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Abstract

Considering the goals set by the international community, the implementation of new energy
sources has to increase considerably in the next seven years. In this thesis, the focus is on
the acceleration and improvement of the application of offshore wind turbines. The power
produced using this technology should become 3.6 times more before the end of this decade
to comply with the set goals.

To achieve this target, new solutions have to be developed. To this aim, the implementation
of model predictive control for wind turbines in the last years has been investigated. This
would allow to optimize different parameters at the same time, such as maximization of en-
ergy production while minimizing the perceived loads. For this application, it is necessary to
have forecasts of different features of the turbine, especially loads, with a higher frequency.
As a result, the main research topic is defined as 'Can data-driven surrogate models be used
for forecasting load time series on offshore wind turbines?’.

To answer this question, first environmental conditions are sampled within limits deducted
from real data through Halton sequencing, and next simulations are run through OpenFAST
to determine the resulting loads acting on the turbine. Within all the features resulting
from the simulation, only five inputs and five target outputs are selected. This is the result
of various considerations. Given the desire to develop a realistic methodology, the input
variables are first filtered by assessing their availability from measurement devices. Next,
the relationships between the variables are analyzed through cross-correlation to determine
the degree of influence of each input on the output.

Using this data, a training database is created. It is used to train two different types of
surrogate models, one linear and one non-linear, respectively ARIMAX and LSTM. These are
implemented to generate a 30-second forecast of the moments acting at the root of the blade.
To do so, the algorithms are trained using different variables as exogenous inputs to assess
the models” performance in different cases. Given the wide range of target features, for
LSTM two different behaviors are identified and the blade edgewise and flapwise moments
are taken as examples. The hyper-parameters are tuned on the blade edgewise moment and
lead to overfitting when applied to the blade flapwise and out-of-plane moment.

The obtained results show that the RMSE in ARIMAX is up to seven times larger than the one
obtained from the application of LSTM. Within the non-linear models, the one resulting in
the lowest percentage error for the blade edgewise, pitching, and in-plane moment considers
the wind reference speed, the wind speed time series, and the corresponding tip deflection
as exogenous inputs. Very low RMSE errors are obtained for all variables. Furthermore, it is
concluded that while it is possible to implement LSTM in real-life, this is not achievable for
ARIMAX.
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Chapter 1

Introduction

In this chapter, a general overview of the topic analyzed in this thesis is given. In Section 1.1
the reason behind the choice of the theme is described, followed by Section 1.2 which is
an in-depth section focusing on the integration of a surrogate model (SM) in the context
of Model Predictive Control (MPC). Next, Section 1.3 presents a summary of the literature
review and the chosen research questions are highlighted in Section 1.4. In Section 1.5 the
method used to analyze the topic is described and finally, in Section 1.6, the general structure
of the thesis is presented.

1.1. Motivation

In recent years, the global attention surrounding sustainability and energy transitions has
been exponentially increasing, with nations worldwide trying to implement more renewable
energy sources. This trend was concertized by the United Nations, which has established to
provide clean and affordable energy access to all by 2030 [11]. This urgency and necessity
have been further underscored by the consequences of the recent conflict between Russia
and Ukraine, prompting many European countries to reassess their energy portfolios and
pursue greater energy independence [12].

Moreover, the Paris Agreement, an international accord signed in 2016 by 196 countries,
serves as an additional confirmation of this global trend [13]. This agreement sets a bind-
ing objective of limiting global warming to 1.5°C, yet current national targets, as depicted
in Figure 1.1, fail to achieve this aim. Consequently, the International Renewable Energy
Agency (IRENA) asserts that more ambitious objectives are necessary. Specifically, IRENA ad-
vocates for the installation of 213 GW of offshore wind energy by 2030 to comply with the
set goals [1].

In 2022, the global operational offshore wind capacity was 58.3 GW [14]. This means that
in the next seven years, the installed power needs to become at least 3.6 times more. To
achieve this goal, the wind industry has to develop more technologies that accelerate the
design process, improve the performance of the turbines and lower the Levelized Cost of
Energy (LCOE), so that they can still compete with other solutions which are currently less
expensive.
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Figure 1.1.: Global cumulative renewable power, installed capacity, historical trends and
future projections to 2030 [1].

As it can be inferred by the example reported by ORE Catapult, the operational and capital
cost for the construction of an offshore wind turbine have an equal impact on the expendi-
tures if a lifetime of twenty-seven years is considered [15]. Both aspects must be lowered to
reduce the LCOE. A way to do so is to increment the energy output while prolonging the
life of the turbine. One of the approaches to achieve this goal is to use model predictive
controllers (MPC) instead of the traditional Proportional Integral (PI) controllers. However,
the implementation of MPC is challenging because it requires forecasting of certain quantities
into the future, based on the current state of the system.

Data-driven surrogate models (SM) may represent a solution to this problem. They can be
used to reconstruct and predict the loads’ history through a process of emulation of the
functioning of the wind turbine. These can then be implemented into an MPC algorithm
characterized by the ability to optimize the wind turbine’s power output while minimizing
the perceived loads. To reach this aim, the SM has to be trained with measurement data
already available so that it can ‘learn” how to forecast the loads given other features such
as atmospheric conditions. Only the spots most sensible to fatigue will be considered in
this analysis. Overall, no additional cost linked to technology will have to be taken into
consideration to complete this evaluation.

When conducting a similar study, various aspects of the specific geographical locations are
essential to determine the behavior of the turbine. Simply identifying the turbine model
is insufficient. Factors such as the distance from shore, sea depth, and the range of wind
variations play significant roles and require different operational decisions to be made ac-
cordingly. Thus, the achieved results cannot be automatically generalized to all offshore
wind turbines.

Therefore, the goal of this thesis is to present a methodology to create a site-specific surrogate
model that provides a time series forecast of the fatigue loads during normal operating
conditions at different fatigue-sensible spots along the tower and blades of a 15 MW bottom-
fixed offshore turbine located 30 km off the west coast of Ireland. The reason behind the
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choice of this particular area is that it is the one in Europe with more approved and planned
offshore wind farm installations that have not yet been realized [16]. Thus, it will certainly
be of interest in the coming years.

The forecasted loads should then be used in a predictive control algorithm to optimize
the turbine output while minimizing the perceived loads. The obtained results will then
be confronted with the ones of aero-hydro-servo-elastic simulations in the time domain to
assess the performance of the SM.

1.2. Model predictive control

The name ‘'model predictive control’ is used to address a set of advanced control mechanisms
that use a model to forecast the behavior of the analyzed system [17]. MPC implementation
of wind turbines can be justified by numerous reasons [18]. First, only one controller can
be implemented instead of implementing two different PI controllers with an overlapping
region corresponding to the rated wind speed. This is important because a significant part
of the energy is produced at these wind speeds and contributes significantly to the fatigue of
the major structural components. Another reason to implement MPC in wind turbines is that
it is capable of optimizing the functioning of the wind turbine taking into account different
parameters, such as the optimal energy production considering the fatigue loads perceived
by the structure. Next, especially for future developments, more sensors and actuators have
already been proposed but their integration with the current controllers is rather difficult.
MPC may be a solution to this problem. Recently, attention has been given to fault tolerant
control and MPC has been proven to successfully handle many of the typical faults that occur
in wind turbines. Finally, it would certainly improve the performance of offshore floating
wind turbines, which are characterized by two timescales, one related to wind and one to
waves, that current PI controllers are not able to manage optimally.

The MPC can be designed to maximize the energy production, minimize the loads perceived
by the structure, or reduce the actuator error. MPC relies on an accurate representation of the
dynamic system, which is generally based on a linearized physics-based model. Another
approach to modeling the dynamical system is to use data-driven surrogates that rely on
high frequency sensors to make estimates of the quantity of interest on the go.

1.3. Literature review

In the last decade, there has been significant research in both, surrogate modeling and model
predictive control [19]. MPC has already been successfully implemented in wind turbines in
numerous studies reported by Li et al. [20]. Hure et al. describe step-by-step the process of
applying a model predictive control to an onshore wind turbine. In this study, loads acting
on the turbine were modeled with a simplified linear model of the turbine dynamics that as-
sumes rigid blades and uniform wind speed over the rotor, while tower fore-aft deflections
were approximated using first mode [21]. Guadayol Roig also applied MPC to wind tur-
bines using different techniques: linear and non-linear MPC, were implemented, along with
LIDAR-assisted MPC [18]. In this case, the design was possible thanks to BLADED simula-
tions but the results, including the loads acting on the structure, were eventually expressed
as ten-minute averaged values.
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There are different types of SM: white, grey and black box models. White models, also re-
ferred to as glass box models or interpretable machine learning models, are the SM that are
easily understandable by humans [22]. This is because they are usually based on tools that
are also used in our reasoning process: physics laws and regressions. On the other hand,
black box SM infer underlying functions purely from input-output data pairs. They are espe-
cially useful when the system to be modeled is very complex or the closed-form solution to
the mathematical relationship between variables is intractable [22]. The relationship between
the input and the output is obscure to the users. In between these two alternatives, there are
grey models. These are hybrid models that apply physical constraints to the solution space
obtained from data [23].

When the interaction with MPC is considered, normally physics-based models are used
to provide a linearized representation of the more complex system that is being studied.
However, this solution is not always viable since linear representation may require to over-
simplify the model, thus, the correct behavior is not captured. If this is the case, more
complex alternatives may be necessary. Black box solutions are considered a promising
option for multiple reasons [23]. First, developing black box SM requires minimal domain
knowledge, even less than implementing grey box models. Next, it is easier to transfer the
same framework to different wind turbines; thus, a more generalized approach might also
be developed. Finally, the process of training data-driven surrogate models is well estab-
lished. All these aspects together should contribute to achieving a faster implementation.
This is a parameter to consider since it would help the industry lower the LCOE.

Nevertheless, it is not a straightforward process. Data quantity and quality that are available
for training the SM may not be optimal for a successful implementation. This is because
data-driven models use historical data to capture the system’s underlying dynamics, which
may not be completely accurate at all times due to inaccuracies of the measuring devices or
missing measurements [23]. Furthermore, the computational complexity required from the
machine used to perform the training of the SM may reach very high levels since the applied
model is non-linear and non-convex and the performance of the algorithm is not assured
[23]. Finally, it must be noted that the conditions (geometrical or environmental) for which
the model was trained may vary in time. If that is the case, updating the SM by re-calibrating
the model would also be necessary.

However, in previous studies, data-driven SM have already been applied to estimate the load
statistics on turbines, both onshore and offshore. More in detail, this type of information can
be of interest for different purposes: in some cases, it is to monitor the fatigue load of existing
projects, while in other studies it is used in initial calculations to perform a design load
assessment. Even if the output in both cases is the same, the input data is different. In the
former one, most likely real data from Supervisory Control and Data Acquisition (SCADA)
measurements will be used, while in the latter, only atmospheric conditions such as wind
and wave data are implemented to simulate environmental conditions. A summary of the
literature on the subject can be found in Table 1.1.

Dimitrov et al. in 2018 [35] present a procedure for estimating site-specific load statistics
using various data-driven surrogates. The Gaussian process regression model is shown to
perform the best in terms of the prediction accuracy, but with a time penalty. To train all SMs,
a database with aeroelastic load simulations performed on the DTU 10 MW reference turbine
was used. In [26], Dimitrov and Gorcmen focused on using surrogate models to capture the
change in loads of an onshore turbine in the wake of another one expressed as a time series.
To train the SM in this case simulations results from HAWC2 were generated by randomly
sampling average ambient wind speed at hub height, ambient turbulence intensity, wind
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Table 1.1.: Summary of studies using black box methods

Surrogate Model Reference Location Data source Purpose | Output’s time-step
Cosack, 2010 [24] Onshore | OpenFAST FLM 10 min
de Nolasco Santos, 2021 [25] | Offshore | Real (SCADA) FLM 10 min
Dimitrov, 2022 [26] Onshore | HAWC2 FLM 0.04 - 0.1 sec
Muller, 2018 [27] Offshore | OpenFAST DLA
Lee, 2019 [28] Offshore | Real FLM 10 min

Neural Network Obdam, 2010 [29] Offshore | Real (SCADA) and simulated | FLM 10 min
Schroder, 2018 [30] Onshore | Simulated DLA
Schroder, 2020 [31] Onshore | HAWC2 DLA 10 min
Smolka, 2014 [32] Offshore | Real FLM 10 min
Souliotis, 2013 [33] Offshore | BHawC FLM 10 min
Venu, 2020 [34] Offshore | Real (SCADA) FLM 10 min
Dimitrov, 2018 [35] Onshore | Simulated DLA 10 min
Murcia, 2018 [36] Onshore | HAWC2 DLA 10 min

Polynomial Chaos Expansion

Schroder, 2020 [31] Onshore | HAWC2 DLA 10 min
Slot, 2020 [37] Offshore | OpenFAST DLA 10 min
Dimitrov, 2018 [35] Onshore | Simulated DLA 10 min

Kringing Okpokparoro, 2020 [38] Offshore | Simulated DLA
Slot, 2020 [37] Offshore | OpenFAST DLA 10 min

Bayesian Quadrature and Gaussian Processes | Clark, 2022 [39] Onshore | Simulated with OpenFAST DLA
Heteroscedastic Gaussian Process Regression | Singh, 2022 [40] Offshore | OpenFAST DLA 10 min

shear exponent, distance to the upwind turbine in the rotor diameters and yaw misalignment
of the downwind turbine. In both cases, the results were compared to actual data using
normalized root mean square error [26]. In particular, the parameters taken into account
were tower base fore-aft moment, tower base side-to-side moment, tower top yaw moment,
main shaft torsion, blade root flapwise moment and blade root edgewise moment. Given
the similarity of the input data, these studies are mainly considered as references for the
considered parameters and errors evaluation.

The majority of the analyzed studies post-processes the results of the simulations to obtain
10-minute statistics. This is because typically wind data considered for the studies in the
field is processed over 10 minutes. When analyzing the application to MPC, the sampling
frequency needs to typically be much higher [41].
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1.4. Research questions

Given the reported literature review, a gap in this research field has been identified in the
time series forecasting of loads for offshore wind turbines. As a result, the main research
question can then be formulated as follows:

Can data-driven surrogate models be used for forecasting load time series on offshore wind turbines?

To answer this question, multiple sub-questions were identified. First, the environmental
conditions, for both wind and waves, have to be modeled. These have to be representative
of all the operating conditions that can occur in the selected location, 30 km offshore the coast
of Ireland in the Atlantic Ocean. The most representative parameters have to be identified
and sampled. Thus, one sub-question is:

What variables should be chosen to represent the environmental conditions and how should they be
sampled to generate the best training database?

Once the environment is modeled, the turbine’s parameters that are taken into consideration
when creating the data for training have to be chosen. It is important in this case to assess
what features have the biggest impacts on loads and how they interact with each other. To
reach this aim multiple options are viable. In this case cross-correlation is applied. Therefore,
the second sub-question can be formulated as:

Which of the computed features influence the target loads the most?

Next, once the training data set has been created, different black box SM will be tested to
achieve the best approximation. In order to assess if they are working or not, some specific
parameters have to be identified. To do so, it is essential to understand the most sensible
points on the turbine’s blades. Thus, the third sub-question is:

What are the most load-sensible points on the blades?

Once these aspects have been addressed, different characteristics regarding the training of
the model should be assessed. In particular, features such as the way to achieve the best
compromise between results accuracy and computational time. Another example could
be the definition of the parameters of the implemented models as well as which are the
variables that actually influence the output the most. To this aim, another sub-question can
be formulated as follows.

What features should be chosen for the implemented SM and which exogenous variables should be
considered as inputs for each target parameter?

Finally, between the different SM considered, comparisons and recommendations on the best
solutions have to be made. To do so, the results of the model will have to be compared to the
ones of the aero-hydro-servo-elastic simulations to determine relative errors and deviations.
Once this is finalized, it will be straightforward to determine the model that worked best
and the reasons why that happened. As a result, the final sub-question can be formulated
as:



1.5. Research steps
What time series forecast model works best to accurately predict the loads and why?

Once these questions are answered, it should be possible to answer the main question. This
would allow to reach the main goal stated in Section 1.1.

1.5. Research steps

In this thesis, the training data is obtained through hydro-aeroelastic simulations conducted
via OpenFAST and not from real measurements. This is because firstly, when information is
achieved through software, it usually samples the operating conditions of the turbine more
uniformly, so it is more useful for the training of the algorithm. Secondly, retrieving enough
real data from the chosen location was impossible. This area is particularly interesting
because it shows numerous designs that still have to be realized, and the water depth is
approximately sixty-five meters. This is convenient since it allows to start working with
a monopile design, given that the level is still relatively shallow, but at the same time, it
is deep enough for the floating installation. Thus the same study can be of interest to
further studies investigating the implementation of Floating Offshore Wind Turbine (FOWT).
The reference turbine is the National Renewable Energy Laboratory (NREL) 15 MW offshore
monopile turbine, which at the moment represents state of the art in its category [14].

A MATLAB framework is created to sample from the joint distribution of environmental
conditions and auto-generate input files for OpenFAST. Next, these files are uploaded to the
TU Delft Aerospace Department’s High-Performing Computer (HPC), where they are run
with the open-source software OpenFAST v3.0.0. Both BEM and OLAF aerodynamic models
are applied.

Once the results of the simulations are available, data is processed first to determine the
differences in the results when the two different modeling methods are applied and later
to identify the relationship between variables. To do so, Python’s packages "pyFAST” and
‘statsmodels’, which allow respectively to import OpenFAST results in Python and to per-
form time series analysis and modeling, are used. Next, 500 simulations are run in series
through the definition of a pipeline on HPC to create the required data set to train the SM.
Throughout these simulations, BEM is used to compute the aerodynamic forces.

When the training data set is complete, Python codes are created to implement the two
chosen algorithms: Autoregressive Integrated Moving Average Exogenous Variable Models
(ARIMAX) and Long Short-Term Memory (LSTM) network. To this end, packages ‘pmdarima’
and ’keras’ are used. Finally, to evaluate the errors, RMSE from the 'sklearn’ library, along
with data visualization from ‘matplotlib’, is used for both SM.

1.6. Framework

The thesis structure for the remaining chapters is presented here following the path traced
by the defined sub-questions. Chapter 2 presents the theoretical framework of data-driven
models and some considerations on the applications that can be found in the literature for
load forecasting. The main focus is on the two chosen methods for this analysis, ARIMAX
and LSTM, which are explained and compared.
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Next, in Chapter 3, the procedure used to create a training model setup is presented. In
particular, first, the description of how environmental conditions are modeled, together with
considerations between different sampling methods is presented. Later, the offshore turbine
model implemented in OpenFAST with the considered degrees of freedom is introduced,
followed by a comparison between BEM and OLAF.

Later, the correlation between different variables is investigated in Chapter 4. Cross-correlation
is applied to this aim. First, the theoretical framework is described, followed by the appli-
cation details. Finally, the results of this analysis are presented; thus, the inputs and target
outputs implemented in the surrogate models are identified.

In Chapter 5, the implementation of ARIMAX and LSTM is analyzed. This includes the ex-
planation of the creation of the data set followed by the description of the used algorithms.
Furhtermore, the analysis performed to select LSTM hyper-parameters is shown.

The results are later displayed and expressed in terms of RMSE in Chapter 6. This leads to
an evaluation of the performed analysis and a comparison between the two implemented
models.

Finally, in Chapter 7, an overview of the conducted study is provided, along with a summary
of the performed analysis. The report is then concluded with recommendations for future
work.



Chapter 2

Data-driven surrogate models

Data-driven surrogate models aim to model systems based on input-output data sequences
provided when training the algorithm. They are widely used to emulate the behavior of
complex systems that are either expensive to compute or governed by intractable or un-
known equations.

The surrogate model acts as a low-cost approximation of the actual process, allowing ef-
ficient and fast evaluations in tasks such as optimization and sensitivity analysis. In this
project, the sensor measurements and the environmental conditions are used as inputs to
obtain the moment acting at the blade’s root as output. The required data has to be repre-
sentative of the operating condition in which the system that has to be emulated works as
well as the system’s response. As a general rule, usually 80% of the available environmental
data is used to train the algorithm and 20% to test its performance. The general logic behind
their working mechanism can be visualized in Figure 2.1.
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Figure 2.1.: Schematization of black box surrogate models [2]

Black box surrogate models are applied within many different fields, from finance to physics.
In this study, they are used for forecasting load signals that can be fed into the MPC, which
would then use this information to make control decisions to minimize the loads.
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This chapter presents some considerations and previous studies on their application for load
forecasting in Section 2.1. This is followed by the introduction of the data used in this study
in Section 2.2. Next, a more in-depth explanation of the chosen methods, ARIMAX and deep
learning techniques with a particular focus on LSTM, is reported respectively in Section 2.3
and Section 2.4. Finally, the chapter is concluded with a comparison of the two previously
analyzed methods in Section 2.5.

2.1. Literature review

As it can be deduced by the table presented in Section 1.3, various data-driven models have
been applied to estimate the loads acting on wind turbines. All the methods mentioned in
the table, namely Polynomial Chaos Expansion (PCE), neural networks (NN), and Kringing
method, apply non-linear relationships to forecast the loads acting on turbines.

However, we are interested in high-frequency loads forecast, which has not been extensively
studied in the context of MPC. In the first step, the performance of ARIMAX model is evalu-
ated. A closely related algorithm, AutoRegressive with eXogenous input (ARX) method has
been previously used to forecast wind turbine power [42]. ARX can be interpreted as an
ARIMAX algorithm without integrated moving average. This linear model incorporates past
values of both the variable that has to be predicted and other input variables, referred to
as exogenous inputs. It is commonly implemented when the target parameters show some
auto-correlation and correlation with the variables considered as exogenous inputs. In the
case analyzed by Duran et al. [43], the time-step considered for the gathered data is one
hour, while forecasts are done for a time horizon of six, twelve, and twenty-four hours. In
the study conducted by Aalborg Nielsen, the power output data is gathered with a time-step
equal to five minutes but it is then averaged over thirty minutes [42]. This study evaluates
prediction horizons from thirty minutes to three hours. It is concluded that ARX performs
better for horizons up to one and a half hours while adaptive predictors, such as NN, return
more accurate forecasts for longer time horizons.

Within the studies reported in previous Table 1.1, two apply LSTM for the predictions of
loads acting on wind turbines. These are the ones by Dimitrov [26] and Lee [28]. In the
former study, LSTM is applied to detect the wind turbine center location, to forecast blade
root bending moment and the blade tip-tower clearance. To do so, high-frequency SCADA
data is used as input and the results are presented as a time series characterized by a dif-
ferent frequency depending on the target variable. Lee, instead, uses LSTM to generate
damage equivalent loads estimations for different locations along the tower while applying
10-minute statistics [28]. Given the output of his study, it is concluded that LSTM outper-
forms feedforward neural networks for all the target locations, even when trained with less
than 2000 data points.

Two other studies were also retrieved that investigate other areas using this method. The
first one regards the forecast of wind speed and solar irradiation [44]. It is relevant to this
study since also in this case the stochastic nature of the wind speed heavily influences the
loads perceived by the turbine; thus it is essential to get a good estimate of its behavior.
The second area where LSTM is applied regards the forecast of electrical loads for a different
range of future windows. The study of Muzaffar and Afhsari also compares traditional
methods, such as ARIMAX to more advanced techniques and concludes that implementing
more sophisticated algorithms significantly improves the prediction [45]. As a matter of fact,
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both the RMSE and the Mean Absolute Percentage Error (MAPE) calculated for the application
of LSTM are significantly lower compared to those obtained via ARIMAX. This is the case for
all the considered forecast horizons spanning 24 hours to 30 days.

2.2. Data description

The data used in this study is introduced to better explain the following data-driven models.
This is composed exclusively of numbers arranged in a 4-dimensional matrix. The first
dimension is used to separate data coming from different simulations. In this analysis the
database is generated through the results of 200 different output files; thus this is the first
dimension. The second dimension represents the number of sections per simulation in
which the data is divided. Each of these is made of 40 time steps, and the total length of the
simulation is 800 time steps, thus the second dimension is equal to 20. The third dimension
is the length of the section which is equal to 40 time steps as previously mentioned. Finally,
the last dimension represents the number of variables considered. This varies between 3 and
5 depending on the case that is being analyzed.

In the following paragraphs, the operations described can be considered as happening in
each section; thus, two-dimensional operations will be described. Furthermore, y will be
used to denote the target variable vector and x to indicate the exogenous variable vector.

2.3. Auto-regressive integrated moving average models with
exogenous variables

ARIMAX are data-driven surrogate models commonly used for time series analysis and fore-
casting. They integrate three different mathematical concepts within the same algorithm:
auto-regression, differentiation, and moving average. The variables taken into account are
the past values of the analyzed parameter and exogenous variables. First differencing is
performed, next autoregression, and finally the moving average operation.

Auto-regression assumes that the output y, at a certain time-step ¢ depends on the values it
assumed in previous time-steps and on the value of other external variables [46]. In particu-
lar, it assumes that y, can be expressed as a linear combination of the previously mentioned
features. An auto-regressive model of a certain order p can be defined as expressed in the
following Equation 2.1. Here y, and x; are stationary, ¢, ¢,, ... ¢,, are vectors of constants
and w; represents white noise [47]. The linear equation coefficients are typically solved
using least squares, Maximum Likelihood Estimation (MLE), or recursive estimation.

yt - (Plyt—l + ¢2yt—2 +ot ¢pyt—p + ‘Pp—i—lxi—l + ¢p+2xt*2 +ot ¢p+pxt*P + wt (21)

The moving average model represents the current value of a time series as a linear combi-
nation of past residuals [47]. It assumes that the current value of the time series depends
on the average of the recent error terms, denoted using e, which represents the fluctuation
in the data. It can be defined as in Equation 2.2. Here g represents the number of lags in
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the moving average and 0y, ... 6; are vectors of constant coefficients. It is usually imple-
mented to smooth out the noise or random fluctuations present in a time series, revealing
the underlying trends or patterns.

Yy, =e+01e,1+ 02, 2+ ... + 0501 (2.2)

Differentiation is implemented to transform a non-stationary time series into a stationary
one [47]. This is very important to achieve an accurate forecast since it helps in removing
trends and seasonality from the data, allowing to capture better the relationship between ex-
ogenous and endogenous variables and a better understanding of the underlying dynamics
of the series. To achieve stationarity, the data is expressed as the combination of two time
series: one stationary and one non-stationary. Once it is differentiated, only the stationary
part remains. It is assumed that y, = pu, + f, where pu, = B, + Bt and f, is stationary. The
differentiation of this variable would lead to Equation 2.3.

Vyy =y Y =B+t fi—fioi=B+ V[ (2.3)

Designing the appropriate sampling space is an important part of developing a data-driven
model, thus also for ARIMAX. The collection of environmental conditions - model response
data pairs has to be sufficiently well distributed over the sampling area to cover the whole
range of operating conditions and a sufficient time span to capture the system’s dynamics.

The following step involves determining the appropriate order of the model. This is essential
for the accuracy of the forecast since if it is inadequate, it may lead to under- or over-
fitting. Moreover, the higher the orders are, the more heavy does the model become from
a computational point of view. Finally, these orders heavily influence the estimation of the
coefficients, which are the means through which the model is interpreted.

For each of the three mathematical concepts involved, a number that best expresses the rela-
tion for each case is identified. Furthermore, the order attributed to each exogenous variable
is determined based on its impact on the desired output. In this study, to determine the op-
timal order for an ARIMAX model, the Hyndman-Khandakar algorithm is implemented. This
step-wise approach initially searches for the best values for the orders based on the Akaike
Information Criterion (AIC) score. Next, starting from the parameters determined in the
previous step, applies again AIC to determine the new orders. The features of this criterion
are explained in more detail in the next subsection "Akaike Information Criterion’.

The estimation of the parameters involves minimizing the negative log likelihood (MLE),
essentially equivalent to maximizing the log likelihood. MLE measures the probability of
observing the given data under the assumed model.

Finally, the calibrated ARIMAX model is used for making forecasts on data unknown to the
SM (such as real output data that is not used to train the model) or using cross-validation
techniques. This allows the user to estimate the accuracy and reliability of the model.

This algorithm is rather simple compared to other data-driven models, and this allows the
users to have a good understanding of the functioning of the modeled system thanks to the
interpretation of the determined parameters. However, it is not convenient to apply ARIMAX
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for highly non-linear systems and it can be challenging to determine the correct model’s
orders.

Akaike Information Criterion

AIC is a statistical measure used to select and compare different models fit [48]. It is designed
to trade off complexity and accuracy, providing a quantitative measure. AIC is defined as
follows in Equation 2.4.

AIC = —2log(L) + 2k (2.4)

Here k represents the number of parameters that have to be estimated by the model and
it expresses the model complexity. log(L) quantifies the probability of observing the given
data under the assumptions of the model. The higher it is, the best the model fits the data.
In mathematical terms, it can be described as the sum of the likelihood functions of each
term, each of which can be expressed as in Equation 2.5. In this case, ¢ is the variance of the
residuals while ¢; is the residual for the i-th observation.

log(L;) = —0.5l0g(2 * ) — 0.5log(c?) — 0.5 (%)2 (2.5)

The best model is the one that results in the lowest value of AIC. As a matter of fact, if the
complexity is too high, the term k becomes higher but, on the other hand, if the estimate is
not good the log(L) increases.

2.4. Deep Learning Techniques

Given the linear nature of the method introduced in the previous Section 2.3, it may be
necessary to implement a more complex algorithm better to capture the future behavior
of the analyzed phenomenon. For this purpose. deep learning techniques can be applied.
These are techniques based on neural networks constituted of three or more layers. This
section gives a brief overview of how these models work. First, in Section 2.4.1, the NNs are
presented. This is necessary to understand the concepts at the base of Section 2.4.2, where
LSTM is explained. Finally, in Section 2.4.3, the encoder-decoder architecture applied to LSTM
is described.

Neural networks are a subset of data-driven machine learning techniques that are at the core
of deep learning algorithms and can be used for regression and/or classification purposes
[3]. They are composed of different nodes, or artificial neurons, that are organized in layers.
The first and last layers correspond respectively to the input and output vectors. In between,
there can be one or more hidden layers. The input layer receives the initial data and the
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number of neurons in this layer depends on the dimension of the input data. Similarly, the
output layer receives the transformed representation of the data from the previous hidden
layer and maps it to the output vector during the training phase. In this case, the number of
neurons depends on the nature of the problem that the algorithm aims to solve. The number
depends on the difficulty of extracting meaningful relations between the provided data. As
the amount increases, the algorithm can learn increasingly abstract and complex features.
These can be represented as shown in the following Figure 2.2.

hidden layers

input layer 4

Figure 2.2.: Schematization of NN architecture [3]

Each node, or artificial neuron, has its associated weight, bias, and set threshold. Once the
input reaches the node, it is multiplied by the weight, and the bias is added to the resulting
value. Only if this is higher than the set threshold, then the node is activated, and the
information it contains is passed on to the next layer; otherwise, no data is transferred along
the network. Different activation functions can be used to calculate the value attributed to
each node. These are usually non-linear expressions that are similar to each other since
they provide outputs values comprised of either between 0 and 1 or between -1 and 1. The
most used ones are the sigmoid, the hyperbolic tangent, and the Rectified Linear Unit (ReLU)
functions. The mentioned functions are overviewed in Figure 2.3.

Sigmoid Tanh RELU
1 e*—e *
2) = )= -— 2) = max(0, z
9() = 0= 9(2) = o= 9(2) (0,2)

1-r- 14 14
1
- : : - ——

Figure 2.3.: Summary of commonly implemented activation functions

Forward propagation is used to activate each layer depending on the inputs received from
the previous layer. This is outlined in the following Algorithm 2.1 [49]. Here 4; is the
activation of the j-th unit; w;; and bj; are the weights and biases associated to the activation
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of the j-th unit corresponding to the inputs of the i-th unit; z; represents the intermediate
status computed in the j-th unit and g(-) is the activation function.

Algorithm 2.1: Forward Propagation

Input: a;, Wji, b]z
Output: 4;

1zj= Y w;jia; + b]z

2 4;= g(zj)

The weights and biases of each node are determined based on an algorithm that aims to
minimize a cost function; thus they are the result of a minimization problem. If w denotes
the collection of weights and b the biases, the cost function C(w, b), can be defined as shown
in Equation 2.6.

Clw,b)n = 5 X ly(xi) — x| @6)

Here n denotes the considered input used for training, #(x;) is the vector of outputs from the
network when (x;) is used as input. The cost function is essentially a mean squared error
between the observed output y(x;) and the value for the same parameter estimated by the
network, £(x;).

Gradient descent is used to minimize the loss function. The back-propagation algorithm is
applied to calculate the cost function’s gradient. For the biases, the activation can be fixed
at +1, thus the intermediate status can be simplified as in Equation 2.7.

Z]' = ZZU]',‘LIZ' (2'7)
i

Next, the cost function is used to determine the derivatives of each weight by applying
the chain rule from the output layer to the input layer. This is shown in the following
Equation 2.8.

dC, dC, dz;
dwﬁ - de dw],

(2.8)

To simplify the following algorithm, the notation shown in Equation 2.9 is introduced. Fur-
thermore, the second part of the equation can be expressed as in Equation 2.10, remembering
that a; is the activation of the i-th unit. As a result of these considerations, the derivative of
the error can be expressed as in Equation 2.11.

/ dZ]

(2.9)
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_ 4 2.10
al - dZU]l ( M )
dc,
do; 5ia; 2.11)

Considering that the derivative of the cost function in respect to the weights can also be
written as in Equation 2.12, the previously introduced notation §; can be expressed as in
Equation 2.13. Here x,,; is the input n-th input training for the i-th unit.

dC,
dwﬁ

= (Ynj — tnj) Xni (2.12)

Now it is possible to apply again the chain rule to the term J; to obtain the formula of the
backpropagation as in Equation 2.14. In this case, the subscript k is used to indicate the units
to which the information contained in the unit j is transmitted.

_ dGy dCudze _ ,, ,
=& Z dz, dz; =h (z]);wkjék (2.14)

Thus, the results obtained from the forward propagation are used as inputs for the back-
propagation algorithm reported in Algorithm 2.2 [49]. In this procedure, it is implied that
all the different units adopt the same activation function h(-).

Algorithm 2.2: Back Propagation

Input: yy, t, 8'(+), zj, wyj, a;

dC, dcC
Output: w” , W;:

1 0 = Yk — bk
/
2 6 = §'(z)) L wijor
dc
3 dw” = dja;
dc, _
4 de; =9
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2.4. Deep Learning Techniques

LSTMs are network architectures designed to model time-series data. They use a specialized
system of gates that allows the model to selectively retain or forget information over multiple
time steps.

LSTM is a special kind of Recurrent Neural Network (RNN). RNN have an inner loop that
allows information to be passed back and forth to the previous layer or time step [50].
This is done through the storing of internal state data. It allows RNN to handle sequencing
data, such as time series, since they are capable of capturing temporal dependencies by
maintaining the memory of previous inputs through hidden states. A visual representation
of this network can be seen in the following Figure 2.4, where it is clearly highlighted the
difference with the previous Figure 2.2.

Input layer Hidden layer
Output layer

Recurrent network

Figure 2.4.: Schematization of RNN architecture [4]

The added advantage of implementing LSTM instead of RNN is that the information can be
passed through multiple layers and time steps. This happens thanks to the implementation
of memory cells. The structure of a single unit can be visualized as in Figure 2.5.

Each cell can be divided into three main parts: the forget, input, and output gates. To ‘move’
through them, the two states of the cell are used, the hidden one and the cell state. These
respectively represent the short and long-term memory stored in the cell. The unit receives
as inputs the variable x; at time ¢, the hidden state received from the previous cell, and the
cell state from the previous time step. Once the input data and the hidden state input are
received, they are multiplied by their respective weights and then summed. The result of
this operation is then summed to the bias associated with the input data. The resulting value
is the input value for a sigmoid function, which returns a number between 0 and 1. This
represents the percentage of long-term memory that has to be carried through the cell state,
thus the percentage of long memory that the cell must not forget. The output of the forget
gate is then multiplied by the cell state value at time t, which is the output of the unit at
t — 1, to obtain the updated value of the long-term memory.

Similarly, the input data and hidden state input are fed into the second part of the cell. This
has four weights and two biases, each of which constitutes the coefficient that respectively
multiplies and is added to the values used as inputs and then fed into a sigmoid and hy-
perbolic tangent function. The values resulting from these two functions are then multiplied

17



2. Data-driven surrogate models
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Figure 2.5.: Schematization of LSTM unit architecture

and summed to the value previously calculated for long-term memory. This cell state is used
as input for the time step ¢ + 1 and represents the new value of the long-term memory.

Finally, the last part of the cell, the output gate, uses the input data and the hidden state
input multiplied by their corresponding weights and sums them first to each other and then
to the corresponding bias. The obtained value is fed into a sigmoid function. The output of
this function is then multiplied by the value obtained when feeding the updated long-term
memory into a hyperbolic tangent function. The final resulting number is the hidden state
output for time step ¢ + 1, representing the new short-term memory.

The activation functions mentioned in the previous paragraphs are the ones displayed in the
Figure 2.5. However, these can be substituted with others if desired.

These cells can be organized one in series to the other to create a chain of cells and more
chains can be placed in parallel to each other, receiving all the same initial inputs. Together,
these combinations constitute a layer, and each cell’s cell state and hidden state can be used
as inputs for the following layer. This can be better visualized in the following Figure 2.6.

In this study, we are using the encoder-decoder architecture of LSTMs. This layout is par-
ticularly useful when the length of the input differs from the length of the output sequence,
for sequence-to-sequence modeling and to capture very long-term dependencies [51].

The LSTM based encoder processes the inputs to encode the sequential dependencies[52].
Next, they are passed to the decoder, where the encoded inputs will be read and a one-step
prediction for each element is made in the output sequence. The main difference with the
simple LSTM is that in the decoder the output training data is used, allowing the network to
know both what was predicted at time step ¢ — 1 and accumulate internal state, while also
providing the forecast. The schematic representation of this process is shown in Figure 2.7.
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Figure 2.7.: Schematization of LSTM encoder-decoder architecture

2.5. Comparison between ARIMAX and LSTM

ARIMAX models have been widely used for time series forecasting and offer several strengths.
Firstly, they provide interpretable coefficients, enabling the analysis of the impact of exoge-
nous variables on the time series. This is valuable in domains where understanding the
relationship between variables is crucial. Moreover, ARIMAX models are based on statisti-
cal assumptions, allowing for the estimation of confidence intervals and the assessment of
forecast uncertainty. They also handle seasonality if needed by incorporating seasonal dif-
ferencing or seasonal auto-regressive and moving average terms, accommodating periodic
patterns in the time series.

However, ARIMAX models have certain limitations. They assume linear relationships between
the time series and exogenous variables, which restrict their ability to capture complex non-
linear patterns and dependencies. This limitation may lead to non-optimal performance
in data sets with intricate relationships. Furthermore, ARIMAX models have limited mem-
ory and struggle to capture long-term dependencies or complex patterns that span a large
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2. Data-driven surrogate models

number of time steps.

On the other hand, LSTM models have gained importance in time series forecasting due to
their ability to capture complex non-linear patterns and long-term dependencies. They offer
several advantages over traditional models like ARIMAX. LSTMs excel at learning intricate
relationships by modeling the interactions between time steps and leveraging their memory
cells. This enables them to capture non-linear patterns and dependencies that may exist
within the time series data. Additionally, LSTMs can automatically learn relevant features
and representations from the raw time series data, reducing the need for extensive manual
feature engineering.

However, LSTM models also have limitations. Their nature poses challenges in interpret-
ing the internal workings of the model or understanding the impact of individual input
variables. LSTMs typically require large amounts of training data to effectively learn com-
plex patterns and prevent under-fitting, which can be a limitation in scenarios with limited
data availability. Furthermore, training and evaluating LSTM models can be computationally
intensive, especially for large-scale time series data sets, necessitating substantial computa-
tional resources.

In practice, it is beneficial to experiment and compare the performance of both approaches
on the specific forecasting task at hand. Conducting comprehensive evaluations and consid-
ering the trade-offs in interpretability, model complexity, computational requirements, and
forecast accuracy will aid in selecting the most suitable approach for time series forecast-

mg.
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Chapter 3

Training model set up

As mentioned in Chapter 2, data-driven models are not suited to extrapolate information
beyond the domain within which they have been trained. This is why it is particularly
important to identify the correct conditions when creating the training data set.

This process is divided into two stages. First, the environmental conditions related to the
specific site are gathered using a sampling method. Then, they are used as input parameters
for OpenFAST simulations. This is an open-source simulation tool that combines modules
defining aerodynamics, hydrodynamics, control and electrical system dynamics, and struc-
tural dynamics to solve the aero-hydro-servo-elastic dynamic responses of a wind turbine
[53].

In Section 3.1 the environmental conditions are described followed by the description of the
considered sampling methods in Section 3.2. Next, in Section 3.3 the model of the turbine
used, together with its considered dynamic degrees of freedom, are analyzed. Finally, in
Section 3.4 an overview of the theory behind BEM and OLAF models is provided followed by
a comparison of the results obtained implementing the two different aerodynamic models
given the same environmental variables.

3.1. Definition of the environmental conditions

Considering the placement of the turbine offshore the coast of Ireland, in the Atlantic Ocean,
it is necessary to describe both atmospheric and marine conditions. To this end, different
studies from the literature are considered to list the most important site conditions and their
corresponding ranges.

Nikolay Dimitrov et al., while analyzing an onshore turbine, identified as relevant param-
eters to describe a turbulent wind field the average wind speed at hub height, the vertical
wind shear exponent, the wind veer (which is the change of wind direction with altitude),
the turbulence, the air density and the mean wind inflow direction relative to the turbine
[35]. K. Muller & P.W.Cheng identify as relevant sea-state parameters as wave height, wave
period, and the difference between wind and wave current directions [27].
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3. Training model set up

Air density, wind shear exponents, and surface roughness are considered constant and re-
spectively equal to 1.225kgm™~3, 0.11 and 0.0002 m. Their variation does not seem to have a
significant impact on the damage equivalent loads as shown by Murcia et al. [36].

As a result of these considerations, the following degrees of freedom are identified to de-
scribe the environmental conditions:

* Wind parameters
— Average wind speed at hub height
— Turbulence intensity
- Seed number
¢ Wave parameters
— Wave direction
— Significant wave height
— Peak spectral wave period
- Seed number

Where the significant wave height is the highest 1 of waves that occur in a certain period
of time (e.g., one hour) and the peak spectral period is the wave period associated with the
most energetic waves in the total wave spectrum at a specific point, and the seed numbers
are random numbers used by OpenFAST to initialize the random number generation.

The definition and distribution of these parameters require particular attention as they deter-
mine the successful training of the machine learning algorithm. First, real data is retrieved
online [54]. In some cases, this has to be elaborated to obtain exactly the selected degrees of
freedom. In particular, wind speed is provided at ten meters above sea level. To extrapolate
the desired value, first, the logarithmic boundary layer law is applied considering a desired
height of 60m (h).

In(h/zg)

u(h) = u(hyes) * W

3.1)

Next, to get the wind speed at hub height, which is equal to 150 m, the power law is applied.
This is Equation 3.2, where h is 150 m while h,,¢ is 60m. The resulting variable is what it
will be later referred to as "URef’.

M(h) = u(hrEf) * (hi]'/lef> (32)

Throughout this study, wind direction is assumed to be always aligned with the nacelle. This
assumption can be made thanks to the low values of the delta between the two variables and
the limited impact that it has on the model [36]. As a result, wave direction is simply defined
as the difference between wind and wave direction.
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3.2. Sampling methods

Finally, turbulence intensity is defined as the ambient turbulence described in IEC Class C
[55]. This means that it is linked to mean wind speed as defined by Equation 3.3

0.12 % (0.75u + 5.6)
u

TI — (3.3)

Real site-specific data is retrieved for 30 years, from 1992 to 2021, with a time-step of three
hours. The resulting relationships between variables along with the marginal distribution
of each one, after the manipulations described above, can be observed in the following
Figure 3.1.
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Figure 3.1.: Environmental data.

The maximum and minimum ranges of the chosen parameters are defined taking into ac-
count the physical relationships between the degrees of freedom and leaving a certain mar-
gin to ensure that the reference site is well covered in the analyzed space. To generate data
within these limits, various sampling methods are considered and these are presented in the
next Section 3.2.

3.2. Sampling methods

Given the high number of degree of freedom (DoF) and the fact that the computational
cost of the method scales with the number of values used to discretize each DoF, it is not
convenient to systematically sample every possible combination of them. Consequently,
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3. Training model set up

different alternative approaches are considered to generate load cases within the previously
mentioned limits.

Random number generation aims to generate a sequence of real numbers that simulates a
series of independent and identically distributed random variables having a certain distribu-
tion function [56]. In particular, a uniform random number generation is considered for this
study. The issue with this kind of sampling is that it does not provide an evenly distributed
representation of the sample area and, if the simulation requires huge amounts of random
numbers that must be available for later validation storage, difficulties may arise.

Quasi-random methods represent a possible alternative that aims to provide a spatially bal-
anced sampling of the selected area [5]. They have been applied in many fields, including
numerical integration and optimization, and environmental sampling. In particular, the Hal-
ton sequence is a quasi-random number sequence that spreads points evenly for relatively
small dimensions, until 10-dimension spaces. It is particularly useful in the aforementioned
study areas since it generates evenly spread points, just like a regular grid or lattice. The
added advantage is that points can be added incrementally without resulting in clumping
of points.

The advantages of using quasi-random methods compared to the other presented option are
multiple [57]. First, quasi-random methods are more efficient in higher dimensions because
they are able to cover a sample space with fewer sample points, while for random sampling
the number of required points increases exponentially with the sampling space. Second,
random methods may lead to some areas being over-represented or under-represented in
the sample. Quasi-random methods avoid this phenomenon. Furthermore, they have faster
convergence rates [58]. This means that they provide a better representation of the sampling
area as this increases. Finally, they can improve the accuracy of simulations, and eventually
of the predictions of the surrogate model, since they provide a more accurate representation
of the sampled space. In Figure 3.2 and Figure 3.3 the differences between a random and a
Halton sampling are shown.
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Figure 3.2.: Random sampling [5] Figure 3.3.: Halton sampling [5]

Given the aforementioned reasons, quasi-random sampling is the best choice for this study.
This aims to provide a methodology that can later be applied to different areas, where the
sample area may be much larger than in the analyzed case. The Halton set is implemented
in MATLAB to generate more environmental data, within the limits defined using the real
data as a base. In particular, a Halton set in seven dimensions using the scramble method
'RR2’ is applied. The RR2 scramble method consists in a permutation of the radical inverse
coefficients that aims to break correlations between the inverse radical functions of different
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dimensions [59]. The radical inverse function is widely used to generate uniform random
patterns or sampling points within a multidimensional space. The scrambling method is
derived by applying a reverse-radix operation to all the possible coefficient values. This is
necessary to improve the performance of the function 'haltonset’ when applied to multidi-
mensional areas. The resulting plots can be observed in Figure 3.4.
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Figure 3.4.: Generated environmental data.

As it can be noticed, the marginal distributions differ from the ones of the real data. This
is directly linked with the desire of having a more uniform distribution of the data points
across the sampled area which is achieved by applying Halton sequencing to generate 500
sampling points for each variable. This manipulation allows to generate better quality data
for the sM.

3.3. Definition of the OpenFAST model

The turbine chosen as a model within this study is the 15-megawatt offshore wind turbine
with a fixed-bottom monopile support structure developed by NREL and Technical University
of Denmark (DTU) [6], which can be observed in Figure 3.5.

In this section the properties of its components and the alterations applied for the definition
of the load cases to generate the database are outlined. In particular, Section 3.3.1 describes
the blades and rotor properties, Section 3.3.2 the tower ones, followed by Section 3.3.3 and
Section 3.3.4 that highlight respectively the properties of the nacelle and controller. Finally,
in Section 3.3.5 the settings of the simulations run in OpenFAST are introduced.
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Rotor Radius

120m

+ Hub Height

150m

Transition Piece T
153 m|

Figure 3.5.: 15 MW offshore wind turbine [6].

3.3.1. Blade and rotor properties

The rotor consists of three blades with a diameter of 240 meters [6]. These are made of
two main spars, reinforced with carbon, that carry the loads and are connected through two
shear webs with reinforcement along the trailing and leading edge and foam fillers. The
maximum length of each blade is 117 m, with a rotor diameter of 5.2m and a maximum
chord of 5.77m at approximately 20% span. Different blade designs are used along the
blade and the aerodynamic center of the airfoils is used for the blade pitch axis.

The blades are designed with a significant pre-bend away from the tower to provide addi-
tional tip clearance [6]. As a result, there are 4 m separating the tip chord line from the root.
Even though accentuating this feature even more would have given further margin, reduc-
ing stiffness requirements, this is not currently possible because of blade molding and other
manufacturing challenges. The maximum tip speed that they reach is 95ms~! and their
first flapwise and edgewise natural frequencies are respectively 0.555 Hz and 0.642 Hz.

To calculate the aerodynamic forces acting on the blades, BEM theory is used. This is going
to be further discussed in Section 3.4.

3.3.2. Tower properties

The tower is fixed to the ground through a monopile foundation. In the modeling of the
turbine, both components are designed as an isotropic steel tube [6]. In particular, the
monopile has a 10-meter outer diameter, which pushes the limits of current manufacturing
and installation technology, and a thickness profile that varies from 0.055m in the pile to
0.044 m in the transition piece.
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3.3. Definition of the OpenFAST model

The first tower-monopile mode is 0.17Hz and lies between the 1P and 3P blade passing
frequencies for all wind speeds comprised between 3ms~! and 25ms~!. These are respec-
tively cut-in and cut-out wind speed.

Hub height is 150 m. This allows for 30 m clearance spacing from the mean sea level from
the lowest point reached by the rotating blades. Conversely to what is shown in Figure 3.5,
the mean sea level is not 30m but 65m. This parameter is modified to fit the conditions of
the target area and to place the analyzed turbine in a location suitable for both bottom-fixed
and floating technologies.

For offshore wind turbines, direct-drive is the most common choice for multiple reasons
[60]. First, gearboxes are susceptible to failure. The occurrence of this event increases as
the wind speed increases and offshore the wind is faster, compared to the onshore location.
Furthermore, the gearbox requires maintenance, which is more difficult to perform offshore.
Second, they imply transmission losses. Moreover, direct-drivetrain are less complex, due to
the presence of fewer parts. Finally, they allow for more flexibility in the design phase for
special topologies. This feature may be useful when applying the same study to different
locations. On the other hand, they require larger rotor dimensions. Nevertheless, the trend
of wind turbine designing, especially for offshore applications, aims to build bigger rotors
as technology progresses, since they entail a higher power production.

As a controller, the turbine model implemented in this study uses NREL Reference Open-
Source Controller (ROSCO). This is calibrated to operate with a minimum rotational speed
of 5 rpm to avoid 3-period interference with the tower/monopile natural frequency [6]. It
reaches a rated rotational speed of 7.55 rpm when wind speed is 10.59 ms~!. Furthermore,
the rotor operates with a pitch setting of 0° at the design tip-speed ratio Tip Speed Ratio (TSR)
but operates with positive pitch (to maximize energy extracted) at low wind speeds to track
maximum power while maintaining the minimum rotor speed. At wind speeds above rated
one, it pitches to face away from the wind, so that the TSR can be kept as low as possible,
while maintaining the same rated generated power, to avoid over-speed.

Between 3ms~! and 6.89 ms~!, a PI controller on the generator torque is applied to impose
5 rpm, the minimum rotor speed [6]. In ROSCO, the minimum blade pitch angle is de-
fined based on a wind speed estimate, such that D) is maximized. The angles maximizing
minimum blade pitch angles are found a-priori using steady-state blade element momen-
tum analysis. Between 6.89ms~! and 10.59ms~! the rotor speed is regulated to operate
at the turbine’s optimal TSR with a PI controller on the generator torque. Finally, between
10.59ms~! and 25ms™~! the rotor speed is governed by another PI controller that regulates
the blade pitch angle to set the TSR to its rated value, 7.55 rpm.
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To link these elements together and simulate the working conditions of a wind turbine,
OpenFAST allows the user to choose between different options, in terms of both mathemat-
ical models and input files for environmental conditions.

The wind is modelled using a stochastic, full-field, turbulence simulator that aims to pro-
vide a numerical simulation of a full-field flow that contains coherent turbulence structures:
"TurbSim’. This allows the user to input various parameters. In this specific case, the Kaimal
turbulence model is used and the mean velocity at the reference height in ms~!, which will
be later referred to as "URef’, and the turbulence intensity expressed as a percentage are
provided. No turbulence scaling method is applied because this is usually implemented
when a particular standard deviation is desired from the generated wind data. In this case,
this is not necessary. The analysis time is equal to 900s with a time-step of 0.2s and a grid
measuring 285m in both y and z direction, evaluated in 55 different points. As a result, a
wind speed time series is generated, called “"Wind Vel in this report.

Regarding the aerodynamic computations, for calculating loads acting on the blades (and
the power generation) sprung by the generated wind stream, BEM theory is applied. OLAF is
also applied to assess the performance of both methods and further discussion on this topic
can be found in Section 3.4. In order to make up for its instability to deal with unsteady
conditions, such as unsteady aerodynamics and dynamic stall, the most popular method and
the one that has the most support throughout the community, is used: Leishman-Beddoes
Model (LBM) [61]. In LBM, the different processes are modeled as first-order subsystems
defined by differential equations with predetermined constants that match experimental
results. The resulting forces are computed in their normal and tangential components in
reference to the chord while the pitching moment at about %—chord location.

The water depth is fixed to 65m. There is no offset between still-water and mean sea level.
The Jonswap spectrum is applied to model irregular waves. To define the lower and upper
frequency limits of the wave spectrum beyond which the wave spectrum is zeroed the inverse
of the minimum and maximum peak spectral period of incident waves, respectively equal
to 3s and 20s, is computed. Next, the wave direction is provided and no current condition
is imposed. As a result, a wave elevation time series is generated. This will be used as
exogenous inputs in the surrogate models and it is referred to as "WaveElev’.

Since the turbine is modeled as having a direct drivetrain, the gearbox efficiency is imposed
equal to 100% with a ratio equal to one. The generator efficiency, instead, is set equal to
95.756%.

Overall, the degrees of freedom regarding blades and tower are all preserved while the ones
regarding drivetrain rotational flexibility and the yaw are blocked. A summary of the DoF
analyzed in this study can be found in Table 3.1

The simulations are run for 900s, of which the first 300s are disregarded. This is done to
avoid those possible initial instabilities to be included in the generated data set.

3.4. BEM vs OLAF

For the aerodynamic model, two different solutions are taken into account: BEM and OLAF.
To understand the final choice of using BEM, the two models are described in Section 3.4.1
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Table 3.1.: Summary of degrees of freedom preserved

Component Degrees of freedom

First flapwise blade mode

Blades Second flapwise blade mode

First edgewise blade mode

Generator All

First fore-aft tower bending-mode

Tower
Second fore-aft tower bending-mode

and Section 3.4.2, and compared in Section 3.4.3.

BEM was developed by Glauert in 1935 as a practical solution to the analysis and design of
rotor blades [7]. The fundamental idea at the base of the model is to combine axial and
angular momentum balance, so momentum theory, with loads determined from a blade
element strip theory.

The one-dimension momentum theory brings to the formulation of the Betz limit starting
from the equation of continuity. This is equation Equation 3.4, where 71 represents the mass
flow and the control volume considered can be visualized in Figure 3.6

m=p*xug*xAg=p*Ugp*x A =p*uyx A (34)

Next, an axial momentum balance within the control volume previously defined, assuming
that the influence of the pressure on the stream tube is not relevant, results in the following
Equation 3.5. Here, T represents the thrust force.

T=ritx (g —up) = p*xug* A(ug — uq) (3.5)

By applying the Bernoulli equation on both sides of the rotor, it can be derived that the
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Figure 3.6.: Control volume for one-dimensional actuator disk in momentum theory [7]

difference in the total pressure between the two sides can be expressed as shown in Equa-
tion 3.6.

1
Ap = 2 ep (3 —d) 66)

From this, the thrust force can also be expressed as T = A * Ap. Combining this with the
previous equation, the wind speed at the rotor can be computed.

1
UR = 5% (u1 +up) (3.7)

It is convenient now to define an axial inference factor, a, from which the following expres-
sions for ug and u; can be derived.

__Up —UR
0= (3.8)
ugr = (1 —a)ug (3.9)
uy = (1—2a)ugy (3.10)

Consequently, the following equations for thrust and power extraction can be obtained.

T =20Aua(1 —a) (3.11)

P = ugT = 20Au3a(1 —a)? (3.12)
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3.4. BEM vs OLAF

Now the thrust and power dimensionless coefficient can be expressed in terms of the axial
interference factor.

T
Cr=-—— =4a(1—a) (3.13)
3pAU;
P
Cp=—— =4a(1—a)? (3.14)
3PAUG

By differentiating the power coefficient with respect to the axial interference factor, it is
deduced that the maximum power can be extracted when Cp is equal to 0.593, which corre-
sponds to a equal to .

To integrate the blade element strip theory, first, the axial momentum equation has to be
applied to an annulus, comprising two stream surfaces, always disregarding the influence
of pressure on the considered area. This results in Equation 3.15, where 27trdr is the area of
the rotor disk on which the local thrust force, dT, acts.

dT = pu(Uy — uq )27trdr (3.15)

By applying the angular momentum balance, the expression for the local torque is the fol-
lowing.

dQ = pugr(ug — uq)2mrdr (3.16)

Assuming that ug = %(uo + uy) also for this differential element and introducing the az-

imuthal interference factor a’ = M, where Q) is the angular velocity of the rotor, the two
207 g y

previous equations can be rewritten as follows.

ar _ 4mouda(1 —a) (3.17)
dr
% = 4mprupQa’ (1 —a) (3.18)

Employing blade-element theory, local thrust force and torque can be written as shown
in Equation 3.19 and Equation 3.20, where B represents the number of blades, c is the
local chord length, V,,; is the relative flow velocity, F; and F; are respectively the load on
each blade in the axial and tangential direction and C,, and C; are the corresponding force
coefficients.
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ar _ ! cBV2

= BEF, = EpCB‘/relCn (3.19)
d 1
d—? = BFr = EpcBVrzelCtr (3.20)

The relationships of C;, and C; with the lift, C;, and drag C; coefficients are now intro-
duced. This is essential to highlight the relation between the velocity triangle and the force
coefficients.

sin(¢) = W (3.21)
Qr(1+4)
cos(¢) = v (3.22)

In the previous formulas, ¢ is the inflow wind angle. As a result of the aforementioned
relationships, the square of the relative velocity can be expressed as follows.

Cud(1—a)?  up(l—-a)Qr(l+a)
Vi = (;inz(gb) — sin(¢)cos(¢p) (8.29)

Inserting this expression into the previous Equation 3.19 and Equation 3.20, the following
expressions are derived.

dT _ pBcU3(1—a)?
&= ) * Cpy (3.24)

dQ  pBcly(l—a)Qr?(1+a')
dr 2sin(¢)cos(¢)

% Cy (3.25)

Combining equations Equation 3.19 and Equation 3.20 with Equation 3.24 and Equation 3.25
the following expressions are found, where o = % is the solidity of the rotor.

1
©7 &sin2(9)/(0Cp) + 1

(3.26)

, 1
v = 4sin(¢)cos(¢p)/(0Ct) — 1

(3.27)
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Finally, to determine the loads, these equations are solved at different radial crossings along
the blade. This allows to calculate the axial interference factor through an iterative process
and it is necessary to determine how many elements each blade should be divided before
the factor maintains a constant value [62]. Once convergence is achieved, the element force
on each blade element is computed and through integration the total forces and moments
acting on the blade are obtained.

Even though these equations may seem easy enough to apply, they can be used only for a
rotor operating under steady, axisymmetric flow conditions of an incompressible, inviscid,
isentropic fluid [62]. Furthermore, tangential forces do not have to influence the flow. As-
suming air can be considered as a fluid that satisfies the aforementioned characteristics, the
other conditions are still quite strict, thus the model has to be adjusted to cope with realistic
operating conditions [7].

Momentum theory assumes that the thrust force is uniformly spread across a thin actuator
disk while the blade element theory divides the blade into several elements each being
subject to an infinitesimal normal force. This force is assumed to be the same for each radial
location in all the other elements at the same radial coordinates. The BEM theory states that
the thrust force given by the momentum theory in a certain annulus has to be the same as
the thrust force acting on the same area [62]. This allows to calculate the induction factor
through an iterative process. It is necessary to determine how many elements each blade
should be divided before the induction factor maintains a constant value. Once convergence
is achieved, the element force on each blade element is computed and through integration,
the total forces and moments acting on the blade are obtained.

OLAF is a free vortex method. This means that it considers the complex physics required to
describe a phenomenon as complex as the wind but, at the same time, remains less computa-
tionally expensive than Computational Fluid Dynamics (CFD) methods [8]. To represent the
blades, a lifting-line representation is used. This is characterized by a distribution of bound
circulation that results in free vorticity being emitted in the wake because of its spatial and
time variation. OLAF solves for the turbine wake in a time-accurate manner, which allows to
capture the convection, stretching and diffusion of the vortices.

The OLAF model is based on a Lagrangian approach. This means that each particle’s motion
is described in terms of a function depending on the system’s coordinates and velocities.
In this case, the turbine wake is discretized into Lagrangian markers. To represent them, a
hybrid lattice/filament method can be used and can be observed in Figure 3.7. Thus, the
wake is represented as a collection of interconnected filaments, each of which is associated
to a specific marker, while the flow field around the turbine is discretized through a regular
lattice. Here the position of the Lagrangian markers is shown in terms of wake age, ¢, and
azimuthal position, ¥, but in the code they are expressed in Cartesian coordinates.

For the near wake of the blade, which spans over a user-specified angle, a lattice method is
applied: the filaments are connected to the lattice points in this area and are advected by the
fluid flow, allowing for a description of the time evolution of the wake. After the near wake
region, the wake is assumed to instantaneously transform into a tip and root vortex. Each
Lagrangian marker is assumed to be connected to the adjacent markers by a straight-line
vortex filament.
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Figure 3.7.: Evolution of near-wake, blade tip vortex and Lagrangian markers [8]

Induced velocities at a certain position x are computed using Biot-Savart law. This is Equa-
tion 3.28 where I’ is the circulation strength of the vortex filament, d! is the unit versor along
the filament, r is the vector from the filament to the current point x.

Ldlxr

The OLAF method calculates the same parameters as the BEM one. Its advantage regards
mainly the areas in which BEM assumptions are more violated, such as asymmetric rotors or
in planes where the interaction between the turbine blades and the near wake of the turbine
is relevant.

3.4.3. Comparison

To determine which method is more suitable for this study, both are implemented to run
nine different simulations. The environmental conditions applied for each case are resumed
in the following Table 3.2.

For both methods a time-step of 0.2s is used in the "TurbSim’ file and a time-step equal to
0.005s in the " IEA-15-240-RWT-Monopile.fst’ file. The only difference between the input files
for the two models is in the 'TEA-15-240-RWT_AeroDyn15.dat’ file. Here the wake induction
model parameter is set to 1 to run BEM simulations and to 3 when OLAF method is imple-
mented. The direct consequence of this change is in the type of airfoil aerodynamics model
that is used. When the former method is applied, it is possible to use Beddoes-Leishman
unsteady model whereas when OLAF is chosen as a solution method this parameter has to be
set to 1, which corresponds to applying a steady model [63]. This is due to limitations that
have been overcome in the newer version of OpenFAST, but it is still an issue for OpenFAST
v3.0.0, which is the one used in this study.
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3.4. BEM vs OLAF

Table 3.2.: Summary of the environmental conditions of the cases to which cross-correlation
is applied.

File name URef (ms™ 1) | Hy; (m) | Wave Direction (°C) | TI (%) Tp (s)
Modified 1 24.61 5.95 88.21 9.90 8.76
Modified 11 10.17 7.45 -98.99 13.81 | 14.90
Modified 12 4.67 3.12 117.01 13.45 | 11.81
Modified 16 14.30 6.49 53.65 855 | 16.44
Modified 17 8.28 3.60 68.05 13.62 | 17.43
Modified 19 12.41 2.80 -47.15 5.12 | 15.88

Case 1 23.00 12.00 100.00 11.92 | 15.00
Case 2 4.00 1.00 120.00 25.80 4.00
Case 3 10.59 7.00 -130.00 15.35 | 11.50

To perform these simulations in HPC, different nodes can be used. Each has different proper-
ties and multiple of the same type can be used at the same time to run a specific simulation.
Each node type is then assigned to a different queue, each of which has different specifi-
cations. Overall, the queuing system gives priority to jobs requiring fewer cores and time.
With these settings, to run 700s of simulated functioning, it takes approximately one hour
with BEM and almost three days to run the same input files with OLAF.

In the nine analyzed cases, the results of the comparison between BEM and OLAF are of three
different types. First, the two resulting time series can be very similar, almost overlapping
with each other. This is the case for variables such as rotating tower top roll moment, blade
in-plane moment at the blade root, or blade edgewise moment at the blade root. Some
examples of the resulting graphs for these cases can be observed in the following Figure 3.8.
In the descriptions of the figures, the variables given as inputs in OpenFAST are reported in
a vector x in the same order shown in Table 3.2.

In other cases, the trends observed in the time series are the same but the values are different
between BEM and OLAF simulations. This happens for the angle of attack, the blade out-of-
plane moment at the blade root, the blade pitching moment at the blade root, the blade
flapwise moment at the blade root, and the tower base moments. Also in this case, some
examples are reported in the following Figure 3.9.

It can also happen that the variables calculated with BEM and OLAF simulations behave in
either of the previously described ways depending on the environmental conditions applied.
Nevertheless, for some specific conditions, it can happen that the two simulations’” outputs
are very different. This is what happens for simulations "Modified 1" and 'Case 1’, which
are both characterized by high wind speeds, close to the cut off value. In particular, when
these two cases are run with OLAF, OpenFAST is not able to compute the solution since
interference between the blade and the tower is detected. This is possibly due to the fact
that BEM simulations do not fully capture the complex interactions between the tower and
the blades, especially at the beginning of the simulations, which is when the failure occurs.
OLAF instead can explicitly model the wake dynamics and account for the effects of the tower
on the flow. As a result, it is able to detect the interactions between the two components more
accurately, especially when wind speed is close to the cut-off value and the flow around the
turbine is highly unsteady.

Also in other cases, the simulations reflect a difference in the loads. One example is 'Case
3’, when the average wind speed at hub height given as input to the model is the rated one,

35



3. Training model set up

Plot of YawBrMyn in df_19 (modified=19)

— BEM Plot of IPDefl in df_16 (modified=16)
—a7500 |~ OWF 054 — BEM
— oLAF
—50000 0.0
e —52500 -0.5
£
5
3 -55000 5 -10
-57500 T -1s
~60000 -20
-62500 -2.5
300 350 400 450 500 550 600 650 700
Time -3.0 T T T T T T T T T
300 350 400 450 500 550 600 650 700
(a) Rotating tower top pitch moment from Time
"Modified 19" (x = [12.41, 2.80, -47.15, 5.12, (b) In plane deflection from "Modified 16" (x =
15.88]) [14.30, 6.49, -53.65, 8.55, 16.44])
Plot of TipDyb1 in df_c2 (modified=c2) Plot of RootMxb1 in df c2 (modified=c2)
—— 20000 { o0
—— OLAF — OLAF
10 15000
10000
0.5
5000
3 3
g oo H o
£ :
-5000
-0.5
—10000
-10 -15000
—20000
300 350 400 450 500 550 600 650 700 300 350 400 450 500 550 600 650 700
Time Time

(c) Blade edgewise tip deflection from ‘Case 2’ (x =(d) Blade edgewise moment at the blade root from

[4.00, 1.00, 120.00, 25.80, 4.00]) "Case 2’ (x = [4.00, 1.00, 120.00, 25.80, 4.00])
Plot of YawBrMzn in df_c3 (modified=c3) Plot of YawBrMzn in df_17 (modified=17)
—— BEM — BEM
15000 — OLAF 000l —— O
5000 000
H .
-5000
-10000 5000
300 350 40'0 45'0 5&0 55‘0 660 6."30 70'0 300 350 400 450 500 550 600 650 700
Time Time
(e) Tower-top yaw moment from ‘Case 3’ (x =  (f) Tower-top yaw moment from "Modified 17’ (x =
[10.59, 7.00, -130.00, 15.35, 11.50]) [8.28, 3.60, 68.05, 13.62, 17.43])

Figure 3.8.: Examples of overlapping BEM and OLAF results

10.59 ms~!. This is the area where the controller switches between the two implemented PI
ones, thus, depending on the grade to which the unsteady aerodynamic effects are detected,
either one or the other is implemented. This contributes to accentuating the computational
differences between the two models which results in different graphs. Some examples are
reported in the following Figure 3.10.

Even though OLAF has the advantage of being more precise, BEM is still considered a better
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Figure 3.9.: Examples of shifted BEM and OLAF results

choice given its minor computational time. Taking into account the aim of this study, which
is to provide a methodology to train machine learning algorithms for time series analysis, it
is not particularly interesting how accurate the results are, as long as the trends are correct.
As a result, for the rest of this study, BEM is used to model the turbine’s aerodynamics.

37



3. Training model set up

Plot of B1Pitch in df_c3 (modified=c3)

— BEM
74 — OLAF

of A

360 3%0 4(‘)0 4?;0 560 55‘0 660 65‘;0 Tdﬁ
Time
(a) Pitch angle

Plot of OoPDefl in df_c3 (modified=c3)

— BEM
L
16 4
144
812
8
104
84
6

300 350 400 450 500 550 600 650 700
Time

(c) Out-of-plane deflection
Plot of RootMyb1 in df_c3 (modified=c3)

70000

60000 4

50000

RootMybl

40000

30000 4

T T T T T T T T
300 350 400 450 500 550 600 650 700

Time

(e) Blade flapwise moment at the blade root

TwrBsMyt

RootMycl

Plot of TwrBsMyt in df c3 (modified=c3)

—— BEM
—— OLAF

300000

275000

250000

225000

200000

175000

150000 A

125000

300 350 400 450 500 550 600 650 700
Time

(b) Tower base pitching moment
Plot of RootMyc1 in df c3 (modified=c3)

70000

60000

50000

40000

30000 4

300 350 400 450 500 S50 600 €50 700
Time

(d) Blade out-of-plane moment at the blade root

TwrBsMxt

Plot of TwrBsMxt in df_c3 (modified=c3)

60000 { —— BEM
—— OLAF

50000

40000

30000

20000

10000

—10000

300 350 400 450 500 550 600 650 00
Time

(f) Tower base roll moment

Figure 3.10.: Examples of different BEM and OLAF results from 'Case 3’ simulations (x =
[10.59, 7.00, -130.00, 15.35, 11.50])

38



Chapter 4

Feature selection

In this chapter, relevant features to train the machine learning algorithm are selected based
on cross-correlation. The procedure followed to select the variables will be explained in
this chapter. First, the logic behind the choice of the features, together with the identified
variables, is described in Section 4.1. Next, the method applied to identify the relationship
between variables, cross-correlation, is explained in Section 4.2. Later, in Section 4.3 the
application of the previously described theoretic framework, i.e. cross-correlation, is shown
and its application to the generated data is presented in Section 4.4. Finally, the identified
‘cases’ that will be assessed in this study are introduced in Section 4.5.

4.1. Feature selection

When choosing the variables that should be used to train the database, careful consideration
has to be given to the availability of these from real measurement data. Since this study
aims to develop a methodology that can be practically used to forecast the time series of
the parameters highlighted in Table 4.2, it is preferred to consider only features available
from measured data. The considered variables consist of SCADA measurements, geometric
properties, Linear Variable Differential Transformers (LVDT), and accelerometer data at the
nacelle. These are summarized in Table 4.1.

Note that the main focus for load calculation is on the blade root section and the tower base,
as these are the sections on each component where loads are most significant [64]. Never-
theless, to consider the aerodynamics throughout the whole blade, different angles of attack
and pitch angles are considered. These are, in particular, the ones referring to sections 9, 25,
and 38. In this wind turbine model, each blade is divided into 50 different sections, with
numbering increasing as the blade’s tip is approached. The previously mentioned sections
are chosen based on the study conducted by G. Wu et al. [65]. Following the methodology
adopted in their study, two points are identified along the blade’s span: one at 18% of the
blade length, close to the blade root, and another one at 65%. The reason behind this choice
is that different physics phenomena are predominant in these two different regions. Close to
the blade root 3D effects including stall delay, influence the aerodynamics of the turbine the
most while close to the tip the aerodynamics behaviors are dominated by the 2D chordwise
flow and the 3D effects are almost negligible. In addition to these two points, the section in
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Table 4.1.: Considered input variables.

Variable Source Name
Wind speed SCADA WindVelX
Out of plane deflection LVDT OoPDefl
In-plane deflection LVDT IPDefl
Pitch angle SCADA B1Pitch
Rotor tip speed ratio SCADA RotTSR
Thrust force acting on the whole rotor | Accelerometer RotThrust
Pitch + twist angle section 9 Geometric properties Theta9

& SCADA

Geometric properties

Pitch + twist angle section 25 Theta25
& SCADA
. . . Geometric properties
Pitch + twist angle section 38 Theta38
& SCADA
Tower-top / yaw bearing fore-aft
Accelerometer YawBrTAxp
(translational) acceleration (absolute)
Tower-top / yaw bearing side-to-side
Accelerometer YawBrTAyp
(translational) acceleration (absolute)
Tower-top / yaw bearing axial
Accelerometer YawBrTAzp
(translational) acceleration (absolute)
Tower-to aw bearing angular
P/ & ans Accelerometer YawBrRAxp
(rotational) roll acceleration (absolute)
Tower-to aw bearing angular
p/y & ans Accelerometer YawBrRAyp
(rotational) pitch acceleration (absolute)
Tower-to aw bearing angular
p/y &ang Accelerometer YawBrRAzp

(rotational) torsion acceleration

the middle of the turbine is also studied. Thus, sections 9, 25, and 38 are located respectively
at 18%, 50%, and 65% of the blade length.

The variables considered are from nine different simulations, each representing wind and
wave different conditions. This is done to represent a range of operating conditions and
verify that the relationships between variables are not only due to casualty but that there is
a real correlation. In particular, the input parameters for the considered cases are resumed
in Table 3.2.
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Table 4.2.: Output parameters

Variable Name
Angle of attack section 9 Alpha9
Angle of attack section 25 Alpha25
Angle of attack section 38 Alpha38
Blade in-plane moment at the blade root RootMxcl
Blade out-of-plane moment at the blade root RootMycl
Blade pitching moment at the blade root RootMzcl
Blade edgewise moment at the blade root RootMxbl1
Blade flapwise moment at the blade root RootMyb1
Tower base roll (or side-to-side) moment TwrBsMxt
Tower base pitching (or fore-aft) moment TwrBsMyt
Tower base yaw (or torsional) moment TwrBsMzt
Rotating (with nacelle) tower-top / yaw bearing roll moment | YawBrMxn
Rotating (with nacelle) tower-top / yaw bearing pitch moment | YawBrMyn
Tower-top / yaw bearing yaw moment YawBrMzn

4.2. Cross-correlation theory

Cross-correlation is a technique used to quantify the degree of similarity between two sets
of numbers [66]. Even though the procedure can seem simple, the general concept is used
in various advanced analysis techniques. These are all based on the idea that if one carries
out a point-by-point multiplication of the two time series, the sum of the products will be a
quantification of their relationship.

To find the relationship between the data sets, it is common practice to shift the curves. In
the following Equation 4.1, n is the number of data points in each time series, x is the i data
point of the first data series and y of the second data series. Finally, ry, is the correlation.
The number of data points by which the signal is shifted is called lag and is represented by
I in the following Equation 4.1 [66].

n—1

rxy(l) = ;) Xili+i 4.1)

Since the cross-correlation given in the previous equation is not dimensionless but depends
on the units of x and y, it is difficult to compare cross-correlations from different data sets.
To prevent a reduction in the sum of products with increasing lags and to make the relation
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unitless, it is necessary to normalize Equation 4.1 [66]. This is achieved by dividing ry, by
the square root of the product of the auto-correlation of x at zero lag and the square root of
the auto-correlation of y at zero lag. Auto-correlation expresses the cross-correlation of a set
of numbers with itself, and it is represented in the following Equation 4.2 by 7,(0) and ry,
respectively for the first and second time series.

Txy(£)
Txx(0)/7yy(0)

pxy(£) = (4.2)

From the previous equation, it is possible to deduce that the denominator is always greater
than the numerator since it represents the perfect cross-correlation between the time series
[66]. As a result, the maximum value that p,y can have is 1.

If the mean values are subtracted from the previous Equation 4.2, the normalized cross-
correlation expression Equation 4.3 will be negative only when the curves have an inverse
relationship [66]. This is the most commonly used equation to express cross-correlation.

Yy (xi— %) % (yime — )
VI (= 020 Wi -9

pxy(€) = (4.3)

To describe it, it can be said that it is the degree to which x and y vary together divided by
the degree to which they vary separately. It is advisable not to lag the time series for values
approaching n since unless the data is circular, the resulting data points would be too few
as { increases [66]. Good practice suggests to only using lags up to .

4.3. Performing cross-correlation

A pre-requisite for performing cross-correlation is for the time series to not have an un-
derlying trend and be stationary. In other words, it has to be verified if ‘detrending’ is
necessary.

An Augmented Dickey Fuller (ADF) Test is performed in Python to achieve this goal. This is
a root test, a statistical significance test for testing the stationarity of time series [67].

A stochastic process of form y; = ¢y; 1+ €; where |¢| < 1 and ¢; is white noise is considered.
If || = 1, it is a unit root, thus a non-stationary time series. On the other hand, if |¢| < 1,
the process is stationary, whereas if |¢| > 1 it is called explosive [68]. Only the former case
will be considered in this analysis since explosive behavior in environmental conditions can
only be observed in extreme events such as hurricanes, floods, or wildfires, which do not
concern the situations where and when wind turbines operate. In the Dickey-Fuller test, the
first difference is calculated as follows in Equation 4.4.

Ayi1=Yi—Yi1=¢yi1+€—yi1= (¢ —1)yi—1 +€ = Byi1+ € (4.4)
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At this point, it is possible to perform the statistical test where the null hypothesis (Hp) is that
B=¢—1=0and Hy is B < 0[10]. To have a stationary time series the latter hypothesis has
to be verified. Since this t-coefficient follows a T distribution, the test consists in determining
whether the T statistic is less than 7,;; which is tabularized.

The ADF expands the Dickey-Fuller test by including higher-order regressive processes in
the model. This results in the definition of other differences which can be generalized as
shown in Equation 4.5.

AYi—j = Vi = Yi-j (4.5)

Finally, three different versions of the ADF test can be defined, depending on what feature
has to be identified. These are summarized in the following Table 4.3. In the analyzed case,
type 2 is implemented since it is the most complete.

Table 4.3.: Three versions of Augmented Dickey-Fuller Test [10]

Type 0 | No constant, no trend | Ay; = B1yi—1 + Z]P:l ViAYi-j+ &

Type 1 | Constant, no trend Ay; = Bo + B1yi—1 + er-;l ViAYi—j+ &

Type 2 | Constant and trend Ay; = Bo + B1yi—1 + B2i + Z]P:l VDY + €

Finally, to determine the number of lags necessary, either AIC or Bayesian Information Cri-
terion can be used. In this study, the former is implemented.

The test provides five values. First, the test statistic measures how strongly the time series
violates the null hypothesis. Then the p-value is again a method to determine if the null
hypothesis can be rejected. Next the number of lags, automatically determined based on
AIC by the implementation of the option ‘autolag’, and the number of observations are
displayed. Finally, the critical value at 1% significance level is shown. This is the value of
the threshold used to determine if the null hypothesis should be rejected or not with a 1%
probability of rejecting the Hy if it is true.

Once the stationarity of the time series is verified, it is possible to perform the cross-
correlation. To this aim, the function ‘numpy.correlate” is applied. This performs the stan-
dardization of the data and returns the full cross-correlation sequence.

4.4, Results

The tests described in Section 4.2 and Section 4.3 are performed on the results of nine differ-
ent simulations. The characteristics of the environmental conditions imposed in these cases
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4. Feature selection

are reported in the previously shown Table 3.2. These are chosen to cover various operat-
ing conditions of the controller, which depend on the wind speed, combined with different
environmental conditions.

First, the results of the ADF are analyzed. Test statistic values are all more negative than
the threshold set for the 1% significance level. Thus the null hypothesis that the series is
non-stationary can be rejected. Also, the p-value results confirmed the rejection of Hy as
they are much smaller than 0.05. This is commonly chosen as the threshold to reject the null
hypothesis since it assures a confidence level in the results of 95%.

Next, the cross-correlation results are analyzed to determine which variables have a strong
relationship. The results are displayed in graphs such as the following Figure 4.1. Similar
charts are generated for all the combinations of variables’ couples, one from input and
one from output, for all nine simulations. As can be observed, the maximum and minimum
values of cross correlation coefficient are displayed in red on the left while the corresponding
lag values are displayed in black.
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Figure 4.1.: Cross-correlation analysis result for blade out-of-plane deflection - Blade
flapwise moment at the blade root

The results of the analysis are summarized in nine different heat maps, one for each consid-
ered simulation. These show the highest absolute value of the correlation coefficient between
each couple made of one input, reported on the vertical axis, and one output, shown in the
horizontal column. In the Appendix A the results of simulations files ‘Case 1" and "Case 2’,
which correspond respectively to wind speeds very close to cut-off and cut-in values, are
shown.

A relationship is considered conventionally strong if the cross-correlation coefficient is at
least 0.7 [69]. As it can be visualized in the heatmaps, the results are quite different between
the different simulations. Nevertheless, some variables have consistently proven to be re-
lated. The resulting input variables related to the respective output are summarized in the
following Table 4.4 and represented in Figure 4.2.
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Table 4.4.: Relationship between input and output variables (please refer to Table 4.1 and
Table 4.2 for variables’ names)

Output | RootMxcl | RootMycl | RootMzcl | RootMxb1l | RootMybl

Inputs IPDefl OoPDefl IPDefl IPDefl OoPDefl

RootMxb1 RootMzcl
Kj RootMycl

RootMyb1 =

/ RootMxcl

i

Figure 4.2.: Desired output moments

It has to be noted that also variables correlating to 'RootMzc1” are included, even though the
cross-correlation coefficients are not higher than 0.65 in all considered cases. This is because
the coefficients are very strong in more than 75% of the analyzed results. Furthermore, the
relationship becomes weaker as the wind speed approaches the cut-off speed.

4.5. Training strategies

ARIMAX and LSTM models are trained with different combinations of exogenous inputs.
Given that 500 OpenFAST simulations are run and their results can be used to train the
algorithm, an analysis is performed to identify the most significant cases. Eventually, only
200 simulations are used. These are the ones that are based on all different "URef” param-
eters. As mentioned in Chapter 3, it is the wind speed value indicated in "TurbSim’ to
generate the stochastic wind speed time series.

The variables inserted in the data frame change depending on the targeted feature. A sum-
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mary of the considered cases for both ARIMAX and LSTM can be found in the following
Table 4.5. These are going to be analyzed more in detail in Section 4.5.1, Section 4.5.2 and
Section 4.5.3.

Table 4.5.: Summary of training strategies features

Case name | Targeted variable | Exogenous variable (environmental conditions) | Exogenous variable (turbine’s dynamics)
RootMxcl IPDefl
RootMycl OoPDefl
Wave RootMzcl URef, WindVel, WaveElev IPDefl
RootMxb1 IPDefl
RootMyb1 OoPDefl
RootMxc1 IPDefl
RootMycl OoPDefl
NoWave RootMzcl URef, Wind Vel IPDefl
RootMxb1 IPDefl
RootMyb1 OoPDefl
RootMxcl
RootMycl
PI RootMzcl Wind Vel RotSpeed
RootMxb1
RootMyb1

The case "Wave’ considers as exogenous variables the wave elevation time series, "WaveElev’,
the wind time series, 'WindVel’, and the reference value for wind speed adopted by "Turb-
Sim’ to generate the stochastic wind speed time series, "URef’. The added additional param-
eter is either in-plane or out-of-plane deflection at the blade root depending on the target
parameter and the results obtained in the previous Section 4.4. It is the case that consid-
ers most exogenous variables, thus the one where the environmental conditions are most
represented.

The "NoWave’ case considers as exogenous inputs the same as the "Wave’ one except for
the "WaveElev’. Thus, the wind time series and the reference wind speed represent the
environmental conditions. The aim of this case is to assess the impact that hydrodynamic
loads have on the blade features. As for the "Wave’ case, either the in-plane or out-of-plane
deflection at the blade root, depending on the target variable, is also in the database.
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4.5. Training strategies

The last case is the 'PI’ one. Here the results of the analysis described in Section 4.4 are
deliberately excluded from consideration. This decision is made to evaluate the models’
performance using only the inputs currently utilized in the PI controllers. Specifically, the
existing controllers solely rely on the rotor speed ('RotSpeed’) as input and, based on this
information and the known turbine model, estimate the wind speed. As a result, this case’s
evaluation focuses on the models’ effectiveness when operating under these specific input
conditions.
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Chapter 5

Implementation of ARIMAX and LSTM
models

Having modeled the environmental conditions, identified the target parameters and selected
the related exogenous features, it is possible to proceed to the training of the surrogate
model algorithm. The whole procedure, which will be explained in this chapter, is shown in
Figure 5.1.

Reduce frequency

Considering
one value per SuTaEE
avgragmg Division of data models

High frequen / Division in
OpenFAST i ARINAR
- sections
output \

Averaging over
a certain relevant
window variables

80% training
20% testing

Division in
sections +
Augmentation

Figure 5.1.: Procedure followed to implement surrogate models

The first step, given the very high frequency used in the OpenFAST simulations, is to im-
plement a discretization method to achieve a suitable frequency for each parameter. This
procedure is described in Section 5.1. Successively, the algorithm used to implement ARIMAX
and LSTM are described respectively in Section 5.2 and Section 5.3. Finally, the procedure
followed to determine the hyper-parameters for the LSTM model is shown in Section 5.4.
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5. Implementation of ARIMAX and LSTM models

5.1. Frequency definition

The data obtained from the OpenFAST simulations is expressed with a time-step of 0.005s.
This corresponds to a frequency of 200 Hz, which is too high for practical implementation.
For this reason, a specific frequency is identified for the evaluated variables.

The sampling frequency for dynamic induction models has to be calibrated in order to
capture the complex interactions incurring between the incoming wind, the rotating turbine
blades and the wake generated by the blades. These interactions result in alterations in the
angle of attack, lift and drag on the turbine blades as they move through the wind, leading
to changes in the performance and behavior of the turbine.

As a result, the sampling frequency has to be different depending on which variable is being
considered. If static forces, such as the thrust force, are studied, then lower frequencies can
be considered. For periodic forces, such as the ones acting on the blades or the tower,
the minimum necessary frequency is determined by the harmonics, which are an intrinsic
property of the model.

To define the relationship between continuous-time signals, the ones observed in real life,
and discrete-time signals, the ones modeled, the Nyquist theorem should be applied. Ac-
cording to it, to accurately reproduce a phenomenon the sampling frequency should be at
least twice the one you want to capture. This is known as Shannon frequency.

As mentioned in Chapter 3, the natural frequencies for the blades are 0.555 Hz for flapwise
and 0.642 Hz for edgewise deflection. The result of implementing Nyquist theorem is that
the minimum frequency for the blade loads should be around 1.3Hz. This corresponds
approximately to a time-step of 0.77s.

Given that the OpenFAST output is 0.005s, the previously identified time-step corresponds
to circa 154 values. To be conservative, 150 is chosen as averaging window. At this point,
there are two alternatives. The first option is to consider only one value every 150 to be
in the training algorithm. This means completely ignoring the fluctuation expressed by the
other 149 points. The other option is to average the data points every 150 and insert in the
database this value.

Simulations were launched for both options but the second was chosen since it resulted in
a better forecast. This can be due to various aspects. First, averaging the data can reduce
the noise, thus making it easier for the algorithm to capture the overall trend, leading to
a more robust and stable representation of the data. Another advantage of averaging the
values instead of sub-sampling is that a more representative sample is fed into the model.
This is because instead of selecting one “random” point, which can easily be an outlier and
thus not provide a good representation of the interval, a synthesis of the information con-
tained in the selected interval is considered. Finally, the model generalization is enhanced
because the single small fluctuations are not taken into account. Thanks to this operation,
the computational complexity is significantly reduced, since it is proportional to the cube of
the number of data points.
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5.2. ARIMAX implementation

5.2. ARIMAX implementation

ARIMAX is a model that aims to capture temporal structure based on linear regression. As
a result, it works best for one-step forecasting but it can also be used for multiple-step
forecasting. Nevertheless, to build the algorithm that will result in the best prediction, the
model has to be re-fitted depending on the target section [70]. For this reason, two main
options are identified for ARIMAX implementation.

The first one aims to build one model that could provide a meaningful forecast for all the
considered 30s sections. This results in a single 30-second forecast, which stays the same
independently from the considered history or analyzed simulation. It eventually results in
plots comparing testing and forecast data that can range between the two extreme options
depicted in the following Figure 5.2. In this chapter, the variables given as inputs in Open-
FAST are reported in a vector x in the same order shown in Table 3.2 in the descriptions of
the figures showing forecast examples.
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Figure 5.2.: Comparison of predicted and test data when the same ARIMAX model is used
for multiple sections

The other option is to retrain the model for each target section, thus obtaining different
forecasts for each one. This means that a different forecast is going to be provided for each
section and, before training the following section, the test data of the previous one is going
to be given to the model as input.

It is important to note that neither of the proposed solutions has real-life application given
the long required computational times. Nevertheless, this last option provides a good ex-
ample of how a linear model can predict these types of time series. For this reason, it is the
chosen option. The next subsections provide a more in-depth explanation of the algorithm’s
logic. In particular, Section 5.2.1 describes the data-preprocessing, Section 5.2.2 how the

forecast is computed and Section 5.2.3 the method used to evaluate the performance of the
model.

As for the application of all SM, the first step is data pre-processing. This includes cleaning,
scaling, and splitting the database into training and testing data sets.
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5. Implementation of ARIMAX and LSTM models

Data cleaning is generally essential when the information is retrieved through real-life mea-
surements. Since in this study the data is generated through the application of another
algorithm, it is less fundamental. Nevertheless, the generated database is analyzed to assess
if there are any missing values. This is not the case but it is to note that within the 500 simu-
lations, only 200 have different values of "URef’. These are considered enough to effectively
represent the whole sampled area, thus the results of these OpenFAST simulations are first
averaged every 150 values to obtain the desired frequency, as described in Section 5.1, and
then saved in a separate database. This is later used as input in the ARIMAX code.

The second step involves scaling, which is performed by applying standardization to each
column of the newly created database. In practical terms, this entails applying the following
equation (referred to as Equation 5.1) to each value x in column X. In the structure of the
database, this operation is applied to each time step value within the column that encom-
passes all the values from the considered simulations of the respective variable. The terms
#(X) and o(X) represent the mean and standard deviation of column X, respectively.

_ x—u(X)
Xrescaled = W (5.1)

In general, scaling is useful for forecasting using SM because it helps ensure that the input
variables have similar ranges or distributions. This has several benefits for the performance
and accuracy of the surrogate models in the forecasting process. It improves numerical
stability by avoiding large variations, enhances convergence speed because it avoids the
additional task of taking into consideration different scales, and ensures that the model in
the forecasting phase can perform well also on unseen data that may have a different scale
from the one used in the training phase.

Finally, the data is divided into training and testing data. In this study, 80% of the data is
used for training and 20% for testing. Furthermore, for both train and test data, the 800 time
steps available for each simulation are divided into 20 different sections, each composed of
40 time steps, corresponding to 30 seconds. A four-dimension matrix is created to avoid
mixing data from different simulations in the same section and providing as input data only
points belonging to the same one that is being analyzed. As briefly described in Chapter 2,
the first dimension differentiates between one simulation and the next. The second and third
dimensions divide the 800 data points into sections, each with 40 time steps. Finally, the last
dimension refers to the variables considered.

Two models are implemented for forecasting: AutoRegressive Integrated Moving Average
(ARIMA) and ARIMAX. ARIMA is used initially, without considering external inputs, and
relies solely on the values of the target variable. Its purpose is to predict the future values of
each exogenous variable for the next 40 time steps. To accomplish this, the ‘pm.auto_arima’
function from the ‘pmdarima’ library is employed. This function automates the ARIMA
algorithm and determines the appropriate orders based on specified criteria.

The order of auto-regressive components, p’, represents the number of lagged values of
the target variable included in the model [47]. Each lagged value contributes to the model
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separately, with its associated coefficient. The significance of the auto-regressive order deter-
mines the influence of past values of the target variable on its present value. As 'p’ increases,
the model becomes more flexible but, at the same time, the complexity and the risk of over-
fitting data increases. A high 'p’ indicates that the target variable’s past value significantly
impacts its current value.

Next, ’q’ is the order of the moving average components. It represents the number of lagged
residuals included in the model. Each of them contributes separately to the model; thus
each is assigned a different coefficient that has to be determined. This term accounts for
the time series’s short-term dependencies and random shocks. The greater 'q’ is, the more
considering the past errors helps improve the model’s accuracy. However, if the order of
moving average components becomes too high, there is a risk of over-fitting and increasing
too much the complexity of the model, making the computational cost too high.

The inputs for the function consist of the values of the variable to be forecasted from the
previous 40 time steps, along with algorithm implementation specifications. In this study,
the maximum order for "p” and 'q’ is set to 20, 'd” is set equal to zero given the results of
the previously implemented ADF test and no seasonal variations are considered due to the
nature of the time series being analyzed.

ARIMAX is used to forecast the target variable. It takes the exogenous variables, calculated
using ARIMA, as inputs and generates another forecast for the target variable for the next 40
time steps. Similarly, the maximum order values for auto-regression and moving average
are set to 20, while the differentiation parameter is null.

Both ARIMA and ARIMAX models are applied within for loops that iterate through all the
sections. When forecasting a specific section, the model is informed using the test data set
values from the previous section. Finally, the data is re-transformed before evaluating the
forecasts to restore the original scale.

The evaluation of the quality of the forecasts is twofold. First, the forecast for each section
and the corresponding test data for the target variable are plotted to visually examine the
effectiveness of the implemented model. This visualization provides a clear understanding
of how well the SM captures the actual data.

A quantitative analysis of the performance on the complete validation dataset is done by
calculating the RMSE at each time step. The RMSE is determined by averaging the values
obtained for the same time step in each section.

Root Mean Squared Error (RMSE)

RMSE is a way to assess the forecast accuracy using SM. It derives from the mean squared
error but extracts the square root of it to make the value more interpretable in the original
units of the data.

Exponentiation provides various advantages including guaranteeing that all the values are
positive and attributing greater importance to larger errors [71]. Later, by calculating the
average of these squared errors, the RMSE provides an evaluation of the difference between
the predictions and the true values.
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It is calculated as shown in Equation 5.2. Here N is the number of considered data points,
y;i is the actual value of the considered data point, and ¥; is the corresponding predicted
value.

(5.2)

RMSE provides a measure of the average prediction error, indirectly assigning more weight
to larger errors. This metric ignores the direction of the errors and only highlights the mag-
nitude of the difference between the predicted and real points. As a result, overestimation
and underestimation are reduced to the same concept. SM that result in a lower RMSE are
better.

5.3. LSTM implementation

Chapter 2 presented the theoretical foundations of LSTM models for time series forecasting.
In this chapter, the practical implementation of LSTM is explained. The main focus will be on
the code structure required to build and deploy the model, including data pre-processing,
model setup, training, and evaluation. Finally, some definitions needed to understand how
the SM is built are given.

As for ARIMAYX, also in this case first data preprocessing is explained in Section 5.3.1, followed
by the logic of the algorithm in Section 5.3.2. Next, the hyper-parameters are defined in
Section 5.3.3, and the adopted optimizer is presented in Section 5.3.4. Finally, the methods
used to assess the accuracy of the model are shown in Section 5.3.5

As mentioned in the previous Section 5.2.1, the data is retrieved through OpenFAST sim-
ulations and gathered in a new database with values averaged every 150, including only
the 200 simulations presenting different "URef’. Also for LSTM, the data is standardized as
explained earlier and divided into training and testing sets applying the 80-20% common
practice.

When applying LSTM, an additional step is included. This is called augmentation. The goal
of performing it is to increase the size and diversity of the training data set. It helps mitigate
over-fitting and improve the model’s ability to generalize unseen data. This is often used in
conjunction with the sliding window process to create multiple samples from a single time
series.

In particular, the sliding window process involves creating overlapping sub-sequences or
windows from the original time series data [9]. Each window represents a training sample
with a fixed number of consecutive time steps as input, in this case 20, and the subsequent
time step as the output or target variable. The sliding window process helps capture tem-
poral dependencies within the time series by maintaining the sequential order of the data.
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Furthermore, using only the original time series data might limit the diversity of the training
samples. This process can be visualized as shown in Figure 5.3.

Dataset | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ...... | N-1 | N |
Instance 1 | 1 | 2 | 3 | 4 | ...... | L | L+1 |
Instance 2 | 2 | 3 | 4 | 5 | ...... | L+l | L+2 |
Instance 3 | 3 | 4 | 5 | 6 | ...... | L+2 | L3 |
Instance NL | N-L | NIt | NL-2 | NL3 [ ...l [ v1 | ~ |
T
Input Output

Figure 5.3.: Sliding windows process [9]

It is important to note that in this study, the data set shown in the picture represents only
data from one simulation. This is inserted in a 4D matrix where the first dimension refers to
the considered simulation, the second one to the number of the section analyzed, the third
one represents the time steps considered, 40 in this case, and the final one represents the
variables taken into account.

As a result of the implementation of the sliding windows process, the number of data points
considered is increased, thus augmentation is performed. This allows the LSTM model to
learn from a more diverse set of patterns, incorporating variations and temporal depen-
dencies within the time series data. This enhances the model’s ability to capture complex
patterns and accurately predict unseen data.

The forecasting model is based on the encoder-decoder architecture explained in Section 2.4.3.
It is built using the ‘keras’ library in Python.

The whole structure of the SM can be visualized in the following Figure 5.4. In particular, the
encoder is composed of the first LSTM layer, while the decoder is made of the second LSTM
layer and two ‘Dense’ layers. The whole structure ultimately produces the forecast vector
which is a one-dimensional vector made of 40 values.

The model is created using an LSTM layer with 30 units and ReLU activation function to
process the input sequence and learns to extract the relevant features. The learned features
are then repeated in a ‘repeated context vector’, generated through the 'RepeatVector” layer.
It can be interpreted as a summary of the input sequence’s information in a condensed form.
It repeats this information multiple times to create a sequence the same length as the desired
output sequence. The goal of using this layer is to provide a global context or summary of
the input sequence to the second LSTM layer. This context vector helps the model make
predictions for each step of the output sequence by incorporating the learned information
from the input sequence. In this way, it is sure that each step of the output sequence has
access to the same global context.
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Figure 5.4.: Architecture of the applied LSTM model

The information summarized via the repeated context vector is then passed to the second
LSTM layer, composed of 30 units and implements ReLU activation function. This layer pro-
cesses the input sequence and learns to extract relevant features.

Further, two ‘TimeDistributed’ layers are implemented to enable the model to make predic-
tions for each step of the output sequence independently. To this aim, this step is necessary
because the output of a LSTM is a sequence of hidden states that have to be used to make in-
dividual predictions for each step of the output sequence rather than producing a sequence
of predictions. The first "TimeDistributed’ layer uses 100 units and ReLU activation. It in-
troduces non-linearity and additional complexity to the model, enabling it to learn more
complex patterns and relationships within each time step of the output sequence. The sec-
ond "TimeDistributed” layer applies a dense layer to reduce the dimensionality of the hidden
representations obtained from the previous layer to a single output value for each time step.
It transforms the higher-dimensional representations into a sequence of scalar predictions,
one for each time step. Therefore, each time step is treated as a separate instance and makes
predictions for each future time step separately.

Additionally, the model requires the updated ’history” of the model implementation as in-
puts. This needs to be updated before each section is forecast with the actual values of the
target variable of the previous section. In the beginning, it contains the first 40 time steps of
the considered simulation; as the forecast proceeds it is updated, and thus it becomes longer
at each iteration.

One of the challenges of implementing LSTM is determining the hyper-parameters. These
are different from the parameters. While the model parameters are learned by the SM from
the provided data set, the hyperparameters are variables that must be set before training
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the model [72]. The optimal values for these settings” of the deep learning algorithm also
depend on the size and nature of the dataset and the type of problem that has to be solved.

The learning rate a determines the width of the step that is taken by the optimizer to de-
scend along the error curve [72]. The direction of the step is determined by the gradient,
as described in Algorithm 2.2. A larger value of the learning rate entails that the SM can be
trained faster but, on the other hand, it might lead to an oscillation around the minimum,
failing to identify the precise value, thus never completing the model’s training. At the
same time, if & is too small, the model will require too much time to train because the con-
vergence is reached very slowly. A visualization of the previously described behavior can
be seen in Figure 5.5. Determining the appropriate learning rate often involves a process of
experimentation and fine-tuning. Common techniques include manually testing a range of
learning rates, monitoring the model’s performance, and observing the convergence behav-
ior. Additionally, adaptive learning rate algorithms such as 'RMSProp” optimizer, "Adagrad’
optimizer, or Adam optimizer can be implemented [73].
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Figure 5.5.: Comparison of different behaviors of the training process of a NN given
different learning rates

Another important hyper-parameter is the number of epochs, which refers to the number
of times the entire training data set is passed forward and backward through the neural
network. It represents the number of iterations or cycles the training process will undergo
to update the model’s weights. Increasing the number of epochs allows the model to poten-
tially learn more complex patterns in the data but can also increase the risk of over-fitting
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if set too high. Too few epochs may result in under-fitting, which means that, eventually,
the model fails to capture all the complex patterns in the provided data. Determining the
correct number of epochs often requires a trade-off between computational resources and
model accuracy. It is common practice to monitor the model’s performance on the testing
data set and stop training the model once the error stops decreasing or starts to increase.

Batch size defines the number of samples or instances from the training dataset propagated
through the network before the weights are updated.

The hyper-parameters are not independent of each other. If the learning rate is low, more
epochs will be necessary since more steps will be necessary to reach the minimum of the
cost function [72]. On top of that, also the batch size, another hyper-parameter, influences
the number of epochs. It represents the number of training instances in the batch, thus the
number of inputs processed in parallel. The smaller it is, the higher the number of epochs
needs to be.

When implementing LSTM, the optimization algorithm plays a crucial role in the training of
SM. One widely used option is the Adam optimizer. This is the abbreviation of Adaptive
Moment Estimation and it is a very powerful algorithm that combines the benefits of the
two most popular optimization techniques: Adaptive Gradient Algorithm (AdaGrad) and
Root Mean Square Propagation (RMSProp)

Adam optimizer can be described as a modified Stochastic Gradient Descent (SGD) that aims
to update the network’s weights based on the input data [75]. It adapts the parameter learn-
ing rates by combining AdaGrad and RMSProp. It does this by keeping separate learning rates
for different parameters and adjusting them dynamically during training. The adaptive
learning rate is calculated then using a running average of both the squared gradients (sec-
ond moment, coming from AdaGrad) and the gradients (from RMSProp). The moments come
from implementing the momentum technique, which is introduced to accelerate conver-
gence and overcome oscillations by adding a fraction of the previous update to the current
update.

Finally, the Adam optimizer also implements L2 regularization, also known as weight decay.
This is a common technique to avoid over-fitting.

To sum it all up, this optimizer is used to estimate the first and second moments of the
gradients, which are eventually applied to determine the parameters of the model, which
are the weights and biases [76]. At the same time, it applied regularization to avoid over-
fitting and adaptive learning rate to accelerate convergence. This is summarized in the
following Algorithm 5.1. Here m and v are, respectively, the first and second moments of
the gradients; B; and By are the corresponding exponential decay rates; « is the learning
rate; VL is the gradient of the loss function; € is a constant added for the numerical stability
and A is the regularization constant.

Finally, also in this case, it is necessary to bring the predictions back to the original scale and
evaluate the model. As for ARIMAX, also for LSTM, the forecast of each section is displayed
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Algorithm 5.1: Adam Optimizer

Input: m(t), v(t), 6(t), B1, B2, VL, &, A
Output: m(t+1),v(t+1),6(t+1)

1 m(t+1) =By xm(t)+ (1 —pq)* VL(O(t))
2 0(t+1) = Brx0v(t) + (1 —B2) * (VL(O(1)))?
30(t+1)=0(t) —ax(VL(O(t)) +2A0(t))

compared to the corresponding testing data. However, the forecasts are all produced using
the same model in this case.

For LSTM, there is also an added parameter to evaluate the performance of the model, in
particular, to verify if over- or under-fitting occurred. This is done by plotting the relation-
ship between the number of epochs adopted and the ’loss function’ for the training and
cross-validation data sets. The loss function measures the discrepancy between predicted
and actual values during training. During the training process, the model aims to minimize
this loss function by adjusting its weights and biases. The ‘loss’ variable stores the loss func-
tion’s value at each training epoch. By plotting this value against the number of epochs, it
is possible to visualize how the loss decreases over time, indicating the improvement of the
model’s accuracy. Not all of the training set is used in this case, so the same procedure can
be repeated on data unknown to the model, called the validation set. This assessment of the
model is known as cross-validation, and in particular, the one described here is named "hold
out’ validation [77]. For the model to be acceptable, the curves describing the relationship
between epochs and loss should be similar and close to each other. The plots resulting from
this analysis and all the others previously referred to in this chapter can be found in the next
Chapter 6.

5.4. Hyper-parameters tuning

A trial and error procedure is followed to tune the hyper-parameters of the applied LSTM
model. This is performed using the variable 'RootMxb1” as an example. An overview of the
performed analysis is shown in the following Figure 5.6 and explained in this section.

The first hyper-parameter that is set in this study is the batch size. Typical values for this
variable are multiples of 16 until 1024 [72]. In this case, the smallest alternative is chosen,
16. A small batch size is memory efficient, which is convenient if large datasets are used,
as in this case. It entails more frequent parameter updates, eventually leading to faster
convergence. Finally, training with a small batch size allows the SM to "see’ a larger variety
of samples. This increased diversity can help the model to learn more robust and generalized
representations. On the other hand, the drawback of using 16 as batch size is that it entails
longer training times due to the higher number of iterations required to process the entire
data set.

Next, the Adam optimizer’s initial learning rate is left as the default one in 'keras’, equal to
0.001. Finally, the number of epochs is set to 20. In this section, "'RootMxb1” in the "Wave’ case
is taken as an example to describe the behavior of the SM for the considered combinations of
hyper-parameters. For the previously expressed settings, the loss function, which represents
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Achieve convergence

Epochs = 20
a =0.005

Epochs=20 [ Nodes =200
a=0.001 |
Nodes = 200

Cross validation

Epochs = 40 Epochs = 40 Epochs = 40 to 120 Epochs = 120 Epochs = 30

a = 0.001 a =0.0005 a = 0.0005 a =0.0005 a = 0.0005
Nodes = 200 Nodes = 200 Nodes = 200 Nodes =5 to 100 Nodes = 200

Figure 5.6.: Procedure followed to determine the LSTM model’s hyper-parameters

the target function the algorithm tries to minimize, behaves as represented in Figure 5.7 as
the number of epochs progresses.

Model Accuracy

0.0 25 5.0 75 10.0 125 15.0 17.5
Epoch

Figure 5.7.: Loss function of 'RootMxb1” in "Wave’ case when trained with SM using 20
epochs, learning rate equal to 0.001 and 200 nodes per layer

As can be observed, the model doesn’t converge, as the line doesn’t become flat and doesn’t
set on a constant loss value. Despite this, the forecast is computed. Two examples of fore-
casts, one very precise and one less rigorous, are shown in the following Figure 5.8.

The good performance of the SM is also confirmed by the computed RMSE. This is shown in
Figure 5.9. It coherently increases as the time step progresses and assumes a maximum value
of 1590 kN m~!. If compared to the actual values, which range between —21774kN'm~"! and
26853 kN m™, the percentage error is approximately 3.3%.

The computational time required using 1 node and 1 job on HPC equals a couple of hours
to achieve this result. The same behavior is also reflected in the other considered cases,
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Figure 5.8.: Comparison of predicted and test 'RootMxb1” data in "Wave’ case when trained
with SM using 20 epochs, learning rate equal to 0.001 and 200 nodes per layer
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Figure 5.9.: RMSE of 'RootMxb1” in "Wave’ case when trained with SM using 20 epochs,
learning rate equal to 0.001 and 200 nodes per layer

"NoWave’ and 'IP’, usually with a RMSE slightly higher. Given this consideration, from now
on, only the "Wave’ case will be discussed in this section.

Given the desire to achieve convergence in the loss function, other combinations of learning
rates and the number of epochs are also considered. First, the number of epochs is kept
constant, and the learning rate is increased to 0.005. This leads to forecasts equal to a series
of 'NaN’. The reason for this result is probably due to the behavior explained in Section 5.3.3,
when it is shown how a learning rate too high may lead to the perpetual oscillation of the
model that fails to minimize the cost function.

As a result, the learning rate is returned to its default value, 0.001, and the number of epochs
is increased to 40. The resulting loss function of this case is reported in Figure 5.10, and it
can be seen how the loss value decreases compared to the one reported in Figure 5.7, but
still, the function doesn’t converge.

Similarly to what is observed before, the forecast is accurate in some cases and less in others.
Overall, the performance of the SM implementing these settings can be summarized with the
following Figure 5.11.
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Model Accuracy
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Figure 5.10.: Loss function of "RootMxb1’ in "'Wave’ case when trained with SM using 40
epochs, learning rate equal to 0.001 and 200 nodes per layer
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Figure 5.11.: RMSE of 'RootMxb1” in "Wave’ case when trained with SM using 40 epochs,
learning rate equal to 0.001 and 200 nodes per layer

To compare the performance of the models adopting different learning rates but the same
number of epochs, the learning rate is decreased to 0.0005, and the number of epochs is
kept constant at 40. In this case, convergence is not achieved, and the loss function looks as
shown in Figure 5.12. Compared to the previous Figure 5.10, it can be noticed that the slope
is approximately the same. However, the computed RMSE is significantly lower in Figure 5.11
compared to Figure 5.13.

Also in this case, the forecasts are quite precise. As shown in the following Figure 5.14, some
sections are predicted better than others, but overall the RMSE is still within the 4.2%. This
is reported in Figure 5.13.

Given the results shown so far, the analysis is repeated, adopting 0.0005 as the learning
rate while increasing 10 values at the time the number of epochs from 40 to 120. In the
results reported in Figure 5.15, obtained when adopting the highest number of epochs for
the "Wave’ case, it is possible to notice that the loss function converges to a flat line. This
means that 120 is an appropriate number of epochs to adopt when combined with a learning
rate equal to 0.0005 for this data set.

Moreover, the RMSE is calculated. As shown in Figure 5.16, the maximum value is equal to
1438 kN'm~!. This aligns with the values obtained for the previously considered combina-
tions of hyper-parameters.

To assess the model’s efficiency, cross-validation is performed on the SM aiming to forecast
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Figure 5.12.: Loss function of "RootMxb1” in
"Wave’ case when trained with SM using 40
epochs, learning rate equal to 0.0005 and
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Figure 5.13.: RMSE of 'RootMxb1” in "Wave’
case when trained with SM using 40
epochs, learning rate equal to 0.0005 and
200 nodes per layer
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Figure 5.14.: Comparison of predicted and test 'RootMxb1” data in "'Wave’ case when
trained with SM using 40 epochs, learning rate equal to 0.0005 and 200 nodes per layer

Model Accuracy

0 20 0 60 80 100 120
Epoch

RMSE for RootMxb1_[kN-m]

1400

1200

1000

RMSE

800

600

400

o 5 10 15 20 25 30 35 40
Future time step

Figure 5.15.: Loss function of 'RootMxb1” in  Figure 5.16.: RMSE of 'RootMxb1” in "Wave’

"Wave’ case when trained with SM using
120 epochs, learning rate equal to 0.0005
and 200 nodes per layer

case when trained with SM using 120
epochs, learning rate equal to 0.0005 and
200 nodes per layer

the same variable, 'RootMxb1’, in the same case, the "Wave’ one, using the same hyper-
parameters, 120 epochs and learning rate equal to 0.0005. The resulting loss curves for the
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5. Implementation of ARIMAX and LSTM models
test and validation data sets are shown in Figure 5.17.

Model Accuracy

in
Validation

Figure 5.17.: Cross validation of "RootMxb1’ in "Wave’ case when trained with SM using 120
epochs, learning rate equal to 0.0005 and 200 nodes per layer

As can be seen, the two curves are both flat, thus confirming the appropriate choice of
epochs and learning rate, but they are very distant from each other. This signifies that the
model’s definition has to be changed [78]. In this case, the number of nodes is adjusted. All
the simulations’ results shown until now are obtained using an architecture built using 200
nodes per layer. This is reduced first to 100 and then to 5, reducing 10 values each time until
10 and then 5 values in the last test. The resulting cross-validation graphs for the extreme
options are shown in the following Figure 5.18.
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Figure 5.18.: Comparison of cross-validation results for "RootMxb1’ in "Wave’ case when
trained with SM using 120 epochs and learning rate equal to 0.0005

These two cases correspond respectively to an overfitting and underfitting of the data set.
This can be easily understood by analyzing the corresponding RMSE graphs, which are re-
ported in the following Figure 5.19 together with other intermediate cases. When the SM is
built using 100 nodes, the maximum error is equal to 1438 kN m~1, while in the latter case,
it is 1421 kNm~1.

As a result, the number of nodes adopted is an option between the two extremes, resulting
in the lowest RMSE. It equals 30, which eventually still displays a difference between the
training and validation curves. This is a result of overfitting. However, the difference be-
tween the curves is generally quite small [79]. Overall, reducing the number of nodes not
only improves the accuracy of the forecast but also simplifies the model, reducing the com-
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Figure 5.19.: Comparison of RMSE for 'RootMxb1” in “Wave’ case when trained with SM
using 120 epochs and learning rate equal to 0.0005

putational time. The results obtained when the model is built using 30 nodes. 120 epochs
and a learning rate equal to 0.0005 are shown in the following Chapter 6.

65






Chapter 6

Results

To implement the procedures described in the previous chapter, Python codes are written
and run on HPC, where one node in the queue "fpt-small’ is used. The results of the forecasts
performed applying ARIMAX and LSTM are presented in this chapter, with a particular focus
on the latter, as the non-linear solution seems to be more promising for this analysis.

To forecast using ARIMAX the ‘pm.auto_arima’ function is used. As mentioned in Sec-
tion 5.2.2, this automatically detects the best order to apply for the provided data.

In this study, given the results of the previously performed ADF described in Chapter 4, the
order for differentiation is set to zero, while the maximum orders of auto-regression, ‘p’, and
moving average, 4, operations are set to 20. Despite these settings, the model never adopts
an order higher than 4 for either 'p’ or ’g’, for both the exogenous and endogenous inputs.
A clear pattern in the choice of these values could not be identified, they solely depend on
the nature of the input to the model. This consists of the previous 40 real values of the
considered variable.

For all the analyzed cases, the plotting of the forecast compared to real data results in very
diverse graphs. In some cases, the prediction agrees well with the reference, while the scale
is rather wrong in others. This is due to the limited ability of ARIMAX to handle non-linear
relationships. The best performances for ARIMAX implementation are achieved when the
variable tends to repeat the same behavior, thus maintaining the same period and oscillation
range.

Regarding LSTM, after the studies described in the previous Section 5.4, the chosen architec-
ture is an encoder-decoder structure made of two LSTM layers of 30 nodes using 120 epochs
with an initial learning rate equal to 0.0005, as summarized in the following Table 6.1. This
chapter reports the results of the variable "RootMxb1’, the edgewise moment at the blade’s
root, and 'RootMybl’, the blade flapwise moment at the blade root. These are examples of
the two types of behaviors identified when analyzing the results of this type of SM.

All the other variables are assessed in the appendix: the blade pitching moment and the
blade in-plane moment, which behave similarly to 'RootMxb1’, and the blade out-of-plane
moment, which has behaviors analogous to the ones of 'RootMybl’, are shown for the
"Wave’, 'NoWave’ and "PI” case respectively in Appendix B, Appendix C and Appendix D.
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Table 6.1.: Summary of the selected hyper-parameters for LSTM

Hyper-parameter Value
Batch size 16
Number of epochs 120

Learning rate 0.0005
Number of nodes per layer 30

The reason for these correlations can be identified in two main points. First, while the for-
mer variables operate on a scale ranging over approximately 50000 kN m~!, the latter ones
span over 90000 kN m~!, which is almost double. Second, the blade edgewise, pitching, and
in-plane moment are correlated to the in-plane deflection while the blade flapwise and out-
of-plane moment receive the out-of-plane deflection as exogenous inputs during training.

As far as the computing time is considered, the required time to run each simulation on HPC
using 1 node is comprised between two and three hours for ARIMAX and nine and ten hours
for LSTM. As previously mentioned, while the linear solution has to build a new model for
each forecast, the non-linear one requires more time to build a single model that can be
applied for more sections and only takes a few seconds to forecast.

The results obtained by implementing the two SM are shown in this chapter, which is struc-
tured as follows. First, in section Section 6.1 the output of the "Wave’ case implementation is
shown. Next, in Section 6.2 the results of the "NoWave’ case are reported followed by those
of the 'PI’ case in Section 6.3. In all these sections, only the results of edgewise and flapwise
moments at the blade root are assessed, and a comparison between the linear and non-linear
data-driven methods is provided for each of them. Finally, a comparison and overview of
all the obtained predictions and results are summarized in Section 6.4.

To display examples of the obtained forecasts, some predictions together with the data from
the corresponding test sections are shown. To clarify the origin of the data, in the description
of each figure the environmental variables given as inputs in OpenFAST, as explained in
Chapter 3, are reported in a vector x in the same order shown in Table 6.2.

Table 6.2.: Ordered OpenFAST inputs

Reference wind speed (ms~!) | Significant wave height (m) | Difference between wave and wind directions (°C) | Turbulence intensity (%) | Wave period (second)

URef Hs Deltay TI T,

6.1. "Wave’ case

The first analyzed case is the "Wave’ one. This considers as exogenous variables to simulate
the atmospheric conditions the wave elevation, the wind time series, and the reference value
for wind speed adopted by "TurbSim’ to generate the stochastic wind speed time series.
Moreover, an additional turbine parameter, the blade deflection of the considered blade, is
also provided as exogenous input. In this section, first the results obtained for the blade

68



6.1. "Wave’ case

edgewise moment are presented in Section 6.1.1, followed by those of the blade flapwise
moment in Section 6.1.2.

6.1.1. Blade edgewise moment - 'RootMxb1’

For both ARIMAX and LSTM, the results of the forecast are plotted in comparison to the values
of the simulations results obtained from OpenFAST and inserted in the test database. Some
of the generated results can be found in the following Figure 6.1.
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Figure 6.1.: Examples of forecast results for 'RootMxb1” in "Wave’ case

Here three different sections are taken as examples to show the performance of the two SM
in different operating conditions. As a matter of fact, the forecast simulations are selected
to exemplify the functioning of the turbine below, at, and above rated wind speed. The
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same simulations, even though considering different sections, will also be used for all the
other variables and cases. In particular, the first one, operates at 5.9 m s~1. As mentioned in
Chapter 3, rated wind speed is 10.59 ms ™!, thus the second example reference wind speed
is equal to 10.8ms~!. Finally, for the operations above rated wind speed, the simulation
corresponding to a "URef’ equal to 20.6 ms~! is chosen.

As shown, it can happen that the two models provide very similar results, as it happens for
rated wind speed, but this is generally not true. As previously mentioned, ARIMAX displays
the lowest discrepancy between the actual and forecasted curves when the variable behaves
exactly the same way as in the previous section. When this is not the case, behaviors such as
the one shown for below rated wind speed may occur. On the other hand, LSTM can better
capture the trend changes since it can also rely on long-term memory to make predictions.

To assess the accuracy of the trained model more analytically, the RMSE is calculated for
both ARIMAX and LSTM for each time step of each simulation. Then, this is averaged and the
results are plotted in the following Figure 6.2. As can be seen, the values obtained via LSTM
are approximately six times less than the ones computed when ARIMAX is implemented.
In the former case, the maximum RMSE is 1102kNm~!. Compared to the reference scale
of 'RootMxb1” comprised between —21774kN m~1 and 26853kNm™!, this is equal to a
percentage error of 2.3%.

Finally, to evaluate the convergence and accuracy of the LSTM model even further, a cross-
validation analysis is performed, as shown in Figure 6.3. As mentioned in Chapter 5, it can
be seen how the training curve becomes flat towards the end but this doesn’t overlap with
the validation curve. This is because the model is slightly overfitting the data series. Thus,
it is possible to optimize the algorithm and further improve the forecast.
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Figure 6.2.: RMSE of 'RootMxb1” in "Wave’ Figure 6.3.: Cross validation analysis of
case "RootMxb1” in "Wave’ case
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6.1.2. Blade flapwise moment - 'RootMyb1’

Compared to the trend seen for the edgewise moment, the results of the forecast of the blade
flapwise moment are quite different. These are shown in the following Figure 6.4. It can
be noticed how the behavior of this variable is much more irregular compared to the one
observed in Figure 6.1, as the flapwise loads are driven by turbulence below rated wind
speed. As a result, it is more difficult for both algorithms to compute accurate results.
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Figure 6.4.: Examples of forecast results for 'RootMyb1” in "Wave’ case

Given the characteristics of the blade flapwise moment, it can be noticed not only from the
reported pictures, but also from all the others obtained and not shown in this study for space
constrictions, that better forecasts are obtained above rated wind speed when the blades are
pitched and the variable follows a more regular trend.

To improve the accuracy of the predictions, more data can be included in the training data
set to provide the forecasting model with more examples of past load conditions, which
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can help it identify and learn patterns, trends, and relationships related to the moments at
the root blade. On top of that, a possible improvement in the forecast can be achieved by
including measurements of the same target variable along different locations on the blade as
exogenous features. However, this topic should be further investigated in future studies.

Despite the increased difficulty for both algorithms to produce accurate forecasts, LSTM is
able to correctly capture the mean trend of the evolution of the loads. As a result, the ana-
lytical expression of the accuracy of the forecast through RMSE is significantly different for
the two SM. The results of the average value obtained over all the 800 generated sections can
be observed in Figure 6.5 and highlight two main points. First, the orange curve, related
to ARIMAX implementation, is approximately four times higher than the blue one. Further-
more, the latter increases correctly as the time step is further in the future while the former
has a more random behavior. This confirms that non-linear modeling is more successful for
this type of application. The maximum RMSE value for LSTM in this case, is 1252kNm~!.
However, this corresponds to a percentage error of only 1.4%, given that the variable oscil-
lates between -13336 kN m~! and 77073 kN m ™!, thus on a larger scale compared to the one
of 'RootMxb1’".

Finally, the cross-validation analysis is also performed in this case. As seen in Figure 6.6, the
validation curve is not always above the train one. This can be due to overfitting since the
validation curve tends to increase in value as the number of epochs increases. This behavior
highlights that the parameters are not well-tuned for this specific case.
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Figure 6.5.: RMSE of 'RootMyb1’ in "Wave’ Figure 6.6.: Cross validation analysis of
case "RootMyb1’ in "Wave’ case

72



6.2. 'NoWave’ case
6.2. 'NoWave’ case

To evaluate the impact of hydrodynamics on the loads perceived by the blades, the second
analyzed case does not consider wave elevation as an external parameter. Still, it considers
all the other variables mentioned in the previous Section 6.1 as exogenous variables. This
means that the exogenous inputs, in this case, are the reference and time series wind speed
and the blade deflection. As for the "Wave” case, also in this section, first the 'RootMxb1’
variable is analyzed in Section 6.2.1, followed by the 'RootMyb1’ feature in Section 6.2.2.

In the following Figure 6.7, three different sections’ forecasts are shown for both ARIMAX
and LSTM. As for the previous case, these represent three different operating conditions: the
first shows the behavior below wind speed, the second at rated wind speed, and the last
above it.

As expected, also in this case LSTM emulates the behavior of the test data more accurately,
predicting correctly the period and the oscillations. On the other hand, ARIMAX either over-
estimates or underestimates the peaks and valleys of the oscillations and in most cases does
not correctly identify when they occur, thus shifting them over time. This is once more due
to the limited ability of the linear model to retain long-term memory. As a matter of fact,
the predictions of ARIMAX are strictly linked to the behavior of the target variable in the pre-
vious section, thus it is highly probable that the frequency and amplitude of the oscillations
are not accurate, as in this case.

The direct consequence of this observation is the difference between the computed RMSE.
As shown in Figure 6.8, the values of the discrepancies measured for ARIMAX are almost
eight times more than the ones resulting from the implementation of the non-linear SM.
Furthermore, the trend followed by the orange curve is incorrect since it doesn’t increase as
the time step is further away. The error for LSTM is always lower than 1048 kN m~!. This
is equal to only 2.2%, thus it is slightly lower compared to the one obtained for the "Wave’
case.

This difference may become even greater once the hyper-parameter tuning is optimized. As
can be seen in Figure 6.9, the validation curve is slightly higher than the train one. Thus
the model still overfits the data and the forecast achieved through LSTM might improve even
more.

Figure 6.10 reports three forecast examples referring to three different operating conditions
for both ARIMAX and LSTM implementation. As can be noticed by observing the blues lines,
the behavior of the variable in the selected section is not periodical. This is expected given
the characteristics of the variables mentioned in Section 6.1.2 and, as a result, both methods
fail to accurately emulate the test data. However, while the non-linear model follows the
trend of the target feature, the ARIMAX curve becomes flat when operating below and at
rated wind speed, and the oscillations are heavily damped for the last case. This is probably
due to the inability of the SM of extracting significant data. When the linear model is applied,
the forecast is unlikely to improve even when the techniques mentioned in Section 6.1.2
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Figure 6.7.: Examples of forecast results for 'RootMxb1” in 'NoWave’ case
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are implemented, but for the LSTM one or the combination of more of the aforementioned
solutions may lead to more accurate results.
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Figure 6.10.: Examples of forecast results for 'RootMyb1” in "'NoWave’ case

The RMSE computed when ARIMAX is applied is significantly higher, almost eight times
more, than the one resulting from LSTM implementation, as shown in Figure 6.11. The
maximum error value for RMSE when LSTM is implemented is much higher compared to the
case shown before since it is equal to 1978 kN m~!, which corresponds to a percentage error
of 2.1 %. Thus for the blade flapwise moment the "Wave’ case results in a lower error than
the currently analyzed one when the hyper-parameters previously mentioned are applied
for both cases.

Finally, from the evaluation of the cross-validation analysis performed for this application,
it can be seen that the model is overfitting the data. As shown in Figure 6.12, the two
curves intersect each other, and the validation one, in particular, assumes higher values as
the number of epochs increases.
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6.3. 'PI’ case

The last case considered in this study is the 'PI'. As mentioned earlier, it considers only the
wind speed time series and the rotor speed as exogenous variables. This scenario is analyzed
to assess the performance of the SM when it receives only the same variables currently
received by PI controllers as exogenous inputs. Once more, the blade edgewise moment
analysis is in Section 6.3.1, followed by the blade flapwise moment in Section 6.3.2.

For this last case, once more operating conditions below, at, and above rated wind speed are
represented through three different sections. These are displayed for both ARIMAX and LSTM
results in the following Figure 6.13.

The chosen sections show that also the linear model is quite accurate in all the displayed
graphs, but this is not the case in reality. The results shown in Figure 6.13 are achieved
thanks to the periodicity and regularity of the target variable but, as can be seen in the
following Figure 6.14, the amplitude and frequency of the oscillation are not always correctly
detected by ARIMAX, while they are when LSTM is implemented. The behavior shown in this
figure for the linear model is more similar to what is expected for this SM given not only the
high dependency of the forecast from the measurements of the previous section but also the
weak relations obtained from cross-correlation analysis performed between the target and
exogenous features.

As a matter of fact, also for the 'PI’ case, the RMSE is significantly higher when computed
for ARIMAX application compared to the one of LSTM. In this case, also an anomaly can be
seen in the curve of the ARIMAX RMSE: this is characterized by a peak for the values closer
to the present time step. Conversely, the blue curve assumes higher values as the time step
progresses, highlighting the increasing inaccuracy in results for time-distant instants. For
LSTM, the maximum error is equal to 1253 kN m~! which corresponds to a percentage error
of 2.6%. This is higher than the one obtained in both "Wave” and "'NoWave’ cases.

Finally, the cross-validation performed to assess the tuning of the LSTM hyper-parameters
in Figure 6.16, shows a behavior similar to what has been observed for the blade flapwise
moment: the validation curve is partly below the train one and partly above it. This can be
due once more to overfitting.
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Figure 6.13.: Examples of forecast results for 'RootMxb1” in 'PI case

6.3.2. Blade flapwise moment - 'RootMyb1l’

In the following Figure 6.17, the forecasts of three different sections provided by both
ARIMAX and LSTM are reported. Given the non-periodical behavior of the target variable
and the weak correlations detected in Chapter 4 with the exogenous variables, it can be
clearly seen how ARIMAX fails to provide accurate predictions. Furthermore, in this case,
also LSTM fails to correctly emulate the trend followed by the variable in all cases. This is
due to both the weak correlation between the exogenous variables and the target output and
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the non-periodic behavior of ‘RootMyb1’. To achieve better results, it may be particularly
useful to implement a model that can include uncertainty. This would help to capture the
variations in wind speed, which in this case is one of the only two exogenous variables
implemented, thus assuming a fundamental role for the forecast.

As a consequence, the discrepancy in RMSE evaluated for the ARIMAX and LSTM model is
lower here compared to the other cases. As shown in Figure 6.19, the curves overlap around
the 10" time step, even though the curve obtained from the non-linear SM application is
still generally lower. The maximum error value obtained in this case is 1569 kKN m~!, corre-
sponding to a percentage error equal to 1.7%.

Finally, also for this analysis the cross-validation results are shown in Figure 6.19. As for
‘RootMxb1’, the two curves overlap, and the validation one increases as the number of
epochs progresses. This is a clear sign of overfitting.
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6. Results

6.4. Comparison of the forecasting methods

Overall, the implementation of LSTM has proven to be more successful compared to the one
of ARIMAX. This is linked to multiple factors. The first consideration regards the real-life
application of this study. While for the non-linear model it is possible to define a single
model that can be updated each time with the most recent forecast to obtain the values
of the target feature in the next 30 seconds, for the linear solution, this is not possible.
Thus, rebuilding and retraining the model at each time step is necessary. This results in a
computational time that is too high for practical implementation.

Furthermore, the RMSE from ARIMAX is up to seven times greater compared to the one
obtained from the implementation of LSTM. The main reason for this performance relies on
the ability of LSTM to retain the memory of behaviors in the training data set that occurred
further away in the past compared to ARIMAX, which only takes into account the last 40 time
steps in this case.

Within the application of LSTM, the case that obtained the lowest RMSE is "NoWave’ for
the blade edgewise moment, the blade pitching moment, and the blade in-plane moment.
However, the resulting percentage error for 'RootMxb1” compared to the "NoWave’ case is
only 0.1% higher for the "Wave’ case and 0.4% for the 'PI’ one. The latter is the maximum
one overall, and it is equal to 2.6%.

For the blade flapwise and out-of-plane moment, the best performance is achieved when
the "Wave’ case and the 'PI’ case are respectively implemented. Since no consistent trend is
detected and the hyper-parameters are poorly calibrated for this target feature, no conclusion
is certain. In particular, the percentage error obtained in the "Wave’ case for 'RootMyb1’
is equal to 1.4%, while the one for the ‘'NoWave’ is 2.1%. This value represents the worse
performance for the flapwise moment, given that for the 'PI’ case the percentage error equals
1.7%.

It should be noted that the percentage errors are calculated over the variation span of data
coming from 200 different simulations, thus while a certain value of RMSE may have little
impact in a specific case, the same absolute value can correspond to completely wrong fore-
casts in another section. This should also be considered when evaluating the performance of
the LSTM implementation. A summary of the obtained errors for all the variables analyzed
in this study can be found in the following Figure 6.20.

Given the described computed mechanism, all the errors achieved through the implementa-
tion of LSTM are still very low, and such a result may be due to the use of a dataset originating
from training instead that from real data: it is based on another mathematical model, which
also makes assumptions to model real-life events. In particular, in this study, BEM is used
to compute the aerodynamics of the turbine. This is already a simplification compared to
OLAF, as seen in Chapter 3. However, even if the accuracy of the model may become worse
as other data sets are used, the main results highlighted in this section, thus the limited
impact of wave elevation on the edgewise, pitching, and in-plane moment at the blade root
and the effectiveness of LSTM and non-linear models in general compared to ARIMAX, should
be confirmed.

Finally, the encoder-decoder architecture adopted when implementing in LSTM is not strictly
necessary given the nature of the data. However, it is generally useful to improve the per-
formance of the forecast since the encoder processes historical load data and summarizes it
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into a context vector, which is then used as the initial state for the decoder. This can be espe-
cially beneficial for load forecasting, as it enables the model to consider the whole historical
context when generating forecasts.
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Chapter 7

Conclusions and future research

This chapter presents a summary of what has been analyzed so far, along with considera-
tions on the whole study and suggestions for future research. In particular, in Section 7.1,
a resume is defined following the questions defined in Chapter 1. Next, in Section 7.2, a
general impression of the obtained results, along with ideas for future development, are
given.

7.1. Conclusions

This study aimed to present a methodology to create a site-specific surrogate model that
provides a time series forecast of the loads during normal operating conditions at different
load-sensible spots along the tower and blades of a 15MW bottom-fixed offshore turbine
located 30 km off the west coast of Ireland. To effectively address the topic, different sub-
questions were identified. These are here reported and answered. The first sub-question
was:

What variables should be chosen to represent the environmental conditions and how should they be
sampled to generate the best training database?

Throughout the literature review, average wind speed, turbulence intensity, wave direction,
significant wave height, and peak spectral wave period were the most common features used
to describe environmental characteristics when offshore wind turbines were studied. This
research collected these features from a real database of the identified region. This data
was then used to define the domain of each variable and express it as relationships between
the identified features. As a result, a sampling area was defined. Quasi-random sampling
through Halton sequencing was then used to generate different simulated environmental
conditions uniformly distributed throughout the identified area. Next, the second question
was:

Which of the computed features influence the target loads the most?
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7. Conclusions and future research

To perform this study, the 15 MW NREL offshore wind turbine with a fixed-bottom monopile
structure model was used. Simulations were run using both BEM and OLAF aerodynamic
models. Since the difference in accuracy between the two models was not particularly rele-
vant for this study, BEM was eventually preferred because of its reduced computational time.
Later the results were analyzed, the stationarity of the data was verified and cross-correlation
was applied to determine which variables were correlated. Through cross-correlation, five
different target features were selected, considering five different exogenous variables, which
are retrievable through different instrumentation in reality. The selected variables to be fore-
cast were the blade in-plane and out-of-plane moment, the blade pitching moment, and the
edgewise and flapwise moment. These showed a strong correlation with the out-of-plane
and in-plane deflection. On top of these, the reference wind speed, the wind speed, and sig-
nificant wave height time series were also considered. Next, the most significant locations
to study these features were inquired about:

What are the most load-sensible points on the blade?

The most important zones for the design of the turbine are the blade roots. For this reason,
these are the areas where the loads were forecast. Once all these aspects have been inspected,
the training of the surrogate model began.

What features should be chosen for the implemented SM and which exogenous variables should be
considered as inputs for each target parameter?

To assess the impact of the hydrodynamic loads on the moments at the root of the blade,
the cases "Wave” and ‘NoWave’ were defined. The former considers as exogenous variables
the wave elevation, the wind time series, and the reference value for wind speed adopted
by "TurbSim” to generate the stochastic wind speed time series to simulate the atmospheric
conditions and an additional turbine’s parameter which is either the in-plane or out-of-plane
deflection, depending on the target feature. The latter includes the same variables, except
for the wave elevation time series. Next, a case was investigated to relate the future imple-
mentation of MPC to the current PI controllers. This was named 'PI’ case and considered
as inputs only the wind speed time series, currently obtained as input of the controller via
an estimator, and the rotor speed, which is the only measured exogenous inputs of the cur-
rently implemented control strategy. Overall, an evaluation of the implemented strategies to
train the SM had to be made:

What time series forecast model works best to accurately predict the loads and why?

Given the results obtained by the error estimates and the real-life application of the study,
it is clear that the LSTM, the non-linear model, performs better than ARIMAX. This is true
from numerous points of view. First, it is possible to train the model only once and obtain
different forecasts depending on the new input received by the most recent measurements.
Next, the overall performance of the model is almost seven times more accurate in all cases.
Finally, once the model is built, it is faster to fit the results. Within the LSTM application,
two types of behaviors were identified, thus they were represented by the blade edgewise
and flapwise moments. For the edgewise moment, the most accurate case was the 'NoWave’
one but this was estimated to be only 0.1% better compared to the "Wave” one. The 'PI’ case
error is estimated to be approximately 2.6% and it is the one performing less accurately, 0.4%
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7.2. Further research

worse compared to the best predictions. For the flapwise moment, the "Wave’ case was the
most precise. However, given the poor tuning of the selected hyper-parameters for the LSTM
when applied to this variable, no real conclusion can be achieved. Thus, the main research
question can be answered. This was:

Can data-driven surrogate models be used for forecasting load time series on offshore wind turbines?

Through the definition of the proposed methodology, accurate forecasts were obtained. Fur-
thermore, it was proved that linear models are not adequate to perform this prediction and
more powerful, non-linear solutions have to be implemented. LSTM proved to be a good
solution, given its ability to also retain the memory of events that are further away in time
with respect to the present.

7.2. Further research

Even though this work successfully answered the research question initially proposed, many
aspects of time series load forecasting still have to be explored. In this section, the limitations
of this thesis are used as a guideline for future research.

First, it would be interesting to repeat the hyper-parameter analysis using another variable,
such as the blade flapwise moment, to obtain values of the learning rate, number of epochs,
and nodes more suited to this variable. The same study can also be repeated on the blade
edgewise moment, refining the adopted values and differencing them depending on the
considered case.

Next, as far as the model’s architecture is concerned, the encoder-decoder architecture
adopted for LSTM is not essential even though it should improve the accuracy of the SM.
It would be interesting to repeat the study implementing simple LSTM or another type of
NN to assess the importance of long-term memory in this type of forecast. The goal of this
research would be to assess the impact that the encoder-decoder architecture has on the
accuracy of the forecast. Furthermore, it would be interesting to investigate this aspect to
determine if it is possible to reduce the computational effort, making the implementation of
loads forecasting in MPC easier.

Another area to investigate for further development pertains to extending the forecast time
horizon. The current study focuses on thirty-second forecasts, which is a time horizon long
enough to fit the model with the updated values from the previous section and obtain the
ones for the future time frame. Despite this, it remains uncertain whether this duration
will prove sufficient given future advancements and the subsequent implementation of the
model predictive controller. Investigating and determining the optimal forecast horizon that
strikes a balance between accuracy and practical applicability is essential.

A further deepening of the analysis can focus on using OLAF instead of BEM to create the
training algorithm. The results of such a surrogate model should then be compared to
the one presented in this research to confirm the assumptions of the limited impact of this
decision on the final performance. To expand on this point, testing the methodology using
real-life measurements in the database would also be useful. This would enable to assess
the performance of LSTM when trained with data that is not the result of other simulations
and evaluate if the errors in estimations stay very low or increase significantly.
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7. Conclusions and future research

Lastly, replicating the same study on offshore floating wind turbines represents an important
step forward. This would enable an assessment of the performance of LSTM models in
scenarios where hydrodynamic loads play a more prominent role compared to the cases
analyzed in the present report. Such a study would provide valuable insights into the
adaptability and effectiveness of these models in varying wind turbine configurations and
environmental conditions. This would be extremely useful in the implementation of MPC,
which is being further investigated in relation to wind turbines especially to be applied in
FOWT.

The presented suggestions should be updated and redefined also depending on the im-
provement in the definition of the model predictive controller. By embarking on these sug-
gested research endeavors, a deeper understanding of time series load forecasting can be
cultivated, facilitating advancements in the field and the development of more accurate and
reliable forecasting methodologies.
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Appendix A

Heat maps summarizing cross-correlation
results

As anticipated in Chapter 4, in this appendix two examples of heatmaps summarizing the
results obtained for cross-correlation are shown. In particular, Figure A.1 shows the result
obtained in the simulation denominated ‘Case 1” while Figure A.2 refers to the one called
"Case 2'.

Figure A.1.: Heatmap summarizing cross-correlation analysis results for ‘Case 1’
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A. Heat maps summarizing cross-correlation results

Figure A.2.: Heatmap summarizing cross-correlation analysis results for ‘Case 2’
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Appendix B

Results "Wave’ case forecasts

This appendix reports the results obtained for the "Wave’ case for all the target variables
selected in Chapter 4, excluding the blade edgewise and flapwise moment. These are shown
in Chapter 6. In this case, the wave elevation, the wind time series, and the reference value
for wind speed adopted by "TurbSim’ to generate the stochastic wind speed time series to
simulate the atmospheric conditions, and an additional turbine parameter depending on the
target output are considered as exogenous inputs.

Three examples of the forecast achieved through both ARIMAX and LSTM compared to test
data, the RMSE graphs and the cross-validation performed on the non-linear model are
shown for each feature. The examples depict the same simulations shown in Chapter 6,
thus illustrating the behavior of the turbine in different operating conditions. The results for
the blade in-plane moment are in Section B.1, for the blade pitching moment in Section B.2,
and for the blade out-of-plane moment in Section B.3.

B.1. Blade in-plane moment

The blade in-plane moment behaves similarly to the blade edgewise moment. When the
graphs of the visualization of the forecasts in Figure B.1, the RMSE in Figure B.2 and the
performed cross-validation analysis reported in Figure B.3 are observed, the analogies are
clear. The maximum value of RMSE obtained for "RootMxc1” when forecasted applying LSTM
is 1301 kN m~!, which corresponds to a percentage error of 2.4% given that the variable
oscillates between —19614kN'm ! and 33881 kN m .

B.2. Blade pitching moment

The blade pitching moment also displays a behavior similar to the blade edgewise moment.
As a matter of fact, the graphs of the visualization of the forecasts in Figure B.4, the evalua-
tion of the RMSE in Figure B.5 and the cross-validation analysis in Figure B.6 are very similar
to the one shown in Chapter 6 even though the scale of this variable is different. "RootMzcl’
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B. Results "Wave’ case forecasts
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Figure B.1.: Examples of forecast results for 'RootMxcl” in "Wave’ case
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B.3. Blade out-of-plane moment

varies between —508 kN m ! and 240kN m™!, thus, if the maximum RMSE obtained from
LSTM application is equal to 11.8 kN m~!, the percentage error is 1.6%.
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Figure B.4.: Examples of forecast results for 'RootMzcl” in "Wave’ case

B.3. Blade out-of-plane moment

The blade out-of-plane moment has a behavior similar to the one of the blade flapwise
moment. This is clearly visible when forecasts shown in Figure B.7 is analyzed. Moreover,
the RMSE in Figure B.8 and the cross-validation reported in Figure B.9 are analogous to those
of 'RootMyb1” shown in Chapter 6. The maximum RMSE value for LSTM application in this
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B. Results "Wave’ case forecasts
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Figure B.5.: RMSE of 'RootMzcl’ in "Wave’ Figure B.6.: Cross-validation analysis of
case "RootMzcl” in "Wave’ case

case is equal to 1416 kKN m~! which corresponds to a percentage error of 1.6% given that the
target output oscillates between —13386 kN m ™! and 77099 kN m~1.
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Appendix C

Results 'NoWave’ case forecasts

This appendix reports the results obtained for the "NoWave’ case for all the target variables
selected in Chapter 4, excluding the blade edgewise and flapwise moment. These are shown
in Chapter 6. In this case, the wind time series, and the reference value for wind speed
adopted by "TurbSim’ to generate the stochastic wind speed time series to simulate the
atmospheric conditions, and an additional turbine parameter depending on the target output
are considered as exogenous inputs.

For each feature, three examples of forecast achieved via ARIMAX and LSTM implementation
compared to test data, the RMSE graphs, and the cross-validation analysis of the LSTM model
are shown. The chosen simulations are the same used in Chapter 6, thus depicting different
operating conditions. The results for the blade in-plane moment are reported in Section C.1,
for the blade pitching moment in Section C.2, and for the blade out-of-plane moment in
Section C.3.

C.1. Blade in-plane moment

The blade in-plane moment behaves similarly to the blade edgewise moment. This is con-
firmed by all the graphs shown. In particular, the visualization of the forecasts in Figure C.1,
the RMSE in Figure C.2, and cross-validation analysis is reported in Figure 6.9. The maxi-
mum value of RMSE obtained for "RootMxcl” when LSTM is applied is 1197 kN m~!, which
corresponds to a percentage error of 2.24%. As for the blade edgewise moment, also for the
blade blade in-plane moment the ‘'NoWave’ case results in a lower error compared to the
"Wave’ one.

C.2. Blade pitching moment

The blade pitching moment also displays a behavior similar to the blade edgewise moment.
As shown in the graphs of the visualization of the forecasts in Figure C.4, the evaluation
of the RMSE in Figure C.5 and the cross-validation analysis in Figure C.6, the characteristics
of the aforementioned studies are analogous. In particular, for 'RootMzcl’ in the "NoWave’
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C. Results "NoWave’ case forecasts
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Figure C.1.: Examples of forecast results for 'RootMxcl” in "'NoWave’ case
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C.3. Blade out-of-plane moment

case, the maximum value of the RMSE for LSTM application is equal to 8.45kNm™!, the
percentage error is 1.13%. Once more, the performance of the 'NoWave’ case for this target
feature is better compared to the one in the "Wave’ case.
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Figure C.4.: Examples of forecast results for 'RootMzcl” in "NoWave’ case

C.3. Blade out-of-plane moment

The blade out-of-plane moment shows characteristics similar to the blade flapwise moment.
This is visible when the forecasts visualization in Figure C.7, the RMSE in Figure C.8 and
the cross-validation reported in Figure C.9 are analyzed. They are all analogous to those
of 'RootMyb1” shown in Chapter 6 but in this case the maximum RMSE value for LSTM
implementation is equal to 1416 kN m~! which corresponds to a percentage error of 1.5%.
This is slightly lower than the one obtained in the "Wave’ case, which is not in line to what
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C. Results "NoWave’ case forecasts
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is highlighted for the flapwise moment. The divergence in this parameter can be due to the
poor calibration of the hyper-parameters for these variables.

98



Actual vs Forecasted for RootMyc1_[kN-m]

60000 —

55000

RootMycl_[kN-m]

40000

50000

45000

— Actual
—— Forecasted

o H 10 25 30 3

15 20
Future time step

a0

C.3. Blade out-of-plane moment

Actual vs Forecasted for RootMyc1_[kN-m]

60000

55000

50000

45000

RootMyc1_[kN-m]

40000

— Actual
—— Forecasted

\Z

0 H

10

15 20 25 30 35 40
Future time step.

(a) ARIMAX x = [5.9, 3.1, -47.8, 20.4, 6.4] at t = 810s (b) LSTM x = [5.9, 3.1, -47.8, 20.4, 6.4] at t = 810s

40000

38000

m]

36000

RootMycL_[kN:

34000

32000

() ARIMAX x = [10.8, 0.89, -281.9, 15.2, 13.4] at =

32000

30000

28000

Roothycl_[kN-m]
¥ % 3
3 5 38
8 8 8

20000

18000

16000

(e) ARIMAX x = [20.6, 5.2, -192.0, 12.3,7.5] at t =

Actual vs Forecasted for RootMyc1_[kN-m]

— Actual
—— Forecasted

o H 10 25 30 3

20
Future time step

630s

Actual vs Forecasted for RootMyc1_[kN-m]

0

— Actual
—— Forecasted

4 5 0 15 20 25 30 3
Future time step

660s

Actual vs Forecasted for RootMycl_[kN-m]

— Actual
40000 —— Forecasted

38000

36000

RootMyc1_[kN-m]

34000

32000 \ /

0 H

10

15 20 25 30 35 40
Future time step

(d) LSTM x = [10.8, 0.89, -281.9, 15.2, 13.4] at t =

630s

Actual vs Forecasted for RootMyc1_[kN-m]

32000 { — Actual
—— Forecasted
30000

28000

m]

£ 26000
! 24000

22000

RootMyc1_[kN-

20000

18000

16000

0 H 10

15 20 25 30 35 40

Future time step

(f) LsT™M x = [20.6, 5.2, -192.0, 12.3, 7.5] at t = 660's

Figure C.7.: Examples of forecast results for 'RootMycl” in ‘'NoWave’ case

RMSE for RootMyc1 'NoWave' case

—— NoWave RootMycl ARIMAX [

A
Y \

—e— NoWave RootMycl LSTM >

Figure C.8.: RMSE of 'RootMycl” in "NoWave’

2 25 30 3
Future time step

case

Model Accuracy

— Train
—— validation

Figure C.9.: Cross-validation analysis of
"RootMycl’ in 'NoWave’ case

99






Appendix D

Results 'PI’ case forecasts

This last appendix reports the results obtained for the 'PI’ case. Here all the target variables
selected in Chapter 4, excluding the blade edgewise and flapwise moment are analyzed. The
missing results are shown in Chapter 6. In this case, only the wind speed time series and
the rotor speed are received by the SM as exogenous variables.

For each variable, three examples of forecast compared to test data that exemplify diverse
operating conditions, the RMSE graphs and the cross-validation analysis performed on the
LSTM model are reported. In particular, the results for the blade in-plane moment are shown
in Section D.1, for the blade pitching moment in Section D.2, and for the blade out-of-plane
moment in Section D.3.

D.1. Blade in-plane moment

The blade in-plane moment is analogous to the blade edgewise moment. The visualization of
the forecasts in Figure D.1, the RMSE in Figure D.2 and cross-validation analysis reported in
Figure D.3 all confirm this statement. The maximum value of RMSE obtained for "'RootMxcl’
when LSTM is applied is 1477 kN'm~!, which corresponds to a percentage error of 2.7%. As
for 'RootMxb1’, this value is higher than the one obtained for both the "Wave” and "NoWave’
cases, thus the trend is confirmed and the best performance for the blade in-plane moment
is achieved in the 'NoWave’ case.

D.2. Blade pitching moment

The blade pitching moment is also similar to the blade edgewise moment when the visu-
alization of the forecasts in Figure D.4, the evaluation of the RMSE in Figure D.5 and the
cross-validation analysis in Figure D.6 are analyzed. For 'RootMzcl’, however, the scale
is very different. Thus, even though the maximum RMSE for LSTM application is equal to
9.12kN'm~!, the percentage error is still 1.2%. This is higher than the value obtained for the
"NoWave’ case, which is confirmed to be the one performing better, but it is lower than the
1.6% of the "Wave’ case.
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D. Results 'PI’ case forecasts
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(a) ARIMAX x = [5.9, 3.1, -47.8, 20.4, 6.4] at t = 480s (b) LSTM x = [5.9, 3.1, -47.8, 20.4, 6.4] at t = 480s
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(e) ARIMAX x = [20.6, 5.2, -192.0, 12.3,7.5] at t =
750s (f) LST™M x = [20.6, 5.2, -192.0, 12.3, 7.5] at t = 750 s

Figure D.1.: Examples of forecast results for 'RootMxcl” in "Wave’ case
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D.2. Blade pitching moment
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Figure D.4.: Examples of forecast results for '/RootMzc1” in ‘PI” case
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D. Results 'PI’ case forecasts
D.3. Blade out-of-plane moment

Finally, the blade out-of-plane moment has a behavior similar to the one of the blade flapwise
moment. This is confirmed by the forecasts shown in Figure D.7, the RMSE in Figure D.8 and
the cross-validation reported in Figure D.9. In particular, the error curve is almost flat, thus
confirming the poor calibration of the hyper-parameters for this variable. The maximum
obtained value for RMSE within LSTM results is equal to 1106 kN m~! which corresponds to
a percentage error of 1.2%. For this target variable, the 'PI’ case is the one performing the
best.
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D.3. Blade out-of-plane moment
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