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1 Abstract

This study presents a comparison of different Variational
Autoencoder(VAE) models to see which VAE models are
better at finding disentangled representations. Specifically
their ability to encode biological processes into distinct la-
tent dimensions. The biological processes that will be looked
at are the cell cycle and differentiation state. The cell cycle
is expressed as a S- and G2M-Score and the differentiation
state is expressed as a number that quantifies the develop-
ment time of the cells. First the models will be trained, after
that the models will be evaluated. The evaluation is done
by checking the latent dimensions for a correlation with the
two aforementioned biological processes. From this it be-
came quite clear that VAE and DIP-VAE performed the
worst out of the four models tested. On the other hand
β-VAE and β-TCVAE performed by far the best.

2 Introduction

An attractive class of deep learning models is Variational
Autoencoder (VAE). The original VAE model was first de-
fined by Kingma and Welling in 2012 [1]. These models can
find a low dimensional representation of the original data,
effectively compressing the data. However, VAE can not
find a low-dimensional representation of the original data
that is also disentangled. Disentangled representations are
interesting because, each dimension of a disentangled repre-
sentation encodes something meaningful and distinct. What
this means is that each dimension captures a unique aspect
of the dataset. Since 2012, numerous extensions for the orig-
inal VAE have been created. Some of these extensions have
been shown to be better at finding disentangled representa-
tions.

VAEs have been used a lot in the context of single cell data
analysis [2]. This data is in the form of gene expressions and

gene RNA counts measured in each cell. For this paper, the
goal is to disentangle biological processes. However, bench-
marking the performance of each model in finding these bio-
logical processes as a disentangled representation is difficult.
This is due to the fact that in the data that is used for this
study there are no true labels. Therefore, this study will
mostly focus on data that we know how to get which in this
case are the cell cycle score and differentiation state.

This leads to the research question: "How good are differ-
ent VAE models at learning disentangled representations?"
This will be done by comparing how good the different VAE
models are at disentangling the cell cycle score and differen-
tiation state from the data. The goal for the VAE models is
to encode each biological process into a single latent dimen-
sion. The goal is for the correlation between this biological
process and that single latent dimension to be as high as
possible.

3 Methodology

3.1 Data collection

The dataset that is used for this research is cellular data
from the mouse hippocampus. The data consists of both
neuronal and non-neuronal cells. Due to the fact that these
cells are still developing we can measure cells that are still
in the progenitor phase. The data was obtained from "RNA
velocity of single cells" by La Manno et al [3].

The data consists of 18219 cells and for each cell there is
a measurement for every gene. However, a majority of this
information about the genes are of bad quality. Therefore
only the genes with a clear signal or high variance have been
used. This brings the amount of genes down to 2239, the
data is in the form of a gene expression. A gene expression
is a numerical representation of the amount that a gene is
currently expressing itself. Besides gene expression informa-
tion there is also a pre-calculated cell cycle score for the S-
and G2M-Phase. In addition to the cell cycle scores there is
a number that expresses how far on a cell is in the differen-
tiation process. Every cell can differentiate into other cells
and at the beginning of this process the cells are dividing
more actively. This number expresses how far they are into
this process and is an indicator of how actively they are still
dividing.

3.2 VAE models

The VAE extensions that are evaluated in this paper are:
VAE, β-VAE, β-TCVAE, DIP-VAE. VAE is evaluated to be
able to compare the other three extension with it and see
how well they perform in comparison. In general each VAE
model has the same layout, an encoder, sampling process
and a decoder. The encoder transforms the high dimen-
sional data to a low dimensional representation of the data,
after which it is sampled to form the latent representation
of the data. This latent representation is then the input
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for the decoder which aims to reconstruct the original high
dimensional data as accurately as possible.

3.2.1 VAE

The original VAE model was the first one to be defined.
The loss function is composed out of two parts the first part
being the Kullback-Leibler divergence(KLD), which is im-
portant for the regularization of the model. The KLD is
defined in the following way.

(1)KLD = kld_weight ∗KL(N(σ, µ), N(0, 1))

The second part is the reconstruction loss which is the mean
square error(mse) between the reconstructed input and the
actual input. Then the complete loss function is of the fol-
lowing form:

(2)loss = mse(reconstructed, input) +

kld_weight ∗KL(N(σ, µ), N(0, 1))

3.2.2 β-VAE

It has been shown that β-VAE is better at learning disen-
tangled representations than vanilla VAE [4]. β-VAE at-
tempts to adjust the balance between the reconstruction-
loss(RL) and Kullback-Leibler divergence(KLD) by intro-
ducing a variable β that is multiplied with the KLD. When
β > 1 the VAE has the ability to start producing higher
degrees of disentanglement [5]. The loss function of β-VAE:

loss = mse(reconstructed, input) + β ∗KLD (3)

3.2.3 DIP-VAE

What DIP-VAE tries to do is match the covariance of the
prior distribution and the latent distribution [6]. It uses a
variable lambda to control how much contribution should be
made towards the disentanglement objective [7]. This could
result into higher degrees of disentanglement.

3.2.4 β-TCVAE

The β total correlation VAE or β-TCVAE for short, is an-
other extension based on the original VAE model. This
model aims to maximize the mutual information between
the data variables and latent variables. It tries doing this
while minimizing the mutual information between the latent
variables [8]. The loss function is of the following form:

(4)loss = mse(reconstructed, input)

− distance(prior, posterior)− (β − 1) ∗KLD

3.3 Experimental setup
Each VAE model that was evaluated had the same network
layout. The encoder was a simple linear model with 1 hid-
den layer. This hidden layer was a fully connected layer and
contained 400 neurons. The encoder leads into the variance
and mean layer, which are both fully connected layer where
the amount of neurons is the same as the latent space size.

The latent space had a size of 128, therefore both of these
layers contained 128 neurons.

The sampling of the results of these two layers results into a
representation of the original data, but in 128 variables. The
result of this forms the input of the decoder. The decoder
contains two hidden layers that are fully connected. The
first hidden layer contains 400 neurons, a batch normaliza-
tion layer and a rectified linear unit. Batch normalization
normalizes over each batch so that the values of that batch
are between 0 and 1. The second hidden layer is just a fully
connected layer which contains 400 neurons that scale down
to the amount of output features.

Furthermore the data that was used for this research had a
fair amount of noise in it. This resulted in the VAE models
having a difficult time in properly learning from the data.
This lead to something that is often described as KLD van-
ishing in literature [9]. Multiple solutions to this problem
have been proposed such as using a weight for the KLD
that increases overtime during training [9]. However, it was
decided to keep the models as close to their original imple-
mentation as possible, therefore none of proposed solutions
have been used.

Instead what was done to resolve this problem was only us-
ing 300 of the most informative genes present in the data.
Using this alone did not result in the models being able to
learn the data. The second part of the solution added a
KLD weight with a small value. This is so that the KLD
has a smaller effect on the model performance. To illustrate
this, after modifying the loss function for Vanilla VAE it
looks like this:

(5)loss = mse(reconstructed, input) +

0.00001 ∗KL(N(σ, µ), N(0, 1))

These modifications were applied to all the different VAE
models, this was done not only to make them work but also
to keep the changes consistent across all the different VAE
models.

After the models have been trained for a set amount of
epochs, the encoders will be used to encode the data into
the compressed latent representation. Then for every latent
dimension the correlation between that dimension and the
cell cycle score or differentiation state is calculated. The
correlation coefficient that will be used for calculating this
is the Pearson correlation coefficient.

4 Results

The results are a collection of scatter plots, histograms and
tables. These are used to depict correlations between either
the cell cycle score or latent time. The higher the correla-
tion the better, however it is also desirable that a biological
process is encoded only once in the latent dimension.
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4.1 Cell cycle scores
The cell cycle score is one of the two biological processes
that will be used for this study to measure how good differ-
ent VAE models are at finding disentangled representations.
The purpose of using this as measurement is to see how
well these VAE models can encode the S- and G2M-score
into single latent dimensions. The higher the correlation
between a score and a dimension the better, however it is
also desired that it is encoded in as few dimensions as possi-
ble and optimally it is only encoded in one dimension. The
best correlations found by every different VAE model can
be found in table 1.

Model Parameters S-Score G2M-Score
VAE N/A -0.2620 0.3037
β-VAE β = 1000 0.5332 0.6518

DIP-VAE
λ-diag = 1.0
λ-offdiag=1.5 0.2403 0.3121

β-TCVAE

α = 1.0
β = 1.0
γ = 1.0 -0.5405 -0.9157

Table 1: The best correlations found in a single run by each
model.

In general VAE seems to perform the worst as on average
it finds the lowest correlations with the two different cell
cycle scores. However, often VAE and DIP-VAE seemed
to perform similarly and one could even argue that VAE
was performing better. Besides this, both β-VAE and β-
TCVAE performed a lot better than the other two VAE
models. The difference in performance becomes even more
clear when looking at figure 1. This figure shows the his-
togram of correlation values between every latent dimension
and the cell cycle scores.

Furthermore, when looking at figure 1 it becomes clear that
β-VAE and β-TCVAE perform much better than Vanilla
VAE and DIP-VAE. In this figure it is also clearly visible
that the two β models clearly outperform the other two mod-
els. Moreover these two models found high correlations and
encoded in as few dimensions as possible.

Additionally figures 2-5 depict the best correlations found
by each model. For β-VAE and β-TCVAE it is clearly vis-
ible that there are correlation since the dots are starting to
orientate more on a single line. However, quite the opposite
is visible for Vanilla VAE and DIP-VAE where there seems
to be no pattern at all in the scatter plots.
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Figure 1: Depicts how many dimensions correlate a certain amount with the two different cell cycle scores, each figure is
for a different model. Each model was ran for 50 epochs and with a latent dimension of 128. A: Vanilla VAE, B: β-VAE,
with parameters: β = 1000, C: DIP-VAE, D: β-TCVAE, with parameters: α = 1.0, β = 1.0, γ = 1.0

Figure 2: Scatterplots for the best correlations with the cell cycle scores that were encoded into a latent dimension by
Vanilla VAE. The correlations found are, S-Score: -0.2620, G2M-Score: 0.3037
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Figure 3: Scatterplots for the best correlations with the cell cycle scores that were encoded into a latent dimension by
β-VAE. The correlations found are, S-Score: 0.5332, G2M-Score: 0.6518

Figure 4: Scatterplots for the best correlations with the cell cycle scores that were encoded into a latent dimension by
DIP-VAE. The correlations found are, S-Score: 0.2403, G2M-Score: 0.3121

Figure 5: Scatterplots for the best correlations with the cell cycle scores that were encoded into a latent dimension by
β-TCVAE. The correlations found are, S-Score: -0.5405, G2M-Score: -0.9157

5



4.2 Differentiation state

The differentiation state is the second and final biological
process that is used to measure how good different VAE
models are at finding disentangled representations. The dif-
ferentiation state is expressed as the latent time.

4.2.1 Latent time over all cells

The goal is to see if the different VAE models are able to
encode the latent time for all cells. This means that for
this measurement no filter is applied to which cells are used
to measure the correlation. The best correlation found by
every different VAE model can be found in table 2.

Model Parameters Latent time
VAE N/A -0.0297
β-VAE β = 1000 0.0345

DIP-VAE
λ-diag = 1.0
λ-offdiag=1.5 0.0152

β-TCVAE

α = 1.0
β = 1.0
γ = 1.0 -0.0277

Table 2: The best correlations found in a single run by each
model.

When looking at table 2 it becomes clear that none of the
VAE models is exceptionally good at encoding the latent
time for all cells into a single latent dimension. This is fur-
ther reinforced when looking at figure 6. An important thing
to notice in figure 6 is how small the correlation values are.
In this figure it is also clearly visible that all the latent di-
mensions of every VAE model can only find a low correlation
with the latent time for all cells.

4.2.2 Latent time per cell cycle phase

Now instead of just looking at all the cells, the cells will be
filtered on which cell cycle phase they are currently in. This
results in having to check correlations for cells that are in
3 different phases, the phases being: G1, S and G2M. The
best correlations for each phase per model can be found in
table 3.

Model Parameters S G1 G2M
VAE N/A 0.0567 0.0345 0.0892
β-VAE β = 1000 -0.0639 -0.0329 -0.0848

DIP-VAE
λ-diag = 1.0
λ-offdiag=1.5 -0.0526 -0.0156 0.0537

β-TCVAE

α = 1.0
β = 1.0
γ = 1.0 -0.0595 -0.0390 0.0787

Table 3: The best correlations found in a single run by each
model.

The correlations found are slightly higher than when look-
ing at all cells. However, looking at table 3 it seems as if

the models still really did not learn anything about it. The
correlations are still quite low. When looking at figure 7 it is
quite clear that DIP-VAE performs the worst of all the VAE
models. What also stands out is that for VAE, β-VAE and
β-TCVAE is that the highest correlations are only captured
in a single dimension.

A remarkable aspect of table 3 and figure 7 is that it is quite
clear that the VAE models have the most difficult time en-
coding the latent time for the G1-phase. On average the
VAE models had a much easier time encoding the latent
time for the S-phase and the G2M-phase compared to the
G1-phase.

4.2.3 Latent time over cell types

Here the cells will be split up even further. Now instead of
filtering on which phase the cell is currently in, all the cells
are filtered on the celltype. In total there are 14 different
cell types present in the dataset, for each single one of these
cell types the correlation will need to be checked. Due to
the great amount of cell types present in the data, not all
cell types will be displayed in figures. The cell types that
are displayed in the histograms are mainly picked on the
correlation values across all different VAE models, prioritiz-
ing high correlation values. The best correlations with the
latent time for each cell type can be found in table 4.

Model VAE β-VAE DIP-VAE β-TCVAE

Parameters N/A β = 1000

λ-diag =
1.0

λ-offdiag=
1.5

α = 1.0
β = 1.0
γ = 1.0

nIPC 0.1075 0.1006 -0.0776 0.1160
Nbl1 -0.1852 -0.1896 -0.1302 0.1537
Nbl2 0.1246 -0.0640 -0.0752 0.1079
Imm-

Granule1 -0.0535 0.0601 -0.0551 0.1005
Imm-

Granule2 0.0768 -0.0675 0.0899 -0.0740
GlialProg -0.2567 -0.2045 -0.1220 0.2089
Granule -0.1220 -0.0995 0.0618 -0.0947

CA -0.0619 -0.0724 0.0441 -0.0605
CA1-Sub -0.0753 -0.0619 -0.0775 0.0717
CA2-3-4 -0.0749 0.0400 -0.0649 -0.0784

RadialGlia -0.0849 -0.1079 0.1004 -0.0959
RadialGlia2 -0.1361 0.1364 0.0883 -0.1627

OPC -0.1048 0.1513 0.0996 -0.1293
ImmAstro -0.1079 -0.1007 -0.0642 -0.0746

Table 4: The best correlations found for the latent time for
every different kind of cell type in a single run by each model

Figures 8-11 show the histograms of correlation values be-
tween every latent dimension and the latent time. What can
be noted is that some models encoded the best correlation
multiple times. This can be seen in figure 11 when looking
at GlialProg. This behaviour can also be seen in the other
VAE models.
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Figure 6: Depicts how many dimensions correlate a certain amount with the latent time when checking over all cells. Each
histogram depicts the performance of a different VAE model.
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Figure 7: Depicts how many dimensions correlate a certain amount with the latent time per cell cycle phase. Each
histogram depicts the performance of a different VAE model.

Figure 8: Histograms depicting how many dimensions correlate a certain amount with the latent time per cell type as
found by VAE.
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Figure 9: Histograms depicting how many dimensions correlate a certain amount with the latent time per cell type as
found by β-VAE.

Figure 10: Histograms depicting how many dimensions correlate a certain amount with the latent time per cell type as
found by DIP-VAE.

Figure 11: Histograms depicting how many dimensions correlate a certain amount with the latent time per cell type as
found by β-TCVAE.
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4.3 Regression model

To test whether the VAE models encoded the biological pro-
cesses more accurately in 2 dimensions, a linear regression
model was used. The correlations found by a fitted regres-
sion model are compared to the correlations found by each
model.

First a look was taken at the cell cycle score, the formula
that was used for this was the following:

(6)cell_cycle_score = v01 + v02 + v01 ∗ v02

Table 5 shows the correlations found when just using the
VAE models, this is used to compare the correlations found
by using a regression model to a baseline. Table 6 shows
the correlations found by the linear regression model. It is
important to note that the results from table 5 and 6 were
obtained in the same run, this was done to keep the com-
parison as fair as possible.

Model Parameters S-Score G2M-Score
VAE N/A -0.2466 -0.2663
β-VAE β = 1000 0.4365 0.5012

dip-vae
λ-diag = 1.0
λ-offdiag=1.5 -0.2545 -0.3686

β-TCVAE

α = 1.0
β = 1.0
γ = 1.0 -0.3756 -0.9241

Table 5: Regular correlations for the cell cycle scores found
by each model in a single run

Model S-Score G2M-Score
VAE 0.3547 0.3907
β-VAE 0.5795 0.7220

DIP-VAE 0.5378 0.6054
β-TCVAE 0.5405 0.9290

Table 6: The correlations found by using a regression model
over two different latent dimensions

When looking at tables 5 and 6 it becomes quite obvious
that for the cell cycle scores, all the VAE models find better
correlations if a regression model is run afterwards. What
is remarkable is the great jump in performance that can be
seen when looking at DIP-VAE.

For the latent time, the formula for the regression model was
the same as the one that was used for the cell cycle score:

(7)latent_time = v01 + v02 + v01 ∗ v02

Table 7 displays the correlations found when only using the
VAE models, this was again done to be able to compare the
regression model to correlations found by the VAE model.
Table 8 shows the correlations found when using a linear
regression model over the latent space.

Model Parameters Latent time
VAE N/A 0.0281
β-VAE β = 1000 0.0275

dip-vae
λ-diag = 1.0
λ-offdiag=1.5 -0.0151

β-TCVAE

α = 1.0
β = 1.0
γ = 1.0 -0.0318

Table 7: Regular correlations for the latent time found by
each model in a single run

Model Latent time
VAE 0.0411
β-VAE 0.0405
dip-vae -0.0366

β-TCVAE -0.0429

Table 8: The correlations found by using a regression model
over two different latent dimensions

When looking at tables 7 and 8 it becomes clear that the im-
provement in the correlation found when using a regression
model is only minor.

5 Responsible Research

Reproducibility is important when discussing the results
that have been found. However, reproducing results from a
paper is often far from easy [10]. Therefore this section will
be dedicated to making the reproduction process as smooth
as possible. The code will be open source and available on
GitLab. Besides this all the configurations that were used
have been mentioned in the paper so that the exact models
can be recreated.

On the GitLab page there will be some additional informa-
tion. Along side this it will also contain all the code that
was used to obtain the results that have been used in this
study.

6 Discussion

6.1 Cell cycle scores

Almost all of the VAE models performed as expected at en-
coding the S- and G2M-score into a single latent dimension.
When looking at table 1 it becomes quite clear that there is
a performance gap between the different VAE models. This
is also clearly visible in figure 1, the β-VAE and β-TCVAE
models find much higher correlations than VAE and DIP-
VAE. What stands out in figure 1 is that both for β-VAE
and β-TCVAE the highest correlation was found only once,
this means that it encoded it in a single dimension.

The VAE model performed the worst on average at encod-
ing the cell cycle scores into the latent dimension. However,
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whilst it performed the worst at finding correlations it usu-
ally performed the best when looking at reconstruction loss
alone.

One thing that can be observed from the results is that
nearly all of the VAE models seem to be having a harder
time encoding the S-Score than they do for encoding the
G2M-Score. This is not something that came as unexpected.
A possible explanation for this might be because during the
G2M-phase the cell is actively dividing. Which could make
it a lot clearer in the data as the genes that are involved
in the cell cycle are much more active. The most extreme
example of a model finding a better correlation for the G2M
score is the β-TCVAE. This model consistently found very
high correlations for the G2M-score. The only exception to
this seemed to be the regular β-VAE which found similar
but good correlations for both the S- and G2M-scores.

Surprisingly, DIP-VAE performed quite bad at encoding the
scores into the latent dimension. It seemed to have encoded
it slightly in every dimension but not enough for it to ac-
tually mean anything. This was surprising because other
papers found great results when it came to finding disentan-
gled representations using DIP-VAE [8].

6.2 Differentiation state
All of the VAE models had a difficult time encoding the
latent time into a single latent dimension. Therefore differ-
ent ways of filtering to create subsets were used to check
if the VAE models had encoded the latent time for specific
subsets.

When looking at all the cells, none of the VAE models man-
aged to encode it. All of the VAE models found around
the same correlation for the latent time. The exception to
this was DIP-VAE which seemed to perform worse than the
other three models by relatively a big margin, this can be
seen in table 2. It was expected that none of the VAE mod-
els would be able to encode the latent time when looking at
all the cells. This is due to the fact that not all cells in the
data are actively differentiating. For example, cells that are
in the G2M phase are much more actively differentiating,
making them more easy to recognize from the data.

However, when creating subsets based on which phase of
the cell cycle each cell is in, the results are slightly better.
When looking at table 3, the correlation values are a bit
higher than they are in table 2. However, these values are
still quite low and seem so low that nothing useful was en-
coded. A striking aspect of table 3 is that again DIP-VAE
seems to be performing the worst by relatively a big mar-
gin. The weird behaviour of DIP-VAE becomes even more
clear when looking at figure 7. It is the only model that
isolates every phase as separate peaks. What also stands
out in figure 7 is that the best correlations for VAE, β-VAE
and β-TCVAE are captured in very little dimensions.

Furthermore, a different kind of subsets has also been used,
one based on cell types. This resulted in higher correlations

found than the other two methods. Whilst these correla-
tions are higher than the previous two methods, they are
still not significant. One trend that seems to continue when
looking at table 4 is that DIP-VAE is performing the worst
out of the 4 models. The other three models performed sim-
ilarly as they did for the first two methods as well. Another
thing that stands out from table 4 is that some cell types
have on average a higher correlation than others, take for
example the GlialProg type. On average this cell type has
the highest correlation value, this was quite interesting be-
cause, these types of cells are mostly dividing. Therefore it
was expected for the models to have the most difficulty with
encoding this.

What is also noticeable in figure 8-11 is that the highest
correlations found by each model are sometimes encoded in
multiple dimensions. What also happens is that the model
finds other correlations that are close to the best one found.
This means that the VAE models did not encode the latent
time per cell type into a single latent dimension.

6.3 VAE models

Considering the difficulty all the VAE models had with
learning the data, a different form of preprocessing of the
data might have to be used in the future. One that either
reduces the noise in the data or makes it easier for the mod-
els to learn. However, eventually the models were able to
learn the data after reducing the importance of the KLD
term.

Looking at all the results, it’s quite clear that there is a
gap in the performance of the VAE models when measuring
their ability to find disentangled representations. All models
performed as expected, except DIP-VAE.

No matter what configuration was used, DIP-VAE contin-
ued to perform worse than the other three models. There-
fore, DIP-VAE seemed cumbersome to configure when try-
ing to get it to perform well for any of experiments done in
this study. The fact that DIP-VAE performed this bad was
quite unexpected. This was because there are other papers
that found that DIP-VAE was quite good when it came to
learning disentangled representations.

Another quite interesting finding was that at least for the
cell cycle score both β-VAE and β-TCVAE performed by
far the best. Other papers have found similar results, in the
sense of that these papers also found that these two models
are great at finding disentangled representations. Both of
these VAE models found high correlations for the cell cycle
score and encoded it into a single dimension.

For β-VAE when using a value for β that was too low, it
would result in the model performing similar to VAE. When
making β higher, it would result in better correlations found,
but it also had a side effect. The side effect was that more
than one latent dimensions captured the thing that was sup-
posed to be captured.
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In general VAE did not perform great when it came to find-
ing disentangled representation. However, when solely look-
ing at the reconstruction loss, VAE outperformed all the
other models by quite a big margin. This is due to the fact
that VAE aims to minimize the information loss.

6.4 Regression model
When using a linear regression model for two different la-
tent dimensions at a time, it found better correlations when
looking at the cell cycle scores. In fact it found better cor-
relations for every model. This was the most clear when
looking at the performance of DIP-VAE. When looking at
tables 5 and 6 it is clear that the jump in performance for
DIP-VAE is quite huge.

However, quite the opposite can be seen when using a lin-
ear regression model for the latent time. The correlations
found by the regression model are barely any higher than
the correlations found by just the VAE models. So while it
might encode the cell cycle score better into two dimensions
in some cases, the VAE models do not seem to consistently
do this for everything.

7 Conclusions and Future Work
This study has shown that the Vanilla VAE model per-
formed the worst at finding the cell cycle score as a disen-
tangled representation. However, the performance of Vanilla
VAE is almost on par with DIP-VAE. Both of these mod-
els seem to have a difficult time when it comes to encoding
complex processes from the data into the latent representa-
tion. One of the most significant findings is the models that
performed the best when it comes to encoding the cell cycle
score into a latent dimension were β-VAE and β-TCVAE.

When looking at the latent time, it became quite clear that
it is too complicated to be captured in one dimension. How-
ever, what is still noticeable is that DIP-VAE performed
the worst in all cases. Besides this the other three models
performed very similar when it came to encoding the latent
time into a single latent dimension.

It would also be interesting to see what the effect would
be of data that is preprocessed in a different manner where
all the genes might be able to be used. This way it might
be able to encode the latent time as well and through this
the models could be compared to each other more fairly. It
would also be interesting to see this study repeated with the
proper configuration for DIP-VAE, if it exists. This would
again create a fairer comparison between the models.

8 Supplementary
An interesting thing to note is that all of the models had
difficulty learning the data when using all of the gene ex-

pressions. This resulted in the models usually only being
able to find low correlations with the biological processes.
Therefore it was decided to only use the most informative
genes present in the data.

Furthermore, all of the VAE models seemed to perform a lot
worse when using a small latent space. This resulted in the
latent space being 128, going below that had a severe effect
on the performance of the VAE models. Besides this it also
resulted in lower correlations being found for the biological
processes and distinct latent dimensions.
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