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Abstract
Increasing competition amongst airlines necessitates them to improve the efficiency of their operations.
Even though maintenance, repair, and overhaul (MRO) represent a significant portion of an airline’s
operational costs, aircraft maintenance scheduling is often still a manual process, producing suboptimal
solutions. Airlines typically operate by congregating the bulk of the required maintenance tasks in
extensive checks, called letter checks (A, B, C, or D). Letter checks require the aircraft to be taken out
of operations and result in many tasks being executed before they are due, leading to more required
maintenance over the aircraft’s lifetime. The purpose of this study is to develop a methodology that
provides flight routes to aircraft and plans the maintenance tasks individually within these routes over a
given planning horizon with the objective of maximizing the utilization of the total remaining flying time of
the fleet. To achieve this, tasks are planned as late as possible on overlays at a maintenance station,
while being given a due date and a remaining number of legal flight hours that can be flown before
execution is mandatory. For this purpose, we develop a mixed integer programming (MIP) model based
on a city-day network representation. Because the computational burden of exact methods becomes
too hefty for increasing problem sizes, several matheuristics have been developed to provide good
solutions in quick fashion. The presentedmatheuristics either decompose the problem by aircraft or into
time periods. The former constructs the flight routes and maintenance schedules aircraft per aircraft
while the latter constructs them simultaneously in a rolling horizon fashion. For the rolling horizon
matheuristics, several forecasting strategies have been designed as well. In an experimental study,
one of the selected rolling horizon matheuristics was able to remove the need for aircraft to be taken out
of operations for an A-check (the most frequently occurring letter-check), potentially saving up to $ 7.2
million per aircraft over a time period of ten years. Furthermore, the lost flying time, incurred by planning
maintenance tasks before they are due, was decreased by over 98%, resulting in a higher utilization
of the task intervals and less required maintenance over the aircraft’s lifetime. Finally, the dissection
of the A-check into its individual tasks led to a more phased maintenance schedule by attenuating the
peaks in workload for the mechanics workforce. Our presented approach can be used by mid-sized
airlines to optimize their maintenance schedules through increasing aircraft availability and reducing
maintenance costs over the aircraft’s lifetime.
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1
Introduction

Since the deregulation of the intra-European air transport market in 1997, competition among airlines
has intensified significantly [28]. From that moment, any EU air carrier was allowed to operate from
any EU country. Low-cost carriers, improvement of high-speed rail networks, and increased price
transparency provided by the internet have all contributed to this increase of competition. In this day
and age, passengers have a broader choice in terms of routing and pay a lower price. Airlines need
to find ways to improve their operational efficiency in the current competitive market of air transport.
Even though maintenance, repair, and overhaul (MRO) represent a significant portion of an airline’s
operational costs (at least 9% in 2018 excluding overhead costs [18]), the planning process is far from
optimized. In the industry, it is often still a very manual process, producing suboptimal solutions.

While maintenance is required and performed in all industries to maximize system availability and
prevent or reduce the adverse effects of failures [12], MRO holds an especially important place in the
airline industry due to heavy regulations. There is a distinguishable list of maintenance tasks for each
aircraft that are to be carried out before a specific due date, with a repetitive interval. Each task has
a unique task code, a determined amount of necessary man-hours for completion, an account of the
required types of mechanics, and much more practical information. If a particular maintenance task has
not yet been performed after its due date, the aircraft loses its airworthiness. These strict regulations,
imposed by national and international authorities, have made the operational maintenance planning a
complex problem. On the bright side, strict regulations have contributed to air travel being the safest
mode of transportation. In 2010 aviation outperformed highway, transit, and railroad transportation in
terms of the total number of fatalities, accidents per 100 million passenger mile traveled, and fatalities
per 100 million passenger mile traveled by some margin [29].

Currently, most airlines plan the bulk of their MRO activities in extensive checks, called letter-checks
(A, B, C, or D), which are performed once per a long interval (see chapter 2). During a letter-check,
the aircraft is taken out of operations, and many maintenance tasks are executed together. In between
the intervals of letter-checks, aircraft still need occasional maintenance checks every couple of days
for more frequently occurring tasks. The main advantage of using extensive letter-checks lies in the
relative ease of the planning, as one only has to plan one event for a large number of tasks. The struc-
ture of the standard maintenance checks is elaborated upon in chapter 2.

1.1. Research Problem
The potential for improvement in the maintenance scheduling for aircraft has caused much work to be
published on finding optimal solutions for various types of maintenance planning and routing problems.
A literature survey on this research is presented in chapter 2. However, much of this research focuses
on the routing of aircraft, with maintenance requirements given as the basic constraint that an aircraft
should spend the night at a maintenance station once every d days for a generic check. Research
limiting the maintenance requirements to the scheduling of a generic check once every d days could

1



2 1. Introduction

be useful in combination with the use of letter-checks since the bulk of the maintenance tasks would
be grouped inside of the letter-checks. The generic check could then contain all the smaller and more
frequently required maintenance tasks.

However, the use of letter-checks for maintenance planning has two significant downsides:

1. During a check, an aircraft is taken out of operations for one or more days, resulting in a decrease
in aircraft availability and a loss of potential revenue.

2. By grouping maintenance tasks with different intervals together in an extensive check, many
tasks are executed before they are due, resulting in more required maintenance over an aircraft’s
lifetime.

These severe downsides of letter-checks have given rise to a new maintenance philosophy, where ex-
tensive letter-checks are dissected, and the tasks are planned at an individual level. In this philosophy,
every ground time on a maintenance station is seen as an opportunity for maintenance. Transitioning
from a letter-check towards an individual task-oriented maintenance strategy could be very beneficial
for airlines. In a case study performed by Senturk and Ozkol (2018) [38] for a Turkish airline, they
state that the necessary ground time for maintenance for an A340-family type aircraft could potentially
have been reduced from 87 days to 15 days over a ten-year period if an individual task-oriented main-
tenance planning had been used instead of the standard letter-checks. Depending on the aircraft’s
utilization level, a day of operations may represent between $75k and $120k of additional revenue [11].
In the current literature, there is not much work done on individual task-oriented maintenance planning
models for airlines. Some research has been published on maintenance planning and -routing models
that consider a wider range of maintenance requirements for aircraft instead of generic checks, but
most have not taken the airline’s overall scheduling framework into account. Because the scheduling
of aircraft maintenance tasks and the routing of aircraft is an interrelated problem, the overall schedul-
ing framework can not be ignored and is elaborated upon in this work in section 1.4 and section 2.2.
The problem description and the current state of the airline industry and literature lead to the following
problem statement for this research:

Within the academic literature concerning an airline’s maintenance scheduling optimization, limited
knowledge exists on the building of an individual task-based maintenance routing and scheduling

model that fits inside an airline’s overall scheduling framework.

1.2. Research Objective
This thesis is conducted with the objective of enriching the academic community by developing a model
with the capability of optimizing the flight and corresponding maintenance schedules for aircraft on an
individual task-based approach. Sub-objectives of this thesis include:

• Creating insight from literature in possible model formulations that could be suitable for this ap-
plication

• Composing a model capable of solving the problem

• Developing a method to achieve good quality solutions in an acceptable time

• Evaluating the possible impact of an optimized individual task-based maintenance scheduling
and routing model on the airline industry

1.3. Research Questions
Based on the above-described research problem and objective, the main research question is defined
as:

How can the efficiency and quality of the maintenance scheduling process in the airline industry be
improved through optimization?

In order to answer this question as completely as possible the following key questions need to be
answered:
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1. What is the current state of the airline industry in terms of maintenance scheduling?

2. What is the current state of the literature regarding aircraft maintenance scheduling optimization?

3. How should a working model be designed to optimize the individual task-based maintenance
scheduling?

4. What kind of solutionmethod is well suited to solve the individual task-basedmaintenance schedul-
ing problem in a reasonable time?

5. What is the impact of an optimized individual task-based maintenance scheduling on the airline
industry?

1.4. Research Scope
The scheduling of an airline’s operations and resources is an extremely complex and interrelated prob-
lem. Because of this complexity, it is the current practice to break up the resource planning into several
stages. The five stages in which the different scheduling problems in the airline industry are divided are
flight scheduling, fleet assignment, aircraft maintenance routing, crew scheduling, and tail assignment
[24]. The maintenance scheduling of aircraft is not a stand-alone problem. Therefore, it is essential to
get a view of the overall scheduling operations that an airline faces. These operations will be discussed
briefly in this section and are elaborated further upon in chapter 2.

In the flight scheduling stage, an airline decides which flights it will operate, and during the fleet as-
signment, it is determined what type of aircraft will operate each flight. The flight schedule is created
approximately one year in advance [21]. During the aircraft maintenance routing (AMR), individual
flights are combined to form routes. It has been given this name because planners try to create flight
routes that are expected to be feasible for smaller and more frequently occurring maintenance tasks
[27]. During the crew scheduling stage, crew members are assigned to these routes with the aim to
minimize crew cost and maximize various other objectives, such as quality of life and crew satisfaction.
The crew schedules are determined approximately one month before the day of operations [21]. Only a
few weeks or even days (this varies strongly between airlines) before the day of operations, the tail as-
signment (TA) is solved, where the created routes are assigned to specific aircraft (often referred to as
tail numbers) [21]. During the tail assignment, an aircraft’s initial location and individual maintenance
needs are the key issues, since the route that is assigned in this stage needs to be compliant with
the aircraft’s individual maintenance needs. Adjustments to the routes created in the AMR might be
required because these considerations and possible schedule disruptions could result in an infeasible
maintenance schedule.

Maintenance scheduling in the airline industry is intertwined with its routing. Airlines usually only have a
limited number of maintenance stations, which means that ensuring that the aircraft is in the right posi-
tion at the right time fundamental to the problem. When operating with letter-checks, this is usually not
too difficult. However, when transitioning from a letter-check to an individual task-oriented maintenance
strategy, in which every ground time at a maintenance station is seen as a maintenance opportunity,
this becomes much more challenging.

Since the routes constructed in the AMR are built far in advance and are not tail number specific,
the planning of individual maintenance tasks inside ground times should be done during the TA. That
is why the scope of this thesis will focus on solving the TA, meaning the optimal distribution of routes
over the aircraft and the planning of maintenance inside them in an optimal way.

Flight Schedule
Design Fleet Assignment Aircraft Maintenance

Routing Crew Scheduling Tail Assignment

Scope of this thesis

Figure 1.1: The scope of this thesis



4 1. Introduction

1.5. Outline of the Thesis
In Table 1.1, an overview is given of the chapters in this thesis and the corresponding research ques-
tions. This table can be used to easily navigate throughout this thesis.

Table 1.1: Overview of the thesis

Chapter Title Research Questions
1 Introduction 1,2
2 Literature Review 1,2
3 Problem Definition 3
4 Solution Approach 4
5 Experimental Study 5

6 Impact on the Aircraft
Maintenance Industry 5

7 Conclusion &
Recommendations -



2
Literature Review

Prior to this research, a literature study was conducted to investigate the current state and the main
findings of the literature regarding airlines’ maintenance scheduling operations. This chapter will sum-
marize the main findings obtained during the literature search.

2.1. Basics of Aircraft Maintenance
Maintenance is the total of all activities performed throughout the life cycle of an item to retain it in
a functioning state or to restore it to such a state [15]. Regular aircraft maintenance provides assur-
ance of flight safety, reliability, and airworthiness through the performance of preventive and corrective
maintenance. Preventive maintenance (referred to as scheduled maintenance in aviation) aims to re-
tain the systems and components in a functioning state, whereas corrective maintenance (unscheduled
maintenance) targets the restoration to this state after a failure has occurred. All the tasks that are to
be performed to keep the aircraft in a continuous state of airworthiness are addressed in an airline’s
maintenance program. Due to the nature of our world, most systems and components will, at some
point, deteriorate beyond a tolerable level or even fail completely [20].

2.1.1. History of Aircraft Maintenance
In the 1950s, aircraft carriers developed and proposed their own unique programs and processes for air-
craft maintenance [39]. Senturk, Kavsaoğlu and Nikbay (2010) summarize of how this process evolved
to one in which the authorities and industry work closer together [39]. In 1968 the Maintenance Steering
Group 1 (MSG-1) was formed, which helped to develop the initial minimum scheduledmaintenance rec-
ommendations for B-747 aircraft. The MSG-1 was a bottom-up approach where components—rather
than the full system level–were the highest considered level [5]. In the decade hereafter, newly gained
experience and insights led to the creation of the MSG-2 and eventually, the MSG-3, in which Euro-
pean and U.S. authorities, airlines, and manufacturers cooperated to update the procedures to apply
to current and future aircraft. MSG-3 involves a top-down, consequence-of-failure-oriented approach.
The failure analysis is conducted at the system level instead of the component level, as was the case in
MSG-1 and MSG-2. Failure analysis at the system level means that the question is asked if the failure
affects the safe operation of the aircraft itself [20]. The selected tasks in the MSG process are published
in an officially approved document called the Maintenance Review Board Report (MRBR), which con-
tains the initial minimum scheduled maintenance requirements for particular aircraft. The manufacturer
of the aircraft publishes the Maintenance Planning Document (MPD), which provides extra information,
support, and possible maintenance tasks to keep the aircraft in good condition throughout its lifetime.
Using the MRBR and the MPD as a reference and adhering to their minimally set requirements, each
aircraft carrier developed its own maintenance program, which needs to be approved by EU and na-
tional authorities.

Before the introduction of the Boeing 777, the tasks with a larger interval in the maintenance pro-
gram were mandatorily split in the aforementioned letter-checks (A, B, C, and D). The typical A-check

5



6 2. Literature Review

includes the visual inspection of the interior and exterior of the aircraft. C-checks include the inspec-
tion and functionality-testing of individual systems and components. During a D-check, the structurally
important components are inspected, which requires the uncovering of the airframe, wings, and sup-
porting structure [3]. The advantage of the letter-checks lies in the relative ease of the construction of
the maintenance program. However, having lengthy checks during which an aircraft is halted on the
ground is not the optimal strategy regarding the aircraft’s availability. Furthermore, it results in distinc-
tive peaks in the workload for maintenance personnel [3].

Since the second revision of MSG-3, coincident with the introduction of the Boeing 777, the use of
letter-checks is no longer mandated for an airline’s maintenance program. Maintenance tasks were
not necessarily grouped into letter-checks and could be done at the most appropriate time for the
equipment or system as long as the task interval was not exceeded. This makes the maintenance
program more adaptable to the operator’s needs [20].

The introduction of MSG-3 revision 2 has given rise to another maintenance program philosophy that
views all the time an aircraft spends on the ground, as a result of their flight plan, as maintenance oppor-
tunities that could be utilized [38, 39]. The approach is to phase out the large letter-checks into smaller
work packages. These work packages can then be fitted inside ground times on maintenance stations
as a result of their flight plan, where night-layovers often are the best fitting candidates. Maintenance
activities during which an aircraft is still in operation are known as line maintenance. A typical example
of line maintenance is checking the landing gear for wear [20]. Maintenance activities that require an
aircraft to be temporarily removed from operations are referred to as base maintenance. Two typical
examples of base maintenance are the painting of the aircraft and engine removal or installation [20].

2.1.2. Different Types of Checks
In the book Aviation Maintenance Management, Kinnison and Sidiqi [20] recognize four main letter-
checks currently being planned for aircraft: the A-check, the B-check, the C-check, and the D-check.
The authors point out that many airlines have eliminated the B-checks by distributing their tasks to A-
and C-checks. In the literature, there is a great variety of terminology for the different types of main-
tenance. Some scholars state that A-checks are short term checks that are to be executed biweekly
[3], or even weekly [14, 40], whereas others state that they are to be executed roughly bimonthly. In
the industry, the distribution of tasks over letter-checks and thus the size and interval of the checks
vary between airlines as well. Some guideline data on the letter-checks from Kinnison and Sidiqi [20]
is given in table 2.1. After discussions with employees and managers in leading European MRO pro-
viding companies, it is judged that this data is indeed on par with their definitions. Apart from the four
main checks given in table 2.1, there also exist transit checks and daily checks. A transit check is
performed before each flight and thus requires no planning effort. The daily check, despite its name,
is not performed daily, but one to two times per week, depending on the aircraft type and the airline’s
definition of this check. A daily check includes a walk-around inspection, servicing of the oil, and a
checkup on the lights and emergency equipment [27]. It is to allow for the daily check that the AMR
is constructed to visit a maintenance station once every d days. For an A-check, an aircraft is usually
taken out of operations for one day. A C-check will typically take between 4 and 7 days to complete
[20].

Table 2.1: Standard check intervals and required man-hours, adapted from Kinnison and Sidiqi[20]

Check Interval and Man-Hours
Check Interval Check Total Man-Hours

A-check Every 600 FH 100
B-check In 2 parts B1,B2 every 1200 FH 1200
C-check In 2 parts C1, C2 every 5000 FH or 18 months 3420

D-check First check done between 25k & 27.5k FH
subsequent every 25k FH or 6 years 60,000
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2.2. Scheduling Processes in the Airline Industry
A key function that influences the efficiency in operations is the scheduling of an airline’s resources (i.e.,
aircraft and crew). The scheduling of an airline’s operations and resources is an extremely complex
and interrelated problem. Because of this complexity, it is the current practice to break up the resource
planning into several stages. The stages in which the airline industry’s different scheduling problems
are divided are flight scheduling, fleet assignment, aircraft maintenance routing, crew scheduling, and
the tail assignment [24].

Traditionally, these problems are solved sequentially, meaning that the result of the upstream prob-
lem is fed to the downstream problem [27]. Even though this approach does not lead to a globally
optimal solution, it allows airlines to generate feasible solutions to their incredibly complex operational
problems. An overview of an airline’s sequential scheduling operations is given in figure 2.1.

Flight Schedule
Design Fleet Assignment Aircraft Maintenance

Routing Crew Scheduling Tail Assignment

Time

Figure 2.1: A schematic overview of an airline’s scheduling operations

The flight schedule is perhaps the airline’s most important operational planning task. The flight sched-
ule is the primary product that an airline sells to customers and consists of a list of flight numbers that
correspond to the origins, destinations, departure times, and arrival times [16]. The schedule is most
often created approximately one year in advance by the marketing department, which considers sev-
eral factors such as traffic forecasts, operations of competing carriers, internal resources and initiatives
such as entering a new market [21].

The next stage in the overall scheduling framework is the fleet assignment (FA). During the FA, the
flight schedule is taken as input, and the aim is to find the optimal assignment of equipment types for
each of the flights. Typically, an airline’s fleet consists of a variety of equipment types, such as the Air-
bus A320, Boeing 747, or Bombardier CRJ100. These equipment types differ considerably in seating
capacity and various operational aspects. The objective of the fleet assignment is to maximize profit by
preventing low load factors, such as when an aircraft with too large a capacity is selected, or potential
spill of passengers to competitors exists, if the equipment type’s capacity is lower than optimal [17].

Once each flight has been assigned an equipment type, the next step is to solve the aircraft main-
tenance routing (AMR). Given a fleet of a particular aircraft type and a set of flights, the goal of the
AMR is to determine the flight routes for every aircraft such that the maintenance requirements, set by
national and international authorities, are satisfied [27]. Only certain airports, named maintenance sta-
tions, are capable of performing maintenance operations for an airline [27]. It is easy to understand that
for a hub-and-spoke network, the hub airport is usually the maintenance station. A feasible solution to
the AMR is one where each constructed route visits a maintenance station at least once every d days
so that a daily check can be performed. At this stage in the planning process, the routes are built for
anonymous aircraft. The decision which tail number will fly which constructed route, is made closer to
the day of operations during the tail assignment [22]. A tail number is a specific aircraft that is identified
by its unique registration-number, often displayed on the tail of an aircraft, see figure 2.2. Note that
the fleet assignment has decomposed the flight schedule, meaning there is an aircraft maintenance
routing problem for every fleet of equipment types [21]. An example of an output provided by the AMR
is given in figure 2.3.

After the aircraft routes are obtained, the crew scheduling (CS) is performed. Crew scheduling aims to
assign crewmembers to the routes created in the AMR in order to minimize the crew cost and maximize
various other objectives. These objectives include quality of life for the crew members and crew satis-
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Figure 2.2: Side-view of an aircraft with its tail number: PH-BGF

AMS - DUB AMS -
CDG

CDG -
AMSDUB- AMS AMS - MOS

MAD- AMS AMS - NCE AMS -
CDG

CDG -
AMSNCE- AMS

AMS -
ZRH

ZRH-
AMS AMS - LYS LYS- AMS

Time

route 1

route 2

route 3 AMS - WAW

Figure 2.3: An example of the output of the AMR: a collection of flights that have been combined into routes. Note
that only a small fraction of the created route is displayed in this figure due to space limitations.

faction [21]. The crew scheduling is usually conducted around one month before the day of operations,
so that the crew has ample time to plan their lives outside of their working hours [13, 21]. An example
of an output provided by the crew scheduling is given in figure 2.4.

AMS - DUB AMS -
CDGDUB- AMS AMS - MOS

MAD- AMS AMS - NCE AMS -
GVA

GVA-
AMSNCE- AMS

AMS -
ZRH

ZRH-
AMS AMS - LYS LYS- AMS AMS - WAW

CDG -
AMS

Time

Crew 1

Crew 2

Crew 3

Figure 2.4: An example of the output of the CS: crew members are assigned to routes created in the AMR

Only a few weeks or even days (this varies strongly between airlines) before the day of operations, tail
numbers are assigned to the routes, constructed in the AMR [21]. During this assignment, the planners
must ensure that each route is assigned to exactly one tail number, that the tail number is capable of
carrying out the assigned route and that the route is feasible with respect to the tail number’s individual
maintenance requirements. To achieve this, the aircraft’s location and the maintenance and flying his-
tory at the start of the horizon are considered [35]. The planners might need to make adjustments to
the routes because these considerations and possible schedule disruptions could result in an infeasible
maintenance schedule. When a tail number has been assigned a route, all maintenance activities must
be scheduled during the available ground times it will spend on maintenance stations. An example of
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an output provided by the tail assignment is given in figure 2.5. The green arrows indicate a proposed
swap, which might be beneficial if aircraft 2 would benefit from a longer ground time on Amsterdam for
maintenance. In this example, Amsterdam is the maintenance station.

AMS - DUB AMS -
CDGDUB- AMS AMS - MOS

MAD- AMS AMS - NCE AMS -
GVA

GVA-
AMSNCE- AMS

AMS -
ZRH

ZRH-
AMS AMS - LYS LYS- AMS AMS - WAW

CDG -
AMS

Time

Maintenance
Opportunity

AC 1

AC 2

AC 3

Figure 2.5: An example of the output of the TA: tail numbers are assigned to the routes created in the AMR. An
aircraft swap is proposed between aircraft 2 and aircraft 3.

Many airlines operate from a hub-and-spoke system, where the hub often is the only maintenance sta-
tion. Therefore, to optimize the maintenance schedules for aircraft, it is essential to assign routes to
them that visit the maintenance station at the correct time. This is done in the TA by adjusting the routes
that were created in the AMR, as was shown in figure 2.5. However, when adjusting the routes, the
feasibility of the crew rosters must not be compromised. If the swap in figure 2.5 were to be executed,
crew 2 and crew 3 would have to change aircraft during the ground time at Amsterdam. This crew-swap
increases the probability of extra delays because the delay of one aircraft would propagate throughout
the network. In fact, to avoid spreading delays in the network, crews should stay with the same aircraft
as much as possible [10], or crews should only swap during extensively long ground times. The most
common of these extensively long ground times is an overnight ground time. Therefore, swapping
aircraft during an overnight ground time poses little risk of a propagated delay [27].

2.2.1. Aircraft Maintenance Scheduling in the Industry
It is concluded from interviews with managers and engineers in leading European MRO-providing com-
panies, that most airlines still aggregate high-interval maintenance tasks within letter-checks. Smaller
and low-interval tasks are performed within daily checks, usually during an overnight stay at a main-
tenance station. Letter-checks are planned within specific pre-made slots. For example, throughout
the year, there are multiple A-check slots, spanning an entire day, which can be claimed for specific
aircraft. These slots are claimed roughly one month in advance. If it is expected that a tail number will
have an A-check due in a month, the planners try to make sure that the tail number will claim one of
these slots. The TA’s planning horizon varies between airlines but is usually substantially less than a
month. This means that a tail number does not yet know the complete route it will travel, only that it
is expected at the maintenance station on the day of the A-check. As time goes on and the planned
A-check moves inside the planning horizon, the aircraft is given a route, which makes sure that it will
arrive at the maintenance station at the right time. A schematic overview with a realistic time frame is
given in figure 2.6. C- and D-checks are planned even further in advance, as they have much higher
intervals than the A-check and require more down-time. As stated in chapter 1, the main advantage
of using letter-checks lies in the relative ease of the planning. The main disadvantages are the need
to take the aircraft out of rotation and the fact that many maintenance tasks are performed before they
are due.
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AMS - MAD MAD - AMS AMS - TXL AMS - VIE VIE - AMS A-check

March 1 March 8 March 25

Planning horizon

March 26

Figure 2.6: An example of the time frame in which an A-check is currently scheduled in the airline industry.

2.2.2. Aircraft maintenance Scheduling in the Literature
Maintenance scheduling in the airline industry is intertwined with routing because airlines typically have
a limited number of maintenance stations. Therefore, assuring that the aircraft is in the right position
at the right time is fundamental to the problem. This is why the Aircraft Maintenance Routing (AMR)
and the Tail Assignment (TA) are the main focuses of studies that have focused on the optimization of
aircraft maintenance scheduling. In this thesis, the AMR is defined as the construction of non-tail as-
signed flight routes from individual flights. The TA is defined as the process during which these routes
are taken as input and are assigned to tail numbers. The adaption of the routes that are given as input
is also part of the TA since this might be necessary to satisfy operational constraints. Some works in the
literature have attempted to build tail number-specific routes from individual flights. In this thesis, that
work, which is sometimes named the operational aircraft maintenance routing (OAMR), is regarded as
an integration between the AMR and the TA.

Table 2.2 presents an analysis of research published on maintenance scheduling and routing problems.
The covered areas are the fleet assignment, the aircraft maintenance routing, and the tail assignment.
A distinction is made between a cyclical maintenance/routing schedule (CS) and one that operates
with a finite horizon (FH). Furthermore, distinctions between papers are made in terms of whether their
maintenance requirements are check-based (CB), where maintenance is handled as a generic check,
or task-based (TB), where tasks are considered at a more individual level. Finally, papers are assessed
on whether or not they are compliant with an airline’s overall scheduling framework (COF), as was dis-
cussed in section 2.2. A selection of the presented papers is discussed below.

Table 2.2: Analysis of articles published on related maintenance scheduling and routing problems

Reference
Covering Areas Schedule Maint. Considerations

FA AMR TA CS FH CB TB COF

Feo & Bard [14] √ √ √ √
Barnhart et al. [7] √ √ √ √

Gopalan & Talluri [16] √ √ √ √
Moudani & Mora-Camino [32] √ √ √ √

Sriram & Haghani [40] √ √ √ √
Sarac et al. [37] √ √ √ √
Liang et al. [26] √ √ √

Liang & Chaovalitwongse [25] √ √ √ √
Basdere & Bilge [8] √ √ √ √
Maher et al. [30] √ √ √ √
Liang et al. [27] √ √ √ √
Ruther et al. [35] √ √ √ √
Khaled et al. [19] √ √ √ √

Safaei & Jardine [36] √ √ √ √
This thesis √ √ √ √

FA: Fleet Assignment, AMR: Aircraft Maintenance Routing, TA: Tail Assignment, CS: Cyclic
Schedule, FH: Finite Horizon, CB: Check-Based, TB: Task-Based, COF: Compliant with Overall
Framework.
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Papers that build a cyclical schedule using day-routes. Feo & Bard [14] and Gopalan & Talluri [16]
have focused on solving the AMR by creating weekly cyclical flight schedules that spend the night at
a maintenance station at least once every four days. They both use a closed-loop city-day-network
in which cities are represented by nodes, and the arcs between the nodes represent day-routes. A
day-route contains all the flights an aircraft makes that day and is connected to the nodes that rep-
resent the cities from which the first flight of the day departs and at which the last flight of the day
arrives. Their objectives are to find maintenance feasible cyclical schedules by connecting day-routes
with each other and by making sure that the last flight of the last day-route arrives at the same station as
the first flight from the first day-route. The advantage of a cyclical schedule is that, in theory, it could be
executed in perpetuity. An additional objective of Feo & Bard was to decrease the number of required
maintenance stations. Sriram & Haghani [40] take day-routes as input and solve the TA by creating
tail-specific weekly cyclical flight routes. They use a matrix, representing the cost of maintenance per
aircraft per city, to try and find a minimal cost route while adhering to the constraint of spending the
night on a maintenance station at least once every four days. Since all three works use day-routes,
they are all compatible with an airline’s overall planning framework, as discussed in section 2.2.

Papers that solve a check-based OAMR. Basdere & Bilge [8] solve the OAMR over a weekly plan-
ning horizon with the goal of maximizing the utilization of the total remaining flying time by planning the
generic maintenance check as late as possible. Their approach considers all ground times as possi-
bilities for maintenance. A drawback to their model is that aircraft can undergo maintenance at most
once during the planning horizon. Khaled et al. [19] solve the OAMR in a compact model, which allows
them to operate a planning horizon longer than one week.

Papers that solve a task-based OAMR. Sarac et al. [37], Maher et al. [30], Moudani & Mora-Camino
[32], Ruther et al. [35], and Safaei & Jardine [36] not only consider maintenance requirements as a
generic check that should be executed once every d days but propose models that can handle different
kinds of maintenance tasks. Sarac et al. [37] and Maher et al. [30] model the daily OAMR. In Sarac
et al. [37], if an aircraft is labeled high-time, which means that it might require maintenance, of any
kind, at the end of the day, it is routed in such a way that it will spend the same night on a maintenance
station. Moudani & Mora-Camino [32] solve an OAMR for a charter airline in which maintenance tasks
are planned after the creation of the routes, in the resulting ground times. If no feasible solution can be
found, it must be anticipated which flights should be delayed in order to create a feasible gap for the
maintenance. The OAMRmodel proposed by Safaei & Jardine [36] attempts to minimize the mismatch
between tail numbers’ maintenance needs and maintenance opportunities using an iterative heuristic.
Ruther et al. [35] solve an integrated OAMR and crew pairing four days before the day of operations.
Following such operations, the crew would be informed ample time in advance when they would be
working, but only four days in advance which flights. As they state themselves, this approach might be
challenging to implement for larger airlines but could be interesting to low-cost carriers.

Many studies in the literature focus on finding a cyclical flight schedule, in which the departure sta-
tion on the first day and the arrival station on the last day of the schedule’s horizon are the same. If
sufficient maintenance operations are planned within the cyclic schedule, it could be executed in per-
petuity. In practice, using a single rotation is not applicable due to the stochastic nature of operations
in the airline industry [8]. This stochastic nature is why operational models use a finite planning horizon
to construct and assign the routes.

There are two ways in which the maintenance requirements are modeled in the literature. The first
way uses a check-based strategy, meaning that a generic maintenance check should be scheduled
at least every d days or f flight hours. The second way utilizes a task-based strategy, where multiple
maintenance tasks, with their specific due dates, for individual aircraft, are considered.

Most research that has focused on solving the OAMR planned their routes for a one-week time horizon
or shorter, while in practice, the crew rosters are usually published roughly a month in advance. This
means that in order to be able to stick with their rosters, crew members would most likely have to swap
from aircraft after a flight numerous times. Necessitated crew-swapping increases the probability of
extra delays since the delay of one aircraft would now propagate throughout the network. Therefore, it
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is concluded that they are not compliant with the overall planning framework of airlines.

2.3. Mathematical Formulations for Aircraft Maintenance Schedul-
ing and Routing

The most commonly used models to formulate the maintenance scheduling and routing problems in
the literature are the network-based models and the string-based models, of which the network-based
models can be divided into City-Day Networks (CDN), Time-Space Networks (TSN) and Connection
Networks (CN) [36]. Their definitions, their main limitations, and relevant papers using these models
are presented in table 2.3.

Table 2.3: Discussion of the most commonly used model formulations of the aircraft maintenance scheduling and routing prob-
lems in the literature

Model Definition Main limitation Relevant papers
City-Day Networks
(CDN)

Network structure in
which nodes represent
cities and arcs rep-
resent the flights or
routes between them.

Difficult to keep track
of arrival and depar-
ture times of arcs
within the network
[37].

[40] [16] [14]

Time-Space Networks
(TSN)

Network structure in
which each station is
represented by a time-
line, which consist of
a sequentially ordered
series of event nodes
to represent flight
arrivals or departures
[25].

The connections be-
tween flights are not
explicit. This makes it
impossible to trace the
routes of individual air-
craft [7].

[24] [26] [25]

Connection Networks
(CN)

Network structure in
which nodes represent
flight legs and arcs
represent feasible
connections among
the flight legs [37].

Number of arcs pro-
gressively increases
with size of the net-
work [36].

[37] [8] [30] [35] [19]
[36]

String-based models Model structure in
which a string repre-
sents a sequence of
connected flights that
begins and ends at a
maintenance station
which satisfies the
flow balance and is
maintenance feasible
[7].

The number of strings
grows exponentially
with the size of the
flight network and the
fleet [36].

[7] [27]

2.4. Discussion of the Literature Review
An airline solves its scheduling operations in a sequential manner. First, it creates the flight schedule,
and after this, aircraft types are assigned to the flights. For each of the aircraft types, non-tail number
specific routes are generated during the AMR, to which the crews are assigned first, and in a later stage,
the tail numbers as well. During this tail assignment, the routes may be altered, and the maintenance is
planned within them. Nowadays, the industry still largely depends on the use of extensive letter-checks
during which aircraft are taken out of operations, and many maintenance tasks are executed together.
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The maintenance planned within the flight schedules consists mostly of smaller and lower-interval tasks
and is congregated in daily checks. Based on the conducted literature review and the papers presented
in table 2.2, it can be seen that much of the literature on aircraft maintenance planning and routing is
limited to planning generic daily checks. The papers that do consider a more task-based oriented ap-
proach are not compliant with the airline’s overall planning framework, leaving them vulnerable to the
risk of propagating delays resulting from the necessary crew swaps. It is therefore concluded that there
is a gap on the subject of the optimization of the operational routing and maintenance scheduling of
aircraft on an individual task basis in a way that complies with an airline’s overall planning framework.
In addition, apart from a case study by Senturk and Ozkol [38, 39], no research was found on the extent
of the advantages that an individual task-based maintenance planning approach holds.

The use of day-routes, as used by Feo & Bard [14], Gopalan & Talluri [16] and Sriram & Haghani
[40], is a well working method by which the solutions of the AMR could be altered in the TA without
exposing the airline to the risk of propagated delays because an overnight stay at a station gives am-
ple time for a crew swap to take place. City-Day networks are the best choice when using day-routes
because their main limitation, the difficulty it has keeping track of arrival and departure times of arcs
within the network, only becomes a concern when one has to build routes from individual flights. Time-
Space networks are not fit for our application as it is essential in the TA phase to be able to trace the
routes of individual aircraft. Connection networks and string-based networks could be applicable, but
their model formulations contain many more arcs, leading to a much larger model and a much higher
number of decision variables.





3
Problem Definition

The maintenance scheduling and routing model in this thesis can be defined as follows. Given a flight
schedule containing F flights, the objective of the model is to find a route for each tail number such that
(a) all the flights are covered; (b) each tail number spends a night at a maintenance station at least
once every d days to allow for necessary daily checks; (c) high-interval maintenance tasks are individ-
ually planned; (d) initial conditions for each tail number regarding location and maintenance needs are
taken into account; (e) the process fits inside the airline’s overall planning framework; (f) the cost of
maintenance is minimized and (g) the capacity of the maintenance station is taken into account.

In section 2.2.2, we indicated that the use of day-routes is an effective method to solve the tail as-
signment in a way that complies with the overall scheduling framework of an airline. By partitioning
day-routes to tail numbers, the only required aircraft swaps that a crew has to make are during an
overnight stay, which gives very little chance of propagating delays [27]. Gopalan and Talluri [16] refer
to day-routes as Lines of Flying (LOFs), which is a term that will be adopted in this thesis. LOFs specify
the origin at the start of the day and the destination at the end of the day of a route. Thus, for example,
if an aircraft departs at the start of the day from Amsterdam, flies to Berlin, flies back to Amsterdam and
then to Madrid as its final flight of the day, the information is summarized as an LOF from Amsterdam to
Madrid. An example of a city-day network with a planning horizon of seven days is visualized in figure
3.1, where the flight schedules of two aircraft are given. The arcs in figure 3.1 represent the LOFs.
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Figure 3.1: City-day network with a 7 day planning horizon

During the AMR, the non-tail number specific routes are constructed to ensure that each route spends
at least one night per given interval at a maintenance station to allow for necessary daily checks. If
these generic routes are broken down into LOFs, this warrant no longer holds because aircraft can
swap day-routes when spending the night at the same station. An example of how this could perturb
the maintenance feasibility is shown in figures 3.2a and 3.2b. Figure 3.2a shows a city-day network,

15
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including two routes created in the AMR. In this situation, city 3 represents the maintenance station,
and a daily check interval of four days is prescribed. The two routes, created in the AMR, honor the
constraint of spending a night at the maintenance station at least once per given interval. The created
routes in figure 3.2a are broken up into LOFs, and the LOFs are assigned to the tail numbers piece-
wise. As both aircraft depart from 2(3), the given formulation allows them to swap, creating a possibly
infeasible route for one of the aircraft, shown by the dashed route in figure 3.2b.
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(a) Routes as they were created in the AMR
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(b) Routes after the swapping of LOFs on 2(3)

Figure 3.2: The possible perturbation of maintenance feasibility using day-routes

This infeasibility problem could be overcome by adding another routing constraint that forces each
aircraft to spend at least one night per interval at a maintenance station. However, adding this as a
separate constraint severely increases the size of the model. Therefore, we choose to combine the
LOFs into new lines-of-flying so that each line starts and/or ends at a maintenance station. To keep
things unequivocal, we will refer to these new creations as lines, so that the term LOF can keep its
previously established definition of a one-day route.

Because our model is an operational one and works with a finite horizon, it is unlikely that each line
can start and end at a maintenance station. At the start or end of the time horizon, an aircraft may
be positioned at a non-maintenance station. In these cases, a line will either only begin or end at a
maintenance station. An example of how the lines are formed is demonstrated in figure 3.3, in which
city 3 again represents the maintenance station. The LOFs that were present in figure 3.1 are now
combined into lines that start and/or end at the maintenance station. Each color in figure 3.3 repre-
sents a separate line. Regardless of the length of the time horizon or what city a line starts or ends at,
the solution produced in the AMR guarantees that a line will never go more than a set number of days
without spending the night at a maintenance station.
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Figure 3.3: The formed lines within the illustrated city-day network
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When using lines instead of LOFs, the only requirement for guaranteeing maintenance feasibility is
that the first assigned line for each aircraft visits a maintenance station before the due date of its daily
check. An example of this is given in figure 3.4. In this situation, two separate aircraft start from 2(1). If
one of the aircraft is due for its necessary daily check on the maintenance station (station 3) by day 2,
it must be assigned the red line and not the green line. A constraint guaranteeing that the first selected
line leads to a feasible solution must be added to the model. The existence of the AMR ensures that a
feasible line, such as the red one, exists for each aircraft.
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Figure 3.4: City-day network in which multiple aircraft start from the same node

Apart from the routine daily checks, also tasks with a high interval that would generally be planned
inside of a letter-check are considered in our model. It is unusual for an airline to have all aircraft of a
particular fleet undergo a letter-check in the same week. After all, this would result in severe harm to
the airline’s operability as many aircraft would have to be taken out of operations during the same time.
An airline would instead attempt to spread this out over the length of the interval of the letter-check. By
moving high-interval tasks from a letter-check to an overnight check, these tasks would be executed
during the aircraft’s flight schedule, thereby reducing the need for aircraft to be taken out of operations
and increasing aircraft availability and revenue. As a result of the phasing of the previous letter-check
strategy, we expect that some aircraft will have a higher number of tasks that need to be scheduled
during the planning horizon, and some aircraft will require a lower number of tasks to be scheduled.
By assigning a route consisting of multiple short lines and thus multiple maintenance visits instead of
only assigning the minimum, an aircraft with high maintenance demand can be given the capacity to
handle all its maintenance requirements. The maintenance routing and scheduling model presented in
this thesis will use the partitioning of lines to tail numbers to identify such a schedule.

The tasks will be provided with both a due date and a remaining numbers of legal flight hours that
can be flown before execution of the task is mandatory. If either the due date or the remaining number
of legal flight hours is exceeded before the task is executed, the aircraft loses its airworthiness. This
means that whichever of these two limits appears first determines the cut-off point before which a task
must be executed. Since it is not known beforehand how many flight hours each tail number will fly, it
is also unknown which specific set of tasks will need to be planned within the time horizon. To account
for this, the longest possible route for each tail number is determined. All the maintenance tasks that,
at the start of the time horizon, have a remaining number of legal flight hours smaller than the number
of flight hours in the longest route are included in the model. This does not mean that all tasks must be
executed, because the actual traveled route may be shorter. A similar idea was also implemented by
Bilge & Basdere [8], who labeled all aircraft with a check due in less remaining time than the longest
possible route in the planning horizon as high-time aircraft, which then were considered for mainte-
nance, but were not forced to undergo it if it turned out unnecessary.

In theory, an aircraft’s route could be infeasible if one of the individual tasks is due before its first chance
to visit a maintenance station appears. However, the tail assignment problem is generally solved with
a rolling horizon [23], which means that this problem would be solved beforehand by planning and per-
forming the maintenance task at an earlier stage.
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The clear objective of most maintenance scheduling models is to minimize the cost of maintenance.
However, because it is difficult to define and calculate a cost for maintenance, often a surrogate objec-
tive is used [37]. If a maintenance task with positive remaining flying time is executed, then a portion
of the flight capacity is wasted, and if necessary, parts that need to be replaced are done so before
utilizing their useful lives [8]. To minimize this wasted flying time is equivalent to minimizing the unused
legal flying times. Minimizing the unused flying time is taken as a surrogate objective for the cost mini-
mization in this work, similar to Sarac et al. [37] and Basdere & Bilger [8].

The problem is formulated as a multi-commodity network flow model, where each aircraft represents a
separate commodity. The created lines in the AMR are taken as an input, and each line has an upper
and lower capacity of one unit flow. The proposed model is concerned with assigning the lines to tail
numbers in a way that allocates enough maintenance opportunities to tail numbers that require it and
tries to plan the individual tasks as late as possible.

Our model considers a hub-and-spoke system in which the hub is the only maintenance station. Also,
similarly to Feo & Bard [14], Gopalan & Talluri [16], and Sriram & Haghani [40], an intracontinental fleet
is considered, because intercontinental aircraft do not operate with lines as they also fly during the night
[14]. In a hub and spoke system, aircraft operate flights only to and from the hub.

The assumptions made in the proposed formulation are summarized as:
1. The planned aircraft maintenance is only performed during the night

2. There is no aircraft operation during the night

3. The model considers a hub-and-spoke model where there is only one maintenance station

4. The given station capacity is fully available for the execution of the planned tasks
Night flying restrictions are common in European airports, as many large airports have installed cur-
fews. One of the main reasons for this is to relieve communities in close proximity to an airport from
noise pollution [43]. Frankfurt airport has a curfew of 23:00 to 05:00 [33], London Heathrow has no
scheduled departures between 22:50 and 06:00 [2] and Schiphol Airport has restricted take-offs and
landings between 23:00 and 06:00 to a single take-off runway and a single landing runway [1]. Because
intracontinental routes have a night curfew, most inspections and repairs (other than transit checks) as
a general rule take place at night [19].

3.1. Mathematical Formulation
This section presents the mathematical formulation. The definitions behind the notation used in this
model can be found in table 3.1.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑
።∈ፈ
∑
፣∈ፉ
∑
፭∈ፓᑚ

𝑦።፭፣ ∗ 𝑆።,፭ ∗ 𝑚𝑖𝑛(𝐴𝑣𝑔 ∗ (𝐷𝐷i,t − 𝐷𝑎𝑡𝑒j), 𝑅𝐹𝐻i,t −
ፃፚ፭፞j

∑
፝ኻ

∑
፣∈ፉ፬d

𝑥ij ∗ 𝑙j) (3.1)

Subject to:

∑
።∈ፈ
𝑥።፣ = 1 ∀𝑗 ∈ 𝐽 (3.2)

∑
፣∈ፉፚᑕ

𝑥።፣ = 1 ∀𝑖 ∈ 𝐼, 𝑑 = 2, 3, ..., 𝑛d (3.3)

∑
፣∈ፒᑚ

𝑥።፣ = 1 ∀𝑖 ∈ 𝐼 (3.4)



3.1. Mathematical Formulation 19

𝑥።፣ − ∑
፣∈ፂᑛ

𝑥።፣ ≤ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (3.5)

∑
፣∈ፉ
𝑦።፭፣ ≤ 1 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇። (3.6)

𝑅𝐹𝐻።,፭ −∑
፣∈ፉ
𝑥።፣ ∗ 𝑙፣ ≥∑

፣∈ፉ
𝑦።፭፣ ∗ 𝑚𝑠፣ ∗ −𝐾 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇። (3.7)

𝐷𝐷።,፭ − 𝑛፝ ≥∑
፣∈ፉ
𝑦።፭፣ ∗ 𝑚𝑠፣ ∗ −𝐾 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇። (3.8)

𝑦።፭፣ ∗ (
ፃፚ፭ ᑛ፞

∑
፝ኻ

∑
፣∈ፉ፬ᑕ

𝑥።፣ ∗ 𝑙፣) ≤ 𝑅𝐹𝐻።,፭ ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇። , 𝑗 ∈ 𝐽 (3.9)

𝑦።፭፣ ∗ 𝐷𝑎𝑡𝑒፣ ≤ 𝐷𝐷።,፭ ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇። , 𝑗 ∈ 𝐽 (3.10)

|𝑇።| ∗ 𝑥።፣ ≥ ∑
፭∈ፓᑚ

𝑦።፭፣ ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (3.11)

∑
።∈ፈ

∑
፣∈ፉ፞ᑕ

∑
፭∈ፓᑚ

𝑦።፭፣ ∗ 𝑆።,፭ ≤ 𝑀፝ 𝑑 = 1, ..., 𝑛፝ (3.12)

𝑥።፣ ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (3.13)

𝑦።፭፣ ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇። , 𝑗 ∈ 𝐽 (3.14)

3.1.1. Objective Function
The objective function is set up to minimize the unused flying time of the scheduled tasks. Herein the
size of the task is taken as a weight factor. This stems from the idea that it is better to fully utilize the
task interval of large tasks than smaller ones. The unused flying time for a task is calculated in two
ways, both for unused days and for unused flying hours. The former determines the due date of the
task and compares it to the date that the task was executed. This is then multiplied by the average
number of flight hours that an aircraft records per day, which is given as an input parameter to the
model. The latter way of determining the unused flying time compares the remaining number of legal
flight hours at the start of the planning horizon with the number of flight hours the aircraft has recorded
until the execution of the task. As both the due date and the remaining number of legal flight hours of
a task set a hard line after which the aircraft loses its airworthiness, the minimum value of these two is
selected as the truly lost flying time.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑
።∈ፈ
∑
፣∈ፉ
∑
፭∈ፓᑚ

𝑦።፭፣ ∗ 𝑆።,፭ ∗ 𝑚𝑖𝑛(𝐴𝑣𝑔 ∗ (𝐷𝐷i,t − 𝐷𝑎𝑡𝑒j), 𝑅𝐹𝐻i,t −
ፃፚ፭፞j

∑
፝ኻ

∑
፣∈ፉ፬d

𝑥ij ∗ 𝑙j) (3.15)
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Table 3.1: Parameters, indexes, sets and decision variables

Parameters & Indexes:
np number of aircraft in the fleet
nd number of days in the planning horizon
nj number of lines in the planning horizon
ni,t number of considered tasks in the planning horizon for aircraft i
i index for aircraft i = 1,2,...,np
d index for days d = 1,2,...,nd
j index for lines j = 1,2,..,nj
t index for tasks t of aircraft i, t = 1,2,...,ni,t
lj length of of line j in flight hours
DDi,t due date of task t of aircraft i
RFHi,t remaining number of legal flight hours of task t of aircraft i at the

start of the planning horizon
Datej end date of line j
Si,t size in man-hours of task t of aircraft i
msj equals 1 if line j ends on the maintenance station, 0 otherwise
Md Capacity of the maintenance station in man-hours on day d
Avg average number of recorded flight hours per day per aircraft
K a sufficiently large number

Sets:
I set of all aircraft
J set of all lines in the planning horizon
Jad set of all lines active on day d
Jsd set of all lines starting on day d
Jed set of all lines ending on day d
Jb set of all lines except the ending lines
Si set of all feasible starting lines for aircraft i
Cj set of all connection lines of line j
Ti set of considered tasks for aircraft i within the planning horizon

Decision Variables:
xij = 1 if aircraft i flies line j, 0 otherwise
yitj = 1 if aircraft i plans maintenance task t ∈ Ti after line j, 0 otherwise

3.1.2. Set of Constraints
Constraints 3.16 - 3.19 are concerned with creating a feasible route for each tail number. Constraints
(3.16) are known as the flight coverage constraints. They guarantee that each line, and thus each
individual flight, is allocated to exactly one aircraft.

∑
።∈ፈ
𝑥።፣ = 1 ∀𝑗 ∈ 𝐽 (3.16)

Constraints (3.17) limit the aircraft to fly at most 1 line at any given moment, as it is clear that an aircraft
cannot be in more than one place at the same time. Furthermore, these constraints are only set for
day 2 until the last day of the time horizon, since day 1 requires a separate set of constraints.

∑
፣∈ፉፚᑕ

𝑥።፣ = 1 ∀𝑖 ∈ 𝐼, 𝑑 = 2, 3, ..., 𝑛d (3.17)

The first assigned line in every route is one that requires extra consideration. Firstly, a tail number must
be assigned a route that starts from its initial location. An aircraft located in Amsterdam, should not be
given a flight schedule departing from Madrid for obvious reasons. Secondly, the due date for the first
mandatory overnight stay to complete a daily check, at the maintenance station, must be taken into
account. The first selected line in the route should end at a maintenance station before this due date
passes. Therefore, for each tail number, a set Si is made that contains all the feasible starting lines for
aircraft i. Constraints (3.18) ensure that each aircraft is allocated exactly one line that starts from its
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corresponding set Si.
∑
፣∈ፒᑚ

𝑥።፣ = 1 ∀𝑖 ∈ 𝐼 (3.18)

Constraints (3.19) are the last in the routing section, and are the flow constraints. These constraints
ensure that if an aircraft flies a line, it also must fly a line connected to it. For each line, all its connections
are stored in set Cj. Therefore, if line 10 arrives at Amsterdam on day 2, C10 contains all the lines that
will depart from Amsterdam on day 3. The lines ending on the last day are excluded since they are the
endpoint in the planning horizon and thus fall outside the planning horizon.

𝑥።፣ − ∑
፣∈ፂᑛ

𝑥።፣ ≤ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (3.19)

Constraints 3.20-3.26 deal with the planning of the individual high-interval maintenance tasks for each
aircraft. As stated at the start of this chapter, these tasks are given both due dates and remaining
numbers of legal flight hours. Before the model is solved, it is not yet known how many flight hours will
be flown by each tail number. This means that it cannot be said with certainty which set of tasks needs
to be planned for each tail number in the planning horizon. Therefore, the longest possible route for
each tail number is determined and all the tasks that would have to be planned for this tail number,
if this route were to be the flown, are considered in the model and saved in set Ti. If a shorter route
is constructed, some tasks may fall outside the planning horizon, and therefore constraints (3.20) do
not require all tasks to be planned exactly once, but instead, they ensure each task can be planned a
maximum of one time.

∑
፣∈ፉ
𝑦።፭፣ ≤ 1 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇። (3.20)

Constraints (3.21) ensure that if the constructed route for aircraft i is longer than a task’s remaining
number of legal flight hours, it must be planned on a maintenance station.

𝑅𝐹𝐻።,፭ −∑
፣∈ፉ
𝑥።፣ ∗ 𝑙፣ ≥∑

፣∈ፉ
𝑦።፭፣ ∗ 𝑚𝑠፣ ∗ −𝐾 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇። (3.21)

Similar to constraints (3.21), constraints (3.22) ensure that a task must be planned if its due date is
nearer than the end of the planning horizon.

𝐷𝐷።,፭ − 𝑛፝ ≥∑
፣∈ፉ
𝑦።፭፣ ∗ 𝑚𝑠፣ ∗ −𝐾 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇። (3.22)

Constraints (3.23) ensure that, if a maintenance task is planned, it must be planned before the remain-
ing number of legal flight hours for that task have expired.

𝑦።፭፣ ∗ (
ፃፚ፭ ᑛ፞

∑
፝ኻ

∑
፣∈ፉᑤᑕ

𝑥።፣ ∗ 𝑙፣) ≤ 𝑅𝐹𝐻።,፭ ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇። , 𝑗 ∈ 𝐽 (3.23)

Similar to constraints (3.23), constraints (3.24) ensure that, if a maintenance task is planned, it must
be planned before its due date.

𝑦።፭፣ ∗ 𝐷𝑎𝑡𝑒፣ ≤ 𝐷𝐷።,፭ ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇። , 𝑗 ∈ 𝐽 (3.24)

Constraints (3.25) assure that a task can only be planned for an aircraft after a line if the aircraft in
question has actually flown that specific line.

|𝑇።| ∗ 𝑥።፣ ≥ ∑
፭∈ፓᑚ

𝑦።፭፣ ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (3.25)

Constraints (3.26) are the capacity constraints. All aircraft in the model have a shared resource in the
maintenance station’s capacity. The maintenance station is allocated a number of man-hours it has at
its disposal for handling the tasks taken as input to the model. The sum of all executed maintenance
tasks over all aircraft per night must not exceed this number.

∑
።∈ፈ

∑
፣∈ፉᑖᑕ

∑
፭∈ፓᑚ

𝑦።፭፣ ∗ 𝑆።,፭ ≤ 𝑀፝ 𝑑 = 1, ..., 𝑛፝ (3.26)
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3.2. Model Characteristics
The presented model is a large scale MIP. To gain an appreciation for its size, a breakdown of the
problem sizes and computational results for different sets of parameter settings is presented in table
3.2. The given tests are run with a planning horizon of 7 days, which is a common planning horizon
in the literature [31]. Longer planning horizons could yield higher quality routes from an optimization
perspective, but the stochastic nature of the airline environment makes it less likely that these routes
could be fully carried out [8]. Selecting a planning horizon that is too short can lead to feasibility prob-
lems due to large task sets suddenly entering the planning horizon. Therefore, in our tests, a planning
horizon of one week, or seven days, is selected similarly to Basdere & Bilge [8]. Furthermore a main-
tenance capacity of 75 man-hours per night at the maintenance station is selected, and in our test the
maintenance task sets for each aircraft consisted of either 10 or 20 tasks.These task set sizes were
chosen as they are in the range of the number of tasks that could be expected to require planning every
week if the tasks from letter checks are planned individually. The model was coded in Python 3.7 and
solved using Gurobi, who employ a branch-and-bound based algorithm. All computations have been
performed on a desktop running Intel(R) Core(TM) i7-7500U CPU @ 2.70 GHz.

Table 3.2: Computational results when solving the MIP, with nd =7, using Gurobi

# AC # Tasks # Var # Const Residual Gap (%) CPU (sec) Obj value
5 10 1045 2276 0.00 1 258

20 1995 4326 0.00 2 471
6 10 1452 3119 0.00 1 304

20 2772 5939 0.00 7 607
7 10 1925 4092 0.00 5 385

20 3675 7802 0.00 14 727
8 10 2464 5195 0.00 19 424

20 4704 9915 0.00 44 863
9 10 3168 6627 0.00 53 434

20 6048 12,657 0.00 110 913
10 10 4070 8454 0.00 632 432

20 7770 16,154 0.00 2138 937
11 10 4840 10,013 0.00 1269 471

20 9240 19,143 5.41 56,000 1085

The flight data for these tests was extracted from online sources tracking individual aircraft of fleets. In
this case, the flight data of a set of Boeing 737s of a large European airline was used. For each tail
number, the recorded flight data over a specified time horizon was taken, and these flights were trans-
formed into the lines we use in the model. The starting positions of the tail numbers are also extracted
from this data. If a test case of five aircraft was used, only the flight data of these five aircraft over the
given time horizon would be used. Adding another aircraft to the model means that the total number
of lines also expands. For certain aircraft, the flight data was complemented if a gap in the data were
present.

All aircraft starting from the maintenance station have been given a due date for the first daily check of
four days from the start of the planning horizon. For aircraft not starting from the maintenance station,
the first due overnight is generated following a discrete uniform distribution. Within this distribution, the
lower bound is set as the first time the aircraft spends the night at the maintenance station in the flight
data. This guarantees the existence of a feasible solution. The upper bound is given as three days
from the start of the planning horizon.

Each aircraft has been given a unique set of tasks to be completed. The size of each task in man-
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hours is generated following a uniform distribution between 0.5 man-hours and 1.5 man-hours so that
the average lies around 1 man-hour, which in section 2.1.2 is concluded to be the average size of a
task in an A-check. Each task’s due date is generated following a discrete uniform distribution. The
lower bound of this distribution is the due date for the aircraft’s first daily check, and the upper bound
is the end of the planning horizon. The number of remaining legal flight hours for a task is generated
following a discrete uniform distribution where the lower bound equals the number of flight-hours that
are flown before the aircraft can its first daily check. This lower bound is necessary to guarantee the
existence of a feasible solution. The upper bound is set at the average number of recorded flight hours
per day multiplied by the number of days in the planning horizon.

As the size of the model increases, so too naturally does the time it takes to solve the model. For
fleets containing a large number of aircraft, it seems that the model becomes too large to solve with
exact methods within a reasonable time. Therefore another solution method will have to be constructed
to generate good solutions in a faster way.

In this chapter, a city-day network-based model is presented, which optimizes the maintenance routing
and scheduling for a set of aircraft. The objective of the model is to create routes that can handle all
the maintenance requirements for aircraft and minimize the weighted lost flying time of the individually
considered tasks. The maintenance feasibility of each route concerning short and low-interval tasks is
ensured through the use of lines, which are flight routes that can span multiple days and start and/or
end at a maintenance station.





4
Solution Approach

Two types of optimization algorithms exist: exact and heuristic algorithms [41]. Exact algorithms guar-
antee that they will find the optimal solution in a finite amount of time, whereas heuristics do not have
this guarantee, typically returning solutions worse than optimal. The guarantee of finding the optimal
solution means that exact algorithms both have to find this solution and also prove that the solution is
optimal. For many real-life optimization problems, exact algorithms are not a suitable solution, as their
solving time is too great [41].

Due to advances in hardware and exact solution methods, several MIP models can reach optimal-
ity within a reasonable amount of time or close to it [6]. This has led to a relatively new research area
called matheuristics that attempts to combine exact algorithms with heuristics. The resulting method is
usually an integration of exact methods solving subproblems in a higher level heuristic [41]. Matheuris-
tics have been applied to several different routing problems. One of the main matheuristic approaches
is the decomposition approach [6]. In the decomposition approach, the problem is decomposed into
smaller subproblems, that are solved through mathematical programming. A feasible solution for the
overall problem is obtained from the solutions of the smaller subproblems. Decomposition approaches
are especially suitable for handling complex and interrelated problems [6], which could make it a good
fit for the problem presented in chapter 3. The following two distinct types of decompositions have been
formulated for our problem:

1. Decomposition by aircraft matheuristics; and

2. Rolling horizon matheuristics

The decomposition by aircraft matheuristics are presented in section 4.1, and section 4.2 presents
the rolling horizon matheuristics. In every section, the results of the presented matheuristics are com-
pared with the results of the exact solution method under the same parameter settings. Furthermore,
the matheuristics are run for larger problem sets for which there are no optimal solutions available,
and these results are presented as well. For the large problem sets, the maintenance capacity was in-
creased to 150 man-hours per night to guarantee the existence of feasible solutions. If the matheuristic
was not completed after 1 hour of computation time, the results are left blank.

4.1. Decomposition by Aircraft Matheuristics
In the decomposition by aircraft matheuristic, our problem is decomposed into N subproblems, where N
equals the total number of aircraft. Each subproblem generates the route and maintenance schedule
for a single tail number by solving the corresponding MIP to optimality using a branch and bound.
For the first aircraft, all the lines and the full maintenance capacity are available. After the solution
is obtained, the used lines are removed from the network, and the remaining maintenance capacity
is updated. Subsequently, the MIP with the remaining lines and maintenance capacity is solved for
the next aircraft until all aircraft are assigned a route and maintenance schedule. Figure 4.1 gives a
graphical representation of the order in which a solution is calculated using a decomposition by aircraft
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method. City 3 again represents the maintenance station in the figure. It can be seen that the first
aircraft (blue) has all the lines at its disposal, whilst the last aircraft (red) has to make do with whatever
lines are left in the network. Two decomposition by aircraft matheuristics have been modeled in this
thesis. In section 4.1.1, a depth-first and random search combination is presented, and in section 4.1.2,
a successive route checking matheuristic is designed.
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(a) Solution before the first iteration
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(b) Solution after the first iteration

1(1)

City
Day

1 1(2) 1(3) 1(4) 1(5) 1(6) 1(7)

2(1) 2(2) 2(3) 2(4) 2(5) 2(6) 2(7)

3(1) 3(2) 3(3) 3(4) 3(5) 3(6) 3(7)

4(1) 4(2) 4(3) 4(4) 4(5) 4(6) 4(7)

2

3

4

1 2 3 4 5 6 7

1(8)

2(8)

3(8)

4(8)

8

(c) Solution after the second iteration
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(d) Solution after the third and final iteration

Figure 4.1: Visualization of the of the solution process of a decomposition by aircraft method for a set of 3 aircraft and a 7-day
planning horizon. City 3 is the maintenance station.

4.1.1. A Depth-first and Random Search Combination
The decomposition by aircraft method presented in this section is inspired by the depth-first and random
search heuristic used by Sriram & Haghani [40], which yielded good results for an aircraft maintenance
routing problem that is similar to our own. In this matheuristic, a list of all considered aircraft is made
in random order, named the aircraft list. The first aircraft on the list is selected, and the best possible
route is constructed from all the available lines by solving the mathematical model presented in chapter
3, adapted for a single aircraft.

The available starting lines the aircraft has at its disposal are organized in a feasibility list, that contains
the lines that it could feasibly choose as its first line. Lines that, if selected, would create feasibility
problems for upcoming aircraft are excluded from the feasibility list and are thus not available for selec-
tion, because they need to be reserved for an upcoming aircraft. For example, consider a fleet of three
aircraft: aircraft A, aircraft B and aircraft C. Aircraft A has two feasible starting lines: line 1 and line 2,
aircraft B has the same two feasible starting lines: line 1 and line 2, and aircraft C has three feasible
starting lines: line 1, line 2 and line 3. If aircraft C is the first appearing aircraft on the aircraft list, it
should not be able to select line 1 or line 2 as its starting lines, because this will create an infeasible
schedule when the final aircraft on the aircraft list is selected. Therefore, line 1 and line 2 would not
be included in the feasibility list of aircraft C. Whether or not a line is feasible depends on the starting
location of the aircraft and the due date of its first daily check.

After an aircraft route is constructed, the used lines are removed from the network, and the feasibility list
and remaining maintenance capacity per day for the maintenance station are updated. Subsequently,
the next aircraft on the list is selected, and the process repeats itself until all the aircraft in the list are
assigned routes and maintenance schedules. At the end of the process, a feasible solution is found,
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and all the solution values of the corresponding aircraft are summed to get the weighted value of the
total lost flying time. This entire process is executed over multiple iterations, where the aircraft list is
randomly shuffled for each iteration. If the found objective value of an iteration is lower than that of the
previous best-found solution, the current iteration’s solution is saved as the current best solution. At
the end of the matheuristic, the best-found solution is presented as the final solution. The flow chart
of this solution process is presented in figure 4.2. Table 4.1 presents the results of the depth-first and
random search matheuristic and compares them with the results of the exact solution method. In table
4.2, the matheuristic solutions are presented for larger problem sizes with up to 25 aircraft.

Table 4.1: Performance of the depth-first and random search matheuristic with 10 iterations in several
problem sets compared to the exact solution method

# AC # Tasks CPU time (sec) Objective value Optimality gap
in %Matheuristic Exact Matheuristic Exact

5 10 7 1 278 258 7.8
20 8 2 511 471 8.5

6 10 8 1 315 304 3.6
20 12 7 675 607 11.2

7 10 11 5 467 385 21.3
20 16 14 802 727 10.3

8 10 12 19 462 424 9.0
20 20 44 945 863 9.5

9 10 18 53 476 434 9.7
20 24 110 1043 913 14.2

10 10 24 632 522 432 20.8
20 48 2138 1102 937 17.6

11 10 28 1269 563 471 19.5

Average 12.5

Table 4.2: Performance of the depth-first and random search matheuristic in several large-sized
problems with 10 iterations

# AC # Tasks CPU time (sec) Objective value
15 10 120 797

20 229 1903
20 10 232 1192

20 485 2641
25 10 1570 1450

20 - -

The results presented in table 4.1, and table 4.2 are found after ten iterations. This means that solutions
have been found for ten different orders of the aircraft list. The total possible orders of the aircraft
list equals the factorial of the number of aircraft included, which for all test cases vastly surpasses
the number of ten. This means that only a small fraction of the solution space is explored. Greatly
increasing the number of iterations is not feasible because this proportionally increases the computation
time. The explanation behind the long computation times for a single iteration is that the first aircraft on
the list of every iteration has a large number of lines to choose from, resulting in a MIP that still requires
a substantial amount of time to solve.
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Figure 4.2: Flowchart of the depth-first and random search matheuristic
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4.1.2. Successive Route Checking Matheuristic
In the successive route checking matheuristic (SRCM), similar to the depth-first and random search
matheuristic, aircraft are given their routes one by one. However, instead of constructing routes from
the available lines, all the possible routes are created before solving the model. Subsequently, a ran-
dom aircraft list is constructed in a similar way as in section 4.1.1. For the first aircraft on the list, an
enumerative search is done by solving a task-planning MIP for every feasible route. Again, a feasibility
list is used that only contains routes that, if selected, do not create feasibility problems for the current
and upcoming aircraft. The route corresponding with the best solution score is selected for the first
aircraft. Subsequently, the list of remaining possible routes and the remaining maintenance capacities
per day are updated. Next, the second aircraft in the list is selected, and the process repeats itself until
routes and maintenance schedules are assigned to all the tail numbers. At the end of the process, a
feasible solution is found, and all the solution values of the corresponding maintenance schedules are
summed to get the weighted value of the total lost flying time. This entire process is executed over
multiple iterations, where the aircraft list is randomly shuffled for each iteration. If the found objective
value of an iteration is lower than that of the previous best-found solution, the current iteration’s solution
is saved as the new best solution. At the end of the matheuristic, the best-found solution is presented
as the final solution. A flowchart of the successive route checking matheuristic is given in figure 4.3.

Because the route is given as input during each MIP, the routing constraints can be eliminated. Also,
since the length of the route is known beforehand, the specific set of tasks that need to be scheduled
can be determined. Another advantage is that the quadratic constraints (3.23) can be linearized. In
the successive route checking matheuristic the following MIP is solved for each selected route:

Table 4.3: Parameters, indexes, sets and decision variables for SRCM

Parameters & Indexes:
nd number of days in the planning horizon
nj number of lines in the route
nt number of tasks to be planned
d index for days d = 1,2,...,nd
j index for lines j = 1,2,..,nj
t index for tasks t = 1,2,...,nt
Lj number of flight hours flown at the end of line j
DDt due date of task t
RFHt remaining number of legal flight hours of task t at the start of the planning horizon
Datej end date of line j
St size in man-hours of task t
msj binary value which equals 1 if line j ends on the maintenance station, 0 otherwise
Md remaining capacity of the maintenance station in man-hours on day d
Avg average number of recorded flight hours per day per aircraft

Sets:
J set of all lines in the considered route
Jed set of all lines ending on day d
T set of tasks to be planned within the route

Decision Variables:
ytj = 1 if maintenance task t ∈ T is planned after line j, 0 otherwise

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑
፣∈ፉ
∑
፭∈ፓ
𝑦፭፣ ∗ 𝑆፭ ∗ 𝑚𝑖𝑛(𝐴𝑣𝑔 ∗ (𝐷𝐷i,t − 𝐷𝑎𝑡𝑒j), 𝑅𝐹𝐻t − 𝐿፣) (4.1)

∑
፣∈ፉ
𝑦፭፣ ∗ 𝑚𝑠፣ = 1 ∀𝑡 ∈ 𝑇 (4.2)

𝑦፭፣ ∗ 𝐷𝑎𝑡𝑒፣ ≤ 𝐷𝐷፭ ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (4.3)

𝑦፭፣ ∗ 𝐿፣ ≤ 𝑅𝐹𝐻፭ ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (4.4)
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∑
፣∈ፉ፞ᑕ

∑
፭∈ፓ
𝑦፭፣ ∗ 𝑆፭ ≤ 𝑀፝ 𝑑 = 1, ..., 𝑛፝ (4.5)

𝑦፭፣ ∈ {0, 1} ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽 (4.6)

The results of the successive route checkingmatheuristic are presented in tables 4.4 and 4.5. It appears
that the speeding up of the matheuristic due to the simplification of the model is nullified by the large
number of possible routes, which rises exponentially as the number of aircraft, and thus the number of
lines, increases. The total number of possible routes that could be constructed from all the lines in our
used data is presented in table 4.6.

Table 4.4: Performance of the successive route checking matheuristic with 10 iterations in several
problem sets compared to the exact solution method

# AC # Tasks CPU time (sec) Objective value Optimality gap
in %Matheuristic Exact Matheuristic Exact

5 10 11 1 271 258 5.0
20 13 2 510 471 8.3

6 10 15 1 336 304 10.5
20 16 7 652 607 7.4

7 10 21 5 425 385 10.4
20 26 14 807 727 11.0

8 10 38 19 469 424 10.6
20 33 44 972 863 12.6

9 10 63 53 481 434 10.8
20 53 110 1071 913 17.3

10 10 150 632 514 432 19.0
20 127 2138 1103 937 17.7

11 10 225 1269 572 471 21.4

Average 12.5

Table 4.5: Performance of the successive route checking matheuristic in several large-sized problems
with 10 iterations

# AC # Tasks CPU time (sec) Objective value
15 10 594 816

20 392 1888
20 10 2210 1167

20 1404 2729
25 10 - -

20 - -
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Figure 4.3: Flowchart of the successive route checking matheuristic
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Table 4.6: Total number of possible routes per set of considered aircraft for a time horizon of seven
days

# AC total number of lines total number of possible routes
5 19 90
10 37 1576
15 54 5685
20 70 16,921
25 87 49,244

4.2. Rolling Horizon Matheuristics

The matheuristic approach of decomposing a problem into time periods is classified as a rolling horizon
matheuristic (RHM) by Archetti & Speranza [6]. A rolling horizon matheuristic is a solution methodol-
ogy to problems in which decisions must be made over time. In a rolling horizon matheuristic, a MIP
is repeatedly solved for shorter sub-horizons of the planning horizon, using a branch-and-bound ap-
proach [34]. Rolling horizon matheuristics have been applied for several transportation problems, such
as Agra et al. [4], who use a rolling horizon matheuristic to solve an inventory routing problem in which
ships are routed and scheduled between ports such that the demand for various fuel oil products is
satisfied during the planning horizon. Rakke et al. [34] use a rolling horizon matheuristic to create a
liquefied natural gas annual delivery program.

At the beginning of our RHM, all the tail numbers and all the lines that start from day 1 are considered.
During the first iteration, a MIP is solved that distributes the starting lines as efficiently as possible and
plans any required maintenance within the time period, with the goal of minimizing the total number
of lost flying time. After the MIP is solved, the routing variables are frozen, and the sub-horizon shifts
forwards. During the second iteration, all the tail numbers and all the lines that start on day 2 are con-
sidered. For the tail numbers, this comes down to the aircraft that were assigned 1-day long lines during
the previous iteration. The pseudo-code is presented in algorithm 1, and figure 4.4 gives a graphical
representation of the rolling horizon matheuristic. Each color in figure 4.4 represents a distinct route
for a tail number, and city three is, once again, the maintenance station.

Algorithm 1: Rolling Horizon Matheuristic
k = 0;
U = Number of days in the planning horizon;
while k = k + 1 ≤ U do

1: Select the set of tail numbers and lines starting from day k;
2: Determine the task set for each tail number that requires consideration;
3: Solve the MIP, including feasibility constraint if k = 1;
4: Freeze variables xij from the current iteration;

end

The results of the RHM are presented in table 4.7 and are compared to the results produced by the
exact solution method. For most problem sets, the RHM produces much better solutions than the
decomposition by aircraft methods, which were presented in section 4.1. The time it takes to solve the
given problems is also drastically reduced. The RHM has also been run for the larger sized problem
sets, and the results of these tests are presented in table 4.8. Even sets containing 25 aircraft were
solved in under 30 seconds, while also presenting better objective values than both the depth-first
random search, and the successive route checking matheuristic.
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(a) RHM before the first iteration
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(b) RHM results after first iteration
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(c) RHM results after second iteration
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(d) RHM results after third iteration
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(e) RHM results after fourth iteration
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(f) RHM results after fifth iteration

1(1)

City
Day

1 1(2) 1(3) 1(4) 1(5) 1(6) 1(7)

2(1) 2(2) 2(3) 2(4) 2(5) 2(6) 2(7)

3(1) 3(2) 3(3) 3(4) 3(5) 3(6) 3(7)

4(1) 4(2) 4(3) 4(4) 4(5) 4(6) 4(7)

2

3

4

1 2 3 4 5 6 7

1(8)

2(8)

3(8)

4(8)

8

(g) RHM results after sixth iteration
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(h) RHM results after seventh iteration

Figure 4.4: Visualization of the functioning of the RHM for a set of 3 aircraft and a 7-day planning horizon. City 3 is the
maintenance station.
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Table 4.7: Performance of the RHM in several problem sets compared to the exact solution method

# AC # Tasks CPU time (sec) Objective value Optimality gap
in %Matheuristic Exact Matheuristic Exact

5 10 1 1 266 258 3.1
20 1 2 487 471 3.4

6 10 1 1 308 304 1.3
20 2 7 607 607 0.0

7 10 1 5 385 385 0.0
20 2 14 731 727 0.6

8 10 1 19 436 424 2.8
20 2 44 868 863 0.6

9 10 2 53 446 434 2.8
20 3 110 939 913 2.8

10 10 2 632 481 432 11.3
20 3 2138 997 937 6.4

11 10 2 1269 620 471 31.6

Average 5.1

Table 4.8: Performance of the RHM in several large sized problems

# AC # Tasks CPU time (sec) Objective value
15 10 3 746

20 6 1692
20 10 5 942

20 11 2280
25 10 8 1200

20 22 3030

The downside of an RHM, as implemented above, is that it, in a sense, is myopic. It only considers
lines that start on the day of the iteration and does not take future lines that appear in an upcoming
iteration into account. This can sometimes result in poor solutions, as is the case for the problem set
consisting of 11 airplanes and 10 possible tasks for each in table 4.7. To counter this shortsightedness,
Rakke et al. [34] and Agra et al. [4] included a forecasting section in their rolling horizon matheuristic.
Rakke et al. [34] and Agra et al. [4] decompose a sub-horizon into two time periods: the central period
(CP) and the forecasting period (FP). In the central period, the MIP is solved, and the selected routes
within it are frozen before moving to the next iteration. The forecasting period provides information to
the central period about a larger part of the planning horizon. The idea is that by using a forecasting
period, clearly sub-optimal solutions outside of the central period can be avoided so that the myopic
nature of a rolling horizon matheuristic is mitigated [34]. Figure 4.5 gives a graphical representation of
the sub-horizons used by Agra et al. [4]. To provide the central period with information, a MIP is solved
within the forecasting period, which often is a simplified version of the MIP in the central period. Two
main elements need to be considered for the forecasting period [34]:
1. A simplification strategy; and

2. The length of the forecasting period
A rolling horizon matheuristic that includes a forecasting section carries certain similarities with a well-
established family of control techniques known as Model Predictive Control (MPC) or Receding Hori-
zon Control [9]. MPC is a model-based control approach, where a constrained optimization problem is
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Figure 4.5: The different time-windows within the rolling horizon matheuristic using a forecasting
approach [4]

solved over a given forecast horizon to determine a control action sequence for the controller. During
every control step, only the first element of this action sequence is carried out. At the next time step,
the constrained optimization problem is reformulated and solved again, leading to a new control action
sequence of which, again, only the first element is carried out, resulting in a receding horizon strategy.
To reduce the computational burden of an MPC, Tian et al. [42] have proposed an Adaptive Control
Resolution (ACR) approach. An ACR approach reduces the number of control variables by dividing
their problem horizon in a number of phases with decreasing resolution as the phases become more
distant in the future. It can be understood that the presented RHM with a forecasting section operates
in a similar manner. During every iteration, only the first action (the flight schedule produced in the
central period) is frozen or ”carried out”. Implementing a simplification strategy within the forecasting
period is similar to implementing the ACR within the MPC, as it reduced the number of variables and
is aimed to reduce the computation times.

Sections 4.2.1 and 4.2.2 discuss two different forecasting strategies and present their results.

4.2.1. Exact Forecasting
Using an exact forecasting strategy means that there is no simplification for the forecasting period.
The model in the forecasting period is subjected to the same constraints and objective function as in
the central period. This means that the full model is solved for a time period that equals the length of
the central period plus the length of the forecasting period, but only the lines that depart in the central
period are frozen for the next iteration. It can logically be concluded that, if the length of the central
period and the forecasting period together equals the length of the original problem’s planning horizon,
the optimal solution is found. Algorithm 1 is updated to include the exact forecasting section and is
presented in algorithm 2.

It is no longer sufficient only to consider lines and aircraft departing from the maintenance station at
the start of day k, but instead lines starting within the FPk must also be considered. These lines need
to be assigned either to aircraft that are operating previously frozen lines during the CPk, or to aircraft
that are assigned a new line at the start of the CPk, which will finish before the end of the FPk, and
thus will need to be assigned a second line within the considered time period. To allow for this, the flow
constraints (3.19), have been adapted to the constraints presented in (4.7).

𝑥።፣ − ∑
፣∈ፂᑛ

𝑥።፣ − ∑
፩∈ፏᑛ

𝑧።,፩ ≤ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑚 (4.7)
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Table 4.9: Extra parameters and sets used in RHM with exact forecasting

Parameters:
zi,p binary value which equals 1 if aircraft i has flown frozen line p, 0 otherwise

Sets:
Jm set of all lines apart from the lines starting on day k
Cj set of all lines within CPk and FPk that connect to line j
Pj set of all frozen lines that connect to line j

Algorithm 2: Rolling Horizon Matheuristic With Exact Forecasting
k = 0;
U = Number of days in the planning horizon;
while k = k + 1 ≤ U do

1: Identify the set of lines that start during the CPk and FPk;
2: Identify the set of tail numbers that will start a new line during the CPk and FPk;
3: Determine the task set for each tail number that requires consideration;
4: Solve the MIP for the problem defined by CPk and FPk;
5: Freeze variables xij in the central period CPk;

end

The RHMwith exact forecasting has been run for a forecasting period of both 1 day and 2 days. Increas-
ing the forecasting period further increased the computational burden too much for the larger problem
sets. Tables 4.10 and 4.11 present the results for both forecasting lengths for the smaller problem sets.
By using an exact forecasting of both 1 and 2 days, the average optimality gap has decreased to 2.7
and 1.5 percent, respectively. The poor result of the RHM without forecasting on the problem set of 11
aircraft and 10 tasks has decreased from 31.6 percent to 11.3 percent for 1-day of forecasting and 3.2
percent for 2-days of forecasting. It can thus be noted that the inclusion of a forecasting section within
the rolling horizon matheuristic can substantially improve the objective values.

Table 4.10: Performance of the RHM with 1-day exact forecasting in several problem sets compared
to the exact solution method

# AC # Tasks CPU time (sec) Objective value Optimality gap
in %Matheuristic Exact Matheuristic Exact

5 10 2 1 267 258 3.5
20 2 2 471 471 0.0

6 10 2 1 308 304 1.3
20 4 7 607 607 0.0

7 10 2 5 393 385 2.1
20 5 14 741 727 1.9

8 10 5 19 435 424 2.6
20 7 44 867 863 0.5

9 10 7 53 444 434 2.3
20 13 110 958 913 4.9

10 10 16 632 432 432 0.0
20 26 2138 965 937 3.0

11 10 18 1269 534 471 13.4

Average 2.7
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Table 4.11: Performance of the RHM with 2-day exact forecasting in several problem sets compared
to the exact solution method

# AC # Tasks CPU time (sec) Objective value Optimality gap
in %Matheuristic Exact Matheuristic Exact

5 10 2 1 266 258 3.1
20 4 2 471 471 0.0

6 10 4 1 308 304 1.3
20 7 7 607 607 0.0

7 10 5 5 385 385 0.0
20 8 14 727 727 0.0

8 10 10 19 430 424 1.4
20 19 44 867 863 0.5

9 10 25 53 449 434 3.5
20 53 110 939 913 2.8

10 10 46 632 437 432 1.2
20 250 2138 962 937 2.7

11 10 62 1269 486 471 3.2

Average 1.5

Tables 4.12 and 4.13 present the results for larger problem sets. When the length of the forecasting
period equals one day, the problem can be solved within reasonable time for sets up to 25 aircraft, with
a possible 20 tasks for each aircraft. If the forecasting period is increased from one to two days, the
computation times are greatly increased however. The problem set containing 20 aircraft and 10 tasks
for each aircraft could not be completed within one hour.

Table 4.12: Performance of the RHM with 1-day exact forecasting in several large sized problems

# AC # Tasks CPU time (sec) Objective value
15 10 45 671

20 131 1660
20 10 157 927

20 513 2224
25 10 413 1149

20 825 2898

Table 4.13: Performance of the RHM with 2-day exact forecasting in several large sized problems

# AC # Tasks CPU time (sec) Objective value
15 10 304 643

20 583 1547
20 10 - -

20 - -
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4.2.2. Average Flight Hour Forecasting
In this section, a strategy is presented that solves a simplified model for the forecasting period. As a
first simplification, the capacity constraints of the maintenance station (equation 3.26) are removed.
As a second simplification, the model will not actually plan the individual maintenance tasks within the
forecasting period, but it will make a prediction of future costs if an aircraft is appointed to operate a
future line. The overall objective function will then comprise of a part that represents the actual lost
flying time that is incurred during the central period, and the predicted lost flying time that is expected
to be incurred in the future. To predict the future costs of a certain aircraft/line combination the average
number of flight hours per day (given as an input value) is used. In this way the number of recorded
flight hours for each tail number at the start and end of each line within the forecasting period are pre-
dicted. Based on the number of tasks that are due within the forecasting period (or expected to be
due), the model will assign a predicted tail-number dependent cost for each forecasted line. This is
done by calculating the lost flying time that would be incurred due to maintenance tasks having to be
planned early if this line is flown.

The term presented in equation 4.8 is added to objective function 3.15 and introduces a new decision
variable: qif, which equals 1 if a line within the forecasting period is assigned to aircraft i. Furthermore,
constraints 4.9 and 4.10 are added to the model. A separate decision variable is introduced because,
in contrast to the RHM with exact forecasting, the central period and the forecasting period are no
longer subject to the same set of constraints. The pseudo-code of the RHM with average flight hour
forecasting is given in algorithm 3.

Table 4.14: Extra parameters, sets and decision variables used in RHM with average flight hour forecasting

Parameters:
Costi,f predicted cost if future line f is assigned to aircraft i
zi,p binary value which equals 1 if aircraft i has flown frozen line p, 0 otherwise

Sets:
F set of all lines starting in the forecasting period
Cf set of all lines, starting in the central period, that connect to line f
Pf set of all frozen lines that connect to line f
Rf set of all lines, starting in the forecasting period, that connect to line f

Decision Variables:
qif = 1 if forecasted line f is assigned to aircraft i, 0 otherwise

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑
።∈ፈ
∑
፟∈ፅ

𝑞።፟ ∗ 𝐶𝑜𝑠𝑡።,፟ (4.8)

∑
።∈ፈ
𝑞።፟ = 1 ∀𝑓 ∈ 𝐹 (4.9)

𝑞።፟ − ∑
፣∈ፂᑗ

𝑥።፣ − ∑
፩∈ፏᑗ

𝑧።,፩ − ∑
፟∈ፑᑗ

𝑞።፟ ≤ 0 ∀𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹 (4.10)

Algorithm 3: Rolling Horizon Matheuristic With Average Flight Hour Forecasting
k = 0;
U = Number of days in the planning horizon;
while k = k + 1 ≤ U do

1: Identify the set of lines that start during the CPk and FPk;
2: Identify the set of tail numbers that will start a new line during the CPk and FPk;
3: Determine the task set for each tail number that requires consideration;
4: Calculate the predicted costs of the lines starting in the FPk;
5: Solve the MIP defined by CPk and FPk;
6: Freeze variables xij in the central period CPk;

end
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The RHM with average flight hour forecasting has been tested for multiple lengths of the forecasting
period, ranging from 1 day to 6 days. The results of the matheuristic for a forecasting period of 1 day,
are presented in tables 4.15 and 4.16. The average optimality gap of the RHM has decreased from
5.1% to 2.9% by including a 1-day forecast based on average flight hours. Furthermore, the required
computation times for the matheuristic stay below 35 seconds, even for problem sets containing 25
aircraft with a possible 20 tasks for each.

Table 4.15: Performance of the RHM with 1-day average flight hour forecasting in several problem
sets compared to the exact solution method

# AC # Tasks CPU time (sec) Objective value Optimality gap
in %Matheuristic Exact Matheuristic Exact

5 10 1 1 267 258 3.5
20 1 2 471 471 0.0

6 10 1 1 308 304 1.3
20 2 7 607 607 0.0

7 10 1 5 385 385 0.0
20 3 14 731 727 0.6

8 10 2 19 427 424 0.7
20 3 44 868 863 0.6

9 10 2 53 458 434 5.5
20 4 110 950 913 4.1

10 10 3 632 432 432 0.0
20 4 2138 977 937 4.3

11 10 4 1269 553 471 17.4

Average 2.9

Table 4.16: Performance of the RHM with 1-day average flight hour forecasting in several large sized
problems

# AC # Tasks CPU time (sec) Objective value
15 10 6 665

20 9 1715
20 10 10 931

20 17 2278
25 10 15 1223

20 31 2992

Table 4.17 presents a summary of the results for problem sets up to 11 aircraft for all the matheuristics
that have been presented in this chapter. The results of the RHM, using average flight hour forecasting,
with a forecasting period longer than one day, are included in this table. The average optimality gap
in percent represents how close the solutions of the given matheuristic were on average to the results
produced by the exact solution method. The longest recorded time refers to the longest computing
time, in seconds, the matheuristic required to complete, out of all the tests for up to 11 aircraft and
10 tasks for each. From this data, it appears that the rolling horizon matheuristics all present solu-
tions with superior averaged objective values to the decomposition by aircraft methods. The RHMs
with exact forecasting present the best solutions, but the required computation time rises steeply when
increasing the forecasting period. It also appears that the solution results of the RHMs with average
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flight hour forecasting do not consistently improve when increasing the forecasting period. An expla-
nation for this might be that the decrease in prediction accuracy offsets the benefit of longer forecasting.

Table 4.18 presents a summary of the results for larger problem sets of up to 25 aircraft for all the
presented matheuristics. In the last row of the table, the average gap with the best found objective
value is presented for each matheuristic. Because the exact solution method is not able to solve for
such large problem instances, this gap does not equal the optimality gap but instead the gap with the
best found objective value from all matheuristics. Judging by this average gap, it seems clear that
again the rolling horizon matheuristics outperform the decomposition by aircraft matheuristics in terms
of objective values. Similar to the results of the smaller problem sets, the RHM with exact forecasting
generates the best objective values for larger sets. However, depending on the length of the forecast-
ing period, its computation time becomes too hefty for the largest problem sizes. The improvement in
objective values in the smaller problem sets, generated by augmenting the RHM with the forecasting
section based on average flight hours, seems to be reduced for larger sets. A forecasting length of two
days, in fact, produced worse results than the RHM without forecasting. Also for the larger problem
sets there seems to be no clear improving trend when increasing the forecasting period for the RHM
with average flight hour forecasting.

Table 4.17: Comparison of the average optimality gap and the longest recorded solving time per
matheuristic of all problem sets for which an exact could be found.

DFRS SRCM RHM
NF

RHM
EF-1

RHM
EF-2

RHM
AF-1

RHM
AF-2

RHM
AF-3

RHM
AF-6

Average Gap in % 12.5 12.5 5.1 2.7 1.5 2.9 3.6 3.6 3.6
Longest Recorded
time in s 48 225 3 26 250 4 6 8 10

DFRS: Depth-First RandomSearch, SRCM: Successive Route CheckingMatheuristic, RHMNF: Rolling HorizonMatheuris-
tic - No Forecasting, EF-1: Exact Forecasting For 1 Day, AF-1: Average Flight Hour Forecasting for 1 day.

Table 4.18: Comparison of the objective values and solving times of the discussed matheuristics for
large problem sets

DFRS SRCM RHM
NF

RHM
EF-1

RHM
EF-2

RHM
AF-1

RHM
AF-2

RHM
AF-3

RHM
AF-6

15 AC,
10 tasks

Obj. value 797 816 746 671 643 665 765 731 717
CPU time (s) 120 594 3 45 304 6 9 10 13

15 AC,
20 tasks

Obj. value 1903 1888 1692 1660 1547 1715 1640 1602 1616
CPU time (s) 229 392 6 131 583 9 13 14 17

20 AC,
10 tasks

Obj. value 1192 1167 942 927 - 931 974 948 945
CPU time (s) 232 2210 5 157 - 10 15 18 24

20 AC,
20 tasks

Obj. value 2641 2729 2280 2224 - 2278 2309 2215 2296
CPU time (s) 485 1404 11 513 - 17 22 28 30

25 AC,
10 tasks

Obj. value 1450 - 1200 1149 - 1223 1184 1259 1187
CPU time (s) 1570 - 8 413 - 15 22 35 36

25 AC,
20 tasks

Obj. value - - 3030 2898 - 2992 2973 2911 2865
CPU time (s) - - 22 825 - 31 41 54 52

Average gap with
best-found score 24.2% 24.5% 6.7% 2.2% 0.0% 4.7% 6.9% 5.1% 4.1%

DFRS: Depth-First RandomSearch, SRCM: Successive Route CheckingMatheuristic, RHMNF: Rolling HorizonMatheuris-
tic - No Forecasting, EF-1: Exact Forecasting For 1 Day, AF-1: Average Flight Hour Forecasting for 1 day.
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All the matheuristics have been run for a second data set to verify the results. New flight data was
produced, and new task data has been generated. A summary of the results for the smaller problem
sets is presented in table 4.19. The results for larger problem sets are presented in table 4.20. Also
for the second data set, the rolling horizon matheuristics outperform the decomposition by aircraft
matheuristics. The RHM with exact forecasting again produces the best results in terms of objective
values. The first notable difference is the decrease in computation times for the second data set. One
of the reasons for this disparity could be that the second data set had slightly fewer lines as input flight-
data. A second reason could be that the data, in some cases, had some clearly best solutions, which
could reduce the problem complexity. The second notable difference is the divergence between the
results produced by the RHM without forecasting and the RHM with average flight hour forecasting.
The improvement produced by the forecasting is much more substantial than it was with the first data
set.

Table 4.19: Comparison of the average optimality gap and the longest recorded solving time per
matheuristic of all problem sets for which an exact could be found. These results are derived from a

different flight- and task-data set than in table 4.17.

DFRS SRCM RHM
NF

RHM
EF-1

RHM
EF-2

RHM
AF-1

RHM
AF-2

RHM
AF-3

RHM
AF-6

Average Gap in % 8.6 9.6 3.6 1.1 0.55 0.69 0.83 1.63 1.18
Longest Recorded
time in s 37 169 3 13 41 4 5 7 8

DFRS: Depth-First RandomSearch, SRCM: Successive Route CheckingMatheuristic, RHMNF: Rolling HorizonMatheuris-
tic - No Forecasting, EF-1: Exact Forecasting For 1 Day, AF-1: Average Flight Hour Forecasting for 1 day.

Table 4.20: Comparison of the objective values and solving times of the discussed matheuristics for
large problem sets. These results are derived from a different flight- and task-data set than in table

4.18.

DFRS SRCM RHM
NF

RHM
EF-1

RHM
EF-2

RHM
AF-1

RHM
AF-2

RHM
AF-3

RHM
AF-6

15 AC,
10 tasks

Obj. value 1050 968 920 868 877 870 899 918 891
CPU time (s) 59 415 3 26 113 6 8 10 14

15 AC,
20 tasks

Obj. value 2493 2532 2299 2240 2179 2221 2191 2191 2240
CPU time (s) 120 375 6 66 361 8 11 13 17

20 AC,
10 tasks

Obj. value 1349 1486 1225 1191 1130 1199 1148 1165 1156
CPU time (s) 265 1649 6 117 411 9 14 18 23

20 AC,
20 tasks

Obj. value 3376 3291 2961 2887 2780 2906 2843 2940 2855
CPU time (s) 321 1493 10 302 1046 15 22 24 29

25 AC,
10 tasks

Obj. value 1687 - 1511 1273 - 1347 1421 1328 1386
CPU time (s) 512 - 8 260 - 14 22 26 35

25 AC,
20 tasks

Obj. value 4174 - 3519 3467 - 3580 3505 3505 3555
CPU time (s) 1626 - 22 588 - 27 35 40 53

Average gap with
best-found score 21.5% 19.4% 7.8% 2.0% 0.3% 3.6% 3.5% 3.4% 3.6%

DFRS: Depth-First RandomSearch, SRCM: Successive Route CheckingMatheuristic, RHMNF: Rolling HorizonMatheuris-
tic - No Forecasting, EF-1: Exact Forecasting For 1 Day, AF-1: Average Flight Hour Forecasting for 1 day.

4.3. Discussion of the Solution Approaches
Due to advances in hardware and exact solution methods, the usability of exact solution methods has
increased within the domain of heuristics. These advances have led to a relatively new research area
called matheuristics, where exact solution methods can be integrated into heuristic frameworks. In
this chapter, several matheuristics have been designed that can be grouped into two main categories:
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decomposition by aircraft matheuristics and rolling horizon matheuristics. We found that rolling hori-
zon matheuristics consistently outperformed their decomposition by aircraft counterparts and that they
generated good solutions in quick fashion. To combat the shortsightedness that any rolling horizon
heuristic faces, the rolling horizon method can be augmented with a forecasting section that provides
information about a larger part of the planning horizon. Equipping the rolling horizon matheuristics with
an exact forecasting section decidedly improves the obtained solutions in terms of objective value even
further. Depending on the size of the fleet, however, using exact forecasting for a number of days may
or may not be feasible due to the accompanying computation time increase. In these cases, it may be
more beneficial to employ a forecasting strategy based on average flight hours. The forecasting strat-
egy based on average flight hours produces good solutions in a very quick fashion. The effectiveness
of this forecasting strategy inherently depends on the degree of consistency of day-routes within an air-
line’s fleet in terms of flight hours. If the variability of the flown flight hours per day is within bounds, the
rolling horizon matheuristic using an average flight hour forecasting could potentially produce excellent
results.



5
Experimental Study

In this chapter an experimental study will be performed with the aim of analyzing the potential impact
of an individual task-based maintenance planning, as produced by one of the presented matheuristics,
on the airline industry. The results of the schedules created by the matheuristic will be compared to a
standard letter check schedule based on two key performance indicators: the total number of days an
aircraft has to be taken out of operations and the incurred amount of lost flying time due to tasks being
executed before they are due. Furthermore, the distribution of required man-hours at the maintenance
station per night will be compared. For this experimental study, the rolling horizon matheuristic with one
day exact forecasting is selected as it has proven to produce good results in reasonable time for similar
problem sizes that will be used in this experimental study. For the sake of simplicity, only A-checks,
and the individual maintenance tasks within them, have been considered in this experimental study.

The extent of the improvements of the use of an individual task-based maintenance program has al-
ready been shown by Senturk & Ozkol [38, 39]. In their work, they showed that the ground downtime
for the A-checks can be reduced to zero days if the individual tasks in the checks are planned indi-
vidually inside overnight checks. In this experimental study, we are going to check whether one of
the presented matheuristics is capable of matching this performance. Furthermore, we are going to
compare the number of lost flying hours experienced between our selected matheuristic and the use
of a standard A-check planning. To successfully do this, we will make a number of assumptions about
the current state of the A-check planning. Subsequently, we will judge the quality of the letter-check
planning strategy based both on the number of days that aircraft have been taken out of operations
and the total number of lost flying hours that have incurred. We will then execute one of the presented
matheuristics, within the same given framework, and judge its performance on the same criteria.

In practice, it is likely that the routing and planning for the fleet would be updated at the end of each day
to produce the new current schedule for the considered planning horizon. To mimic this, the selected
matheuristic will be transformed into a model with a running horizon. The model will be run before the
start of every day for 60 days with a planning horizon of 7 days, and only the solution of the first day
will be saved as the actually carried out flight and maintenance schedule. Furthermore, the capacity of
the maintenance station has been set at 75 man-hours per night.

For this experimental study, a fleet of 15 Boeing 737s of a large European airline has been consid-
ered. The flight data of these aircraft is extracted from a paid online aircraft-tracking service. Any gaps
in the flight data are supplemented with fabricated data in line with the rest of the flight data. The used
flight data runs from October 1st, 2019 to November 30th, 2019, spanning 60 days. Furthermore, the
interval of an A-check is put at 60 days. The check interval of 60 days has been selected so that a
clearly bounded time period can be chosen for the running horizon, in which each tail number is guar-
anteed to have one A-check. Kinnison and Sidiqi [20] set the interval for an average A-check to be
600 flight hours (see table 2.1), which for most European continental fleets would, in practice, not differ
too much from an interval of 60 days. The A-checks are spaced as evenly as possible in the 60-day
period. This is what would be expected in practice as well, because having all aircraft undergo base
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maintenance in, for example, 1 week would severely disrupt an airline’s ability to operate its published
flight schedule. The distribution of planned A-checks over the given interval of 60 days is visualized in
figure 5.1. In this case, every four days a tail number within the fleet will undergo an A-check.

day 0 day 30 day 60

A A A A A A A A A A A A A A A

4 days

Figure 5.1: A visualization of the distribution of the scheduled A-checks for a fleet of 15 aircraft and a check
interval of 60 days.

As discussed in section 2.1.2, we consider an A-check to contain 100 individual maintenance tasks,
with an average length of 1 man-hour per task. In our experimental study, the assumption has been
made that half the tasks are part of a so-called ’core set’ of tasks, that are recurring in every A-check.
These core tasks are given coincident due dates with the planned A-check. In practice, this might give
too optimistic a view of the standard A-check planning, as it means that all the tasks in the core set
will have a combined total of zero lost flying hours. It is, however, probably safer to overestimate the
efficiency of the current state of the industry than to underestimate it when evaluating a new operational
strategy. The size in man-hours of each core task is generated following a uniform distribution where
the lower bound equals 0.5 man-hours and the upper bound equals 1.5 man-hours. The set of core
tasks is the same for each aircraft in the considered fleet, only the given due date of the set differs per
aircraft.

The tasks that are not part of the core set represent tasks that just happen to be due within the 60-day
interval between two consecutive A-checks, and are moved forward to be placed inside the first of these
checks. For each aircraft, a unique set of ’non-core’ tasks is generated. For each non-core task, the
size in man-hours is generated in the same way as for the tasks in the core set. Furthermore, at the
start of the interval, each non-core task is assigned a number of legal remaining flight hours the aircraft
can operate before the task is due. The remaining number of legal flight hours are generated following
a uniform distribution as well. However, putting the lower bound of this distribution at 0 flight hours
would lead to an infeasible start of the model, because a task would be due before the aircraft has had
a chance to visit a maintenance station for the first time. Therefore, the lower bound is set at a specific
number of flight hours, after which the aircraft is guaranteed to have had the ability to visit a mainte-
nance station. By examining the given lines at the start of the model, this number can be determined.
The upper bound of the uniform distribution is determined by multiplying the number of average flight
hours per day by 60. A visual example of a possible distribution of several due times of non-core set
tasks for a single aircraft is given in figure 5.2. In this image, each diamond represents a due date of a
non-core task. In a standard letter-check planning strategy, all the tasks would be moved forward to be
executed in the marked A-check. The tasks that are due before the marked A-check would have been
moved up to an A-check occurring before day 0. Because the non-core tasks are given a remaining
number of legal flight hours at day 0, it is actually unknown at which exact day they will be due, therefore
figure 5.2 might not be 100 percent accurate and is more for illustrative purposes. The distribution of
core tasks and non-core tasks inside the A-check is set to fifty-fifty. This assumption was made after
discussion with managers and engineers at a large European MRO providing company, who confirmed
that it is not unrealistic.

day 0 day 30 day 60

A

Figure 5.2: Visual example of possible due moments of non-core tasks, where each non-core task is represented
by a diamond.

The selected matheuristic, whose solution will be compared to the standard A-check planning, is the
rolling horizon matheuristic with one day of exact forecasting. This matheuristic has been selected for
the experimental study because it has proven to provide good solutions and reasonable solving times
for problem sets of this size.
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5.1. Results of the Experimental Study
This section will present the results of the experimental study. It must be noted that the presented lost
flying hours are actually the weighted lost flying hours. Section 3.1.1 explains that the size of the task
is taken as a weight factor because it is more beneficial to fully utilize the task interval of larger tasks
than smaller ones. Since the average size of a task equals one man-hour, and the main interest is to
examine the differences between the two methods, not the absolute sizes, we present it as the lost
flying hours.

Figure 5.3 and table 5.1 present the results on the lost flying days incurred during the experimental
study for both tested approaches. The A-check planning requires every aircraft to be taken out of oper-
ations for a single day to complete the check. This means that for a fleet of 15 aircraft, a total of 15 lost
flying days were incurred over the given interval. As shown in figure 5.1, the A-checks are distributed
evenly over the total interval, which can be recognized in figure 5.3 by the regularly spaced jumps in
the value of the accumulated lost flying days.

The proposed matheuristic was able to plan all the required maintenance tasks within overnight ground
times at the maintenance station, which resulted in a total of zero lost flying days. The accumulated
number of lost flying days incurred when using the matheuristic is represented by the green line in
figure 5.3. Because this value remains zero throughout the entire interval, the green line runs over the
x-axis.
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Figure 5.3: Visualization of the accumulation of lost flying days over the interval

Table 5.1: Comparison of the lost flying days incurred for each aircraft within the study between the
A-check and the matheuristic

AC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

A-Check 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15
Mat. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AC: Aircraft, Mat.: Matheuristic

Figure 5.4 and table 5.2 present the results on the lost flying hours incurred during the experimental
study for both tested approaches. Lost flying hours are incurred when a task is executed before it is
due, and therefore its task interval is not fully utilized. This will result in extra required maintenance
over the aircraft’s lifetime. To determine the lost flying hours for the A-check strategy, an approximation
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had to be made, using the average flight hours per day. This means that if an A-check was performed
on day 12, it is assumed that the aircraft had traveled a total number of flight hours at that point of
12 times the average flight hours per day. The lost flying hours of any task were then calculated by
calculating the difference between their remaining number of legal flight hours at day 0 and the number
of traveled flight hours on the day of the planned A-check.

As seen in figure 5.4 and read from table 5.2, there is a very substantial difference between the two
methods in terms of lost flying hours. The number of 219.56 thousand lost flying hours, incurred with the
A-check planning, decreased to 4.32 thousand lost flying hours when implementing the matheuristic,
which equals a drop of over 98%. This drop effectively translates to a much more efficient mainte-
nance planning, where tasks are performed when they are due, instead of when the latest A-check
opportunity occurs. If the task intervals are taken into account, and the non-core task intervals are
generated following a uniform distribution with a lower bound of two months and an upper bound of
twelve months the average interval utilization of the A-check strategy came out at roughly 91%. When
using the proposed matheuristic, this average interval utilization rose to over 99%. This substantial
increase in average interval utilization for the A-checks means that less maintenance will need to be
performed over the aircraft’s life cycle.
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Figure 5.4: Visualization of the lost flying hours incurred per aircraft

Table 5.2: Comparison of the lost flying hours (in thousands) incurred for each aircraft within the study
between the A-check and the matheuristic

AC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

A-Check 13.51 13.37 12.51 14.63 12.75 14.51 17.36 15.56 15.93 15.60 12.56 16.50 15.95 13.88 14.94 219.56
Mat. 0.36 0.28 0.25 0.27 0.27 0.26 0.33 0.25 0.30 0.29 0.34 0.26 0.26 0.31 0.30 4.32

AC: Aircraft, Mat.: Matheuristic

Figure 5.5 presents the results on the man-hours at the maintenance station for every night in the
60-day interval. When using the A-check strategy, every four days there is large peak of around 100
man-hours, which is the result of all the tasks in the A-check being performed on that day. In between
two consecutive checks none of the considered maintenance tasks are executed. The results of the
matheuristic show a more phased maintenance planning approach, because maintenance tasks can
now be performed on overnight stays at the maintenance station. There are still peaks visible on the
same days the previously scheduled A-checks, although they are considerably smaller. These peaks
are the result of the assumption that we made at the start of this chapter, namely that half the tasks
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in the A-check are part of a core set of tasks that share a due date with the previously scheduled A-
checks. Due to the many tasks in this core set, the matheuristic has aimed to construct a route, for
each aircraft, that spends the night at the maintenance station on the same day as the A-check was
previously scheduled. An advantage of a more phased maintenance approach is that the mechanics
do not experience the same peaks in workloads as before.
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Figure 5.5: Visualization of the used man-hours at the maintenance station per day

5.2. Sensitivity Analysis
A sensitivity analysis is conducted to examine how the available man-hours per night at the mainte-
nance station for the considered maintenance tasks affect the results of the selected matheuristic. Four
different scenario’s will be tested. In the first scenario, 75 man-hours are available every night, in the
second scenario 50 man-hours, in the third scenario 40 man-hours and in the final scenario 35 man-
hours. The results of the different scenarios in terms of lost flying hours are given in table 5.3. The
corresponding used man-hours per day at the maintenance station for each scenario are presented in
figure 5.6. The first thing to notice is that the matheuristic was not able to find a feasible solution on the
13th day to the routing and scheduling problem with a maximum capacity of 35 man-hours per night at
the station. The availability of 35 man-hours every night would theoretically be enough to plan all the
considered maintenance tasks. However, within the 7-day planning horizon around day 13 there were
not enough night layovers at the maintenance station to construct a feasible schedule.

Table 5.3: Lost flying hours incurred with changing station capacity parameter (in man-hours)

Station Capacity Lost Flying hours
75 4316
50 6178
40 7093
35 -

Table 5.3 indicates a clear trend that increasing the station capacity has a positive effect on the incurred
number of lost flying hours. In figure 5.6a it is seen that on many occasions the matheuristic plans
maintenance nights close to 75 man-hours. When decreasing the capacity to 50 and even 40 man-
hours, see figure 5.6b and 5.6c, a number of the tasks will have to be moved forward, resulting in a
larger number of lost flying hours. Decreasing the station capacity leads to a more phasedmaintenance
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planning, because the existence of peaks above a certain threshold is forbidden. Decreasing the station
capacity past a specific point will lead to infeasibility in the model however. Where this feasibilty point
lies, depends on the number of tasks to be planned and on the number of available night stays at the
maintenance station in the flight schedule.
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(a) Used man-hours per night with a station capacity of 75
man-hours per night
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(b) Used man-hours per night with a station capacity of 50
man-hours per night
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(c) Used man-hours per night with a station capacity of 40
man-hours per night
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(d) Used man-hours per night with a station capacity of 35
man-hours per night

Figure 5.6: Visualization of the used man-hours per night at the maintenance station for varying
station capacities

5.3. Discussion of the Experimental Results
In this experimental study, the planning results of a standard A-check strategy are compared to the re-
sults of our proposed individual task-basedmodel for a fleet of 15 aircraft. The rolling horizonmatheuris-
tic with one day exact forecasting was selected as the solution method, because it proved to generate
good results within reasonable times for similar fleet sizes. We analyzed the two methods over an
interval of 60 days. The first result that stands out is the difference in lost flying days. When using
our proposed matheuristic, it is no longer necessary to take an aircraft out of operations for one day
once every ±60 days. This increase in aircraft availability can be used in multiple ways and it is up to
the airline to decide which way suits their needs the best. One straightforward way is to use this extra
availability to expand the airline’s flight schedule and operate more flights. Depending on the aircraft’s
utilization level, a day of operations may represent between $75k and $120k of additional revenue [11].
If the assumption is made that an aircraft requires 6 A-checks per year, the extra revenue could equal
up to $ 7.2 million per aircraft over a time period of 10 years. Further, this only considers the decreased
downtime due to A-checks. It is possible that number of lost flying days due to C-checks, and perhaps
even D-checks, could be decreased as well, although it is unlikely it will fall to zero.

In the study, the number of lost flying hours decreased with over 98%. This drop is due to the different
strategy that an individual task-based maintenance strategy follows, namely that tasks are performed
when they are due, instead of when the latest A-check opportunity occurs. It is more difficult to put a
price tag on the saved costs due to the decreased number of lost flying hours. It can, however, logically
be deduced that better utilizing the maintenance tasks’ intervals leads to less required maintenance
in the long run. This could express itself in a smaller mechanics team being able to handle the same
fleet, and could provide savings in salary costs.
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An A-check strategy results in distinct peaks of used man-hours at the maintenance station. For some
time, none of the considered maintenance tasks are performed, and at the given time they are all
performed together. The results of our presented matheuristic present a more phased maintenance
planning. The removal of distinct maintenance peaks could lead a more satisfactory working environ-
ment. The adoption of an individual task-based planning strategy could complicate the construction of
schedules for the mechanics however. Furthermore, from a conducted sensitivity analysis, it could be
seen that decreasing the maintenance station’s capacity is accompanied by a more phased mainte-
nance schedule, but also more lost flying hours.





6
Impact on the Aircraft Maintenance

Industry
Airlines need to find ways to improve their operational efficiency due to intensified competition among
airlines in the previous decades. Even though maintenance, repair, and overhaul (MRO) represent a
significant portion of an airline’s operational costs (at least 9% in 2018 excluding overhead costs [18]),
the planning process is far from optimized. In the industry, the planning of aircraft maintenance is often
still a very manual process, relying on the experience of the planners.

The scheduling of aircraft maintenance is not a stand-alone problem. Because maintenance can only
be done at certain prepared airports (referred to as maintenance stations), the scheduling of mainte-
nance is codependent with the aircraft’s routing. This and other codependencies cause the scheduling
of an airline’s operations and resources to be a very complex problem, which is why it is common prac-
tice to break up the resource planning into several sequential stages. The five classes in which the
airline industry’s different planning and scheduling problems are divided are flight scheduling, fleet as-
signment, aircraft maintenance routing, crew scheduling, and tail assignment [24]. In the flight schedul-
ing stage, an airline decides which flights it will operate, and during the fleet assignment, it is determined
what type of aircraft will operate each flight. The flight schedule is created approximately one year in
advance [21]. During the aircraft maintenance routing (AMR), individual flights are combined to form
routes. It has been given this name because planners try to create flight routes that are feasible for
smaller and more frequently occurring maintenance tasks [27]. During the crew scheduling stage, crew
members are assigned to these routes with the aim to minimize crew cost and maximize various other
objectives, such as quality of life and crew satisfaction. The crew schedules are determined approxi-
mately one month before the day of operations [21]. Finally, the tail assignment (TA) is solved, where
the created routes are assigned to specific aircraft (often referred to as tail numbers). During the tail
assignment, an aircraft’s initial location and its individual maintenance needs are the key issues, since
the route that is assigned in this stage needs to be compliant with the aircraft’s individual maintenance
needs. Adjustments to the routes created in the AMR might be required because these considerations
and possible schedule disruptions could result in an infeasible maintenance schedule.

Even though, since the coming of the Boeing 777, it is no longer mandated, most airlines currently
still plan the better part of their MRO activities in extensive checks, called letter-checks (A, B, C, or D).
A typical A-check includes the inspection of the interior and exterior of the aircraft. C-checks include
the inspection and functionality-testing of individual systems and components. During a D-check, the
structurally important components are inspected, which requires the uncovering of the airframe, wings,
and supporting structure [3]. The interval with which these letter-checks must be performed ranges
from roughly two months (A-check) up to six years (D-check) [20], although these intervals may differ
somewhat between aircraft and airlines. During a letter-check, the aircraft is taken out of operations,
and within this period, an extensive number of maintenance tasks are executed at once. Letter-checks
are planned within specific pre-made slots. Throughout the year there are many A-check slots, span-
ning an entire day, that can be reserved for specific aircraft. If it is predicted that an aircraft will be due
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for an A-check, an A-check slot can be reserved for it. Usually, A-check slots are reserved about one
month in advance. Slots for C- and D-checks are fewer and claimed much further in advance because
they require substantially more downtime.

The planning of aircraft maintenance is a complicated process, and the strategy of using letter-checks
is a proven method to simplify the process. However, the use of letter-checks for maintenance plan-
ning has two significant downsides: (1) the aircraft must be taken out of operations, and (2) many
maintenance tasks are performed considerable time before they are due. The first downside leads to
a decrease in aircraft availability and the second downside to more required maintenance operations
during the aircraft’s lifetime.

This thesis explores the design, feasibility, and impact of a different maintenance planning strategy,
namely one in which tasks are planned individually within available ground times in the flight schedule,
rather than be grouped inside letter-checks for which the aircraft must be taken out of operations. In this
work, a model was created in which the tail assignment is solved, and the individual tasks are planned
during overnight stays on the maintenance station. This is done by partitioning lines (a sequence of
day-routes that start and/or end at the maintenance station) to each individual aircraft that allow them to
have opportunities for maintenance if they require it. Each maintenance task is given a due date and a
number of legal remaining flight hours. The objective of the model is to allocate the lines to the aircraft
in such a way that tasks can be planned as late as possible. By planning tasks as late as possible,
the task intervals will be fully utilized and the required maintenance over the aircraft’s lifetime, and the
costs that come with it are reduced.

In this work, multiple solution approaches were designed and tested to solve our presented model.
One of the designed solution approaches that produced excellent results is a rolling horizon matheuris-
tic with exact forecasting. In an experimental study, the maintenance scheduling results of a standard
A-check planning and the results of the rolling horizon matheuristic with one day exact forecasting were
compared over an interval of 60 days for a fleet of 15 aircraft. Where the A-check planning required
every aircraft to be taken out of operations for one day to complete the check, the matheuristic was
able to plan all required maintenance on overnight stays at the maintenance station. As a result, the
aircraft did not have to be taken out of operations. This increase in aircraft availability can be used in
multiple ways, and it is up to the airline to decide which way suits their needs the best. One straightfor-
ward way is to use this increased availability to expand the airline’s flight schedule and operate more
flights. Depending on the aircraft’s utilization level, a day of operations may represent between $75k
and $120k of additional revenue [11]. If the assumption is made that an aircraft currently requires 6
A-checks per year, the extra revenue could equal up to $ 7.2 million over a time period of 10 years per
aircraft. Further, this amount only reflects the potential savings on A-checks. Using an individual task-
based strategy could possibly reduce the required downtime for C-checks or possibly even D-checks
as well. If an airline is not looking to expand its flight schedule, the increased availability could possibly
allow the airline to operate its same schedule with fewer aircraft, in which case one or more aircraft
could be sold. The feasibility of this depends on the fleet size and the design of the airlines’ current
flight schedule. A third way in which an airline could use this increased aircraft availability to its benefit
is by increasing its reserve fleet. By stationing a reserve aircraft and a reserve crew, an airline can
decrease the effect of potential delays and increase customer satisfaction.

Secondly, in the experimental study, the number of lost flying hours were compared between the stan-
dard A-check planning and our matheuristic. A lost flying hour is defined as a flying hour between the
execution of the task and when the task is actually due. Lost flying hours are incurred when main-
tenance tasks are performed before they are due, so if a task is due after 500 flight hours, and it is
performed after 450 flight hours, 50 lost flying hours have been incurred. Repeatedly incurring lost
flying hours, because maintenance tasks are planned before they are due, will lead to more required
maintenance operations over the aircraft’s lifetime. In the experimental study, the number of lost flying
hours decreased with over 98%, when using our proposed matheuristic, as opposed to the standard
A-check planning. In our experimental study, this corresponded to an increase in the task interval uti-
lization of over 8%. It is more difficult to put a price tag on the saved costs due to the more efficient
maintenance planning. However, as stated before, the better utilization of the maintenance tasks’ inter-
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vals leads to less required maintenance in the long run. This could express itself in a smaller mechanics
team that could handle the same fleet and could provide savings in salary costs.

The experimental study also showed that a standard A-check planning is accompanied by distinct
peaks in workload. Using an individual task-based maintenance planning results in a more phased
maintenance approach which attenuates the peaks and creates a more balanced workload distribution.

A final aspect in which implementing our proposed model and solution method could impact the airline
industry is the role of the maintenance planner. As stated at the start of this chapter, the planning of
aircraft maintenance is often still a very manual process, relying on the experience of the planners.
The combination of the planners’ required experience and their importance to the day-to-day opera-
tions makes it difficult to recruit new employees for this job and has, in some cases, lead to an aging
staff in this department. Implementing a system that can automate part of their job thus not only has
the potential to save in salary costs but might actually prove instrumental to an airline’s continuous
operations in the long term.

Certain changes will have to be made within an airline’s current operations to implement our model
successfully. One of these required changes is increased flexibility in the roster scheduling for the
mechanic workforce. As shown in the experimental study, the required man-hours at the maintenance
station for a standard A-check strategy can be planned far in advance because the A-check slots are
determined long before the day of operations. When implementing our model, the required man-hours
at the maintenance station are much more variable and are only determined when solving the tail as-
signment. The tail assignment is solved much closer to the day of operations, which means that the
mechanic workforce’s schedules will be fixed closer to the day of operations as well.

A second condition that has to be met in order to implement our model successfully is to create flight
schedules in which there are plenty of night stays at the maintenance station. When the objective is
to plan maintenance as close to the due date as possible, it is required that aircraft can be assigned
routes that let them spend the night at the maintenance station whenever they need it. Most airlines
operating with a hub-and-spoke system are likely to satisfy this condition since every flight cycle starts
and ends at the hub. However, when the flight schedules force aircraft to spend the night at a different
station than the hub very often, the model might experience difficulties finding maintenance-feasible
routes for each aircraft in the fleet.





7
Conclusion & Recommendations

This chapter presents the conclusions of this research and recommendations for further research. First,
the research questions are answered in section 7.1. Secondly, in section 7.2, recommendations for
future research are given.

7.1. Conclusion
This research was conducted with the objective of enriching the academic community by developing a
model with the capability of optimizing the maintenance and corresponding flight schedules for aircraft
using an individual task-based approach. To comply with the sequential nature of an airline’s scheduling
operations, the scope was limited to the final scheduling stage, namely the tail assignment. This means
that this work did not look at the design of the flight schedule but was restricted to the assignment of
aircraft to pre-constructed routes. The main research question was formulated as:

How can the efficiency and quality of the maintenance scheduling process in the airline industry be
improved through optimization?

From the conducted literature review in this thesis, we conclude that airlines typically use a letter-check-
based maintenance scheduling strategy. We also conclude that the majority of academic research
has focused on the scheduling optimization of generic maintenance checks that must be performed
at least once every d days. The few works that did consider a wider range of maintenance require-
ments proposed solutions that would conflict with airlines’ overall scheduling framework. After careful
consideration, we decided that the practice of assigning day-routes to aircraft was the best modeling
approach for our application. A total of four possible mathematical formulations used in the literature
for the routing and maintenance scheduling of aircraft were identified and examined. We conclude
that, out of these four formulations, the city-day network would provide the most compact model while
meeting the requirements.

To design a working model that could successfully optimize an individual task-based maintenance
schedule, numerous considerations had to be taken into account. Firstly, to warrant the feasibility
of the schedule, an aircraft needs to spend the night at a maintenance station at least once every d
days. For this reason, the presented model assigns lines (a sequence of day-routes that start and/or
end at a maintenance station) instead of single day-routes. These lines are created during the AMR,
an earlier stage in the overall scheduling framework, and are taken as input for our model. Because the
planners take the given constraint into account during the creation of these lines, no lines are created
that go longer than d days without spending the night at a maintenance station. A second consideration
that is taken into account is the fact that the interval of a task can be given both in days as well as in
flight hours. This expresses itself in the model by the inclusion of a due date and a number of remain-
ing legal flight hours for each task. A third consideration is the capacity of the maintenance station. in
the model, each task was given a size expressed in the number of man-hours it requires to complete.
The capacity constraint assigns a finite number of man-hours for the maintenance station every night.
Because it is difficult to precisely define a cost for maintenance, the surrogate objective of minimizing
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the lost flying hours was used. This surrogate objective stems from the reasoning that performing a
task before it is due will lead to more required maintenance and, thus, more costs in the long run.

Because an exact solution method proved unsuited for larger problem sizes, we designed several
matheuristics to solve the given problem. The created matheuristics are divided into two categories:
decomposition by aircraft matheuristics and rolling horizon matheuristics. Within the former category,
two matheuristics were created: a depth-first and random search matheuristic, inspired by the work
of Sriram and Haghani [40]; and a successive route checking matheuristic. Within the latter category,
three different matheuristics were designed: a rolling horizon matheuristic without forecasting, a rolling
horizon matheuristic with exact forecasting and a rolling horizon matheuristic with average flight hour
forecasting. All matheuristics were first tested for smaller problem sizes and their results compared to
the exact method’s results. The results showed that all of the rolling horizon matheuristics consistently
outperformed their decomposition by aircraft counterparts and that they generated good solutions in
quick fashion. We therefore conclude that rolling horizon matheuristics are the better fit to our problem.

Out of all the rolling horizon matheuristics, especially the ones with exact forecasting produced ex-
cellent results. The results improved when expanding the forecasting horizon. However, expanding
the exact forecasting horizon had a significant impact on the required computation times; therefore,
results were only presented of exact forecasting horizons up to two days. The rolling horizon with av-
erage flight hours forecasting matheuristic, on average, offered better results than the rolling horizon
matheuristics without forecasting. One notable aspect of this, however, was that the results did not
consistently improve when expanding the forecasting period.

All matheuristics were also tested for larger problem sizes of up to 25 aircraft and 20 possible tasks
for each aircraft. There were no exact solutions available for these larger problem sets, but the re-
sults could still be compared between the different solution approaches. Again, both decomposition-
by-aircraft methods performed poorly in comparison to the rolling horizon matheuristics. The rolling
horizon methods that produced the solutions with the best objective values were again the matheuris-
tics that used exact forecasting. For the largest tested problem sets, however, the exact forecasting
method became very time consuming, and no solutions within reasonable time were found for a fore-
casting period of two days when using problem sets containing 20 or more aircraft. The rolling horizon
matheuristics with average flight hour forecasting performed, on average, slightly better than the rolling
horizon matheuristic without forecasting. Similarly to the smaller problem sets, the results did not show
an improving trend when expanding the average flight hour forecasting horizon. We conclude that this
is most likely due to a trade-off between the positive effects of getting information on a larger part of
the model and the negative effects of decreasing prediction accuracy. The answer to the question of
which rolling horizon matheuristic is best suited to solve the presented individual task-based mainte-
nance planning depends on several factors: (1) the size of the fleet that an airline operates; (2) the
number of tasks that they wish to plan on an individual basis; and (3) the available computing power. If
computationally feasible for the airline, the rolling horizon matheuristics with exact forecasting provide
the best results. If the problem set is of such size that exact forecasting is not feasible, it is concluded
that the rolling horizon matheuristic with average flight hour forecasting is the most suitable choice for
larger fleets.

An experimental study was performed in which the results of a standard A-check planning and the
results of the rolling horizon matheuristic with one-day exact forecasting were compared with one an-
other. The results showed that for a fleet of 15 aircraft and a time period of 60 days, the total number of
downtime days for all aircraft could be reduced from 15 days to 0 by switching from the A-check strategy
to our proposed matheuristic. Furthermore, the total number of weighted lost flying hours was reduced
by over 98%, meaning that tasks were planned much closer to their due dates. This led to a substantial
increase in the average task interval utilization. Finally, the distinct workload peaks that accompanied
the A-check strategy were attenuated, resulting in a more phased and balanced workload distribution.

Finally, the potential impact of our proposed model and solution method on the airline industry was
presented. Depending on the aircraft’s utilization level, a day of operations may represent between
$75k and $120k of additional revenue [11]. Under the assumption that an aircraft requires six A-checks
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per year, removing the need to take aircraft out of operations for an A-check could improve revenues
for a single aircraft up to $7.2 million over a period of 10 years. Further, this amount only reflects the
potential savings on A-checks. Using an individual task-based strategy could possibly reduce the re-
quired downtime for C-checks and possibly even D-checks as well. The decrease in lost flying hours
leads to better utilization of the maintenance tasks’ intervals, which results in less required maintenance
in the long run. This could express itself in a smaller mechanics team being able to handle the same
fleet and could provide savings in salary costs. A third area in which our work could impact the industry
is the role of the maintenance planner. Currently, this is often still a very manual process that requires
much experience of the planners. Automating parts of the planning process can lead to reduced salary
costs and reduce the required experience-barrier that new planners face.

Certain changes will have to be made within the current operations of an airline to implement our model
successfully. It is concluded that the mechanic workforce scheduling must become more flexible so
that their schedules are dependent on the need for maintenance instead of the other way around. It is
also concluded that to implement our model successfully, there must be enough maintenance oppor-
tunities within the flight schedules, so that aircraft that require maintenance can be assigned a route
that lets them spend the night at the maintenance station when needed.

7.2. Recommendations for Further Research
There has been relatively little research performed on optimizing the aircraft maintenance scheduling
and corresponding routing on an individual task basis. Therefore several possible future research di-
rections could be further explored.

The first recommendation for further research is to add an overtime component to the maintenance
station capacity. In some cases, it might be beneficial, or even necessary, to exceed the given man-
hours of the station capacity. This could practically be done by letting mechanics work overtime or
by deploying a larger mechanics team for that night. Planning overtime could be represented in the
objective function by a penalty. Apart from gaining more flexibility in maintenance scheduling, an airline
could even use this extension to get a better view of the required station capacity.

The second recommendation for further research is to dive deeper into the nature of the different main-
tenance tasks. In practice, some maintenance tasks could have good synergy with each other, and
therefore it might be beneficial to execute them together. This could be the case if the components
related to the maintenance tasks physically lie close to each other in the aircraft. Also, in practice,
some maintenance tasks often require a different type of mechanic than other tasks. The mechanic
requirement could be given as a task property in the model to make sure that there are always enough
engineers of every required type available.

Finally, the third recommendation for further research could be to include ground times during the day
for maintenance planning as well. This would allow for more potential maintenance opportunities to be
utilized. However, also considering ground times during the day as maintenance opportunities would
increase the size and complexity of the model tremendously.
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ABSTRACT

Increasing competition amongst airlines necessitates them to improve the efficiency of their op-
erations. Even though maintenance, repair, and overhaul (MRO) represent a significant portion
of an airline’s operational costs, the scheduling of these operations is often still suboptimal. Usu-
ally, many maintenance tasks are congregated in large checks, causing a need for the aircraft to
be taken out of operations and tasks to be executed before they are due. The purpose of this
study is to develop a methodology that provides flight routes to aircraft and individually plans
the maintenance tasks on nocturnal overlays within these routes over a given planning horizon
with the objective of maximizing the utilization of the total remaining flying time of the fleet.
For this purpose, we develop a mixed integer programming (MIP) model based on a city-day
network representation. Multiple matheuristics have been developed to provide good solutions
in reasonable computation times. During an experimental study one of the selected matheuris-
tics was able to remove the need for aircraft to be taken out of operations, and decrease the lost
flying time, incurred by planning tasks before they are due, by over 98%. Our presented approach
can be used by mid-sized airlines to optimize their maintenance schedules by increasing aircraft
availability and reducing maintenance costs.

1. Introduction
Since the deregulation of the intra-European air transport market in 1997, competition among airlines has intensified
significantly [18]. From that moment onwards, any EU air carrier was allowed to operate from any EU country. Low-
cost carriers, improvement of high-speed rail networks, and increased price transparency provided by the internet have
all contributed to this increase of competition. These days, passengers have a broader choice in terms of routing and
pay a lower price. Airlines need to find ways to improve their operational efficiency in the current competitive market
of air transport. Even though maintenance, repair, and overhaul (MRO) represent a significant portion of an airline’s
operational costs (at least 9% in 2018 excluding overhead costs [11]), the planning process is far from optimized. In
the industry, it is typically still a manual process, producing suboptimal solutions.

For each aircraft, there is a distinguishable list of maintenance tasks that are to be carried out before a specific due
date, with a repetitive interval. Each task has a unique task code, a determined amount of necessary man-hours for
completion, an account of the required types of mechanics, and much more practical information. If a particular main-
tenance task has not yet been performed after its due date has passed or after its remaining legal flight hours have run
out, the aircraft loses its airworthiness, rendering it unsuitable for safe flight until the task is performed.

Currently, most airlines plan the bulk of their MRO activities in extensive checks, called letter-checks (A, B, C, or
D). During a letter-check, the aircraft is taken out of operations, and many maintenance tasks are executed together.
In between the intervals of letter-checks, an aircraft still needs occasional maintenance checks every couple of days
for more frequently occurring tasks. The main advantage of using extensive letter-checks lies in the relative ease of
the planning, as one only has to plan one event for a large number of tasks. However, the use of letter-checks for
maintenance planning has two significant downsides:

1. During a check, an aircraft is taken out of operations for one or more days, resulting in a decrease in aircraft
availability and a loss of potential revenue.

2. By grouping maintenance tasks with different intervals together in an extensive check, many tasks are executed
before they are due, resulting in more required maintenance over an aircraft’s lifetime.
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These severe downsides of letter-checks have given rise to a alternatively proposed maintenance philosophy, where
extensive letter-checks are dissected, and the tasks are planned at an individual level [25]. In this philosophy, every
time an aircraft spends on the ground at a maintenance station is seen as an opportunity for maintenance. Maintenance
planning and aircraft routing are interrelated problems. Because the execution of maintenance tasks is only possible
at a maintenance station, the route that an aircraft is assigned must contain enough sizeable layovers at this station so
that the individual maintenance needs for each aircraft can be met.

Because the scheduling of aircraft maintenance tasks and the routing of aircraft is an interrelated problem, it is impor-
tant to consider the other scheduling problems an airline is faced with. These problems can be divided into five major
classes: flight scheduling, fleet assignment, aircraft maintenance routing, crew scheduling, and tail assignment [14].
These problems are typically solved in a sequential manner, where the solution of the first problem is taken as an input
for the second problem. In the flight scheduling stage, an airline decides which flights it will operate, and during the
fleet assignment, it is determined what type of aircraft will operate each flight. The flight schedule is created approxi-
mately one year in advance [13]. During the aircraft maintenance routing (AMR), individual flights are combined to
form routes. It has been given this name because planners try to create flight routes that are feasible for smaller and
more frequently occurring maintenance tasks [17]. During the crew scheduling stage, crew members are assigned to
these routes with the aim to minimize crew cost and maximize various other objectives, such as quality of life and crew
satisfaction. The crew schedules are determined approximately one month before the day of operations [13]. Only a
few weeks or even days (this varies strongly between airlines) before the day of operations, the tail assignment (TA)
is solved, where the created routes are assigned to specific aircraft (often referred to as tail numbers). During the tail
assignment, an aircraft’s initial location and individual maintenance needs are the key issues, since the route that is
assigned in this stage needs to be compliant with the aircraft’s individual maintenance needs. Adjustments to the routes
created in the AMR might be required because these considerations and possible schedule disruptions could result in
an infeasible maintenance schedule. Maintenance activities for each aircraft are scheduled during ground times within
their assigned routes.

Most research on aircraft maintenance scheduling and routing focuses on solving the AMR, under the assumption
that each aircraft must visit a maintenance station at least once every d days for a generic check. A number of papers
have attempted an integration between the AMR and the TA [20, 24, 4, 19, 17, 22, 12, 23], but in doing so they often
ignore the need for crew personnel to know their work schedules ample time in advance. Furthermore, there is only
scant literature that considers a wider range of maintenance requirements than the scheduling of generic daily checks
[20, 24, 19, 22, 23].

In this study, our aim is to develop an individual task-based scheduling model that fits inside an airline’s overall plan-
ning framework. This is done by solving the tail assignment and by planning the individual maintenance tasks within
the available ground times for each aircraft, whilst aiming to minimize costs. By planning maintenance tasks at an
individual level, many tasks that were previously grouped in letter checks can now be planned during ground times
within their assigned flight schedule. For this purpose a new MIP formulation is proposed for the given problem.
Problem sets of over ten aircraft resulted in a substantial computational burden for exact methods. Therefore, sev-
eral matheuristics are developed and subsequently compared with each other. Furthermore, an experimental study is
conducted to compare the results of a letter-check based scheduling approach and an individual task based scheduling
approach over an interval of 60 days. Lastly, the potential impact of our model on the aircraft industry is discussed.

The paper is organized as follows: In Section 2 we present a literature review on optimization problems relating
to aircraft maintenance scheduling. In Section 3, our model formulation is presented and model characteristics are
discussed. In Section 4 several matheuristics are proposed and compared. In Section 5 the experimental study is
presented and Section 6 discussed the potential impact on the aircraft maintenance industry.

2. Literature review
In this section we briefly discuss some of the published work on aircraft maintenance optimization problems. Table
1 presents an analysis of research published on maintenance scheduling and routing problems. Most studies in the
literature are concerned with finding generic maintenance feasible routes for the AMR. Feo & Bard [8] and Gopalan
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Table 1
Analysis of articles published on related maintenance scheduling and routing problems

Reference
Covering Areas Schedule Maint. Considerations

FA AMR TA CS FH CB TB COF

Feo & Bard [8]
√ √ √ √

Barnhart et al. [3]
√ √ √ √

Gopalan & Talluri [10]
√ √ √ √

Moudani & Mora-Camino [20]
√ √ √ √

Sriram & Haghani [27]
√ √ √ √

Sarac et al. [24]
√ √ √ √

Liang et al. [16]
√ √ √

Liang & Chaovalitwongse [15]
√ √ √ √

Basdere & Bilge [4]
√ √ √ √

Maher et al. [19]
√ √ √ √

Liang et al. [17]
√ √ √ √

Ruther et al. [22]
√ √ √ √

Khaled et al. [12]
√ √ √ √

Safaei & Jardine [23]
√ √ √ √

This work
√ √ √ √

FA: Fleet Assignment, AMR: Aircraft Maintenance Routing, TA: Tail Assignment, CS: Cyclic Schedule, FH:
Finite Horizon, CB: Check-Based, TB: Task-Based, COF: Compliant with Overall Framework.

& Talluri [9] have focused on solving the AMR by creating weekly cyclical flight schedules that spend the night at a
maintenance station at least once every four days. An additional objective of Feo & Bard was to decrease the number
of required maintenance stations. They both use a closed-loop city-day-network in which cities are represented by
nodes, and the arcs between the nodes represent day-routes. A day-route contains all the flights an aircraft makes that
day and is connected to the nodes that represent the cities from which the first flight of the day departs and at which
the last flight of the day arrives. Their objectives are to find maintenance feasible cyclical schedules by connecting
day-routes with each other and by making sure that the last flight of the last day-route arrives at the same station as the
first flight from the first day-route. The advantage of a cyclical schedule (CS) is that, in theory, it could be executed in
perpetuity. A disadvantage is that, in practice, using a single rotation is not applicable due to the stochastic nature of
operations in the airline industry [4]. This stochastic nature is why operational models use a finite planning horizon
(FH) to construct and assign the routes. Further, Liang & Chaovalitwongse [15] solve the integrated AMR and fleet
assignment problem by using a compact time-space network.

Similar to Feo & Bard [8] and Gopalan & Talluri [9], Sriram & Haghani [27] use day-routes. These day-routes are
taken as input and are used to solve the TA by creating ail-specific weekly cyclical flight routes. They use a matrix,
representing the cost of maintenance per aircraft per city, to try and find a minimal cost route while adhering to the
constraint of spending the night on a maintenance station at least once every four days.

A number of research studies have attempted to integrate the AMR and the TA. This integration is sometimes referred
to in the literature as the operational aircraft maintenance routing problem (OAMR). Within these works a distinction
can be made between papers that considered maintenance as a generic check required once every d days, and papers
that considered a wider range of maintenance requirements. In Table 1 these two different maintenance considerations
are denoted as check-based (CB) and task-based (TB). Considering maintenance requirements as a generic check, Bas-
dere & Bilge [4] solve the OAMR over a weekly planning horizon. Their objective is to maximize the utilization of the
total remaining flying time by planning the generic maintenance check as late as possible. Their approach considers all
ground times as possibilities for maintenance. A drawback to their model is that aircraft can undergo maintenance at
most once during the planning horizon. Khaled et al. [12] solve the generic check-based OAMR in a compact model,
which allows them to operate a planning horizon longer than one week.

: Preprint submitted to Elsevier Page 3 of 20



A number of papers presented OAMR models that take a wider range of maintenance tasks into account. Sarac et
al. [24] and Maher et al. [19] model the daily OAMR. In Sarac et al. [24], if an aircraft is labeled high-time, which
means that it might require maintenance, of any kind, at the end of the day, it is routed in such a way that it will
spend the same night on a maintenance station. Moudani & Mora-Camino [20] solve an OAMR for a charter airline
in which maintenance tasks are planned after the creation of the routes, in the resulting ground times. If no feasible
solution can be found, it must be anticipated which flights should be delayed in order to create a feasible gap for the
maintenance. The OAMR model proposed by Safaei & Jardine [23] attempts to minimize the mismatch between tail
numbers’ maintenance needs and maintenance opportunities using an iterative heuristic. Ruther et al. [22] solve an
integrated OAMR and crew pairing four days before the day of operations.

Most research that has focused on solving the OAMR planned their routes for a one-week time horizon or shorter,
while in practice the crew rosters are usually published roughly a month in advance. This means that in order to be
able to stick with their rosters, crew members would most likely have to swap from aircraft after a flight numerous
times. Necessitated crew-swapping increases the probability of extra delays since the delay of one aircraft would now
propagate throughout the network. In fact, to avoid spreading delays in the network, crews should stay with the same
aircraft as much as possible [6], or crews should only swap during extensively long ground times. The most common
of these extensively long ground times is an overnight ground time. Therefore, swapping aircraft during an overnight
ground time poses little risk of a propagated delay [17]. It is for this reason that our work limits its scope to the tail
assignment in which the pre-constructed day-routes are to be partitioned over the tail numbers so that there are no
costly crew swaps during the day.

The few research studies that did consider a wider range of maintenance requirements proposed very interesting mod-
els. However, in their current form it would leave airlines open to the mentioned risk of propagating delays. These
papers are displayed in Table 1 as not compliant with an airline’s overall planning framework (COF). It is also observed
that apart from a case study by Senturk and Ozkol [25, 26], no research was found on the extent of the advantages that
an individual task-based maintenance planning approach holds.

3. Problem definition
The tail assignment model in this thesis can be defined as follows. Given a flight schedule containing F flights, the
objective of the model is to find a route for each tail number such that (a) all the flights are covered; (b) each tail number
spends a night at a maintenance station at least once every d days to allow for necessary daily checks; (c) maintenance
tasks are individually planned; (d) initial conditions for each tail number regarding location and maintenance needs
are taken into account; (e) the process fits inside the airline’s overall planning framework; (f) the cost of maintenance
is minimized and (g) the maintenance station is given a capacity.

The tasks, that are to be planned individually, will be provided with both a due date and a remaining numbers of
legal flight hours that can be flown before execution is mandatory. If either the due date or the remaining number of
legal flight hours is exceeded before the task is executed, the aircraft loses its airworthiness. This means that whichever
of these two limits appears first determines the cut-off point before which is a task must be executed.

The clear objective of most maintenance scheduling models is to minimize the cost of maintenance. However, because
it is difficult to define and calculate a cost for maintenance often a surrogate objective is used [24]. If a maintenance
task with positive remaining flying time is executed, then a portion of the flight capacity is wasted, and if necessary,
parts that need to be replaced are done so before utilizing their useful lives [4]. To minimize this wasted flying time
is equivalent to minimizing the unused legal flying times. Minimizing the unused flying time is taken as a surrogate
objective for the cost minimization in this work, similar to Sarac et al. [24] and Basdere & Bilger [4]. The assumptions
of our problem formulations are as follows:

1. The planned aircraft maintenance is only performed during the night
2. There is no aircraft operation during the night
3. The model considers a hub-and-spoke model where there is only one maintenance station
4. The given station capacity is fully available for the execution of the planned tasks
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Figure 1: City-day network with a 7-day planning horizon

3.1. City-day network
Combining day-routes, as also done in the studies of Feo & Bard [8], Gopalan & Talluri [10], and Sriram & Haghani
[27], is a compact and effective way of of constructing flight schedules for individual aircraft. Because any aircraft
swaps that a crew might need to carry out are done during an overnight stay there is very little risk of propagating
delays. Our presented model has a single maintenance station, and therefore instead of partitioning day-routes among
tail numbers, we partition a combination of day-routes that start and/or end at the maintenance station. The combined
day-routes are in this work referred to as lines. The lines are guaranteed to be shorter than the daily check interval of
d days because they were created during the AMR where this is set as a strict requirement. A four cities, two aircraft,
7-day network is shown in Figure 1, in which the nodes represent the final destination city on a particular day and the
arcs represent lines. In this example, city 3 represents the maintenance station. A closer look at the network in Figure
1 reveals that there are two nodes (3(2) and 3(5)) that have more than one incoming and outgoing line, and therefore
at these nodes a decision must be made which aircraft to assign to which line.

3.2. Model formulation
In this sectionwe propose amulti-commodity flow networkmodel where each aircraft represents a separate commodity.
The created lines in the AMR are taken as an input, and each line has an upper and lower capacity of one unit flow.
Since it is not known beforehand how many flight hours each tail number will fly, it is also unknown which specific
set of tasks will need to be planned within the time horizon. To account for this, the longest possible route for each
tail number is determined. All the maintenance tasks that, at the start of the time horizon, have a remaining number of
legal flight hours smaller than the number of flight hours in the longest route are included in the model. This does not
mean that all tasks must be executed, because the actual traveled route may be shorter. This idea was also implemented
by Bilge & Basdere [4], who labeled all aircraft with a check due in less remaining time than the longest possible route
in the planning horizon as high-time aircraft. Our mathematical formulation is as follows:

Minimize
∑

i∈I

∑

j∈J

∑

t∈Ti

yitj ∗ Si,t ∗ min(Avg ∗ (DDi,t −Datej), RFH i,t −
Datej
∑

d=1

∑

j∈Jsd

xij ∗ lj) (1)

Subject to:
∑

i∈I
xij = 1 ∀j ∈ J (2)

∑

j∈Jad

xij = 1 ∀i ∈ I, d = 2, 3, ..., nd (3)

∑

j∈Si

xij = 1 ∀i ∈ I (4)

xij −
∑

j∈Cj

xij ≤ 0 ∀i ∈ I, j ∈ Jb (5)
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∑

j∈J
yitj ≤ 1 ∀i ∈ I, t ∈ Ti (6)

RFHi,t −
∑

j∈J
xij ∗ lj ≥

∑

j∈J
yitj ∗ msj ∗ −K ∀i ∈ I, t ∈ Ti (7)

DDi,t − nd ≥
∑

j∈J
yitj ∗ msj ∗ −K ∀i ∈ I, t ∈ Ti (8)

yitj ∗ (
Datej
∑

d=1

∑

j∈Jsd

xij ∗ lj) ≤ RFHi,t ∀i ∈ I, t ∈ Ti, j ∈ J (9)

yitj ∗ Datej ≤ DDi,t ∀i ∈ I, t ∈ Ti, j ∈ J (10)

|Ti| ∗ xij ≥
∑

t∈Ti

yitj ∀i ∈ I, j ∈ J (11)

∑

i∈I

∑

j∈Jed

∑

t∈Ti

yitj ∗ Si,t ≤ Md d = 1, ..., nd (12)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J (13)
yitj ∈ {0, 1} ∀i ∈ I, t ∈ Ti, j ∈ J (14)

The objective function (1) is the minimization of the total unused flying time, where the size of the task is taken as a
weight factor. The total unused flying time is calculated by multiplying the average number of flight hours an aircraft
flies per day with the number of days a task is planned before its due date. A second way to calculate lost flying time
is to subtract the remaining number of legal flight hours at the start of the planning horizon with the number of flight
hours recorded before the task is sceduled. The minimum of these two values is selected as the true lost flying time.
Constraints (2) are the flight coverage constraints. Constraints (3) limit each aircraft to fly at most 1 line at any given
moment. Constraints (4) ensure that each aircraft is allocated a feasible starting line in terms of initial location and
the first daily check. Constraints (5) are the flow constraints. Constraints (6) ensure that every task can be planned a
maximum of one time within the planning horizon. Constraints (7) and (8) ensure that a task must be planned if its
remaining legal flight hours are less than the constructed route for the aircraft, or if the due date of the task falls outside
of the planning horizon. Constraints (9) and (10) ensure that if a task is planned it is planned before its remaining flight

Table 2
Parameters, sets and decision variables

Parameters
np number of aircraft in the fleet
nd number of days in the planning horizon
nj number of lines in the planning horizon
ni,t number of considered tasks in the planning horizon for AC i
lj length of of line j in flight hours
DDi,t due date of task t of AC i
RFHi,t remaining number of legal flight hours of task t of AC i at the start of the planning horizon
Datej end date of line j
Si,t size in man-hours of task t of AC i
msj equals 1 if line j ends on the maintenance station, 0 otherwise
Md Capacity of the maintenance station in man-hours on day d
Avg average number of recorded flight hours per day per aircraft
K a sufficiently large number

Sets
I set of all aircraft
J : set of all lines in the planning horizon
Jad set of all lines active on day d
Jsd set of all lines starting on day d
Jed set of all lines ending on day d
Jb set of all lines except the ending lines
Si set of all possible starting lines for AC i
Cj set of all connection lines of line j
Ti set of considered tasks for AC i within the time horizon

Decision Variables
xij = 1 if aircraft i flies line j, 0 otherwise
yitj = 1 if aircraft i plans maintenance task t ∈ Ti after line j, 0 otherwise
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hours run out or before its due date is reached. Constraints (11) make sure that a task can only be planned on a night
that the aircraft spends on the maintenance station. Constraints (12) are the capacity constraints of the maintenance
station in man-hours. Constraints (13) and (14) are the integrality constraints on the decision variables.

In our formulation a maintenance tasks can be planned a maximum of one time within the given planning horizon.
For most tasks this should cause no problem, however tasks with a very short interval could thus not be individually
planned but would have to be grouped in the nearest daily check.

3.3. Model characteristics
To gain an appreciation for the model size, a breakdown of the problem sizes and computational results for different
sets of parameter settings is presented in Table 3. The given tests are run with a planning horizon of 7 days and a
maintenance capacity of 75 man-hours per night at a maintenance station. In these runs, the maintenance task sets
for each aircraft consisted of either 10, or 20 tasks. The flight data for these runs was extracted from online sources
tracking individual aircraft of fleets. In this case, the flight data of a set of Boeing 737s of a large European airline
was used. Each aircraft has been given a unique set of tasks to be completed. The size of each task in man-hours is
generated following a uniform distribution between 0.5 man-hours and 1.5 man-hours so that the average lies around
1 man-hour, which is the average size of a task in an A-check. Each task’s due date is generated following a discrete
uniform distribution. The lower bound of this distribution is the due date for the aircraft’s first daily check, and the
upper bound is the end of the planning horizon. The number of remaining legal flight hours for a task is generated
following a discrete uniform distribution where the lower bound equals the number of flight-hours that are flown before
the aircraft can its first daily check. This lower bound is necessary to guarantee the existence of a feasible solution.
The upper bound is set at the average number of recorded flight hours per day multiplied by the number of days in the
planning horizon. As the size of the model increases, so too naturally does the time it takes to solve the model. For
fleets containing a large number of aircraft, it seems that the model becomes too large to solve with exact methods
within a reasonable time. Therefore another solution method will have to be constructed to generate good solutions in
a faster way.

Table 3
Computational results when solving the MIP, with nd =7

# AC # Tasks # Var # Const Residual Gap (%) CPU (sec) Obj value

5 10 1045 2281 0.00 1 258

20 1995 4331 0.00 2 471

6 10 1452 3125 0.00 1 304

20 2772 5945 0.00 7 607

7 10 1925 4099 0.00 5 385

20 3675 7809 0.00 14 727

8 10 2464 5203 0.00 19 424

20 4704 9923 0.00 44 863

9 10 3168 6636 0.00 53 434

20 6048 12,666 0.00 110 913

10 10 4070 8464 0.00 632 432

20 7770 16,164 0.00 2138 937

11 10 4840 10,024 0.00 1269 471

20 9240 19,154 5.41 56,000 1085

4. Solution approach
Due to advances in hardware and exact solution methods, several MIP models can reach optimality within a reasonable
amount of time or close to it [2]. This has led to a relatively new research area called matheuristics that attempts to
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combine exact algorithms with heuristics. In the literature, matheuristics have been proposed for several different
routing problems. One of the main matheuristic approaches is the decomposition approach [2], where the problem is
decomposed into smaller subproblems. Decomposition approaches are especially suitable for handling complex and
interrelated problems [2], which could make it a good fit for our given model. The developed matheuristics in this
study fall into two main categories: decomposition by aircraft matheuristics, which are presented in Section 4.1, and
rolling horizon matheuristics, which are presented in Section 4.2.

4.1. Decomposition by aircraft matheuristics
In decomposition by aircraft matheuristics, the problem is decomposed into N subproblems, with N equalling the
total number of aircraft. Each subproblem generates the route and maintenance schedule for a single tail number by
solving the corresponding MIP to optimality using a branch and bound. For the first aircraft, all the lines and the full
maintenance capacity are available. After the solution is found, the used lines are removed from the network, and the
remaining maintenance capacity is updated. Subsequently, the MIP with the remaining lines and maintenance capacity
is solved for the next aircraft until all aircraft are assigned a route and maintenance schedule. Two decomposition by
aircraft matheuristics have been modeled, which are presented in the upcoming sections.

4.1.1. A depth first and random search combination
The decomposition by aircraft method presented in this section is inspired by the depth-first and random search heuristic
used by Sriram & Haghani [27], which yielded good results for an aircraft maintenance routing problem that is similar
to our own. In this matheuristic, a list of all considered aircraft is made in random order. The first aircraft of the list
is selected, and the best possible route is constructed from all the available lines by solving the mathematical model
presented in chapter 3 and adapted for a single aircraft. The available starting lines the aircraft has at its disposal are
organized in a feasibility list, that contains the lines that it could feasibly choose as its first line. Lines that, if selected,
would create feasibility problems for upcoming aircraft are excluded from the feasibility list and are thus not available
for selection. For example, a line that is the only feasible starting line for an upcoming aircraft would not be included
in the feasibility list. After the aircraft route is constructed, the used lines are removed from the network, and the
feasibility list and remaining maintenance capacity per day for the maintenance station are updated. Subsequently, the
second aircraft on the list is selected, and the process repeats itself until all the aircraft in the list are assigned routes.
At the end of the process, a feasible solution is found, and all the solution values of the corresponding aircraft are
summed to get the weighted value of the total lost flying time. This entire process is executed over multiple iterations,
where the aircraft list is randomly shuffled for each iteration. If the found objective value of an iteration is lower than
that of the previous best-found solution, the current iteration solution is saved as the current best solution. At the end
of the matheuristic, the best-found solution is presented as the final solution. The pseudo-code of the depth first and
random search combination is given in algorithm 1.

Algorithm 1: Depth First and Random Search Combination
k = 0, n = 0;
K = Number of iterations;
N = Number of aircraft ;
while k = k + 1 ≤ K do

1: Shuffle aircraft list;
2: Reconstruct network and feasibility list and reset maintenance capacities;
while n = n + 1 ≤ N do

1: Select the nth aircraft on the aircraft list;
2: Solve depth first MIP;
3: Remove selected lines from network, and update the maintenance capacities and the feasibility list;

end
3: Save Solution if better than previous best;

end
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4.1.2. Successive route checking
In the successive route checking matheuristic, similar to the depth-first and random search matheuristic, aircraft routes
are created one by one. However, instead of constructing routes from the available lines, all the possible routes are
created before solving the model. For every selected aircraft a very simple MIP is solved for all remaining possible
routes, and subsequently the best route is selected. Because the route is given as input during each MIP, the routing
constraints can be eliminated, and since the length of the route is known beforehand, the specific set of tasks that
need to be scheduled can be determined before starting the MIP. The pseudo-code of the successive route checking
matheuristic is given in algorithm 2.

Algorithm 2: Successive Route Checking
k = 0, n = 0;
K = Number of iterations;
N = Number of aircraft ;
1: Determine all possible routes for each aircraft;
while k = k + 1 ≤ K do

1: Shuffle aircraft list;
2: Reset list of possible routes and the maintenance capacities, and reconstruct the feasibility list;
while n = n + 1 ≤ N do

1: Select the nth aircraft on the aircraft list;
2: Successively solve simplified MIP for all remaining possible remaining routes and select the best
route;
3: Update remaining possible routes, the maintenance capacities and the feasibility list;

end
3: Save Solution if better than previous best;

end

4.2. Rolling horizon matheuristics
The matheuristic approach to decomposing a problem into time periods, or sub-horizons, is classified as a rolling hori-
zon (mat)heuristic (RHM) by Archetti & Speranza [2]. Rolling horizon matheuristics have been applied for several
transportation problems, such as Agra et al. [1], who used a rolling horizon matheuristic to solve an inventory routing
problem in which ships are routed and scheduled between ports such that the demand for various fuel oil products is
satisfied during the planning horizon. Rakke et al. [21] use a rolling horizon matheuristic to create a liquefied natural
gas annual delivery program.

At the beginning of our RHM, all the tail numbers and all the lines that start from day 1 are considered. During
the first iteration, a MIP is solved that distributes the starting lines as efficiently as possible and plans any required
maintenance within the time period, with the goal of minimizing the total number of lost flying time. After the MIP is
solved, the routing variables are frozen, and the sub-horizon shifts forwards. During the second iteration, all the tail
numbers and all the lines that start on day 2 are considered. For the tail numbers, this consists of the aircraft that were
assigned 1-day long lines during iteration 1. The pseudo-code of the RHM is presented in algorithm 3.

Algorithm 3: Rolling Horizon Matheuristic
k = 0;
U = Number of days in the planning horizon;
while k = k + 1 ≤ U do

1: Select the set of tail numbers and lines starting from k;
2: Determine the task set for each tail number that requires consideration;
3: Solve the MIP, including feasibility constraint if k = 1;
4: Freeze variables xij from the current iteration;

end
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The downside of an RHM, as implemented above, is that it, in a sense, is myopic. It only considers lines that start on
the day of the iteration and does not take future lines that appear in an upcoming iteration into account. To counter
this shortsightedness, a forecasting section can be included in the rolling horizon framework, similar to Rakke et al.
[21] and Agra et al. [1]. Now every sub-horizon is decomposed into two time periods: the central period (CP) and
the forecasting period (FP). In the central period, the MIP is solved, and the selected routes within it are frozen before
moving to the next iteration. The forecasting period provides information to the central period about a larger part
of the planning horizon. The idea is that by using a forecasting period, clearly sub-optimal solutions outside of the
central period can be avoided so that the myopic nature of a rolling horizon matheuristic is mitigated [21].To provide
the central period with information, a MIP is solved within the forecasting period, which often is a simplified version
of the MIP in the central period. Figure 2 gives a graphical representation of the different time windows within a
sub-horizon. Two main elements need to be considered for the forecasting period [21]:

1. A simplification strategy; and
2. The length of the forecasting period

A rolling horizon matheuristic that includes a forecasting section carries certain similarities with a well established
family of control techniques known as Model Predictive Control (MPC) or Receding Horizon Control [5]. MPC is a
model-based control approach, where a constrained optimization problem is solved over a given forecast horizon to
determine a control action sequence for the controller. During every control step, only the first element of this action
sequence is carried out. At the next time step the constrained optimization problem is reformulated and solved again,
leading to a new control action sequence of which, again, only the first element is carried out, resulting in a receding
horizon strategy. To reduce the computational burden of an MPC, Tian et al. [28] have proposed an Adaptive Control
Resolution (ACR) approach. An ACR approach reduces the number of control variables by dividing their problem
horizon in a number of phases with decreasing resolution as the phases become more distant in the future. It can be
understood that the presented RHM with a forecasting section operates in a similar manner. During every iteration,
only the first action (the flight schedule produced in the central period) is frozen or "carried out". Implementing a
simplification strategy within the forecasting period is similar to implementing the ACR within the MPC, as it reduced
the number of variables and is aimed to reduce the computation times.

Two forecasting strategies have been modeled and are presented in the following sections.

4.2.1. Exact Forecasting
Using an exact forecasting strategy means that there is no simplification for the forecasting period. The model in the
forecasting period is subjected to the same constraints and objective function as in the central period. This means that
the full model is solved for a time period that equals the length of the central period plus the length of the forecasting
period, but only the lines that depart in the central period are frozen for the next iteration. It can logically be concluded
that, if the length of the central period and the forecasting period together equals the length of the original problem’s

Central PeriodFrozen Period Forecasting Period
Simplification StrategyDetailed PlanningFreezing Strategy

t

Iteration
k+1

Iteration
k

CPk FPk

CPk+1 FPk+1

Figure 2: The different time-windows within the rolling horizon matheuristic using a forecasting approach [1]
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planning horizon, the optimal solution is found. Algorithm 3 is updated to include the exact forecasting section and
the pseudo-code is presented in algorithm 4.

It is no longer sufficient only to consider lines and aircraft departing from the maintenance station at the start of
day k. Lines starting within the FPk must also be considered. These lines need to be assigned either to aircraft that
are operating previously frozen lines during the CPk, or to aircraft that are assigned a new line at the start of the CPk,
which will finish before the end of the FPk, and thus will need to be assigned a second line within the considered time
period. To allow for this, the flow constraints (5), have been adapted to the constraints (15).

xij −
∑

j∈Cj

xij −
∑

p∈Pj

zi,p ≤ 0 ∀i ∈ I, j ∈ Jm (15)

Table 4
Added sets and decision variables for the exact forecasting

Sets
Jm Set of all active lines except for the starting lines
Pj Set of all frozen lines that connect to line j
Pj Set of all frozen lines that connect to line j

Decision Variables
zi,p = 1 if aircraft i has flown frozen line p, 0 otherwise

Algorithm 4: Rolling Horizon Matheuristic With Exact Forecasting
k = 0;
U = Number of days in the planning horizon;
while k = k + 1 ≤ U do

1: Identify the set of lines that start during the CPk and FPk;
2: Identify the set of tail numbers that will start a new line during the CPk and FPk;
3: Determine the task set for each tail number that requires consideration;
4: Solve the mathematical model for the problem defined by CPk and FPk;
5: Freeze variables xij in the central period CPk;

end

4.2.2. Average Flight Hour Forecasting
In this section, a strategy is presented that solves a simplified model for the forecasting period. As a first simplification,
the capacity constraint of the maintenance station (equation 12) is removed. As a second simplification, the model will
use the average number of flight hours per day (given as an input value) to predict the number of recorded flight hours
for each tail number at the start and end of each line within the forecasting period. Based on these values, the model will
assign a predicted tail-number dependent cost for each forecasted line by calculating the lost flying time that would be
incurred due to maintenance tasks having to be planned early if this line is flown. The term presented in (16) is added
to objective function (1) and introduces a new decision variable: qif, which equals 1 if a line within the forecasting
period is assigned to aircraft i. Constraints (17) and (18) are added to the model. The pseudo-code of the RHM with
average flight hour forecasting is given in algorithm 5.

Minimize
∑

i∈I

∑

f∈F
qif ∗ Costif (16)

∑

i∈I
qif = 1 ∀f ∈ F (17)

qif −
∑

j∈Cf

xij −
∑

p∈Pf

zip −
∑

f∈Rf

qif ≤ 0 ∀i ∈ I, f ∈ F (18)
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Table 5
Added sets and decision variables for the average flight hour forecasting

Sets
Costi,f Set that holds the predicted costs if future line f is assigned to aircraft i
F Set of all lines starting in the forecasting period
Cf Set of all lines, starting in the central period, that connect to line f
Pf Set of all frozen lines that connect to line f
Rf Set of all lines, starting in the forecasting period, that connect to line f
zi,p Set of binary values where a value equals 1 if aircraft i has flown frozen line p, 0 otherwise

Decision Variables
qi,f = 1 if forecasted line f is assigned to aircraft i, 0 otherwise

Algorithm 5: Rolling Horizon Matheuristic With Average Flight Hour Forecasting
k = 0;
U = Number of days in the planning horizon;
while k = k + 1 ≤ U do

1: Identify the set of lines that start during the CPk and FPk;
2: Identify the set of tail numbers that will start a new line during the CPk and FPk;
3: Determine the task set for each tail number that requires consideration;
4: Calculate the predicted costs of the lines starting in the FPk;
5: Solve the mathematical model for the problem defined by CPk and FPk;
6: Freeze variables xij in the central period CPk;

end

4.3. Results
As could be observed from Table 3 exact results to our model were found for problem sets up to 11 aircraft and 10
tasks each. To verify and judge the quality of the solutions produced by our presented matheuristics, the matheuristic
results will be compared to the results produced by the exact solutions for the tested problem sets for which the optimal
solution was found. Each matheuristic has been run with the same data for the same problem sizes as presented in Table
3. The results are presented in Table 6. For each matheuristic and problem set the objective value of the solution and
the required CPU time are denoted. The bottom row indicates the average optimality gap of all found objective values.
The length of the forecasting period was extended up to two days for exact forecasting and up to six days for average
flight hour forecasting. The results of the decomposition by aircraft matheuristics were found after completing ten iter-
ations. This means that solutions have been found for ten different orders of the aircraft list. The total possible orders
of the aircraft list equals the factorial of the number of aircraft included, which for all test cases vastly surpasses the
number of ten. This means that only a small fraction of the solution space is explored. Greatly increasing the number
of iterations is not feasible as this proportionally increases computation time. From these results, it is concluded that
the rolling horizon matheuristics all present solutions with superior averaged objective values to the decomposition
by aircraft methods. The RHMs with exact forecasting present the best solutions, but the required computation time
rises steeply when increasing the forecasting period. It also appears that the solution results of the RHMs with average
flight hour forecasting do not consequently improve when increasing the forecasting period. An explanation for this
might be that the benefit of longer forecasting is offset by the decrease in prediction accuracy.

A second takeaway from the results presented in Table 6 is the fact that the decomposition by aircraft matheuristics
take substantially longer to complete than the rolling horizon matheuristics (excluding the RHM with more than one
day of exact forecasting) for a given of ten iterations. The explanation behind the long computation times of the depth
first and random search matheuristic is that the first aircraft on the list of every iteration has a large number of lines to
choose from, resulting in a MIP that still requires a substantial amount of time to solve. The successive route checking
matheuristic needs an even longer computation time per iteration than the depth first random search combination, even
though the MIPs solved in the SCRM are very elementary in nature. The reason for this is that the number of possible
routes sharply rises with an increasing flight schedule size, and for the presented result the simplified MIP needed to
be solved 6,530 times.
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Table 6
Comparison of the objective values and solving times of the discussed matheuristics for large problem sets

DFRS SRCM RHM
NF

RHM
EF-1

RHM
EF-2

RHM
AF-1

RHM
AF-2

RHM
AF-3

RHM
AF-6

5 AC,
10 tasks

Obj. value 278 271 266 267 266 267 267 267 267

CPU time (s) 7 11 1 2 2 1 2 2 2

5 AC,
20 tasks

Obj. value 511 510 487 471 471 471 471 471 471

CPU time (s) 8 13 1 2 4 1 2 2 2

6 AC,
10 tasks

Obj. value 315 336 308 308 308 308 308 308 308

CPU time (s) 8 15 1 2 4 1 2 3 3

6 AC,
20 tasks

Obj. value 675 652 607 607 607 607 607 607 607

CPU time (s) 12 16 2 4 7 2 2 3 3

7 AC,
10 tasks

Obj. value 467 425 385 393 385 385 385 394 394

CPU time (s) 11 21 1 2 5 1 3 3 3

7 AC,
20 tasks

Obj. value 802 807 731 741 727 731 731 731 731

CPU time (s) 16 26 2 5 8 3 4 4 4

8 AC,
10 tasks

Obj. value 462 469 436 435 430 427 443 427 427

CPU time (s) 12 38 1 5 10 2 3 3 4

8 AC,
20 tasks

Obj. value 945 972 868 867 867 868 885 885 885

CPU time (s) 20 33 2 7 19 3 3 5 5

9 AC,
10 tasks

Obj. value 476 481 446 444 449 458 455 455 455

CPU time (s) 18 63 2 7 25 2 4 4 6

9 AC,
20 tasks

Obj. value 1043 1071 939 958 939 950 948 950 950

CPU time (s) 24 53 3 13 53 4 5 7 7

10 AC,
10 tasks

Obj. value 522 514 481 432 437 432 441 472 472

CPU time (s) 24 150 2 16 46 3 5 6 7

10 AC,
20 tasks

Obj. value 1102 1103 997 965 962 977 1000 978 975

CPU time (s) 48 127 3 26 250 4 6 8 9

11 AC,
10 tasks

Obj. value 563 572 620 534 486 553 550 536 536

CPU time (s) 28 225 2 18 62 4 6 7 10

Average optimality gap 12.5% 12.5% 5.1% 2.7% 1.5% 2.9% 3.6% 3.6% 3.6%
DFRS: Depth-First Random Search, SRCM: Successive Route Checking Matheuristic, RHM NF: Rolling Horizon
Matheuristic - No Forecasting, EF-1: Exact Forecasting For 1 Day, AF-1: Average Flight Hour Forecasting for 1 day.

The developed matheuristics were tested against larger problem sizes of up to 25 aircraft. To cope with the larger
problem sets the capacity of the maintenance station was increased to 150 man-hours per night. The results of these
tests are presented in Table 7. For these instances, as there were no exact solutions available, the presented gap does not
equal the optimality gap but rather the gap with the best found objective value from all matheuristics. If the matheuris-
tic was not yet completed after 3600 seconds, a dash is presented in Table 7.

Judging by this average gap, it seems clear that again the rolling horizon matheuristics outperform the decomposition
by aircraft matheuristics in terms of objective values. Similar to the results of the smaller problem sets, the RHM with
exact forecasting generates the best objective values for larger sets. However, for a forecasting horizon longer than one
day, its computation time becomes too hefty for the largest problem sizes. The improvement in objective values in the
smaller problem sets, generated by augmenting the RHM with the forecasting section based on average flight hours,
seems to be reduced for larger sets. A forecasting length of two days, in fact, produced worse results than the RHM
without forecasting.
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Table 7
Comparison of the objective values and solving times of the discussed matheuristics for large problem sets

DFRS SRCM RHM
NF

RHM
EF-1

RHM
EF-2

RHM
AF-1

RHM
AF-2

RHM
AF-3

RHM
AF-6

15 AC,
10 tasks

Obj. value 797 816 746 671 643 665 765 731 717

CPU time (s) 120 594 3 45 304 6 9 10 13

15 AC,
20 tasks

Obj. value 1903 1888 1692 1660 1547 1715 1640 1602 1616

CPU time (s) 229 392 6 131 583 9 13 14 17

20 AC,
10 tasks

Obj. value 1192 1167 942 927 - 931 974 948 945

CPU time (s) 232 2210 5 157 - 10 15 18 24

20 AC,
20 tasks

Obj. value 2641 2729 2280 2224 - 2278 2309 2215 2296

CPU time (s) 485 1404 11 513 - 17 22 28 30

25 AC,
10 tasks

Obj. value 1450 - 1200 1149 - 1223 1184 1259 1187

CPU time (s) 1570 - 8 413 - 15 22 35 36

25 AC,
20 tasks

Obj. value - - 3030 2898 - 2992 2973 2911 2865

CPU time (s) - - 22 825 - 31 41 54 52

Average gap with best-
found score 24.2% 24.5% 6.7% 2.2% 0.0% 4.7% 6.9% 5.1% 4.1%

DFRS: Depth-First Random Search, SRCM: Successive Route Checking Matheuristic, RHM NF: Rolling Horizon
Matheuristic - No Forecasting, EF-1: Exact Forecasting For 1 Day, AF-1: Average Flight Hour Forecasting for 1 day.

5. Experimental study
In this section an experimental study will be performed with the aim of analyzing the potential impact of an individual
task-based maintenance planning, as implemented by one of the presented matheuristics, on the airline industry. For
this experimental study, the rolling horizon matheuristic with one day exact forecasting is selected as it has proven to
produce good results in reasonable time for similar problem sizes that will be used in this experimental study. The
results of the given matheuristic and that of a standard A-check scheduling strategy will be compared in terms of (1)
total number of days aircraft have to be taken out of operations; and (2) total lost flying time. Furthermore, the distri-
bution of required man-hours at the maintenance station per night will be compared.

In practice, it is likely that the routing and planning for the fleet would be updated at the end of each day to pro-
duce the new schedule for the newly considered planning horizon. To mimic this, the selected matheuristic will be
transformed into a model with a running horizon. The model will be run before the start of every day for 60 days with
a planning horizon of 7 days, and only the solution of the first day will be saved as the actually carried out flight and
maintenance schedule.

For this experimental study, a fleet of 15 Boeing 737s of a large European airline has been considered. The flight
data of these aircraft is extracted from a paid online aircraft-tracking service. Any gaps in the flight data are supple-
mented with fabricated data in line with the rest of the flight data. The interval of an A-check is put at 60 days, and the
A-checks are spaced as evenly as possible within the given interval. An A-check is assumed to contain 100 individual
maintenance tasks, with an average length of 1 man-hour per task. Half of these tasks are considered to have a shared
due date with the set date of the A-check, and are thus considered to be part of a ’core-set’ of tasks that return every
A-check. The other fifty tasks are part of a set of tasks that just happen to be due within the 60-day interval between
two consecutive A-checks, and are thus moved forward to be placed inside the first of these checks. For each aircraft, a
unique set of these non-core tasks is generated. Furthermore, at the start of the interval, each non-core task is assigned
a number of legal remaining flight hours the aircraft can operate before the task is due. The remaining number of legal
flight hours are generated following a uniform distribution. However, putting the lower bound of this distribution at
0 flight hours could lead to an infeasible start of the model, because a task could be due before the aircraft has had a
chance to visit a maintenance station for the first time. Therefore, the lower bound is set at a specific number of flight
hours, after which the aircraft is guaranteed to have had the ability to visit a maintenance station. By examining the
given lines at the start of the model, this number can be determined. The upper bound of the uniform distribution is
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determined by multiplying the number of average flight hours per day by 60. So in a standard A-check strategy all the
non-core tasks would be moved up to the nearest A-check, whereas with our model they will be planned individually
on overnight layovers on the maintenance station.

5.1. Results of the experimental study
This section will present the results of the experimental study. It must be noted that the presented lost flying hours are
actually the weighted lost flying hours, as the size of a task is taken as a weight factor in the model. Since the average
size of a task equals one man-hour, and the main interest is to examine the differences between the two methods, not
the absolute sizes, we present it as the lost flying hours.

Figure 3 and Table 8 present the results on the lost flying days incurred during the experimental study for both tested
approaches. The A-check planning requires every aircraft to be taken out of operations for a single day to complete
the check. This means that for a fleet of 15 aircraft, a total of 15 lost flying days were incurred over the given interval.
The proposed matheuristic was able to plan all the required maintenance tasks within overnight ground times at the
maintenance station, which resulted in a total of 0 lost flying days.
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Figure 3: Visualization of the accumulation of lost flying days over the interval

Table 8
Comparison of the lost flying days incurred for each aircraft within the study between the A-check and the matheuristic

AC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

A-Check 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15

Mat. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AC: Aircraft, Mat.: Matheuristic

Figure 4 and Table 9 present the results on the lost flying hours incurred during the experimental study for both tested
approaches. To determine the lost flying hours for the A-check strategy, an approximation had to be made, using the
average flight hours per day. This means that if an A-check was performed on day 12, it is assumed that the aircraft had
traveled a total number of flight hours at that point of 12 times the average flight hours per day. The lost flying hours
of any task were then calculated by calculating the difference between their remaining number of legal flight hours
at day 0 and the number of traveled flight hours on the day of the planned A-check. As seen in the results, there is a
very substantial difference between the two methods in terms of lost flying hours. The number of 219.56 thousand lost
flying hours, incurred with the A-check planning, decreased to 4.32 thousand lost flying hours when implementing the
matheuristic, which equals a drop of over 98%. This drop effectively translates to a much more efficient maintenance
planning, where tasks are performed when they are due, instead of when the latest A-check opportunity occurs.
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Figure 4: Visualization of the lost flying days incurred per aircraft

Table 9
Comparison of the lost flying days incurred for each aircraft within the study between the A-check and the matheuristic

AC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

A-Check 13.51 13.37 12.51 14.63 12.75 14.51 17.36 15.56 15.93 15.60 12.56 16.50 15.95 13.88 14.94 219.56

Mat. 0.36 0.28 0.25 0.27 0.27 0.26 0.33 0.25 0.30 0.29 0.34 0.26 0.26 0.31 0.30 4.32

AC: Aircraft, Mat.: Matheuristic

Figure 5 presents the results on the man-hours at the maintenance station for every night in the 60-day interval. Distinct
peaks in workload can be seen for the A-check strategy. The results of the matheuristic show a more phased mainte-
nance planning approach, as maintenance tasks are now be performed on overnight stays at the maintenance station.
The still existing, but smaller, peaks in workload for the matheuristic are a result from the core set of tasks being due
at the same moment.
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Figure 5: Visualization of the used man-hours at the maintenance station per day
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5.2. Sensitivity analysis
A sensitivity analysis is conducted to examine how the capacity of the maintenance station affects the results of the
selected matheuristic. Four different scenario’s will be tested, with the capacity changing from 75, to 50, to 40, to 35
man-hours. The results of different scenarios in terms of lost flying hours are given in Table 10. The corresponding
used man-hours per day at the maintenance station for each scenario are presented in Figure 6. The matheuristic was
not able to find a feasible solution on the 13th day for a capacity of 35 man-hours. The results indicate a clear trend
that increasing the station capacity has a positive effect on the incurred number of lost flying hours. In Figure 6a it is
seen that on many occasions the matheuristic plans maintenance nights close to 75 man-hours. When decreasing the
capacity a number of the tasks had to be moved forward, resulting in a larger number of lost flying hours. Decreasing
the station capacity leads to a more phased maintenance planning, because the existence of peaks above a certain
threshold is forbidden.

Table 10
Lost flying hours incurred with changing station capacity parameter (in man-hours)

Station Capacity Lost Flying hours

75 4316

50 6178

40 7093

35 -
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(a) Used man-hours per day with a station capacity of 75
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(b) Used man-hours per day with a station capacity of 50
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(c) Used man-hours per day with a station capacity of 40
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Figure 6: Visualization of the used man-hours per day at the maintenance station for varying station capacities

6. Impact on the airline industry
In the experimental study, the maintenance scheduling results of a standard A-check planning and the results of the
rolling horizon matheuristic with one day exact forecasting were compared over an interval of 60 days for a fleet of 15
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aircraft. Where the A-check planning required every aircraft to be taken out of operations for one day to complete the
check, the matheuristic planned all required maintenance on overnight stays at the maintenance station. As a result,
the aircraft did not have to be taken out of operations. This increase in aircraft availability can be used in multiple
ways, and it is up to the airline to decide which way suits their needs the best. One straightforward way is to use this
increased availability to expand the airline’s flight schedule and operate more flights. Depending on the aircraft’s uti-
lization level, a day of operations may represent between $75k and $120k of additional revenue [7]. If the assumption
is made that an aircraft currently requires 6 A-checks per year, the extra revenue could equal up to $ 7.2 million per
aircraft over a time period of 10 years. Further, this amount only reflects the potential savings on A-checks. Using an
individual task-based strategy could possibly reduce the required downtime for C-checks as well.

Secondly, in the experimental study, the number of lost flying hours were compared between the standard A-check
planning and our individual task based planning matheuristic. The number of lost flying hours decreased with over
98%, when using our proposed matheuristic, as opposed to the standard A-check planning. It is more difficult to put
a price tag on the saved costs due to the decreased number of lost flying hours. However, as stated before, the better
utilization of the maintenance tasks’ intervals leads to less required maintenance in the long run. This could express
itself in a smaller mechanics team that could handle the same fleet and could provide savings in salary costs.

Furthermore, the experimental study showed that a standard A-check planning is accompanied by distinct peaks in
workload. Using an individual task-based maintenance planning results in a more phased maintenance approach which
attenuates the peaks and creates a more balanced workload distribution.

A final aspect in which implementing our proposed model and solution method could impact the airline industry is
the role of the maintenance planner. The planning of aircraft maintenance is often still a very manual process, relying
on the experience of the planners. The combination of the planners’ required experience and their importance to the
day-to-day operations makes it difficult to recruit new employees for this job and has, in some cases, lead to an aging
staff in this department. Implementing a system that can automate part of their job thus not only has the potential to
save in salary costs but might actually prove instrumental to an airline’s continuous operations in the long term.

In order to successfully implement our planning method there needs to be an increased flexibility in the roster schedul-
ing of the mechanic workforce. The required man-hours at the maintenance station for a standard A-check strategy can
be planned far in advance because the A-check are planned long before the day of operations. When implementing
our model, the required man-hours at the maintenance station are much more variable and are only determined when
solving the tail assignment. The tail assignment is solved much closer to the day of operations, which means that the
mechanic workforce’s schedules will be fixed closer to the day of operations.

7. Conclusion
In this study we propose a new aircraft routing and maintenance scheduling model that is able to plan tasks on an
individual basis, whilst not leaving the airline exposed to the risk of propagating delays due to necessary crew swaps.
The tasks that are planned individually are given both a due date and a remaining number of legal flight hours. The
objective of the model is to utilize the remaining times of the individual tasks. Furthermore, the maintenance station is
given a capacity in man-hours it has to its disposal to carry out the scheduled tasks. Several matheuristics were devel-
oped to solve the considered problem for larger sizes, because the computational burden for exact methods became too
hefty. The created matheuristics are divided into two categories: decomposition by aircraft matheuristics and rolling
horizon matheuristics. The analysis of our testing results showed that the rolling horizon matheuristics consistently
outperformed the decomposition by aircraft matheuristics by some margin. To further improve the rolling horizon
matheuristics, a forecasting section was introduced. Through exact forecasting excellent results were produced, how-
ever when increasing the problem size, or the length of the forecasting period beyond a certain size computation times
too became quite long. When using average flight hour forecasting the results improved as well, however increasing
the length of the forecasting period did not seem to yield a consistent improvement in results. Depending on the (1)
the size of the fleet that an airline operates; (2) the number of tasks that they wish to plan on an individual basis; and
(3) the available computing power, it is concluded that either the rolling horizon matheuristic with exact forecasting

: Preprint submitted to Elsevier Page 18 of 20



or with average flight hour forecasting is the best choice.

In an experimental study it was shown that implementing our model instead of a standard A-check planning can elim-
inate the need to take an aircraft out of operations, resulting in potential savings up to $7.2 million per aircraft over a
time period of 10 years. Furthermore, the number of lost flying hours, due to tasks being executed early, was reduced
by over 98%, resulting in a much more efficient maintenance planning, and reducing the required maintenance over an
aircraft’s lifetime.

There are a number of improvements that can be made to our presented formulation. First, an overtime component
could be added to the maintenance capacity. In some cases, it might be beneficial, or even necessary, to exceed the
given man-hours of the station capacity. This could practically be done by letting mechanics work overtime or by
deploying a larger mechanics team for that night. Planning overtime could be represented in the objective function
by a penalty. A second improvement is to dive deeper into the nature of the different maintenance tasks. In practice,
some maintenance tasks could have good synergy with each other, and therefore it might be beneficial to execute them
together. Finally, the third recommendation for further research could be to include ground times during the day for
maintenance planning as well. This would allow for more potential maintenance opportunities to be utilized. However,
also considering ground times during the day as maintenance opportunities would increase the size and complexity of
the model tremendously.
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# ዅ*ዅ coding : u t f ዅ8 ዅ*ዅ
” ” ”
Created on Thu Apr 16 21:33:00 2020

@author : Alex
In t h i s s c r i p t the complete model f o rmu la t i on i s solved using Gurobi
” ” ”

impor t pandas as pd
from L ine_ex t r ac t i on impor t Lines_Only # t h i s i s a f unc t i on t ha t ex t r a c t s l i n e data from

f l i g h t data
from gurobipy impor t *
TaskData = pd . read_excel ( ’ TaskData_20_tasks . x l sx ’ , sheet_name=None)
F l i gh tDa ta = pd . read_excel ( ’ F l i gh tDa ta . x l sx ’ , sheet_name=None)
TailNumbers = pd . Exce lF i l e ( ’ F l i gh tDa ta . x l sx ’ ) . sheet_names
TailNumbers = [ ’PHዅBGF ’ , ’PHዅBGG’ , ’PHዅBGH ’ , ’PHዅBGI ’ , ’PHዅBGK ’ ] # t h i s l i s t con ta ins a l l the t a i l

numbers t ha t are considered f o r the problem
#Parameters :
Planning_hor izon = 7
Star t ingDay = 43831 #Excel uses a number f o r a date , which works very we l l . 43831 t r an s l a t e s

to 1ዅ1ዅ2020
Sta t ion_Capac i ty = 150 # in manዅhours per n i gh t

# ex t r a c t the l i n e s from the f l i g h t d a t a . Wi th in the f unc t i on Lines_Only a lso a due date f o r
the f i r s t standard check i s randomly generated

Lines , S ta r tL ines , EndLines , standard_check_due_date = Lines_Only ( F l igh tData , TailNumbers )
# ca l cu l a t e the average f l i g h t hours f lown per day
average_FH_per_day = round (sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n Lines ] ) / ( len ( TailNumbers ) *

Planning_hor izon ) ,1 )

#%% Preprocessing f o r bu i l d i n g the routes
#Here mu l t i p l e d i c t i o n a r i e s are b u i l t con ta in ing l i n e in fo rmat ion , which are used when

de f i n i ng the model
L ines_star t ing_each_day = { }
Lines_ending_each_day = { }
Lines_act ive_each_day = { }
f o r i i n range ( Planning_hor izon ) :

f o r j i n Lines :
L ines_star t ing_each_day [ Star t ingDay+ i ] = [ a f o r a i n Lines i f L ines [ a ] [ ’ S tar tDate ’ ] ==

Star t ingDay+ i ]
Lines_ending_each_day [ Star t ingDay+ i ] = [ a f o r a i n Lines i f L ines [ a ] [ ’ EndDate ’ ] ==

Star t ingDay+ i ]
Lines_act ive_each_day [ Star t ingDay+ i ] = [ a f o r a i n Lines i f L ines [ a ] [ ’ S tar tDate ’ ] <=

Star t ingDay+ i and Lines [ a ] [ ’ EndDate ’ ] >= Star t ingDay+ i ]

# I t i s necessary to bu i l d a d i c t i o na r y con ta in ing a l l the poss ib le connect ions . This
d i c t i o na r y w i l l be used in the f low cons t r a i n t

Connections = { }
f o r i i n Lines :

Connections [ i ] = [ ]
ThisLOF = Lines [ i ]
EndDateThisLOF = ThisLOF [ ’ EndDate ’ ]
f o r j i n Lines :

i f L ines [ j ] [ ’ S tar tDate ’ ] == EndDateThisLOF+1:
Connections [ i ] . append ( j )

f o r i i n EndLines : # the connect ions o f the f i n a l l i n e s f a l l ou ts ide o f our p lann ing hor izon
Connections . pop ( i )

# In the given f l i g h t data Amsterdam i s the maintenance s t a t i o n
#Whether or not Lines end on amsterdam . t h i s i s necessary f o r the ending l i nes , which could

end on d i f f e r e n t s t a t i o n s than Amsterdam .
MS = { } #MS = maintenance s t a t i o n
f o r j i n Lines :

i f L ines [ j ] [ ’ A r r i v a l ’ ] == ’ Amsterdam ’ :
MS[ j ] = 1

e lse :
MS[ j ] = 0

#%% Find a l l poss ib le routes and t h e i r lengths , t h i s i s needed to dermine which tasks should
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be considered
routes = { }
rou tes leng th= { }
RouteCounter = 0
f o r i i n S ta r t L i nes :

f o r i 2 i n Connections [ i ] :
i f i 2 i n EndLines :

rou te = [ i , i 2 ]
rou tes [ RouteCounter ] = rou te
rou tes leng th [ RouteCounter ] = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n rou te ] )
RouteCounter += 1

else :
f o r i 3 i n Connections [ i 2 ] :

i f i 3 i n EndLines :
rou te =[ i , i2 , i 3 ]
routes [ RouteCounter ] = rou te
rou tes leng th [ RouteCounter ] = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n rou te

] )
RouteCounter += 1

else :
f o r i 4 i n Connections [ i 3 ] :

i f i 4 i n EndLines :
rou te =[ i , i2 , i3 , i 4 ]
routes [ RouteCounter ] = rou te
rou tes leng th [ RouteCounter ] = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b

i n rou te ] )
RouteCounter += 1

else :
f o r i 5 i n Connections [ i 4 ] :

i f i 5 i n EndLines :
rou te =[ i , i2 , i3 , i4 , i 5 ]
routes [ RouteCounter ] = rou te
rou tes leng th [ RouteCounter ] = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’

] f o r b i n rou te ] )
RouteCounter += 1

else :
f o r i 6 i n Connections [ i 5 ] :

i f i 6 i n EndLines :
rou te =[ i , i2 , i3 , i4 , i5 , i 6 ]
routes [ RouteCounter ] = rou te
rou tes leng th [ RouteCounter ] = sum ( [ Lines [ b ] [ ’

F l i g h t Hours ’ ] f o r b i n rou te ] )
RouteCounter += 1

else :
f o r i 7 i n Connections [ i 6 ] :

i f i 7 i n EndLines :
rou te =[ i , i2 , i3 , i4 , i5 , i6 , i 7 ]
routes [ RouteCounter ] = rou te
rou tes leng th [ RouteCounter ] = sum ( [ Lines [ b

] [ ’ F l i g h t Hours ’ ] f o r b i n rou te ] )
RouteCounter += 1

#Determine the s t a r t i n g po in t s f o r each AC
S ta r tPo i n t = { }
f o r i i n range ( len ( TailNumbers ) ) :

S t a r t e r = S ta r t L i nes [ i ]
# the f i r s t S t a r t l i n e i s from the f i r s t a i r c r a f t and so on
S ta r tPo i n t [ TailNumbers [ i ] ] = Lines [ S t a r t e r ] [ ’ Departure ’ ]

# se l ec t the routes f o r each AC tha t s t a r t a t the same s t a t i o n as the AC and determine which
o f these routes i s the longes t

max_possible_length= { }
r ou te_se lec t i on = { }
f o r i i n TailNumbers :

r ou te_se lec t i on [ i ] = { }
f o r j i n routes :

i f L ines [ rou tes [ j ] [ 0 ] ] [ ’ Departure ’ ] == S ta r tPo i n t [ i ] :
r ou te_se lec t i on [ i ] [ j ] = routes [ j ]

max_possible_length [ i ] = max ( [ rou tes leng th [ b ] f o r b i n rou te_se lec t i on [ i ] ] )

#Determine the set o f tasks f o r each AC tha t need to be considered
#We cons ider the AC to have t r a v e l l e d 0 FH at the s t a r t o f the t ime hor izon
Tasks = { }
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f o r TN in TailNumbers :
Tasks_per_ ta i l = { }
f o r index , row in TaskData [TN ] . i t e r r ows ( ) :

#Should the task be considered i n t h i s t ime hor izon? ዅዅ> check the amount o f FH in
the route

DueDate = row [ ’ Task Due ’ ]
DueFH = row [ ’FH Due ’ ]
i f DueDate <= ( Star t ingDay + Planning_hor izon ) and DueDate > Star t ingDay or DueFH <=

max_possible_length [TN ] :
Task = { ’ Task# ’ : index ,

’TaskMH ’ : row [ ’ Task MH’ ] ,
’ Task Due Date ’ : row [ ’ Task Due ’ ] ,
’ Task FH Due ’ : row [ ’FH Due ’ ]

}
Tasks_per_ ta i l [ index ]=Task

Tasks [TN] = Tasks_per_ ta i l

#Now from the s t a r t p o i n t determine the set o f 1 s t day Lines poss ib le f o r each t a i l number
Poss ib leS ta r tL ines = { }
f o r i i n TailNumbers :

Poss ib leS ta r tL ines [ i ] = [ j f o r j i n S ta r t L i nes i f L ines [ j ] [ ’ Departure ’ ] == S ta r tPo i n t [ i ]
and Lines [ j ] [ ’ EndDate ’ ] < standard_check_due_date [ i ] ]

#%%

m = Model ( ’ Exact_Solver ’ )

My_X_Variables = t u p l e l i s t ( [ ] )
f o r i i n range ( len ( TailNumbers ) ) :

f o r j i n Lines :
My_X_Variables . append ( ( i , j ) )

My_Y_Variables = t u p l e l i s t ( [ ] )
f o r i i n range ( len ( TailNumbers ) ) :

f o r t i n Tasks [ TailNumbers [ i ] ] :
f o r j i n Lines :

My_Y_Variables . append ( ( i , t , j ) )

# the f o l l ow i ng help va r i ab l es are used to ca l cu l a t e the number o f l o s t f l y i n g hours . This was
necessary because a MIN or MAX func t i on only works i n a cons t r a i n t and not i n an
ob j e c t i v e f unc t i on i n Gurobi

LFH = { }
LFH2 = { }
LFH3 = { }
f o r i i n range ( len ( TailNumbers ) ) :

f o r t i n Tasks [ TailNumbers [ i ] ] :
f o r j i n Lines :

LFH [ i , t , j ] = m. addVar ( l b = ዅ1000, ub = 1000)
LFH2 [ i , t , j ] = m. addVar ( l b = ዅ1000, ub = 1000)
LFH3 [ i , t , j ] = m. addVar ( l b = ዅ1000, ub = 1000)

x = m. addVars ( My_X_Variables , vtype=GRB.BINARY, name= ’ x ’ ) # equals 1 i f AC i f l i e s l i n e j ,
0 otherwise

y = m. addVars ( My_Y_Variables , vtype=GRB.BINARY, name= ’ y ’ ) # equals 1 i f AC i plans task t
AFTER l i n e j , 0 otherwise

#minimize t o t a l number o f l o s t f l y i n g hours
m. se tOb jec t i ve ( quicksum ( y [ i , t , j ] * Tasks [ TailNumbers [ i ] ] [ t ] [ ’TaskMH ’ ] *LFH3 [ i , t , j ] f o r i i n

range ( len ( TailNumbers ) ) f o r j i n Lines f o r t i n Tasks [ TailNumbers [ i ] ] ) ,GRB. MINIMIZE )

#ዅዅዅዅዅ Routing Sect ion

#Every l i n e must be f lown by an AC:
m. addConstrs ( ( quicksum ( x [ i , j ] f o r i i n range ( len ( TailNumbers ) ) ) == 1 f o r j i n Lines ) ,name= ’ c1

’ )

#Every AC can f l y a t most one l i n e per day . This should exclude the f i r s t day because there
i s a separate cons t r a i n t f o r t ha t one :

f o r d i n range ( Star t ingDay +1 , Star t ingDay+Planning_hor izon ) :
m. addConstrs ( quicksum ( x [ i , j ] f o r j i n Lines_act ive_each_day [ d ] ) <= 1 f o r i i n range ( len (

TailNumbers ) ) )
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#The f i r s t l i n e o f an AC should s t a r t from i t s i n i t i a l l o ca t i o n :
m. addConstrs ( quicksum ( x [ i , j ] f o r j i n Poss ib leS ta r tL ines [ TailNumbers [ i ] ] ) == 1 f o r i i n range

( len ( TailNumbers ) ) )

# I f AC i f l i e s l i n e j , then i t a lso must f l y a connect ing l i ne , t h i s excludes the l a s t day
m. addConstrs ( x [ i , j ] ዅ quicksum ( x [ i , p ] f o r p i n Connections [ j ] ) <= 0 f o r i i n range ( len (

TailNumbers ) ) f o r j i n Connections )

#ዅዅዅዅዅ Task Planning

#Every task can at most be planned once :
m. addConstrs ( quicksum ( y [ i , t , j ] f o r j i n Lines ) <= 1 f o r i i n range ( len ( TailNumbers ) ) f o r t i n

Tasks [ TailNumbers [ i ] ] )

# A l l tasks i n T_i which are due before a due date should be planned i f t ha t due date i s
c lose r than the planning hor izon

m. addConstrs (ዅ1000*quicksum ( y [ i , t , j ] *MS[ j ] f o r j i n Lines ) <= Tasks [ TailNumbers [ i ] ] [ t ] [ ’ Task
Due Date ’ ] ዅ ( Star t ingDay+Planning_hor izon +1) f o r i i n range ( len ( TailNumbers ) ) f o r t i n
Tasks [ TailNumbers [ i ] ] )

# A l l tasks i n T_i which are due before X f l i g h t hours should be planned i f the const ruc ted
route i s longer than X f l i g h t hours .

m. addConstrs (ዅ1000*quicksum ( y [ i , t , j ] *MS[ j ] f o r j i n Lines ) <= ( Tasks [ TailNumbers [ i ] ] [ t ] [ ’ Task
FH Due ’ ] ዅ quicksum ( x [ i , j ] * Lines [ j ] [ ’ F l i g h t Hours ’ ] f o r j i n Lines ) ) f o r i i n range ( len (
TailNumbers ) ) f o r t i n Tasks [ TailNumbers [ i ] ] )

# I f task t o f AC i i s scheduled , i t must be scheduled before the due date :
m. addConstrs ( y [ i , t , j ] * Lines [ j ] [ ’ EndDate ’ ]+1 <= Tasks [ TailNumbers [ i ] ] [ t ] [ ’ Task Due Date ’ ] f o r

i i n range ( len ( TailNumbers ) ) f o r t i n Tasks [ TailNumbers [ i ] ] f o r j i n Lines )

# I f task t o f AC i i s scheduled , i t must be scheduled before the due f l i g h t hours :
m. addConstrs ( y [ i , t , j ] * ( L ines [ j ] [ ’ F l i g h t Hours ’ ] + quicksum ( x [ i , p ] * Lines [ p ] [ ’ F l i g h t Hours ’ ]

f o r d i n range ( Star t ingDay , Lines [ j ] [ ’ S tar tDate ’ ] ) f o r p i n L ines_star t ing_each_day [ d ] ) )
<= Tasks [ TailNumbers [ i ] ] [ t ] [ ’ Task FH Due ’ ] f o r i i n range ( len ( TailNumbers ) ) f o r t i n
Tasks [ TailNumbers [ i ] ] f o r j i n Lines )

#A task t o f AC i can only be a f t e r a l i n e t ha t i s f lown by AC i :
m. addConstrs ( len ( Tasks [ TailNumbers [ i ] ] ) *x [ i , j ] >= quicksum ( y [ i , t , j ] f o r t i n Tasks [

TailNumbers [ i ] ] ) f o r i i n range ( len ( TailNumbers ) ) f o r j i n Lines )

#The capac i t y cons t r a i n t
f o r d i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :

m. addConstr ( quicksum ( y [ i , t , j ] * Tasks [ TailNumbers [ i ] ] [ t ] [ ’TaskMH ’ ] f o r i i n range ( len (
TailNumbers ) ) f o r j i n Lines_ending_each_day [ d ] f o r t i n Tasks [ TailNumbers [ i ] ] ) <=
Sta t ion_Capac i ty )

#Help va r i ab l e f o r the ob j ec t i v e f unc t i on :
f o r i i n range ( len ( TailNumbers ) ) :

f o r j i n Lines :
f o r t i n Tasks [ TailNumbers [ i ] ] :

m. addConstr (LFH [ i , t , j ] == Tasks [ TailNumbers [ i ] ] [ t ] [ ’ Task FH Due ’ ]ዅ ( L ines [ j ] [ ’
F l i g h t Hours ’ ] + quicksum ( x [ i , k ] * Lines [ k ] [ ’ F l i g h t Hours ’ ] f o r d i n range (
Star t ingDay , Lines [ j ] [ ’ S tar tDate ’ ] ) f o r k i n L ines_star t ing_each_day [ d ] ) ) ) #
l o s t f l y i n g hours due to task being executed before remaining l ega l FH

m. addConstr (LFH2 [ i , t , j ] == average_FH_per_day * ( Tasks [ TailNumbers [ i ] ] [ t ] [ ’ Task Due
Date ’ ] ዅ( L ines [ j ] [ ’ EndDate ’ ]+1 ) ) ) #Lost f l y i n g hours due to task being
executed before i t s due date

m. addConstr (LFH3 [ i , t , j ] == min_ (LFH[ i , t , j ] , LFH2 [ i , t , j ] ) )

m. opt im ize ( )

l i n e _ s o l u t i o n = m. ge tA t t r ( ’ x ’ , x )
t ask_so lu t i on = m. ge tA t t r ( ’ x ’ , y )
Fly ing_Schedule = [ ( i , j ) f o r ( i , j ) i n l i n e _ s o l u t i o n i f l i n e _ s o l u t i o n [ i , j ] > 0 . 9 ]
Maintenance_Schedule = [ ( i , t , j ) f o r ( i , t , j ) i n t ask_so lu t i on i f t a sk_so lu t i on [ i , t , j ] > 0 . 9 ]

# p r i n t the so l u t i ons
p r i n t ( ’Number o f AC: ’ + s t r ( len ( TailNumbers ) ) )
p r i n t ( ’ Score : ’ + s t r (m. ob j va l ) )
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# ዅ*ዅ coding : u t f ዅ8 ዅ*ዅ
” ” ”
Created on Thu Apr 16 21:33:00 2020

@author : Alex
In t h i s s c r i p t i run a depth f i r s t and random search ma theu r i s t i c to so lve the given problem .
” ” ”

impor t pandas as pd
from L ine_ex t r ac t i on impor t Lines_Only
from gurobipy impor t *
impor t random
impor t copy
impor t t ime

TaskData = pd . read_excel ( ’ TaskData_20_tasks . x l sx ’ , sheet_name=None)
F l i gh tDa ta = pd . read_excel ( ’ F l i gh tDa ta . x l sx ’ , sheet_name=None)
TailNumbers = [ ’PHዅBGF ’ , ’PHዅBGG’ , ’PHዅBGH ’ , ’PHዅBGI ’ , ’PHዅBGK ’ ] # t h i s l i s t con ta ins a l l the t a i l

numbers t ha t are considered f o r the problem

#Parameters
Planning_hor izon = 7
Star t ingDay = 43831 #Excel uses a number f o r a date , which works very we l l . 43831 t r an s l a t e s

to 1ዅ1ዅ2020
Sta t ion_Capac i ty = 150 # in manዅhours per n i gh t

Main t_capac i ty = { }
f o r i i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :

Main t_capac i ty [ i ] = Sta t ion_Capac i ty

# ex t r a c t the l i n e s from the f l i g h t d a t a . Wi th in the f unc t i on Lines_Only a lso a due date f o r
the f i r s t standard check i s randomly generated

Lines , S ta r tL ines , EndLines , standard_check_due_date = Lines_Only ( F l igh tData , TailNumbers )
# ca l cu l a t e the average f l i g h t hours f lown per day
average_FH_per_day = round (sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n Lines ] ) / ( len ( TailNumbers ) *

Planning_hor izon ) ,1 )

#%% Preprocessing f o r bu i l d i n g the routes
#Here mu l t i p l e d i c t i o n a r i e s are b u i l t con ta in ing l i n e in fo rmat ion , which are used when

de f i n i ng the model
L ines_star t ing_each_day = { }
Lines_ending_each_day = { }
Lines_act ive_each_day = { }
f o r i i n range ( Planning_hor izon ) :

f o r j i n Lines :
L ines_star t ing_each_day [ Star t ingDay+ i ] = [ a f o r a i n Lines i f L ines [ a ] [ ’ S tar tDate ’ ] ==

Star t ingDay+ i ]
Lines_ending_each_day [ Star t ingDay+ i ] = [ a f o r a i n Lines i f L ines [ a ] [ ’ EndDate ’ ] ==

Star t ingDay+ i ]
Lines_act ive_each_day [ Star t ingDay+ i ] = [ a f o r a i n Lines i f L ines [ a ] [ ’ S tar tDate ’ ] <=

Star t ingDay+ i and Lines [ a ] [ ’ EndDate ’ ] >= Star t ingDay+ i ]

# I t i s necessary to bu i l d a d i c t i o na r y con ta in ing a l l the poss ib le connect ions . This
d i c t i o na r y w i l l be used in the f low cons t r a i n t

Connections = { }
f o r i i n Lines :

Connections [ i ] = [ ]
ThisLOF = Lines [ i ]
EndDateThisLOF = ThisLOF [ ’ EndDate ’ ]
f o r j i n Lines :

i f L ines [ j ] [ ’ S tar tDate ’ ] == EndDateThisLOF+1:
Connections [ i ] . append ( j )

f o r i i n EndLines : # the connect ions o f the f i n a l l i n e s f a l l ou ts ide o f our p lann ing hor izon
Connections . pop ( i )

# In the given f l i g h t data Amsterdam i s the maintenance s t a t i o n
#Whether or not Lines end on amsterdam . t h i s i s necessary f o r the ending l i nes , which could

end on d i f f e r e n t s t a t i o n s than Amsterdam .
MS = { } #MS = maintenance s t a t i o n
f o r j i n Lines :
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i f L ines [ j ] [ ’ A r r i v a l ’ ] == ’Amsterdam ’ :
MS[ j ] = 1

e lse :
MS[ j ] = 0

# Find a l l poss ib le routes and t h e i r lengths , t h i s i s needed to dermine which tasks should be
considered

routes = { }
rou tes leng th= { }
RouteCounter = 0
f o r i i n S ta r t L i nes :

f o r i 2 i n Connections [ i ] :
i f i 2 i n EndLines :

rou te = [ i , i 2 ]
rou tes [ RouteCounter ] = rou te
rou tes leng th [ RouteCounter ] = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n rou te ] )
RouteCounter += 1

else :
f o r i 3 i n Connections [ i 2 ] :

i f i 3 i n EndLines :
rou te =[ i , i2 , i 3 ]
routes [ RouteCounter ] = rou te
rou tes leng th [ RouteCounter ] = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n rou te

] )
RouteCounter += 1

else :
f o r i 4 i n Connections [ i 3 ] :

i f i 4 i n EndLines :
rou te =[ i , i2 , i3 , i 4 ]
routes [ RouteCounter ] = rou te
rou tes leng th [ RouteCounter ] = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b

i n rou te ] )
RouteCounter += 1

else :
f o r i 5 i n Connections [ i 4 ] :

i f i 5 i n EndLines :
rou te =[ i , i2 , i3 , i4 , i 5 ]
routes [ RouteCounter ] = rou te
rou tes leng th [ RouteCounter ] = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’

] f o r b i n rou te ] )
RouteCounter += 1

else :
f o r i 6 i n Connections [ i 5 ] :

i f i 6 i n EndLines :
rou te =[ i , i2 , i3 , i4 , i5 , i 6 ]
routes [ RouteCounter ] = rou te
rou tes leng th [ RouteCounter ] = sum ( [ Lines [ b ] [ ’

F l i g h t Hours ’ ] f o r b i n rou te ] )
RouteCounter += 1

else :
f o r i 7 i n Connections [ i 6 ] :

i f i 7 i n EndLines :
rou te =[ i , i2 , i3 , i4 , i5 , i6 , i 7 ]
routes [ RouteCounter ] = rou te
rou tes leng th [ RouteCounter ] = sum ( [ Lines [ b

] [ ’ F l i g h t Hours ’ ] f o r b i n rou te ] )
RouteCounter += 1

#Determine the s t a r t i n g po in t s f o r each t a i l
S t a r tPo i n t = { }
f o r i i n range ( len ( TailNumbers ) ) :

S t a r t e r = S ta r t L i nes [ i ]
# the f i r s t S t a r t l i n e i s from the f i r s t a i r c r a f t and so on
S ta r tPo i n t [ TailNumbers [ i ] ] = Lines [ S t a r t e r ] [ ’ Departure ’ ]

# se l ec t the routes f o r each AC tha t s t a r t a t the same s t a t i o n as the AC and determine which
o f these routes i s the longes t

max_possible_length= { }
r ou te_se lec t i on = { }
f o r i i n TailNumbers :

r ou te_se lec t i on [ i ] = { }
f o r j i n routes :
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i f L ines [ rou tes [ j ] [ 0 ] ] [ ’ Departure ’ ] == S ta r tPo i n t [ i ] :
r ou te_se lec t i on [ i ] [ j ] = routes [ j ]

max_possible_length [ i ] = max ( [ rou tes leng th [ b ] f o r b i n rou te_se lec t i on [ i ] ] )

#Determine the set o f tasks f o r each AC tha t need to be considered
#We cons ider the AC to have t r a v e l l e d 0 FH at the s t a r t o f the t ime hor izon
Tasks = { }
f o r TN in TailNumbers :

Tasks_per_ ta i l = { }
f o r index , row in TaskData [TN ] . i t e r r ows ( ) :

#Should the task be considered i n t h i s t ime hor izon? ዅዅ> check the amount o f FH in
the route

DueDate = row [ ’ Task Due ’ ]
DueFH = row [ ’FH Due ’ ]
i f DueDate <= ( Star t ingDay + Planning_hor izon ) and DueDate > Star t ingDay or DueFH <=

max_possible_length [TN ] :
Task = { ’ Task# ’ : index ,

’TaskMH ’ : row [ ’ Task MH’ ] ,
’ Task Due Date ’ : row [ ’ Task Due ’ ] ,
’ Task FH Due ’ : row [ ’FH Due ’ ]

}
Tasks_per_ ta i l [ index ]=Task

Tasks [TN] = Tasks_per_ ta i l

#Now from the s t a r t p o i n t determine the set o f 1 s t day Lines poss ib le f o r each AC, a lso the
f i r s t task due date o f a t a i l s i g n needs to be taken i n t o account

Op t i ona lS ta r t L i nes = { }
f o r i i n TailNumbers :

Op t i ona lS ta r t L i nes [ i ] = [ ]
# f i n d e a r l i e s t task due by date
th isdue = Star t ingDay + Planning_hor izon
f o r p i n Tasks [ i ] :

i f Tasks [ i ] [ p ] [ ’ Task Due Date ’ ] < th isdue :
th isdue = Tasks [ i ] [ p ] [ ’ Task Due Date ’ ]

# f i n d the e a r l i e s t task by due FH
thisdueFH = 5000 #random la rge number
f o r p i n Tasks [ i ] :

i f Tasks [ i ] [ p ] [ ’ Task FH Due ’ ] < thisdueFH :
thisdueFH = Tasks [ i ] [ p ] [ ’ Task FH Due ’ ]

f o r j i n S ta r t L i nes :
i f L ines [ j ] [ ’ Departure ’ ] == S ta r tPo i n t [ i ] : # i f the l i n e s t a r t s from the same s t a t i o n

as the AC
i f Lines [ j ] [ ’ EndDate ’ ] < standard_check_due_date [ i ] : # i f the l i n e ends before the

standard check due date
i f L ines [ j ] [ ’ EndDate ’ ] < th isdue : # i f the l i n e ends before the e a r l i e s t

due date o f a task
i f L ines [ j ] [ ’ F l i g h t Hours ’ ] <= thisdueFH : # i f the l i n e ends before the

remaining l ega l FH of the nearest task are out
Op t i ona lS ta r t L i nes [ i ] . append ( j ) # i f a l l these cond i t i ons are met then

i t i s an op t i ona l s t a r t l i n e

#%% Bu i l d i ng the f e a s i b i l i t y l i s t
f e a s i b i l i t y _ l i s t = { }
f o r i i n TailNumbers :

f e a s i b i l i t y _ l i s t [ i ] = [ ]
f o r j i n Op t i ona lS ta r t L i nes [ i ] :

f e a s i b i l i t y _ l i s t [ i ] . append ( j ) #we s t a r t o f f by saying t ha t every l i n e from the

# i f 1 AC has only 1 poss ib le s t a r t LOF and 1 other AC has 2 , but 1 o f those i s t ha t s i ngu l a r
poss ib le startLOF f o r the other , than AC 2 also only has 1 poss ib le s t a r t

k = 0
r e se r ved_ l i s t = [ ]
wh i le k == 0:

k = 1
f o r i i n f e a s i b i l i t y _ l i s t : # f o r every AC

f o r p i n f e a s i b i l i t y _ l i s t [ i ] : # f o r every one of the f eas i b l e s t a r t i n g l i n e s f o r the
considered AC
i f p i n r e se r v ed_ l i s t : # i f t h i s s t a r t i n g l i n e i s reserved f o r another AC

i f len ( f e a s i b i l i t y _ l i s t [ i ] ) > 1 : # i f there i s more than 1 f eas i b l e s t a r t l i n e
remaining
f e a s i b i l i t y _ l i s t [ i ] . remove ( p ) #then remove i t as a f eas i b l e l i n e
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k=0
i f len ( f e a s i b i l i t y _ l i s t [ i ] ) == 1 : # i f there i s on ly 1 f eas i b l e l i n e l e f t f o r the AC

under cons ide ra t i on
i f f e a s i b i l i t y _ l i s t [ i ] [ 0 ] not i n r e se r ved_ l i s t : #and i t s not reserved by another

AC
rese r ved_ l i s t . append ( f e a s i b i l i t y _ l i s t [ i ] [ 0 ] ) ## then reserve i t f o r t h i s AC

#%% Begin the h e u r i s t i c
number_o f_ i te ra t ions = 10
Current_Solut ion_Score = 1000000 # a r b i t r a r y la rge number
ScoreTracker = { }
L i s tT racke r = { }
i = i n t ( t ime . t ime ( ) *1000) #random seed based on cu r ren t t ime , to always have random a i r c r a f t

l i s t
random . seed ( i )
s topwatch_s ta r t = t ime . t ime ( ) # s t a r t a t imer
f o r i t e r a t i o n i n range ( number_o f_ i te ra t ions ) :

Fly ing_Schedule = { }
Maintenance_Schedule = { }
ob jec t i ve_score = { }
#Bu i l d i ng the a i r c r a f t l i s t
a i r c r a f t _ l i s t = random . sample ( TailNumbers , len ( TailNumbers ) )
#Because w i t h i n a decomposit ion by a i r c r a f t method , not a l l rou tes are created at the

same time , we r e f e r to the remaining l i n e s ( t ha t have not been picked by a prev ious
AC) as ’ ac t i ve ’

# Impor t the ac t i ve l i n e l i s t
ac t i ve_L ines = copy . deepcopy ( Lines ) #before each i t e r a t i o n we s t a r t o f w i th a l l the l i n e s

ava i l ab l e
ac t i ve_Main t_capac i t y = copy . deepcopy ( Main t_capac i ty ) #before each i t e r a t i o n we s t a r t o f

w i th a l l remaining maintenance capac i t y ava i l ab l e
a c t i v e _ f e a s i b i l i t y _ l i s t = copy . deepcopy ( f e a s i b i l i t y _ l i s t ) # the f e a s i b i l i t y l i s t w i l l have

to be updated throughout the heu r i s t i c s as we l l

f o r n i n a i r c r a f t _ l i s t : # s t a r t ass ign ing routes to the a i r c r a f t one by one

m = Model ( ’ Depth_First_Random_Search ’ )
a i r c r a f t I D = [ TailNumbers . index ( n ) ] # the a i r c r a f t I D i s the pos i t i o n o f the se lec ted

AC in the TailNumbers l i s t . By using t h i s we can always r e f e r to the co r r ec t ACዅ
s p e c i f i c data

#Not a l l l i n e s w i l l be ava i l ab l e f o r the cu r ren t AC because of rese rva t i ons i n the
f e a s i b i l i t y l i s t

# f i r s t remove cu r ren t AC from f e a s i b i l i t y l i s t
a c t i v e _ f e a s i b i l i t y _ l i s t . pop ( n ) #a d i c t i o na r y uses pop ( ) , not remove ( )
poss ib le_L ines = copy . deepcopy ( ac t i ve_L ines ) #poss ib le l i n e s r e f e r s to the l i n e s t ha t

the AC i s al lowed to choose
f o r i t i n a c t i v e _ f e a s i b i l i t y _ l i s t :

i f len ( a c t i v e _ f e a s i b i l i t y _ l i s t [ i t ] ) <= 1 : # i f there i s on ly 1 f eas i b l e s t a r t i n g
l i n e remaining f o r a ce r t a i n AC, then the cu r ren t AC may not choose t h i s l i n e
poss ib le_L ines . pop ( a c t i v e _ f e a s i b i l i t y _ l i s t [ i t ] [ 0 ] )

#Sometimes a ’ deadlock ’ can occur : 2 AC both have the same 2 poss ib le Lines , then
these 2 Lines must be reserved f o r these AC, i f another AC takes one of these the
r e s u l t w i l l be i n f e a s i b l e

#Thats why we have to spot and remove deadlocks :
deadlock_Lines = [ ]
k = 0
whi le k == 0: #one deadlock being removed can lead to another deadlock appearing ,

t ha t s why we have to i t e r a t e u n t i l no more deadlocks can be found
k=1
f o r TN in a c t i v e _ f e a s i b i l i t y _ l i s t : # f o r each t a i l number (TN) remaining i n the

f e a s i b i l i t y l i s t
i f len ( a c t i v e _ f e a s i b i l i t y _ l i s t [TN ] ) > 1 :

opt ions1 = a c t i v e _ f e a s i b i l i t y _ l i s t [TN] # a l i s t o f the f eas i b l e l i n e s f o r
the TN

number_of_dupl icates = 0 #we are going to look f o r o ther a i r c r a f t w i th
the exact same set o f f e a s i b l e s t a r t i n g l i n e s

f o r i t 2 i n a c t i v e _ f e a s i b i l i t y _ l i s t :
opt ions2 = a c t i v e _ f e a s i b i l i t y _ l i s t [ i t 2 ]
#a deadlock can also occur i f there i s 1 AC wi th not exac t l y the same

set o f poss ib le Lines , but i f a l l the poss ib le Lines o f the AC
are i n the po t e n t i a l deadlock . For example [ 2 , 14 ] , [ 2 ,7 ,14 ] and
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[ 2 ,7 ,14 ] i s s t i l l a deadlock
i f opt ions2 == opt ions1 or a l l ( elements i n opt ions1 f o r elements i n

opt ions2 ) :
number_of_dupl icates += 1

i f number_of_dupl icates == len ( opt ions1 ) : # i f the number o f dup l i ca tes
equals the number o f f ea s i b l e s t a r t i n g l i n e s then there i s a deadlock
f o r i t 3 i n opt ions1 :

i f i t 3 not i n deadlock_Lines :
deadlock_Lines . append ( i t 3 ) # i d e n t i f y the l i n e as a deadlock

l i n e
k = 0

f o r i t i n deadlock_Lines :
poss ib le_L ines . pop ( i t , None ) #remove the deadlock l i n e s from the poss ib le l i nes ,

so t ha t they wont get chosen

#Now we have the l i s t o f Lines t ha t can be se lec ted f o r our problem we need to copy
ce r t a i n th ings to get i t working

poss ib le_connect ions = { }
poss ib le_L ines_star t ing_each_day = { }
possible_Lines_ending_each_day = { }
possib le_Lines_act ive_each_day = { }
poss ib le_Sta r t_L ines = [ ]
f o r i t i n Connections :

i f i t i n poss ib le_L ines :
poss ib le_connect ions [ i t ] = [ ]
f o r i t 2 i n Connections [ i t ] :

i f i t 2 i n poss ib le_L ines :
poss ib le_connect ions [ i t ] . append ( i t 2 )

f o r i t i n L ines_star t ing_each_day :
poss ib le_L ines_star t ing_each_day [ i t ] = [ ]
f o r i t 2 i n L ines_star t ing_each_day [ i t ] :

i f i t 2 i n poss ib le_L ines :
poss ib le_L ines_star t ing_each_day [ i t ] . append ( i t 2 )

f o r i t i n Lines_ending_each_day :
possible_Lines_ending_each_day [ i t ] = [ ]
f o r i t 2 i n Lines_ending_each_day [ i t ] :

i f i t 2 i n poss ib le_L ines :
possible_Lines_ending_each_day [ i t ] . append ( i t 2 )

f o r i t i n Lines_act ive_each_day :
possib le_Lines_act ive_each_day [ i t ] = [ ]
f o r i t 2 i n Lines_act ive_each_day [ i t ] :

i f i t 2 i n poss ib le_L ines :
possib le_Lines_act ive_each_day [ i t ] . append ( i t 2 )

f o r i t i n Op t i ona lS ta r t L i nes [ n ] :
i f i t i n poss ib le_L ines :

poss ib le_Sta r t_L ines . append ( i t )

My_X_Variables = t u p l e l i s t ( [ ] )
f o r i i n a i r c r a f t I D :

f o r j i n poss ib le_L ines :
My_X_Variables . append ( ( i , j ) )

My_Y_Variables = t u p l e l i s t ( [ ] )
f o r i i n a i r c r a f t I D :

f o r t i n Tasks [ TailNumbers [ i ] ] :
f o r j i n poss ib le_L ines :

My_Y_Variables . append ( ( i , t , j ) )
# the f o l l ow i ng help va r i ab l es are used to ca l cu l a t e the number o f l o s t f l y i n g hours .

This was necessary because a MIN or MAX func t i on only works i n a cons t r a i n t and
not i n an ob j e c t i v e f unc t i on i n Gurobi

LFH = { }
LFH2 = { }
LFH3 = { }
f o r i i n a i r c r a f t I D :

f o r t i n Tasks [ TailNumbers [ i ] ] :
f o r j i n poss ib le_L ines :

LFH [ i , t , j ] = m. addVar ( l b = ዅ1000, ub = 1000)
LFH2 [ i , t , j ] = m. addVar ( l b = ዅ1000, ub = 1000)
LFH3 [ i , t , j ] = m. addVar ( l b = ዅ1000, ub = 1000)

x = m. addVars ( My_X_Variables , vtype=GRB.BINARY, name= ’ x ’ )
y = m. addVars ( My_Y_Variables , vtype=GRB.BINARY, name= ’ y ’ ) # equals 1 i f task t i s
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planned AFTER l i n e j

m. se tOb jec t i ve ( quicksum ( y [ i , t , j ] * Tasks [ TailNumbers [ i ] ] [ t ] [ ’TaskMH ’ ] *LFH3 [ i , t , j ] f o r i
i n a i r c r a f t I D f o r j i n poss ib le_L ines f o r t i n Tasks [ TailNumbers [ i ] ] ) ,GRB.

MINIMIZE )

#ዅዅዅዅዅ Routing Sect ion

#The se lec ted AC can f l y a t most one l i n e per day . t h i s a lso inc ludes the f i r s t one :
f o r d i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :

m. addConstrs ( quicksum ( x [ i , j ] f o r j i n possib le_Lines_act ive_each_day [ d ] ) <= 1
f o r i i n a i r c r a f t I D )

#The f i r s t l i n e o f an AC should s t a r t from i t s i n i t i a l l o ca t i o n :
m. addConstrs ( quicksum ( x [ i , j ] f o r j i n poss ib le_Sta r t_L ines ) == 1 f o r i i n a i r c r a f t I D )

# I f the se lec ted AC f l i e s l i n e j , then i t a lso must f l y a connect ing l i ne , t h i s
excludes the l a s t day

m. addConstrs ( x [ i , j ] ዅ quicksum ( x [ i , p ] f o r p i n poss ib le_connect ions [ j ] ) <= 0 f o r i i n
a i r c r a f t I D f o r j i n poss ib le_connect ions )

#ዅዅዅዅዅ Task Planning

#Every task can at most be planned once :
m. addConstrs ( quicksum ( y [ i , t , j ] f o r j i n poss ib le_L ines ) <= 1 f o r i i n a i r c r a f t I D f o r

t i n Tasks [ TailNumbers [ i ] ] )

## A l l tasks i n T_i which are due before a due date should be planned i f t ha t due date
i s c lose r than the plann ing hor izon

m. addConstrs (ዅ1000*quicksum ( y [ i , t , j ] *MS[ j ] f o r j i n poss ib le_L ines ) <= Tasks [
TailNumbers [ i ] ] [ t ] [ ’ Task Due Date ’ ] ዅ ( Star t ingDay+Planning_hor izon +1) f o r i i n
a i r c r a f t I D f o r t i n Tasks [ TailNumbers [ i ] ] )

# A l l tasks i n T_i which are due before X f l i g h t hours should be planned i f the
se lec ted route i s longer than X f l i g h t hours .

m. addConstrs (ዅ1000*quicksum ( y [ i , t , j ] *MS[ j ] f o r j i n poss ib le_L ines ) <= ( Tasks [
TailNumbers [ i ] ] [ t ] [ ’ Task FH Due ’ ] ዅ quicksum ( x [ i , j ] * Lines [ j ] [ ’ F l i g h t Hours ’ ] f o r
j i n poss ib le_L ines ) ) f o r i i n a i r c r a f t I D f o r t i n Tasks [ TailNumbers [ i ] ] )

# I f task t o f AC i i s scheduled , i t must be scheduled before the due date :
m. addConstrs ( y [ i , t , j ] * Lines [ j ] [ ’ EndDate ’ ]+1 <= Tasks [ TailNumbers [ i ] ] [ t ] [ ’ Task Due

Date ’ ] f o r i i n a i r c r a f t I D f o r t i n Tasks [ TailNumbers [ i ] ] f o r j i n poss ib le_L ines
)

# I f task t o f AC i i s scheduled , i t must be scheduled before the due f l i g h t hours :
m. addConstrs ( y [ i , t , j ] * ( L ines [ j ] [ ’ F l i g h t Hours ’ ] + quicksum ( x [ i , p ] * Lines [ p ] [ ’ F l i g h t

Hours ’ ] f o r d i n range ( Star t ingDay , Lines [ j ] [ ’ S tar tDate ’ ] ) f o r p i n
poss ib le_L ines_star t ing_each_day [ d ] ) ) <= Tasks [ TailNumbers [ i ] ] [ t ] [ ’ Task FH Due ’ ]
f o r i i n a i r c r a f t I D f o r t i n Tasks [ TailNumbers [ i ] ] f o r j i n poss ib le_L ines )

#A task t o f AC i can only be a f t e r a l i n e t ha t i s f lown by AC i :
m. addConstrs ( len ( Tasks [ TailNumbers [ i ] ] ) *x [ i , j ] >= quicksum ( y [ i , t , j ] f o r t i n Tasks [

TailNumbers [ i ] ] ) f o r i i n a i r c r a f t I D f o r j i n poss ib le_L ines )

#ዅዅዅዅዅ The capac i t y cons t r a i n t
f o r d i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :

m. addConstr ( quicksum ( y [ i , t , j ] * Tasks [ TailNumbers [ i ] ] [ t ] [ ’TaskMH ’ ] f o r i i n
a i r c r a f t I D f o r j i n possible_Lines_ending_each_day [ d ] f o r t i n Tasks [
TailNumbers [ i ] ] ) <= ac t i ve_Ma in t_capac i t y [ d ] )

#Help va r i ab l e f o r the ob j ec t i v e f unc t i on :
f o r i i n a i r c r a f t I D :

f o r j i n poss ib le_L ines :
f o r t i n Tasks [ TailNumbers [ i ] ] :

m. addConstr (LFH [ i , t , j ] == Tasks [ TailNumbers [ i ] ] [ t ] [ ’ Task FH Due ’ ]ዅ ( L ines
[ j ] [ ’ F l i g h t Hours ’ ] + quicksum ( x [ i , k ] * Lines [ k ] [ ’ F l i g h t Hours ’ ] f o r d
i n range ( Star t ingDay , Lines [ j ] [ ’ S tar tDate ’ ] ) f o r k i n
poss ib le_L ines_star t ing_each_day [ d ] ) ) ) # l o s t f l y i n g hours due to task
being executed before remaining l ega l FH

m. addConstr (LFH2 [ i , t , j ] == average_FH_per_day * ( Tasks [ TailNumbers [ i ] ] [ t ] [ ’
Task Due Date ’ ] ዅ( L ines [ j ] [ ’ EndDate ’ ]+1 ) ) ) #Lost f l y i n g hours due to
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task being executed before i t s due date
m. addConstr (LFH3 [ i , t , j ] == min_ (LFH[ i , t , j ] , LFH2 [ i , t , j ] ) )

m. opt im ize ( )

L i ne_so lu t i on = m. ge tA t t r ( ’ x ’ , x )
t ask_so lu t i on = m. ge tA t t r ( ’ x ’ , y )
Fly ing_Schedule [ n ] = [ ( i , j ) f o r ( i , j ) i n L ine_so lu t i on i f L i ne_so lu t i on [ i , j ] > 0 . 9 ]
Maintenance_Schedule [ n ] = [ ( i , t , j ) f o r ( i , t , j ) i n t ask_so lu t i on i f t a sk_so lu t i on [ i , t ,

j ] > 0 . 9 ]
ob jec t i ve_score [ n ] = m. ob j va l

#Now the network , cons t r a i n t s and l i s t s need to be updated
#remove the used Lines
f o r i t i n Fly ing_Schedule [ n ] :

ac t i ve_L ines . pop ( i t [ 1 ] )
#update the remaining maintenance capac i t y
MH_sum = { }
qu i ck_ task_so lu t i on = [ ]
f o r i t i n Maintenance_Schedule [ n ] :

qu i ck_ task_so lu t i on . append ( [ i t [ 0 ] , i t [ 1 ] , L ines [ i t [ 2 ] ] [ ’ EndDate ’ ] ] )
f o r d i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :

MH_sum[ d]=0
f o r i t i n qu i ck_ task_so lu t i on :

MH_sum[ i t [ 2 ] ] += Tasks [ TailNumbers [ i t [ 0 ] ] ] [ i t [ 1 ] ] [ ’TaskMH ’ ]
f o r d i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :

ac t i ve_Main t_capac i t y [ d ] = ac t i ve_Main t_capac i t y [ d ] ዅ MH_sum[ d ]

#update the f e a s i b i l i t y l i s t by removing used l i n e s
f o r i t i n Fly ing_Schedule [ n ] :

f o r i t 2 i n a c t i v e _ f e a s i b i l i t y _ l i s t :
i f i t [ 1 ] i n a c t i v e _ f e a s i b i l i t y _ l i s t [ i t 2 ] :

a c t i v e _ f e a s i b i l i t y _ l i s t [ i t 2 ] . remove ( i t [ 1 ] )
#now look a t the combined scores o f a l l the AC and save the score and plann ing i f i t s the

best
Total_Score = sum( ob jec t i ve_score . values ( ) )
ScoreTracker [ i t e r a t i o n ] = Total_Score
L i s tT racke r [ i t e r a t i o n ] = a i r c r a f t _ l i s t
i f Total_Score < Current_Solut ion_Score :

Current_Solut ion_Score = Total_Score
Current_Rout ing_Solu t ion = Flying_Schedule
Current_Plann ing_Solu t ion = Maintenance_Schedule

# p r i n t the so l u t i ons
p r i n t ( ’Number o f AC: ’ + s t r ( len ( TailNumbers ) ) )
stopwatch_end = t ime . t ime ( )ዅs topwatch_s ta r t
p r i n t ( ’ To ta l Elapsed t ime : ’+ s t r ( stopwatch_end ) )
p r i n t ( ’ F i na l Score : ’ + s t r ( Current_Solut ion_Score ) )
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# ዅ*ዅ coding : u t f ዅ8 ዅ*ዅ
” ” ”
Created on Mon May 4 18:37:09 2020

@author : Alex
This s c r i p t executes the successive rou te checking ma theu r i s t i c
” ” ”
impor t pandas as pd
from L ine_ex t r ac t i on impor t Lines_Only
from gurobipy impor t *
impor t random
impor t t ime
impor t copy

TaskData = pd . read_excel ( ’ TaskData_20_tasks . x l sx ’ , sheet_name=None)
F l i gh tDa ta = pd . read_excel ( ’ F l i gh tDa ta . x l sx ’ , sheet_name=None)
TailNumbers = [ ’PHዅBGF ’ , ’PHዅBGG’ , ’PHዅBGH ’ , ’PHዅBGI ’ , ’PHዅBGK ’ ] # t h i s l i s t con ta ins a l l the t a i l

numbers t ha t are considered f o r the problem

Planning_hor izon = 7
Star t ingDay = 43831 #Excel uses a number f o r a date , which works very we l l . 43831 t r an s l a t e s

to 1ዅ1ዅ2020
Sta t ion_Capac i ty = 150 # in manዅhours per n i gh t

Main t_capac i ty = { }
f o r i i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :

Main t_capac i ty [ i ] = Sta t ion_Capac i ty

# ex t r a c t the l i n e s from the f l i g h t d a t a . Wi th in the f unc t i on Lines_Only a lso a due date f o r
the f i r s t standard check i s randomly generated

Lines , S ta r tL ines , EndLines , standard_check_due_date = Lines_Only ( F l igh tData , TailNumbers )
# ca l cu l a t e the average f l i g h t hours f lown per day
average_FH_per_day = round (sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n Lines ] ) / ( len ( TailNumbers ) *

Planning_hor izon ) ,1 )

#%% determine a l l poss ib le routes and t h e i r leng ths
Connections = { }
f o r i i n Lines :

Connections [ i ] = [ ]
ThisLOF = Lines [ i ]
EndDateThisLOF = ThisLOF [ ’ EndDate ’ ]
f o r j i n Lines :

i f L ines [ j ] [ ’ S tar tDate ’ ] == EndDateThisLOF+1:
Connections [ i ] . append ( j )

f o r i i n EndLines :
Connections . pop ( i )

rou tes = { }
rou tes leng th= { }
RouteCounter = 0
f o r i i n S ta r t L i nes :

f o r i 2 i n Connections [ i ] :
i f i 2 i n EndLines :

rou te = [ i , i 2 ]
rou tes [ RouteCounter ] = rou te
rou tes leng th [ RouteCounter ] = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n rou te ] )
RouteCounter += 1

else :
f o r i 3 i n Connections [ i 2 ] :

i f i 3 i n EndLines :
rou te =[ i , i2 , i 3 ]
routes [ RouteCounter ] = rou te
rou tes leng th [ RouteCounter ] = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n rou te

] )
RouteCounter += 1

else :
f o r i 4 i n Connections [ i 3 ] :

i f i 4 i n EndLines :
rou te =[ i , i2 , i3 , i 4 ]
routes [ RouteCounter ] = rou te
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rou tes leng th [ RouteCounter ] = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b
i n rou te ] )

RouteCounter += 1
else :

f o r i 5 i n Connections [ i 4 ] :
i f i 5 i n EndLines :

rou te =[ i , i2 , i3 , i4 , i 5 ]
routes [ RouteCounter ] = rou te
rou tes leng th [ RouteCounter ] = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’

] f o r b i n rou te ] )
RouteCounter += 1

else :
f o r i 6 i n Connections [ i 5 ] :

i f i 6 i n EndLines :
rou te =[ i , i2 , i3 , i4 , i5 , i 6 ]
routes [ RouteCounter ] = rou te
rou tes leng th [ RouteCounter ] = sum ( [ Lines [ b ] [ ’

F l i g h t Hours ’ ] f o r b i n rou te ] )
RouteCounter += 1

else :
f o r i 7 i n Connections [ i 6 ] :

i f i 7 i n EndLines :
rou te =[ i , i2 , i3 , i4 , i5 , i6 , i 7 ]
routes [ RouteCounter ] = rou te
rou tes leng th [ RouteCounter ] = sum ( [ Lines [ b

] [ ’ F l i g h t Hours ’ ] f o r b i n rou te ] )
RouteCounter += 1

longes t_ rou te = max( rou tes length , key= rou tes leng th . get ) #we have now found the longes t
poss ib le rou te . This w i l l determine which tasks are to considered

# In the given f l i g h t data Amsterdam i s the maintenance s t a t i o n
#Whether or not Lines end on amsterdam . t h i s i s necessary f o r the ending l i nes , which could

end on d i f f e r e n t s t a t i o n s than Amsterdam .
MS = { } #MS = maintenance s t a t i o n
f o r j i n Lines :

i f L ines [ j ] [ ’ A r r i v a l ’ ] == ’Amsterdam ’ :
MS[ j ] = 1

e lse :
MS[ j ] = 0

#%% Determine the set o f tasks f o r each a i r c r a f t t ha t might need plann ing
ConsideredTaskData = { }
f o r i i n TailNumbers :

ConsideredTaskData [ i ] = pd . DataFrame ( columns=( ’ Task Number ’ , ’ Task MH’ , ’ Task Due ’ , ’FH
Due ’ ) )

counter = 0
f o r index , row in TaskData [ i ] . i t e r r ows ( ) :

DueDate = row [ ’ Task Due ’ ]
DueFH = row [ ’FH Due ’ ]
i f DueDate <= ( Star t ingDay + Planning_hor izon ) and DueDate > Star t ingDay or DueFH <=

rou tes leng th [ longes t_ rou te ] :
ConsideredTaskData [ i ] . l oc [ counter ] = [ row [ ’ Task Number ’ ] ] + [ row [ ’ Task MH’ ] ] + [

row [ ’ Task Due ’ ] ] + [ row [ ’FH Due ’ ] ]
counter += 1

#sum of a l l considered tasks
Total_number_of_considered_tasks = sum ( [ len ( ConsideredTaskData [TN ] ) f o r TN in

ConsideredTaskData ] )

#%% make l i s t o f a l l rou tes t ha t can be t rave led per t a i l s i g n
S ta r tPo i n t = { }
#Determine the s t a r t i n g po in t s f o r each t a i l
f o r i i n range ( len ( S ta r t L i nes ) ) :

# the f i r s t S t a r t l i n e i s from the f i r s t a i r c r a f t and so on
S ta r tPo i n t [ TailNumbers [ i ] ] = Lines [ i ] [ ’ Departure ’ ]

#Out o f a l l the poss ib le routes created above , we now take a look at which routes are
f eas i b l e f o r each t a i l number

#we also look at which s t a r t i n g l i n e s are f eas i b l e f o r each t a i l number , because we need t h i s
to cons t ruc t the f e a s i b i l i t y l i s t

Opt iona l_ rou tes = { }
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Opt iona lS ta r t L i nes = { }
f o r i i n TailNumbers :

Opt iona l_ rou tes [ i ] = [ ]
Op t i ona lS ta r t L i nes [ i ] = [ ]
# f i n d e a r l i e s t task due by date and by FH
th isdue = Star t ingDay + Planning_hor izon
thisdueFH = 5000 # a r b i t r a r y la rge number
f o r index , row in ConsideredTaskData [ i ] . i t e r r ows ( ) :

i f row [ ’ Task Due ’ ] < th isdue : # f i n d the e a r l i e s t task by due date f o r AC i
th isdue = row [ ’ Task Due ’ ]

i f row [ ’FH Due ’ ] < thisdueFH : # f i n d the ea r l i e s task by f l i g h t hours f o r AC i
thisdueFH = row [ ’FH Due ’ ]

f o r j i n routes :
i f L ines [ rou tes [ j ] [ 0 ] ] [ ’ Departure ’ ] == S ta r tPo i n t [ i ] : #Needs to

s t a r t from co r r ec t s t a t i o n
i f L ines [ routes [ j ] [ 0 ] ] [ ’ EndDate ’ ] < standard_check_due_date [ i ] : #Need to be

able to perfrom f i r s t standard check
i f L ines [ rou tes [ j ] [ 0 ] ] [ ’ EndDate ’ ] < th isdue : #Needs to be

able to perform f i r s t task by due date
i f L ines [ routes [ j ] [ 0 ] ] [ ’ F l i g h t Hours ’ ] <= thisdueFH : #Needs to

be able to perform f i r s t task by FH
Opt iona l_ rou tes [ i ] . append ( j ) # i f a l l these cond i t i ons are

met , then the route i s f ea s i b l e f o r AC i
f o r j i n S ta r t L i nes :

i f L ines [ S ta r t L i nes [ j ] ] [ ’ Departure ’ ] == S ta r tPo i n t [ i ] : #Needs to
s t a r t from co r r ec t s t a t i o n
i f L ines [ S ta r t L i nes [ j ] ] [ ’ EndDate ’ ] < standard_check_due_date [ i ] : #Need to be

able to perfrom f i r s t standard check
i f L ines [ S ta r t L i nes [ j ] ] [ ’ EndDate ’ ] < th isdue : #Needs to

be able to perform f i r s t task by due date
i f L ines [ S ta r t L i nes [ j ] ] [ ’ F l i g h t Hours ’ ] <= thisdueFH : #Needs to

be able to perform f i r s t task by FH
Opt i ona lS ta r t L i nes [ i ] . append ( j )

#%% Fe a s i b i l i t y l i s t
f e a s i b i l i t y _ l i s t = copy . deepcopy ( Op t i ona lS ta r t L i nes )
# i f 1 AC has only 1 poss ib le s t a r t LOF and 1 other AC has 2 , but 1 o f those i s t ha t s i ngu l a r

poss ib le startLOF f o r the other , than AC 2 also only has 1 poss ib le s t a r t
k = 0
r e se r ved_ l i s t = [ ]
wh i le k == 0:

k = 1
f o r i i n f e a s i b i l i t y _ l i s t : # f o r every AC

f o r p i n f e a s i b i l i t y _ l i s t [ i ] : # f o r every one of the f eas i b l e s t a r t i n g l i n e s f o r the
considered AC
i f p i n r e se r v ed_ l i s t : # i f t h i s s t a r t i n g l i n e i s reserved f o r another AC

i f len ( f e a s i b i l i t y _ l i s t [ i ] ) > 1 : # i f there i s more than 1 f eas i b l e s t a r t l i n e
remaining
f e a s i b i l i t y _ l i s t [ i ] . remove ( p ) #then remove i t as a f eas i b l e l i n e
k=0

i f len ( f e a s i b i l i t y _ l i s t [ i ] ) == 1 : # i f there i s on ly 1 f eas i b l e l i n e l e f t f o r the AC
under cons ide ra t i on
i f f e a s i b i l i t y _ l i s t [ i ] [ 0 ] not i n r e se r ved_ l i s t : #and i t s not reserved by another

AC
rese r ved_ l i s t . append ( f e a s i b i l i t y _ l i s t [ i ] [ 0 ] ) ## then reserve i t f o r t h i s AC

#%% Begin the h e u r i s t i c
number_o f_ i te ra t ions = 10
Current_Solut ion_Score = 100000 # a r b i t r a r y la rge number
i = i n t ( t ime . t ime ( ) *1000) #random seed based on cu r ren t t ime , to always have random a i r c r a f t

l i s t
random . seed ( i )
s topwatch_s ta r t = t ime . t ime ( )
Best_Score = 1000000 # a r b i t r a r y la rge number
i t e r a t i o n_coun t e r = 0
seedt racker = { }
f o r i t e r a t i o n i n range ( number_o f_ i te ra t ions ) :

Saved_Routes = { }
Saved_Maint_Planning = { }
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Saved_score = { }
#we create an a i r c r a f t l i s t i n a random order . In t h i s order each a i r c r a f t w i l l be

assigned a route
a i r c r a f t _ l i s t = random . sample ( TailNumbers , len ( TailNumbers ) )
#Because w i t h i n a decomposit ion by a i r c r a f t method , not a l l rou tes are created at the

same time , we r e f e r to the remaining routes ( t ha t have not been picked by a prev ious
AC) as ’ ac t i ve ’

ac t i ve_ rou tes = copy . deepcopy ( Opt iona l_ rou tes )
ac t i ve_Main t_capac i t y = copy . deepcopy ( Main t_capac i ty ) # the remaining maintenance capac i t y
a c t i v e _ f e a s i b i l i t y _ l i s t = copy . deepcopy ( f e a s i b i l i t y _ l i s t )

f o r TN in a i r c r a f t _ l i s t : # s t a r t ass ign ing routes to the a i r c r a f t one by one
Score_per_route = { } #a d i c t i o na r y to save the score f o r each route t ha t w i l l be

checked
Maint_Planning_per_route = { } #a d i c t i o na r y to save the plann ing f o r each route t ha t

w i l l be checked

#ዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅ S ta r t F e a s i b i l i t y l i s t Creat ion
ዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅ

a c t i v e _ f e a s i b i l i t y _ l i s t . pop (TN) # f i r s t remove cu r ren t AC from f e a s i b i l i t y l i s t
poss ib le_rou tes = copy . deepcopy ( ac t i ve_ rou tes [TN ] ) #we s t a r t o f f w i th a l l a c t i ve

l i n e s as poss ib le l i n e s

# the f e a s i b i l i t y l i s t w i l l s e l ec t a number o f l i n e s t ha t cannot be chosen to
guarantee f eas i b l e routes f o r upcoming a i r c r a f t

ReservedLines = [ ]
routes_to_be_removed = [ ]
f o r i i n a c t i v e _ f e a s i b i l i t y _ l i s t :

i f len ( a c t i v e _ f e a s i b i l i t y _ l i s t [ i ] ) <= 1 : # i f there i s on ly 1 f eas i b l e s t a r t i n g
l i n e remaining f o r a ce r t a i n AC, then the cu r ren t AC may not choose t h i s l i n e
ReservedLines . append ( a c t i v e _ f e a s i b i l i t y _ l i s t [ i ] [ 0 ] ) #make a l i s t o f a l l

the reserved Lines
f o r i i n poss ib le_rou tes : # f o r a l l our poss ib le routes

i f rou tes [ i ] [ 0 ] i n ReservedLines : # i f the f i r s t l i n e o f the rou te i s a
reserved l i n e f o r a d i f f e r e n t AC
routes_to_be_removed . append ( i )

f o r i i n routes_to_be_removed :
poss ib le_rou tes . remove ( i )

#Sometimes a ’ deadlock ’ can occur : 2 AC both have the same 2 poss ib le Lines , then
these 2 Lines must be reserved f o r these AC, i f another AC takes one of these the
r e s u l t w i l l be i n f e a s i b l e

#Thats why we have to spot and remove deadlocks :
deadlock_Lines = [ ]
k = 0
whi le k == 0: #one deadlock being removed can lead to another deadlock

appearing , t ha t s why we have to i t e r a t e u n t i l no more deadlocks can be found
k=1
f o r i t 1 i n a c t i v e _ f e a s i b i l i t y _ l i s t : # f o r each t a i l number (TN) remaining i n the

f e a s i b i l i t y l i s t
i f len ( a c t i v e _ f e a s i b i l i t y _ l i s t [ i t 1 ] ) > 1 :

opt ions1 = a c t i v e _ f e a s i b i l i t y _ l i s t [ i t 1 ] # a l i s t o f the f eas i b l e l i n e s
f o r the TN

number_of_dupl icates = 0 #we are going to look f o r o ther a i r c r a f t w i th
the exact same set o f f e a s i b l e s t a r t i n g l i n e s

f o r i t 2 i n a c t i v e _ f e a s i b i l i t y _ l i s t :
opt ions2 = a c t i v e _ f e a s i b i l i t y _ l i s t [ i t 2 ]
#a deadlock can also occur i f there i s 1 AC wi th not exac t l y the same

set o f poss ib le Lines , but i f a l l the poss ib le Lines o f the AC
are i n the po t e n t i a l deadlock . For example [ 2 , 14 ] , [ 2 ,7 ,14 ] and
[2 ,7 ,14 ] i s s t i l l a deadlock

i f opt ions2 == opt ions1 or a l l ( elements i n opt ions1 f o r elements i n
opt ions2 ) :
number_of_dupl icates += 1

i f number_of_dupl icates == len ( opt ions1 ) : # i f the number o f dup l i ca tes
equals the number o f f ea s i b l e s t a r t i n g l i n e s then there i s a deadlock
f o r i t 3 i n opt ions1 :

i f i t 3 not i n deadlock_Lines :
deadlock_Lines . append ( i t 3 ) # i d e n t i f y the l i n e as a deadlock

l i n e
k = 0

routes_to_be_removed = [ ]



104 D. Python Code - Successive Route Checking Matheuristic

f o r i t i n poss ib le_rou tes : #The deadlock Lines have been i d e n t i f i e d , the
corresponding routes must be removed
i f rou tes [ i t ] [ 0 ] i n deadlock_Lines :

routes_to_be_removed . append ( i t )
f o r i t i n routes_to_be_removed :

poss ib le_rou tes . remove ( i t )
#ዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅ End F e a s i b i l i t y l i s t Creat ion

ዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅ

#Now tha t the set o f poss ib le routes has been created we need to f i n d the best one
f o r i i n poss ib le_rou tes :

i t e r a t i o n_coun t e r += 1
#Determine the Lines t ha t are i n our rou te and t h e i r recorded f l i g h t hours a t the

end of each l i n e
f lownFHbefore l ineends = { }
p r e v i ou s l y f l own l i n e s f h = 0
f o r i t i n routes [ i ] :

f l ownFHth i s l i ne = Lines [ i t ] [ ’ F l i g h t Hours ’ ]
f lownFHbefore l ineends [ i t ] = f l ownFHth i s l i ne + p r e v i ous l y f l own l i n e s f h
p r e v i ou s l y f l own l i n e s f h += f l ownFHth i s l i ne

#now tha t we have se lec ted the route and the amount o f FH are known we can create
a t r u t h ዅbased task l i s t , con ta in ing a l l tasks t ha t should be planned w i t h i n
the planning hor izon

Tasks = { }
FH_th is_route = rou tes leng th [ i ] #we p rev ious l y determined how long each route was

in f l i g h t ዅhours
f o r index , row in ConsideredTaskData [TN ] . i t e r r ows ( ) :

#Should the task be considered i n t h i s t ime hor izon? ዅዅ> check the amount o f
FH in the route

DueDate = row [ ’ Task Due ’ ]
DueFH = row [ ’FH Due ’ ]
i f DueDate <= ( Star t ingDay + Planning_hor izon ) and DueDate > Star t ingDay or

DueFH <= FH_this_route :
Task = { ’ Task Number ’ : i n t ( row [ ’ Task Number ’ ] ) ,

’TaskMH ’ : row [ ’ Task MH’ ] ,
’ Task Due Date ’ : row [ ’ Task Due ’ ] ,
’ Task FH Due ’ : row [ ’FH Due ’ ]

}
Tasks [ i n t ( row [ ’ Task Number ’ ] ) ] = Task #The i n t i s because the task

number were given as 3.0 and i wanted them as 3

m = Model ( ” Success ive_route_check ing_matheur is t ic ” )

My_Y_Variables = t u p l e l i s t ( [ ] )
f o r j i n routes [ i ] :

f o r k i n Tasks :
My_Y_Variables . append ( ( j , k ) )

y = m. addVars ( My_Y_Variables , vtype=GRB.BINARY, name= ’ x ’ ) #equals 1 i f task t i s
planned a f t e r l i n e j

#minimize the l o s t f l y i n g hours
m. se tOb jec t i ve ( quicksum ( y [ j , k ] * Tasks [ k ] [ ’TaskMH ’ ] *min ( average_FH_per_day * ( Tasks [ k

] [ ’ Task Due Date ’ ]ዅ( L ines [ j ] [ ’ EndDate ’ ]+1 ) ) , ( Tasks [ k ] [ ’ Task FH Due ’ ]ዅ
f lownFHbefore l ineends [ j ] ) ) f o r j i n routes [ i ] f o r k i n Tasks ) ,GRB.MINIMIZE )

#Every task must be planned on a maint s t a t i o n
m. addConstrs ( quicksum ( y [ j , k ] *MS[ j ] f o r j i n routes [ i ] ) == 1 f o r k i n Tasks )

#Tasks must be performed before t h e i r due date
m. addConstrs ( ( y [ j , k ] * Tasks [ k ] [ ’ Task Due Date ’ ] >= y [ j , k ] * ( L ines [ j ] [ ’ EndDate ’ ]+1 )

f o r k i n Tasks f o r j i n routes [ i ] ) , ” cons t r a i n t 4 ” )

#Tasks must be performed before t h e i r due FH
m. addConstrs ( ( y [ j , k ] * Tasks [ k ] [ ’ Task FH Due ’ ] >= y [ j , k ] * f lownFHbefore l ineends [ j ]

f o r k i n Tasks f o r j i n routes [ i ] ) , ” cons t r a i n t 4 ” )

# tasks have to f i t i n s i de the groundtime
m. addConstrs ( quicksum ( y [ j , k ] * Tasks [ k ] [ ’TaskMH ’ ] f o r k i n Tasks ) <= Maint_capac i ty

[ L ines [ j ] [ ’ EndDate ’ ] ] f o r j i n routes [ i ] )
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m. opt im ize ( )

P lann ing_so lu t ion = m. ge tA t t r ( ’ x ’ , y )
nonzero_p lann ing_so lu t ion = [ p f o r p i n P lann ing_so lu t ion i f P lann ing_so lu t ion [ p ]

> 0 . 9 ]
Score_per_route [ i ] = m. ob jVa l #we save the score f o r each route , to be able to

se l ec t the best one even tua l l y
Maint_Planning_per_route [ i ] = nonzero_p lann ing_so lu t ion #we save the maintenance

plann ing corresponding wi th each route , to be able to se l ec t the best one
even tua l l y

#Get the rou te corresponding to the best so l u t i o n :
se lec ted_rou te = min ( Score_per_route , key=Score_per_route . get )
Saved_score [TN] = Score_per_route [ se lec ted_rou te ]
Saved_Routes [TN] = se lec ted_rou te
Saved_Maint_Planning [TN] = Maint_Planning_per_route [ se lec ted_rou te ]
#Pop the routes t ha t now can no longer be f lown because of the used Lines
UsedLines = routes [ se lec ted_rou te ]
PoppedRoutes = [ ]
f o r p i n TailNumbers :

f o r u i n ac t i ve_ rou tes [ p ] :
f o r o i n routes [ u ] :

i f o i n UsedLines and u not i n PoppedRoutes :
PoppedRoutes . extend ( [ u ] )

f o r p i n TailNumbers :
f o r x i n PoppedRoutes :

i f x i n ac t i ve_ rou tes [ p ] :
ac t i ve_ rou tes [ p ] . remove ( x )

#update the f e a s i b i l i t y l i s t by removing used l i n e s
f o r i t i n UsedLines :

f o r i t 2 i n a c t i v e _ f e a s i b i l i t y _ l i s t :
i f i t i n a c t i v e _ f e a s i b i l i t y _ l i s t [ i t 2 ] :

a c t i v e _ f e a s i b i l i t y _ l i s t [ i t 2 ] . remove ( i t )
#update the remaining maintenance capac i t y per day
f o r j , t i n Saved_Maint_Planning [TN ] : # j i s l i ne , t i s task

theday = Lines [ j ] [ ’ EndDate ’ ] #a t which day was i t planned
usedMH = f l o a t ( ConsideredTaskData [TN ] . l oc [ ConsideredTaskData [TN ] [ ’ Task Number ’ ]

== t ] [ ’ Task MH’ ] ) # loca te the task ( i t [ 0 ] ) w i t h i n the task dataframe and
se l ec t i t s s ize i n manዅhours

ac t i ve_Main t_capac i t y [ theday ] = ac t i ve_Main t_capac i t y [ theday ] ዅ usedMH #remove
the used manዅhours o f the task from the remaining maintenance capac i t y

#We save the best r e s u l t t ha t comes wi th each i t e r a t i o n
I t e ra t i on_Sco re = sum( Saved_score . values ( ) )
I t e r a t i on_Rou t i ng = Saved_Routes
I t e r a t i on_P lann i ng = Saved_Maint_Planning
i f I t e ra t i on_Sco re < Best_Score : # i f the i t e r a t i o n score i s be t t e r than the best score so

f a r
Best_Score = I t e ra t i on_Sco re #save the i t e r a t i o n score as the new best score
Best_Routing = copy . deepcopy ( I t e r a t i on_Rou t i ng ) #save i t s r ou t i ng
Best_Planning = copy . deepcopy ( I t e r a t i on_P lann i ng ) #save i t s maintenance schedule

p r i n t ( ’Number o f AC: ’ + s t r ( len ( TailNumbers ) ) )
stopwatch_end = t ime . t ime ( )ዅs topwatch_s ta r t
p r i n t ( ’ To ta l Elapsed t ime : ’+ s t r ( stopwatch_end ) )
p r i n t ( ’ The best found score : ’ + s t r ( Best_Score ) )
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# ዅ*ዅ coding : u t f ዅ8 ዅ*ዅ
” ” ”
Created on Tue May 12 10:19:54 2020

@author : Alex
In t h i s s c r i p t we execute the r o l l i n g hor izon ma theu r i s t i c w i thou t f o r ecas t i ng
” ” ”

impor t pandas as pd
from L ine_ex t r ac t i on impor t Lines_Only # t h i s i s a f unc t i on t ha t w i l l e x t r a c t l i n e s from

f l i g h t d a t a s
from gurobipy impor t *
impor t copy
impor t t ime

TaskData = pd . read_excel ( ’ TaskData_20_tasks . x l sx ’ , sheet_name=None)
F l i gh tDa ta = pd . read_excel ( ’ F l i gh tDa ta . x l sx ’ , sheet_name=None)
TailNumbers = pd . Exce lF i l e ( ’ F l i gh tDa ta . x l sx ’ ) . sheet_names
TailNumbers = [ ’PHዅBGF ’ , ’PHዅBGG’ , ’PHዅBGH ’ , ’PHዅBGI ’ , ’PHዅBGK ’ ] # t h i s l i s t con ta ins a l l the t a i l

numbers t ha t are considered f o r the problem
#Parameters
Planning_hor izon = 7
Star t ingDay = 43831 #Excel uses a number f o r a date , which works very we l l . 43831 t r an s l a t e s

to 1ዅ1ዅ2020
Sta t ion_Capac i ty = 150 # in manዅhours per n i gh t

# ex t r a c t the l i n e s from the f l i g h t d a t a . Wi th in the f unc t i on Lines_Only a lso a due date f o r
the f i r s t standard check i s randomly generated

Lines , S ta r tL ines , EndLines , standard_check_due_date = Lines_Only ( F l igh tData , TailNumbers )
# ca l cu l a t e the average f l i g h t hours f lown per day
average_FH_per_day = round (sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n Lines ] ) / ( len ( TailNumbers ) *

Planning_hor izon ) ,1 )

# I make a d i c t i o na r y here con ta in ing a l l the task data to which i can always r e f e r i n the
code

Al lTaskData = { }
f o r i i n TailNumbers :

Al lTaskData [ i ] = { }
f o r index , row in TaskData [ i ] . i t e r r ows ( ) :

task_number = i n t ( row [ ’ Task Number ’ ] )
Task = { ’ Task Number ’ : i n t ( row [ ’ Task Number ’ ] ) ,

’TaskMH ’ : row [ ’ Task MH’ ] ,
’ Task Due Date ’ : row [ ’ Task Due ’ ] ,
’ Task FH Due ’ : row [ ’FH Due ’ ]

}
Al lTaskData [ i ] [ task_number ] = Task

#%% Preprocessing f o r bu i l d i n g the routes
#Here mu l t i p l e d i c t i o n a r i e s are b u i l t con ta in ing l i n e in fo rmat ion , which are used when

de f i n i ng the model
L ines_star t ing_each_day = { }
Lines_ending_each_day = { }
f o r i i n range ( Planning_hor izon ) :

f o r j i n Lines :
L ines_star t ing_each_day [ Star t ingDay+ i ] = [ a f o r a i n Lines i f L ines [ a ] [ ’ S tar tDate ’ ] ==

Star t ingDay+ i ]
Lines_ending_each_day [ Star t ingDay+ i ] = [ a f o r a i n Lines i f L ines [ a ] [ ’ EndDate ’ ] ==

Star t ingDay+ i ]

# In the given f l i g h t data Amsterdam i s the maintenance s t a t i o n
#Whether or not Lines end on amsterdam . t h i s i s necessary f o r the ending l i nes , which could

end on d i f f e r e n t s t a t i o n s than Amsterdam .
MS = { } #MS = maintenance s t a t i o n
f o r j i n Lines :

i f L ines [ j ] [ ’ A r r i v a l ’ ] == ’ Amsterdam ’ :
MS[ j ] = 1

e lse :
MS[ j ] = 0

#Determine the s t a r t i n g po in t s f o r each t a i l
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S ta r tPo i n t = { }
f o r i i n range ( len ( TailNumbers ) ) :

S t a r t e r = S ta r t L i nes [ i ]
# the f i r s t S t a r t l i n e i s from the f i r s t a i r c r a f t and so on
S ta r tPo i n t [ TailNumbers [ i ] ] = Lines [ S t a r t e r ] [ ’ Departure ’ ]

#Now from the s t a r t p o i n t determine the set o f 1 s t day Lines poss ib le f o r each t a i l s i g n
Poss ib leS ta r tL ines = { }
f o r i i n TailNumbers :

Poss ib leS ta r tL ines [ i ] = [ j f o r j i n S ta r t L i nes i f L ines [ j ] [ ’ Departure ’ ] == S ta r tPo i n t [ i ]
and Lines [ j ] [ ’ EndDate ’ ] < standard_check_due_date [ i ] ]

#%% Sta r t the ma theu r i s t i c s
#The encountered l i n e s are d iv ided i n f rozen l i n e s and ac t i ve l i n e s . f rozen l i n e s have been

assigned to a i r c r a f t a l ready . ac t i ve l i n e s w i l l be assigned dur ing t h i s i t e r a t i o n
# there are a lso ac t i ve a i r c r a f t and nonዅac t i ve a i r c r a f t . a c t i ve a i r c r a f t w i l l be assigned an

ac t i ve l i n e dur ing the i t e r a t i o n s .
#both ac t i ve and nonዅac t i ve AC have to rep lan t h e i r maintenance every i t e r a t i o n , to make sure

the r e s u l t i s op t ima l .
#nonዅac t i ve AC are rep lann ing maintenance tasks they have al ready planned before , but because

of the capac i t y cons t r a i n t , they must plan them again s imu la ten ious l y w i th the ac t i ve AC
a c t i v e _ a i r c r a f t = copy . deepcopy ( TailNumbers )
non_ac t i v e_a i r c r a f t = [ ]
a l l _ a i r c r a f t = a c t i v e _ a i r c r a f t + non_ac t i v e_a i r c r a f t
non_act ive_task_set = { }
Fl ight_Hours_Recorded = { }
f r ozen_ l i nes = [ ]
Constructed_Routes = { }
Most_Recent_Maint_Schedule = { }
F lown_FH_af ter_ l ine = { }
Encountered_lines_ending_each_day = { }
HAFL = { } #a d i c t i o na r y t ha t holds i n fo rma t i on on which f rozen l i n e has been assigned to

which AC. HAFL: Has AC f lown l i n e ?
MaintScore = { }
f o r i i n TailNumbers :

Fl ight_Hours_Recorded [ i ] = 0 #we need to keep t rack o f the number o f recorded f l i g h t
hours before each i t e r a t i o n

Constructed_Routes [ i ] = [ ] #we need to keep t rack o f the const ruc ted routes so f a r
Most_Recent_Maint_Schedule [ i ] = [ ] #we need to keep t rack o f the most recent maintenance

schedule
MaintScore [ i ] = 0
HAFL[ i ] = { }
f o r j i n Lines :

HAFL[ i ] [ j ] = 0 # I f AC i has f lown l i n e j , we need to keep t rack o f t h i s to know when
an AC can plan i t s maintenance

s topwatch_s ta r t = t ime . t ime ( ) # s t a r t a t imer

f o r day i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :

#Selec t the l i n e s s t a r t i n g a t t h i s day (= ac t i ve l i n e s )
a c t i v e_ l i n e s = [ b f o r b i n Lines i f L ines [ b ] [ ’ S tar tDate ’ ] == day ]
i f len ( a c t i v e_ l i n e s ) > 0 : # i f there are ac t i ve l i n e s

longest_ l ine_FH = max ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n a c t i v e_ l i n e s ] ) #what i s the
longes t l i n e s i n FH?

l i ne_ la tes t_endda te = max ( [ Lines [ b ] [ ’ EndDate ’ ] f o r b i n a c t i v e_ l i n e s ] ) #What i s the
l a t e s t end date o f a l i n e ?

Encountered_l ines = f rozen_ l i nes + ac t i v e_ l i n e s #maintenance can be planned both a f t e r
f rozen l i n e s and a f t e r ac t i ve l i n e s

#ዅዅዅዅዅ we want d i c t i o n a r i e s con ta in ing the l i n e s t ha t end on each s pe c i f i c day f o r both
ac t i ve and nonዅac t i ve AC

f o r d i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :
Encountered_lines_ending_each_day [ d ] = [ j f o r j i n Lines_ending_each_day [ d ] i f j i n

Encountered_l ines ]

# t h i s w i l l be used in the capac i t y cons t r a i n t f o r the nonዅac t i ve a i r c r a f t
Frozen_l ine_endings_for_non_act ive_AC = { }
f o r i i n non_ac t i v e_a i r c r a f t :

Frozen_l ine_endings_for_non_act ive_AC [ i ] = { }
f o r d i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :

Frozen_l ine_endings_for_non_act ive_AC [ i ] [ d ] = [ j f o r j i n Constructed_Routes [ i ]
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i f L ines [ j ] [ ’ EndDate ’ ] == d ]
#ዅዅዅዅዅዅዅ Line ending d i c t i o n a r i e s are now const ruc ted

# se l ec t the tasks t ha t should be considered
# to do t h i s we need to acknowledge the f l y i n g h i s t o r y and the max poss ib le leng th o f the

new l i n e s
Tasks = { }
f o r TS in a c t i v e _ a i r c r a f t :

Tasks [TS ] = { }
f o r index , row in TaskData [TS ] . i t e r r ows ( ) :

DueDate = row [ ’ Task Due ’ ]
DueFH = row [ ’FH Due ’ ]
i f DueDate <= ( l i ne_ la tes t_endda te +1) or (DueFH ዅ Flight_Hours_Recorded [TS ] ) <=

longest_ l ine_FH :
task_number = i n t ( row [ ’ Task Number ’ ] )
Task = { ’ Task Number ’ : task_number ,

’TaskMH ’ : row [ ’ Task MH’ ] ,
’ Task Due Date ’ : row [ ’ Task Due ’ ] ,
’ Task FH Due ’ : row [ ’FH Due ’ ]

}
Tasks [TS ] [ task_number ] = Task

m = Model ( ’RHM’ )

My_X_Variables = t u p l e l i s t ( [ ] )
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) :

f o r j i n a c t i v e_ l i n e s : #only ac t i ve l i n e s need to be d i s t r i b u t ed , f rozen l i n e s have
al ready been d i s t r i b u t e d i n a prev ious i t e r a t i o n
My_X_Variables . append ( ( i , j ) )

My_Y_Variables = t u p l e l i s t ( [ ] )
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) :

f o r t i n Tasks [ a c t i v e _ a i r c r a f t [ i ] ] :
f o r j i n Encountered_l ines : #an AC can plan maintenance both a f t e r an ac t i ve

l i n e and a f t e r a f rozen l i n e
My_Y_Variables . append ( ( i , t , j ) )

# the f o l l ow i ng help va r i ab l es are used to ca l cu l a t e the number o f l o s t f l y i n g hours . This
was necessary because a MIN or MAX func t i on only works i n a cons t r a i n t and not i n an
ob j e c t i v e f unc t i on i n Gurobi

LFH1_ac = { }
LFH2_ac = { }
LFH3_ac = { }
LFH1_fr = { }
LFH2_fr = { }
LFH3_fr = { }
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) :

f o r t i n Tasks [ a c t i v e _ a i r c r a f t [ i ] ] :
f o r j i n a c t i v e_ l i n e s : #help va r i ab l es are broken up in ac t i ve and in f rozen

var ian ts , because they need d i f f e r e n t f o rmu la t i ons
LFH1_ac [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH2_ac [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH3_ac [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)

f o r j i n f r ozen_ l i nes :
LFH1_fr [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH2_fr [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH3_fr [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)

# t h i s i s f o r the non_act ive a i r c r a f t
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) :

f o r t i n non_act ive_task_set [ a l l _ a i r c r a f t [ i ] ] : # the set o f tasks t ha t nonዅac t i ve AC
have to schedule has been determined in a prev ious i t e r a t i o n
f o r j i n Constructed_Routes [ a l l _ a i r c r a f t [ i ] ] : #nonዅac t i ve AC i can only plan

a f t e r l i n e s t ha t i t has f lown
My_Y_Variables . append ( ( i , t , j ) )
LFH1_fr [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH2_fr [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH3_fr [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)

x = m. addVars ( My_X_Variables , vtype=GRB.BINARY, name= ’ x ’ ) # i f l i n e j i s assigned to AC
i

y = m. addVars ( My_Y_Variables , vtype=GRB.BINARY, name= ’ y ’ ) # equals 1 i f AC i plans task
t AFTER l i n e j
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#The score ca l c u l a t i o n o f p lann ing a f t e r f rozen and ac t i ve l i n e s i s broken up , because
they requ i re d i f f e r e n t f o rmu la t i ons . Also the nonዅac t i ve AC are seperate i n the
ob j e c t i v e f unc t i on

m. se tOb jec t i ve ( quicksum ( y [ i , t , j ] * Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’TaskMH ’ ] * LFH3_ac [ i , t , j ]
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) f o r j i n a c t i v e_ l i n e s f o r t i n Tasks [
a c t i v e _ a i r c r a f t [ i ] ] ) + quicksum ( y [ i , t , j ] * Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’TaskMH ’ ] *
LFH3_fr [ i , t , j ] f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) f o r j i n f r ozen_ l i nes f o r t i n
Tasks [ a c t i v e _ a i r c r a f t [ i ] ] ) + quicksum ( y [ i , t , j ] * Al lTaskData [ a l l _ a i r c r a f t [ i ] ] [ t ] [ ’
TaskMH ’ ] * LFH3_fr [ i , t , j ] f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) f o r j
i n Constructed_Routes [ a l l _ a i r c r a f t [ i ] ] f o r t i n non_act ive_task_set [ a l l _ a i r c r a f t [ i ] ] )
, GRB. MINIMIZE )

#ዅዅዅዅዅ Routing Sect ion
#every ac t i ve l i n e must be f lown
m. addConstrs ( quicksum ( x [ i , j ] f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) ) == 1 f o r j i n

a c t i v e_ l i n e s )
#Every ac t i ve AC must f l y exac t l y one ac t i ve l i n e
m. addConstrs ( quicksum ( x [ i , j ] f o r j i n a c t i v e_ l i n e s ) == 1 f o r i i n range ( len (

a c t i v e _ a i r c r a f t ) ) )
# f o r the f i r s t day we can only choose a f eas i b l e s t a r t i n g l i n e
i f day == Star t ingDay :

m. addConstrs ( quicksum ( x [ i , j ] f o r j i n Poss ib leS ta r tL ines [ a c t i v e _ a i r c r a f t [ i ] ] ) == 1
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) )

#ዅዅዅዅዅ Task Planning
#Every considered task can be planned at most once , a f t e r an ac t i ve l i n e or a f rozen l i n e
m. addConstrs ( quicksum ( y [ i , t , j ] f o r j i n Encountered_l ines ) <= 1 f o r i i n range ( len (

a c t i v e _ a i r c r a f t ) ) f o r t i n Tasks [ a c t i v e _ a i r c r a f t [ i ] ] )
# f o r nonዅac t i ve AC: a l l t h e i r tasks must be planned
m. addConstrs ( quicksum ( y [ i , t , j ] f o r j i n Constructed_Routes [ a l l _ a i r c r a f t [ i ] ] ) == 1 f o r i

i n range ( len ( a c t i v e _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) f o r t i n non_act ive_task_set [
a l l _ a i r c r a f t [ i ] ] )

## A l l tasks i n T_i which are due before a due date should be planned i f t ha t due date i s
c lose r than the end of the se lec ted l i n e

m. addConstrs (ዅ1000*quicksum ( y [ i , t , j ] *MS[ j ] f o r j i n Encountered_l ines ) <= Tasks [
a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’ Task Due Date ’ ] ዅ ( quicksum ( x [ i , j ] * Lines [ j ] [ ’ EndDate ’ ] f o r j
i n a c t i v e_ l i n e s ) +2) f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) f o r t i n Tasks [
a c t i v e _ a i r c r a f t [ i ] ] )

# A l l tasks i n T_i which are due before X f l i g h t hours should be planned i f the se lec ted
route i s longer than X f l i g h t hours .

m. addConstrs (ዅ1000*quicksum ( y [ i , t , j ] *MS[ j ] f o r j i n Encountered_l ines ) <= ( Tasks [
a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’ Task FH Due ’ ] ዅ ( Fl ight_Hours_Recorded [ a c t i v e _ a i r c r a f t [ i ] ] +
quicksum ( x [ i , j ] * Lines [ j ] [ ’ F l i g h t Hours ’ ] f o r j i n a c t i v e_ l i n e s ) ) ) f o r i i n range ( len (
a c t i v e _ a i r c r a f t ) ) f o r t i n Tasks [ a c t i v e _ a i r c r a f t [ i ] ] )

# I f task t o f AC i i s scheduled , i t must be scheduled before the due date :
m. addConstrs ( y [ i , t , j ] * Lines [ j ] [ ’ EndDate ’ ]+1 <= Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’ Task Due

Date ’ ] f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) f o r t i n Tasks [ a c t i v e _ a i r c r a f t [ i ] ] f o r j
i n Encountered_l ines )

#For non ac t i ve AC as we l l :
m. addConstrs ( y [ i , t , j ] * Lines [ j ] [ ’ EndDate ’ ]+1 <= Al lTaskData [ a l l _ a i r c r a f t [ i ] ] [ t ] [ ’ Task Due

Date ’ ] f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) f o r t i n
non_act ive_task_set [ a l l _ a i r c r a f t [ i ] ] f o r j i n Constructed_Routes [ a l l _ a i r c r a f t [ i ] ] )

# I f task t o f AC i i s scheduled , i t must be scheduled before the due f l i g h t hours :
#This cons t r a i n t i s broken up in the f rozen l i n e s and the ac t i ve l i nes , as they requ i re

d i f f e r e n t f o rmu la t i ons
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) :

f o r t i n Tasks [ a c t i v e _ a i r c r a f t [ i ] ] :
# f rozen l i n e s :

m. addConstrs ( y [ i , t , j ] * Flown_FH_af ter_ l ine [ j ] <= Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’
Task FH Due ’ ] f o r j i n f r ozen_ l i nes )

# ac t i ve l i n e s :
m. addConstrs ( y [ i , t , j ] * ( Fl ight_Hours_Recorded [ a c t i v e _ a i r c r a f t [ i ] ] + Lines [ j ] [ ’

F l i g h t Hours ’ ] ) <= Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’ Task FH Due ’ ] f o r j i n
a c t i v e_ l i n e s )

# f o r nonዅac t i ve AC as we l l :
m. addConstrs ( y [ i , t , j ] * Flown_FH_af ter_ l ine [ j ] <= Al lTaskData [ a l l _ a i r c r a f t [ i ] ] [ t ] [ ’ Task FH
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Due ’ ] f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) f o r t i n
non_act ive_task_set [ a l l _ a i r c r a f t [ i ] ] f o r j i n Constructed_Routes [ a l l _ a i r c r a f t [ i ] ] )

#Only plan a task a f t e r a l i n e i f the AC has f lown tha t l i n e
#This cons t r a i n t i s broken up in the f rozen l i n e s and the ac t i ve l i nes , as they requ i re

d i f f e r e n t f o rmu la t i ons
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) :

# f rozen l i n e s
m. addConstrs ( len ( Tasks [ a c t i v e _ a i r c r a f t [ i ] ] ) *HAFL[ a c t i v e _ a i r c r a f t [ i ] ] [ j ] >= quicksum ( y

[ i , t , j ] f o r t i n Tasks [ a c t i v e _ a i r c r a f t [ i ] ] ) f o r j i n f r ozen_ l i nes )
# ac t i ve l i n e s
m. addConstrs ( len ( Tasks [ a c t i v e _ a i r c r a f t [ i ] ] ) *x [ i , j ] >= quicksum ( y [ i , t , j ] f o r t i n

Tasks [ a c t i v e _ a i r c r a f t [ i ] ] ) f o r j i n a c t i v e_ l i n e s )

#Capaci ty cons t r a i n t :
f o r d i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :

# m. addConstr ( quicksum ( y [ i , t , j ] * Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’ TaskMH ’ ] f o r i i n range (
len ( a c t i v e _ a i r c r a f t ) ) f o r j i n Encountered_lines_ending_each_day [ d ] f o r t i n Tasks [
a c t i v e _ a i r c r a f t [ i ] ] ) <= Sta t ion_Capac i ty )

m. addConstr ( quicksum ( y [ i , t , j ] * Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’TaskMH ’ ] f o r i i n range (
len ( a c t i v e _ a i r c r a f t ) ) f o r j i n Encountered_lines_ending_each_day [ d ] f o r t i n
Tasks [ a c t i v e _ a i r c r a f t [ i ] ] ) + quicksum ( y [ i , t , j ] * Al lTaskData [ a l l _ a i r c r a f t [ i ] ] [ t ] [ ’
TaskMH ’ ] f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) f o r j i n
Frozen_l ine_endings_for_non_act ive_AC [ a l l _ a i r c r a f t [ i ] ] [ d ] f o r t i n
non_act ive_task_set [ a l l _ a i r c r a f t [ i ] ] ) <= Sta t ion_Capac i ty )

#Ca lcu la te the l o s t f l y i n g hours to help the ob j ec t i v e f unc t i on
#This cons t r a i n t i s broken up in the f rozen l i n e s and the ac t i ve l i nes , as they requ i re

d i f f e r e n t f o rmu la t i ons
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) :

f o r j i n a c t i v e_ l i n e s : # f o r the ac t i ve l i n e s
f o r t i n Tasks [ a c t i v e _ a i r c r a f t [ i ] ] :

m. addConstr ( LFH1_ac [ i , t , j ] == Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’ Task FH Due ’ ]ዅ (
Fl ight_Hours_Recorded [ a c t i v e _ a i r c r a f t [ i ] ] + Lines [ j ] [ ’ F l i g h t Hours ’ ] ) ) #
l o s t f l y i n g hours due to task being executed before remaining l ega l FH

m. addConstr ( LFH2_ac [ i , t , j ] == average_FH_per_day * ( Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t
] [ ’ Task Due Date ’ ] ዅ( L ines [ j ] [ ’ EndDate ’ ]+1 ) ) ) #Lost f l y i n g hours due to
task being executed before i t s due date

m. addConstr ( LFH3_ac [ i , t , j ] == min_ ( LFH1_ac [ i , t , j ] , LFH2_ac [ i , t , j ] ) )
f o r j i n f r ozen_ l i nes : # f o r the f rozen l i n e s

f o r t i n Tasks [ a c t i v e _ a i r c r a f t [ i ] ] :
m. addConstr ( LFH1_fr [ i , t , j ] == Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’ Task FH Due ’ ] ዅ

Flown_FH_af ter_ l ine [ j ] ) # l o s t f l y i n g hours due to task being executed
before remaining l ega l FH

m. addConstr ( LFH2_fr [ i , t , j ] == average_FH_per_day * ( Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t
] [ ’ Task Due Date ’ ] ዅ( L ines [ j ] [ ’ EndDate ’ ]+1 ) ) ) #Lost f l y i n g hours due to
task being executed before i t s due date

m. addConstr ( LFH3_fr [ i , t , j ] == min_ ( LFH1_fr [ i , t , j ] , LFH2_fr [ i , t , j ] ) )
# f o r nonዅac t i ve a i r c r a f t as we l l

f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) :
f o r j i n Constructed_Routes [ a l l _ a i r c r a f t [ i ] ] :

f o r t i n non_act ive_task_set [ a l l _ a i r c r a f t [ i ] ] :
m. addConstr ( LFH1_fr [ i , t , j ] == Al lTaskData [ a l l _ a i r c r a f t [ i ] ] [ t ] [ ’ Task FH Due ’ ]

ዅ Flown_FH_af ter_ l ine [ j ] ) # l o s t f l y i n g hours due to task being executed
before remaining l ega l FH

m. addConstr ( LFH2_fr [ i , t , j ] == average_FH_per_day * ( Al lTaskData [ a l l _ a i r c r a f t [ i
] ] [ t ] [ ’ Task Due Date ’ ] ዅ( L ines [ j ] [ ’ EndDate ’ ]+1 ) ) ) #Lost f l y i n g hours due
to task being executed before i t s due date

m. addConstr ( LFH3_fr [ i , t , j ] == min_ ( LFH1_fr [ i , t , j ] , LFH2_fr [ i , t , j ] ) )

m. opt im ize ( )
#Save rou t i ng so l u t i o n and prepare f o r next day i t e r a t i o n
l i n e _ so l u t i o n = m. ge tA t t r ( ’ x ’ , x )
Rout ing_Solu t ion = [ ( i , j ) f o r ( i , j ) i n l i n e _ s o l u t i o n i f l i n e _ s o l u t i o n [ i , j ] > 0 . 9 ]
t ask_so lu t i on = m. ge tA t t r ( ’ x ’ , y )
Maintenance_Planning_Solut ion = [ ( i , t , j ) f o r ( i , t , j ) i n t ask_so lu t i on i f t a sk_so lu t i on [ i ,

t , j ] > 0 . 9 ]

# i need to update : f rozen_ l i nes , F l ight_hours_recorded , const ruc ted_route , HAFL and
a c t i v e _ a i r c r a f t l i s t

f o r i , j i n Rout ing_Solu t ion :
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f r ozen_ l i nes . append ( j ) #update the f rozen l i n e s
HAFL[ a c t i v e _ a i r c r a f t [ i ] ] [ j ] = 1 #update HAFL
Constructed_Routes [ a c t i v e _ a i r c r a f t [ i ] ] . append ( j ) #update Constructed Routes
Fl ight_Hours_Recorded [ a c t i v e _ a i r c r a f t [ i ] ] += Lines [ j ] [ ’ F l i g h t Hours ’ ] #update the

recorded f l i g h t hours
#now rese t the most recent maintenance schedule because we have replanned
f o r i i n range ( len ( a l l _ a i r c r a f t ) ) :

Most_Recent_Maint_Schedule [ a l l _ a i r c r a f t [ i ] ] = [ ]
# recons t ruc t the most recent maintenance schedule
f o r i , t , j i n Maintenance_Planning_Solut ion :

Most_Recent_Maint_Schedule [ a l l _ a i r c r a f t [ i ] ] . append ( [ t , j ] )

#Now I need to spec i f y how many f l i g h t hours were f lown a f t e r each l i n e i n the f rozen
l i nes , f o r f u t u r e p lanning needs

f o r i i n TailNumbers : # f o r every AC
f o r m in range ( len ( Constructed_Routes [ i ] ) ) : # f o r every l i n e t ha t i t has been assigned

so f a r
t he_ l i ne = Constructed_Routes [ i ] [m] # i d e n t i f y the l i n e
f l own_ l i nes_be f o r e_ i t = Constructed_Routes [ i ] [ : (m+1) ] # i d e n t i f y which l i n e s are

assigned to the AC before the considered l i n e
Flown_FH_af ter_ l ine [ t he_ l i ne ] = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n

f l own_ l i nes_be f o r e_ i t ] ) #determine how many FH are f lown before the l i n e
s t a r t

#Keep t rack o f the cu r ren t scores o f the routes
f o r i i n a l l _ a i r c r a f t :

MaintScore [ i ]=0 # rese t the score f o r the ac t i ve AC cause we are going to r eca l cu l a t e
them

f o r t , j i n Most_Recent_Maint_Schedule [ i ] : # i t e r a t e through the planned maintenance
f o r AC i
Score_days = ( Al lTaskData [ i ] [ t ] [ ’ Task Due Date ’ ] ዅ ( L ines [ j ] [ ’ EndDate ’ ]+1 ) ) *

average_FH_per_day #Lost f l y i n g hours due to task being executed before i t s
due date

Score_FH = Al lTaskData [ i ] [ t ] [ ’ Task FH Due ’ ] ዅ Flown_FH_af ter_ l ine [ j ] # l o s t f l y i n g
hours due to task being executed before remaining l ega l FH

overa l l _sco re = Al lTaskData [ i ] [ t ] [ ’TaskMH ’ ] *min ( Score_days , Score_FH )
MaintScore [ i ] += ove ra l l _sco re

#Now to determine the ac t i ve a i r c r a f t f o r the upcoming i t e r a t i o n
a c t i v e _ a i r c r a f t = [ ]
f o r i i n TailNumbers : # f o r every AC

Line_end = Lines [ Constructed_Routes [ i ] [ ዅ 1 ] ] [ ’ EndDate ’ ] #determine when i t s most
r ecen t l y assigned l i n e w i l l end

i f Line_end == day : # i f i t s l i n e w i l l end t on i gh t
a c t i v e _ a i r c r a f t . append ( i ) # then l i s t i t as an ac t i ve AC

non_ac t i v e_a i r c r a f t = [ ] # the a i r c r a f t t ha t are not ac t i ve next i t e r a t i o n w i l l s t i l l need
to plan t h e i r maintenance again

f o r i i n TailNumbers :
i f i not i n a c t i v e _ a i r c r a f t :

non_ac t i v e_a i r c r a f t . append ( i )
a l l _ a i r c r a f t = a c t i v e _ a i r c r a f t + non_ac t i v e_a i r c r a f t
#determine the tasks t ha t the nonዅac t i ve AC have planned and w i l l need to rep lan next

i t e r a t i o n
f o r i i n non_ac t i v e_a i r c r a f t :

non_act ive_task_set [ i ] = [ i f o r ( i , j ) i n Most_Recent_Maint_Schedule [ i ] ]

# p r i n t so l u t i ons :
p r i n t ( ’ F i na l Scores : ’ + s t r ( MaintScore ) )
p r i n t ( ’ F i na l To ta l Score : ’ + s t r (sum( MaintScore . values ( ) ) ) )
stopwatch_end = t ime . t ime ( )ዅs topwatch_s ta r t
p r i n t ( ’ To ta l Elapsed t ime : ’+ s t r ( stopwatch_end ) )
p r i n t ( ’ To ta l number o f AC: ’ + s t r ( len ( TailNumbers ) ) )
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# ዅ*ዅ coding : u t f ዅ8 ዅ*ዅ
” ” ”
Created on Tue May 12 10:19:54 2020

@author : Alex
i n t h i s s c r i p t we solve the RHM wi th exact f o r ecas t i ng . The number o f days we fo recas t f o r i s

an inpu t parameter .
” ” ”

impor t pandas as pd
from L ine_ex t r ac t i on impor t Lines_Only # t h i s i s a f unc t i on t ha t w i l l e x t r a c t l i n e s from

f l i g h t d a t a
from gurobipy impor t *
impor t copy
impor t t ime

TaskData = pd . read_excel ( ’ TaskData_20_tasks . x l sx ’ , sheet_name=None)
F l i gh tDa ta = pd . read_excel ( ’ F l i gh tDa ta . x l sx ’ , sheet_name=None)
TailNumbers = pd . Exce lF i l e ( ’ F l i gh tDa ta . x l sx ’ ) . sheet_names
TailNumbers = [ ’PHዅBGF ’ , ’PHዅBGG’ , ’PHዅBGH ’ , ’PHዅBGI ’ , ’PHዅBGK ’ ] # t h i s l i s t con ta ins a l l the t a i l

numbers t ha t are considered f o r the problem

#Parameters
Planning_hor izon = 7
Star t ingDay = 43831 #Excel uses a number f o r a date , which works very we l l . 43831 t r an s l a t e s

to 1ዅ1ዅ2020
Sta t ion_Capac i ty = 150 # in manዅhours per n i gh t
so l v ing_per iod = 3 #number o f days f o r which to exac t l y so lve the problem . I f so l v i ng per iod

= 3 , we have a 2 day fo recas t

# ex t r a c t the l i n e s from the f l i g h t d a t a . Wi th in the f unc t i on Lines_Only a lso a due date f o r
the f i r s t standard check i s randomly generated

Lines , S ta r tL ines , EndLines , standard_check_due_date = Lines_Only ( F l igh tData , TailNumbers )
# ca l cu l a t e the average f l i g h t hours f lown per day
average_FH_per_day = round (sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n Lines ] ) / ( len ( TailNumbers ) *

Planning_hor izon ) ,1 )

# I make a d i c t i o na r y here con ta in ing a l l the task data to which i can always r e f e r i n the
code

Al lTaskData = { }
f o r i i n TailNumbers :

Al lTaskData [ i ] = { }
f o r index , row in TaskData [ i ] . i t e r r ows ( ) :

task_number = i n t ( row [ ’ Task Number ’ ] )
Task = { ’ Task Number ’ : task_number ,

’TaskMH ’ : row [ ’ Task MH’ ] ,
’ Task Due Date ’ : row [ ’ Task Due ’ ] ,
’ Task FH Due ’ : row [ ’FH Due ’ ]

}
Al lTaskData [ i ] [ task_number ] = Task

#%% Preprocessing f o r bu i l d i n g the routes
#Here mu l t i p l e d i c t i o n a r i e s are b u i l t con ta in ing l i n e in fo rmat ion , which are used when

de f i n i ng the model
L ines_star t ing_each_day = { }
Lines_ending_each_day = { }
f o r i i n range ( Planning_hor izon ) :

f o r j i n Lines :
L ines_star t ing_each_day [ Star t ingDay+ i ] = [ a f o r a i n Lines i f L ines [ a ] [ ’ S tar tDate ’ ] ==

Star t ingDay+ i ]
Lines_ending_each_day [ Star t ingDay+ i ] = [ a f o r a i n Lines i f L ines [ a ] [ ’ EndDate ’ ] ==

Star t ingDay+ i ]

# In the given f l i g h t data Amsterdam i s the maintenance s t a t i o n
#Whether or not Lines end on amsterdam . t h i s i s necessary f o r the ending l i nes , which could

end on d i f f e r e n t s t a t i o n s than Amsterdam .
MS = { } #MS: Maintenance s t a t i o n
f o r j i n Lines :

i f L ines [ j ] [ ’ A r r i v a l ’ ] == ’ Amsterdam ’ :
MS[ j ] = 1
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else :
MS[ j ] = 0

#Determine the s t a r t i n g po in t s f o r each t a i l
S t a r tPo i n t = { }
f o r i i n range ( len ( TailNumbers ) ) :

S t a r t e r = S ta r t L i nes [ i ]
# the f i r s t S t a r t l i n e i s from the f i r s t a i r c r a f t and so on
S ta r tPo i n t [ TailNumbers [ i ] ] = Lines [ S t a r t e r ] [ ’ Departure ’ ]

#Now from the s t a r t p o i n t determine the set o f 1 s t day Lines poss ib le f o r each t a i l s i g n
Poss ib leS ta r tL ines = { }
f o r i i n TailNumbers :

Poss ib leS ta r tL ines [ i ] = [ j f o r j i n S ta r t L i nes i f L ines [ j ] [ ’ Departure ’ ] == S ta r tPo i n t [ i ]
and Lines [ j ] [ ’ EndDate ’ ] < standard_check_due_date [ i ] ]

#%% Algor i thm S ta r t
#The encountered l i n e s are d iv ided i n f rozen l i n e s and ac t i ve l i n e s . f rozen l i n e s have been

assigned to a i r c r a f t a l ready . ac t i ve l i n e s w i l l be assigned dur ing t h i s i t e r a t i o n
# there are 3 types of a i r c r a f t : 1 . s t a r t i n g a i r c r a f t s t a r t from the f i r s t day o f the cen t r a l

per iod and t h e i r l i n e s w i l l be f rozen
#2. t r a n s i t AC w i l l s t a r t a new l i n e dur ing the fo recas t i ng per iod but not dur ing the cen t r a l

per iod
#3. nonዅac t i ve AC w i l l not s t a r t a new l i n e dur ing e i t h e r the cen t r a l or f o r ecas t i ng per iod
s t a r t i n g _ a i r c r a f t = copy . deepcopy ( TailNumbers )
t r a n s i t _ a i r c r a f t = [ ]
a c t i v e _ a i r c r a f t = s t a r t i n g _ a i r c r a f t + t r a n s i t _ a i r c r a f t # ac t i ve AC are a l l the AC tha t w i l l be

assigned l i n e s dur ing the i t e r a t i o n ( not a l l l i n e s w i l l be f rozen )
non_ac t i v e_a i r c r a f t = [ ]
a l l _ a i r c r a f t = a c t i v e _ a i r c r a f t + non_ac t i v e_a i r c r a f t
non_act ive_task_set = { }
Fl ight_Hours_Recorded = { } #a d i c t t ha t w i l l save the number o f FH each AC has f lown

throughout the i t e r a t i o n s
f r ozen_ l i nes = [ ] #a l i s t o f a l l l i n e s t ha t have been assigned and f rozen
Constructed_Routes = { } # i n t h i s d i c t we w i l l save the f rozen routes
Most_Recent_Maint_Schedule = { } #a d i c t t ha t holds the maintenance schedule , which i s updated

dur ing every i t e r a t i o n
Flown_FH_af ter_ l ine = { } # t h i s d i c t w i l l save the number o f FH tha t are recorded a f t e r

complet ing a f rozen l i n e
Encountered_lines_ending_each_day = { }
HAFL = { } #a d i c t i o na r y t ha t holds i n fo rma t i on on which f rozen l i n e has been assigned to

which AC. HAFL: Has AC f lown l i n e ?
MaintScore = { } #a d i c t t ha t w i l l save the scores o f the maintenance planning f o r each AC
f o r i i n TailNumbers :

Fl ight_Hours_Recorded [ i ] = 0
Constructed_Routes [ i ] = [ ]
Most_Recent_Maint_Schedule [ i ] = [ ]
MaintScore [ i ] = 0
HAFL[ i ] = { }
f o r j i n Lines :

HAFL[ i ] [ j ] = 0

s topwatch_s ta r t = t ime . t ime ( ) # s t a r t a t imer

f o r day i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :

#Selec t the l i n e s s t a r t i n g a t t h i s day
ac t i v e_ l i n e s = [ ]
ac t i ve_ l i nes_s ta r t i ng_each_day = { }
s t a r t i n g _a c t i v e _ l i n e s = [ ] # l i s t o f a l l a c t i ve l i n e s t ha t s t a r t on the f i r s t day
f u t u r e _ l i n e s = [ ] # l i s t o f l i n e s t ha t w i l l s t a r t w i t h i n the cu r ren t f o r ecas t i ng per iod
f o r i i n range ( day , day+so lv ing_per iod ) :

ac t i ve_ l i nes_s ta r t i ng_each_day [ i ] = [ b f o r b i n Lines i f L ines [ b ] [ ’ S tar tDate ’ ] == i ]
a c t i v e_ l i n e s . extend ( [ b f o r b i n Lines i f L ines [ b ] [ ’ S tar tDate ’ ] == i ] )
i f i == day :

s t a r t i n g _a c t i v e _ l i n e s . extend ( [ b f o r b i n Lines i f L ines [ b ] [ ’ S tar tDate ’ ] == i ] )
e lse :

f u t u r e _ l i n e s . extend ( [ b f o r b i n Lines i f L ines [ b ] [ ’ S tar tDate ’ ] == i ] )
#determine the l i n e s t ha t are the l a s t l i n e s i f they are d i s t r i b u t e d
end ing_ l ines = [ ]
f o r i i n a c t i v e_ l i n e s :

i f L ines [ i ] [ ’ EndDate ’ ]+1 > day+so lv ing_per iod ዅ1 or Lines [ i ] [ ’ EndDate ’ ]+1 >=
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Star t ingDay+Planning_hor izon : #a l i n e i s an ending l i n e i f the morning a t which
the next l i n e w i l l s t a r t f a l l s ou ts ide o f the f o recas t i ng hor izon OR i f i t f a l l s
ou ts ide o f the t o t a l p lann ing hor izon ( a t the end )
end ing_ l ines . append ( i )

# to succes f u l l y de f ine the rou t i ng i use 2 connect ions d i c t i o n a r i e s . One wi th ac t i ve
l i n e s connect ions and one wi th a l ready assigned l i n e connect ions

ac t ive_connec t ions = { } #a d i c t t ha t w i l l con ta in connect ions between ac t i ve l i n e s
f o r i i n range ( day+1 ,day+so lv ing_per iod +1) :

i f i < Star t ingDay + Planning_hor izon :
ac t i ve_connec t ions [ i ] = [ b f o r b i n a c t i v e_ l i n e s i f L ines [ b ] [ ’ EndDate ’ ]+1 == i ]

f rozen_connect ions = { } #a d i c t t ha t w i l l con ta in connect ions between ac t i ve l i n e s and
f rozen l i n e s . This w i l l be used by the t r a n s i t AC

f o r d i n range ( day+1 ,day+so lv ing_per iod +1) :
i f d < Star t ingDay + Planning_hor izon :

f rozen_connect ions [ d ] = [ j f o r j i n f r ozen_ l i nes i f L ines [ j ] [ ’ EndDate ’ ]+1 == d ]

# I use t h i s connect ions d i c t to determine the longes t poss ib le routes , so t ha t we can
co r r e c t l y determine which tasks need to be considered f o r p lann ing

Connections = { }
f o r i i n a c t i v e_ l i n e s :

Connections [ i ] = [ j f o r j i n a c t i v e_ l i n e s i f L ines [ j ] [ ’ S tar tDate ’ ] == Lines [ i ] [ ’
EndDate ’ ] +1 ]

#ዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅ
#Determine the longes t l i n e combinat ion so t ha t we know which set o f tasks to cons ider
# the longes t rou te t ha t can be b u i l t d i f f e r s between t r a n s i t AC and s t a r t i n g AC
routes = { }
l o nges t _ f l i g h t _ r o u t e = { }
RouteCounter = 0
f o r d i n ac t i ve_ l i nes_s ta r t i ng_each_day :

routes [ d ] = { }
f o r i i n ac t i ve_ l i nes_s ta r t i ng_each_day [ d ] :

i f len ( Connections [ i ] ) > 0 :
f o r i 2 i n Connections [ i ] :

i f len ( Connections [ i 2 ] ) > 0 :
f o r i 3 i n Connections [ i 2 ] :

i f len ( Connections [ i 3 ] ) > 0 :
f o r i 4 i n Connections [ i 3 ] :

rou te = [ i , i2 , i3 , i 4 ]
rou te leng th = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n

rou te ] )
routes [ d ] [ RouteCounter ] = { ’ rou te ’ : route , ’ l eng th ’ :

r ou te leng th }
RouteCounter += 1

else :
rou te = [ i , i2 , i 3 ]
rou te leng th = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n rou te ] )
routes [ d ] [ RouteCounter ] = { ’ rou te ’ : route , ’ l eng th ’ :

r ou te leng th }
RouteCounter += 1

else :
rou te = [ i , i 2 ]
rou te leng th = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n rou te ] )
routes [ d ] [ RouteCounter ] = { ’ rou te ’ : route , ’ l eng th ’ : r ou te leng th }
RouteCounter += 1

else :
rou te = [ i ]
r ou te leng th = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n rou te ] )
routes [ d ] [ RouteCounter ] = { ’ rou te ’ : route , ’ l eng th ’ : r ou te leng th }
RouteCounter += 1

i f len ( routes [ d ] ) > 0 :
l o nges t _ f l i g h t _ r o u t e [ d ] = max ( [ routes [ d ] [ b ] [ ’ l eng th ’ ] f o r b i n routes [ d ] ] ) # t h i s

i s the longes t rou te i n FH tha t can be made wi th our ac t i ve l i n e s s t a r t i n g
from each day

else :
l o nges t _ f l i g h t _ r o u t e [ d ] = 0 # in these case there are no routes s t a r t i n g from a

p a r t i c u l a r day .
#

ዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅ
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i f len ( a c t i v e_ l i n e s ) > 0 :
l i ne_ la tes t_endda te = max ( [ Lines [ j ] [ ’ EndDate ’ ] f o r j i n a c t i v e_ l i n e s ] ) #a lso we need

to know the l a t e s t enddate to determine a l l the poss ib le tasks

Encountered_l ines = f rozen_ l i nes + ac t i v e_ l i n e s # tasks can be planned a f t e r a l l
encountered l i n e s

#make a d i c t con ta in ing a l l the encountered l i n e s ending each day
f o r d i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :

Encountered_lines_ending_each_day [ d ] = [ j f o r j i n Lines_ending_each_day [ d ] i f j i n
Encountered_l ines ]

# t h i s w i l l be used in the capac i t y cons t r a i n t f o r the nonዅac t i ve a i r c r a f t
Frozen_l ine_endings_for_non_act ive_AC = { }
f o r i i n non_ac t i v e_a i r c r a f t :

Frozen_l ine_endings_for_non_act ive_AC [ i ] = { }
f o r d i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :

Frozen_l ine_endings_for_non_act ive_AC [ i ] [ d ] = [ j f o r j i n Constructed_Routes [ i ]
i f L ines [ j ] [ ’ EndDate ’ ] == d ]

# to create the cons t r a i n t t ha t each AC can only f l y 1 ac t i ve l i n e a t a time , we create a
d i c t w i th the ac t i ve l i n e s t ha t are being f lown each day

act ive_ l ines_f lown_each_day = { }
f o r d i n range ( day , day+so lv ing_per iod ) :

ac t ive_ l ines_f lown_each_day [ d ] = [ j f o r j i n a c t i v e_ l i n e s i f L ines [ j ] [ ’ S tar tDate ’ ] <=
d and Lines [ j ] [ ’ EndDate ’ ] >= d ]

# se l ec t the tasks t ha t should be considered
# to do t h i s we need to acknowledge the f l y i n g h i s t o r y and the max poss ib le leng th o f the

new l i n e s
Tasks = { }
f o r TS in a c t i v e _ a i r c r a f t :

Tasks [TS ] = { }
#We need to know when the a i r c r a f t w i l l depar t so t ha t we can determine i t s maximum

poss ib le rou te
i f len ( Constructed_Routes [TS ] ) < 1 : # i f no l i n e has been assigned yet , we are a t the

s t a r t i n g day
Departure_date_TS = Star t ingDay

else :
Departure_date_TS = Lines [ Constructed_Routes [TS ] [ ዅ 1 ] ] [ ’ EndDate ’ ]+1 # se l ec t the

a r r i v a l date o f the most r ecen t l y assigned l i n e
f o r index , row in TaskData [TS ] . i t e r r ows ( ) :

DueDate = row [ ’ Task Due ’ ]
DueFH = row [ ’FH Due ’ ]
i f DueDate <= ( l i ne_ la tes t_endda te +1) or (DueFH ዅ Flight_Hours_Recorded [TS ] ) <=

l o nges t _ f l i g h t _ r o u t e [ Departure_date_TS ] :
task_number = i n t ( row [ ’ Task Number ’ ] )
Task = { ’ Task Number ’ : task_number ,

’TaskMH ’ : row [ ’ Task MH’ ] ,
’ Task Due Date ’ : row [ ’ Task Due ’ ] ,
’ Task FH Due ’ : row [ ’FH Due ’ ]

}
Tasks [TS ] [ task_number ] = Task

m = Model ( ’ RHM_Exact_Forecasting ’ )

My_X_Variables = t u p l e l i s t ( [ ] )
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) :

f o r j i n a c t i v e_ l i n e s : #only ac t i ve l i n e s need to be d i s t r i b u t ed , f rozen l i n e s have
al ready been d i s t r i b u t e d i n a prev ious i t e r a t i o n
My_X_Variables . append ( ( i , j ) )

My_Y_Variables = t u p l e l i s t ( [ ] )
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) :

f o r t i n Tasks [ a c t i v e _ a i r c r a f t [ i ] ] :
f o r j i n Encountered_l ines : #an AC can plan maintenance both a f t e r an ac t i ve

l i n e and a f t e r a f rozen l i n e
My_Y_Variables . append ( ( i , t , j ) )

# the f o l l ow i ng help va r i ab l es are used to ca l cu l a t e the number o f l o s t f l y i n g hours . This
was necessary because a MIN or MAX func t i on only works i n a cons t r a i n t and not i n an
ob j e c t i v e f unc t i on i n Gurobi

LFH1_ac = { }
LFH2_ac = { }
LFH3_ac = { }
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LFH1_fr = { } #we def ine help va r i ab l es f o r f rozen l i n e s and ac t i ve l i n e s independent ly
LFH2_fr = { }
LFH3_fr = { }
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) :

f o r t i n Tasks [ a c t i v e _ a i r c r a f t [ i ] ] :
f o r j i n Encountered_l ines :

LFH1_ac [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH2_ac [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH3_ac [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH1_fr [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH2_fr [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH3_fr [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)

# t h i s i s f o r the non_act ive a i r c r a f t
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) :

f o r t i n non_act ive_task_set [ a l l _ a i r c r a f t [ i ] ] : # the set o f tasks t ha t nonዅac t i ve AC
have to schedule has been determined in a prev ious i t e r a t i o n
f o r j i n Constructed_Routes [ a l l _ a i r c r a f t [ i ] ] : #nonዅac t i ve AC i can only plan

a f t e r l i n e s t ha t i t has f lown
My_Y_Variables . append ( ( i , t , j ) )
LFH1_fr [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH2_fr [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH3_fr [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)

x = m. addVars ( My_X_Variables , vtype=GRB.BINARY, name= ’ x ’ ) # i f l i n e j i s assigned to AC
i

y = m. addVars ( My_Y_Variables , vtype=GRB.BINARY, name= ’ y ’ ) # equals 1 i f AC i plans task
t AFTER l i n e j

m. se tOb jec t i ve ( quicksum ( y [ i , t , j ] * Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’TaskMH ’ ] * LFH3_ac [ i , t , j ]
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) f o r j i n a c t i v e_ l i n e s f o r t i n Tasks [
a c t i v e _ a i r c r a f t [ i ] ] ) + quicksum ( y [ i , t , j ] * Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’TaskMH ’ ] *
LFH3_fr [ i , t , j ] f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) f o r j i n f r ozen_ l i nes f o r t i n
Tasks [ a c t i v e _ a i r c r a f t [ i ] ] ) + quicksum ( y [ i , t , j ] * Al lTaskData [ a l l _ a i r c r a f t [ i ] ] [ t ] [ ’
TaskMH ’ ] * LFH3_fr [ i , t , j ] f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) f o r j
i n Constructed_Routes [ a l l _ a i r c r a f t [ i ] ] f o r t i n non_act ive_task_set [ a l l _ a i r c r a f t [ i ] ] )
, GRB. MINIMIZE )

#ዅዅዅዅዅ Routing Sect ion
#every l i n e must be f lown exac t l y once
m. addConstrs ( quicksum ( x [ i , j ] f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) ) == 1 f o r j i n

a c t i v e_ l i n e s )
#each f i r s t day ac t i ve AC needs to f l y exac t l y 1 f i r s t day ac t i ve l i n e
m. addConstrs ( quicksum ( x [ i , j ] f o r j i n s t a r t i n g _a c t i v e _ l i n e s ) == 1 f o r i i n range ( len (

s t a r t i n g _ a i r c r a f t ) ) )
# f o r the f i r s t day we can only choose a f eas i b l e s t a r t i n g l i n e
i f day == Star t ingDay :

m. addConstrs ( quicksum ( x [ i , j ] f o r j i n Poss ib leS ta r tL ines [ a c t i v e _ a i r c r a f t [ i ] ] ) == 1
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) )

#now the connect ion cons t r a i n t
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) :

f o r d i n range ( day+1 ,day+so lv ing_per iod ) :
i f d < Star t ingDay + Planning_hor izon :

m. addConstr ( quicksum ( x [ i , j ] f o r j i n ac t i ve_ l i nes_s ta r t i ng_each_day [ d ] ) ==
quicksum ( x [ i , j ] f o r j i n ac t i ve_connec t ions [ d ] ) + quicksum (HAFL[
a c t i v e _ a i r c r a f t [ i ] ] [ p ] f o r p i n f rozen_connect ions [ d ] ) )

#An AC can f l y a t most 1 l i n e a t a t ime : t h i s cons t r a i n t i s not requ i red to converge the
so l u t i o n but i t was found to speed up the ca l c u l a t i o n s qu i t e a b i t

f o r d i n range ( day , day+so lv ing_per iod ) :
m. addConstrs ( quicksum ( x [ i , j ] f o r j i n act ive_ l ines_f lown_each_day [ d ] ) <= 1 f o r i i n

range ( len ( a c t i v e _ a i r c r a f t ) ) )

#ዅዅዅዅዅ Task Planning
#Every considered task can be planned at most once , a f t e r an ac t i ve l i n e or a f rozen l i n e
m. addConstrs ( quicksum ( y [ i , t , j ] f o r j i n Encountered_l ines ) <= 1 f o r i i n range ( len (

a c t i v e _ a i r c r a f t ) ) f o r t i n Tasks [ a c t i v e _ a i r c r a f t [ i ] ] )
# f o r nonዅac t i ve AC: a l l t h e i r tasks must be planned
m. addConstrs ( quicksum ( y [ i , t , j ] f o r j i n Constructed_Routes [ a l l _ a i r c r a f t [ i ] ] ) == 1 f o r i

i n range ( len ( a c t i v e _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) f o r t i n non_act ive_task_set [
a l l _ a i r c r a f t [ i ] ] )

# A l l tasks i n T_i which are due before a due date should be planned i f t ha t due date i s
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c lose r than the end of the se lec ted l i n e
m. addConstrs (ዅ1000*quicksum ( y [ i , t , j ] *MS[ j ] f o r j i n Encountered_l ines ) <= Tasks [

a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’ Task Due Date ’ ] ዅ (2+quicksum ( [ x [ i , j ] * Lines [ j ] [ ’ EndDate ’ ] f o r
j i n end ing_ l ines ] ) ) f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) f o r t i n Tasks [

a c t i v e _ a i r c r a f t [ i ] ] )

# A l l tasks i n T_i which are due before X f l i g h t hours should be planned i f the se lec ted
route i s longer than X f l i g h t hours .

m. addConstrs (ዅ1000*quicksum ( y [ i , t , j ] *MS[ j ] f o r j i n Encountered_l ines ) <= ( Tasks [
a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’ Task FH Due ’ ] ዅ ( Fl ight_Hours_Recorded [ a c t i v e _ a i r c r a f t [ i ] ] +
quicksum ( x [ i , j ] * Lines [ j ] [ ’ F l i g h t Hours ’ ] f o r j i n a c t i v e_ l i n e s ) ) ) f o r i i n range ( len (
a c t i v e _ a i r c r a f t ) ) f o r t i n Tasks [ a c t i v e _ a i r c r a f t [ i ] ] )

# I f task t o f AC i i s scheduled , i t must be scheduled before the due date :
m. addConstrs ( y [ i , t , j ] * Lines [ j ] [ ’ EndDate ’ ]+1 <= Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’ Task Due

Date ’ ] f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) f o r t i n Tasks [ a c t i v e _ a i r c r a f t [ i ] ] f o r j
i n Encountered_l ines )

#For non ac t i ve AC as we l l :
m. addConstrs ( y [ i , t , j ] * Lines [ j ] [ ’ EndDate ’ ]+1 <= Al lTaskData [ a l l _ a i r c r a f t [ i ] ] [ t ] [ ’ Task Due

Date ’ ] f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) f o r t i n
non_act ive_task_set [ a l l _ a i r c r a f t [ i ] ] f o r j i n Constructed_Routes [ a l l _ a i r c r a f t [ i ] ] )

# I f task t o f AC i i s scheduled , i t must be scheduled before the due f l i g h t hours :
#This cons t r a i n t i s broken up in the f rozen l i n e s and the ac t i ve l i nes , as they requ i re

d i f f e r e n t f o rmu la t i ons
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) :

f o r t i n Tasks [ a c t i v e _ a i r c r a f t [ i ] ] :
# f rozen l i n e s :

m. addConstrs ( y [ i , t , j ] * Flown_FH_af ter_ l ine [ j ] <= Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’
Task FH Due ’ ] f o r j i n f r ozen_ l i nes )

# ac t i ve l i n e s :
m. addConstrs ( y [ i , t , j ] * ( Fl ight_Hours_Recorded [ a c t i v e _ a i r c r a f t [ i ] ] + quicksum ( x [ i , j

] * Lines [ j ] [ ’ F l i g h t Hours ’ ] f o r d i n range ( day , Lines [ j ] [ ’ S tar tDate ’ ]+1 ) f o r j
i n ac t i ve_ l i nes_s ta r t i ng_each_day [ d ] ) ) <= Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’ Task
FH Due ’ ] f o r j i n a c t i v e_ l i n e s )

# f o r nonዅac t i ve AC as we l l :
m. addConstrs ( y [ i , t , j ] * Flown_FH_af ter_ l ine [ j ] <= Al lTaskData [ a l l _ a i r c r a f t [ i ] ] [ t ] [ ’ Task FH

Due ’ ] f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) f o r t i n
non_act ive_task_set [ a l l _ a i r c r a f t [ i ] ] f o r j i n Constructed_Routes [ a l l _ a i r c r a f t [ i ] ] )

#Only plan a task a f t e r a l i n e i f the AC has f lown tha t l i n e
#Again we need to break up between f rozen l i n e s and ac t i ve l i n e s
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) :

# f rozen l i n e s
m. addConstrs ( len ( Tasks [ a c t i v e _ a i r c r a f t [ i ] ] ) *HAFL[ a c t i v e _ a i r c r a f t [ i ] ] [ j ] >= quicksum ( y

[ i , t , j ] f o r t i n Tasks [ a c t i v e _ a i r c r a f t [ i ] ] ) f o r j i n f r ozen_ l i nes )
# ac t i ve l i n e s
m. addConstrs ( len ( Tasks [ a c t i v e _ a i r c r a f t [ i ] ] ) *x [ i , j ] >= quicksum ( y [ i , t , j ] f o r t i n

Tasks [ a c t i v e _ a i r c r a f t [ i ] ] ) f o r j i n a c t i v e_ l i n e s )

#Capaci ty cons t r a i n t :
f o r d i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :

m. addConstr ( quicksum ( y [ i , t , j ] * Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’TaskMH ’ ] f o r i i n range (
len ( a c t i v e _ a i r c r a f t ) ) f o r j i n Encountered_lines_ending_each_day [ d ] f o r t i n
Tasks [ a c t i v e _ a i r c r a f t [ i ] ] ) + quicksum ( y [ i , t , j ] * Al lTaskData [ a l l _ a i r c r a f t [ i ] ] [ t ] [ ’
TaskMH ’ ] f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) f o r j i n
Frozen_l ine_endings_for_non_act ive_AC [ a l l _ a i r c r a f t [ i ] ] [ d ] f o r t i n
non_act ive_task_set [ a l l _ a i r c r a f t [ i ] ] ) <= Sta t ion_Capac i ty )

#Ca lcu la te the l o s t f l y i n g hours to help the ob j e c t i v e f unc t i on
# ac t i ve l i n e s
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) :

f o r j i n a c t i v e_ l i n e s : # f o r the ac t i ve l i n e s
f o r t i n Tasks [ a c t i v e _ a i r c r a f t [ i ] ] :

m. addConstr ( LFH1_ac [ i , t , j ] == Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’ Task FH Due ’ ]ዅ (
Fl ight_Hours_Recorded [ a c t i v e _ a i r c r a f t [ i ] ] + Lines [ j ] [ ’ F l i g h t Hours ’ ] +
quicksum ( x [ i , k ] * Lines [ k ] [ ’ F l i g h t Hours ’ ] f o r d i n range ( day , Lines [ j ] [ ’
S tar tDate ’ ] ) f o r k i n ac t i ve_ l i nes_s ta r t i ng_each_day [ d ] ) ) ) # l o s t f l y i n g
hours due to task being executed before remaining l ega l FH

m. addConstr ( LFH2_ac [ i , t , j ] == average_FH_per_day * ( Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t
] [ ’ Task Due Date ’ ] ዅ( L ines [ j ] [ ’ EndDate ’ ]+1 ) ) ) #Lost f l y i n g hours due to
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task being executed before i t s due date
m. addConstr ( LFH3_ac [ i , t , j ] == min_ ( LFH1_ac [ i , t , j ] , LFH2_ac [ i , t , j ] ) )

f o r j i n f r ozen_ l i nes : # f o r the f rozen l i n e s
f o r t i n Tasks [ a c t i v e _ a i r c r a f t [ i ] ] :

m. addConstr ( LFH1_fr [ i , t , j ] == Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’ Task FH Due ’ ] ዅ
Flown_FH_af ter_ l ine [ j ] ) # l o s t f l y i n g hours due to task being executed
before remaining l ega l FH

m. addConstr ( LFH2_fr [ i , t , j ] == average_FH_per_day * ( Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t
] [ ’ Task Due Date ’ ] ዅ( L ines [ j ] [ ’ EndDate ’ ]+1 ) ) ) #Lost f l y i n g hours due to
task being executed before i t s due date

m. addConstr ( LFH3_fr [ i , t , j ] == min_ ( LFH1_fr [ i , t , j ] , LFH2_fr [ i , t , j ] ) )
# f o r nonዅac t i ve a i r c r a f t as we l l
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) :

f o r j i n Constructed_Routes [ a l l _ a i r c r a f t [ i ] ] :
f o r t i n non_act ive_task_set [ a l l _ a i r c r a f t [ i ] ] :

m. addConstr ( LFH1_fr [ i , t , j ] == Al lTaskData [ a l l _ a i r c r a f t [ i ] ] [ t ] [ ’ Task FH Due ’ ]
ዅ Flown_FH_af ter_ l ine [ j ] ) # l o s t f l y i n g hours due to task being executed
before remaining l ega l FH

m. addConstr ( LFH2_fr [ i , t , j ] == average_FH_per_day * ( Al lTaskData [ a l l _ a i r c r a f t [ i
] ] [ t ] [ ’ Task Due Date ’ ] ዅ( L ines [ j ] [ ’ EndDate ’ ]+1 ) ) ) #Lost f l y i n g hours due
to task being executed before i t s due date

m. addConstr ( LFH3_fr [ i , t , j ] == min_ ( LFH1_fr [ i , t , j ] , LFH2_fr [ i , t , j ] ) )

m. opt im ize ( )
#Save rou t i ng so l u t i o n and prepare f o r next day i t e r a t i o n
l i n e _ so l u t i o n = m. ge tA t t r ( ’ x ’ , x )
Rout ing_Solu t ion = [ ( i , j ) f o r ( i , j ) i n l i n e _ s o l u t i o n i f l i n e _ s o l u t i o n [ i , j ] > 0 . 9 ]
t ask_so lu t i on = m. ge tA t t r ( ’ x ’ , y )
Maintenance_Planning_Solut ion = [ ( i , t , j ) f o r ( i , t , j ) i n t ask_so lu t i on i f t a sk_so lu t i on [ i ,

t , j ] > 0 . 9 ]

# i need to update : f rozen_ l i nes , F l ight_hours_recorded , const ruc ted_route , HAFL and
a c t i v e _ a i r c r a f t l i s t

# I on ly want to f reeze the so l u t i ons f o r the l i n e s t ha t departed today , so not f o r f u t u r e
l i n e s

f o r i , j i n Rout ing_Solu t ion :
i f L ines [ j ] [ ’ S tar tDate ’ ] == day :

f r ozen_ l i nes . append ( j ) #update the f rozen l i n e s
HAFL[ a c t i v e _ a i r c r a f t [ i ] ] [ j ] = 1 #update HAFL
Constructed_Routes [ a c t i v e _ a i r c r a f t [ i ] ] . append ( j ) #update Constructed Routes
Fl ight_Hours_Recorded [ a c t i v e _ a i r c r a f t [ i ] ] += Lines [ j ] [ ’ F l i g h t Hours ’ ] #update the

recorded f l i g h t hours

f o r i i n a l l _ a i r c r a f t :
Most_Recent_Maint_Schedule [ i ] = [ ] # rese t the maint schedule o f the ac t i ve AC so

tha t we can f i l l i t i n again

f o r i , t , j i n Maintenance_Planning_Solut ion :
i f L ines [ j ] [ ’ S tar tDate ’ ] <= day :

Most_Recent_Maint_Schedule [ a l l _ a i r c r a f t [ i ] ] . append ( [ t , j ] )

#Now I need to spec i f y how many f l i g h t hours were f lown a f t e r each l i n e i n the f rozen
l i nes , f o r f u t u r e p lann ing needs

f o r i i n TailNumbers : # f o r every AC
f o r m in range ( len ( Constructed_Routes [ i ] ) ) : # f o r every l i n e t ha t i t has been assigned

so f a r
t he_ l i ne = Constructed_Routes [ i ] [m] # i d e n t i f y the l i n e
f l own_ l i nes_be f o r e_ i t = Constructed_Routes [ i ] [ : (m+1) ] # i d e n t i f y which l i n e s are

assigned to the AC before the considered l i n e
Flown_FH_af ter_ l ine [ t he_ l i ne ] = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n

f l own_ l i nes_be f o r e_ i t ] ) #determine how many FH are f lown before the l i n e
s t a r t s

#Keep t rack o f the cu r ren t scores o f the routes o f each AC
f o r i i n a l l _ a i r c r a f t :

MaintScore [ i ]=0 # rese t the score f o r the ac t i ve AC cause we are going to r eca l cu l a t e
them

f o r t , j i n Most_Recent_Maint_Schedule [ i ] : # i t e r a t e through the planned maintenance
f o r AC i
Score_days = ( Al lTaskData [ i ] [ t ] [ ’ Task Due Date ’ ] ዅ ( L ines [ j ] [ ’ EndDate ’ ]+1 ) ) *

average_FH_per_day #Lost f l y i n g hours due to task being executed before i t s
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due date
Score_FH = Al lTaskData [ i ] [ t ] [ ’ Task FH Due ’ ] ዅ Flown_FH_af ter_ l ine [ j ] # l o s t f l y i n g

hours due to task being executed before remaining l ega l FH
overa l l _sco re = Al lTaskData [ i ] [ t ] [ ’TaskMH ’ ] *min ( Score_days , Score_FH )
MaintScore [ i ] += ove ra l l _sco re

#Now to determine the new s t a r t i n g AC and t r a n s i t AC f o r the next i t e r a t i o n
a c t i v e _ a i r c r a f t = [ ]
s t a r t i n g _ a i r c r a f t = [ ]
t r a n s i t _ a i r c r a f t = [ ]
non_ac t i v e_a i r c r a f t = [ ]
f o r i i n TailNumbers :

Line_end = Lines [ Constructed_Routes [ i ] [ ዅ 1 ] ] [ ’ EndDate ’ ]
i f Line_end < Star t ingDay + Planning_hor izon and Line_end < Star t ingDay +

Planning_hor izon ዅ 1:
i f Line_end == day :

s t a r t i n g _ a i r c r a f t . append ( i )
i f Line_end > day and Line_end < day+so lv ing_per iod :

t r a n s i t _ a i r c r a f t . append ( i )
a c t i v e _ a i r c r a f t = s t a r t i n g _ a i r c r a f t + t r a n s i t _ a i r c r a f t
f o r i i n TailNumbers :

i f i not i n a c t i v e _ a i r c r a f t :
non_ac t i v e_a i r c r a f t . append ( i )

a l l _ a i r c r a f t = a c t i v e _ a i r c r a f t + non_ac t i v e_a i r c r a f t
#determine the tasks t ha t the nonዅac t i ve AC have planned and w i l l need to rep lan next

i t e r a t i o n
f o r i i n non_ac t i v e_a i r c r a f t :

non_act ive_task_set [ i ] = [ t f o r ( t , j ) i n Most_Recent_Maint_Schedule [ i ] ]

#Ca lcu la te f i n a l score
p r i n t ( ’ F i na l Scores : ’ + s t r ( MaintScore ) )
p r i n t ( ’ F i na l To ta l Score : ’ + s t r (sum( MaintScore . values ( ) ) ) )
stopwatch_end = t ime . t ime ( )ዅs topwatch_s ta r t
p r i n t ( ’ To ta l Elapsed t ime : ’+ s t r ( stopwatch_end ) )
p r i n t ( ’ To ta l number o f AC: ’ + s t r ( len ( TailNumbers ) ) )
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# ዅ*ዅ coding : u t f ዅ8 ዅ*ዅ
” ” ”
Created on Tue May 12 10:19:54 2020

@author : Alex
i n t h i s s c r i p t we solve the RHM wi th average f l i g h t ዅhour f o r ecas t i ng . The number o f days we

fo recas t f o r i s given as an inpu t parameter .
” ” ”

impor t pandas as pd
from L ine_ex t r ac t i on impor t Lines_Only # t h i s i s a f unc t i on t ha t w i l l e x t r a c t l i n e s from

f l i g h t d a t a
from gurobipy impor t *
impor t copy
impor t t ime

TaskData = pd . read_excel ( ’ TaskData_20_tasks . x l sx ’ , sheet_name=None)
F l i gh tDa ta = pd . read_excel ( ’ F l i gh tDa ta . x l sx ’ , sheet_name=None)
TailNumbers = pd . Exce lF i l e ( ’ F l i gh tDa ta . x l sx ’ ) . sheet_names
TailNumbers = [ ’PHዅBGF ’ , ’PHዅBGG’ , ’PHዅBGH ’ , ’PHዅBGI ’ , ’PHዅBGK ’ ] # t h i s l i s t con ta ins a l l the t a i l

numbers t ha t are considered f o r the problem

#Parameters
Planning_hor izon = 7
Star t ingDay = 43831 #Excel uses a number f o r a date , which works very we l l . 43831 t r an s l a t e s

to 1ዅ1ዅ2020
Sta t ion_Capac i ty = 100 # in manዅhours per n i gh t
f o recas t i ng_pe r i od = 1 #number o f days t ha t we fo recas t f o r

# ex t r a c t the l i n e s from the f l i g h t d a t a . Wi th in the f unc t i on Lines_Only a lso a due date f o r
the f i r s t standard check i s randomly generated

Lines , S ta r tL ines , EndLines , standard_check_due_date = Lines_Only ( F l igh tData , TailNumbers )
# ca l cu l a t e the average f l i g h t hours f lown per day
average_FH_per_day = round (sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n Lines ] ) / ( len ( TailNumbers ) *

Planning_hor izon ) ,1 )

# I make a d i c t i o na r y here con ta in ing a l l the task data to which i can always r e f e r i n the
code

Al lTaskData = { }
f o r i i n TailNumbers :

Al lTaskData [ i ] = { }
f o r index , row in TaskData [ i ] . i t e r r ows ( ) :

task_number = i n t ( row [ ’ Task Number ’ ] )
Task = { ’ Task Number ’ : task_number ,

’TaskMH ’ : row [ ’ Task MH’ ] ,
’ Task Due Date ’ : row [ ’ Task Due ’ ] ,
’ Task FH Due ’ : row [ ’FH Due ’ ]

}
Al lTaskData [ i ] [ task_number ] = Task

#%% Preprocessing f o r bu i l d i n g the routes
#Here mu l t i p l e d i c t i o n a r i e s are b u i l t con ta in ing l i n e in fo rmat ion , which are used when

de f i n i ng the model
L ines_star t ing_each_day = { }
Lines_ending_each_day = { }
f o r i i n range ( Planning_hor izon ) :

f o r j i n Lines :
L ines_star t ing_each_day [ Star t ingDay+ i ] = [ a f o r a i n Lines i f L ines [ a ] [ ’ S tar tDate ’ ] ==

Star t ingDay+ i ]
Lines_ending_each_day [ Star t ingDay+ i ] = [ a f o r a i n Lines i f L ines [ a ] [ ’ EndDate ’ ] ==

Star t ingDay+ i ]

# In the given f l i g h t data Amsterdam i s the maintenance s t a t i o n
#Whether or not Lines end on amsterdam . t h i s i s necessary f o r the ending l i nes , which could

end on d i f f e r e n t s t a t i o n s than Amsterdam .
MS = { } #MS: Maintenance s t a t i o n
f o r j i n Lines :

i f L ines [ j ] [ ’ A r r i v a l ’ ] == ’ Amsterdam ’ :
MS[ j ] = 1

e lse :
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MS[ j ] = 0

#Determine the s t a r t i n g po in t s f o r each t a i l
S t a r tPo i n t = { }
f o r i i n range ( len ( TailNumbers ) ) :

S t a r t e r = S ta r t L i nes [ i ]
# the f i r s t S t a r t l i n e i s from the f i r s t a i r c r a f t and so on
S ta r tPo i n t [ TailNumbers [ i ] ] = Lines [ S t a r t e r ] [ ’ Departure ’ ]

#Now from the s t a r t p o i n t determine the set o f 1 s t day Lines poss ib le f o r each t a i l s i g n
Poss ib leS ta r tL ines = { }
f o r i i n TailNumbers :

Poss ib leS ta r tL ines [ i ] = [ j f o r j i n S ta r t L i nes i f L ines [ j ] [ ’ Departure ’ ] == S ta r tPo i n t [ i ]
and Lines [ j ] [ ’ EndDate ’ ] < standard_check_due_date [ i ] ]

#%% Algor i thm S ta r t
#The encountered l i n e s are d iv ided i n f rozen l i n e s and ac t i ve l i n e s . f rozen l i n e s have been

assigned to a i r c r a f t a l ready . ac t i ve l i n e s w i l l be assigned dur ing t h i s i t e r a t i o n
# there are 3 types of a i r c r a f t : 1 . s t a r t i n g a i r c r a f t s t a r t from the f i r s t day o f the cen t r a l

per iod and t h e i r l i n e s w i l l be f rozen
#2. t r a n s i t AC w i l l s t a r t a new l i n e dur ing the fo recas t i ng per iod but not dur ing the cen t r a l

per iod
#3. nonዅac t i ve AC w i l l not s t a r t a new l i n e dur ing e i t h e r the cen t r a l or f o r ecas t i ng per iod
s t a r t i n g _ a i r c r a f t = copy . deepcopy ( TailNumbers ) # s t a r t i n g AC are the AC tha t w i l l be assigned

a l i n e t ha t w i l l be f rozen at the end of the i t e r a t i o n
t r a n s i t _ a i r c r a f t = [ ] # t r a n s i t AC are AC tha t w i l l be assigned a l i n e i n the fo recas t i ng

per iod , but not one in the cen t r a l per iod
a c t i v e _ a i r c r a f t = s t a r t i n g _ a i r c r a f t + t r a n s i t _ a i r c r a f t
n on_ s t a r t i n g _a i r c r a f t = [ ] #AC tha t w i l l not s t a r t a new l i n e i n the fo recas t i ng per iod
a l l _ a i r c r a f t = s t a r t i n g _ a i r c r a f t + non_ s t a r t i n g _a i r c r a f t
non_s ta r t i ng_ task_se t = { } # the non_start ing_AC w i l l have to rep lan t h e i r a l ready planned

maintenance every i t e r a t i o n to make sure we comply w i th the capac i t y cons t r a i n t
Fl ight_Hours_Recorded = { } #a d i c t t ha t w i l l save the number o f FH each AC has f lown

throughout the i t e r a t i o n s
f r ozen_ l i nes = [ ] #a l i s t o f a l l l i n e s t ha t have been assigned and f rozen
Constructed_Routes = { } # i n t h i s d i c t we w i l l save the f rozen routes
Most_Recent_Maint_Schedule = { } #a d i c t t ha t holds the maintenance schedule , which i s updated

dur ing every i t e r a t i o n
Flown_FH_af ter_ l ine = { } # t h i s d i c t w i l l save the number o f FH tha t are recorded a f t e r

complet ing a f rozen l i n e
Encountered_lines_ending_each_day = { }
HAFL = { } #a d i c t i o na r y t ha t holds i n fo rma t i on on which f rozen l i n e has been assigned to

which AC. HAFL: Has AC f lown l i n e ?
MaintScore = { } #a d i c t t ha t w i l l save the scores o f the maintenance planning f o r each AC
f o r i i n TailNumbers :

Fl ight_Hours_Recorded [ i ] = 0
Constructed_Routes [ i ] = [ ]
Most_Recent_Maint_Schedule [ i ] = [ ]
MaintScore [ i ] = 0
HAFL[ i ] = { }
f o r j i n Lines :

HAFL[ i ] [ j ] = 0

s topwatch_s ta r t = t ime . t ime ( ) # s t a r t a t imer

f o r day i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :

#Selec t the l i n e s s t a r t i n g a t t h i s day
s t a r t i n g _ l i n e s = [ b f o r b i n Lines i f L ines [ b ] [ ’ S tar tDate ’ ] == day ]
i f len ( s t a r t i n g _ l i n e s ) > 0 :

longest_ l ine_FH = max ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n s t a r t i n g _ l i n e s ] ) # the
longes t l i n e i n FH w i l l help determine which tasks should be considered

l i ne_ la tes t_endda te = max ( [ Lines [ b ] [ ’ EndDate ’ ] f o r b i n s t a r t i n g _ l i n e s ] ) # the l a t e s t
l i n e enddate w i l l help determine which tasks should be considered

Encountered_l ines = f rozen_ l i nes + s t a r t i n g _ l i n e s #we can plan maintenance a f t e r both
f rozen and ac t i ve l i n e s

#make a d i c t con ta in ing a l l the encountered l i n e s ending each day
f o r d i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :

Encountered_lines_ending_each_day [ d ] = [ j f o r j i n Lines_ending_each_day [ d ] i f j i n
Encountered_l ines ]
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# t h i s w i l l be used in the capac i t y cons t r a i n t f o r the nonዅs t a r t i n g a i r c r a f t
Frozen_l ine_endings_for_non_star t ing_AC = { }
f o r i i n n on_ s t a r t i n g _a i r c r a f t :

Frozen_l ine_endings_for_non_star t ing_AC [ i ] = { }
f o r d i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :

Frozen_l ine_endings_for_non_star t ing_AC [ i ] [ d ] = [ j f o r j i n Constructed_Routes [ i ]
i f L ines [ j ] [ ’ EndDate ’ ] == d ]

# se l ec t the tasks t ha t should be considered
# to do t h i s we need to acknowledge the f l y i n g h i s t o r y and the max poss ib le leng th o f the

new l i n e s
Tasks = { }
f o r TS in s t a r t i n g _ a i r c r a f t :

Tasks [TS ] = { }
f o r index , row in TaskData [TS ] . i t e r r ows ( ) :

DueDate = row [ ’ Task Due ’ ]
DueFH = row [ ’FH Due ’ ]
i f DueDate <= ( l i ne_ la tes t_endda te +1) or (DueFH ዅ Flight_Hours_Recorded [TS ] ) <=

longest_ l ine_FH :
task_number = i n t ( row [ ’ Task Number ’ ] )
Task = { ’ Task Number ’ : task_number ,

’TaskMH ’ : row [ ’ Task MH’ ] ,
’ Task Due Date ’ : row [ ’ Task Due ’ ] ,
’ Task FH Due ’ : row [ ’FH Due ’ ]

}
Tasks [TS ] [ task_number ] = Task

#ዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅ Forecast p repara t ion ዅዅዅዅዅዅዅዅዅዅዅዅዅዅዅ
#Determine the f u t u r e l i n e s t ha t are to be considered w i t h i n the fo recas t i ng per iod
Considered_Future_Lines = { }
Cons ide red_ fu tu re_ l i nes_ l i s t ed = [ ]
f o r i i n range ( day+1 ,day+ fo recas t i ng_pe r i od +1) :

Considered_Future_Lines [ i ] = [ b f o r b i n Lines i f L ines [ b ] [ ’ S tar tDate ’ ] == i ] # a l l
the l i n e s s t a r t i n g tomorrow

Cons ide red_ fu tu re_ l i nes_ l i s t ed . extend ( [ b f o r b i n Lines i f L ines [ b ] [ ’ S tar tDate ’ ] == i
] )

# there are 3 types of connect ions to the f u t u r e f l i g h t s , ac t i ve l i nes , a l ready assigned
l i nes , and f u t u r e l i n e s

# a l l l i n e s s t a r t i n g on the same day have the same connect ions , so we group them by day
and not by i n d i v i d u a l l i n e

ac t ive_connec t ions = { }
f rozen_connect ions = { }
fu tu re_connec t ions = { }
f o r d i n range ( day+1 ,day+ fo recas t i ng_pe r i od +1) :

i f d < Star t ingDay + Planning_hor izon :
ac t i ve_connec t ions [ d ] = [ j f o r j i n s t a r t i n g _ l i n e s i f L ines [ j ] [ ’ EndDate ’ ]+1 == d ]
f rozen_connect ions [ d ] = [ j f o r j i n f r ozen_ l i nes i f L ines [ j ] [ ’ EndDate ’ ]+1 == d ]
fu tu re_connec t ions [ d ] = [ j f o r j i n Cons ide red_ fu tu re_ l i nes_ l i s t ed i f L ines [ j ] [ ’

EndDate ’ ]+1 == d ]

#a cost p r ed i c t i o n w i l l be made f o r every AC i i f t ha t AC i s assigned to f l y f u t u r e l i n e
j

C = { }
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) : # f o r each AC tha t can be assigned a f u t u r e l i n e

f o r j i n Cons ide red_ fu tu re_ l i nes_ l i s t ed : # f o r every f u t u r e l i n e
# the tasks t ha t AC i w i l l have to move forward i f f u t u r e l i n e j i s chosen
# p r ed i c t OR determine the number o f FH f lown at the s t a r t o f the l i n e
i f len ( Constructed_Routes [ a c t i v e _ a i r c r a f t [ i ] ] ) >= 1 :

P red i c tedFH_a t_s ta r t _o f_ fu tu re_ l i ne = Flight_Hours_Recorded [ a c t i v e _ a i r c r a f t [ i
] ] + ( Lines [ j ] [ ’ S tar tDate ’ ] ዅ Lines [ Constructed_Routes [ a c t i v e _ a i r c r a f t [ i
] ] [ ዅ 1 ] ] [ ’ EndDate ’ ]ዅ1) *average_FH_per_day # the pred ic ted FH tha t the AC
has t r a v e l l e d r i g h t before s t a r t i n g the f u t u r e l i n e i n quest ion

e lse : #dur ing the f i r s t i t e r a t i o n we dont have a const ruc ted route yet
P red i c tedFH_a t_s ta r t _o f_ fu tu re_ l i ne = Flight_Hours_Recorded [ a c t i v e _ a i r c r a f t [ i

] ] + ( Lines [ j ] [ ’ S tar tDate ’ ] ዅ day ) *average_FH_per_day
Pred ic tedFH_at_end_of_ fu ture_ l ine = Pred i c tedFH_a t_s ta r t _o f_ fu tu re_ l i ne + ( Lines [

j ] [ ’ EndDate ’ ]+1ዅLines [ j ] [ ’ S tar tDate ’ ] ) *average_FH_per_day # the pred ic ted FH
tha t the AC has t r a v e l l e d a f t e r complet ion o f the f u t u r e l i n e i n quest ion

Penal ty = 0
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f o r index , row in TaskData [ a c t i v e _ a i r c r a f t [ i ] ] . i t e r r ows ( ) :
DueDate = row [ ’ Task Due ’ ]
DueFH = row [ ’FH Due ’ ]
i f DueDate > Lines [ j ] [ ’ S tar tDate ’ ] and DueFH >

Pred i c tedFH_a t_s ta r t _o f_ fu tu re_ l i ne : #so the task has not been executed
yet
i f DueDate <= Lines [ j ] [ ’ EndDate ’ ] or DueFH <

Pred ic tedFH_at_end_of_ fu ture_ l ine : # i f the task i s expected to go due
w i t h i n the l i n e

#each task w i l l have a cost because i t s moved up to j . I t i s the goal
to sum up these costs

Penalty_FH = row [ ’FH Due ’ ]ዅPred i c tedFH_a t_s ta r t _o f_ fu tu re_ l i ne
Penalty_Day = ( row [ ’ Task Due ’ ]ዅLines [ j ] [ ’ S tar tDate ’ ] ) *

average_FH_per_day
Penal ty += row [ ’ Task MH’ ] *min ( Penalty_FH , Penalty_Day )

C[ i , j ] = Penal ty

m = Model ( ’ RHM_Average_FH_Forecasting ’ )

My_X_Variables = t u p l e l i s t ( [ ] )
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) :

f o r j i n s t a r t i n g _ l i n e s : # f rozen l i n e s have al ready been d i s t r i b u t e d and f o r f u t u r e
l i n e s we have a seperate va r i ab l e
My_X_Variables . append ( ( i , j ) )

My_Y_Variables = t u p l e l i s t ( [ ] )
f o r i i n range ( len ( s t a r t i n g _ a i r c r a f t ) ) :

f o r t i n Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] :
f o r j i n Encountered_l ines : #We should be able to plan anywhere

My_Y_Variables . append ( ( i , t , j ) )
My_Q_Variables = t u p l e l i s t ( [ ] )
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) :

f o r k i n Cons ide red_ fu tu re_ l i nes_ l i s t ed :
My_Q_Variables . append ( ( i , k ) ) # w i l l equal 1 i f AC i w i l l f l y f u t u r e l i n e k
# i use k ins tead of j to make a c l ea re r d i s t i n c t i o n between s t a r t i n g l i n e s and

f u t u r e l i n e s
LFH1_ac = { }
LFH2_ac = { } #_ac = ac t i ve l i n e s
LFH3_ac = { }
LFH1_fr = { } #we def ine help va r i ab l es f o r f rozen l i n e s and ac t i ve l i n e s independent ly
LFH2_fr = { } #_ f r = f rozen l i n e s
LFH3_fr = { }
f o r i i n range ( len ( s t a r t i n g _ a i r c r a f t ) ) :

f o r t i n Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] :
f o r j i n Encountered_l ines :

LFH1_ac [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH2_ac [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH3_ac [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH1_fr [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH2_fr [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH3_fr [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)

# t h i s i s f o r the non_s ta r t i ng a i r c r a f t
f o r i i n range ( len ( s t a r t i n g _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) :

f o r t i n non_s ta r t i ng_ task_se t [ a l l _ a i r c r a f t [ i ] ] : # the set o f tasks t ha t nonዅs t a r t i n g
AC have to schedule has been determined in a prev ious i t e r a t i o n
f o r j i n Constructed_Routes [ a l l _ a i r c r a f t [ i ] ] : #nonዅs t a r t i n g AC i can only plan

a f t e r l i n e s t ha t i t has f lown
My_Y_Variables . append ( ( i , t , j ) )
LFH1_fr [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH2_fr [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)
LFH3_fr [ i , t , j ] = m. addVar ( l b = ዅ10000, ub = 10000)

x = m. addVars ( My_X_Variables , vtype=GRB.BINARY, name= ’ x ’ ) # equals 1 i f l i n e j i s
assigned to AC i , 0 otherwise

y = m. addVars ( My_Y_Variables , vtype=GRB.BINARY, name= ’ y ’ ) # equals 1 i f AC i plans task
t AFTER l i n e j , 0 otherwise

q = m. addVars ( My_Q_Variables , vtype=GRB.BINARY, name= ’ q ’ ) # equals 1 AC i i s assigned to
f l y f u t u r e l i n e k , 0 otherwise

#LFH = Lost F l y i ng Hours
# the ob j e c t i v e f unc t i on i s b u i l t o f 4 pa r t s : minimize LFH f o r s t a r t i n g AC who plan a f t e r

s t a r t i n g l i nes , minimze LFH f o r s t a r t i n g AC a f t e r f rozen l i nes , minimze LFH f o r nonዅ
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s t a r t i n g AC and minimize pred ic ted f u t u r e cost
#So i t i s a c t u a l l y j u s t 2 par t s : minimze cu r ren t p lann ing LFH and minimze pred ic ted

f u t u r e costs . But the cu r ren t p lann ing LFH requ i red d i f f e r e n t f o rmu la t i ons
m. se tOb jec t i ve ( quicksum ( y [ i , t , j ] * Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] [ t ] [ ’TaskMH ’ ] * LFH3_ac [ i , t , j ]

f o r i i n range ( len ( s t a r t i n g _ a i r c r a f t ) ) f o r j i n s t a r t i n g _ l i n e s f o r t i n Tasks [
s t a r t i n g _ a i r c r a f t [ i ] ] ) + quicksum ( y [ i , t , j ] * Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] [ t ] [ ’TaskMH ’ ] *
LFH3_fr [ i , t , j ] f o r i i n range ( len ( s t a r t i n g _ a i r c r a f t ) ) f o r j i n f r ozen_ l i nes f o r t i n
Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] ) + quicksum ( y [ i , t , j ] * Al lTaskData [ a l l _ a i r c r a f t [ i ] ] [ t ] [ ’
TaskMH ’ ] * LFH3_fr [ i , t , j ] f o r i i n range ( len ( s t a r t i n g _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) f o r
j i n Constructed_Routes [ a l l _ a i r c r a f t [ i ] ] f o r t i n non_s ta r t i ng_ task_se t [ a l l _ a i r c r a f t [
i ] ] ) + quicksum (q [ i , k ] *C[ i , k ] f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) f o r k i n
Cons ide red_ fu tu re_ l i nes_ l i s t ed ) , GRB. MINIMIZE )

#ዅዅዅዅዅ Routing Sect ion
#every ac t i ve l i n e must be f lown
m. addConstrs ( quicksum ( x [ i , j ] f o r i i n range ( len ( s t a r t i n g _ a i r c r a f t ) ) ) == 1 f o r j i n

s t a r t i n g _ l i n e s )
#Every ac t i ve AC must f l y exac t l y one ac t i ve l i n e
m. addConstrs ( quicksum ( x [ i , j ] f o r j i n s t a r t i n g _ l i n e s ) == 1 f o r i i n range ( len (

s t a r t i n g _ a i r c r a f t ) ) )
# f o r the f i r s t day we can only choose a f eas i b l e s t a r t i n g l i n e
i f day == Star t ingDay :

m. addConstrs ( quicksum ( x [ i , j ] f o r j i n Poss ib leS ta r tL ines [ s t a r t i n g _ a i r c r a f t [ i ] ] ) == 1
f o r i i n range ( len ( s t a r t i n g _ a i r c r a f t ) ) )

#ዅዅዅዅዅ Task Planning
#Every considered task can be planned at most once , a f t e r an ac t i ve l i n e or a f rozen l i n e
m. addConstrs ( quicksum ( y [ i , t , j ] f o r j i n Encountered_l ines ) <= 1 f o r i i n range ( len (

s t a r t i n g _ a i r c r a f t ) ) f o r t i n Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] )
# f o r nonዅs t a r t i n g AC: a l l t h e i r tasks must be planned
m. addConstrs ( quicksum ( y [ i , t , j ] f o r j i n Constructed_Routes [ a l l _ a i r c r a f t [ i ] ] ) == 1 f o r i

i n range ( len ( s t a r t i n g _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) f o r t i n non_s ta r t i ng_ task_se t [
a l l _ a i r c r a f t [ i ] ] )

# A l l tasks i n T_i which are due before a due date should be planned i f t ha t due date i s
c lose r than the end of the se lec ted l i n e

m. addConstrs (ዅ1000*quicksum ( y [ i , t , j ] *MS[ j ] f o r j i n Encountered_l ines ) <= Tasks [
s t a r t i n g _ a i r c r a f t [ i ] ] [ t ] [ ’ Task Due Date ’ ] ዅ ( quicksum ( x [ i , j ] * Lines [ j ] [ ’ EndDate ’ ] f o r
j i n s t a r t i n g _ l i n e s ) +2) f o r i i n range ( len ( s t a r t i n g _ a i r c r a f t ) ) f o r t i n Tasks [
s t a r t i n g _ a i r c r a f t [ i ] ] )

# A l l tasks i n T_i which are due before X f l i g h t hours should be planned i f the se lec ted
route i s longer than X f l i g h t hours .

m. addConstrs (ዅ1000*quicksum ( y [ i , t , j ] *MS[ j ] f o r j i n Encountered_l ines ) <= ( Tasks [
s t a r t i n g _ a i r c r a f t [ i ] ] [ t ] [ ’ Task FH Due ’ ] ዅ ( Fl ight_Hours_Recorded [ s t a r t i n g _ a i r c r a f t [ i
] ] + quicksum ( x [ i , j ] * Lines [ j ] [ ’ F l i g h t Hours ’ ] f o r j i n s t a r t i n g _ l i n e s ) ) ) f o r i i n
range ( len ( s t a r t i n g _ a i r c r a f t ) ) f o r t i n Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] )

# I f task t o f AC i i s scheduled , i t must be scheduled before the due date :
m. addConstrs ( y [ i , t , j ] * Lines [ j ] [ ’ EndDate ’ ]+1 <= Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] [ t ] [ ’ Task Due

Date ’ ] f o r i i n range ( len ( s t a r t i n g _ a i r c r a f t ) ) f o r t i n Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ]
f o r j i n Encountered_l ines )

#For non s t a r t i n g AC as we l l :
m. addConstrs ( y [ i , t , j ] * Lines [ j ] [ ’ EndDate ’ ]+1 <= Al lTaskData [ a l l _ a i r c r a f t [ i ] ] [ t ] [ ’ Task Due

Date ’ ] f o r i i n range ( len ( s t a r t i n g _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) f o r t i n
non_s ta r t i ng_ task_se t [ a l l _ a i r c r a f t [ i ] ] f o r j i n Constructed_Routes [ a l l _ a i r c r a f t [ i ] ] )

# I f task t o f AC i i s scheduled , i t must be scheduled before the due f l i g h t hours :
#This cons t r a i n t i s broken up in the f rozen l i n e s and the ac t i ve l i nes , as they requ i re

d i f f e r e n t f o rmu la t i ons
f o r i i n range ( len ( s t a r t i n g _ a i r c r a f t ) ) :

f o r t i n Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] :
# f rozen l i n e s :

m. addConstrs ( y [ i , t , j ] * Flown_FH_af ter_ l ine [ j ] <= Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] [ t ] [ ’
Task FH Due ’ ] f o r j i n f r ozen_ l i nes )

# ac t i ve l i n e s :
m. addConstrs ( y [ i , t , j ] * ( Fl ight_Hours_Recorded [ s t a r t i n g _ a i r c r a f t [ i ] ] + Lines [ j ] [ ’

F l i g h t Hours ’ ] ) <= Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] [ t ] [ ’ Task FH Due ’ ] f o r j i n
s t a r t i n g _ l i n e s )

# f o r nonዅs t a r t i n g AC as we l l :
m. addConstrs ( y [ i , t , j ] * Flown_FH_af ter_ l ine [ j ] <= Al lTaskData [ a l l _ a i r c r a f t [ i ] ] [ t ] [ ’ Task FH
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Due ’ ] f o r i i n range ( len ( s t a r t i n g _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) f o r t i n
non_s ta r t i ng_ task_se t [ a l l _ a i r c r a f t [ i ] ] f o r j i n Constructed_Routes [ a l l _ a i r c r a f t [ i ] ] )

#Only plan a task a f t e r a l i n e i f the AC has f lown tha t l i n e
#Again we need to break up between f rozen l i n e s and ac t i ve l i n e s
f o r i i n range ( len ( s t a r t i n g _ a i r c r a f t ) ) :

# f rozen l i n e s
m. addConstrs ( len ( Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] ) *HAFL[ s t a r t i n g _ a i r c r a f t [ i ] ] [ j ] >=

quicksum ( y [ i , t , j ] f o r t i n Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] ) f o r j i n f r ozen_ l i nes )
# ac t i ve l i n e s
m. addConstrs ( len ( Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] ) *x [ i , j ] >= quicksum ( y [ i , t , j ] f o r t i n

Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] ) f o r j i n s t a r t i n g _ l i n e s )

#Capaci ty cons t r a i n t :
f o r d i n range ( Star t ingDay , Star t ingDay+Planning_hor izon ) :

m. addConstr ( quicksum ( y [ i , t , j ] * Tasks [ a c t i v e _ a i r c r a f t [ i ] ] [ t ] [ ’TaskMH ’ ] f o r i i n range (
len ( s t a r t i n g _ a i r c r a f t ) ) f o r j i n Encountered_lines_ending_each_day [ d ] f o r t i n
Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] ) + quicksum ( y [ i , t , j ] * Al lTaskData [ a l l _ a i r c r a f t [ i ] ] [ t ] [
’TaskMH ’ ] f o r i i n range ( len ( s t a r t i n g _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) f o r j i n
Frozen_l ine_endings_for_non_star t ing_AC [ a l l _ a i r c r a f t [ i ] ] [ d ] f o r t i n
non_s ta r t i ng_ task_se t [ a l l _ a i r c r a f t [ i ] ] ) <= Sta t ion_Capac i ty )

#Ca lcu la te the l o s t f l y i n g hours to help the ob j e c t i v e f unc t i on
# ac t i ve l i n e s
f o r i i n range ( len ( s t a r t i n g _ a i r c r a f t ) ) :

f o r j i n s t a r t i n g _ l i n e s :
f o r t i n Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] :

m. addConstr ( LFH1_ac [ i , t , j ] == Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] [ t ] [ ’ Task FH Due ’ ]ዅ
( Fl ight_Hours_Recorded [ s t a r t i n g _ a i r c r a f t [ i ] ] + Lines [ j ] [ ’ F l i g h t Hours ’ ] ) )

m. addConstr ( LFH2_ac [ i , t , j ] == average_FH_per_day * ( Tasks [ s t a r t i n g _ a i r c r a f t [ i
] ] [ t ] [ ’ Task Due Date ’ ] ዅ( L ines [ j ] [ ’ EndDate ’ ]+1 ) ) )

m. addConstr ( LFH3_ac [ i , t , j ] == min_ ( LFH1_ac [ i , t , j ] , LFH2_ac [ i , t , j ] ) )
f o r j i n f r ozen_ l i nes :

f o r t i n Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] :
m. addConstr ( LFH1_fr [ i , t , j ] == Tasks [ s t a r t i n g _ a i r c r a f t [ i ] ] [ t ] [ ’ Task FH Due ’ ] ዅ

Flown_FH_af ter_ l ine [ j ] )
m. addConstr ( LFH2_fr [ i , t , j ] == average_FH_per_day * ( Tasks [ s t a r t i n g _ a i r c r a f t [ i

] ] [ t ] [ ’ Task Due Date ’ ] ዅ( L ines [ j ] [ ’ EndDate ’ ]+1 ) ) )
m. addConstr ( LFH3_fr [ i , t , j ] == min_ ( LFH1_fr [ i , t , j ] , LFH2_fr [ i , t , j ] ) )

# f o r nonዅs t a r t i n g a i r c r a f t as we l l
f o r i i n range ( len ( s t a r t i n g _ a i r c r a f t ) , len ( a l l _ a i r c r a f t ) ) :

f o r j i n Constructed_Routes [ a l l _ a i r c r a f t [ i ] ] :
f o r t i n non_s ta r t i ng_ task_se t [ a l l _ a i r c r a f t [ i ] ] :

m. addConstr ( LFH1_fr [ i , t , j ] == Al lTaskData [ a l l _ a i r c r a f t [ i ] ] [ t ] [ ’ Task FH Due ’ ]
ዅ Flown_FH_af ter_ l ine [ j ] ) # l o s t f l y i n g hours due to task being executed
before remaining l ega l FH

m. addConstr ( LFH2_fr [ i , t , j ] == average_FH_per_day * ( Al lTaskData [ a l l _ a i r c r a f t [ i
] ] [ t ] [ ’ Task Due Date ’ ] ዅ( L ines [ j ] [ ’ EndDate ’ ]+1 ) ) ) #Lost f l y i n g hours due
to task being executed before i t s due date

m. addConstr ( LFH3_fr [ i , t , j ] == min_ ( LFH1_fr [ i , t , j ] , LFH2_fr [ i , t , j ] ) )

#FORECAST Cons t ra in ts
#Forecast ing cons t r a i n t s should not be inc luded f o r the l a s t day because they do not make

sense and even give e r r o r s
i f day < ( Star t ingDay + Planning_hor izon ዅ1) :

#Every f u t u r e l i n e should be assigned exac t l y once :
m. addConstrs ( quicksum (q [ i , k ] f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) ) == 1 f o r k i n

Cons ide red_ fu tu re_ l i nes_ l i s t ed )
# the connect ion cons t r a i n t should fo rce every considered f u t u r e l i n e to be assigned

to an AC
f o r i i n range ( len ( a c t i v e _ a i r c r a f t ) ) :

f o r d i n range ( day+1 ,day+ fo recas t i ng_pe r i od +1) :
i f d < Star t ingDay + Planning_hor izon :

m. addConstr ( quicksum (q [ i , k ] f o r k i n Considered_Future_Lines [ d ] ) ==
quicksum ( x [ i , j ] f o r j i n ac t i ve_connec t ions [ d ] ) + quicksum (HAFL[
a c t i v e _ a i r c r a f t [ i ] ] [ p ] f o r p i n f rozen_connect ions [ d ] ) + quicksum (q [ i
, k ] f o r k i n fu tu re_connec t ions [ d ] ) )

m. opt im ize ( )
#Save rou t i ng so l u t i o n and prepare f o r next day i t e r a t i o n
l i n e _ so l u t i o n = m. ge tA t t r ( ’ x ’ , x )
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Current_Rout ing_Solu t ion = [ ( i , j ) f o r ( i , j ) i n l i n e _ s o l u t i o n i f l i n e _ s o l u t i o n [ i , j ] > 0 . 9 ]
# t h i s r ou t i ng w i l l be f rozen

task_so lu t i on = m. ge tA t t r ( ’ x ’ , y )
Maintenance_Planning_Solut ion = [ ( i , t , j ) f o r ( i , t , j ) i n t ask_so lu t i on i f t a sk_so lu t i on [ i ,

t , j ] > 0 . 9 ]
f u t u r e _ l i n e _ so l u t i o n = m. ge tA t t r ( ’ x ’ , q )
Future_Rout ing_Solu t ion = [ ( i , k ) f o r ( i , k ) i n f u t u r e _ l i n e _ so l u t i o n i f

f u t u r e _ l i n e _ so l u t i o n [ i , k ] > 0 . 9 ]

# i need to update : f rozen_ l i nes , F l ight_hours_recorded , const ruc ted_route , HAFL and
s t a r t i n g _ a i r c r a f t l i s t

f o r i , j i n Current_Rout ing_Solu t ion :
f r ozen_ l i nes . append ( j ) #update the f rozen l i n e s
HAFL[ s t a r t i n g _ a i r c r a f t [ i ] ] [ j ] = 1 #update HAFL
Constructed_Routes [ s t a r t i n g _ a i r c r a f t [ i ] ] . append ( j ) #update the const ruc ted routes
Fl ight_Hours_Recorded [ s t a r t i n g _ a i r c r a f t [ i ] ] += Lines [ j ] [ ’ F l i g h t Hours ’ ] #update the

number o f FH each AC has recorded

f o r i i n a l l _ a i r c r a f t :
Most_Recent_Maint_Schedule [ i ] = [ ] # rese t the maint schedule o f the ac t i ve AC so

tha t we can f i l l i t i n again

f o r i , t , j i n Maintenance_Planning_Solut ion :
Most_Recent_Maint_Schedule [ a l l _ a i r c r a f t [ i ] ] . append ( [ t , j ] ) # r ebu i l d the updated

maintenance schedule

#Now I need to spec i f y how many f l i g h t hours were f lown a f t e r each l i n e i n the f rozen
l i nes , f o r f u t u r e p lann ing needs

f o r i i n TailNumbers : # f o r every AC
f o r m in range ( len ( Constructed_Routes [ i ] ) ) : # f o r every l i n e t ha t i t has been assigned

so f a r
t he_ l i ne = Constructed_Routes [ i ] [m] # i d e n t i f y the l i n e
f l own_ l i nes_be f o r e_ i t = Constructed_Routes [ i ] [ : (m+1) ] # i d e n t i f y which l i n e s are

assigned to the AC before the considered l i n e
Flown_FH_af ter_ l ine [ t he_ l i ne ] = sum ( [ Lines [ b ] [ ’ F l i g h t Hours ’ ] f o r b i n

f l own_ l i nes_be f o r e_ i t ] ) #determine how many FH are f lown before the l i n e
s t a r t s

#Keep t rack o f the cu r ren t scores o f the routes
f o r i i n a l l _ a i r c r a f t :

MaintScore [ i ]=0 # rese t the score f o r the ac t i ve AC cause we are going to r eca l cu l a t e
them

f o r t , j i n Most_Recent_Maint_Schedule [ i ] : # i t e r a t e through the planned maintenance
f o r AC i
Score_days = ( Al lTaskData [ i ] [ t ] [ ’ Task Due Date ’ ] ዅ ( L ines [ j ] [ ’ EndDate ’ ]+1 ) ) *

average_FH_per_day #Lost f l y i n g hours due to task being executed before i t s
due date

Score_FH = Al lTaskData [ i ] [ t ] [ ’ Task FH Due ’ ] ዅ Flown_FH_af ter_ l ine [ j ] # l o s t f l y i n g
hours due to task being executed before remaining l ega l FH

overa l l _sco re = Al lTaskData [ i ] [ t ] [ ’TaskMH ’ ] *min ( Score_days , Score_FH )
MaintScore [ i ] += ove ra l l _sco re

#Now to determine the new ac t i ve a i r c r a f t f o r the next i t e r a t i o n
s t a r t i n g _ a i r c r a f t = [ ]
f o r i t i n Constructed_Routes :

next_act ive_day = Lines [ Constructed_Routes [ i t ] [ ዅ 1 ] ] [ ’ EndDate ’ ] + 1
i f next_act ive_day == day + 1:

s t a r t i n g _ a i r c r a f t . append ( i t )
# the t r a n s i t AC f o r the f o l l ow i ng i t e r a t i o n s
t r a n s i t _ a i r c r a f t = [ ]
f o r i t i n Constructed_Routes :

i f L ines [ Constructed_Routes [ i t ] [ ዅ 1 ] ] [ ’ EndDate ’ ] >= day+1 and Lines [ Constructed_Routes
[ i t ] [ ዅ 1 ] ] [ ’ EndDate ’ ] < day+1+ fo recas t i ng_pe r i od :
t r a n s i t _ a i r c r a f t . append ( i t )

a c t i v e _ a i r c r a f t = s t a r t i n g _ a i r c r a f t + t r a n s i t _ a i r c r a f t
n on_ s t a r t i n g _a i r c r a f t = [ ]
f o r i i n TailNumbers :

i f i not i n s t a r t i n g _ a i r c r a f t :
n o n_ s t a r t i n g _a i r c r a f t . append ( i )

a l l _ a i r c r a f t = s t a r t i n g _ a i r c r a f t + non_ s t a r t i n g _a i r c r a f t
#determine the tasks t ha t the nonዅac t i ve AC have planned and w i l l need to rep lan next
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i t e r a t i o n
f o r i i n n on_ s t a r t i n g _a i r c r a f t :

non_s ta r t i ng_ task_se t [ i ] = [ t f o r ( t , j ) i n Most_Recent_Maint_Schedule [ i ] ]

# P r i n t the so l u t i o n scores
p r i n t ( ’ F i na l Scores : ’ + s t r ( MaintScore ) )
p r i n t ( ’ F i na l To ta l Score : ’ + s t r (sum( MaintScore . values ( ) ) ) )
stopwatch_end = t ime . t ime ( )ዅs topwatch_s ta r t
p r i n t ( ’ To ta l Elapsed t ime : ’+ s t r ( stopwatch_end ) )
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