
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2011

MSc THESIS

Free Viewpoint 3D TV Rendering Platform

Gokturk Cinserin

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2011-22

Over the past decade, products enabled by 3D technology have
been increasingly adopted in the consumer market. The current
challenge in the field is to explore the methods of free-viewpoint in-
terpolation for 3D TVs. Free-viewpoint interpolation enhances the
user experience significantly by allowing the viewer to select and alter
the desired viewpoint of the scene interactively. This thesis covers
the development of the free-viewpoint rendering platform for the Eu-
ropean iGLANCE project. The proposed FTV platform is powered
by a 7-issue slot VLIW architecture combining scalar and vector
data paths. Our processor is based on an image signal processor
(ISP) template from Silicon Hive. We vectorized the free-viewpoint
algorithm developed in the context of the iGLANCE project, and
mapped it onto this processor. The performance of our implementa-
tion is compared to an out-of-the-box implementation and previous
vectorization work using the same architecture template. In order
to address irregular memory accesses, identified as the bottleneck
by the previous work, we used scatter-gather unit and a customized
memory transfer scheme. This allowed us to apply several classical
vectorization methods to fully utilize data level parallelism. In ad-
dition, instruction level parallelism is improved by applying further

optimizations (loop transformations, data mapping, extending ISA). As a result of all above, a speed-up of
a factor 6x is achieved over the selected baseline, which is equivalent to 78x over the out-of-the box code,
and the ILP is improved by 17% as compared to the previous work. We set up a demonstration system
to validate the results in a real-time environment by mapping our design to an FPGA running at 50 MHz
frequency. The achieved frame rate is 6.75 fps in a 1280x720 resolution. This result indicates that when
our design is mapped to silicon, running at about 10x the FPGA frequency and with extended processor
resources, we will be able to achieve performance levels required in current-day consumer applications,
which is Full HD resolution at 30 fps per eye.





Free Viewpoint 3D TV Rendering Platform

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Gokturk Cinserin
born in Adana, Turkey

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology





Free Viewpoint 3D TV Rendering Platform

by Gokturk Cinserin

Abstract

O
ver the past decade, products enabled by 3D technology have been increasingly adopted
in the consumer market. The current challenge in the field is to explore the methods of
free-viewpoint interpolation for 3D TVs. Free-viewpoint interpolation enhances the user

experience significantly by allowing the viewer to select and alter the desired viewpoint of the
scene interactively. This thesis covers the development of an efficient free-viewpoint rendering
platform for the European iGLANCE project. The proposed FTV platform is powered by a
7-issue slot VLIW architecture combining scalar and vector data paths. Our processor is based
on an image signal processor (ISP) template from Silicon Hive. We vectorized the free-viewpoint
algorithm developed in the context of the iGLANCE project, and mapped it onto this processor.
The performance of our implementation is compared to an out-of-the-box implementation and
previous vectorization work using the same architecture template. In order to address irregular
memory accesses, identified as the bottleneck by the previous work, we used scatter-gather unit
and a customized memory transfer scheme. This allowed us to apply several classical vector-
ization methods to fully utilize data level parallelism. In addition, instruction level parallelism
is improved by applying further optimizations (loop transformations, data mapping, extending
ISA). As a result of all above, a speed-up of a factor 6x is achieved over the selected baseline,
which is equivalent to 78x over the out-of-the box code, and the ILP is improved by 17% as
compared to the previous work. We set up a demonstration system to validate the results in a
real-time environment by mapping our design to an FPGA running at 50 MHz frequency. The
achieved frame rate is 6.75 fps in a 1280x720 resolution. This result indicates that when our
design is mapped to silicon, running at about 10x the FPGA frequency and with extended pro-
cessor resources, we will be able to achieve performance levels required in current-day consumer
applications, which is Full HD resolution at 30 fps per eye.

Laboratory : Computer Engineering
Codenumber : CE-MS-2011-22

Committee Members :

Advisor: Georgi Gaydadjiev, CE, TU Delft

Advisor: Menno Lindwer, Silicon Hive

Chairperson: Koen Bertels, CE, TU Delft

Member: Rene van Leuken, CAS, TU Delft

i



ii



I dedicate this thesis to my grandmother, Meliha Cinserin, and my
mother, Vildan Cinserin

iii



iv



Contents

List of Figures viii

List of Tables ix

Acknowledgements xi

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background Information and Related Work 5

2.1 The iGLANCE Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 The iGLANCE Architectural View . . . . . . . . . . . . . . . . . . 5

2.1.3 Scenarios and Requirements . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 Reference Video Sequence . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Silicon Hive Technology and Platforms . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 The HiveCC Compiler . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Silicon Hive Simulation Environment . . . . . . . . . . . . . . . . . 13

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 FTV Algorithm 15

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Stages of the FTV Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Warping Depth Maps . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.2 Combine Depth Maps . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.3 Median Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.4 Disocclusion Inpainting for Depth Maps . . . . . . . . . . . . . . . 19

3.2.5 Inverse Warping Texture Maps . . . . . . . . . . . . . . . . . . . . 19

3.2.6 Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.7 Blending Texture Maps . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.8 Disocclusion Inpainting for Texture Maps . . . . . . . . . . . . . . 21

4 FTV Rendering Platform 25

4.1 Target Rendering Platform . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 FTV System View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

v



4.2.2 FTV Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.3 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.4 External Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.5 HDMI Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 System Level Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Performance Estimations . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.1 Throughput Requirement . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.2 Memory Bus Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Fixed Point FTV Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Mapping the FTV Algorithm 39
5.1 Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Irregular Memory Access Patterns . . . . . . . . . . . . . . . . . . 39
5.1.2 Unaligned Memory Accesses . . . . . . . . . . . . . . . . . . . . . . 46
5.1.3 Boundary Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.4 Conditional Executions . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.5 Search Space Restrictions . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.6 Loop Interchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.7 Performance of Vectorized Baseline . . . . . . . . . . . . . . . . . . 51

5.2 Further Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.1 Loop Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.2 Data Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.3 Extending the ISA . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.4 The Combined Effect of Optimizations . . . . . . . . . . . . . . . . 61

6 RESULTS & ANALYSIS 63
6.1 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Area results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Output Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.1 Output Quality after Each Algorithm Step . . . . . . . . . . . . . 68
6.3.2 Final Output Quality . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 Conclusions and Future Work 71
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A Resulting Schedules for the Warping Stage 73

Bibliography 81

vi



List of Figures

1.1 Performance of the previous vectorized implementation . . . . . . . . . . . 2

2.1 The iGLANCE transmission chain . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The iGLANCE architectural view . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The iGLANCE scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 The camera set-up for recording ballet scene . . . . . . . . . . . . . . . . . 9
2.5 An example frame from ballet scene . . . . . . . . . . . . . . . . . . . . . 9
2.6 The spectrum of performance vs. programmability . . . . . . . . . . . . . 10
2.7 An example of a Silicon Hive VLIW processor . . . . . . . . . . . . . . . . 11
2.8 An example of a Silicon Hive multi-core system . . . . . . . . . . . . . . . 12

3.1 Disocclusions in the background depending on the viewpoint . . . . . . . 15
3.2 Interpolating a new view anywhere between two camera views . . . . . . . 16
3.3 An overview of the FTV algorithm . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Warping depth maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Combining depth maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Median filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Disocclusion inpainting for depth maps . . . . . . . . . . . . . . . . . . . . 20
3.8 Inverse warping texture maps . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9 Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.10 Blending texture maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.11 Disocclusion inpainting for texture maps . . . . . . . . . . . . . . . . . . . 23

4.1 The Gladiator FPGA board . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 FTV system view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Host layered structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 FTVProcessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 HDMI-in interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6 Watermark support in HDMI-in interface . . . . . . . . . . . . . . . . . . 33
4.7 Creating two threads for handling synchronization . . . . . . . . . . . . . 33
4.8 FTV system synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.9 Double buffering scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.10 A vector multiplication resulting in a wide-vector . . . . . . . . . . . . . . 38

5.1 An example of a vector-addressed load operation . . . . . . . . . . . . . . 41
5.2 Data scattering at warping stage . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 The amount of pixel scattering at the warping stage . . . . . . . . . . . . 43
5.4 The proposed method for caching data in the local memories . . . . . . . 44
5.5 VMEM used as a double buffer between the FTV processor and the DMA 45
5.6 Modified scheme to prevent unaligned accesses . . . . . . . . . . . . . . . 46
5.7 Vector slice operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.8 Using DMA to perform boundary padding . . . . . . . . . . . . . . . . . . 48
5.9 An example of a conditional code . . . . . . . . . . . . . . . . . . . . . . . 48

vii



5.10 An example of vector masking . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.11 An example of a vector branch . . . . . . . . . . . . . . . . . . . . . . . . 49
5.12 Loop Interchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.13 An example code and the corresponding MDFG indicating loop retiming . 58
5.14 The semantic description for vector leading one detection operation . . . . 61

6.1 A performance comparison between this work and the previous vectorized
implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 PSNR and SSIM measurements after each algorithm step . . . . . . . . . 68
6.3 VAMEM hazard affecting the result when two elements of a vector are

mapped to the same memory location . . . . . . . . . . . . . . . . . . . . 69

A.1 The schedule for our vectorized baseline . . . . . . . . . . . . . . . . . . . 74
A.2 The schedule after applying the loop merging technique . . . . . . . . . . 75
A.3 The schedule after applying the loop unrolling technique . . . . . . . . . . 76
A.4 The schedule after applying the loop retiming technique . . . . . . . . . . 77

viii



List of Tables

2.1 Different abstraction levels for simulation in Silicon Hive . . . . . . . . . . 14

4.1 Performance of the out-of-the-box algorithm on a floating point VLIW core 28
4.2 Throughput requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Memory bandwidth calculations . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 The maximum amount of scattering for different viewpoints . . . . . . . . 43
5.2 Performance of our vector baseline . . . . . . . . . . . . . . . . . . . . . . 52
5.3 The effect of invariant code motion on performance and code size . . . . . 53
5.4 The effect of loop fusion on performance and code size . . . . . . . . . . . 54
5.5 The effect of loop unrolling on the performance and code size . . . . . . . 55
5.6 The effect of software pipelining on the performance and code size . . . . 56
5.7 The effect of loop retiming on performance and code size . . . . . . . . . . 57
5.8 The effect of data mapping on the performance and code size . . . . . . . 60
5.9 The effect of OP vec lod operation on performance and code size . . . . . 61
5.10 The combined effect of optimizations on performance and code size . . . . 62

6.1 The performance of the implementation for each algorithm step . . . . . . 63
6.2 Performance comparison for each algorithm function . . . . . . . . . . . . 65
6.3 Overall performance comparison . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 FPGA resource utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.5 Processor local memory sizes and their utilization for the ballet sample . . 67
6.6 Final output quality in terms of PSNR and SSIM . . . . . . . . . . . . . . 70

ix



x



Acknowledgements

I would like to thank Menno Lindwer who guided and challenged me throughout the
course of my thesis. This thesis could not have been a success without his contribution.
I appreciate Georgi Gaydadjiev for his encouragement, patience, help and time. Without
his guidance, I would not have a chance to be involved in this project.

I am grateful for the generous help provided by several people at Silicon Hive, Intel
BV. I would specially like to mention Hendrik Boer, Mauro Cocco, Fiona Chua, and
Alessandro Paschina for their support.

I am thankful to my parents, Vildan and Veysel Cinserin. Without their support I
would not have had the strength to run this marathon. I am who I am because of them.
Sizi cok seviyorum.

I thank my special cousins, and the rest of my great family. I am glad that I am a
part of them.

I would also like to thank Aashini, Yunus, and Alper for standing by me through
every happiness and dissappointment I have had this year. I also want to thank my
friends from Delft for all the good times we had last year. Finally, I would like to thank
all my friends in Turkey in memory of the days we had in the past, and for the days that
we will have in the future.

Gokturk Cinserin
Delft, The Netherlands
September 1, 2011

xi



xii



Introduction 1
This chapter introduces 3D technology and the concept of free viewpoint interpolation. It
also summarizes the main contribution of this work and provides an outline of the thesis.

This chapter is organized as follows. Section 1.1 starts with the background and moti-
vation behind the Free Viewpoint 3D TV (FTV). Section 1.2 mentions the contributions
of this work. Section 1.3 presents a brief outline of the thesis.

1.1 Background and Motivation

The emergence of 3D video, enabled by recent research and convergence of technologies
from computer graphics, multimedia and related fields, enhanced the user experience by
offering an advanced illusion of depth perception. The illusion of depth is achieved by
the stereoscopy technique which is based on the idea of presenting two slightly offset 2D
images to the left and right eye of the viewer. The human brain perceives 3D depth
from these 2D images which are superimposed onto the same screen. The current trend
in 3D viewer technology is to use passive (polarized, complementary color anaglyphs) or
active (shutter) glasses in order to multiplex the view between the left and right eyes.
Autostereoscopy is another method which offers to display 3D content without the use
of special glasses by viewers.

Free Viewpoint TV (FTV) is an emerging field of study which expands the user
experience even further, far beyond what is offered by traditional media. It allows the
user to choose any viewpoint, thereby virtually navigating through a visual scene. As the
total number of cameras recording the scene is limited, artificial views have to be created
for all positions which do not have real camera data. The research on free viewpoint
interpolation methods aims at rendering high quality artificial views within a feasible
computation budget.

The iGLANCE project aims at researching methods of receiving and rendering free
viewpoint video for both consumer 3D TV and healthcare domains. It also aims to
actively contribute to the standardization process for the future 3D TV, and to facilitate,
by a pertinent demonstration, the mass adoption and the commercial deployment of
the future 3D TVs [20]. The project was launched in 2008 as a part of the European
MEDEA+ program with a total budget of 18 million Euros shared between a French
consortium and a Dutch consortium. Silicon Hive, as one of the project partners, is
investigating how its processor technology can be extended for the field of 3D video and
free viewpoint rendering.

This thesis focuses on the development of the free viewpoint rendering platform for
the iGLANCE project. The key component which is responsible for viewpoint interpo-
lation, in the proposed platform, is a Silicon Hive image signal processor (ISP). It is a
VLIW processor equipped with a combination of scalar and vector issue slots. It enables

1



2 CHAPTER 1. INTRODUCTION

10

15

20

25

30

35

40

45

E
x

e
cu

ti
o

n
 C

y
cl

e
s 

p
e

r 
p

ix
e

l

0

5

10

Warp Blend 

Depth

Median 

Filter

Fill Depth Inverse 

warp

Blend 

Texture

Fill Y Fill UV

E
x

e
cu

ti
o

n
 C

y
cl

e
s 

p
e

r 
p

ix
e

l

Figure 1.1: Performance of the previous vectorized implementation for each algorithm
step

high levels of data and instruction level parallelism to achieve high real-time process-
ing requirements. The free viewpoint algorithm, developed by Eindhoven University of
Technology, Video Coding & Architectures research group, is vectorized and mapped
onto this processor.

The previous implementation which was also based on Silicon Hive’s ISP template was
proposed in [6]. The bottleneck in this work is at the warping and inverse warping stages
as shown in Figure 1.1. Irregular memory access patterns required by the pixel based
load/stores prevents efficient vectorization of these stages hence causing a significant
performance limitation. Therefore, the first focus is on the improvement of the warping
stages, on which most of the processor cycles are spent, in order to overcome these
limitations.

1.2 Contribution of this Thesis

• The main contribution of this work is the technique to handle irregular (random)
memory accesses to allow efficient exploitation of data parallelism. The proposed
technique is based on the use of scatter-gather units in combination with medium-
size vector-addressable memories which are used for caching the frame data. Adopt-
ing these units along with the suggested method for caching and transferring the
data between memories allow overcoming the issues related to vectorization.

• In order to benefit from the instruction level parallelism (ILP) in our VLIW ar-
chitecture, several loop transformation techniques and an efficient data mapping
are employed. Furthermore, an analysis is performed to extend the processor’s
instruction set with a number of custom instructions which are frequently used in
the algorithm.

• Finally, a demonstration system, on an FPGA-based platform, is built in order to
show the validity of the results of the implementation in a real-time environment
as also aimed by the iGLANCE project.



1.3. OUTLINE OF THE THESIS 3

1.3 Outline of the Thesis

Chapter 2 gives a more-detailed view of the iGLANCE project and background infor-
mation about the Silicon Hive processor, system solutions and development flow. It also
describes the previous work related to free-viewpoint rendering platforms before diving
into the details of this work. This gets the reader acquainted with the motivations of
the project.

The steps of the algorithm for performing free-view interpolation (FTV algorithm)
are described in Chapter 3.

Chapter 4 is dedicated to explain the Silicon Hive ISP2400 processor based architec-
ture on which the FTV algorithm is mapped. This chapter gives an overview about the
individual components of the rendering platform; it also presents the synchronization
method for these system components, and system-level performance estimations.

Chapter 5 explains the mapping of the FTV algorithm on the VLIW processor in-
cluding the SIMD datapath. The challenges related to vectorizing the algorithm, and
techniques to solve these challenges are explained in this chapter. Particularly, it ad-
dresses the key contribution of this thesis, which is the technique to improve the perfor-
mance in the presence of irregular memory accesses. It also explains the optimizations
which were applied to improve the performance of the algorithm further.

The results of the implementation are presented in Chapter 6, along with an analysis
on the results and a comparison with previous implementations.

Chapter 7 concludes the thesis by summarizing the major contributions and the
achieved results; and it suggests a number of points for further improvements.



4 CHAPTER 1. INTRODUCTION



Background Information and
Related Work 2
This chapter starts by presenting a more detailed view of the iGLANCE project. The
main goals of the project together with the iGLANCE architecture are explained. The
target application domains of the project are given. The next section introduces Silicon
Hive and their ASIP solutions which offer a competitive performance in the embedded
domain. Silicon Hive processors, system solutions, and development flow is explained
briefly in this section. Finally, we present the related research regarding free-viewpoint
rendering platforms. We justify the advantages of our solution by comparing it to various
other alternatives.

2.1 The iGLANCE Project

2.1.1 Overview

The goal of the iGLANCE project is to research and develop methods of receiving and
rendering free-viewpoint in 3D-TVs [35]. It aims at defining an end-to-end 3D solution,
and actively contributing to the standardization process of 3D TV. The project was
launched in 2008 as a part of the European MEDEA+ program. MEDEA+ was initiated
by industrial partners for co-operative R&D in microelectronics to improve Europe’s
competitiveness in this field. The iGLANCE project involves several partners from the
industry as well as the Eindhoven University of Technology.

The project focuses on receiving and decoding multi-view streams on a decoding
platform and free viewpoint interpolation on a rendering platform. The iGLANCE
chain commences with the reception of the transmitted stream (see Figure 2.1). Based
on the user input, the system ensures that only the parts which are necessary for view
interpolation are transmitted. The captured stream is then decoded by H.264 decoder.
After that, the iGLANCE system performs interpolation of the view chosen by the user.
In the project, it is intended to propose the algorithms to realize the free-viewpoint
selection, and to design and implement the hardware that is capable of decoding and
free-viewpoint rendering of the video streams with real-time constraints.

2.1.2 The iGLANCE Architectural View

In order to validate the feasibility of the previously mentioned objectives, a demon-
stration system is implemented. The architectural components of the demonstrator are
illustrated in Figure 2.2. The system is composed of a number of hardware and software
components whose implementations are deployed on two separate boards. The front-end
board is responsible for H.264 decoding of transmitted video streams. This board is
provided by ST Microelectronics, an iGLANCE partner. The back-end board processes
the decoded video stream in order to interpolate the view for the user-defined position.

5



6 CHAPTER 2. BACKGROUND INFORMATION AND RELATED WORK

 

Figure 2.1: The iGLANCE transmission chain

Silicon Hive’s Gladiator board is used for this purpose. A detailed explanation about
the back-end architecture is given in Chapter 4.

The processing of data, i.e. decoding and interpolation, is realized by the hardware
components of the system. In the demo system, the input is an encoded transport stream
(.ts) from a USB stick. In the general case, the front end board receives the stream from
a digital channel. After receiving the encoded video, the front end board transmits the
decoded stream through an HDMI connection. It is captured by the HDMI interface of
the back-end board, and then the final output is sent to the LCD display through the
second HDMI connection.

Stacked above the hardware layer is a middleware which is a software-only component
whose purpose is to combine the different system parts of the iGLANCE architecture
such that a complete functional system exists. The middleware controls the iGLANCE
video processing hardware by transferring the user commands such as video play, pause,
stop, etc., to it. It also uploads the subset of parameters required for video processing,
which are selected based on the user input. The communication of the middleware to
the system hardware is provided using the application programmer’s interface (API) of
these hardware modules. The main part of the middleware is deployed on the front-end
board, and it uses a proxy pattern in order to make remote procedure calls (RPC) to the
C-functions present in the back-end middleware. This communication is done through
an ethernet connection.

2.1.3 Scenarios and Requirements

The target application fields in the iGLANCE project are the consumer and the health-
care domains. The consumer scenario FTV Bypass aims at providing the 3D streams
in full-HD (1920x1080) resolution at 30 fps per eye. The format of the stream can be
sequential or side-by-side as demonstrated in Figure 2.3a and b respectively. The free



2.1. THE IGLANCE PROJECT 7

Hardware

OS

APPLICATION

MIDDLEWARE

API PROXY

FRONT END

Hardware

OS

MIDDLEWARE

STUB

BACK END

API

FPGAs

USB HDMI HDMI

RPC

Figure 2.2: The iGLANCE architectural view

viewpoint interpolation on the back-end board is bypassed in this scenario. This is to
meet the short-term requirements of the 3D home market.

The other consumer scenario FTV has been defined to realize a free-viewpoint se-
lection feature based on the user input, using the views from the cameras recording
the scene from left and right angles. The input is required to be a side-by-side texture
and depth information from both cameras. The FTV algorithm (explained in Chapter
3) creates an artificial interpolated 2-D view between the two camera positions. By
running the FTV algorithm twice, it is possible to obtain stereo views for the desired
viewpoint. The interpolated stereo views, packed side-by-side, are sent to a 3D display.
The requirement for this scenario is also a full-HD resolution at 30 fps per eye. The left
and the right views generated by the FTV algorithm are of a resolution 960x1080, at 30
fps. The 3D panel is responsible for up-scaling each view to 1920x1080 and displaying
them sequentially.

The healthcare scenario demonstrates the usefulness of the system in biomedical
applications. In the medical domain, 3D data is generated by several imaging modali-
ties. After processing, displaying this data on an auto-stereoscopic screen with a free-
viewpoint option can help navigating instruments optimally during interventions [35]. In
this scenario, the multiple interpolations for nine viewpoints, each with an SD resolution
(640x360), packed into a full-HD frame has been proposed. This thesis focuses on the
FTV consumer scenario.

2.1.4 Reference Video Sequence

Research in the field of multi-view and free-viewpoint rendering requires multi-view
test sequences to be used as a reference by researchers. A widely-used video sequence is
”ballet scene” generated and distributed by Microsoft Research Interactive Visual Group



8 CHAPTER 2. BACKGROUND INFORMATION AND RELATED WORK

H
.2

6
4

 D
e

c
o

d
in

g

F
re

e
 V

ie
w

p
o

in
t 

In
te

rp
o

la
ti
o

n

3
D

 P
a

n
e

lT0

T2

T4

D0

D2

T6

T6

T8

D6

D8

T0

T3

T6

T1

T4

T7

T2

T5

T8

iGLANCE Healthcare Scenario

H
.2

6
4

 D
e
c
o

d
in

g

F
re

e
 V

ie
w

p
o

in
t 

In
te

rp
o

la
ti
o

n

3
D

 P
a

n
e

l

iGLANCE Consumer Scenario - FTV

L

cam

D

cam

R

cam

D

cam

L

FTV

R

FTV

H
.2

6
4

 D
e

c
o

d
in

g

F
re

e
 V

ie
w

p
o

in
t 

In
te

rp
o

la
ti
o

n

3
D

 P
a

n
e

l

iGLANCE Consumer Scenario – FTV Bypass

L

CAM

R

CAM

L

CAM

R

CAM

H
.2

6
4

 D
e

c
o

d
in

g

F
re

e
 V

ie
w

p
o

in
t 

In
te

rp
o

la
ti
o

n

3
D

 P
a

n
e
l

iGLANCE Consumer Scenario – FTV Bypass

L

CAM

R

CAM
L

CAM

R

CAM

Figure 2.3: The iGLANCE scenarios

[36]. It is used in the iGLANCE project in order to test the algorithm.

The ballet scene was recorded using a set of synchronized cameras. There were eight
cameras placed along an arc, covering about 30 degrees from one end to the other, as
depicted in Figure 2.4 . This corresponds to an angle difference of 4 degrees between two
consecutive cameras. The quality of the interpolated views generated by free-viewpoint
algorithms depends on the distance between two camera views.

The ballet sequence contains 100 frames with a resolution of 1024x768 at 15 fps. The
first frame of the sequence for the 4th camera position and its corresponding depth map
is shown in Figure 2.5.



2.2. SILICON HIVE TECHNOLOGY AND PLATFORMS 9

�

Cam 0 Cam 7 

Cam 6 
Cam 5 

Cam 4 Cam 3 Cam 2 
Cam 1 

Figure 2.4: The camera set-up for recording the ballet scene

�
���

�
���

�

Figure 2.5: An example frame from the ballet scene

2.2 Silicon Hive Technology and Platforms

In the rapidly evolving embedded computing domain, general-purpose processors very
often fail to satisfy the demanding power, area and performance requirements. This
promoted the use of specialized embedded computing systems customized for specific
set of applications. There has been a strong interest for Application Specific Integrated
Circuits (ASIC) which is a dedicated hardware intended for a particular application.
This specialization of an ASIC helps providing a very efficient solution to a particular
problem in terms of performance and cost. But this advantage comes by sacrificing the
variability of the device. The hardware must be redesigned and manufactured in case an
update is needed for the application, which increases the overall costs and the time-to-
market for the product. This, together with some other factors [22], gives rise to a shift



10 CHAPTER 2. BACKGROUND INFORMATION AND RELATED WORK

Programmabilty

P
e
rf
o
rm
a
n
c
e

ASIC

CPU

ASIP

Figure 2.6: The spectrum of performance vs. programmability

from ASIC design towards the use of programmable platforms.

Application Specific Instruction-Set Processors (ASIP) represent application specific,
yet programmable solutions. They represent the mid-point in the spectrum between very
efficient, less flexible ASICs and less efficient, very flexible general-purpose processors (see
Figure 2.6) [3]. The programmability of an ASIP comes from its instruction-set archi-
tecture (ISA) while the competitive performance is provided by customized instructions
and exploiting high levels of parallelism.

Silicon Hive licences ASIP processors and systems offering very efficient and highly-
programmable solutions. Besides that, Silicon Hive provides its customers with an ad-
vanced development environment which further reduces the time-to-market of products.
Furthermore, the development environment inside Silicon Hive offers the possibility to
customize the processors and systems easily in order to satisfy the requirements of var-
ious applications. In the following sections, brief information about the Silicon Hive
processors, systems, and development environment is given.

2.2.1 Processors

The Silicon Hive processors are based on a load-store architecture, and belong to the
very long instruction word (VLIW) processors family. These processors are capable of
issuing and executing multiple operations simultaneously thereby achieving high levels
of instruction level parallelism (ILP). Every operation in the instruction is fetched to
the corresponding issue slot. An issue slot consists of one or more functional units each
of which can perform a group of different operations. The maximum possible ILP, that
the processor can achieve, can be increased by increasing the number of issue slots, by
executing more operations in a single cycle.

Unlike many conventional VLIW architectures, the Silicon Hive processors have an
option to be equipped with single instruction multiple data (SIMD) issue slots. There-
fore, they also provide the advantages of data level parallelism besides instruction level
parallelism. With the use of N-way vector issue slots, an operation is performed on N



2.2. SILICON HIVE TECHNOLOGY AND PLATFORMS 11

 

Figure 2.7: An example of a Silicon Hive VLIW processor

vector elements simultaneously. The functional units placed in the vector issue slots are
capable of executing both inter and intra-vector operations. An example Silicon Hive
processor is illustrated in Figure 2.7. The processor consists of issue slots, register files, a
programmable interconnect, scalar and vector memories, core i/o interfaces, and a con-
trol logic. As opposed to most other processor designs, the Silicon Hive data path has
multiple register files, usually at least one register file per issue slot to achieve low fan-in
and fan-out [19]. The compiler handles the assignment of variables to various register
files.

Silicon Hive does not focus on one complete solution for all domains, but rather it
allows the processor designers to tune their core according to the target application, by
exploring the design space and finding the best choice in terms of area, performance and
power. Processors can be configured by varying any of aspects such as the number of
issue slots, the types of functional units, the number and the size of register files, and the
interconnect scheme between these components. This is made possible by providing a
highly abstract language called TIM (The Incredible Machine) to configure the hardware
elements of the processor. A few lines of TIM code can invoke pre-built hardware blocks
written in hundreds of lines of VHDL code.

2.2.2 Systems

In the Silicon Hive development environment, every processor must be instantiated at
system level in order to fulfill and test its functionality. A system is considered as
a number of Silicon Hive processors, a host processor, a control bus, FIFO adapters,



12 CHAPTER 2. BACKGROUND INFORMATION AND RELATED WORK

DMA

Processor A

FIFO

FIFO

DMA

Processor A

FIFO

SYSTEM BUS

Host Processor System MemoryCustom Device

Figure 2.8: An example of a Silicon Hive multi-core system

external memories, and/or custom devices. Figure 2.8 demonstrates an abstract example
of a multi-processor system including these components. A host processor, typically an
ATOM or similar processor, is responsible for controlling the system. It initializes the
other system components, uploads programs to the Hive cores, starts the execution of the
program in these cores, and uploads required parameters to the processors’ local memory
or the external memory. The FIFOs are typically included for direct communication
between processors and/or other hardware blocks. The data transfer between processors
is performed through the shared bus. Each Hive processor in the figure has its own DMA
to transfer data between the core and the external memory or the other cores.

In order to describe the Silicon Hive systems, a high-level language called HSD is
used. A designer can use this language to configure the components, connections, and
properties of a system in a hierarchical way. A system consists of a set of clusters
which are composed of standard or custom devices. The system description is exploited
to generate a system simulator containing all system-specific information, such as bus
address mappings and connectivity. Using the same description, pre-built hardware
blocks are invoked to map them on an FPGA or silicon.

2.2.3 The HiveCC Compiler

Unlike superscalar processors which use a hardware scheduler, the performance of the
VLIW architectures highly relies on an effective instruction-scheduling compiler. The in-
struction scheduler packs all the operations that can be executed in parallel into a single,



2.3. RELATED WORK 13

very-large instruction word. Therefore, it determines to what extend the resources of a
VLIW processor are utilized. VLIW processors can be built using extensive resources,
but if a compiler is unable to schedule the instructions sufficiently parallel, then the
processor resources are wasted.

Silicon Hive’s HiveCC compiler is responsible for scheduling instructions and allocat-
ing the resources efficiently for the VLIW cores. It comes with two types of instruction
schedulers, manifold and hivesched, both trying to achieve a schedule in as few instruc-
tions (processor cycles) as possible. The former tries to solve the scheduling problem,
which is intractable, optimally. The latter is based on greedy algorithms which give a
solution in shorter time but do not guarantee an optimal solution.

2.2.4 Silicon Hive Simulation Environment

Since the HiveCC compiler handles instruction scheduling and resource allocation, the
performance of algorithms on a given architecture can be estimated. Silicon Hive’s
development environment offers different levels of simulation and verification for the
target application. The choice between these levels depends on the purpose of simulation.
They provide a trade-off between accuracy and simulation time. Table 2.1 illustrates four
different simulation methods.

The first and the most abstract, c-run is the fastest method, which simulates only the
functionality of the application. It consists of native compilation (using gcc compiler) of
both a host program and functions that are to be accelerated by a Silicon Hive processor
on a workstation. In an unsched run, the code is compiled with the HiveCC compiler,
instruction selection is performed; however, the code is not scheduled. Therefore, infor-
mation on cycle count and resource allocation is not present. The next level is the sched
run where all resource conflicts are resolved, and a cycle accurate simulation regarding
core operations takes place. This simulation uses the Silicon Hive compiled simulator
model. In this flow, the code is compiled onto the assembly code and scheduled with
the HiveCC, which is then compiled onto a C-function that cycle-accurately simulates
the behavior of the intermediate code. This C-function is then linked with the host
code to obtain a simulator for the application.The most accurate simulation method is
system vhdl which is performed at the signal level. Along with cycle accuracy at the
core level, the cycle count in the core I/O level is also taken into account.

In a sched-run, the compiler generates an output html file containing the scheduling
information with a visual interface. By analyzing this file, it is possible to observe the
static usage of processor resources for each function in the code. This allows detecting
the bottlenecks in the implementation, and boosting the performance by solving them.
An example is given in the appendix.

2.3 Related Work

In the last decade, there has been extensive research on the implementation of a real-
time rendering platform which is capable of doing free viewpoint 3D interpolation. Some
research is focused on the implementation on a dedicated hardware (ASIC). In a relatively



14 CHAPTER 2. BACKGROUND INFORMATION AND RELATED WORK

Table 2.1: Different abstraction levels for simulation in Silicon Hive

Simulation Type Execution Method Execution Time Accuracy

C-run Native Native Functionality only
Unsched Native > 3 Mops/s Bit-accurate
Sched Native 3 Mops/s Cycle-accurate
System vhdl RTL 100 ops/s Signal-accurate

old study [14], such a hardware accelerator capable of processing 25 SDTV (720x576)
frames per second (fps) is proposed. In a more recent paper [32], an ASIC which can
process up to 216 fps with a QFHD (4096x2160) resolution is presented. In [13], a
multi-view rendering architecture is implemented for auto-stereoscopic displays using an
Altera Cyclone III FPGA. Another widely-adopted solution is using high-end GPUs. [1]
and [31] uses GPUs to achieve rendering at Full-HD (1920x1080) resolution with a frame
rate of 30fps and 24 fps, respectively.

Among the proposed platforms, the dedicated hardware solutions offer the best per-
formance to handle the extensive computation requirements. They also have the advan-
tage of costing relatively less chip area along with superior power-efficiency. However, the
hardcoded platforms imply a higher risk for future product improvements due to longer
development cycle and high mask costs. This is a considerable drawback considering
continuous improvements in the quality and the performance of the current rendering
algorithms and the absence of a stable free viewpoint 3D-TV standard.

The FPGA-based implementations are mostly used for research purposes. The re-
configurability of such platforms presents a more suitable basis for design modifications.
However, a flat learning curve in SW/HW mapping, insufficient processing power and
a relatively high cost per item prevents an FPGA to be preferred as a mass production
method for free viewpoint rendering devices [7].

The use of GPUs, on the other hand, promises high performance solutions while it also
provides high flexibility for the modifications and optimizations on the implementation
of the rendering algorithms. However, high power consumption figures and the high
costs of high-end GPUs might become a bottleneck for adopting GPUs as a set-top-box
for the free viewpoint rendering.

This thesis proposes an architecture based on Silicon Hive’s ASIP solutions that offers
a good combination of all the above approaches. Firstly, it engages high design flexibility
by shifting the development cycle to software which is highly desired in this rapidly
developing domain. It also presents a convenient way for prototyping purposes using
existing Silicon Hive demonstration board with Xilinx Virtex-5 FPGAs. In this process,
the processor and the rendering system can be tuned to maximize the performance.
When the final design is mapped on silicon, the performance is competitive to that of
an ASIC or a GPU while the power consumption is significantly less than GPU-based
solutions, and its flexibility makes it more attractive than an ASIC.



FTV Algorithm 3
In this chapter, we first introduce some terminology related to the free-viewpoint algo-
rithms, such as depth image based rendering, single-view vs. multi-view rendering. Then,
we focus on getting the reader acquainted with the free-viewpoint algorithm that is used
in this project. After giving an overview about the algorithm, we explain every step
demonstrating result images from the sample ballet sequence

3.1 Overview

Generating different viewpoints to virtually walk through a scene, called as multi-view
video, has become a hot topic in the field of advanced video processing [16]. As the total
number of cameras recording the scene is limited, artificial views have to be created for all
positions which do not have a real camera data. Free-viewpoint (FV) algorithms aim at
rendering such artificial views. The latest trend in the FV algorithms involves the usage
of the geometry of the scene in order to improve the rendering quality [29]. A well-known
rendering technique called as the Depth Image Based Rendering (DIBR) uses a depth
map of the scene as the geometry information. The purpose of the DIBR is to warp
the single/multiple original image(s) into a synthetic view using the depth information.
Research has been done on viewpoint interpolation from a single reference view and its
corresponding depth map [26]. However, this method suffers from insufficient information
and disocclusions in the resulting views. Some parts of the scene can be hidden in the
reference view that is used, as shown in Figure 3.1. In fact, this is the fundamental
challenge in viewpoint interpolation.

The other approach is to exploit two reference images and their depth maps in order

 

Figure 3.1: Disocclusions in the background depending on the viewpoint [34]

15



16 CHAPTER 3. FTV ALGORITHM

Figure 3.2: Interpolating a new view anywhere between two camera views [34]

Combine

depthmap

Median

filtering

Disocclusion

inpainting

Inverse warp

texture left

Inverse warp

texture right

Dilate

disocclusions

Dilate

disocclusions

Blending

texture maps

Disocclusion

inpainting

Warp

depthmap

Warp

depthmap

Tleft

Tright

Dleft

Dright

Camera left

Camera right

Figure 3.3: An overview of the FTV algorithm

to create a more accurate artificial view in between these two views (Figure 3.2). This
method is called multi-view rendering. It has the advantage of being able to compensate
for the information that is absent in the first view, from the other view. Therefore, it
promises a better accuracy while the required number of computations is typically more
than interpolation using single reference.

The algorithm used in this thesis is based on the multi-view rendering technique, and
is developed by TU/e. Figure 3.3 illustrates the algorithm pipeline. First, the depth
map for the desired viewpoint is generated through forward warping. Imperfections in
this depth map are corrected by post-filtering and disocclusion inpainting. Then, the
algorithm projects the input texture views into the virtual plane using the interpolated
depth information for the user-defined viewpoint.

Note that all sample results shown in this chapter are obtained from the ballet scene
using camera 2 and 4 as the left and the right reference cameras, as shown in Figure
2.1.4 . The output view is created for the viewpoint position where camera 3 is placed.



3.2. STAGES OF THE FTV ALGORITHM 17

 

a) 
 

b) 

  

 

c) 
 

d) 

 

Figure 3.4: Warping depth maps : a) Depth from the original left camera, b) Depth
after warping the left camera, c) Depth from the original right camera, d) Depth after
warping the right camera

3.2 Stages of the FTV Algorithm

3.2.1 Warping Depth Maps

In this step, the depth maps at the two nearest original camera positions are warped
to obtain the corresponding depth map at the interpolated position which is typically
chosen by the user. This is achieved by first projecting the plane at the original position
to 3D space, and then back-projecting it to the virtual image plane. Figure 3.4 shows
the resulting images of rendering for both the left and the right depth maps. During
the warping stage, a number of pixels can be projected to the same pixel position in the
interpolated image. In such cases, the pixel with a lower depth value, i.e. nearer to the
camera, has to be adopted [24].



18 CHAPTER 3. FTV ALGORITHM

  
a) b) 

 

 

 
c) 

 

Figure 3.5: Combining depth maps : a) Warped depth left, b) Warped depth right, c)
Combined depth

3.2.2 Combine Depth Maps

The warped depth maps from the left and the right cameras are blended to find the
combined depth map at the interpolated position. In this way, information for the parts
which are not visible to one of the cameras can be obtained from the other camera.
While combining the depth value for a pixel from two cameras, the smaller pixel value,
representing objects closer to the foreground, is selected. The output of the blending
stage is illustrated in Figure 3.5.

3.2.3 Median Filtering

Due to the rounding errors caused by the calculations at the warping stage and the
difference in the sampling rates between the original and the interpolated positions, the
synthetic depth map at the interpolated position contains cracks as depicted in Figure
3.6a, [16] provides more information about this phenomenon. Median filtering is applied
on the blended image to fix the cracked regions, as shown in Figure 3.6b. In addition,



3.2. STAGES OF THE FTV ALGORITHM 19

 
a) 

 
b) 

 

Figure 3.6: Median filtering : a) Combined depth, b) Depth after median filtering

median filtering is useful in smoothening out the depth values inside the same object
while preserving the edges of different objects [17]. Furthermore, a median filter with
a small window size of 3x3 leaves the dissoccluded parts of the image unchanged since
these parts usually occupy clusters with a large area.

3.2.4 Disocclusion Inpainting for Depth Maps

The synthetic depth map at the interpolated position may have some regions of black
pixels after median filtering. The reason for these holes is the absence of information for
that pixel from both the cameras. Inpainting is used to fill the dissoccluded regions with
information extracted from the neighboring image pixels which are not dissoccluded.
Inpainting is performed by finding for every dissoccluded pixel the closest neighbor with
a non-zero depth. Searches in horizontal, vertical and diagonal directions result in 8
neighbors out of which the one with the greatest depth value is selected, assuming that
the dissoccluded pixels belong to the background. The result of the inpainting stage is
given in Figure 3.7.

3.2.5 Inverse Warping Texture Maps

The interpolated depth map, obtained after the post-filtering steps described above, is
used together with the camera texture views to create a virtual texture view at the
interpolated position. Figure 3.8a and b demonstrate the inverse warped textures from
the original left and right camera views, respectively.

3.2.6 Dilation

Due to inaccuracy in depth maps, textures are warped to incorrect places at the interpo-
lated viewpoint. This situation is mostly visible at the edges of objects where the depth



20 CHAPTER 3. FTV ALGORITHM

 
a) 

 
b) 

 

Figure 3.7: Disocclusion inpainting for depth maps : a) Depth after median filtering, b)
Depth after filling disocclusions

 
a) 

 
b) 

  

 
c) 

 
d) 

 

Figure 3.8: Inverse warping texture maps : a) Original left camera texture, b) Warped
texture left, c) Original right camera texture, d) Warped texture right



3.2. STAGES OF THE FTV ALGORITHM 21

 
a) 

 

 
b) 

Figure 3.9: Dilation : a) Ghost contours in the absence of dilation, b) Ghost contours
erased by dilation

map shows high discontinuities [16] as opposed to the texture maps where the transitions
in the edges are distributed over a few pixels. This issue causes a ghost contour of the
foreground objects to appear in the background, around the border of the dissoccluded
areas, as visible in Figure 3.9a. This is avoided by applying a dilation operation, which
expands the dissoccluded area, before the blending step. The result of blending, preceded
by dilation is given in Figure 3.9b.

3.2.7 Blending Texture Maps

The resulting synthetic views from the left and the right cameras at the interpolated
position are blended using a weighted average method. The weights are based on the
distance from the left and the right camera positions to the interpolated position. Figure
3.10 shows the output of this stage.

3.2.8 Disocclusion Inpainting for Texture Maps

As in the case of the projected interpolated depth map, the blended texture map might
also have areas that cannot be viewed from any of the reference cameras. Assuming,
again, that the dissoccluded pixels belong to the background, the depth information is
also used [16] to fill the disocclusions accurately. For inpainting of a dissoccluded pixel,
searches are performed in 8 directions to find the nearest pixel that is not disoccluded.
A weighted average of these pixels is taken in order to calculate the value that needs to
be used to fill the disocclusion. The final result which demonstrates the output view at
the interpolated position is given in Figure 3.11.



22 CHAPTER 3. FTV ALGORITHM

 
a) 

 
b) 

 

 
c) 

 

Figure 3.10: Blending texture maps : a) Warped texture left, b) Warped texture right,
c) Blended texture map



3.2. STAGES OF THE FTV ALGORITHM 23

 
a) 

 

 
b) 

 
c) 

 

 
d) 

Figure 3.11: Disocclusion inpainting for texture maps : a) Before inpainting (closer
look), b) After inpainting (closer look), c) Before inpainting, d) After inpainting - final
interpolated view



24 CHAPTER 3. FTV ALGORITHM



FTV Rendering Platform 4
This chapter is dedicated to introduce the Silicon Hive ISP2400 processor based ar-
chitecture on which the FTV algorithm is mapped. The target platform for rendering
(iGLANCE backend board) is explained. Then, we give an overview about the individual
components of the rendering platform; we also present the synchronization method for
these system components, and the system-level performance estimations.

4.1 Target Rendering Platform

As explained in Chapter 2, the architecture developed in the iGLANCE project is parti-
tioned into two boards. Silicon Hive’s Gladiator board is used for the back-end platform
which is responsible for FTV rendering. The Gladiator board has been used inside Sil-
icon Hive to demonstrate various camera solutions. The development cycle for FTV
rendering platform is accelerated using this verified system.

A simplified view of the Gladiator board is given in Figure 4.1. The Gladiator involves
a Cirrus host board equipped with a host processor, ARM. There are two Xilinx Virtex-5
FPGAs connected to each other through 350 single-ended connections. It also includes a
smaller configuration FPGA, Xilinx Spartan 3A, controlling the two application FPGAs
and the rest of the system. To configure the application FPGAs, the configuration
FPGA should be initialized using a platform flash or through JTAG. Once initialized,
the configuration FPGA functions as a memory-mapped device for the host processor.
Through this interface, the configuration data for the application FPGAs are transferred
by the host processor.

FPGA-1 receives the HDMI data via an HDMI receiver chip (AD9398) placed on the
board. FPGA-2 has an interface with an HDMI transmitter chip (AD9889b) to send out
the HDMI data. Each application FPGA has two banks of 32-bit DDR2 SDRAM with
2 Gbit capacity. The board also contains a camera module interface, a 1024x768 TFT
LCD display, an Ethernet interface and USB ports.

4.2 FTV System View

The system in Figure 4.2 is proposed for the rendering platform. The main components of
the system are: host, FTV processor, external memories, control bus, memory bus, DMA,
and HDMI interfaces, which are described in more detail in the subsequent sections. The
system is generated from a single HSD description, in which all the blocks are instantiated
and parameterized.

25



26 CHAPTER 4. FTV RENDERING PLATFORM

Select Map

Configuration

Inter FPGA 

Interface

 

HDMI OUT

Connector

SPARTAN

FPGA

LEDs & SwitchesLEDs & Switches

AD9889

HDMI

Transmitter

SPARTAN-3A

CONFIG FPGA

XC3S50A- 

4FTG256C

FPGA 2

XC5VLX330-

2FFG1760C

FPGA 1

XC5VLX330-

2FFG1760C

DDRII

SDRAM

2x1Gb

DDRII

SDRAM

2x1Gb

LEDs & 

Switches

DDRII

SDRAM

2x1Gb

DDRII

SDRAM

2x1Gb

HDMI IN

Connect

or AD9398

HDMI

Receiver
 

CIRRUS HOST BOARD

Host Processor 

(ARM)

Figure 4.1: The Gladiator FPGA board

FPGA

CIO

converter

256->64

C
IO

m
e
m

o
ry

b
u
s

2
5
6
b
it

HDMI OUT
HDMI-out

Interface
HDMI IN

HDMI-in

Interface

CIO configuration bus 32bit

ARM

TM

AHB2SMC

SMC2CIO

CIO/CDC

FTV Processor

FIFOFIFO

CIO

CDC

DDR2

A

CIO

CDC

DDR2

B

CIO

converter

32->256

CIO

CDC

CIO

CDC

CIO

CDC
CDC

CIO

converter

32->256

CIO

CDC

CIO 2

Xilinx

Xilinx

DDR2

controller

CIO

converter

256->64

CIO 2

Xilinx

Xilinx

DDR2

controller

DMA

FIFO

adapter

Figure 4.2: FTV system view



4.2. FTV SYSTEM VIEW 27

4.2.1 Host

The host processor is responsible for controlling the system. It has master access to
the 32-bit CIO control bus, meaning that it can initiate data transfers on this bus to
access the FTV processor’s memories, the HDMI interfaces, and the external memory.
The ARM processor on the Cirrus board is used as the host processor in the FTV
system. The AMBA High-Performance BUS (AHB) protocol of the ARM processor is
connected to the FPGAs through an SRAM Memory Controller (SMC) interface. In
the FTV system, the conversion from SMC to the Core I/O (CIO) bus protocol takes
place. Since the host processor and the FTV system running on FPGA operate at
different frequencies, a Clock Domain Crossing (CDC) FIFO is needed to ensure reliable
sampling of data across clock domains.

The host processor runs the control partition of the FTV algorithm by providing the
kernel (the FTV processor) with the parameters which are necessary for free viewpoint
interpolation. The control over the kernel is carried out by a group of layers (see Figure
4.3).

• HRT-API: It allows controlling the Silicon Hive processors and the other system
components from the host using C function calls.

• FTV-API: The FTV Application Programming Interface (FTV-API), designed
by [6], is an interface which allows the application level software (called the
iGLANCE Middleware, see Chapter 2) to control the rendering platform. It pro-
vides some functions such as init, start, pause, resume, stop, quit to initiate/inter-
fere/stop the operation of the kernel. The FTV-API specifies a certain structure
for packing the FTV algorithm parameters, which are uploaded to the FTV kernel.
Furthermore, it uses HRT functions to upload to and execute the program on the
FTV processor. The HRT functions are also used to store the parameters to the
processor local memory.

• The iGLANCE Middleware: The middleware is deployed mainly on the
front-end board. However, it makes function-calls to the back-end board. These
functions calculate the FTV algorithm parameters based on the iGLANCE sce-
nario, the scene information, and the viewpoint. Then, the calculated parameters
are packed according to the format specified by FTV-API, and transferred to this
layer. The parameters are recalculated, packed, and uploaded every time the view-
point or the scene is changed.

The host processor is also responsible for establishing the synchronization between
the middleware, the FTV processor, and the HDMI interfaces. The mechanism to achieve
this task is explained in detail in Section 4.3.

4.2.2 FTV Processor

The FTV processor is the crucial system component where the free-viewpoint rendering
is performed. Initial implementation is based on a floating-point VLIW processor with
5 issue slots. This is only used in order to evaluate the performance of the floating-point



28 CHAPTER 4. FTV RENDERING PLATFORM

FTV KERNEL

HRT API

FTV API

HOST

iGLANCE Middleware

FTV Init Functions Parameter Packaging

Figure 4.3: Host layered structure

Table 4.1: Performance of the out-of-the-box algorithm on a floating point VLIW core

Algorithm Stage Operation/pixel Cycle/pixel ILP

Warp 208,02 169,71 1,23
Blend 18,3 20,65 0,91
Median 578,13 492,09 1,17
Fill Depth 36,58 27,54 1,33
Inverse warp 259,30 137,47 1,89
Dilate 92,59 87,73 1,06
Blend 157,52 63,43 2,48
Fill Y 48,63 41,14 1,18
Fill UV 11,32 9,03 1,25
TOTAL 1,410.92 1,048.79 1,35

out-of-the-box algorithm. Table 4.1 presents the results in terms of the total operation
and cycle count for all stages of the algorithm.

Interpolation of intermediate views for 1080p frames at 30 fps, requires processing
of 62.2 Mpixels/s. The reference implementation of the FTV algorithm indicated that
a total number of 1,410 operations are required per pixel. Therefore, the corresponding
throughput requirement equals to 87.7 giga-operations per second (GOPS). When this
scalar processor is mapped on an FPGA running at 50 MHz, the maximum throughput
is only 0.25 GOPS assuming all operations are executed in parallel.

In order to improve the performance to meet the real time constraints, an Image
Signal Processor (ISP), ISP2400 is proposed as the FTV processor. This embedded C-
programmable family of processors is optimized for image signal processing domain. It
can efficiently perform line or pixel processing which is the case for the FTV algorithm.
The ISP2400 is derived from Silicon Hive’s VLIW template, and it also supports SIMD



4.2. FTV SYSTEM VIEW 29

operations. The SIMD operations can be applied on standard vectors as well as on wide
vectors or vector slices. It does not have support for floating-point operations; therefore
the FTV algorithm was converted to fixed-point (will be discussed in Section 4.5). As in
the case of other Silicon Hive processors, it is highly configurable in the sense that the
number and width of issue slots, register files, memories and types of functional units
can be easily adapted.

The ISP2400-based processor (Figure 4.4), which is used in this thesis, is equipped
with 7 issue slots, 2 of them are reserved for scalar operations and 5 for vector operations.
Each issue slot has its own multiple scalar/vector register files. SIMD operations are
16-way, i.e. a vector consists of 16 elements. The element precision was chosen as 18-
bits in order to benefit from the 18-bit multipliers on the FPGA. The processor has a
program memory with a width that is equal to the length of the very-large-instruction-
word. It uses scalar and vector data memories each of which are connected to a single
load/store unit. Furthermore, it also includes a vector-addressable memory to support
scatter/gather type of vector load/stores.

4.2.3 DMA

The DMA reads/writes data from/to the external memory based on the requests issued
by the FTV processor. The processor makes the request through the communication
FIFO between them. The DMA sends back an acknowledge token through the same
FIFO interface following the completion of each command. The commands can be
pipelined, i.e. the processor can make as many requests as the FIFO depth without
having to wait for acknowledge.

The DMA block used in Silicon Hive allows configuration of various parameters in
the software. The element precision for the read and write accesses is configurable,
i.e. the DMA handles padding/discarding a part of the data according to the element
precisions on both sides of the transfer. The DMA supports 1D and 2D communication
transactions, whose sizes are also programmable. It also has configurable channels which
allow setting a number of separate channels between different memory elements.

In our system, the DMA has an interface with three components, namely the external
memory, the FTV processor, and the system bus. Therefore, it is capable of initiating
data transfer between any of these two. The interface with the FTV processor is used
to reach the data in the vector memory; therefore this connection is 288 bits-wide. The
system bus connection is used to reach the other processor memories: the data memory
and the vector-addressable memory. The DMA accesses the external memory through
the memory bus.

4.2.4 External Memory

Ideally, the external memory should only be used to store the initial input and the
final output of the algorithm. The HDMI-in interface, which receives the decoded video
stream from the front-end board, writes this data into the external memory in a planar
format. The FTV processor does not have direct access to the external memory but
uses the DMA to receive the required section of the frame. The final output of the



30 CHAPTER 4. FTV RENDERING PLATFORM

is
p
2
4
0
0
_
a
d
a
n
a
_
fp
g
a
_
p
ro
ce
ss
o
r

is
p2

40
0_

ad
an

a_
fp
ga

b
a
se

_
sl
o
t1
_
b
u
s

b
a
se

_
is
1

ba
se
_c
on

fig
_m

em

ba
se
_r
f1

32
x
32

b
a
se

_
sl
o
t2
_
b
u
s

b
a
se

_
is
2

ba
se
_d

m
em

ba
se
_r
f2

8
x
32

si
m
d_

is
1

si
m
d
_
b
u
s_
sl
ic
e
1
_
p
re
p
_
is

ba
se
_f
ifo

ba
se
_r
f3

32
x
32

si
m
d_

is
2

si
m
d_

vm
em

si
m
d
_
b
u
s_
sl
ic
e
2
_
is

ba
se
_f
rf
1a

16
x
16

si
m
d_

va
m
em

1

si
m
d_

is
4

si
m
d_

bu
s_
fla
g1

_c
om

p_
is

ba
se
_f
rf
1b

16
x
16

si
m
d_

va
m
em

2

si
m
d_

is
6

si
m
d
_
b
u
s_

sc
a
la
r_
is

si
m
d_

rf
1

32
x
32

si
m
d_

is
7_

vo
p0

_B
U
S

si
m
d_

va
m
em

3

si
m
d_

is
7

si
m
d_

rf
2

16
x
32

si
m
d_

is
6_

fo
p0

_B
U
S

si
m
d_

rf
4

16
x
32

si
m
d_

is
6_

vo
p0

_B
U
S

si
m
d_

rf
6

16
x
32

si
m
d_

is
4_

vo
p1

_B
U
S

si
m
d_

rf
7

16
x
32

si
m
d_

is
4_

vo
p0

_B
U
S

si
m
d_

vr
f1

8
x
28

8

si
m
d_

is
2_

ho
p0

_B
U
S

si
m
d_

vr
f2
a

16
x
28

8

si
m
d_

is
2_

vo
p0

_B
U
S

si
m
d_

vr
f4
a

16
x
28

8

si
m
d_

is
1_

vo
p0

_B
U
S

si
m
d_

vr
f6
a

16
x
28

8

ba
se
_i
s2
_f
op

0_
B
U
S

si
m
d_

vr
f7
a

16
x
28

8

b
a
se
_
is
1
_
o
p
_
sr
_
B
U
S

si
m
d_

vr
f2
b

16
x
28

8

b
a
se
_
is
1
_
o
p
_
p
c_
B
U
S

si
m
d_

vr
f4
b

16
x
28

8
si
m
d_

vr
f6
b

16
x
28

8
si
m
d_

vr
f6
c

16
x
28

8
si
m
d_

vr
f7
b

16
x
28

8
si
m
d_

sr
f1

4
x
72

si
m
d_

sr
f2

16
x
72

si
m
d_

sr
f5
a

16
x
72

si
m
d_

sr
f5
b

16
x
72

si
m
d_
fr
f1

4
x
16

si
m
d_
fr
f4

4
x
16

si
m
d_
fr
f5

16
x
16

ba
se
_P

C
ba

se
_S

R

b
ru

su
u

p
su

ls
u

a
ru

lg
u

sh
u

m
au

m
pu

pr
g_

m
em

61
44

x
64

0
st
a
t_
ct
rl

8
x
32

a
ru

p
su

flg
u

sr
u

da
ta
_m

em
40

96
x
32

a
ru

p
su

vl
su

p
su

_
ve

c

fif
o_
dm

a
16

x
32

fif
o_

sc
l

8
x
32

fif
o_
gp
fif
o

8
x
32

vi
n
tr
a
u

vi
nt
er
l

vc
o
n
vu

p
su

_
sl
ic
e

vs
lic
e
u

p
su

_
p
a
ss

ve
c_
dm

em
20

48
x
28

8
va
_m

em
13

10
72

x
8

vm
ul

vp
su

_
m
u
xc
se

l
va

ls
u

p
su

_
p
a
ss

va
_m

em
13

10
72

x
8

vl
g
u

vs
h
u

va
ru
_
ca

rr
y

p
su

_
ve

c
p
su

_
p
a
ss

va
ls
u

va
_m

em
10

24
x
18

vs
_
a
ru
_
ca

rr
y

vp
su

p
su

_
sl
ic
e

va
ls
u

p
su

_
p
a
ss

Figure 4.4: FTVProcessor



4.2. FTV SYSTEM VIEW 31

FTV algorithm is written back to the external memory using the DMA. The HDMI-out
interface then reads this data and transmits it to the display.

In addition to the ideal scenario, some intermediate results of the algorithm are
also stored in the external memory. This is because some stages of the algorithm are
not merged in the context of this thesis. Due to the limited amount of processor local
memory, the result of every stage, which is not merged with the next function, needs to
be stored in the external memory.

4.2.5 HDMI Interfaces

The HDMI-out interface reads the output data from the external memory and sends it to
the display module through the transmitter chip on the Gladiator board. The HDMI-out
interface is controlled by the host processor by configuring the frame format and size
information as well as the memory address from which the data is read. Once enabled
by the host, it keeps sending the frames from the specified read address. This address
is updated in the host application code to alter the displayed frame. This block was
present in Silicon Hive device inventory, it was tested and ready-to-use.

The HDMI-in interface captures the incoming data stream from the HDMI-Receiver
(Rx) chip on the Gladiator board, partitions it into separate planes, and writes it into
the external memory. The configuration of the HDMI-in interface is also handled by the
host. Figure 4.5 illustrates the block diagram of the interface. It is divided into two
partitions, being control-related and data-related.

• Control-related Blocks: The control blocks are CIO-slave and I2C-master. The
host processor commands, sent through the CIO configuration bus, are received
by the CIO-slave block, and these commands set a number of registers which are
then used to send control signals to the other blocks. The host can also read the
status by reading from a number of reserved registers. The I2C-master block is
responsible for the configuration of the Rx chip using the I2C protocol.

• Data-related Blocks: The rest of the blocks form the data partition. Capture-
data receives a new frame from the RX chip. It samples the data using the data-
clock (DATACK) generated by this chip. Therefore, a CDC FIFO is needed to
safely transfer the data further. Partition-data block divides the pixels into Y, U,
V, and Depth planes by storing them into separate FIFOs according to the color
format information. Currently, only RGB and YUV444 formats are supported.
These FIFOs are successively read by the CIO-master block forming 32 bit (4
pixels) data belonging to the same color component. After this, the gathered
pixels are sent to the external memory via burst requests.

An initial version of the HDMI-in device was described in [6]. However, it did not
support all the iGLANCE scenarios. Therefore, a number of modifications were required.
These modifications are listed here:

1. Functionality: The initial design was modified to synchronize capture-start with
both the enable and the VSYNC signals.



32 CHAPTER 4. FTV RENDERING PLATFORM

FPGA

HDMI-in Interface

custom device 1

Capture data

Data

partition

F
IF
O

R

CIO MasterCIO Slave

F
IF
O

G

F
IF
O

B

F
IF
O

D

HDMI

Receiver

HDMI IN

I²C Master

CDC FIFO

DDRHost

I²C

Figure 4.5: HDMI-in interface

2. Improved SW Programmability: Previous design was based on hard-coded
values in I2C-Master block to configure the HDMI-Rx chip. This required re-
synthesizing the system every time when we need to change the configuration. We
extended CIO-Slave with additional control registers and added the I2C-master a
state-machine to program the HDMI-Rx. In this way, the programmer can con-
figure the HDMI-Rx chip using the C-code. The values in the CIO-Slave registers
are set by the host application; and the state machine in I2C master gets triggered
to configure the receiver chip based on those register values.

3. Software Reset: A software-reset signal is introduced in order to reset all
the register values in the HDMI-in device without having to restart the Gladiator
board. This is achieved by reserving a register in the CIO-slave block. Upon
setting this register by the host application, a soft-reset signal is sent to all the
sub-blocks. To achieve this, we modified their corresponding VHDL source codes.
However, the CDC FIFO is a Silicon Hive standard device, and its reset port is
invisible to the designer in the HSD system description. We solved this problem
by flushing this FIFO when the software reset is asserted, i.e. reading all the data,
and discarding the values.

4. Handling Watermarking: In order to support the format required by the
iGLANCE consumer-scenario (see Chapter 2), the HDMI-in module was upgraded
such that it can receive the camera views from the left and the right angle, and
store them into separate buffers in the memory. In the context of the iGLANCE
project, the first 8 pixels of the left and right camera frames are watermarked with
white and black pixels, respectively. The modified HDMI-in interface can now use
the watermarking information and upload the received frame into the correspond-
ing memory location (Figure 4.6). Therefore, since the check is done in hardware,
the software does not have to perform memory reads to check watermarking.



4.3. SYSTEM LEVEL SYNCHRONIZATION 33

HDMI-IN

Interface

Texture

Left Camera

Depth

Left Camera

Texture

Right Camera

Depth

Right Camera

start_address

….

Watermark pixels

Yleft

Uleft

Vleft

Depthleft

Yright

Uright

Vright

Depthright

DDR

start_address

Figure 4.6: Watermark support in HDMI-in interface

4.3 System Level Synchronization

The desired method was to implement all synchronization elements in hardware. How-
ever, given the lack of time, the synchronization between all the processes is handled
by the host. On one side, the host should take the required action upon a command
received from the front-end board. This requires polling the proxy port for incoming
remote-procedure calls continuously. On the other side, the host must ensure that the
HDMI interfaces and the FTV processor are working on separate buffers in the external
memory. Both these processes require endless loop structures. In order to ensure that
the two continuous processes can run together and communicate with each other, the
host is executing two parallel threads using Posix Threads (Pthreads) libraries (see the
code in Figure 4.7). Shared variables between the two processes provide the means of
communication.

i n t hrt_main ( i n t argc , char **argv )
{

pthread_t thread1 , thread2 ;

i f ( pthread_create(&thread1 , NULL , ( void *) iG_main_loop , NULL ) )
printf ( ”Error in c r e a t i n g thread2 \n” ) ;

i f ( pthread_create(&thread2 , NULL , ( void *) IGFORPre_rpc_stub_main , NULL ) )
printf ( ”Error in c r e a t i n g thread1 \n” ) ;

whi l e (1 )
sleep ( 1 ) ;

}

Figure 4.7: Creating two threads for handling synchronization

The first thread executes the process called iG main loop which handles the synchro-
nization of the FTV processor with the HDMI interfaces (see Figure 4.8). Its first task is



34 CHAPTER 4. FTV RENDERING PLATFORM

to initialize both HDMI-in and out interfaces by configuring their registers. After that,
they are enabled with initial start addresses (InBuf#0, OutBuf#1). Then the main loop
starts with the host waiting until two frames (left and right) are received by the HDMI-
in interface. When both are received, the start address for the HDMI-in is updated,
and it is enabled again so that it can write the next two frames to the second buffer
location (InBuf#1). While the HDMI-in is writing to this buffer, the FTV processor can
start processing the views in Inbuf#0 unless there is an interrupt from the RPC thread.
This interrupt occurs only when there are new parameters to be uploaded to the FTV
processor. If there is an interrupt, the first thread waits for the second thread to finish
uploading. After running the FTV processor for the corresponding input and output
buffer addresses, the addresses of the HDMI-out interface is updated to read from the
location that is filled by the FTV processor. The procedure for the rest of the loop is
similar; the buffer that is used by each device is altered as shown in Figure 4.9. While
this thread checks the RPC INTERRUPT variable from the second thread, it also sets
the variable FTV STATUS. FTV STATUS is assigned to BUSY before running the al-
gorithm on FTV processor, and it is assigned back to IDLE when the processor is done
processing.

The second thread waits for the RPC calls from the front end board. When it
receives a call, it branches to the corresponding function. If the called function re-
quires uploading new viewpoint/dataset parameters to the kernel, it waits until the
kernel is IDLE by checking FTV STATUS variable. Meanwhile, it also sets the variable
RPC INTERRUPT to TRUE so that the first thread stalls until the upload of the new
parameters is completed.

While talking about threads accessing a shared memory location, it must be ensured
that these accesses are safe, i.e. free of race conditions. A race condition occurs when
multiple threads concurrently read and write to a shared location and the result depends
on the order of execution. If these pieces of codes, called critical sections, are not
handled properly, it might cause a deadlock, in which threads wait indefinitely without
any progress. In order to prevent this, mutual exclusion principle is used to restrain
the ways the requests are made. The pthreads library provides mutex variables for this
purpose [8]. It behaves like a lock giving only one thread the permission to access a
shared resource. In our case the global variables RPC INTERRUPT and FTV STATUS
are shared by the two threads using mutual exclusion principle.

4.4 Performance Estimations

The requirement for the iGLANCE consumer scenario is specified as 30 Full-HD
(1920x1080) frames per second, each frame is packed in the YUV 4:2:0 format. The
frequency for capturing 1920x1080p frame sequence is specified as 148.5 MHz by the
CEA-861-D high speed digital video standard [10].Due to the limitations of the HDMI-
in interface which is not functional above 120 MHz, this requirement is downscaled to
HD-ready (1280x720p) frames packed in YUV 4:4:4 running at 30 fps for demonstra-
tion purposes. The standard specifies the frequency as 74.250 MHz for streaming in
1280x720p resolution at 50 Hz refresh rate; therefore the current system can correctly
capture the streams in this format.



4.4. PERFORMANCE ESTIMATIONS 35

Enable HDMI-IN for InBuf #1

Initialize HDMI Interfaces

Enable HDMI-IN for InBuf #0

Enable HDMI-OUT for OutBuf #1

WAIT HDMI-IN Until It Receives InBuf #0

RPC_INTERRUPT?

Run FTV Algorithm Once (InBuf #0 → OutBuf #0) 

Update HDMI-OUT Address to OutBuf #0

Enable HDMI-IN for InBuf #0

WAIT HDMI-IN Until It Receives InBuf #1

Run FTV Algorithm Once (InBuf #1 → OutBuf #1) 

Update HDMI-OUT Address to OutBuf #1

NO

YES

Wait Until New 

Parameters are 

Uploaded

RPC_INTERRUPT?

NO

YES

L

O

O

P

RPC_INTERRUPT

FTV_STATUS

Wait Until New 

Parameters are 

Uploaded

Wait for RPC calls

L

O

O

P

Go to the Called Function

Wait Until the FTV 

processor is idle

FTV_STATUS = IDLE

YES

Upload the parameters to the FTV

NO

Calculate the New Parameters

Thread #1 : iG_main_loop Thread #2 : iG_rpc_loop

: Blocking Operations

: Non-Blocking Operations

Figure 4.8: FTV system synchronization

HDMI–IN

INTERFACE

FTV

Processor

HDMI-OUT

Interface

INBUF #0

INBUF #1

OUTBUF #0

OUTBUF #1

Figure 4.9: Double buffering scheme

4.4.1 Throughput Requirement

The throughput requirements for both scenarios are demonstrated in Table 4.2. Down-
scaling to a 1280x720 resolution reduced the necessary processing power from 87.7 GOPS
to 39 GOPS, a factor of 2.25. In order to reach such a high processing power, the ad-
vantages of both instruction-level and data-level parallelism should be exploited using a
VLIW processor with vector data paths.



36 CHAPTER 4. FTV RENDERING PLATFORM

Table 4.2: Throughput requirement

Scenario Mpixels/s GOPS

1080p @ 30fps 62.2 87.7
720p @ 30fps 27.6 39.0

4.4.2 Memory Bus Bandwidth

In order to calculate the memory bus utilization, the contributing factors from all system
components are accumulated. Table 4.3 presents these calculations.

Although the depth values are represented by an 8-bit value, the depth information
in the incoming stream is not packed, and represented with 24-bits. In order to reduce
redundant bus transfers, the HDMI-in device stores only the valid 8-bit information,
discarding the remaining 16 bits of each depth pixel. For this reason, the estimations for
depth and texture are given separately in the table.

The minimum required bandwidths to meet the real time constraints are 465
Mbytes/s and 336 Mbytes/s for 1080p and 720p scenarios respectively. Currently, the
peak bandwidth of the memory bus using the 256-bit bus running at 50 MHz is equal to
1.6 Gbytes/s. Therefore, the bus utilization is 29% and 21% in the respective scenarios.

Table 4.3: Memory bandwidth calculations

Scenario Operation
Mpixels/s Bytes/pixel Bus Utilization

(Texture+Depth) (Texture+Depth) (Mbytes/s)

HDMI-In writing @ 60fps 62 + 62 1.5 + 1 155,00
1080p FTV processor reading @ 60 fps 62 + 62 1.5 + 1 155,00

@ 30 fps FTV processor writing @ 30 fps 31 + 31 1.5 + 1 77,50
(YUV 4:2:0) HDMI-out reading @ 30 fps 31 + 31 1.5 + 1 77,50

TOTAL 186 + 186 1.5 + 1 465 (29%)

HDMI-In writing @ 60fps 28 + 28 3 + 1 112,00
720p FTV processor reading @ 60 fps 28 + 28 3 + 1 112,00

@ 30 fps FTV processor writing @ 30 fps 14 + 14 3 + 1 56,00
(YUV 4:4:4) HDMI-out reading @ 30 fps 14 + 14 3 + 1 56,00

TOTAL 84 + 84 3 + 1 336 (21%)

4.5 Fixed Point FTV Algorithm

In order to map the algorithm to our ISP2400-based processor, which does not support
floating-point operations, the floating point arithmetic should be converted to fixed-
point. A fixed-point number can be thought of as an integer multiplied by a two’s
power with negative exponent [15]. Fixed-point numbers contain an integer part and a
fractional part, with an imaginary decimal point which is placed in the same position
for the same variable. The number of bits representing the integer section is called the
integer word length (IWL), and the number of bits assigned to the fractional part is the
fractional word length (FWL). The total word length (WL) of a fixed-point number is



4.5. FIXED POINT FTV ALGORITHM 37

therefore given by the following:

WL = IWL+ FWL (4.1)

The range R and the quantization step ∆ depend on the IWL and FWL as follows:

−2IWL 6 R < 2IWL (4.2)

∆ = 2−FWL (4.3)

While performing fixed-point arithmetic, the position of the decimal point should be
treated carefully. Addition and subtraction between two fixed-point numbers x and y
should have the same IWL. If this is not the case, the operand with the smaller IWL
should be scaled, and the IWL of the result z is therefore equal to:

IWLz = max{IWLx, IWLy} (4.4)

For the multiplication and division, the result IWL is given by,

IWLz =

{
IWLx + IWLy for signed number

IWLx + IWLy + 1 for unsigned number
(4.5)

The FPGAs on the Gladiator board have 18-bit multipliers. In order to avoid a multi-
plication operation to be converted to a number of multiplications, the WL of algorithm
variables is chosen as 18-bit. The conversion of the algorithm from floating-point to
fixed-point was done by the iGLANCE partner TIMA. All variables in the algorithm
were analyzed to find out the best possible IWL and FWL for them. Fixed-point con-
version reduced the quality of the interpolated view. The quality comparison between
the two is given in Chapter 6. Furthermore, the fixed-point code requires a larger num-
ber of operations than the floating-point version since a shift operation is needed after
every fixed-point multiplication in order to keep the WL at 18 bits.

The FTV processor is also configured such that the element precision of a vector is
18-bits. Intermediate results of multiplications, which can exceed 18-bit, are handled
using wide-vector operations. Figure 4.10 illustrates an example multiplication, where
the operands, vec0 and vec1, are vectors with 18-bit element precision. The resulting
element values can reach up to 36-bit; therefore the required double precision is provided
by a wide-vector, wvec temp. The wide-vector is nothing but a pair of vectors, one holding
the most significant 18-bits, wvec temp.hi, and the other containing the least significant
bits, wvec temp.lo. These two vectors can be accessed separately if needed. In the
example shown, a shift operation is performed after multiplication, which is typically
the case to keep the WL at 18 bits.



38 CHAPTER 4. FTV RENDERING PLATFORM

vec0 vec1

……i0 i1 i2 i15

18 bits 18 bits

wvec_temp.hi

>>

wvec_temp.lo

vec_result

vmul

vshift

tvector  vec0, vec1, vec_result;

twidevector wvec_temp;

wvec_temp = vec0 * vec1;

vec_result   = wvec_temp >> c1;   

……i0 i1 i2 i15

……i0 i1 i2 i15

……i0 i1 i2 i15

……i0 i1 i2 i15

Figure 4.10: A vector multiplication resulting in a wide-vector



Mapping the FTV Algorithm 5
In this chapter, we explain the mapping of the FTV algorithm on the VLIW processor
containing the SIMD datapath. The challenges related to vectorizing the algorithm, and
techniques to solve these challenges are explained. Particularly, it addresses the key
contribution of this thesis, which is the technique to improve the performance in the
presence of irregular memory accesses. It also explains the optimizations which were
applied to further improve the performance of the algorithm.

5.1 Vectorization

5.1.1 Irregular Memory Access Patterns

Background

The SIMD processors are very powerful in executing programs that contain high levels
of data-parallelism as in the case of media and signal processing applications. Multiple
SIMD data paths have the ability to perform a single processor instruction on aligned
data elements, which are usually placed consecutively in the memory, simultaneously.
Accessing all elements of a vector in a single cycle is desired to exploit the processor data
paths efficiently. However, the data elements in a program are not always stored/loaded
from the consecutive memory locations. In fact, there are three different ways to access
the memory in SIMD architectures:

• Unit-stride Access: This is the simplest way in which the loads/stores are
performed from/to the consecutive memory addresses.

• Strided Access: In this scheme, memory accesses are not directed to the con-
secutive locations but the addresses are spaced with a constant step called stride.

• Irregular (Indexed) Access: This refers to an access pattern where the vec-
tor elements are accessed in a random fashion usually by being indexed through
another array.

An irregular data access operation causes many overhead cycles and can easily become
a performance bottleneck in SIMD processors. To explain how this performance drop
occurs, consider the following code segments:

M [i] = c×N [i]; (5.1)

M [A[i]] = c×N [B[i]]; (5.2)

39



40 CHAPTER 5. MAPPING THE FTV ALGORITHM

In Example 5.1, subsequent load/store indices for arrays N and M have a constant
stride. This would result in a regular memory access in which load/store operations are
performed for the contiguous memory locations. Vectorizing this code is a relatively easy
task. The necessary adjustment would be using vector memory which is a memory with
the word size being equal to the number of vector elements multiplied by the element
precision. Therefore, the whole vector can be accessed in a single cycle.

In Example 5.2, on the other hand, there is a load operation which gets data from
non-contiguous locations of the array N according to the index B[i]. Here the index
is an array (non-constant) as opposed to the previous example. Assuming that the
elements of array B do not follow a uniform pattern, vectorizing this code segment
would require gathering elements from different vectors. If the processor does not have
the support to handle irregular accesses to memory, then sequential scalar load/stores
must be performed for each vector element. This reduces the speed-up coming with
vectorization, hence leading to a performance drop in SIMD architectures.

There has been extensive research on overcoming the memory access bottlenecks in
SIMD architectures. Some pipelined vector processors are equipped with special hard-
ware, a scatter-gather unit, which allows vectorization of irregular load/store operations
by holding the data address sequence in a separate buffer [4]. A gather operation packs
multiple data elements, which are loaded from non-contiguous memory locations, into
one vector register. On the contrary, a scatter operation is performed to unpack the
elements of a vector register into randomly located addresses. Another approach was
to handle irregular memory accesses by employing a multi-port memory unit [25]. In
[11], a dedicated hardware called a packing buffer is proposed. This, too, contains a
small size multi-port memory block and addresses are given by a vector index register.
A compiler-based dynamic scratch-pad memory (SPM) management scheme is proposed
by [12]. The compiler is responsible for analyzing each loop and inserting the code to
collect information which will be used at run-time to choose whether the Scratch-Pad
Memory (SPM) should be used for a given set of irregular data accesses.

Proposed Method

In this thesis, a similar scatter/gather unit to the ones mentioned above is used. Sili-
con Hive ISP family processors already have a functional unit, valsu (vector-addressable
load-store unit), to realize such operations. This functional unit is connected to a spe-
cial memory called vamem (vector-addressable memory) and has two basic operations,
namely OP vmldo (see Figure 5.1) and OP vmsto. A scalar register, base address, and a
vector index register (offsets) are the inputs for the OP vmldo operation. The physical
address of each vector element to be loaded is calculated by adding the offset in the base
register to the index register. This operation returns the resulting vector holding the
value of each vector element at the requested addresses. The store operation (OP vmsto)
works with the same principle except that it requires a third input, vec values, which
contains the vector of values to be stored at the indexed addresses of the memory.

As proposed in the above mentioned research, two different approaches are applied
along with scatter-gather units. In the presence of multi-port memories, the load/store
of a vector of elements takes a single cycle if the number of memory ports is equal to



5.1. VECTORIZATION 41

r0

r2

r1

ir[0] vr[3]vr[2]vr[1]vr[0]ir[3]ir[2]ir[1]

Single Port 

Memory

+ + + +
@

 c
y
c
le

 1

@
 c

y
c
le

 2

@
 c

y
c
le

 3

@
 c

y
c
le

 4

Address

@
 c

y
c
le

 1

@
 c

y
c
le

 2

@
 c

y
c
le

 3

@
 c

y
c
le

 4

Data

Vector RegisterIndex Register 

(Offsets)

Scalar Register 

(Base Address)

Figure 5.1: An example of a vector-addressed load operation

the number of vector elements (Nelems). Multi-port memories used in [11] and [25] have
very small capacities since using a multi-port memory can be quite costly in terms of
chip area. The use of single port memories, on the other hand, is cheaper while each
vector load/store operation takes Nelems cycles. Although the execution latency is the
same as in the architecture without the scatter-gather unit, it still has the advantage of
maintaining continuity in the execution pipeline of the processor. Once the processor
issues the operation, it continues issuing other operations while the scatter-gather unit
handles Nelems separate load/store requests to the memory.

In this work, the vector-addressable memory is used as a data-cache, to hold the high-
resolution frame; therefore the required memory size is very large. The target platform of
the iGLANCE project, however, is an FPGA board in which the total available memory
size is limited. Furthermore, there are a lot of computations in the functions in which
random memory accesses occur. Therefore, the latency introduced by the use of a single
port memory as vamem can be effectively hidden in these functions. This led us to select
a single-port vamem and use it together with the scatter/gather unit.

In the FTV algorithm, warping of depth maps and inverse warping of texture maps
are the steps in which irregular memory accesses are performed. In these steps, based
on the value of the pixel as well as the camera and viewpoint parameters, the new
coordinates of that pixel in the resulting depth/texture image are calculated. As the
nature of this algorithm step requires, depending on the pixel depth value, elements
(pixels) of a vector might scatter into a different vector inside the image making regular
vector load/store operations impossible. Figure 5.3 shows this phenomenon. A vector
of 8 elements in the input depth map is warped to four different vectors in the resulting
depth map after warping.



42 CHAPTER 5. MAPPING THE FTV ALGORITHM

a b c d e f g h

Vector

a

c

b

f g

hde

WarpingReference Left Camera Depth Warped Left Depth

Figure 5.2: Data scattering at the warping stage

With the use of valsu in combination with vamem, the problem of the warping stage
can be solved. The address of the top-left pixel should be given as the base offset, and
the calculated coordinate value of the pixel is given as an index vector. However, this
would typically require storing the whole output frame in the processor local memory
(vamem). The FPGA that is used in this project is a Xilinx Virtex-5 XC5VLX330.
The maximum available block-RAM size on this device is 10,368 Kbits. Storing even
a single full-HD frame in YUV 4:2:0 format, on the other hand, would require 24,883
Kbits. Therefore, the proposed solution is to store a part of the frame in the scratch-pad
memory, vamem, while the whole frame is located in the external memory. The following
sections explain the way to choose the size of this memory and a smart mechanism to
provide the flow of data between the two memories.

Analysis on the Required Local Memory Size

In order to choose the size of the required local memory, an analysis was conducted
on the warping stage of the algorithm. The amount of scattering in pixel coordinates
is determined for various viewpoint positions. The sample video is the ballet stream
provided by Microsoft Research with 1024×768 resolution and the eight camera positions
as explained in Chapter 2. Table 5.1 indicates the maximum absolute scattering in
x and y-directions for different viewpoints. The first row, for instance, represents the
interpolation for the viewpoint at camera position-1 implying that camera-0 and camera-
2 are used as the left and right cameras. Since the distance between the left/right camera



5.1. VECTORIZATION 43

0

20000

40000

60000

80000

100000

120000

140000

160000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

N
u

m
b

e
r
 o

f 
P

ix
e

ls

∆X

(a)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

N
u

m
b

e
r
 o

f 
P

ix
e

ls

∆Y

(b)

Figure 5.3: The amount of pixel scattering at the warping stage

and the viewpoint position is the maximum possible value (4◦), this table gives a clear
idea about the maximum range that we need to cover in vamem for this dataset.

Figure 5.3(a) shows a plot between ∆X and the number of pixels which are mapped
by a distance of ∆X, where ∆X is the absolute difference between the pixel’s original
x-coordinate and its warped x-coordinate. Figure 5.3(b) depicts the corresponding plot
for the y-coordinate. These plots are obtained by accumulating the results from various
viewpoint positions. This also suggests that the data in the cache can be limited to a
certain range for this specific dataset.

Table 5.1: The maximum amount of scattering for different viewpoints

Viewpoint Position ∆Xmax ∆Ymax

1st camera 79 20
2nd camera 75 19
3rd camera 75 19
4th camera 72 26
5th camera 86 20
6th camera 63 29

Global Max 86 29

Based on the results of this analysis, reserving a window consisting of (2×∆Xmax)×
(2 × ∆Ymax) pixels of the output frame in vamem is sufficient to guarantee that the
warped pixel coordinates will be covered. In such a case, the image is scanned in row
by row fashion while maximally reusing the shared pixels. More precisely, the window is
shifted to right through the first row, and it goes down by one row in the same column,
then the second row is scanned towards the left direction, and so on. There are, however,
problems with this scheme which are listed as follows:

• After each shift of the window, the column that is processed should be transferred
to the external memory via DMA. This column-based transfer is costly since the
pixels of a column are not in contiguous memory locations making burst transfers
impossible.

• After the completion of processing a line, the window shifts to the line below. Then,



44 CHAPTER 5. MAPPING THE FTV ALGORITHM

1024

768

(64 vectors)

VAMEM

vec0 vec1 vec2 ……………… vec63VMEM

ΔYmax

ΔYmax
: Current line being processed

: Next line to be processed

: Currently being processed

: Old line that is out of range

: New line that is in range

VMEM Legends

VAMEM Legends

Figure 5.4: The proposed method for caching data in the local memories

all pixels in the column (except for the top one pixel only) which were sent to the
external memory can be updated again, therefore they are required to be placed
into the local memory again. This incurs many redundant load/store operations.

In order to avoid these problems, a better alternative is to adopt the scheme shown
in Figure 5.4. It should be noted that the vmem holds the input lines while the vamem is
reserved for the output lines, although they are depicted in the same frame in this figure.
The block which needs to be stored in the vamem consists of 2×∆Ymax output lines of
the frame. Despite a larger memory requirement compared to window-based solution,
data transfer between memories can be arranged in a more efficient way. This method
guarantees that once a line of pixels is transferred to the external memory it will not
be updated again, meaning that there is no redundant memory transfer. The details of
this technique regarding the way to use the vector and vector-addressable memories are
explained in the following subsections.

The use of vector memory

Vector memory (vmem) is used to hold the current line of the input depth map that is
being processed. In order to ensure that data for the processor is always ready, the DMA
and the processor work on separate buffers. This technique is known as double buffering
which is widely used for graphics applications [27]. The processor reads and performs
the necessary computations on the first buffer while the DMA is writing the next line to
be processed into the second buffer (see Figure 5.5). They switch the buffers after every
iteration. In this scheme, the capacity of the buffer in vmem is equal to two input frame
lines for the warping stage.



5.1. VECTORIZATION 45

FTV

Processor
DMA

Frame Line j

Frame Line j+1

VMEM

Figure 5.5: VMEM used as a double buffer between the FTV processor and the DMA

The use of vector addressable memory

Vector-addressable memory (vamem) is used to store 2 × ∆Ymax lines of the output
frame. The DMA transfers one completed vamem line to the external memory during
each iteration. At the same time, the processor will work on the rest of the buffer
containing 2×∆Ymax output frame lines.

At the warping stage, if more than one pixel is mapped onto the same position, the
one with the larger depth value should be retained. Realizing this requires a comparison
between the new value and the old value residing in the vamem. Since the vamem size
is limited, the same memory sections will be reused for multiple output lines. When the
same section in the vamem will correspond to a new line of the frame, the values that
had existed in that part should not affect the future calculations (comparisons with new
depth values). To ensure this, after the completed line is transferred to the external
memory, it should be reset to 0 in the vamem.

In order to realize all of the above, a circular addressing scheme is used for the vamem
to avoid shifting all elements when the DMA transfers one element. In this technique,
the addresses are calculated by using the modulus operation, hence the total buffer size
should be a power of two to simplify the calculations. Based on the results from Figure
5.3 and the assumed circular buffering scheme, the vamem is designed to hold 64 lines
of the current output frame. One vamem line is reserved for the DMA to transfer the
completed line to the external memory. The rest of the buffer, 63 lines, provides a ∆Y
range of 31 lines, which is sufficient for this dataset.

The proposed method follows these steps when processing the jth line of the input
frame:

• The processor sends a command to the DMA to transfer the (j + 1)th input line
from the external memory to the vector memory. The jth input line was ordered
during the previous iteration, so it is already available in vmem (double buffering).

• Each vector in the jth vmem line is warped to the output viewpoint, i.e. their
corresponding coordinates in the output frame are computed.

• Modulo-64 of these coordinates are calculated to find the actual addresses in the
vamem (circular buffering).

• The values in the vector are scattered to their corresponding modulo-coordinate
addresses in vamem.



46 CHAPTER 5. MAPPING THE FTV ALGORITHM

• At the end of each iteration, the processor schedules the DMA to transfer the top
buffer line ((j − 32)mod64) to the external memory since there can be no pixels
mapped to that line any more during consecutive iterations. This vamem line is
initialized back to 0 using the DMA function init vamem. Even though, memory
initialization takes some cycles, it is less expensive than an actual transfer between
memories, and these cycles can be hidden behind the computations.

5.1.2 Unaligned Memory Accesses

Unaligned vector memory addressing is one of the critical problems in SIMD architectures
[18]. It occurs when the start address of a vector load/store operation is not on the
alignment boundary. Handling these accesses requires expensive memory architectures.
Additional memory accesses along with special vector operations are needed to pack the
desired data if such hardware support is unavailable.

vec0

vec1

vec2

Alignment Boundary

R

(a)

vec0

vec1

vec2

Alignment Boundary

R

(b)

Figure 5.6: Modified scheme to prevent unaligned accesses

It has been shown that the vectorization of filtering applications usually results in
unaligned memory accesses. In this work, 3 × 3 median filtering is performed which
might require an unaligned access scheme. To describe how the problem occurs, consider
Figure 5.6(a) which illustrates an example of 3-tap horizontal filtering. Let vec0 denote
the vector containing pixels from the original image. The vectors vec1 and vec2 represent
the right shifted version of vec0 by an amount of one and two pixels respectively. In this
method, the result vector R is exceeding the alignment boundary. Therefore, storing this
vector to the memory would cause an unaligned memory access. This is not supported
by the current FTV architecture described previously.

In order to avoid this problem, the method shown in Figure 5.6(b) is exploited [6]. To
filter the aligned vector vec0, the vector vec1 containing one element from the previous
vector and the vector vec2 containing the first element of the next vector are constructed.
The starting point of the result vector R is on the alignment boundary. Therefore,
unaligned memory accesses are avoided using this scheme. Furthermore, it is required to
perform only a single memory read in each iteration, since the vectors vec1 and vec2 are
reused in the next iteration to obtain vec0 and vec1 respectively. The disadvantage of
having this approach is the requirement of an extra slice operation. The slice operation
takes two vectors to be merged and a scalar value to indicate the merging index as



5.1. VECTORIZATION 47

operands (Figure 5.7). A negative merging index places the higher slice of the second
vector to the start of the first vector.

v0 a0 a1 a2 a3 a4 a5 a6 a7

v1 b0 b1 b2 b3 b4 b5 b6 b7

vec_slice(v0, v1, 2) a2 a3 a4 a5 a6 a7 b0 b1

vec_slice(v0, v1, -3) b5 b6 b7 a0 a1 a2 a3 a4

Figure 5.7: Vector slice operation

5.1.3 Boundary Behavior

In the median filtering step of the out-of-the-box algorithm, the frame boundary is
extended by one pixel, filling it with 0s in order to perform filtering at the boundaries.
Padding with 0s is realized by copying the array holding the image into another array.
This introduces excessive memory copies.

One way to solve this problem is to handle the first and last line as well as the first
and the last column of the frame separately [6], i.e. out of the main loop in the code.
However this would increase the control code, therefore it degrades performance.

Another possible approach is to modify the HDMI-in interface so that it stores the
incoming frame into the memory while also adding 0 values in the boundaries. This
modification, however, would result in an increase in the bus-usage. Furthermore, it is
an extra design effort to modify the hardware.

The more efficient and perhaps an easier method is to benefit from the use of DMA.
As mentioned in the previous sections, the input to any step in the algorithm resides in
the external memory. The processor schedules DMA to transfer the part of the data to
the local memory. In the case of 3x3 median filtering, having three lines of the frame
is sufficient to perform the filtering. This is demonstrated in Figure 5.8. While the
processor performs the filtering for input line B and writes the result to the output line
B, DMA handles the two memory transfers: output line A, which is the result of previous
iteration, is written back to external memory, and input line D, the line that is needed
to perform filtering of the next line, is transferred to the local memory.

The required input buffer size is 4× (FRAME WIDTH + 2× vector size) so that
there is a place to pad additional first and last columns. Vectors of 0s are padded to
the first and last vectors during the initialization of this buffer, outside of the main
filtering loop. The DMA gets a line of the frame from the external memory and places
it in between the first and last vectors. For padding of the first and the last line, DMA
initializes the buffer line to 0 instead of transferring an actual line of the frame. The
required output buffer size is 2 frame lines to realize double buffering.

The need for boundary padding is not limited to the median filtering stage of the
algorithm. At disocclusion filling and dilation steps, the boundaries must be filled with
non-zero values since a value of zero shows that the pixel is disoccluded. The same ap-



48 CHAPTER 5. MAPPING THE FTV ALGORITHM

External 

Memory

Input Line A 00

Input Line B 00

Input Line C 00

Input Line D 00

DMA

Input 

Buffers

vector vectorFRAME WIDTH

Output Line A

Output Line B

Output 

Buffers

VMEM

Output 

Frame

Input 

Frame

Figure 5.8: Using DMA to perform boundary padding

proach is used at the other stages of the algorithm wherever there is a need for boundary-
padding.

5.1.4 Conditional Executions

The presence of conditionally executed statements is one of the reasons that degrade
the level of vectorization in SIMD architectures. If-else statements inside a loop body
introduce control dependencies and require particular handling for each data element.
This is contradictory to the essence of vectorization which relies on the data parallelism,
meaning that the same operations are performed for a number of data elements in par-
allel.

f o r i=1:NN
i f M [ i ] == 0

M [ i ] = M [ i ] + N [ i ] ;
end i f

end f o r

Figure 5.9: An example of a conditional code

The loop shown in Figure 5.9 cannot be vectorized as its body contains conditional
branches. The addition should be performed only for the elements which satisfy the
condition M [i] == 0. Many vector processors solve this problem by converting such
control dependencies into data dependencies. This is achieved with the help of what is
called vector-mask operations.

Figure 5.10 depicts the transformed code from the previous example. A Boolean
vector is used to hold the result of the conditional check. A 0 in any element of the flag
(mask) indicates that the condition is false for that vector element and 1 flag is raised
when the condition is true. The required operations for both true and false conditions
are performed. Then the final result is found by multiplexing the results of true and
false branches using the flag. In this example, there is no else branch, therefore the
elements of vector vec M stay the same when the corresponding mask value is zero.



5.1. VECTORIZATION 49

flag = ( vec_M == 0 ) ;
vec_M = flag ? vec_M : vec_M + vec_N ;

vec_M 0 8 3 0 34 1 0 12

flag 1 0 0 1 0 0 1 0

Figure 5.10: An example of vector masking

Using vector-mask operations has its advantages. It removes control dependencies in
the code. This gives the compiler a larger basic block by which more instructions can be
parallelized. This implies an increase in the instruction level parallelism (ILP). Further-
more, all conditionals must be removed to apply some optimizations such as software
pipelining, which further increases the ILP. The drawback of having this scheme is that
the vector instructions are always executed and an additional operation (multiplexing)
must be performed. However, it is still faster as compared to a scalar implementation
with conditionals.

In some cases, where the masking bits are rarely set to 1, the speed-up achieved by
vectorization decreases due to having to execute the instructions in all control paths.
In order to reduce this overhead, vector branches [30] can be inserted to bypass vector
instructions, similar to how it is done in scalar branches as demonstrated in Figure 5.11.
For that, intra-vector operations as shown in the example must be performed. Assuming
that vec M holds the pixel values ranging from 0 to 255, vec imin operation returns
the minimum pixel value inside the vector. If the result of vec imin is larger than zero,
showing that all elements of vec M are non-zero, the operations inside the if-branch can
be bypassed. However, it is not always possible to find an intra-vector operation that
satisfies the required functionality.

f o r i=1:N
i f vec_imin ( vec_M ) == 0
% I f−branch Ca l cu l a t i on s

e l s e
% Else−branch Ca l cu l a t i on s

end i f
end f o r

Figure 5.11: An example of a vector branch

In the FTV algorithm, a vector branching method is employed for filling disocclusions
in the depth map stage. Since only a small percentage of pixels is dissoccluded, and
the dissoccluded pixels are present in clusters, a vector branch check results in faster
execution time than vector-masking.



50 CHAPTER 5. MAPPING THE FTV ALGORITHM

5.1.5 Search Space Restrictions

The functions for disocclusion filling are not suitable for mapping onto an embedded sys-
tem with limited memory due to extensive search space [6]. In order to fill a disoccluded
pixel, searches are performed in horizontal, vertical and diagonal directions. The search
in each direction terminates either when a non-zero depth value is found or when the
search limit is exceeded. In the out-of-the-box algorithm, the search space was limited
to 200 pixels in each direction. This requires a considerable amount of data stored in
the local memory, and a great deal of processor cycles spent in case the search continues
up to this limit.

In order to optimize the vectorized implementation for these steps of the algorithm,
an analysis was performed. For the ballet stream with 1024×768 resolution, the distance
of the disoccluded pixel to the pixel with non-zero value in each direction is determined
for all disoccluded pixels. For the depth map, the pixel is filled from its direct neighbors
in most cases. Therefore, we limited the search space to the direct neighbors of a pixel.
We also modified the scheme to construct the result progressively in order to ensure that
the output image quality is not reduced in the presence of clusters of dissoccluded pixels.
In other words, a dissoccluded pixel which is filled in the previous iteration should be
used in the inpainting of the other pixel. Assuming that the image is scanned from top-
left to bottom-right, the upper neighbors and the left neighbor of the pixel is already
inpainted before. Hence, there is definitely a neighbor pixel with non-zero value. An
obvious drawback of this approach is favoring the top-left pixels, which results in filling
pixels with the background values from top-left while in some cases it should be filled
with bottom-right side. By restricting the search space with its direct neighbors during
depth inpainting, the quality of the interpolated depth map is degraded (quantitative
information is given in Chapter 6) while it has almost no effect on the final texture map.

Using the same method for filling the disocclusions of texture has greater effect on the
output image quality as the texture values are not always filled by their direct neighbors.
Another difficulty at this step is that the resulting texture value is the weighted average
of the non-zero texture values, which are found in all directions using depth information,
based on their distance. As a result of not using depth information and restricting the
search space to the direct neighbors, the texture map quality decreased by a large degree
while the subjective quality was also altered. A blurring effect is observed at the edges
of the objects. However, the subjective quality in some samples showed better results
since the background is spilling onto the foreground objects at some edges in the results
of out-of-the-box algorithm.

5.1.6 Loop Interchange

The loop interchange technique switches the order of the loops in a nested-loop in order
to increase parallelism and/or to improve data locality [21]. In the out-of-the-box FTV
algorithm, the processing order is column based, i.e. the order of the nested loops was
such that the image was scanned first vertically, and then horizontally as in Figure 5.12a.
This would cause a problem in the vectorized implementation since the data is structured
row-based in the vector memory. Therefore, the nested-loops are switched as shown in
Figure 5.12b. Shifting to the row based processing, however, caused errors at the warping



5.2. FURTHER OPTIMIZATIONS 51

stage of the algorithm. In order to avoid these errors, [23] proposes that if more than
one pixels are mapped to the same output coordinate, the pixel with the largest depth
value should be preserved. This solved the problem in the output depth map with the
cost of an additional load and compare operation which is required to store the depth
value only if it is larger than the previously written value.

 

        (a)               (b)  

Figure 5.12: Loop Interchange

5.1.7 Performance of Vectorized Baseline

As a result of the techniques explained in the previous subsections, we achieved a full
vectorization in all functions of the algorithm. We regard this implementation as our
vectorized baseline, and apply several optimizations on it to improve the performance
further. Performance results of the vectorized baseline for the sample ballet scene are
presented in Table 5.2. Some functions of the out-of-the-box algorithm, dilate-blend
and fill Y-UV, are merged during the baseline implementation. The required number
of cycles per pixel is reduced to 63, 64 which corresponds to a speedup of 1.5x over the
work presented in [6]. The results indicate that warping functions are still identified
as the bottleneck although the maximum possible data level parallelism is achieved in
these functions. The main reason is that high-latency vamem load/store operations are
not yet hidden behind the computations due to the existing dependencies. For the same
reason, the ILP is very low (1.67) indicating that processor resources are not efficiently
utilized. The optimizations presented in the next sections will help the removal of these
limitations.

5.2 Further Optimizations

5.2.1 Loop Transformations

In many multimedia or scientific applications, most of the processor cycles are spent on
executing loops. Much effort is spent by compilers as well as programmers to apply a



52 CHAPTER 5. MAPPING THE FTV ALGORITHM

Table 5.2: Performance of our vector baseline

Operation Count Cycle Count
ILP Code Size

Total per pixel Total per pixel

Warp 27.840.348 35,40 20.064.271 25,51 1,39 528
Blend 603.540 0,77 420.192 0,53 1,44 53
Median 3.000.864 3,82 1.505.328 1,91 1,99 118
Fill Depth 2.999.316 3,81 1.455.399 1,85 2,06 107
Inverse warp 38.950.556 49,53 23.330.026 29,67 1,67 703
Dilate + Blend 7.117.440 9,05 2.290.304 2,91 3,11 361
Fill YUV 3.168.256 4,03 980.803 1,25 3,23 147
TOTAL 83.680.320 106,41 50.046.323 63,64 1,67 2.017

group of loop manipulations, called loop transformations to optimize these critical parts.
These manipulation techniques, known as loop transformations, must usually preserve
the dependencies between operations in the loop body while improving the performance
by:

• Reducing the loop overhead

• Increasing the number of statements that can be executed in parallel.

• Improving cache performance by enhancing data locality.

Many techniques have been developed for this purpose out of which some are analyzed
in this section, and employed in order to improve the performance of our baseline imple-
mentation.

5.2.1.1 Loop-invariant Code Motion

This is a well-known compiler loop optimization that is manually applied on some parts
of the code in this thesis. The idea is that a statement inside a loop body can be moved
out of the loop if its corresponding reaching definition is out of the loop. A simple
example code is given below. The statement 1 is independent from the inner loop while
a part of the statement 2, c2 ∗ c3, is a constant that is not updated either in the inner or
the outer loop. Therefore, they can be moved out to the appropriate places. This results
in a decrease in the number of operations and the processor cycles. This technique is
applied on warping and inverse warping functions of the algorithm. Table 5.3 indicates
that the cycle count is decreased by applying this technique on the code. Since the inner
loop operations can be better parallelized, moving some code sections out of the inner
loop reduced the ILP.

It should be noted that the operation count and the code size are not always correlated
in VLIW architectures. The inner loop operations have a relatively higher effect on the
operation count than the outer loop operations. Their effect on the code size, however,
is the same. Hence, in our case, this technique slightly decreased the operation count
while the code size is increased.



5.2. FURTHER OPTIMIZATIONS 53

f o r (j=0; FRAME_HEIGHT ; j++)
{

f o r (i=0; VECTORS_PER_LINE ; i++)
{

1 : a = M [ j ] * c1 ;
2 : b = a + c2*c3 ;

}
}

Table 5.3: The effect of invariant code motion on performance and code size

Operation Count Cycle Count
ILP Code Size

per pixel per pixel

Baseline 106,41 63,64 1,67 2.017
Baseline + loop invariant
code motion

102,83 62,64 1,64 2.045

Improvement 3,36% 1,57% -1,81% -1,39%

5.2.1.2 Loop Fusion

The principle of loop fusion is based on combining the bodies of two adjacent loops when
both the loops iterate the same number of times. In order to merge the loops, however,
the data dependency between the statements must be preserved. A simple example is
given below to demonstrate this issue. The loops in the example have a certain data
dependency but their bodies can be merged without flawing these dependencies. Merging
the bodies of two loops reduces the loop overhead. It also allows the compiler to achieve
a schedule with higher parallelism by increasing the number of instructions that can be
parallelized in the basic block.

before loop fusion after loop fusion

f o r i =1:N
A [ i ] = B [ i ] * c1 ;

end f o r
f o r i =1:N

C [ i ] = A [ i−1] * c2 ;
end f o r

f o r i =1:N
A [ i ] = B [ i ] * c1 ;
C [ i ] = A [ i−1] * c2 ;

end f o r

The results indicate that loop fusion enhances the performance by 3,68% and im-
proves the ILP by 3,67%. The achieved improvement in the code size is 5,16%.

Furthermore, merging the loop bodies of two consecutive stages of the algorithm
removes the need for DMA transfers when the second stage uses the output of the first
stage. This is the case for merging of blend-median and dilate-blend functions. This
decreases the number of processor stall cycles, which stem from the wait for loading
data, in these functions. It also helps in reducing the memory bus traffic since the
intermediate results are not written to the external memory.



54 CHAPTER 5. MAPPING THE FTV ALGORITHM

Table 5.4: The effect of loop fusion on performance and code size

Operation Count Cycle Count
ILP Code Size

per pixel per pixel

Baseline 106,41 63,64 1,67 2.017
Baseline + loop fusion 106,25 61,29 1,73 1.913
Improvement 0,15% 3,68% 3,67% 5,16%

5.2.1.3 Loop Unrolling

Loop unrolling duplicates the body of the loop multiple times determined by the loop
unrolling factor; k. Unrolling a loop decreases the number of times that the loop condition
check is executed. It also reduces the total number of operations by eliminating a number
of increments/decrements between adjacent blocks. Furthermore, as in the case of loop
merging, the basic block size is enlarged; this can be used by the compiler to increase
the parallelism during instruction scheduling. An example loop which is iterating eight
times is given below. The code shown by the left and right arrows indicates unrolling of
the loop with two different factors (k = 2 and k = 8 respectively).

for i =2:9 

A[i] = A[i-1] + A[i-2]; 

end for 

 

 

 

 

for ii =1:4 

A[2*ii]      = A[2*ii-1] + A[2*ii-2]; 

A[2*ii+1] = A[2*ii] + A[2*ii-1]; 

end for 

 

 

A[2] = A[1] + A[0]; 

A[3] = A[2] + A[1]; 

A[4] = A[3] + A[2]; 

A[5] = A[4] + A[3]; 

A[6] = A[5] + A[4]; 

A[7] = A[6] + A[5]; 

A[8] = A[7] + A[6]; 

A[9] = A[8] + A[7]; 

 

k = 2 k = 8 

The Silicon Hive compiler supports automatic loop unrolling which can be en-
abled/disabled by the pragma directives given below. It can be enabled only for the
loops with a known number of iterations, and the unrolling factor should be an exact
divisor of the iteration number.

#pragma hivecc unroll=2 : loop unrolled 2 times
#pragma hivecc unroll=off : loop unrolling disabled (by default)
#pragma hivecc unroll=full : full loop unrolling

Full loop unrolling is applied in the third level loops of warping and inverse warping
stages. Besides that, loop unrolling by an integer factor is implemented for the second
level loops in some functions of the algorithm. The unrolling factors of each function
which give the minimum execution time while fitting into program memory and register



5.2. FURTHER OPTIMIZATIONS 55

files are determined via experiments. Table 5.5 gives an insight about the effectiveness of
loop unrolling. The cycle count is reduced by 34,24% by loop unrolling mainly because
the compiler is enabled to schedule more operations in parallel with the increased basic
block size. A larger improvement in the operation count caused a 3,16% decrease in the
ILP. Due to duplicating the loop bodies, the code size increased by 32,72%.

Table 5.5: The effect of loop unrolling on the performance and code size

Operation Count Cycle Count
ILP Code Size

per pixel per pixel

Baseline 106,41 63,64 1,67 2.017
Baseline + unrolling 67,76 41,85 1,62 2.677
Improvement 36,32% 34,24% -3,16% -32,72%

5.2.1.4 Loop Folding (Sofware Pipelining)

This is another efficient technique to improve instruction level parallelism. In software
pipelining, the operations of each iteration are split into s stages, and stage 1 from
iteration i, stage 2 from iteration i-1, etc. is performed in a single iteration [5]. This
would imply a parallelism in between consecutive iterations of the loop in addition to the
parallelism within the loop body which is the case in the absence of software pipelining.

In order to illustrate the effectiveness of this technique, let us consider the following
loop in C-like assembly code [9].

L1: a = *p++

    b = a + 1;

    *q++ = b;

    if(--n != 0) goto L1

The parallelism in this loop body is very limited. Scheduling the loop without soft-
ware pipelining might result in the following schedule. Considering this in a VLIW
machine, the operations in the same line belongs to one large instruction which is exe-
cuted in a single cycle. The schedule length is 3 cycles for every execution of this loop
body.

L1: a = *p++

    b = a + 1;

    *q++ = b; if(--n != 0) goto L1

The figure below depicts the scheduling of this loop for ten loop iterations with
software pipelining enabled assuming that the VLIW processor has sufficient hardware
resources to execute the operations in parallel.

The code above is for illustration purposes. Since it is rather large in code size, the
compiler generates the following code instead.

This example can be used to analyze the advantage of software pipelining. In the
initial scheduling, 4 operations are performed in 3 cycles, giving an ILP of 4/3. A
schedule with software pipelining for ten iterations, performs 40 operations in 12 cycles,



56 CHAPTER 5. MAPPING THE FTV ALGORITHM

a = *p++

a = *p++; b = a + 1;

a = *p++; b = a + 1; *q++ = b; if(--n != 0) .

a = *p++; b = a + 1; *q++ = b; if(--n != 0) .

a = *p++; b = a + 1; *q++ = b; if(--n != 0) .

a = *p++; b = a + 1; *q++ = b; if(--n != 0) .

a = *p++; b = a + 1; *q++ = b; if(--n != 0) .

a = *p++; b = a + 1; *q++ = b; if(--n != 0) .

a = *p++; b = a + 1; *q++ = b; if(--n != 0) .

a = *p++; b = a + 1; *q++ = b; if(--n != 0) .

          b = a + 1; *q++ = b

                     *q++ = b

    n = n - 2;

    a = *p++

    a = *p++; b = a + 1;

L1: a = *p++; b = a + 1; *q++ = b; if(--n != 0) goto L1

              b = a + 1; *q++ = b

                         *q++ = b

the ILP is 40/12 in this case. As the number of iterations increases, the ILP converges
to 4 since the loop effect of the prologue and epilogue reduces. Therefore it improves the
parallelism by a factor of 3 in this example.

The Silicon Hive compiler automates enabling software pipelining with the following
pragma which needs to be included at the end of the loop to be pipelined. In order to
enable this option, there should be no control statements, i.e. if-else statements, loops,
function calls, in the loop body.

#pragma hivecc pipelining=0

In some functions of the algorithm, as a result of removing conditionals and fully
unrolling the third level loops, the loop body does not have any control flow. Moreover,
all iterations of the loop are independent, i.e. the computations in any given iteration
do not depend on the results of the previous iteration. This makes those loops per-
fect candidates for software pipelining. Table 5.6 shows how much improvement was
achieved by this technique over our baseline. Software pipelining resulted in an increase
in the code size due to the additional codes included before and after the pipelined loop.
Nevertheless, it accelerates the code by 3,09% along with a 1,22% improvement in the
ILP.

Table 5.6: The effect of software pipelining on the performance and code size

Operation Count Cycle Count
ILP Code Size

per pixel per pixel

Baseline 106,41 63,64 1,67 2.017
Baseline + SW pipelining 104,38 61,67 1,69 2.166
Improvement 1,91% 3,09% 1,22% -7,39%



5.2. FURTHER OPTIMIZATIONS 57

5.2.1.5 Loop Retiming

As presented previously, loop unrolling and software pipelining techniques improve the
performance of loop executions by means of increased parallelization between iterations.
However, the resulting schedule is still not optimal in warping functions; i.e. there are
still processor stall cycles in the schedule. Even with a considerable amount of operations
in the loop body, high latency VAMEM load/store operations are not totally hidden. The
compiler could not find a way to perfectly pipeline consecutive iterations with the code
given. For this reason, the loop retiming technique is employed manually to improve the
performance.

Loop retiming, first proposed by [28], is used to regroup the order of execution in a
loop body in such a way that parallelism is increased while preserving the dependencies
between operations. A simple example is given in Figure 5.13 to demonstrate how it
makes several parallelism opportunities possible.

Before loop retiming (Figure 5.13a), statement 2 must wait until statement 1 is exe-
cuted, likewise statement 3 and 4 must be executed after statement 2. The corresponding
multi-dimensional data flow graph (MDFG) which models the dependence between oper-
ations is also given. In an MDFG, each node represents an operation, and edges indicate
the dependency between nodes. An edge e from u to v with weight d(e) = (di, dj) means
that the computation of node v at iteration (i,j) depends on the result of node u calcu-
lated at iteration (i−di, j−dj). Achieving full parallelism in the loop body is equivalent
to obtaining non-zero d(e) for any e ∈ E where E denotes the set of dependence edges
[28]. Therefore, only statement 3 and statement 4 can be executed in parallel in the first
case.

Applying a chain of retiming resulted in the code and the corresponding MDFG
shown in Figure 5.13b. The MDFG indicates that all edges have a non-zero value in
terms of the inner loop index j. Therefore, all four statements in this loop body can
be executed in parallel. In order to avoid a loss or gain of some statements during the
transformation, the second level loop index is rearranged, and short pieces of code are
inserted outside the nested loop. These code pieces placed before and after the second
level loop are called prologue and epilogue respectively.

Table 5.7 shows the effects of loop retiming on performance and code size. Overall,
the retiming improved the performance by 10,92%. The code size is increased by 29,60%
due to the additional prelogue and epilogue segments required after the retiming of the
loop body. As it will be presented in the next sections, applying retiming along with
other optimizations will have an even higher effect on the performance.

Table 5.7: The effect of loop retiming on performance and code size

Operation Count Cycle Count
ILP Code Size

per pixel per pixel

Baseline 106,41 63,64 1,67 2.017
Baseline + retiming 103,38 56,69 1,82 2.614
Improvement 2,85% 10,92% 9,06% -29,60%



58 CHAPTER 5. MAPPING THE FTV ALGORITHM

before retiming after retiming by r(A)=2, r(D)=1

f o r i=1:N
f o r j=1:M
1 : A [ i , j ] = B [ i−1, j ] + C [ i−1, j−1] ;
2 : D [ i , j ] = A [ i , j ] * c1 ;
3 : B [ i , j ] = D [ i , j ] + c2 ;
4 : C [ i , j ] = D [ i , j ] + c3 ;
end f o r

end f o r

f o r i=1:N
% Prelogue
A [ i , 1 ] = B [ i−1 ,1] + C [ i−1 ,0 ] ;
A [ i , 2 ] = B [ i−1 ,2] + C [ i−1 ,1 ] ;
D [ i , 1 ] = A [ i , 1 ] *c1 ;
f o r j=1:M−2
1 : A [ i , j+2] = B [ i−1,j+2] + C [ i−1,j+1] ;
2 : D [ i , j+1] = A [ i , j+1] * c1 ;
3 : B [ i , j ] = D [ i , j ] + c2 ;
4 : C [ i , j ] = D [ i , j ] + c3 ;
end f o r
% Epi logue
B [ i , M−1] = D [ i , M−1] + c2 ;
B [ i , M−1] = D [ i , M−1] + c2 ;
D [ i , M ] = A [ i , M ] * c1 ;
B [ i , M ] = D [ i , M ] + c2 ;
B [ i , M ] = D [ i , M ] + c2 ;

end f o r

D

A

B C

(0,0)

(1,0)

(0,0)

(0,0)

(1,1)

(a)

D

A

B C

(0,1)

(1,-2)

(0,1)

(0,1)

(1,-1)

(b)

Figure 5.13: An example code and the corresponding MDFG indicating loop retiming

5.2.2 Data Mapping

In the FTV processor, each of the data memories is accessible by only one of the load-
store units. If all the variables are defined in the same memory, then it is not possible to
access these variables at the same time. This is especially important for accesses to vector
addressable memory, vamem, which has a latency of 18 cycles in a 16-way architecture.
In our baseline vectorized implementation, vamem data were defined in two separate
vamems: the first large vamem holding the scattered data during warping stage and
the second reserved for a small look-up table (LUT). The inverse-warping stage of the
algorithm requires six accesses to this memory as depicted in the code below. Scheduling
this loop body would result in at least 4× 18 cycles in the baseline configuration since 4
vamem accesses (depth, y, u, v) were required to share the same memory. Distributing
the critical data elements over multiple memories can help reducing this bound in the
latency.

An important consideration while distributing data is that having multiple data mem-
ories would imply a larger area as compared to a single memory with the same size of



5.2. FURTHER OPTIMIZATIONS 59

the sum of multiple memories. Introducing additional memories would also require addi-
tional load/store units associated with them. Therefore, a trade-off exists between area
and performance while introducing multiple memories to achieve better data mapping.

In this specific case, in order to prevent vamem accesses from becoming a bottleneck,
the data is distributed over three different memories, vamem1, vamem2 and vamem3
as shown in the example code. It is possible to specify for each data the memory
that it will be placed in, using the attribute MEM(MEM NAME). The groups of two
variables share the same vamem. In this way, a schedule with 2× 18 cycles latency can
be achieved, assuming that other operations in the body can be executed in parallel
to these load/stores. More than three memories would not be needed since the other
computations in the loop body cannot be executed in less than 2 × 18 cycles with the
current processor configuration. Therefore, using three memories is an optimum choice
regarding area and performance.

unsigned char MEM ( VAMEM1 ) depth_buffer ;
unsigned char MEM ( VAMEM1 ) y_buffer ;
unsigned char MEM ( VAMEM2 ) u_buffer ;
unsigned char MEM ( VAMEM2 ) v_buffer ;
unsigned char MEM ( VAMEM3 ) LUT_depth ;
unsigned char MEM ( VAMEM3 ) LUT_division ;

f o r (j=0; FRAME_HEIGHT ; j++)
{

f o r (i=0; VECTORS_PER_LINE ; i++)
{

a = VAMEM_LOAD ( LUT_depth [ i ] ) ;
b = f (a ) ; % A number of computations

c = VAMEM_LOAD ( LUT_depth [ b ] ) ;
d = f (c ) ; % A number of computations

depth = VAMEM_LOAD ( depth_buffer [ d ] ) ;
y = VAMEM_LOAD ( y_buffer [ d ] ) ;
u = VAMEM_LOAD ( u_buffer [ d ] ) ;
v = VAMEM_LOAD ( v_buffer [ d ] ) ;

result= f ( depth , y , u , v ) ;
}

}

The data mapping method is used in the inverse warping stage only due to a large
number of vamem load/store operations present in this function. The individual contri-
bution of data mapping on the performance is 6,09% as shown in Table 5.8.

5.2.3 Extending the ISA

A common technique to enhance the execution time of an algorithm is to extend the
processors’ instruction set architecture (ISA) with custom instructions. Custom instruc-
tions are usually specific to an application-domain, and they are the combination of some
simple operations. They have some advantages such as reducing the code size and the



60 CHAPTER 5. MAPPING THE FTV ALGORITHM

Table 5.8: The effect of data mapping on the performance and code size

Operation Count Cycle Count
ILP Code Size

per pixel per pixel

Baseline 106,41 63,64 1,67 2.017
Baseline + data mapping 105,34 59,76 1,76 1.959
Improvement 1,00% 6,09% 5,42% 2,88%

number of instructions being issued. Furthermore, the register usage can be reduced
since the need to hold the intermediate variables is avoided. Using custom instructions,
however, enlarges the logic area of the processor as it usually requires additional func-
tional units. This can be an important overhead if the same processor will be used in
other application domains. However, it is not the concern of this thesis since its focus is
on the efficient implementation of the FTV algorithm. Furthermore, the target platform
is an FPGA; hence extending the ISA is acceptable as long as it fits on the FPGA while
satisfying the timing constraints.

According to Amdahl’s law [2], in order to improve the performance of a code, the
effort should be spent on the segment which is executed the most frequently. Considering
this fact and the saving in terms of processor cycles in each execution of the custom
instruction as well as its feasibility, a single custom operation is proposed in this work.

5.2.3.1 Vector Leading One Detection (OP vec lod)

The Newton-Raphson division approximation present in the fixed point implementation
requires finding the leading one position, i.e. the position of the most significant digit
with the value 1, of the divisor. In the absence of a dedicated instruction for this
operation, a possible way is to perform shift operations x times, where x equals to
number of bits in a vector element. The code segment below demonstrates this method.
The variable vec lod is the vector holding the leading one position for each element of
vec x. A flag and mux operation is required to detect when the element value reaches
zero, and vec lod is incremented for the elements which does not satisfy this condition.

vec_lod = 0 ;
f o r i=1:bits_per_vecelem

flag_lod = ( vec_x == 0) ;
vec_lod = flag_lod ? vec_lod : vec_lod+1; % Increment the counter

i f i t i s s t i l l nonzero
vec_x = vec_x >> 1 ;

end f o r

The execution of the code segment described above requires 5 × bits per vecelem
operations which takes a considerable amount of cycles even if the loop is unrolled.
Furthermore, the frequency of this operation in the algorithm is four per pixel. Having
a dedicated operation, OP vec lod, can improve the performance significantly. Also, the
operation can be easily implemented in hardware using a priority encoder.



5.2. FURTHER OPTIMIZATIONS 61

In order to run software simulations of the FTV algorithm with the new custom
instruction, the semantic description shown in Figure 5.14 was added into the processor
description file (TIM). Using this semantic, both functionality and the cycle property of
the operation are known to the compiler and simulator. The next step in the flow of
introducing a new operation is to write the RTL description of the operation to generate
the hardware block. However, due to lack of time remaining in the project, the hardware
unit for it was not implemented.

OP vec_lod <unsigned nway> ( svecN<nway> A ) −> ( uvecN<nway> R )
{

SEM R<nway> (A ) =
{

unsigned <Width :=18> t ;
f o r i [ ( nway−1) , 0 ]
{

t=0;
f o r j [ 1 7 , 0 ] { i f ( Bits (A [ i ] , [17− j ] ) ) then { t = 17−(

unsigned<Width :=18>)j ; } fi }
R [ i ]=t ;

}
} ;

} ;

Figure 5.14: The semantic description for vector leading one detection operation

Table 5.9 indicates the achieved improvement over our baseline by introducing this
operation to the processor ISA. The total cycle count is reduced by 29,12%. The decrease
in the operation count is even higher, which caused a lower ILP. The code size is also
decreased since the same functionality is achieved by a single line of code instead of the
expensive loop mentioned above.

Table 5.9: The effect of OP vec lod operation on performance and code size

Operation Count Cycle Count
ILP Code Size

per pixel per pixel

baseline 106,41 63,64 1,67 2.017
baseline + OP vec lod 59,57 45,11 1,32 2.008
Improvement 44,02% 29,12% -21,02% 0,45%

5.2.4 The Combined Effect of Optimizations

A combination of the optimization methods mentioned above is applied on the vectorized
baseline.

For the warping and inverse warping stages, we first used the loop invariant code
motion technique to reduce the amount of inner loop operations. Next, the custom
operation OP vec lod is also introduced to additionally reduce the inner loop operations.



62 CHAPTER 5. MAPPING THE FTV ALGORITHM

These optimizations allowed us to apply loop unrolling and loop merging techniques
without introducing data movements between the register file and memory or introducing
unacceptable memory requirements. These two techniques were applied when possible in
order to increase the basic block sizes and thereby enable additional parallelism between
operations. The schedule generated by the compiler contained huge amount of wait cycles
due to latency induced by vamem load/stores (the schedule is listed in Appendix 7.2).
By retiming the loop, these latencies can be completely hidden and an almost optimal
schedule can be achieved for the warping stage as shown in Appendix 7.2. The inverse
warping stage, however, was still not optimal due to the additional vamem accesses.
These accesses are required to load depth, Y, U, and V pixels. An efficient data mapping
technique helped us to remove this limitation by distributing the data requests over two
vamem structures of equal size keeping the overall vamem space the same.

Furthermore, the classical techniques of loop unrolling, software pipelining, or a
combination of the two was applied on the remaining algorithm stages. The selection of
which technique to apply was made by analyzing the corresponding compiler-generated
schedules. These stages were, however, not our primary target.

Table 5.10 shows the overall improvement achieved over our baseline implementation.
The details for the performance of each algorithm function are given in Chapter 6.
Overall, the cycle count and the ILP are improved by 75%. Some of the optimizations,
particularly loop unrolling and loop retiming, require a trade-off of code size to improve
the performance, hence the total code size is 23,65% larger than our baseline in the final
implementation.

Table 5.10: The combined effect of optimizations on performance and code size

Operation Count Cycle Count
ILP Code Size

per pixel per pixel

Baseline 106,41 63,64 1,67 2.017
Baseline + combined optimizations 46,34 15,76 2,94 2.494
Improvement 56,45% 75,23% 75,82% -23,65%



RESULTS & ANALYSIS 6
This chapter presents the results of mapping the FTV algorithm on the FTV processor.
It starts with giving the performance results for each stage of the algorithm. Next, a
performance comparison of this work with the previous vectorized work and the out-
of-the-box code is given. This is followed by area results indicating the FPGA resource
utilization. Finally, the final output image quality of the vectorized algorithm is compared
to that of a scalar fixed point implementation taking the floating point implementation
as a reference. We discuss the reasons for output degradation in certain stages.

6.1 Performance Results

After vectorizing the FTV algorithm and improving its performance through the num-
ber of optimizations described in Chapter 5, its performance is measured via a sched
simulation. For the sample ballet stream with a 1024x768 resolution, Table 6.1 gives
the operation count, cycle count, ILP and code size for each function of the algorithm.
Since the FTV processor has scalar and vector functional units, the total operation count
for both is indicated separately. The total number of cycles, that the algorithm takes,
is the sum of execution cycles and stall cycles. The execution cycles are the cycles in
which the processor is executing a number of operations and the stall cycles represent
the cycles for which the processor has to wait for memory transfer latencies (in this case
it is the DMA transfers between the external memory and the processor local memory).
In a sched simulation, stall cycles are calculated based on the system-level parameters
given during the instantiation step of the buses and the memories in the hsd description.
It reflects the amount of latency due to a read from the external memory, and a bus
transfer. However, this model is not sufficient to represent the real-time behavior of the
system since it does not take into account the latencies in case the memory bus is being
employed by another device, e.g. the HDMI interfaces.

Table 6.1: The performance of the implementation for each algorithm step

OPERATION COUNT CYCLE COUNT ILP

Scalar Vector Total
Execution Stall Scalar Vector Total Code

Cycles Cycles ILP ILP ILP Size
Warp 807.936 9.632.256 10.440.192 3.937.526 12.875 0,21 2,45 2,65 781
Blend+Median 505.344 2.714.112 3.219.456 1.031.548 1.296 0,49 2,63 3,12 213
Fill Depth 583.680 1.116.672 1.700.352 780.457 480 0,75 1,43 2,18 115
Inverse warp 2.654.208 10.368.000 13.022.208 4.380.723 296.616 0,61 2,37 2,97 1153
Dilate+Blend 457.728 5.058.048 5.515.776 1.481.256 453.870 0,31 3,41 3,72 439
Fill YUV 495.360 2.048.256 2.543.616 784.521 407.296 0,63 2,61 3,24 175

TOTAL 5.504.256 30.937.344 36.441.600 12.396.031 1.172.433 0,44 2,50 2,94 2876

The ILP per function is also given in the table, indicating the instruction-level par-
allelism in scalar and vector operations separately. The vector ILP is more important

63



64 CHAPTER 6. RESULTS & ANALYSIS

0

5

10

15

20

25

30

35

40

45

C
y
cl
e
s/
p
ix
e
l

Previous Work

This Work

Figure 6.1: A performance comparison between this work and the previous vectorized
implementation

since most of the operations are performed on vectors. The overall vector ILP of 2.5
is achieved although the FTV processor has 5 vector issue slots. Profiling the FTV
algorithm indicates that the most-utilized functional units are vshu (vector shift unit),
varu (vector arithmetic unit) and vmul (vector multiplication unit). The operations per-
formed in these functional units account for around 70 percent of all operations in the
algorithm. In the current issue-slot configuration, these functional units, two varu, one
vmul and one vshu, are present in three issue slots. Therefore, the utilization of these
three issue slots is quite high as compared to the other two. This is the main reason
due to which the vector ILP is limited to 2.5. Introducing a relatively low-cost varu and
vshu to the other issue slots would help in improving the performance further.

In terms of the code size, the warping and the inverse warping stages are the bottle-
necks. This is because of the long prologue and epilogue codes introduced by two levels
of loop retiming. Two levels of loop retiming are required since it is applied together
with loop unrolling with a factor of two.

Comparison with the Previous Work

In this section, we compare the performance of our final design with the previous work
[6] implementing the FTV algorithm on the same architectural template. As discussed
previously, the reference implementation suffered from insufficient vectorization at the
warping and inverse stages of the algorithm due to irregular memory accesses. With
the proposed caching mechanism to handle these random accesses, those stages were
fully vectorized in this work. The graph in Figure 6.1 illustrates the improvement in
all functions, while knowing that the main contribution is coming from overcoming the
bottleneck at the warping stages.

A more detailed comparison for each function including the operation and cycle count
per pixel, as well as the ILP, is presented in Table 6.2. Since the reference work does
not specify any information about the distribution of operations between the vector
and scalar units, the total operation count and the overall ILP are given in the table.



6.2. AREA RESULTS 65

Furthermore, the reference work was based on the assumption that the frames and all
intermediate results were stored in the local memory. Therefore, the stall cycles caused by
system-level aspects such as DMA transfers were not taken into account in the previous
work. For that reason, in order to have a fair comparison, the table demonstrates only
the execution cycles.

Table 6.2: Performance comparison for each algorithm function

Previous Work [6] This Work
SPEED-UP

Operation/pixel Cycle/pixel ILP Operation/pixel Cycle/pixel ILP

Warp 86,00 38,00 2,26 13,28 5,01 2,65 7,59

Blend 1,00 1,00 1,00
4,09 1,31 3,12 2,29

Median 4,00 2,00 2,00

Fill Depth 2,00 2,00 1,00 2,16 0,99 2,18 2,02

Inverse warp 118,00 41,00 2,88 16,56 5,57 2,97 7,36

Dilate
7,00 3 3,51 7,01 1,88 3,51 1,59

Blend

Fill Y 4,00 3 1,33
3,23 1,00 3,24 6,01

Fill UV 5,00 3 1,67

TOTAL 227,00 93,00 2,44 46,34 15,76 2,94 5,90

The performance of the critical stages, namely the warping and the inverse warping
is improved by a factor of 7.59 and 7.36 respectively. The key for this speed-up is
full vectorization by handling irregular memory accesses. Together with that, software
optimizations and introduction of custom operations allow for efficient utilization of the
processor’s resources and hiding vamem load/store latencies, thereby increasing the ILP.
Merging the blending and median filtering stages, along with a more efficient DMA-based
boundary padding scheme, yields a speed of 2.29. The new boundary padding scheme
also improved the performance in the other steps: filling disocclusions for depth and
YUV, and the dilate-blend step. Overall, a speed-up of 5.90 is achieved and the ILP is
improved by 20 percent.

Table 6.3 summarizes the results for the out-of-the-box implementation, reference
vectorized implementation [6], and this work. The out-of-the-box algorithm, running
on a 5-issue slot floating-point processor, reaches up to a frame rate of 0.10 fps for a
1280x720p resolution, while the previous vector implementation can go up to 1.17 fps.
In this work, the effective frame rate is equal to 6.89. This would imply that 12.2 percent
of a 720p stream can be covered if the rendering is performed at 30 fps per eye.

6.2 Area results

The FTV system is mapped onto the Xilinx Virtex-5 FPGA platform. The logic blocks
of the processor are translated to the slice LUTs and the slice registers while the multi-
plication operations are performed by the DSP48E slices, each of which contain a 25×18
multiplier. 18k and 36k Block RAMs on this FPGA are used as processor local memories.

After the placement and routing, the maximum frequency is 50.078 MHz, given a 50
MHz clock constraint. The resource utilization of the FPGA is given in Table 6.4. The
results prove that the current system is able to fit on the target FPGA. In terms of the



66 CHAPTER 6. RESULTS & ANALYSIS

Table 6.3: Overall performance comparison

Out-of-the-box Previous Work This Work

Operations/pixel 1410 227 46
Cycles/pixel 1049 93 16
ILP 1,35 2,44 2,94
Pixels/second 41,667 537,63 3,172,588
720p frame rate (fps) 0,09 1,17 6,89
Screen Coverage for 720p

0.17% 1.9% 11,5%
@ 30 Hz per eye

utilization of logic slices, there is still some space which might allow for the extension
of the processor resources. Increasing the number of ways (vector length) in the SIMD
datapath, or introducing new issue slots might increase the performance of the algorithm
further.

Table 6.4: FPGA resource utilization

Slice Logic Utilization:

Number of Slice Registers: 31,709 out of 207,360 15%
Number of Slice LUTs: 77,568 out of 207,360 37%
Number of DSP48Es: 35 out of 192 18%

IO Utilization:

Number of bonded IOBs: 338 out of 1,200 28%

Specific Feature Utilization:

Number of BlockRAM/FIFO: 128 out of 288 44%
Number of 36k BlockRAM used: 90
Number of 18k BlockRAM used: 39
Number of 36k FIFO used: 18
Total Memory used (Kbits): 4590 out of 10,368 44%

The area results also indicate that 44 percent of the FPGA block rams are occupied
by local memories. This is based on the memory sizes given in Table 6.5. The table also
shows the memory utilization based on the simulation results for the program memory
(PMEM ), the scalar data memory (DMEM ), the vector memory (VMEM ) and the
vector-addressable memories (VAMEM ). With the current issue slot and register file
configuration, the word length (WL) of the PMEM is 355 bits. The scalar data path
and therefore the DMEM is 32 bits wide. The WL of the vector memory is 288 bits,
sufficient to store a single vector, which consists of 16 elements each of which has an
18-bit element precision. Finally, there are three vector-addressable memories. The first
two are used as data-caches storing the pixel values; therefore they are 8 bits wide. The
third VAMEM is used as a look-up table for the algorithm parameters (depth conversion
table) and for the Newton-Raphson division approximation coefficients.



6.3. OUTPUT QUALITY 67

The experiments explained in Chapter 5 indicated that, for this data-set, the sizes of
data vector-addressable memories (VAMEM1, VAMEM2 ) can be chosen such that they
can store 64 lines of the output frame consisting of the depth, Y, U and V components.
Therefore, the total required VAMEM size is given by Equation 6.1. This number is
equivalent to 42 percent of the total memory size used. It should be noted that, in
order to speed-up the inverse warping stage (as presented in Section 5.2.2), data is
distributed over two equal sized memories. VAMEM1 holds the depth and the Y pixels
while VAMEM2 stores the U and the V values.

Total Vamem Size = 4x64x640 = 163,840 bytes

4 components 

(Depth, Y, U, V)

Buffer Height

64 Lines

Texture/Depth Width 

for 1280x720 resolution

(6.1)

Table 6.5: Processor local memory sizes and their utilization for the ballet sample

MEMORY Capacity (Bytes) Utilization (Bytes) Utilization (%)

PMEM (355 bit) 181.760 139.116 76,53
DMEM (32 bit) 16.384 3.649 22,27
VMEM (288 bit) 131.072 78.240 59,69
VAMEM1 (8 bit) 81.920 81.920 100,00
VAMEM2 (8 bit) 81.920 81.920 100,00
VAMEM3 (18 bit) 4.096 1.616 39,45

TOTAL 497.152 386.461 77,73

6.3 Output Quality

Converting the original floating-point algorithm into fixed-point introduces intermediate
rounding errors, which reduces the image quality. The quality is further decreased after
mapping the fixed-point algorithm onto the vector architecture. The reasons for the
errors introduced by vectorization are explained further in this section. Other than
subjective ways, the degradation in output image quality can be calculated using two
widely-used metrics. PSNR (peak signal-to-noise ratio) is the first method specified by
the following equation:

PSNR = 20 log
255√
MSE

with MSE =
1

N

∑
x,y∈S

(Yv(x, y)− Yref (x, y))
2

(6.2)



68 CHAPTER 6. RESULTS & ANALYSIS

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

1,05

0

10

20

30

40

50

60

PSNR - Fixed-Point Scalar

SSIM - Fixed-Point Vectorized

SSIM - Fixed Point scalar

SSIM - Fixed Point Vector

Figure 6.2: PSNR and SSIM measurements after each algorithm step

The parameter S denotes the image space, N represents the number of pixels within
S, Yv and Yref are the luminance of the reconstructed and the reference image, respec-
tively. PSNR is the most widely used metric to detect objective quality. However, this
evaluation model calculates the quantization error, while the impact of subjective feelings
are never taken into consideration [33].

The SSIM (Structural Similarity) index is another technique for measuring the level
of similarity between two images. It is a more complicated and precise technique as
compared to PSNR, designed to take the human visual system into account. The SSIM
is calculated on various windows of an image, and the resultant index is between −1 and
1, where the value 1 represents identical images.

6.3.1 Output Quality after Each Algorithm Step

In order to evaluate the output image quality after each step of the algorithm, the results
of the floating-point algorithm are used as references. By averaging the results of the
experiment repeated on a 100 frames, the plot in Figure 6.2 is obtained. The blue
bar indicates the output PSNR as a result of the fixed-point conversion. The red bar
represents the change in PSNR after the vectorization and optimizations explained in
Chapter 5. The lines represent the SSIM indices for respective implementations. In the
vectorized algorithm, the steps that affect the output image quality are warping, filling
disocclusions in the depth map, and filling disocclusions in the texture map.

The reason for the quality difference at the warping stage is that vectorizing the
load/store operations might actually alter the behavior of the algorithm. At this stage,
if more than one pixel is mapped onto the same position, the larger depth value should
be retained. In order to ensure this, first a load from the calculated address is performed.
The loaded value is compared with the new value, and the new value is stored only if it
is larger than the old value. In a scalar load/store pattern, every pixel can be compared
with the most up-to-date value, hence the value with the largest depth can always be
preserved. After vectorizing the load/store, however, if two elements in the same vector
are mapped to the same output pixel, then the last written element is retained. Figure
6.3 shows an example of this phenomenon. In the initial condition, the vector addressable



6.3. OUTPUT QUALITY 69

memory already contains a number of values, and there is a pending request to store the
new values residing in vec data into the address specified by base and vec index. First,
a load operation (OP vmldo) is performed. The element-wise maximum of the loaded
vector and vec data is chosen using OP vec max operation. The resultant vec max vector
is written back to the memory consecutively, i.e. one element is written in every cycle.
By this method, the values in the latter elements always overwrite the former values in
case they will be written to the same memory location, as highlighted with red arrows
and rectangles in the figure. Therefore, the larger values are not always retained. This
hazard occurs only if more than one pixel inside the same vector is mapped to the same
position, and it reduces the output quality by around 1 dB. However, after the blending
and the median filtering, the effects tend to disappear in the final interpolated depth
map.

vec_index

vec_data

base 0x100

8 12 7 9 16 10 8 11

1 3 0 3 2 2 5 6

Initial condition

loaded 

vector

vec_data 8 12 7 9 16 10 8 9

After OP_vmldo

14

3

23

7

12

11

6

VAMEM

0x100
0

1

2

3

4

5

6

11 7 6 7 12 12 3 14

vec_max 11 12 7 9 16 12 8 14

vec_index 1 3 0 3 2 2 5 6

14

8

23

9

16

11

7

VAMEM

0x100
0

1

2

3

4

5

6

After OP_vec_maxAfter OP_msto

Figure 6.3: VAMEM hazard affecting the result when two elements of a vector are
mapped to the same memory location

Restricting the search space to the immediate neighbors degrades the output quality
of the function to fill disocclusions in depth map. The difference in PSNR is 6 dB at
this step. This error also propagates through the inverse warping stage which uses this
interpolated depth map. However, after the blending of the textures, the error is still
less than 1dB.

The main effect on the final image quality stems from the step where the disocclusions
in the texture map are inpainted. As discussed in Chapter 5, the search is restricted to
direct neighbors at this step in order to reduce the extensive computational requirement.
This results in a blurring effect at the edges of the foreground object. The objective
quality in terms of PSNR decreases by 14 dB. The SSIM index goes down from 0.995 to
0.989. The subjective quality is also altered; however, in some cases the output subjective
quality is better after vectorized implementation.



70 CHAPTER 6. RESULTS & ANALYSIS

6.3.2 Final Output Quality

In order to evaluate the final output quality, the reference image is chosen to be the orig-
inal camera view at the 3rd camera position. Based on this reference, PSNR and SSIM
indices are evaluated for the FTV algorithm with floating-point, fixed-point scalar, and
fixed-point vectorized implementations. Table 6.6 indicates that the quality difference
between the floating point and our fixed-point vectorized implementation is very small
in terms of PSNR and SSIM.

Table 6.6: Final output quality in terms of PSNR and SSIM

Float Fixed-Scalar Fixed-Vector

PSNR 33,85 33,74 33,31
SSIM 0,90374 0,90309 0,90158



Conclusions and Future Work 7
This chapter concludes the thesis by summarizing the major contributions and the
achieved results. It also suggests a number of points for further improvements in the
future work.

7.1 Conclusions

In this thesis, an architecture to realize an interactive free-viewpoint interpolation is de-
veloped. A Full HD specification and intensive computation of the algorithm demand a
very high processing power. Furthermore, providing flexible solutions with a shorter de-
velopment cycle is an important consideration in this field due to continuous algorithmic
improvements and the absence of a stable free viewpoint 3D-TV standard. Our platform
contains a processor from Silicon Hive image signal processor (ISP) family promising a
high performance along with full programmability. It is powered by a 7-issue slot VLIW
architecture combining scalar and vector data paths.

The free-viewpoint algorithm developed for the iGLANCE project was vectorized
and mapped onto this processor. In the warping functions of the algorithm, pixel based
load/stores requiring irregular memory accesses prevented the previous work from vec-
torizing these functions. This caused a significant performance drop. In order to address
this issue, we used a scatter-gather unit and a customized memory transfer scheme.
This, along with several classical vectorization techniques, allowed us to utilize data
level parallelism completely. We regard this as our vectorized baseline. Although a
certain speed-up was achieved by improved data parallelism, dependencies of the rest
of the computations on high latency vector addressable memory load/stores limited the
performance. In order to solve this problem and to improve instruction level parallelism,
further optimizations were applied. This includes loop transformations, an efficient data
mapping for critical sections, extending the processor instruction set. As a result of all
these, a speed-up of a factor 6x is achieved over the selected baseline, which is equivalent
to 78x over the out-of-the box code. The ILP is also improved by 17% as compared to
the previous work.

We also set up a demonstration system to validate the results in a real-time en-
vironment by mapping our design to an FPGA running at 50 MHz frequency. We
demonstrated that our design is occupying only 15% of the register slices and 37% of the
LUTs on Xilinx Virtex-5 XC5VLX330. The achieved frame rate on this FPGA is 6.75
fps in a 1280x720 resolution. This implies that when our design is mapped to silicon,
running at about 10x the FPGA frequency and with extended processor resources, we
will be able to achieve performance levels required for Full HD processing at 30 fps per
eye.

71



72 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2 Future Work

We demonstrated with the area results that there is still scope to extend the processor
resources by increasing the number of ways and/or additional issue slots. Profiling the
FTV algorithm showed that introducing an additional vector multiplier, a vector shift
unit, and a vector arithmetic unit will result in a better load distribution over the current
issue slots, hence it will increase the ILP and the performance. However, this acceleration
would be valid only for the computation parts. There would be still a latency bound by
vamem load/stores. To improve this part too, the vector addressable memory can be
split into multiple banks or the number of memory ports can be increased.

As mentioned, we are currently using only one of the two FPGAs on the Gladiator
board. Using both FPGAs is a promising option which would accelerate the rendering
up to 2 times.

Furthermore, additional merging of algorithm functions would improve the perfor-
mance. It would also increase data locality by means of a reduced memory transfer
requirement. This would decrease the number of stall cycles and the memory bus traffic
significantly.

Finally, a new version of the FTV algorithm is being developed by Eindhoven Uni-
versity. A speed-up by a factor of 2 can be expected by mapping this algorithm on our
platform.



Resulting Schedules for the
Warping Stage A
In this chapter, we demonstrate some examples from schedules generated by the HiveCC
compiler during a sched run. All the figures given indicates the cycle-accurate schedules
for the inner loop of the warping function of the algorithm. By examining these schedules,
we want to describe the affect of a number of optimizations on the performance of the
warping stage. The vertical direction corresponds to the cycle number in the schedule,
and the horizontal direction depicts the operations executed in corresponding issue slots.
Note that we have 7 issue slot in total, the first two are scalar and the rest are vector
issue slots. Furthermore, in all schedules, the starting and ending cycle count of the
loop is given, and the latency-critical vamem load/store operations are marked with red
circles.

Figure A.1 shows the schedule for our vectorized baseline with some optimizations
(OP vec lod operation, data mapping) already applied. Please note that this schedule
corresponds to only the warping of left depth map. The schedule for the warping of right
depth map is the same. The schedule is very scarce due to the dependencies of the other
computations on the vamem load/stores. The total schedule length is 2 × 127 = 254
cycles for the sum of the left and right warping. Since this belongs to processing a single
vector (16 elements), this loop body takes 254/16 = 15, 875 cycles/pixel.

Figure A.2 depicts the schedule after applying loop merging on the previous schedule.
In other words, this is the schedule corresponding to merging the left and right warping
stage. The total schedule length is 150 cycles, which is equivalent to 150/16 = 9, 375
cycles/pixel.

By unrolling the loop (merged loops), we obtained the schedule shown in Figure A.3.
Since an unrolling by a factor 2 is applied, this schedule corresponds to a loop body in
which 2 vectors (32 elements) are processed. An increased parallelism capability enabled
by loop unrolling, yielded a total schedule length of 218 cycles, which is equivalent to
218/32 = 6, 8125 cycles/pixel.

Finally, as mentioned in Section 5.2.1.5, the loop retiming technique is applied on the
unrolled loop. The resulting schedule is very compact. The vamem load/store operations
are now overlapped with the rest of the computations. The total schedule length of
the inner-most loop is 142 cycles, corresponding to 142/32 = 4, 4375 cycles/pixel. As
explained before, this is very close to the theoretical bound that can be achieved with
the current memory configuration.

73



74 APPENDIX A. RESULTING SCHEDULES FOR THE WARPING STAGE

186:  vec_mul _su( Any ,  vec_pt _2D_y  ,  vec_cons t ant _l ef t _war p_11,  vec_l 2_t emp

187:  v ec_l 2_par t 2 =  OP_vec_asr sat _wspl i t _i c ( vec_l 2_t emp2. hi ,  vec_l 2_t em

188:

189:  vec_l 3_t emp2 = vec_pt _2D_y  *  v i ewpoi nt s [ v i ewpoi nt ] . cons t ant _l ef t _

152 std_lsr_i vec_mul_c

153 std_ld32o_i std_add

154 vec_asrsat_wsplit_ic

155 std_and_i vec_mul_c

156 std_sub

157 std_lsl_i vec_asrsat_wsplit_ic

158 std_lsl_i std_add

159 std_or_i std_add_i

160 std_ld32o_i std_imm vec_saldoi_u vec_mul_su

161 std_imm

162 std_ld32o_i vec_mul_c vec_asrsat_wsplit_ic

163 vec_vmldo_wide

164 std_ld32o_i vec_clone vec_asrsat_wsplit_ic vec_addsat

165

166 std_ld32o_i vec_mul_c vec_add_cout vec_addsat

167 vec_addsat_ic

168 std_ld32o_i vec_mul_c vec_asrsat_wsplit_ic vec_add_cout

169

3 of 17 08/24/11 16:17

170 std_lsl_i vec_clone vec_mul_suvec_asrsat_wsplit_ic

171 std_lsl_i vec_mul_su vec_addsat

172 vec_asrsat_wsplit_ic vec_addsat

173 vec_mul_suvec_asrsat_wsplit_ic vec_add_cout

174 vec_add_cout

175 vec_asrsat_wsplit_ic

176

177

178

179

180 vec_addsat_c

181

182 vec_mul_u

183 vec_mul_su

184 vec_mul_suvec_asrsat_wsplit_ic

185 vec_asrsat_wsplit_ic

186 vec_asrsat_wsplit_ic vec_addsat

187 vec_addsat

188 vec_lod vec_addsat

189

190 vec_subsat

191

192 vec_lslsat_u vec_subsat

193 vec_subsat

194 vec_and_c

195 vec_asr_ic

196

197 vec_vmldo_wide

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214 vec_lslsat_ic

215

216 vec_mul_u

217

218 vec_lsrrnd_wsplit_icu_rndin

219

220 vec_subsat

221

222 vec_addsat_ic

223

224 vec_mul_u

225

226 vec_lsrrnd_wsplit_icu_rndin

227

228 vec_mul_u

229

230 vec_lsrrnd_wsplit_icu_rndin

231

232 vec_subsat

233

234 vec_addsat_ic

235

236 vec_mul_u

237

238 vec_lsrrnd_wsplit_icu_rndin

239

240 vec_mul

241 vec_mul

242 vec_asrrndsat_wsplit

243 vec_asrrndsat_wsplit

244 vec_subsat_ic

245 vec_minle_ico2

246 vec_and_ci vec_maxgt_ico2

247 vec_mul_c vec_subsat_ic vec_maxgt_ico2

248 f lg_and vec_minle_ico2

249 f lg_and vec_addsat

250 f lg_and

251 vec_mux

252 vec_vmldo_narrow

253

254

255

256

Issued operations for function vec_warp_depth file:///home/cinceg/css/applications/warping_depth_FTV_yuv4...

4 of 17 08/24/11 16:17

257

258

259

260

261

262

263

264

265

266

267

268

269 vec_maxgt_o2

270

271 vec_vmsto_narrow

272

273

274

275

276

277

278

279

280

281

282

283

284 std_cjmptdec_i

285

286

287 std_cjmptdec_i

288 std_add_i

289 std_lt_i

290 std_or_i std_rcv 139:  i sp_dma_wai t _f or _ack( )  SYNC( I NPUT_BUF_VMEM) ;

140:  }

141:

142:  s t at i c  i nl i ne voi d

143:  wr i t e_vmem2ddr ( uns i gned i nt  ddr _s t ar t _addr ess ,  uns i gned i nt  ddr _i dx ,  t vec t or  vo

144:  {

145:  u ns i gned i nt  ddr _of f set  = ddr _s t ar t _addr ess  + ddr _i dx* BLOCK_HEI GHT* BLOCK_WI DT

Issued operations for function vec_warp_depth file:///home/cinceg/css/applications/warping_depth_FTV_yuv4...

Figure A.1: The schedule for our vectorized baseline



75

285:  v ec_l 2_par t 2_r i ght =  OP_vec_asr sat _wspl i t _i c ( vec_l 2_t emp2_r

286:

287:  vec_l 3_t emp2_r i ght = vec_pt _2D_y  *  v i ewpoi nt s [ v i ewpoi nt ] . c

196 std_sub

197 std_lsl_i vec_asrsat_wsplit_ic

198 std_lsl_i std_add

199 std_or_i std_add_i

200 std_add_i

201 std_ld32o_i std_imm vec_saldoi_u vec_mul_su 477:  s t at i c  i nl i ne t wi devec t or

478:  i sp_vec_add_w_spl i t ( t wi devec t or  a,  t wi devec t or  b)

479:  {

480:  t wi devec t or  r ;

481:  t f l ags  f ;

482:  v ec_add_cout ( Any ,  a. l o,  b. l o,  r . l o,  f ) ;

483:  v ec_add_c i ncout ( Any ,  a. hi ,  b. hi ,  f ,  r . hi ,  f ) ;

484:  r et ur n r ;

485:  }

486:  #endi f

487:

488:  #i f  ! HAS_vec_mac_c  && HAS_vec_addsat _c i n && HAS_vec_add_cout

202 std_imm vec_saldoi_u

203 std_ld32o_i std_imm vec_asrsat_wsplit_ic

204 std_imm vec_mul_c vec_vmldo_wide

205 std_ld32o_i vec_clone vec_mul_su vec_addsat

206 vec_asrsat_wsplit_ic

207 std_ld32o_i vec_mul_c vec_asrsat_wsplit_ic vec_add_cout

208 vec_addsat

209 std_ld32o_i vec_mul_c vec_asrsat_wsplit_ic

210 vec_add_cout

211 std_ld32o_i vec_clone vec_asrsat_wsplit_ic vec_addsat

212 vec_mul_su vec_addsat

213 std_ld32o_i vec_mul_c vec_add_cout vec_addsat

5 of 10 08/24/11 16:15

214 vec_asrsat_wsplit_ic vec_add_cout

215 std_ld32o_i vec_clone vec_mul_su vec_asrsat_wsplit_ic vec_add_cout

216 vec_mul_su

217 std_ld32o_i vec_mul_c vec_asrsat_wsplit_ic vec_addsat

218 vec_asrsat_wsplit_ic vec_addsat_ic

219 std_ld32o_i vec_mul_c vec_add_cout

220 vec_vmldo_wide

221 std_lsl_i vec_clone vec_mul_su vec_asrsat_wsplit_ic vec_addsat_c

222 std_lsl_i vec_mul_su vec_asrsat_wsplit_ic

223 std_lsl_i vec_asrsat_wsplit_ic vec_addsat

224 std_lsl_i vec_mul_u vec_asrsat_wsplit_ic vec_addsat

225 vec_mul_su vec_add_cout

226 vec_asrsat_wsplit_ic vec_add_cout

227 vec_mul_su vec_asrsat_wsplit_ic

228 vec_addsat

229 vec_mul_su vec_asrsat_wsplit_ic vec_addsat

230 vec_lod

231 vec_asrsat_wsplit_ic vec_addsat

232 vec_subsat

233

234 vec_lslsat_u vec_subsat

235 vec_subsat

236

237 vec_addsat_c

238

239 vec_mul_u vec_and_c

240 vec_asr_ic

241 vec_mul_su vec_asrsat_wsplit_ic

242 vec_mul_su vec_vmldo_wide

243 vec_asrsat_wsplit_ic vec_addsat

244 vec_asrsat_wsplit_ic

245 vec_lod vec_addsat

246 vec_addsat

247 vec_subsat

248

249 vec_lslsat_u vec_subsat

250 vec_subsat

251 vec_and_c

252 vec_asr_ic

253

254

255

256

257

258 vec_vmldo_wide

259 vec_lslsat_ic

260

261 vec_mul_u

262

263 vec_lsrrnd_wsplit_icu_rndin

264

265 vec_subsat

266

267 vec_addsat_ic

268

269 vec_mul_u

270

271 vec_lsrrnd_wsplit_icu_rndin

272

273

274 vec_mul_u

275 vec_lslsat_ic

276 vec_lsrrnd_wsplit_icu_rndin

277 vec_mul_u

278 vec_subsat

279 vec_lsrrnd_wsplit_icu_rndin

280 vec_addsat_ic

281 vec_subsat

282 vec_mul_u

283 vec_addsat_ic

284 vec_lsrrnd_wsplit_icu_rndin

285 vec_mul_u

286 vec_mul

287 vec_mul vec_lsrrnd_wsplit_icu_rndin

288 vec_asrrndsat_wsplit

289 vec_mul_u

290 vec_asrrndsat_wsplit vec_maxgt_ico2

291 vec_lsrrnd_wsplit_icu_rndinvec_subsat_ic

292 vec_minle_ico2

293 vec_and_ci vec_subsat

294 vec_mul_c vec_subsat_ic vec_maxgt_ico2

295 vec_addsat_ic

296 f lg_and vec_addsat vec_minle_ico2

297 f lg_and vec_mul_u

298 f lg_and

299 vec_lsrrnd_wsplit_icu_rndinvec_mux

300 vec_vmldo_narrow

Issued operations for function vec_warp_depth file:///home/cinceg/css/applications/warping_depth_FTV_yuv4...

6 of 10 08/24/11 16:15

301 vec_mul

302 vec_mul

303 vec_asrrndsat_wsplit

304 vec_asrrndsat_wsplit

305 vec_subsat_ic

306 vec_minle_ico2

307 vec_and_ci vec_maxgt_ico2

308 vec_mul_c vec_subsat_ic vec_maxgt_ico2

309 f lg_and vec_minle_ico2

310 f lg_and vec_addsat

311 f lg_and

312 vec_mux

313 vec_vmldo_narrow2

314

315

316

317 vec_maxgt_o2

318

319 vec_vmsto_narrow

320

321

322

323

324

325

326

327

328

329

330 vec_maxgt_o2

331

332 vec_vmsto_narrow2

333

334

335

336

337

338

339

340

341

342

343

344

345 std_cjmptdec_i

346

347

348 std_cjmptdec_i

349 std_add_i

350 std_lt_i

351 std_or_i std_rcv 139:  i sp_dma_wai t _f or _ack( )  SYNC( I NPUT_BUF_VMEM) ;

140:  }

141:

142:  s t at i c  i nl i ne voi d

143:  wr i t e_vmem2ddr ( uns i gned i nt  ddr _s t ar t _addr ess ,  uns i gned i nt  ddr _i dx ,  t vec t

144:  {

145:  u ns i gned i nt  ddr _of f set  = ddr _s t ar t _addr ess  + ddr _i dx* BLOCK_HEI GHT* BLOCK

146:  i sp_dma_wr i t e_dat a( ddr 2vmem,  vout ,  ddr _of f set )  SYNC( OUTPUT_BUF_VMEM) ;

147:  }

148:

149:  s t at i c  i nl i ne voi d

150:  ack_wr i t e_vmem2ddr ( voi d)

Issued operations for function vec_warp_depth file:///home/cinceg/css/applications/warping_depth_FTV_yuv4...

Cycle #201: Start of the loop

Figure A.2: The schedule after applying the loop merging technique



76 APPENDIX A. RESULTING SCHEDULES FOR THE WARPING STAGE

300 vec_lsrrnd_wsplit_icu_rndin

301 vec_mul_u

302 vec_subsat

303 vec_lsrrnd_wsplit_icu_rndin

304 vec_addsat_ic

305 vec_subsat

306 vec_mul_u

307 vec_addsat_ic

308 vec_lsrrnd_wsplit_icu_rndin

309 vec_mul_u

310 vec_mul

311 vec_mul vec_lsrrnd_wsplit_icu_rndin

312 vec_asrrndsat_wsplit

313

314 vec_mul_u vec_vmldo_wide vec_maxgt_ico2

315 vec_lslsat_ic vec_subsat_ic

316 vec_lsrrnd_wsplit_icu_rndinvec_minle_ico2

317 vec_mul_u

318 vec_and_ci vec_subsat

319 vec_mul_c vec_lsrrnd_wsplit_icu_rndin

320 vec_asrrndsat_wsplit vec_addsat_ic

321 vec_subsat

322 vec_mul_u vec_subsat_ic vec_minle_ico2

323 vec_addsat_ic

324 vec_lsrrnd_wsplit_icu_rndinvec_maxgt_ico2

325 vec_mul_u vec_addsat

326 f lg_and vec_mul

327 f lg_and vec_mul vec_lsrrnd_wsplit_icu_rndin

328 f lg_and vec_asrrndsat_wsplit

329

330 vec_asrrndsat_wsplit vec_subsat_ic

331 vec_mul_u vec_lslsat_ic vec_maxgt_ico2

332 vec_minle_ico2

333 vec_mul_u vec_and_ci vec_maxgt_ico2

334 vec_mul_c vec_lsrrnd_wsplit_icu_rndinvec_subsat_ic

335 f lg_and vec_lsrrnd_wsplit_icu_rndinvec_minle_ico2

336 f lg_and vec_subsat vec_addsat

337 f lg_and vec_subsat

338 vec_addsat_ic

339 vec_addsat_ic

340 vec_mul_u

341 vec_mul_u vec_mux

342 vec_lsrrnd_wsplit_icu_rndinvec_mux

343 vec_lsrrnd_wsplit_icu_rndinvec_vmldo_narrow

344 vec_vmldo_narrow2

345 vec_mul_u

346 vec_mul

347 vec_mul vec_lsrrnd_wsplit_icu_rndin

348 vec_asrrndsat_wsplit

349 vec_subsat

350 vec_asrrndsat_wsplit vec_maxgt_ico2

351 vec_addsat_ic

352 vec_subsat_ic vec_subsat_ic

353 vec_mul_u vec_minle_ico2

354 vec_and_ci vec_maxgt_ico2

355 vec_mul_c vec_lsrrnd_wsplit_icu_rndinvec_minle_ico2

356 f lg_and

357 f lg_and vec_mul vec_addsat

358 f lg_and

359 vec_asrrndsat_wsplit

360 vec_mul vec_maxgt_o2

361 vec_maxgt_o2 vec_subsat_ic

362 vec_asrrndsat_wsplit vec_maxgt_ico2

363 vec_vmsto_narrow2 vec_minle_ico2

364 vec_and_ci vec_minle_ico2

365 vec_mul_c vec_subsat_ic vec_maxgt_ico2

366 vec_vmsto_narrow

367 f lg_and vec_addsat

368 f lg_and

369 f lg_and vec_mux

370 vec_mux

371

372

373

374

375

376

377

378

379 vec_vmldo_narrow2

380

381

382 vec_vmldo_narrow

383

384

385

386

Issued operations for function vec_warp_depth file:///home/cinceg/css/applications/warping_depth_FTV_yuv4...

7 of 11 08/24/11 16:18

387

388

389

390

391

392

393

394

395

396 vec_maxgt_o2

397

398 vec_vmsto_narrow2

399 vec_maxgt_o2

400

401 vec_vmsto_narrow

402

403

404

405

406

407

408

409

410

411

412

413

414 std_cjmptdec_i

415

416

417 std_cjmptdec_i

418 std_add_i

419 std_lt_i

420 std_or_i std_rcv 139:  i sp_dma_wai t _f or _ack( )  SYNC( I NPUT_BUF_VMEM) ;

140:  }

141:

142:  s t at i c  i nl i ne voi d

143:  wr i t e_vmem2ddr ( uns i gned i nt  ddr _s t ar t _addr ess ,  uns i gned i nt  ddr _i dx ,  t vec

Issued operations for function vec_warp_depth file:///home/cinceg/css/applications/warping_depth_FTV_yuv4...

282:  v ec_l 1_par t 2_r i ght =  OP_vec_asr sat _wspl i t _i c ( vec_l 1_t emp2_

283:

284:  vec_mul _su( Any ,  vec_pt _2D_y  ,  vec_cons t ant _r i ght _war p_11,  vec_

285:  v ec_l 2_par t 2_r i ght =  OP_vec_asr sat _wspl i t _i c ( vec_l 2_t emp2_

286:

287:  vec_l 3_t emp2_r i ght = vec_pt _2D_y  *  v i ewpoi nt s [ v i ewpoi nt ] .

193 std_ld32o_i std_sub

194 vec_asrsat_wsplit_ic

195 std_lsl_i vec_mul_c

196 std_lsl_i std_add

197 std_or_i std_add_i vec_asrsat_wsplit_ic

198 std_add_i

199 std_ld32o_i std_add vec_saldoi_u vec_mul_su vec_addsat_ic 477:  s t at i c  i nl i ne t wi devec t or

478:  i sp_vec_add_w_spl i t ( t wi devec t or  a,  t wi devec t or  b)

479:  {

480:  t wi devec t or  r ;

481:  t f l ags  f ;

482:  v ec_add_cout ( Any ,  a. l o,  b. l o,  r . l o,  f ) ;

483:  v ec_add_c i ncout ( Any ,  a. hi ,  b. hi ,  f ,  r . hi ,  f ) ;

484:  r et ur n r ;

485:  }

486:  #endi f

487:

488:  #i f  ! HAS_vec_mac_c  && HAS_vec_addsat _c i n && HAS_vec_add_cout

200 std_add vec_saldoi_u

201 std_ld32o_i std_imm std_add_i vec_asrsat_wsplit_ic

202 std_imm vec_saldoi_iu vec_mul_c vec_vmldo_wide

203 std_ld32o_i std_imm vec_saldoi_iuvec_clone vec_addsat

204 std_imm vec_asrsat_wsplit_ic

205 std_ld32o_i vec_mul_c vec_add_cout

206 vec_mul_su vec_addsat

207 std_ld32o_i vec_mul_c vec_asrsat_wsplit_ic

208 vec_mul_su vec_asrsat_wsplit_ic vec_add_cout

209 std_ld32o_i vec_clone vec_asrsat_wsplit_ic vec_addsat

210 vec_mul_su vec_addsat

211 std_ld32o_i vec_mul_c vec_add_cout vec_addsat

212 vec_asrsat_wsplit_ic vec_add_cout

5 of 11 08/24/11 16:18

213 std_ld32o_i vec_clone vec_mul_su vec_asrsat_wsplit_ic vec_add_cout

214 vec_mul_su vec_asrsat_wsplit_ic

215 std_ld32o_i vec_mul_c vec_asrsat_wsplit_ic vec_addsat

216 vec_mul_su vec_asrsat_wsplit_ic vec_addsat

217 std_ld32o_i vec_mul_c vec_add_cout

218 vec_vmldo_wide vec_add_cout

219 std_ld32o_i vec_clone vec_mul_su vec_asrsat_wsplit_ic vec_addsat_c

220 vec_mul_su vec_asrsat_wsplit_ic

221 std_ld32o_i vec_asrsat_wsplit_ic vec_addsat

222 vec_mul_u vec_asrsat_wsplit_ic vec_addsat

223 std_ld32o_i vec_mul_c vec_add_cout

224 vec_asrsat_wsplit_ic vec_add_cout

225 std_ld32o_i vec_clone vec_mul_su vec_asrsat_wsplit_ic

226 vec_addsat vec_addsat_ic

227 std_ld32o_i vec_mul_c vec_asrsat_wsplit_ic

228 vec_lod vec_asrsat_wsplit_ic vec_addsat

229 std_ld32o_i vec_mul_su vec_asrsat_wsplit_ic vec_addsat

230 vec_mul_su vec_add_cout vec_subsat

231 std_ld32o_i vec_mul_c vec_addsat

232 vec_lslsat_u

233 std_ld32o_i vec_clone

234 vec_clone vec_mul_su vec_vmldo_wide vec_add_cout

235 std_ld32o_i vec_mul_c vec_addsat_c vec_subsat

236 vec_subsat

237 std_ld32o_i vec_mul_u vec_and_c vec_addsat

238 vec_mul_c vec_asrsat_wsplit_ic

239 std_lsl_i vec_asrsat_wsplit_ic vec_add_cout

240 std_lsl_i vec_clone vec_asr_ic vec_addsat

241 std_lsl_i vec_asrsat_wsplit_ic vec_addsat

242 std_lsl_i vec_mul_su vec_asrsat_wsplit_ic vec_add_cout

243 vec_lod vec_asrsat_wsplit_ic vec_addsat

244 vec_mul_su vec_asrsat_wsplit_ic

245 vec_mul_su vec_add_cout vec_subsat

246 vec_mul_c vec_asrsat_wsplit_ic vec_addsat

247 vec_lslsat_u vec_addsat

248 vec_subsat

249 vec_mul_su vec_and_c vec_subsat

250 vec_mul_su vec_vmldo_wide

251 vec_asr_ic vec_addsat_c

252 vec_mul_su vec_asrsat_wsplit_ic

253 vec_mul_u vec_asrsat_wsplit_ic

254 vec_mul_su vec_asrsat_wsplit_ic

255 vec_mul_su vec_asrsat_wsplit_ic vec_addsat

256 vec_asrsat_wsplit_ic vec_addsat

257 vec_asrsat_wsplit_ic vec_addsat

258 vec_add_cout vec_addsat

259 vec_lod vec_asrsat_wsplit_ic

260 vec_mul_su vec_asrsat_wsplit_ic vec_add_cout

261 vec_subsat

262 vec_asrsat_wsplit_ic

263 vec_lslsat_u vec_subsat

264 vec_addsat

265 vec_and_c vec_subsat

266 vec_vmldo_wide

267 vec_addsat_c

268 vec_asr_ic

269 vec_mul_u vec_asrsat_wsplit_ic

270 vec_mul_su vec_asrsat_wsplit_ic

271 vec_mul_su vec_asrsat_wsplit_ic vec_addsat

272 vec_asrsat_wsplit_ic

273 vec_asrsat_wsplit_ic vec_addsat

274 vec_addsat

275 vec_lod vec_addsat

276

277 vec_subsat

278

279 vec_lslsat_u vec_subsat

280 vec_subsat

281 vec_and_c

282 vec_vmldo_wide

283 vec_lslsat_ic

284 vec_asr_ic

285 vec_mul_u

286

287 vec_lsrrnd_wsplit_icu_rndin

288

289 vec_subsat

290

291 vec_addsat_ic

292

293 vec_mul_u

294

295 vec_lsrrnd_wsplit_icu_rndin

296

297

298 vec_mul_u vec_vmldo_wide

299 vec_lslsat_ic

Issued operations for function vec_warp_depth file:///home/cinceg/css/applications/warping_depth_FTV_yuv4...

6 of 11 08/24/11 16:18

Figure A.3: The schedule after applying the loop unrolling technique



77

321:  v ec_l 2_par t 2_r i ght =  OP_vec_asr sat _wspl i t _i c ( vec_l 2_t emp2_

322:

323:  vec_l 3_t emp2_r i ght = vec_pt _2D_y  *  v i ewpoi nt s [ v i ewpoi nt ] .

197 std_lsl_i std_add

198 std_or_i std_add_i vec_asrsat_wsplit_ic

199 std_add_i

200 std_ld32o_i std_imm vec_saldoi_u vec_vmldo_narrow2std_pass_v vec_vmldo_narrow 477:  s t at i c  i nl i ne t wi devec t or

478:  i sp_vec_add_w_spl i t ( t wi devec t or  a,  t wi devec t or  b)

479:  {

480:  t wi devec t or  r ;

481:  t f l ags  f ;

482:  v ec_add_cout ( Any ,  a. l o,  b. l o,  r . l o,  f ) ;

483:  v ec_add_c i ncout ( Any ,  a. hi ,  b. hi ,  f ,  r . hi ,  f ) ;

484:  r et ur n r ;

485:  }

486:  #endi f

487:

488:  #i f  ! HAS_vec_mac_c  && HAS_vec_addsat _c i n && HAS_vec_add_cout

489:  s t at i c  i nl i ne t wi devec t or

490:  i sp_vec_mac_c  ( t vec t or  a,  i nt  b,  t vec t or  hi ,  t vec t or  l o)

491:  {

492:  t wi devec t or  r ;

493:  t f l ags  f ;

494:  v ec_mul _c  ( Any ,  a,  b,  r . hi ,  r . l o) ;

495:  v ec_add_cout ( Any ,  r . l o,  l o,  r . l o,  f ) ;

496:  v ec_addsat _c i n( Any ,  r . hi ,  hi ,  f ,  r . hi ) ;

497:  r et ur n r ;

498:  }

499:  #def i ne vec_mac_c( f u, a, b, h, l , r h, r l )  \

500:  {  \

501:  t wi devec t or  r  = i sp_vec_mac_c  ( a,  b,  h,  l ) ;  \

502:  r h = r . hi ;  \

503:  r l  = r . l o;  \

504:  }

505:  #endi f

506:

507:  #i f  HAS_vec_mul _c  && ! HAS_vec_mul _i c

508:  #def i ne vec_mul _i c ( f u,  vec ,  sc ,  wmsb,  wl sb)  vec_mul _c ( f u,  vec ,  sc ,  wmsb,  

509:  #endi f

510:

511:  #endi f  / *  _i sp_vec t or _f unc t i ons_h * /

201 std_imm std_add std_pass_v vec_lslsat_ic vec_clone_i

202 std_ld32o_i std_imm vec_sastoi_is vec_mul_c vec_subsat std_pass_v

203 std_imm vec_saldoi_u vec_mul_su vec_vmldo_wide vec_addsat_ic

204 std_ld32o_i vec_saldoi_iuvec_clone vec_asrsat_wsplit_ic vec_subsat

205 std_add vec_subsat

206 std_ld32o_i std_add_i vec_sastoi_is vec_lslsat_ic vec_addsat

207 vec_sastoi_is vec_asrsat_wsplit_ic vec_subsat

208 std_ld32o_i vec_saldoi_iu vec_mul_c vec_add_cout

209 std_pass_v vec_addsat

210 std_ld32o_i vec_clone vec_asrsat_wsplit_ic vec_subsat

211 vec_mul_u vec_lslsat_ic vec_subsat

212 std_ld32o_i vec_mul_u vec_lslsat_ic vec_addsat

213 vec_mul_u vec_lsrrnd_wsplit_icu_rndinvec_subsat

214 std_ld32o_i vec_saldoi_is vec_mul_c vec_subsat

215 vec_lsrrnd_wsplit_icu_rndin

216 std_ld32o_i vec_mul_u vec_asrsat_wsplit_ic vec_add_cout

217 vec_saldoi_is vec_mul_su vec_maxgt_o2 vec_add_cout

218 std_ld32o_i vec_clone vec_subsat

219 vec_vmsto_narrow2 vec_lsrrnd_wsplit_icu_rndinvec_addsat

220 std_ld32o_i std_pass_v vec_mul_c vec_vmldo_wide vec_maxgt_o2

221 vec_asrsat_wsplit_ic vec_add_cout

222 std_ld32o_i vec_clone vec_lsrrnd_wsplit_icu_rndinvec_vmsto_narrow

223 vec_mul_su vec_subsat vec_addsat_c

224 std_ld32o_i vec_clone vec_mul_c vec_subsat

225 vec_asrsat_wsplit_ic vec_addsat_ic

226 std_ld32o_i vec_mul_c vec_subsat

227 vec_mul_su vec_asrsat_wsplit_ic

228 std_ld32o_i vec_mul_c vec_asrsat_wsplit_ic vec_addsat_ic

229 vec_addsat

230 std_lsl_i std_pass_v vec_mul_u vec_addsat_ic vec_addsat

231 std_lsl_i vec_mul_u vec_add_cout

232 std_ld32o_i vec_saldoi_is vec_mul_u vec_asrsat_wsplit_ic vec_addsat_ic

233 vec_clone vec_mul_c vec_asrsat_wsplit_ic vec_add_cout

234 std_ld32o_i vec_mul_u vec_lsrrnd_wsplit_icu_rndin

235 vec_mul_u

236 std_ld32o_i vec_mul_su vec_lsrrnd_wsplit_icu_rndinvec_addsat

237 vec_mul_c vec_asrsat_wsplit_ic vec_addsat_c

238 std_ld32o_i vec_vmldo_narrow2vec_asrsat_wsplit_ic vec_addsat

239 vec_clone vec_mul_u vec_lsrrnd_wsplit_icu_rndinvec_addsat

240 std_ld32o_i vec_lod vec_asrsat_wsplit_ic vec_vmldo_narrow

241 vec_mul_u vec_vmldo_wide vec_add_cout

242 std_lsl_i vec_saldoi_isvec_clone vec_lsrrnd_wsplit_icu_rndinvec_addsat

243 std_lsl_i vec_mul_c vec_lsrrnd_wsplit_icu_rndinvec_subsat

244 vec_mul_u vec_add_cout

245 vec_mul_u vec_asrsat_wsplit_ic vec_add_cout

6 of 10 08/24/11 16:19

246 vec_mul_u vec_lsrrnd_wsplit_icu_rndinvec_subsat

247 vec_mul_su vec_addsat

248 vec_mul_su vec_subsat

249 vec_asrsat_wsplit_ic vec_add_cout

250 std_pass_v vec_asrsat_wsplit_ic vec_addsat_ic

251 vec_addsat vec_addsat_ic

252 vec_mul_u

253 vec_lod vec_lslsat_u

254 vec_lsrrnd_wsplit_icu_rndinvec_addsat_ic

255 std_pass_v vec_mul_u vec_lsrrnd_wsplit_icu_rndin

256 vec_mul_c vec_subsat

257 std_pass_v vec_asrsat_wsplit_ic vec_maxgt_o2

258 vec_vmldo_wide vec_maxgt_o2

259 std_pass_v vec_and_c vec_vmsto_narrow

260 vec_vmsto_narrow2 vec_lslsat_u vec_addsat

261 vec_addsat_c

262 std_pass_v vec_mul_su vec_and_c vec_subsat

263 std_pass_v vec_asr_ic

264 vec_asr_ic vec_addsat_ic

265 vec_mul_u vec_subsat

266 vec_mul_u vec_lsrrnd_wsplit_icu_rndin

267 vec_asrsat_wsplit_ic vec_addsat_ic

268 vec_asrsat_wsplit_ic

269 vec_lsrrnd_wsplit_icu_rndinvec_addsat

270 vec_mul_u vec_lsrrnd_wsplit_icu_rndinvec_addsat

271 vec_lod vec_mul vec_asrsat_wsplit_ic

272 vec_mul vec_asrsat_wsplit_ic vec_add_cout

273 vec_mul vec_subsat

274 vec_mul vec_lsrrnd_wsplit_icu_rndinvec_add_cout

275 std_pass_v vec_lslsat_u vec_addsat

276 vec_addsat_c

277 vec_saldoi_is vec_mul vec_and_c vec_add_cout

278 vec_saldoi_isstd_pass_v vec_mul_u vec_asr_ic vec_addsat

279 vec_mul_c vec_asrrndsat_wsplit

280 vec_sastoi_is vec_mul_su vec_asrsat_wsplit_ic vec_add_cout

281 vec_asrrndsat_wsplit vec_subsat_ic

282 vec_asrrndsat_wsplit vec_addsat

283 vec_mul_su vec_vmldo_wide

284 vec_lod vec_mul vec_and_ci vec_maxgt_ico2

285 vec_mul vec_asrsat_wsplit_ic

286 vec_mul_su vec_asrsat_wsplit_ic vec_subsat

287 vec_saldoi_is vec_mul_su vec_asrsat_wsplit_ic vec_addsat

288 vec_lslsat_u vec_addsat

289 std_pass_v vec_mul_c vec_add_cout

290 std_pass_v vec_and_c vec_add_cout

291 vec_asr_ic vec_subsat_ic

292 vec_mul_su vec_asrrndsat_wsplit

293 vec_sastoi_is vec_mul_su vec_asrrndsat_wsplit vec_subsat_ic

294 vec_sastoi_is vec_asrrndsat_wsplit vec_minle_ico2

295 vec_sastoi_is vec_asrrndsat_wsplit vec_maxgt_ico2

296 vec_minle_ico2

297 f lg_and vec_and_ci vec_maxgt_ico2

298 vec_mul_su vec_and_ci vec_maxgt_ico2

299 f lg_and vec_subsat_ic vec_minle_ico2

300 f lg_and vec_asrsat_wsplit_ic vec_maxgt_ico2

301 vec_subsat_ic vec_maxgt_ico2

302 f lg_and vec_subsat_ic vec_subsat_ic

303 f lg_and vec_saldoi_is vec_mul_su vec_vmldo_wide vec_minle_ico2

304 vec_mul vec_and_ci

305 f lg_and vec_saldoi_is vec_mul_su

306 vec_saldoi_is vec_asrrndsat_wsplit

307 vec_mul_su

308 vec_saldoi_is vec_mul_su vec_asrsat_wsplit_ic vec_minle_ico2

309 vec_saldoi_is vec_subsat_ic vec_maxgt_ico2

310 vec_saldoi_is vec_mul_su vec_maxgt_ico2

311 f lg_and vec_mul_su vec_minle_ico2

312 f lg_and vec_mul_su vec_asrsat_wsplit_ic vec_minle_ico2

313 f lg_and vec_mul_su vec_addsat

314 f lg_and vec_mul_su

315 f lg_and vec_mul_c vec_mux

316 vec_mul_c vec_minle_ico2

317 vec_addsat

318 f lg_and vec_mul_c

319 vec_vmldo_wide vec_addsat

320 vec_saldoi_isstd_pass_v vec_asrsat_wsplit_ic vec_addsat

321 vec_saldoi_isstd_pass_v vec_asrsat_wsplit_ic vec_addsat

322 std_pass_v vec_asrsat_wsplit_ic

323 std_pass_v vec_asrsat_wsplit_ic

324 vec_asrsat_wsplit_ic

325 vec_asrsat_wsplit_ic vec_addsat

326 vec_asrsat_wsplit_ic vec_addsat

327 std_pass_v vec_asrsat_wsplit_ic vec_addsat

328 vec_saldoi_isstd_pass_v vec_asrsat_wsplit_ic

329 std_pass_v vec_asrsat_wsplit_ic vec_addsat

330 std_pass_v vec_asrsat_wsplit_ic vec_addsat

331 std_pass_v vec_asrsat_wsplit_ic vec_addsat

332

Issued operations for function vec_warp_depth file:///home/cinceg/css/applications/warping_depth_FTV_yuv4...

7 of 10 08/24/11 16:19

333 std_pass_v vec_addsat

334

335 std_pass_v vec_vmldo_wide vec_mux

336 std_pass_v std_pass_v vec_mux

337 std_pass_v vec_mux

338 std_pass_v

339

340

Issued operations for function vec_warp_depth file:///home/cinceg/css/applications/warping_depth_FTV_yuv4...

Cycle #200: Start of the loop

Figure A.4: The schedule after applying the loop retiming technique



78 APPENDIX A. RESULTING SCHEDULES FOR THE WARPING STAGE



Bibliography

[1] D. Aliprandi and E. Piccinelli, Real-time free viewpoint television for embedded sys-
tems, Picture Coding Symposium (PCS), 2010, dec. 2010, pp. 346 –349.

[2] Gene M. Amdahl, Validity of the single processor approach to achieving large scale
computing capabilities, Proceedings of the April 18-20, 1967, spring joint computer
conference (New York, NY, USA), AFIPS ’67 (Spring), ACM, 1967, pp. 483–485.

[3] Kubilay Atasu, Günhan Dündar, and Can Özturan, An integer linear program-
ming approach for identifying instruction-set extensions, Proceedings of the 3rd
IEEE/ACM/IFIP international conference on Hardware/software codesign and sys-
tem synthesis (New York, NY, USA), CODES+ISSS ’05, ACM, 2005, pp. 172–177.

[4] Melvin C. August, Gerald M. Brost, Christopher C. Hsiung, and Alan J. Schiffleger,
Cray x-mp: The birth of a supercomputer., IEEE Computer.

[5] David F. Bacon, Susan L. Graham, and Oliver J. Sharp, Compiler transformations
for high-performance computing, ACM Comput. Surv. 26 (1994), 345–420.

[6] Hendrik Boer, Interactive free viewpoint 3d tv rendering platform, Master’s thesis,
Eindhoven University of Technology, November 2010.

[7] E. Bondarev, R. Miquel, M. Imbert, S. Zinger, and P.H.N. de With, On the technol-
ogy roadmap of free-viewpoint 3dtv receivers, Consumer Electronics (ICCE), 2011
IEEE International Conference on, jan. 2011, pp. 687 –688.

[8] David R. Butenhof, Programming with posix threads, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1997.

[9] Silicon Hive B.V., Silicon hive software development kit (sdk).

[10] Consumer Electronics Association (CEA), Cea 861- d : A dtv profile for uncom-
pressed high speed digital interfaces, July 2006.

[11] Hoseok Chang and Wonyong Sung, Efficient vectorization of simd programs with
non-aligned and irregular data access hardware, Proceedings of the 2008 interna-
tional conference on Compilers, architectures and synthesis for embedded systems
(New York, NY, USA), CASES ’08, ACM, 2008, pp. 167–176.

[12] G. Chen, O. Ozturk, M. Kandemir, and M. Karakoy, Dynamic scratch-pad memory
management for irregular array access patterns, Proceedings of the conference on
Design, automation and test in Europe: Proceedings (3001 Leuven, Belgium, Bel-
gium), DATE ’06, European Design and Automation Association, 2006, pp. 931–
936.

[13] Hsin-Jung Chen, Feng-Hsiang Lo, Fu-Chiang Jan, and Sheng-Dong Wu, Real-time
multi-view rendering architecture for autostereoscopic displays, Circuits and Systems

79



80 BIBLIOGRAPHY

(ISCAS), Proceedings of 2010 IEEE International Symposium on, 30 2010-june 2
2010, pp. 1165 –1168.

[14] Wan-Yu Chen, Yu-Lin Chang, Hsu-Kuang Chiu, Shao-Yi Chien, and Liang-Gee
Chen, Real-time depth image based rendering hardware accelerator for advanced
three dimensional television system, Multimedia and Expo, 2006 IEEE International
Conference on, july 2006, pp. 2069 –2072.

[15] Andrea G. M. Cilio and Henk Corporaal, Floating point to fixed point conversion of
c code, Proceedings of the 8th International Conference on Compiler Construction,
Held as Part of the European Joint Conferences on the Theory and Practice of
Software, ETAPS’99 (London, UK), Springer-Verlag, 1999, pp. 229–243.

[16] Luat Do, Svitlana Zinger, and Peter H. N. de With, Quality improving techniques
for free-viewpoint dibr, IST / SPIE Electronic Imaging, 2010, p. 10 pages.

[17] Luat Do, Svitlana Zinger, Yannick Morvan, and Peter H. N. de With, Quality
improving techniques in dibr for free-viewpoint video, 3DTV Conference: The True
Vision - Capture, Transmission and Display of 3D Video, 2009.

[18] Chunyang Gou, Georgi Kuzmanov, and Georgi N. Gaydadjiev, Matched sams
scheme: Supporting multiple stride unaligned vector accesses with multiple mem-
ory modules, Tech. Rep.

[19] Silicon Hive, The silicon hive company webpage, Online, 2011, Availabe at:
http://www.siliconhive.com.

[20] The iGLANCE Project, The iglance project webpage, Online, 2011, Availabe at:
http://iglance.org.

[21] Mahmut Kandemir, N. Vijaykrishnan, and Mary Jane Irwin, Compiler optimizations
for low power systems, pp. 191–210, Kluwer Academic Publishers, Norwell, MA,
USA, 2002.

[22] K. Keutzer, S. Malik, and A.R. Newton, From asic to asip: the next design discon-
tinuity, Computer Design: VLSI in Computers and Processors, 2002. Proceedings.
2002 IEEE International Conference on, 2002, pp. 84 – 90.

[23] Leonard McMillan, Jr., and Reader Stephen Pizer, An image-based approach to
three-dimensional computer graphics, Tech. report, 1997.

[24] Yuji Mori, Norishige Fukushima, Tomohiro Yendo, Toshiaki Fujii, and Masayuki
Tanimoto, View generation with 3d warping using depth information for ftv, Image
Commun. 24 (2009), 65–72.

[25] Dorit Naishlos, Marina Biberstein, Shay Ben-David, and Ayal Zaks, Vectorizing
for a simdd dsp architecture, Proceedings of the 2003 international conference on
Compilers, architecture and synthesis for embedded systems (New York, NY, USA),
CASES ’03, ACM, 2003, pp. 2–11.



BIBLIOGRAPHY 81

[26] M.M. Oliveira, Relief texture mapping, Ph.D. thesis, University of North Carolina,
2000.

[27] Learning Opengl, Silicon Graphics, and The Silicon Graphics Logo, Opengl program-
ming guide (addison-wesley publishing company) second edition opengl programming
guide (addison-wesley publishing company) the official guide to.

[28] Nelson Luiz Passos and Edwin Hsing-Mean Sha, Full parallelism in uniform nested
loops using multi-dimensional retiming, Proceedings of the 1994 International Con-
ference on Parallel Processing - Volume 02 (Washington, DC, USA), ICPP ’94,
IEEE Computer Society, 1994, pp. 130–133.

[29] Kari Pulli, Michael Cohen, Tom Duchamp, Hugues Hoppe, Linda Shapiro, and
Werner Stuetzle, View-based rendering: Visualizing real objects from scanned range
and color data, In Eurographics Rendering Workshop, 1997, pp. 23–34.

[30] Jaewook Shin, Introducing control flow into vectorized code, Proceedings of the
16th International Conference on Parallel Architecture and Compilation Techniques
(Washington, DC, USA), PACT ’07, IEEE Computer Society, 2007, pp. 280–291.

[31] Hock Soon Tan, Jiazhi Xia, Ying He, and YQ Guan, A system for capturing, ren-
dering and multiplexing images on multi-view autostereoscopic display, Cyberworlds,
International Conference on 0 (2010), 325–330.

[32] Pei-Kuei Tsung, Ping-Chih Lin, Kuan-Yu Chen, Tzu-Der Chuang, Hsin-Jung Yang,
Shao-Yi Chien, Li-Fu Ding, Wei-Yin Chen, Chih-Chi Cheng, Tung-Chien Chen, and
Liang-Gee Chen, A 216fps 40962160p 3dtv set-top box soc for free-viewpoint 3dtv
applications, Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2011 IEEE International, feb. 2011, pp. 124 –126.

[33] Fan Zhang and Yuli Xu, Image quality evaluation based on human visual perception,
Proceedings of the 21st annual international conference on Chinese Control and
Decision Conference (Piscataway, NJ, USA), CCDC’09, IEEE Press, 2009, pp. 1542–
1545.

[34] Svitlana Zinger, Luat Do, Daniel Ruijters, and Peter H. N. de With, Iglance: inter-
active free viewpoint for 3d tv, 3D Stereo Media conference, 2009, p. 4 pages.

[35] Svitlana Zinger, Daniel Ruijters, and Peter H.N. de With, iglance project : free-
viewpoint 3d video, international conference in Central Europe on computer graph-
ics, visualization and computer vision (2009), 35 –38.

[36] C. Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, Simon Winder, and
Richard Szeliski, High-quality video view interpolation using a layered representa-
tion, ACM Trans. Graph. 23 (2004), 600–608.



82 BIBLIOGRAPHY


