* Includes */
2 #include <stdbool.h>
3 #include <stdint.h>
4 #include "LPC13xx.h"
5 #include "definitions.h"
6 #include "prototypes.h"
7

8 /* Global Variables */
9 int state = RESET_STATE;

10 int totalLength = 0;
11 int lengthLeft = 0;
12 int I2C_addr = I2C_SLAVE_ADDRESS;
13 int cstate = cRESET, cnew_state;
14 unsigned int voltage1 = 0;
15 unsigned int current1 = 0;
16 unsigned int voltage2 = 0;
17 unsigned int current2 = 0;
18

19 unsigned int next_i = 0;
20 unsigned int current1_buffer[TAKE_AVERAGE] = {0};
21 unsigned int current2_buffer[TAKE_AVERAGE] = {0};
22 unsigned int voltage1_buffer[TAKE_AVERAGE] = {0};
23 unsigned int voltage2_buffer[TAKE_AVERAGE] = {0};
24

25 unsigned int maxVoltage = 1024;
26 unsigned int maxCurrent = 1024;
27 unsigned int powered_on = 1;
28 unsigned int PWM1 = PWM1_START;
29 unsigned int PWM2 = PWM2_START;
30

31 unsigned int output_volt = 0;
32 unsigned int output_current = 0;
33

34 bool directionValue = true; // Left to Right = true, Right to left = false
35 uint8_t tmp_rcv;
36 uint8_t toSend;
37 int bufferArray[numberOfElementsInMyArray]; // Set maximum of 10 bytes, easy.
38 int control;
39 unsigned int Timeout_ms = 0;
40 unsigned int Timeout_ms2 = 0;
41 unsigned int ADC_Data[4] = {0, 0, 0, 0};
42 /* END OF Global Variables */
43

44 int main (void)
45 {

Control Network of Bi-Directional DC/DC Converters

42

46 /* The Charging routine is executed in the main() function
47 An in−depth explanation of this Finite State Machine is
48 given in the design report.
49 */
50 initI2C();
51 initTimer();
52 initADC();
53 init_leds();
54 init_PWM();
55 pin_high_1();
56 pin_high_2();
57 timer_start_1();
58 timer_start_2();
59

60 int I_track = INCREMENT_THRESHOLD;
61 int V_track = INCREMENT_THRESHOLD;
62 unsigned int I_previous = 0, V_previous = 0;
63 unsigned int currentReadOut = 0;
64 unsigned int voltageReadOut = 0;
65

66 while(1)
67 {
68 if((Timeout_ms%100)==0)
69 {
70 if(directionValue)
71 {
72 currentReadOut = current1;
73 voltageReadOut = voltage1;
74 }else{
75 currentReadOut = current2;
76 voltageReadOut = voltage2;
77 }
78 switch(cstate)
79 {
80 case cRESET:
81 I_track = INCREMENT_THRESHOLD;
82 V_track = INCREMENT_THRESHOLD;
83 lightshow(SCAN);
84 output_volt = 0;
85 output_current = 0;
86 if (voltageReadOut > 500)
87 {
88 cnew_state = cRAMP_VOLTAGE;
89 }else{
90 cnew_state = cRESET;
91 }
92 break;
93 case cRAMP_VOLTAGE:
94 lightshow(DISCHARGING);
95 if(output_volt < maxVoltage)
96 {
97 output_volt += dV;
98 }
99 if(output_current < maxCurrent)

100 {
101 output_current += dV;
102 }
103

104 if (currentReadOut ≤ I_previous)
105 {
106 I_track−−;
107 }
108 if (I_track > 0)

Control Network of Bi-Directional DC/DC Converters

43

109 {
110 cnew_state = cRAMP_VOLTAGE;
111 }else{
112 cnew_state = cNOMINAL;
113 }
114 break;
115 case cNOMINAL:
116 lightshow(DISCHARGING);
117 output_volt += 0;
118 output_current += maxCurrent;
119 if (currentReadOut < 500)
120 {
121 cnew_state = cPINCH_OFF;
122 }else{
123 cnew_state = cNOMINAL;
124 }
125 break;
126 case cPINCH_OFF:
127 lightshow(DISCHARGING);
128 output_volt += 0;
129 output_current += 0;
130 if (currentReadOut < 50)
131 {
132 cnew_state = cDONE;
133 }else{
134 cnew_state = cPINCH_OFF;
135 }
136 if (voltageReadOut ≤ V_previous)
137 {
138 V_track−−;
139 }else{
140 V_track ++;
141 }
142 if (V_track > 0)
143 {
144 cnew_state = cPINCH_OFF;
145 }else{
146 cnew_state = cDONE;
147 }
148 break;
149 case cDONE:
150 lightshow(FLICKER);
151 output_volt += 0;
152 output_current = 0;
153 if (voltageReadOut < 50)
154 {
155 cnew_state = cRESET;
156 }else{
157 cnew_state = cDONE;
158 }
159 break;
160 default:
161 set_leds(42);
162 break;
163 }
164 if ((currentReadOut<50) && (voltageReadOut<50))
165 {
166 cnew_state = cRESET;
167 }
168

169 if(!powered_on)
170 {
171 cnew_state = cRESET;

Control Network of Bi-Directional DC/DC Converters

44

172 }
173 I_previous = currentReadOut;
174 V_previous = voltageReadOut;
175 PWM1 = MIN(output_volt,maxVoltage);
176 PWM2 = MIN(output_current,maxCurrent);
177 update_PWM_1();
178 update_PWM_2();
179 cstate = cnew_state;
180 renew_ADC();
181 Timeout_ms = 1;
182 }
183 }
184 }

Listing A.2: implementations.c
1 #ifndef IMPLEMENTATIONS_C
2 #define IMPLEMENTATIONS_C
3

4 #include "prototypes.h"
5 #include "LPC13xx.h"
6 #include "definitions.h"
7 #include <stdbool.h>
8 extern unsigned int PWM1, PWM2, powered_on;
9

10 /** Custom I2C Protocol Helper Functions **/
11 void receiveEvent(int x)
12 {
13 /* This function executes actions when databytes are received
14 from the master. It does this in accordance with the custom
15 I2C protocol that has been developed for this project.
16 */
17 extern int totalLength, lengthLeft, state;
18 extern int bufferArray[numberOfElementsInMyArray];
19 int tempI = totalLength − lengthLeft;
20 switch (state)
21 {
22 case RESET_STATE:
23 if (x > 0 && x ≤ MAX_BEGIN_STATE)
24 {
25 /* If the received data x is within a range that is legal for ...

states,
26 the state is set to x.
27 */
28 state = x;
29 }
30 break;
31 case VOLT_READ_STATE:
32 case CURRENT_READ_STATE:
33 case TURN_ON_OFF:
34 case MASTER_SET_DIRECTION:
35 case SET_PWM_1_STATE:
36 case SET_PWM_2_STATE:
37 case NEW_ADDRESS_STATE:
38 /* The number of I2C packets that is going to be sent/received by the ...

master
39 is given by lengthLeft
40 */
41 if (totalLength == 0)
42 {
43 totalLength = x;
44 lengthLeft = x;

Control Network of Bi-Directional DC/DC Converters

45

45 }
46 else
47 {
48 bufferArray[tempI] = x;
49 if (lengthLeft == 1)
50 {
51 done_with(state);
52 }
53 else
54 {
55 lengthLeft−−;
56 }
57 }
58 break;
59 /* Below are all slave −−> master writes
60 */
61 case VOLT1_WRITE_STATE:
62 case VOLT2_WRITE_STATE:
63 case CURRENT1_WRITE_STATE:
64 case CURRENT2_WRITE_STATE:
65 case READ_SLAVE_DIRECTION:
66 default:
67 state = RESET_STATE;
68 break;
69 }
70

71 }
72 void requestEvent()
73 {
74 /* This function executes actions when databytes are sent
75 to the master. It does this in accordance with the custom
76 I2C protocol that has been developed for this project.
77 */
78 extern int totalLength, lengthLeft, state,cstate;
79 extern unsigned int voltage1, voltage2, current1, current2, powered_on, ...

PWM1, PWM2;
80 extern int bufferArray[numberOfElementsInMyArray];
81 extern bool directionValue;
82 extern uint8_t toSend;
83

84 switch (state)
85 {
86 case VOLT1_WRITE_STATE:
87 case VOLT2_WRITE_STATE:
88 case CURRENT1_WRITE_STATE:
89 case CURRENT2_WRITE_STATE:
90 case READ_PWM_1_STATE:
91 case READ_PWM_2_STATE:
92 case READ_CHARGE_STATE:
93 if (totalLength == 0)
94 {
95 /* Integers are being sent over the I2C bus.
96 These are typically 4 bytes long, but for portability reasons...

,
97 their length is defined through a constant called ...

INT_SIZE_BYTE
98 */
99 totalLength = INT_SIZE_BYTE;

100 lengthLeft = INT_SIZE_BYTE;
101 toSend = INT_SIZE_BYTE;
102 }
103 else
104 {

Control Network of Bi-Directional DC/DC Converters

46

105 /* Decide which measurement (volt1, current1, etc..) to send
106 */
107 int value;
108 if (state == VOLT1_WRITE_STATE)
109 {
110 value = voltage1;
111 }
112 else if (state == VOLT2_WRITE_STATE)
113 {
114 value = voltage2;
115 }
116 else if (state == CURRENT1_WRITE_STATE)
117 {
118 value = current1;
119 }
120 else if (state == CURRENT2_WRITE_STATE)
121 {
122 value = current2;
123 }
124 else if (state == READ_PWM_1_STATE)
125 {
126 value = PWM1;
127 }
128 else if (state == READ_PWM_2_STATE)
129 {
130 value = PWM2;
131 }
132 else if (state == READ_CHARGE_STATE)
133 {
134 value = cstate;
135 }
136 /* Sends the variable 'value' by sliding the 8bit window 0x00FF ...

over it
137 */
138 toSend = (uint8_t)((value & (0x00FF << (totalLength − lengthLeft)...

* 8)) >> (totalLength − lengthLeft) * 8);
139 lengthLeft−−;
140

141 if (lengthLeft == 0)
142 {
143 done_with(state);
144 }
145 }
146 break;
147 case READ_SLAVE_DIRECTION:
148 /* The direction is a single bit, thus only one I2C packet needs to ...

be sent,
149 which is why totalLength is set to 1
150 */
151 if (totalLength == 0)
152 {
153 totalLength = 1;
154 lengthLeft = 1;
155 toSend = 1;
156 }
157 else
158 {
159 toSend = directionValue;
160 done_with(state);
161 }
162 break;
163

164 case READ_POWER_STATE:

Control Network of Bi-Directional DC/DC Converters

47

165 if (totalLength == 0)
166 {
167 totalLength = 1;
168 lengthLeft = 1;
169 toSend = 1;
170 }
171 else
172 {
173 toSend = powered_on;
174 done_with(state);
175 }
176 break;
177

178 default:
179 /* If the received data was other than expected, return −1 so the ...

master
180 knows something has gone wrong.
181 */
182 state = RESET_STATE;
183 toSend = −1;
184 break;
185 }
186 }
187 void reset_buffer()
188 {
189 /* This function clears the I2C−buffer by writing
190 zeros to its elements. It also puts the slave's
191 I2C state into the reset mode.
192 */
193 extern int state, totalLength, lengthLeft;
194 extern int bufferArray[numberOfElementsInMyArray];
195 state = RESET_STATE;
196 totalLength = 0;
197 lengthLeft = 0;
198 for(int i = 0; i<numberOfElementsInMyArray; i++)
199 {
200 bufferArray[i]=0;
201 }
202 }
203 void done_with(int state)
204 {
205 /* This routine is executed at the end of a successful I2C conversation.
206 The received packets are interpreted and, depending on which state the ...

slave is in,
207 commands are executed from the master.
208 */
209 extern unsigned int maxVoltage, maxCurrent, powered_on, PWM1, PWM2;
210 extern int bufferArray[numberOfElementsInMyArray];
211 extern void initI2C();
212 extern int cnew_state, cstate;
213 extern int I2C_addr;
214 extern int totalLength;
215 extern bool directionValue;
216 extern void update_PWM_1();
217 extern void update_PWM_2();
218 extern void delay_ms();
219

220 unsigned int temp_value = 0;
221 for(int i = 0; i<totalLength; i++)
222 {
223 /* This loop 'interprets' the array of 8bit integers into a 32bit (or ...

more) integer
224 */

Control Network of Bi-Directional DC/DC Converters

48

225 temp_value += bufferArray[i] << (8*i);
226 }
227 /* Executes the command that was issued by the master
228 */
229 if (state == VOLT_READ_STATE)
230 {
231 maxVoltage = temp_value;
232 }
233 else if (state == CURRENT_READ_STATE)
234 {
235 maxCurrent = temp_value;
236 }
237 else if(state == TURN_ON_OFF)
238 {
239 powered_on = temp_value;
240 if(!powered_on)
241 {
242 PWM1=0;
243 PWM2=0;
244 cnew_state = cRESET;
245 cstate = cRESET;
246 }
247 update_PWM_1();
248 update_PWM_2();
249 }
250 else if(state == MASTER_SET_DIRECTION)
251 {
252 directionValue = temp_value;
253 cnew_state = cRESET;
254 cstate = cRESET;
255 }
256 else if(state == SET_PWM_1_STATE)
257 {
258 PWM1 = temp_value;
259 update_PWM_1();
260 }
261 else if(state == SET_PWM_2_STATE)
262 {
263 PWM2 = temp_value;
264 update_PWM_2();
265 }
266 else if(state == NEW_ADDRESS_STATE)
267 {
268 I2C_addr = temp_value; //
269 initI2C();
270 }
271 reset_buffer();
272 }
273 /** End of Custom I2C Protocol Functions **/
274

275 /** LED Functions **/
276 void init_leds (void)
277 {
278 /* This function initializes the LED pins
279 */
280 /* The direction (IN or OUT) of the leds has to be set before use.
281 Writing a 1 to the correct bit in the DIR register sets the pin as ...

output
282 */
283 // Leds 0−3 are on PIO3_0−PIO3_3
284 LPC_GPIO3−>DIR |= (1<<3) | (1<<2) | (1<<1) | (1<<0);
285 // Leds 4−7 are on PIO2_4−PIO2_7
286 LPC_GPIO2−>DIR |= (1<<7) | (1<<6) | (1<<5) | (1<<4);

Control Network of Bi-Directional DC/DC Converters

49

287 }
288 void led_on (void)
289 {
290 LPC_GPIO3−>DATA = LPC_GPIO3−>DATA & ¬(0x02);
291 }
292

293 void set_leds (uint8_t leds)
294 {
295 /* Controls the array of 8 LEDs as follows:
296 the variable 'leds' is to be interpreted as an 8bit number.
297 Positions where 'leds' is 1 correspond to the LEDs that are
298 turned on on the microcontroller development board.
299 */
300 uint32_t leds_low_data = ¬leds & 0x0F;
301 uint32_t leds_high_data = ¬leds & 0xF0;
302 LPC_GPIO3−>DATA = (LPC_GPIO3−>DATA & ¬0x0F) | leds_low_data;
303 LPC_GPIO2−>DATA = (LPC_GPIO2−>DATA & ¬0xF0) | leds_high_data;
304 }
305 void lightshow(int mode)
306 {
307 extern unsigned int Timeout_ms2;
308 if(!powered_on)
309 {
310 set_leds(0);
311 return;
312 }
313 /* T_ms is the period at which the LEDs will perform their routine
314 */
315 int T_ms = 1000;
316 int k;
317 /* The lightshows have different 'states' depending on the local timer
318 Timeout_ms2 MODULO the period T_ms.
319 */
320 int T_mod = Timeout_ms2%T_ms;
321 switch(mode)
322 {
323 case FLICKER:
324 /* Toggles all the LEDs every half period of T_ms
325 */
326 if(T_mod > T_ms / 2)
327 {
328 set_leds(511);
329 }
330 else
331 {
332 set_leds(0);
333 }
334 break;
335 case CHARGING:
336 /* Turns on k leds when the time MODULO the period is k/9
337 */
338 for (k=0; k<9; k++)
339 {
340 if ((T_mod > (T_ms*k/9)) && (T_mod <(T_ms*(k+1)/9)))
341 {
342 set_leds(ones(k));
343 break;
344 }
345 }
346 break;
347 case DISCHARGING:
348 /* Turns on 9−k leds when the time MODULO the period is k/9
349 */

Control Network of Bi-Directional DC/DC Converters

50

350 for (k=0; k<9; k++)
351 {
352 if ((T_mod > (T_ms*k/9)) && (T_mod <(T_ms*(k+1)/9)))
353 {
354 set_leds(ones(9−k));
355 break;
356 }
357 }
358 break;
359 case SCAN:
360 /* Turns on LED number k when the time MODULO the period is k/9
361 */
362 for (k = 0; k<9; k++)
363 {
364 if ((T_mod > (T_ms*k/9)) && (T_mod <(T_ms*(k+1)/9)))
365 {
366 set_leds(1<<k);
367 break;
368 }
369 }
370 break;
371 default:
372 /* When an incorrect argument is passed to this function,
373 turns on a specific set of LEDs
374 */
375 set_leds(42);
376 break;
377 }
378 return;
379 }
380 int ones(int k)
381 {
382 /* Recursively calculates the binary number that
383 consists of k ones (for example 3, 15, 511).
384 The recursive relationship that is used is:
385 N_k = 2*N_(k−1) + 1
386 */
387 if (k==1 || k==0)
388 {
389 return 1;
390 }
391 else
392 {
393 return ((ones(k−1)<<1)+1);
394 }
395 }
396 /** End of LED Functions **/
397

398 /** PWM Helper Functions **/
399 void pin_low_1()
400 {
401 LPC_GPIO1−>DATA = LPC_GPIO1−>DATA & ¬(1<<6);
402 }
403 void pin_high_1()
404 {
405 LPC_GPIO1−>DATA = LPC_GPIO1−>DATA | (1<<6);
406 }
407 void pin_low_2()
408 {
409 LPC_GPIO1−>DATA = LPC_GPIO1−>DATA & ¬(1<<7);
410 }
411 void pin_high_2()
412 {

Control Network of Bi-Directional DC/DC Converters

51

413 LPC_GPIO1−>DATA = LPC_GPIO1−>DATA | (1<<7);
414 }
415 void timer_start_1()
416 {
417 LPC_TMR32B0−>TCR = 0b01;
418 }
419 void timer_start_2()
420 {
421 LPC_TMR32B1−>TCR = 0b01;
422 }
423 void timer_stop_1()
424 {
425 LPC_TMR32B0−>TCR = 0b10;
426 }
427 void timer_stop_2()
428 {
429 LPC_TMR32B1−>TCR = 0b10;
430 }
431 void update_PWM_1()
432 {
433 extern unsigned int powered_on, PWM1, PWM2;
434 timer_stop_1();
435

436 if(powered_on==0)
437 {
438 pin_low_1();
439 return;
440 }
441

442 if(PWM1>TOTALOUTPUTS−MAX_RANGE_OUTPUT)
443 {
444 LPC_TMR32B0−>MR0 = TOTALOUTPUTS*2;
445 }else{
446 LPC_TMR32B0−>MR0 = PWM1;
447 }
448 if(PWM1==0)
449 {
450 /* The PWM should stay off when it is 0
451 */
452 }
453 else
454 {
455 timer_start_1();
456 }
457

458 }
459 void update_PWM_2()
460 {
461 extern unsigned int PWM1, PWM2;
462 timer_stop_2();
463 if(powered_on==0)
464 {
465 pin_low_2();
466 return;
467 }
468 if(PWM2>TOTALOUTPUTS−MAX_RANGE_OUTPUT)
469 {
470 LPC_TMR32B1−>MR0 = TOTALOUTPUTS*2;
471 }
472 else
473 {
474 LPC_TMR32B1−>MR0 = PWM2;
475 }

Control Network of Bi-Directional DC/DC Converters

52

476 if(PWM1==0)
477 {
478

479 }
480 else
481 {
482 timer_start_2();
483 }
484 }
485 /** End of PWM Helper Functions **/
486

487 /** ADC Functions **/
488 extern unsigned int next_i;
489 extern unsigned int current1_buffer[TAKE_AVERAGE];
490 extern unsigned int current2_buffer[TAKE_AVERAGE];
491 extern unsigned int voltage1_buffer[TAKE_AVERAGE];
492 extern unsigned int voltage2_buffer[TAKE_AVERAGE];
493 extern unsigned int voltage1,voltage2,current1,current2;
494 void renew_ADC()
495 {
496 /* renew_ADC() updates the global variables voltage1,2 and current1,2
497 when it is called. The data is filtered (by using a moving average)
498 so that high frequency noise is rejected. The filter length is ...

defined
499 by TAKE_AVERAGE
500 */
501 unsigned int temp_current1 = 0;
502 unsigned int temp_current2 = 0;
503 unsigned int temp_voltage1 = 0;
504 unsigned int temp_voltage2 = 0;
505

506 /* Reads out the ADC Data registers. The 10 data bits that we are
507 interested in are located at positions 6 to 15, so these are
508 extracted using a bit mask (0x3FF).
509 */
510 voltage1_buffer[next_i] = (LPC_ADC−>DR0 & (0x3FF<<6))>>6;
511 voltage2_buffer[next_i] = (LPC_ADC−>DR1 & (0x3FF<<6))>>6;
512 current1_buffer[next_i] = (LPC_ADC−>DR2 & (0x3FF<<6))>>6;
513 current2_buffer[next_i] = (LPC_ADC−>DR3 & (0x3FF<<6))>>6;
514

515 next_i++;
516 if(next_i==TAKE_AVERAGE)
517 {
518 next_i = 0;
519 }
520

521 /* The moving average filter operation is performed below by adding
522 the most recent TAKE_AVERAGE elements and dividing by TAKE_AVERAGE
523 */
524 for(int i = 0; i<TAKE_AVERAGE; i++)
525 {
526 temp_current1 += current1_buffer[i];
527 temp_current2 += current2_buffer[i];
528 temp_voltage1 += voltage1_buffer[i];
529 temp_voltage2 += voltage2_buffer[i];
530 }
531 current1 = temp_current1/TAKE_AVERAGE;
532 current2 = temp_current2/TAKE_AVERAGE;
533 voltage1 = temp_voltage1/TAKE_AVERAGE;
534 voltage2 = temp_voltage2/TAKE_AVERAGE;
535 }
536 /** End of ADC Functions **/
537

Control Network of Bi-Directional DC/DC Converters

53

538 /** Delay Functions **/
539 /* Provided by the TU Delft EE3D11 Course Lab
540 */
541 static uint32_t ticks_in_ms = CLK_FREQ/1000;
542 static uint32_t ticks_in_us = CLK_FREQ/1000000;
543 void init_delay (void)
544 {
545 SystemCoreClockUpdate ();
546 ticks_in_ms = (SystemCoreClock/1000);
547 ticks_in_us = (SystemCoreClock/1000000);
548 }
549 void delay_us (uint32_t us) __attribute__ ((optimize("Os"), noclone));
550 void delay_ms (uint32_t ms) __attribute__ ((optimize("Os"), noclone));
551 void delay_ms (uint32_t ms)
552 {
553 while (ms−−)
554 {
555 delay_us (1000);
556 }
557 }
558 void delay_us (uint32_t us)
559 {
560 static uint32_t local_ticks_in_us;
561 while (us−−)
562 {
563 local_ticks_in_us = ticks_in_us/8;
564 do { __NOP (); __NOP (); } while (−−local_ticks_in_us);
565 }
566 }
567 /** End of Delay Functions **/
568 #endif // IMPLEMENTATIONS_C

Listing A.3: ISR_Handlers.c
1 #ifndef ISR_HANDLERS_C
2 #define ISR_HANDLERS_C
3 #include "LPC13xx.h"
4 #include "definitions.h"
5 #include "prototypes.h"
6 extern uint8_t tmp_rcv, toSend;
7 extern int control;
8 extern int lengthLeft;
9 void TIMER_32_0_Handler()

10 {
11 /* This function asserts and deasserts the PWM signal of TMR32B0
12 based on an NSD given in the Design Report.
13 */
14

15 if(LPC_TMR32B0−>IR & (0b1<<3)) // If MR3 is set
16 {
17 pin_high_1();
18 LPC_TMR32B0−>IR = (1<<3);
19 }
20 if(LPC_TMR32B0−>IR & 0b1) // If MR0 is set
21 {
22 pin_low_1();
23 LPC_TMR32B0−>IR = 0b1;
24 }
25 }
26 void TIMER_32_1_Handler()
27 {
28 /* This function asserts and deasserts the PWM signal of TMR32B1

Control Network of Bi-Directional DC/DC Converters

54

29 based on an NSD given in the Design Report.
30 */
31 if(LPC_TMR32B1−>IR & (0b1<<3)) // If MR3 is set
32 {
33 pin_high_2();
34 LPC_TMR32B1−>IR = (1<<3);
35 }
36 if(LPC_TMR32B1−>IR & 0b1) // If MR0 is set
37 {
38 pin_low_2();
39 LPC_TMR32B1−>IR = 0b1;
40 }
41 }
42 void TIMER_16_0_Handler()
43 {
44 /* This function increments Timeoutms_1,2
45 every time it is called.
46 */
47 extern int Timeout_ms2,Timeout_ms;
48 Timeout_ms++;
49 Timeout_ms2++;
50 LPC_TMR16B0−>IR = 1;
51 }
52 void I2C_Handler()
53 {
54 /* This function allows communication by following the I2C
55 protocol when an event happens on the I2C bus.
56 LPC_I2C−>STAT contains information about which event
57 happened.
58 */
59

60 switch(LPC_I2C−>STAT)
61 {
62 // Own Slave Address + write bit has been received.
63 // ACK returned.
64 case 0x60:
65 LPC_I2C−>CONSET = AA;
66 break;
67

68 // Data has been received.
69 // ACK returned.
70 case 0x80:
71 tmp_rcv = LPC_I2C−>DAT;
72 LPC_I2C−>CONSET = AA;
73 receiveEvent(tmp_rcv);
74 break;
75

76 // Own Slave Address + read bit has been received
77 // ACK returned.
78 case 0xA8:
79 LPC_I2C−>CONSET = AA;
80 requestEvent();
81 LPC_I2C−>DAT = toSend; // Loads data into I2CDAT register
82 control = ONLINE;
83 break;
84

85 // Data has been transmitted.
86 // ACK received.
87 case 0xB8:
88 if (lengthLeft==0)
89 {
90 LPC_I2C−>CONCLR = AA;
91 }

Control Network of Bi-Directional DC/DC Converters

55

92 break;
93 default:
94 break;
95 }
96 LPC_I2C−>CONCLR = SI; // Clear the interrupt register after the ISR has ...

been executed
97 }
98 #endif // ISR_HANDLERS_C

Listing A.4: definitions.h
1 #ifndef DEFINITIONS_H
2 #define DEFINITIONS_H
3

4 /** I2C Interrupt Register Codes **/
5 #define AA (1<<2) //Assert Acknowledge
6 #define SI (1<<3) //System Interrupt Flag
7 #define STO (1<<4) //Stop Condition
8 #define STA (1<<5) //Start Condition
9 #define I2EN (1<<6) //Enable I2C module

10

11 /** MCU Specific Definitions **/
12 #define CLK_FREQ 72000000
13

14 /** Custom I2C states **/
15 #define I2C_SLAVE_ADDRESS 3
16 #define RESET_STATE 0
17 #define VOLT_READ_STATE 1
18 #define CURRENT_READ_STATE 2
19 #define VOLT1_WRITE_STATE 3
20 #define VOLT2_WRITE_STATE 4
21 #define CURRENT1_WRITE_STATE 5
22 #define CURRENT2_WRITE_STATE 6
23 #define READ_SLAVE_DIRECTION 7
24 #define MASTER_SET_DIRECTION 8
25 #define TURN_ON_OFF 9
26 #define READ_POWER_STATE 10
27 #define SET_PWM_1_STATE 11
28 #define SET_PWM_2_STATE 12
29 #define READ_PWM_1_STATE 13
30 #define READ_PWM_2_STATE 14
31 #define NEW_ADDRESS_STATE 15
32 #define READ_CHARGE_STATE 16
33 #define INT_SIZE_BYTE 4
34 #define MAX_BEGIN_STATE READ_CHARGE_STATE
35 #define numberOfElementsInMyArray 10
36 #define ONLINE 999
37 #define OFFLINE 888
38

39

40 /** PWM Variable Definitions **/
41 #define PreScaleC 0
42 #define TOTALOUTPUTS 1023
43 #define MAX_RANGE_OUTPUT 7
44 #define PWM1_START 256
45 #define PWM2_START 512
46

47

48 #define TAKE_AVERAGE 50
49

50 /** FSM Charging Definitions **/
51 #define cRESET 0

Control Network of Bi-Directional DC/DC Converters

56

52 #define cRAMP_VOLTAGE 1
53 #define cNOMINAL 2
54 #define cREADY 3
55 #define cPINCH_OFF 4
56 #define cDONE 5
57 #define dV 5
58 #define INCREMENT_THRESHOLD 100
59 #define DIFF_THRESHOLD 1.20
60

61 /** LED Visual Effect Definitions **/
62 #define FLICKER 0
63 #define SCAN 1
64 #define CHARGING 2
65 #define DISCHARGING 3
66

67

68 /** Miscellaneous Function Definitions **/
69 #define MIN(a,b) ((a) < (b) ? (a) : (b))
70 #define MAX(a,b) ((a) > (b) ? (a) : (b))
71

72 #endif

Control Network of Bi-Directional DC/DC Converters

Appendix B: Master Source Code

Listing B.1: main.cpp
1 #include <iostream>
2

3 #include "mastermind.h"
4

5 // Define different variables that influence the timing of the program
6 #define TIMES_BEFORE_CHECK 60
7 #define TIMES_BEFORE_INSTRUCTION 1
8 #define TIMES_BEFORE_SEND_SERVER 3
9 #define DELAY_MS 300

10

11 using namespace std;
12

13 int main()
14 {
15

16 // Initialize the 'mastermind', this is the main framework of the program...
, where to urls are pages to send data to and load instructions from, ...
the two ints give range of possible I2C addresses

17 mastermind meester("http://solarpoweredbikes.tudelft.nl/bap2017/receive....
php","http://solarpoweredbikes.tudelft.nl/bap2017/instructions.php",3,...
25);

18

19 // Init all the used counters
20 int refresh_counter = 0;
21 int instruction_counter = 0;
22 int server_counter = 0;
23

24 while(1)
25 {
26 // Fail−safe, try−catch system to catch errors on web request error
27 try
28 {
29 if(meester.slave_size()>0 && refresh_counter<TIMES_BEFORE_CHECK)
30 {
31 meester.get_states(); // Possibility to output the statuses ...

to a local interface.
32 meester.print_all();
33

34 // Send data to server, if done too many times, data storage ...
will become a problem

35 if(server_counter≥TIMES_BEFORE_SEND_SERVER)
36 {
37 meester.send_to_server();
38 server_counter = 0;
39 }

Control Network of Bi-Directional DC/DC Converters

58

40

41 // Read instruction from server
42 if(instruction_counter≥TIMES_BEFORE_INSTRUCTION)
43 {
44 meester.check_for_instructions();
45 instruction_counter = 0;
46 }
47

48 // Increment all counters
49 refresh_counter++;
50 instruction_counter++;
51 server_counter++;
52 }
53 else
54 {
55 // If no slaves were connected or refresh_counter hit ...

TIMES_BEFORE_CHECK, scan for slaves
56 meester.check_slaves();
57 refresh_counter = 0;
58 instruction_counter = 0;
59 server_counter = 0;
60 }
61

62 // Wait some time before restart
63 delay(DELAY_MS);
64 }
65 catch (...)
66 {
67 cout << "Error. Starting over." << endl;
68 }
69 }
70

71 return 0;
72 }

Listing B.2: mastermind.h
1 #ifndef MASTERMIND_H
2 #define MASTERMIND_H
3

4 #include "power_manager.h"
5 #include "slave_list.h"
6

7 // Basic libraries for data structures, string handling and data streams
8 #include <vector>
9 #include <string>

10 #include <sstream>
11 #include <iostream>
12

13 // Libraries needed for web request and data encoding
14 #include <curlpp/cURLpp.hpp>
15 #include <curlpp/Easy.hpp>
16 #include <curlpp/Options.hpp>
17 #include <curlpp/Exception.hpp>
18 #include "json.hpp"
19

20 // For convenience, shorter code
21 using json = nlohmann::json;
22 using namespace std;
23

24 class mastermind
25 {

Control Network of Bi-Directional DC/DC Converters

59

26 public:
27 mastermind(string url_new, string instruction_url_new, int newMin, ...

int newMax);
28 virtual ¬mastermind();
29 void check_slaves();
30 void get_states();
31 void print_all();
32 void send_to_server();
33 int slave_size();
34 void check_for_instructions();
35 protected:
36 private:
37 slave_list list_of_slaves; // Instance of slave list, this is a class...

to keep track of all connected slaves and check for new slaves. ...
See the slave_list class;

38

39 power_manager p_manager; // Instance of power manager, this is a ...
class to read and write instructions to a slave address. See the ...
power_manager class;

40

41 int amount_of_slaves; // The amount of currently connected slaves
42 vector< vector<int> > states_vec; // This is the vector with all the ...

different values of inputs, outputs and states of each slave
43

44 string server_url;
45 string instructions_url;
46 void parseInstructions(string data);
47 int newAddress, maxAddress, minAddress;
48 void new_device();
49 };
50

51 #endif // MASTERMIND_H

Listing B.3: mastermind.cpp
1 #include "mastermind.h"
2

3

4 // Initialize different instruction cases with enums and hashing
5 enum string_code
6 {
7 nothing,
8 writevoltage,
9 writecurrent,

10 setdirection,
11 turnoff,
12 turnon,
13 setpwm1,
14 setpwm2
15 };
16

17 string_code hashit(string const& inString)
18 {
19 if(inString == "writevoltage") return writevoltage;
20 if(inString == "writecurrent") return writecurrent;
21 if(inString == "setdirection") return setdirection;
22 if(inString == "turnoff") return turnoff;
23 if(inString == "turnon") return turnon;
24 if(inString == "setpwm1") return setpwm1;
25 if(inString == "setpwm2") return setpwm2;
26 return nothing;
27 }

Control Network of Bi-Directional DC/DC Converters

60

28 // End init of enums
29

30

31 // Initialize function, set up all the needed variables and check for slaves
32 mastermind::mastermind(string url_new, string instruction_url_new, int newMin...

, int newMax)
33 {
34 // Variable part
35 list_of_slaves = slave_list(true, newMin, newMax);
36 minAddress = newMin;
37 maxAddress = newMax;
38 newAddress = newMin+1;
39 server_url = url_new;
40 instructions_url = instruction_url_new;
41

42 // First check for slaves and get the status for the first time
43 check_slaves();
44 get_states();
45 //ctor
46 }
47

48 mastermind::¬mastermind()
49 {
50 // No need to delete any elements (such as dynamic arrays), standard ...

library handles the vectors
51 //dtor
52 }
53

54

55 // Function to check all slaves
56 void mastermind::check_slaves()
57 {
58 list_of_slaves.add_slaves();
59 amount_of_slaves = list_of_slaves.get_size();
60

61 // Checks if a new slave with the minAddress is connected, if so, send a ...
new address to it

62 cout << "Checking slaves, amount " << amount_of_slaves << endl;
63 if(amount_of_slaves>0&&list_of_slaves[0]==minAddress){
64 cout << "New device!" << endl;
65 new_device();
66 }
67 }
68

69 // The function to send a new dynamic address to a newly connected slave
70 void mastermind::new_device(){
71 p_manager.change_address(list_of_slaves[0]); //First connect to the slave...

at minAddress
72 p_manager.write_address(newAddress); //Send its new address
73 list_of_slaves[0]=newAddress;
74 newAddress++;
75 if(newAddress>maxAddress){
76 newAddress = minAddress+1;
77 }
78 }
79

80 // Get the status updates for all the connected slaves
81 void mastermind::get_states()
82 {
83 states_vec.clear();
84 for(int i=0; i<amount_of_slaves; i++)
85 {
86 p_manager.change_address(list_of_slaves[i]); // Select a slave from ...

Control Network of Bi-Directional DC/DC Converters

61

the list
87

88 // Create a new row and read out all different values
89 vector<int> row;
90 row.push_back(p_manager.get_power_status());
91 row.push_back(p_manager.get_direction());
92 row.push_back(p_manager.read_current(1));
93 row.push_back(p_manager.read_current(2));
94 row.push_back(p_manager.read_voltage(1));
95 row.push_back(p_manager.read_voltage(2));
96 row.push_back(p_manager.read_pwm(1));
97 row.push_back(p_manager.read_pwm(2));
98 row.push_back(p_manager.read_charge_state());
99

100 // Put the result row into the states vector
101 states_vec.push_back(row);
102 }
103

104 //Check if disconnected
105 int i = 0;
106 while(i<amount_of_slaves)
107 {
108 if(states_vec[i][0]==−1)
109 {
110 //Disconnected!
111 list_of_slaves.remove_slave(list_of_slaves[i]);
112 states_vec.erase(states_vec.begin()+i);
113 amount_of_slaves−−;
114 }
115 else
116 {
117 i++;
118 }
119 }
120 }
121

122

123 // Simply print all statues, create simple outputs
124 void mastermind::print_all()
125 {
126 for(int i=0; i<amount_of_slaves; i++)
127 {
128 cout << "Slave " << list_of_slaves[i] << ": ";
129 for(int j = 0; j<states_vec[i].size();j++){
130 cout << states_vec[i][j] << " ";
131 }
132 cout << endl;
133 }
134

135 }
136

137

138

139 // Function to take all data from the states_vec and put it into a json data ...
package (text). Then send it to the predefined server url.

140 void mastermind::send_to_server()
141 {
142

143 json data(states_vec);
144 json slaves(list_of_slaves.return_vector());
145

146 json json_to_send;
147 json_to_send["slaves"] = slaves;

Control Network of Bi-Directional DC/DC Converters

62

148 json_to_send["data"] = data;
149

150 // Output the data that will be sent to terminal, optional
151 //cout << json_to_send << endl;
152

153 try
154 {
155 curlpp::Cleanup clean;
156 curlpp::Easy request;
157 request.setOpt<curlpp::options::Url>(server_url);
158 list<string> header;
159 header.push_back("Content−Type: application/x−www−form−urlencoded");
160 request.setOpt(new curlpp::options::HttpHeader(header));
161 string test = "status="+json_to_send.dump();
162 request.setOpt(new curlpp::options::PostFields(test));
163 request.setOpt(new curlpp::options::Timeout(5L));
164 request.setOpt(new curlpp::options::PostFieldSize(test.length()));
165

166 ostringstream os;
167 os << request;
168

169 // Optional output of result
170 /*string data = os.str();
171 cout <<"Result: " << data << endl;*/
172 }
173 catch(curlpp::RuntimeError& e)
174 {
175 cout << "Error making request of type " << e.what();
176 }
177 }
178

179

180 int mastermind::slave_size()
181 {
182 return amount_of_slaves;
183 }
184

185

186 // Read the instruction from the instructions url
187 void mastermind::check_for_instructions()
188 {
189 try
190 {
191 curlpp::Cleanup clean;
192 curlpp::Easy request;
193 request.setOpt<curlpp::options::Url>(instructions_url);
194 request.setOpt(new curlpp::options::Timeout(5L));
195

196 // Perform the request and put its output into a stream, then convert...
it to a string

197 ostringstream os;
198 os << request;
199 string data = os.str();
200

201 // Parse the received data in another function
202 parseInstructions(data);
203 }
204 catch(curlpp::RuntimeError& e)
205 {
206 cout << "Error making request of type " << e.what();
207 }
208 }
209

Control Network of Bi-Directional DC/DC Converters

63

210

211 // Parsing the received data
212 void mastermind::parseInstructions(string data)
213 {
214 json temp = json::parse(data);
215

216 // If the received data doesn't consist of a slave, instruction type and ...
data, quit (3 values needed). For example, during disconnection

217 if(temp.size()<3)
218 {
219 return;
220 }
221

222 // Get the slave number and connect to that slave
223 int temp_slave= stoi(temp["slave"].get<string>());
224 p_manager.change_address(temp_slave);
225

226 int data_to_send;
227

228 // Depending on the instruction, do something, case−switch works well ...
with enums, so hash it to make life easier

229 switch (hashit(temp["instruct_type"].get<string>()))
230 {
231 case writevoltage:
232 // Convert data string to an int
233 data_to_send = stoi(temp["data"].get<string>());
234 p_manager.write_voltage(data_to_send);
235 break;
236 case writecurrent:
237 data_to_send = stoi(temp["data"].get<string>());
238 p_manager.write_current(data_to_send);
239 break;
240 case setdirection:
241 data_to_send = stoi(temp["data"].get<string>());
242 p_manager.set_direction(data_to_send);
243 break;
244 case turnoff:
245 p_manager.turn_off();
246 break;
247 case turnon:
248 p_manager.turn_on();
249 break;
250 case setpwm1:
251 data_to_send = stoi(temp["data"].get<string>());
252 p_manager.set_pwm(1,data_to_send);
253 break;
254 case setpwm2:
255 data_to_send = stoi(temp["data"].get<string>());
256 p_manager.set_pwm(2,data_to_send);
257 break;
258 default:
259

260 break;
261 }
262 }

Listing B.4: power_manager.h
1 #ifndef POWER_MANAGER_H
2 #define POWER_MANAGER_H
3

4 #include "slave_handler.h"

Control Network of Bi-Directional DC/DC Converters

64

5

6 class power_manager
7 {
8 public:
9

10 // First init function and connect to first address
11 power_manager(int first_address = 0)
12 {
13 address = first_address;
14 handler.set_addr(address);
15 };
16

17 // Connect to a new slave address
18 void change_address(int new_address){
19 address = new_address;
20 handler.set_addr(address);
21 };
22

23 int read_voltage(int which = 1);
24 int read_current(int which = 1);
25 int write_voltage(int new_voltage);
26 int write_current(int new_current);
27 int get_direction();
28 int set_direction(int new_direction);
29 int turn_off();
30 int turn_on();
31 int get_power_status();
32 int set_pwm(int which, int value);
33 int read_pwm(int which);
34 int write_address(int new_address);
35 int read_charge_state();
36 virtual ¬power_manager();
37 protected:
38 private:
39 int address; // For saving address of currently connected slave
40

41 slave_handler handler; // I2C slave handler, see class slave_handler
42 };
43

44 #endif // POWER_MANAGER_H

Listing B.5: power_manager.cpp
1 #include "power_manager.h"
2

3 power_manager::¬power_manager()
4 {
5 //dtor
6 }
7

8 // Write max voltage to a slave. State code = 1
9 int power_manager::write_voltage(int new_voltage)

10 {
11 vector<int> temp_data;
12

13 // ODroid works with 32 bit integers. So split into 4 bytes, and then ...
send them sequentially

14 for(int i=0; i<4; i++)
15 {
16 uint8_t toSend = (uint8_t)((new_voltage & (0x00FF << (i*8))) >> (i*8)...

);
17 temp_data.push_back(toSend);

Control Network of Bi-Directional DC/DC Converters

65

18 }
19 handler.send_data(1,4,temp_data);
20 return 1;
21

22 }
23

24 // Write max current to a slave. State code = 2
25 int power_manager::write_current(int new_current)
26 {
27 vector<int> temp_data;
28 for(int i=0; i<4; i++)
29 {
30 uint8_t toSend = (uint8_t)((new_current & (0x00FF << (i*8))) >> (i*8)...

);
31 temp_data.push_back(toSend);
32 }
33 handler.send_data(2,4,temp_data);
34 return 1;
35 }
36

37 // Read voltage, states codes 3 and 4, reuse function below
38 int power_manager::read_voltage(int which)
39 {
40 return read_current(which−2);
41 }
42

43 // Read current, states codes 5 and 6
44 int power_manager::read_current(int which)
45 {
46 vector<int> temp_data = handler.read_data(4+which);
47 int sum = 0;
48

49 // Master will receive as seperate bytes. Combine them by bit shifting ...
every data package accordingly and sum to get the original integer

50 for(unsigned int i =0; i<temp_data.size(); i++)
51 {
52 sum += (temp_data[i] << i*8);
53 }
54

55 return sum;
56 }
57

58 // Read the current direction, state code 7
59 int power_manager::get_direction()
60 {
61 vector<int> temp_data = handler.read_data(7);
62

63 if(temp_data.size()==1)
64 {
65 return (bool)temp_data[0];
66 }
67 else
68 {
69 cout << "Error getting direction" << endl;
70 return −1;
71 }
72 }
73

74 // Set the direction, state code 8
75 int power_manager::set_direction(int new_direction)
76 {
77 vector<int> temp_data;
78 temp_data.push_back(new_direction);

Control Network of Bi-Directional DC/DC Converters

66

79

80 handler.send_data(8,1,temp_data);
81 return 1;
82 }
83

84 // Turn off, state code 9
85 int power_manager::turn_off()
86 {
87 vector<int> temp_data;
88 temp_data.push_back(0);
89

90 handler.send_data(9,1,temp_data);
91 return 1;
92 }
93

94 // Turn on, state code 9, but with different data
95 int power_manager::turn_on()
96 {
97 vector<int> temp_data;
98 temp_data.push_back(1);
99

100 handler.send_data(9,1,temp_data);
101 return 1;
102 }
103

104 // Read if the devices is turned on, state code 10
105 int power_manager::get_power_status()
106 {
107 vector<int> temp_data = handler.read_data(10);
108

109 if(temp_data.size()==1)
110 {
111 return (bool)temp_data[0];
112 }
113 else
114 {
115 cout << "Error getting power status" << endl;
116 return −1;
117 }
118 }
119

120 // Overwrite PWM outputs, state code 11 and 12, only useful for debugging
121 int power_manager::set_pwm(int which, int value)
122 {
123 vector<int> temp_data;
124 cout << endl << "Setting PWM" << which << " to " << value <<endl;
125 for(int i=0; i<2; i++)
126 {
127 uint8_t toSend = (uint8_t)((value & (0x00FF << (i*8))) >> (i*8));
128 temp_data.push_back(toSend);
129 }
130

131 if(which==1)
132 {
133 handler.send_data(11,2,temp_data);
134 }
135 else if(which==2)
136 {
137 handler.send_data(12,2,temp_data);
138 }
139 return 1;
140 }
141

Control Network of Bi-Directional DC/DC Converters

67

142 // Read the current PWM outputs, state codes 13 and 14
143 int power_manager::read_pwm(int which)
144 {
145 vector<int> temp_data = handler.read_data(12+which);
146 int sum = 0;
147

148 for(unsigned int i =0; i<temp_data.size(); i++)
149 {
150 sum += (temp_data[i] << i*8);
151 }
152

153 return sum;
154 }
155

156 // Write a new address to the slave, this makes dynamic addressing possible, ...
state code 15

157 int power_manager::write_address(int new_address)
158 {
159 vector<int> temp_data;
160 temp_data.push_back(new_address);
161 handler.send_data(15,1,temp_data);
162 return new_address;
163 }
164

165 // Read in which state the charging process is, state code 16
166 int power_manager::read_charge_state()
167 {
168 vector<int> temp_data = handler.read_data(16);
169 int sum = 0;
170

171 for(unsigned int i =0; i<temp_data.size(); i++)
172 {
173 sum += (temp_data[i] << i*8);
174 }
175

176 return sum;
177 }

Listing B.6: slave_list.h
1 #ifndef SLAVE_LIST_H
2 #define SLAVE_LIST_H
3

4 // Output and vector
5 #include <iostream>
6 #include <vector>
7

8 // I2C
9 #include <wiringPi.h>

10 #include <wiringPiI2C.h>
11 #include <unistd.h>
12

13 // To check connection by reading a byte or sending a byte
14 #define WRITE_MODE 1
15 #define READ_MODE 0
16

17 using namespace std;
18

19 class slave_list
20 {
21 public:
22 slave_list(bool write_set = true, int set_min = 3, int set_max = 127)...

Control Network of Bi-Directional DC/DC Converters

68

;
23 virtual ¬slave_list();
24 void add_slaves();
25 void print_slaves();
26 bool remove_slave(int device_number);
27 int get_size();
28 int get_addr(int i);
29 vector<int> return_vector();
30 int& operator[] (int x){
31 return slaves[x];
32 }
33 protected:
34 private:
35 vector<int> slaves; // List of connected slaves
36 int mode; // Read or write mode when connecting
37 int size_array; // Counter of the amount of slaves
38 int min_device;
39 int max_device;
40 };
41

42 #endif // SLAVE_LIST_H

Listing B.7: power_list.cpp
1 #include "slave_list.h"
2

3 // Slave list init, setting which mode is used for check and set the address ...
range

4 slave_list::slave_list(bool write_set, int set_min, int set_max)
5 {
6 if(write_set)
7 {
8 mode = WRITE_MODE;
9 }

10 else
11 {
12 mode = READ_MODE;
13 }
14 size_array = 0;
15 min_device = set_min;
16 max_device = set_max;
17 //ctor
18 }
19

20 slave_list::¬slave_list()
21 {
22 //dtor
23 }
24

25 // Slave scanning function
26 void slave_list::add_slaves()
27 {
28 slaves.clear();
29 size_array = 0;
30

31 // Check every devices in range (inclusive)
32 for(int device=min_device; device≤max_device; device++)
33 {
34 int fd = wiringPiI2CSetup(device);
35

36 if(fd>−1)
37 {

Control Network of Bi-Directional DC/DC Converters

69

38 if(mode==WRITE_MODE)
39 {
40 // If write mode, write a byte
41 int temp = wiringPiI2CWrite(fd,−1);
42

43 // If there is a response, push connected slave to the list
44 if(temp>−1)
45 {
46 slaves.push_back(device);
47 size_array++;
48 }
49 }
50 else
51 {
52 // If read mode, read a byte
53 int temp = wiringPiI2CRead(fd);
54

55 // If there is a response, push connected slave to the list
56 if(temp>−1){
57 slaves.push_back(device);
58 size_array++;
59 }
60 }
61 }
62 close(fd);
63 }
64 }
65

66 // Print all the connected slaves, used for debugging
67 void slave_list::print_slaves()
68 {
69 cout << "List of slaves: " << endl;
70 for(int i=0; i<size_array; i++)
71 {
72 cout << "Slave " << i << ": " << slaves[i] << endl;
73 }
74 }
75

76 // Removing a slave from the list (when disconnecting for instance)
77 bool slave_list::remove_slave(int device_number)
78 {
79 // Iterate through list
80 for(int i=0; i<size_array; i++)
81 {
82 // If the current slave is the one to delete, delete it and decrease ...

counter of slaves
83 if(slaves[i]==device_number)
84 {
85 slaves.erase(slaves.begin()+i);
86 size_array−−;
87 return true;
88 }
89 }
90

91 return false;
92 }
93

94 int slave_list::get_size()
95 {
96 return size_array;
97 }
98

99 int slave_list::get_addr(int i){

Control Network of Bi-Directional DC/DC Converters

70

100 return slaves[i];
101 }
102

103 vector<int> slave_list::return_vector(){
104 return slaves;
105 }

Listing B.8: slave_handler.h
1 #ifndef SLAVE_HANDLER_H
2 #define SLAVE_HANDLER_H
3

4 // Standard libraries needed for output and data structure
5 #include <iostream>
6 #include <vector>
7

8 // wiringPi library for easy I2C connection
9 #include <wiringPi.h>

10 #include <wiringPiI2C.h>
11

12 //Needed for closing file handlers
13 #include <unistd.h>
14

15 using namespace std;
16

17 class slave_handler
18 {
19 public:
20 slave_handler(int device_number = 0);
21 int send_data(int send_mode, int send_length, vector<int> send_data);
22 vector<int> read_data(int read_mode);
23 void set_addr(int new_address);
24 virtual ¬slave_handler();
25 protected:
26 private:
27 int device;
28 };
29

30 #endif // SLAVE_HANDLER_H

Listing B.9: power_handler.cpp
1 #include "slave_handler.h"
2

3 slave_handler::slave_handler(int device_number)
4 {
5 device = device_number;
6 //ctor
7 }
8

9 slave_handler::¬slave_handler()
10 {
11 //dtor
12 }
13

14 int slave_handler::send_data(int send_mode, int send_length, vector<int> ...
send_data)

15 {
16

17 // Check for the connection
18 int fd = wiringPiI2CSetup(device);

Control Network of Bi-Directional DC/DC Converters

71

19 if(fd<0)
20 {
21 cout << "Can't connect. " << endl;
22 return −2;
23 }
24

25 // Check if writeable
26 int temp = wiringPiI2CWrite(fd,−1);
27 if(temp<0)
28 {
29 cout << "Can't write to device. " << endl;
30 close(fd);
31 return −1;
32 }
33

34

35 // Send which state code is used
36 int return_value = wiringPiI2CWrite(fd,send_mode);
37 if(return_value==−1)
38 {
39 cout << "Send mode not written correctly. " << endl;
40 return −3;
41 }
42

43 // Send which how many bytes will be sent
44 return_value = wiringPiI2CWrite(fd,send_length);
45 if(return_value==−1)
46 {
47 cout << "Send length not written correctly. " << endl;
48 return −4;
49 }
50

51 // Send all the bytes
52 for(int i=0; i<send_length; i++)
53 {
54 return_value = wiringPiI2CWrite(fd,send_data[i]);
55

56 }
57

58 close(fd);
59 return 1;
60 }
61

62 // Read Data function, this functions returns a vector with all the received...
bytes

63 vector<int> slave_handler::read_data(int read_mode)
64 {
65 vector<int> output;
66

67 // Check if connection is possible
68 int fd = wiringPiI2CSetup(device);
69 if(fd<0)
70 {
71 cout << "Can't connect. " << endl;
72 return output;
73 }
74

75 // Send read_mode, which state
76 int return_value;
77 int temp = wiringPiI2CWrite(fd,read_mode);
78 if(temp<0)
79 {
80 close(fd);

Control Network of Bi-Directional DC/DC Converters

72

81 return output;
82 }
83

84 // Receive the length of bytes to read
85 int read_length = wiringPiI2CRead(fd);
86

87 // Receive bytes and put them into output
88 for(int i=0; i<read_length; i++)
89 {
90 return_value = wiringPiI2CRead(fd);
91 if(return_value>−1)
92 {
93 output.push_back(return_value);
94 }
95 }
96

97 // Close the connection to the device
98 close(fd);
99

100 return output;
101 }
102

103 // End Read function
104

105 // Change connected address
106 void slave_handler::set_addr(int new_address)
107 {
108 device = new_address;
109 }

Control Network of Bi-Directional DC/DC Converters

Appendix C: Server Source Code

Listing C.1: index.php
1 <!DOCTYPE html>
2 <html>
3

4 <head>
5 <title>BAP 2017 − Groep B</title>
6 <link href="https://cdnjs.cloudflare.com/ajax/libs/font−awesome/4.7.0/css...

/font−awesome.css" rel="stylesheet" type="text/css">
7 <script src="https://code.jquery.com/jquery−3.1.1.js">
8 </script>
9 <script>

10 function submitinstr() {
11 $.ajax({
12 url: "new_instruction.php?slave_addr=" + $("#instruction")....

find('#slave_addr').val() + "&instruction_type=" + $("#...
instruction").find('#instruction_type').val() + "&data=" +...

$("#instruction").find('#data').val()
13 }).done(function(data) {
14 console.log(data);
15 });
16 return false;
17 }
18 </script>
19 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap...

.min.css" rel="stylesheet" type="text/css">
20 <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap...

.min.js">
21 </script>
22 <link href="style.css" rel="stylesheet" type="text/css">
23 </head>
24

25 <body>
26 <div class="main">
27 <center>
28 <h1>Network status</h1>
29 <div class="time"></div>
30

31
32

33

34 <a href="http://solarpoweredbikes.tudelft.nl/bap2017/Model/3...

dmodel.html">
35 <button type="button" class="btn btn−primary slave">Show ...

Model</button>
36
37

Control Network of Bi-Directional DC/DC Converters

74

38

39 <h2>Connected devices:</h2>
40

41

42 <div class="devices"></div>
43 </center>
44 </div>
45 <script>
46 var oldOptions = {};
47 var newOptions = {};
48 var times = [];
49 var values = [];
50 var dataArray = [];
51 var xData = [];
52 var x = 0;
53 var which = 0;
54 var oldtime;
55

56 function pressed(num) {
57 console.log(num);
58 window.location = "next.php?num=" + num;
59 }
60

61 function refresh() {
62 $.ajax({
63 url: "lateststatus.php"
64 }).done(function(data) {
65 var arr = data.split('////');
66 if (arr[0] == oldtime) {
67 console.log("Al gehad");
68 return;
69 }
70 oldtime = arr[0];
71 $(".time").html(arr[0]);
72 times.push(arr[0]);
73 var obj = JSON.parse(arr[1]);
74 values.push(obj);
75

76 var jsonLength = obj["slaves"].length;
77 var tempHTML = "";
78

79 for (var i = 0; i < jsonLength; i++) {
80 var newDiv = '<button onclick="pressed(' + obj["slaves"][...

i] + ')" type="button" class="btn btn−primary slave">...
Converter: ' + obj["slaves"][i] + '</button>

';

81 tempHTML += newDiv;
82

83 }
84

85 $(".devices").html(tempHTML);
86 $(".slave").css("width", "90%");
87 $(".btn").css("font−size", "200%");
88 $(".slave").css("display", "inline−block");
89 });
90 }
91 setInterval(refresh, 500);
92 $(".overlay").hide();
93 </script>
94 </body>
95

96 </html>

Control Network of Bi-Directional DC/DC Converters

75

Listing C.2: next.php
1 <!DOCTYPE html>
2 <html>
3

4 <head>
5 <title>BAP 2017 − Groep B</title>
6 <link href="https://cdnjs.cloudflare.com/ajax/libs/font−awesome/4.7.0/css...

/font−awesome.css" rel="stylesheet" type="text/css">
7

8 <script type="text/javascript" src="//cdnjs.cloudflare.com/ajax/libs/...
jquery/2.1.4/jquery.min.js"></script>

9 <script type="text/javascript" src="//cdnjs.cloudflare.com/ajax/libs/jqueryui...
/1.11.4/jquery−ui.min.js"></script>

10 <script type="text/javascript" src="//cdnjs.cloudflare.com/ajax/libs/jqueryui...
−touch−punch/0.2.3/jquery.ui.touch−punch.min.js"></script>

11

12 <script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.4.0/Chart....
min.js"></script>

13 <script>
14 function power_on() {
15 $.ajax({
16 url: "new_instruction.php?slave_addr=<?php echo $_REQUEST['...

num'];?>&instruction_type=turnon&data="
17 }).done(function(data) {
18 console.log(data);
19 });
20 }
21

22 function power_off() {
23 $.ajax({
24 url: "new_instruction.php?slave_addr=<?php echo $_REQUEST['...

num'];?>&instruction_type=turnoff&data="
25 }).done(function(data) {
26 console.log(data);
27 });
28 }
29

30 function max_volt() {
31 $.ajax({
32 url: "new_instruction.php?slave_addr=<?php echo $_REQUEST['...

num'];?>&instruction_type=writevoltage&data="+$("#maxvolt...
").slider("value")

33 }).done(function(data) {
34 console.log(data);
35 });
36 }
37

38 function max_current() {
39 $.ajax({
40 url: "new_instruction.php?slave_addr=<?php echo $_REQUEST['...

num'];?>&instruction_type=writecurrent&data="+$("#...
maxcurrent").slider("value")

41 }).done(function(data) {
42 console.log(data);
43 });
44 }
45

46 function power_off() {
47 $.ajax({
48 url: "new_instruction.php?slave_addr=<?php echo $_REQUEST['...

num'];?>&instruction_type=turnoff&data="
49 }).done(function(data) {
50 console.log(data);

Control Network of Bi-Directional DC/DC Converters

76

51 });
52 }
53

54 function switch_direction() {
55 if (direction) {
56 direction = 0;
57 } else {
58 direction = 1;
59 }
60

61 $.ajax({
62 url: "new_instruction.php?slave_addr=<?php echo $_REQUEST['...

num'];?>&instruction_type=setdirection&data=" + direction
63 }).done(function(data) {
64 console.log(data);
65 });
66

67 }
68

69

70 function submitinstr() {
71 $.ajax({
72 url: "new_instruction.php?slave_addr=" + $("#instruction")....

find('#slave_addr').val() + "&instruction_type=" + $("#...
instruction").find('#instruction_type').val() + "&data=" +...

$("#instruction").find('#data').val()
73 }).done(function(data) {
74 console.log(data);
75 });
76 return false;
77 }
78 </script>
79 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap...

.min.css" rel="stylesheet" type="text/css">
80 <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap...

.min.js">
81 </script>
82 <script src="https://cdn.rawgit.com/nelsonic/range−touch/master/range−...

touch.min.js">
83 </script>
84 <link href="style.css" rel="stylesheet" type="text/css">
85 <link href="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8/themes/base...

/jquery−ui.css" rel="stylesheet" type="text/css">
86 <script>
87 $(function() {
88 $("#maxvolt").slider({
89 min: 0,
90 max: 1024,
91 value: 1024
92 });
93 });
94

95 $(function() {
96 $("#maxcurrent").slider({
97 min: 0,
98 max: 1024,
99 value: 1024

100 });
101 });
102 </script>
103 </head>
104

105 <body>

Control Network of Bi-Directional DC/DC Converters

77

106 <div class="backButton">
107
108

109 <button type="button" class="btn btn−primary btn−sm">
110 <li class="fa fa−arrow−left fa−4x">
111 </button>
112
113 </div>
114

115 <div class="main">
116 <center>
117 <h1>Converter <?php echo $_REQUEST['num'];?></h1>
118 <div class="time"></div>
119

120

121 <div class="devices">
122 <div class='slave'>
123 <table style='width:80%'>
124 <tr>
125 <td>Power:</td>
126 <td id="power_slave"></td>
127 </tr>
128 <tr>
129 <td>Direction:</td>
130 <td id="direction_slave"></td>
131 </tr>
132 <tr>
133 <td>Charge state:</td>
134 <td id="charge_state"></td>
135 </tr>
136 <tr>
137 <td> </td>
138 </tr>
139

140 <tr>
141 <td>Voltage 1:</td>
142 <td id="volt1_slave"></td>
143 </tr>
144 <tr>
145 <td>Current 1:</td>
146 <td id="current1_slave"></td>
147 </tr>
148

149 <tr>
150 <td> </td>
151 </tr>
152 <tr>
153 <td>Voltage 2:</td>
154 <td id="volt2_slave"></td>
155 </tr>
156 <tr>
157 <td>Current 2:</td>
158 <td id="current2_slave"></td>
159 </tr>
160

161 <tr>
162 <td> </td>
163 </tr>
164 <tr>
165 <td>Output 1:</td>
166 <td id="output1_slave"></td>
167 </tr>
168 <tr>

Control Network of Bi-Directional DC/DC Converters

78

169 <td>Output 2:</td>
170 <td id="output2_slave"></td>
171 </tr>
172 </table>
173

174

175

176 <button onclick="power_on()" type="button" class="btn btn...

−primary slave">Turn on</button>
177

178

179 <button onclick="power_off()" type="button" class="btn ...

btn−primary slave">Turn off</button>
180

181

182 <button onclick="switch_direction()" type="button" class=...

"btn btn−primary slave">Switch Direction</button>
183

184

185 <div id="maxvolt"></div>
186

187 <button onclick="max_volt()" type="button" class="btn btn...

−primary slave">Update Maximum Volt</button>
188

189 <div id="maxcurrent"></div>
190

191 <button onclick="max_current()" type="button" class="btn ...

btn−primary slave">Update Maximum Current</button>
192 </div>
193

194 </div>
195 </center>
196 </div>
197 <script>
198

199

200 var oldOptions = {};
201 var newOptions = {};
202 var times = [];
203 var values = [];
204 var dataArray = [];
205 var xData = [];
206 var x = 0;
207 var which = 0;
208 var oldtime;
209 var num = "<?php echo $_REQUEST['num'];?>";
210 var direction = −1;
211 var power = −1;
212 var current1 = −1;
213 var current2 = −1;
214 var volt1 = −1;
215 var volt2 = −1;
216 var output1 = −1;
217 var output2 = −1;
218 var charge_state = "";
219

220 $(".slave").css("width", "90%");
221 $(".btn").css("font−size", "200%");
222 $(".slave").css("display", "inline−block");
223 function refresh() {
224 $.ajax({
225 url: "lateststatus.php"
226 }).done(function(data) {

Control Network of Bi-Directional DC/DC Converters

79

227 var arr = data.split('////');
228 if (arr[0] == oldtime) {
229 console.log("Al gehad");
230 return;
231 }
232 oldtime = arr[0];
233 $(".time").html(arr[0]);
234 times.push(arr[0]);
235 var obj = JSON.parse(arr[1]);
236 values.push(obj);
237

238 var jsonLength = obj["slaves"].length;
239 var tempHTML = "";
240 for (var i = 0; i < jsonLength; i++) {
241 //console.log(obj["data"][i]);
242 newOptions[obj["slaves"][i]] = obj["slaves"][i];
243

244 if (obj["slaves"][i] == num) {
245 power = obj["data"][i][0];
246 direction = obj["data"][i][1];
247 current1 = obj["data"][i][2];
248 current2 = obj["data"][i][3];
249 volt1 = obj["data"][i][4];
250 volt2 = obj["data"][i][5];
251

252 output1 = obj["data"][i][6];
253 output2 = obj["data"][i][7];
254

255 switch(obj["data"][i][8]){
256 case 0:
257 charge_state = "Reset";
258 break;
259 case 1:
260 charge_state = "Ramp Voltage";
261 break;
262 case 2:
263 charge_state = "Nominal";
264 break;
265 case 3:
266 charge_state = "Ready";
267 break;
268 case 4:
269 charge_state = "Pinch off";
270 break;
271 case 5:
272 charge_state = "Done";
273 break;
274

275 default:
276 charge_state = "";
277 break;
278 }
279

280 $("#power_slave").html(power);
281 $("#direction_slave").html(direction);
282 $("#charge_state").html(charge_state);
283

284 $("#volt1_slave").html(Math.round((volt1 + 1) / 1024 ...

* 1000 * 3.3) / 1000 + "V");
285 $("#current1_slave").html(Math.round((current1 + 1) /...

1024 * 1000 * 3.3) / 1000 + "V");
286 $("#volt2_slave").html(Math.round((volt2 + 1) / 1024 ...

* 1000 * 3.3) / 1000 + "V");

Control Network of Bi-Directional DC/DC Converters

80

287 $("#current2_slave").html(Math.round((current2 + 1) /...
1024 * 1000 * 3.3) / 1000 + "V");

288

289 $("#output1_slave").html(Math.round((output1 + 1) / ...
1024 * 1000 * 3.3) / 1000 + "V − " + output1);

290 $("#output2_slave").html(Math.round((output2 + 1) / ...
1024 * 1000 * 3.3) / 1000 + "V − " + output2);

291 }
292

293

294

295 }
296

297

298 });
299 }
300 setInterval(refresh, 500);
301 </script>
302 </body>
303

304 </html>

Listing C.3: config.php
1 <?php
2 define('DB_SERVER', 'localhost');
3 define('DB_USERNAME', 'bap2017');
4 define('DB_PASSWORD', 'zA23w!4f');
5 define('DB_DATABASE', 'jkoeners_bap2017');
6 $salt = "bapb";
7 $mysqli = new mysqli(DB_SERVER,DB_USERNAME,DB_PASSWORD,DB_DATABASE);
8 /* check connection */
9 if ($mysqli−>connect_errno) {

10 printf("Connect failed: %s\n", $mysqli−>connect_error);
11 exit();
12 }
13 ?>

Listing C.4: instructions.php
1 <?php
2 include "config.php";
3

4 $query = "SELECT * FROM device_received WHERE ip='" . $_SERVER['REMOTE_ADDR'...
] . "'";

5 $result = $mysqli−>query($query);
6

7 if ($result−>num_rows > 0) {
8 echo "{}";
9 } else {

10 $query = "SELECT * FROM instructions ORDER BY id DESC LIMIT 1";
11 $result = $mysqli−>query($query);
12

13 if ($result−>num_rows == 1) {
14 $row = $result−>fetch_assoc();
15 echo $row['instruct_text'];
16 } else {
17 echo "{}";
18 }
19

Control Network of Bi-Directional DC/DC Converters

81

20 $query = "INSERT INTO device_received (ip) VALUES ('" . $_SERVER['...
REMOTE_ADDR'] . "')";

21

22

23 if ($mysqli−>query($query)) {
24

25 } else {
26 }
27 }
28 ?>

Listing C.5: receive.php
1 <?php
2 include "config.php";
3

4 if(isset($_POST['status'])) {
5 $json_data = $_POST['status'];
6 // Doe iets met de data (beveiligen)
7

8 if($mysqli−>query("INSERT INTO status (json_data) VALUES ('".$json_data."...
')")){

9 die("Nieuwe status toegevoegd");
10 } else {
11 echo "INSERT INTO status (json_data) VALUES ('".$json_data."...

')";
12 die("Er ging iets fout bij status invoegen");
13 }
14 }
15 else {
16 die('no post data to process');
17 }
18

19 ?>

Listing C.6: lateststatus.php
1 <?php
2 include "config.php";
3

4 $query = "SELECT * FROM status ORDER BY index_number DESC LIMIT 1";
5 $result = $mysqli−>query($query);
6

7 if($result−>num_rows == 1){
8 $row = $result−>fetch_assoc();
9 echo $row["time_stamp"];

10 echo '////';
11 echo $row['json_data'];
12 }
13 ?>

Listing C.7: new_instruction.php
1 <?php
2 include "config.php";
3 if (isset($_REQUEST['slave_addr']) && isset($_REQUEST['instruction_type']) &&...

isset($_REQUEST['data'])) {
4 $arr = array(
5 'slave' => $_REQUEST['slave_addr'],

Control Network of Bi-Directional DC/DC Converters

82

6 'instruct_type' => $_REQUEST['instruction_type'],
7 'data' => $_REQUEST['data']
8);
9 $json_encoded = json_encode($arr);

10

11 $query = "INSERT INTO instructions (instruct_text) VALUES ('"
$json_encoded . "')";

12 if ($mysqli−>query($query)) {
13 $query = "TRUNCATE device_received";
14 $mysqli−>query($query);
15 } else {
16 die("Er ging iets fout bij instructie invoegen");
17 }
18 } else {
19 echo "Niet een goede instructie.";
20 }
21 ?>

Listing C.8: style.css
1 body,
2 html {
3 background−color: rgba(220, 220, 220, 1.00);
4 height: 100%;
5 width: 100%;
6 }
7 .main {
8 margin: auto;
9 margin−top: 100px;

10 font−size: 200%;
11 }
12 h1,
13 .btn {
14 font−size: 200%;
15 }
16 .overlay {
17 width: 95%;
18 height: 95%;
19 position: absolute;
20 margin−left: auto;
21 margin−right: auto;
22 left: 0;
23 right: 0;
24 z−index: 100;
25 display: block;
26 border−radius: 10px;
27 border−style: solid;
28 border−color: rgba(54, 36, 36, 1.00);
29 }
30 .backButton {
31 position: absolute;
32 top: 20px;
33 left: 20px;
34 }
35 input[type range] {
36 −webkit−appearance: none;
37 width: 100%;
38 margin: 24px 0;
39 }
40 input[type range]: focus {
41 outline: none;
42 }

Control Network of Bi-Directional DC/DC Converters

83

43 input[type range]::−webkit−slider−runnable−track {
44 width: 100%;
45 height: 2px;
46 cursor: pointer;
47 box−shadow: 1px 1px 1px #000000, 0px 0px 1px # 0 d0d0d;
48 background: #3071a9;
49 border−radius: 1.3px;
50 border: 0.2px solid # 010101;
51 }
52 input[type range]::−webkit−slider−thumb {
53 box−shadow: 1px 1px 1px #000000, 0px 0px 1px # 0 d0d0d;
54 border: 1px solid #000000;
55 height: 50px;
56 width: 20px;
57 border−radius: 3px;
58 background: # ffffff;
59 cursor: pointer;
60 −webkit−appearance: none;
61 margin−top: −24.2px;
62 }
63 input[type range]: focus::−webkit−slider−runnable−track {
64 background: #367ebd;
65 }
66 input[type range]::−moz−range−track {
67 width: 100%;
68 height: 2px;
69 cursor: pointer;
70 box−shadow: 1px 1px 1px #000000, 0px 0px 1px # 0 d0d0d;
71 background: #3071a9;
72 border−radius: 1.3px;
73 border: 0.2px solid # 010101;
74 }
75 input[type range]::−moz−range−thumb {
76 box−shadow: 1px 1px 1px #000000, 0px 0px 1px # 0 d0d0d;
77 border: 1px solid #000000;
78 height: 50px;
79 width: 20px;
80 border−radius: 3px;
81 background: # ffffff;
82 cursor: pointer;
83 }
84 input[type range]::−ms−track {
85 width: 100%;
86 height: 2px;
87 cursor: pointer;
88 background: transparent;
89 border−color: transparent;
90 color: transparent;
91 }
92 input[type range]::−ms−fill−lower {
93 background: #2a6495;
94 border: 0.2px solid # 010101;
95 border−radius: 2.6px;
96 box−shadow: 1px 1px 1px #000000, 0px 0px 1px # 0 d0d0d;
97 }
98 input[type range]::−ms−fill−upper {
99 background: #3071a9;

100 border: 0.2px solid # 010101;
101 border−radius: 2.6px;
102 box−shadow: 1px 1px 1px #000000, 0px 0px 1px # 0 d0d0d;
103 }
104 input[type range]::−ms−thumb {
105 box−shadow: 1px 1px 1px #000000, 0px 0px 1px # 0 d0d0d;

Control Network of Bi-Directional DC/DC Converters

84

106 border: 1px solid #000000;
107 height: 50px;
108 width: 20px;
109 border−radius: 3px;
110 background: # ffffff;
111 cursor: pointer;
112 height: 2px;
113 }
114 input[type range]: focus::−ms−fill−lower {
115 background: #3071a9;
116 }
117 input[type range]: focus::−ms−fill−upper {
118 background: #367ebd;
119 }

Control Network of Bi-Directional DC/DC Converters

	Front Matter
	Cover Page
	Title Page
	Table of Contents

	Main Matter
	Problem
	Problem Scope
	Technical Review
	Energy infrastructures
	Energy control networks
	Ensuring network reliability
	Data Visualization

	Design Requirements
	Robustness
	Modularity
	Expandability
	Interactivity
	Power Management

	Design
	Overview
	Slave
	Selecting a Microcontroller Unit
	Communication with the Single Board Computer
	Measuring Voltages and Currents
	Control Signals
	State of Charge Determination

	Master
	Single Board Computer
	Connecting with the Slaves
	Power management & Control
	Online Connection
	Code Implementation

	Server
	Data Storage & Parsing
	User Interface
	Code Implementation

	Use

	Evaluation
	Overview
	Prototype
	Slave
	Master
	Server

	Testing & Results
	Robustness
	Modularity
	Expandability
	Interactivity
	Power Management

	Assessment
	Next Steps

	Appendices
	Appendix A: Slave Source Code
	Appendix B: Master Source Code
	Appendix C: Server Source Code

