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Improved Generalization in Semi-Supervised
Learning: A Survey of Theoretical Results

Alexander Mey, Marco Loog

Abstract—Semi-supervised learning is the learning setting in which we have both labeled and unlabeled data at our disposal. This
survey covers theoretical results for this setting and maps out the benefits of unlabeled data in classification and regression tasks. Most
methods that use unlabeled data rely on certain assumptions about the data distribution. When those assumptions are not met,
including unlabeled data may actually decrease performance. For all practical purposes, it is therefore instructive to have an
understanding of the underlying theory and the possible learning behavior that comes with it. This survey gathers results about the
possible gains one can achieve when using semi-supervised learning as well as results about the limits of such methods. Specifically, it
aims to answer the following questions: what are, in terms of improving supervised methods, the limits of semi-supervised learning?
What are the assumptions of different methods? What can we achieve if the assumptions are true? As, indeed, the precise
assumptions made are of the essence, this is where the survey’s particular attention goes out to.

F

1 INTRODUCTION

For many applications, gathering unlabeled data is faster
and cheaper than gathering labeled data. The goal of semi-
supervised learning (SSL) is to combine both and design
classification and regression rules that outperform schemes
only based on labeled data. SSL does come, however, with
an inherent risk: including unlabeled data can also degrade
performance [1], [2]. Studying and understanding SSL from
a theoretical point of view allows one to formulate the
necessary assumptions, the expected improvements, and
the limitations of the different methods. Based on such un-
derstanding, one can formulate recommendations for using
SSL with the aim of avoiding any decrease in performance
as good as possible. Our review provides this theoretical
viewpoint, offering a much-needed complement to claims
that there are no performance guarantees (see, for instance,
[3, page 380]). We study the relevant, theoretical papers
in detail, present their main findings, and point out con-
nections. Next to theoretical guarantees of some specific
learners, we also cover the theoretical limits of SSL.

1.1 Common Assumptions

Much in this survey revolves around making precise what
assumptions underlie which results. Foregoing such preci-
sion for now, this subsection introduces the most common
ones and sketches their relation. Conceptually, most as-
sumptions restrict how the data may be labeled, given a spe-
cific domain distribution. This concept will often reappear
in this survey, Subsection 2.1.6 in particular investigates the
effectiveness of SSL if such assumptions are not made.

One of most used assumptions is the smoothness assump-
tion [4, Section 1.2]. It roughly states that two input points
that are close together, have a high likelihood to share the
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same output. The important word is close. One could call
two points close, when their Euclidean distance is small,
but one can think of more sophisticated ways to define
closeness. One way is through the cluster assumption. The
idea is that we can use the unlabeled data to find clusters
and call two points close if they are in the same cluster.
Subsection 5 formalizes this and shows the assumption to
be very strong, i.e., it enables exponentially fast learning.

Low-density separation can be seen as a specific instance
of the cluster assumption, but giving rise to different algo-
rithms. It states that the decision boundary should lie in
a region with low density. Indeed, if we define clusters as
regions of high density and would like to separate those, the
decision boundary should automatically be in a low-density
region. Again, the unlabeled data helps, as we can actually
identify the low-density regions as, for example, formalized
through the transductive support vector machine [5], [6].

The manifold assumption is related to the above concepts,
but has led to confusion as there are two alternative def-
initions. The first is best explained with a quote from [7]:
“We will assume that if two points x1, x2 ∈ X are close
in the intrinsic geometry of P(X), then the conditional
distributions P(y|x1) and P(y|x2) are similar.” The manifold
refers to this intrinsic geometry of P(X). Importantly, note
that this is the same as the cluster assumption, the cluster is
formalized as the manifold geometry given by P(X). An
alternative definition has, for example, been given in [4,
Section 1.2.3]: “The (high-dimensional) data lie (roughly)
on a low dimensional manifold.” Note that this definition
does not not restrict how one may label the data, given the
domain distribution. Although a low-dimensional manifold
can help to avoid the curse of dimensionality, Subsection
2.1.5 reveals that such knowledge does not bring any ad-
ditional advantage regarding worst-case performance rates,
also called minimax rates. If not stated otherwise, the first
definition is used.

There are but few assumptions that really diverge from
the above concepts. A notable exception is the multi-view
assumption, which essentially states that one can split the

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3198175

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Delft Library. Downloaded on September 13,2022 at 13:54:17 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, ZED 2020 2

feature space into two subspaces with each subspace being
sufficient to solve the learning problem. Subsection 4.2 cov-
ers one formalization and explains the intuition of how this
assumption can help the learning process.

What all of those assumptions have in common is that
it is unclear if we can effectively verify them, or if for
successful semi-supervised learning they have to be known
to hold in advance, see also Section 7.4.

1.2 Outline
Section 2 discusses results on the limits of SSL, which
typically arise form specific assumptions about the model
or the data generation process. As opposed to provably
limited improvements, this same section presents three set-
tings where the improvements of SSL are unlimited, i.e.,
where a semi-supervised learner can learn the problem,
while no supervised learner (SL) can. Section 3 investigates
what is possible with some specific methods that exploit
unlabeled data without making further assumptions on the
data distribution. Section 4 treats semi-supervised learners
that make weak assumptions on the data distribution, in
the sense that the resulting learner cannot get a learning
rate faster than 1√

n , with n the number of labeled samples.1

Here, improvements are given by a constant. Section 5 then
discusses learners that use strong assumptions, providing
converge exponentially fast to the best classifier in a given
class, i.e., the learning rate is of the order e−n. This section
also argues that there is not necessarily a principled qualita-
tive difference in weak and strong assumptions, but rather
a subtle quantitative difference. Subsequently, Section 6
presents results in the transductive setting where one is only
interested in the labels of the unlabeled data available. The
same section present a line of research that aims to construct
semi-supervised learners that are never worse than their
supervised counterparts. Finally, Section 7 discusses the
overall results and conclude with what we see as the current
challenges in the field. Next to that, it reconsiders what
it means to use assumptions and the problems that come
with it. This final section also makes note of the absence of
deep learning from this review. Before turning to Section 2,
the next subsection briefly introduces the formal learning
framework that is assumed in most of the remainder.

1.3 The Learning Framework
We typically present results, describing the performance of
semi-supervised learners, in the language of PAC-learning.2

Unless specified otherwise, we consider a standard statis-
tical learning setting: we are given a feature space X and
an output space Y , together with an unknown distribution
P on X × Y . With slight abuse of notation, we write P(X)
and P(Y) for the marginal distributions on X and Y . Similar
conventions are used for conditional distributions.

1. The learning rate is the rate at which a learner converges to the best
classifier in a given class. Without further assumptions, the standard
rate of the order 1√

n follows from classic learning results [5], [8], [9].
2. PAC-learning stands for Probably Approximately Correct-learning.

This framework studies how far a trained classifier is off from the
best classifier in a class given a certain amount of labeled data. Good
introductions to this framework can be found in [8] and [9]. For
completeness, Definition 1 introduces the notion of sample complexity.
PAC-learnable means that the sample complexity is always finite.

We consider the setting in which we have observed
a labeled n-sample Sn = ((x1, y1), . . . , (xn, yn)) and an
unlabeled m-sample Um = (xn+1, . . . , xn+m), where each
(xi, yi) for 1 ≤ i ≤ n and each xj for n + 1 ≤ j ≤ n + m
is identically and independently distributed according to
P. One then chooses a hypothesis class H, where each
h ∈ H is a mapping h : X → Y , and a loss function
l : Y × Y → R. A (semi)-supervised learner B is a map
that receives as input the labeled (and unlabeled) sample
Sn, Um and maps to hypothesis h, so B(Sn, Um) ∈ H. A
strictly supervised learner receives an empty second input.
Unless specified otherwise, we assume for classification that
Y = {−1,+1} and the loss is the 0-1 loss: l(y, ŷ) = I{y 6=ŷ}.
For the regression task, we assume that Y = R and consider
the standard squared loss: l(y, ŷ) = (y− ŷ)2. Based on the
n labeled and m unlabeled samples, the aim is to find an
h ∈ H such that the risk R(h) := EX,Y [l(h(X), Y)] is small.

Whenever we have any quantity A that depends on the
distribution P, we write Â for an empirically estimated
version of A. For example, given a labeled sample Sn, we
write R̂(h) = 1

n ∑n
i=1 l(h(xi), yi) for the empirical risk of

h ∈ H measured on Sn. It should be clear from the context
on which sample we measure the loss.

Finally we denote by m(· · · ) and mSSL(· · · ) the super-
vised and semi-supervised sample complexity, as defined in
the appendix.

2 POSSIBILITIES AND IMPOSSIBILITIES

In SSL, we want to use information about the distribution on
X to improve learning. It is not directly clear, however, that
this information is useful at all. Various works formalize the
idea of using unlabeled data and subsequently investigate
situations where unlabeled data cannot help or where it, in
fact, can. This section follows the same division between im-
possibility (Subsection 2.1) and possibility (Subsection 2.2).
The latter presents three specific settings where unlabeled
data can, in fact, give unlimited improvement, i.e, no su-
pervised learner can PAC-learn in the situation considered,
whereas some semi-supervised learner can.

We note that the negative results often assert an inde-
pendence between the posterior probability P(Y|X) and
the marginal distribution P(X). This does, however, not
directly mean that unlabeled data is useless, as we are
usually not only interested in P(Y|X) but in the complete
risk EX,Y [l(h(X), Y)] of a classifier h, which does depend
on P(X) [10, Subsection 5.1.2]. Subsections 3.1 and 3.2, for
example, present works that show risk improvements even
when P(Y|X) and P(X) are independent.

2.1 Impossibility Results
The results covered in this subsection show, in different
settings, that semi-supervised learning is inherently impos-
sible. While the titles in the following section indicate the
setting that renders semi-supervised learning impossible,
we often reference later sections that explicitly exclude
this setting to generate positive results. Next to this, this
section presents results that demonstrate the limits of semi-
supervised learning methods when no particular assump-
tions about the data distribution are made (cf. Subsection
1.1).
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2.1.1 Due to Data Generation Process
Ref. [11] looks at a simple data generation model and inves-
tigates how prior information about the data distribution
changes our posterior belief about the model if the prior
information is included in a Bayesian fashion. To use the
Bayesian approach, the data is assumed to be generated in
the following manner. Firstly, the distribution P comes from
a model class with parameters µ and θ. Subsequently, values
µ ∼ Pµ and θ ∼ Pθ are sampled independently after which
the data is generated by gathering samples x ∼ P(X|µ) with
corresponding labels y ∼ P(Y|X, θ), see also Fig. 1.

µ θ

X Y

Fig. 1: Data generation process used in [11].

The goal is to infer θ from a finite labeled sample
Sn = (xi, yi)1≤i≤n. It can be easily shown that P(θ|Sn) is
independent of any finite unlabeled sample and µ itself.
In other words: unlabeled information does not change the
posterior belief about θ given the labeled data Sn. A possible
solution is to assume a dependency between µ and θ. This
exact approach was chosen in [12, Example 1] to create a
setting where knowledge of the marginal distribution can
indeed help. In their example, the marginal distribution
completely determines the Bayes classifier. Therefore, a
semi-supervised learner exists that always has zero risk,
while any supervised learner has the standard learning
rate of 1√

n . Alternatively, we can also think about settings
where the data generation process from Figure 1 is reversed:
first sample a label y, and then sample a feature x from a
marginal distribution associated to y, a setup we cover in
Section 5.1.

2.1.2 Due to Model Assumptions
Ref. [13] investigates when unlabeled data should change
our posterior belief about a model. In comparison to [11],
no data generation assumptions are made, but rather as-
sumptions about the model that is used. The author looks at
solutions derived from the expected squared loss between
this given model and the true desired label output. Splitting
the joint distribution P(X, Y|θ) of the model considered
as P(X, Y|θ) = P(Y|X, θ1, θ2)P(X|θ2, θ3), the conclusion is
reached that unlabeled data can be discarded if θ2, the
shared parameter between the label and marginal distribu-
tion, is empty.

Conversely, the effectiveness of methods like expectation
maximization [14] or the provable improvements of the
method from Subsection 6.2.2 stem from the fact that some
generative models cannot be decomposed in the above way.
Given, for example, data that is distributed as two Gaussian
distributions, where each distribution corresponds to a class.
This means that θ = {q, µ1, µ2, Σ1, Σ2}, with µi and Σi
(i ∈ {1, 2}) the class means and covariance matrices, and
q ∈ [0, 1] the class prior of, say, class 1. Here both P(Y|X, θ)
and P(X|θ) depend on the class means and covariances.

Earlier work, [15], distinguishes the same type of models,
but the impossibility is about the asymptotic efficiency

of semi-supervised classifiers. Specifically, it considers the
following two joint probabilities, which both provide gen-
erative models: parametric: P(X, Y|α) = P(X|α)P(Y|X, α);
semi-parametric: P(X, Y|α) = P(X)P(Y|X, α). The author
shows that the Fisher information I(α̂)unlab + lab of an max-
imum likelihood estimator (MLE) α̂ that takes labeled
and unlabeled data into account can be decomposed as
I(α̂)unlab +lab = I(α̂)unlab + I(α̂)lab. So, as long as unla-
beled data is available, the Fisher information of the semi-
supervised learner is larger compared to the supervised
learner, as the latter equals I(α̂)lab. It follows that the
semi-supervised learner is asymptotically more efficient,
although not necessarily strictly. In the parametric case,
I(α̂)unlab = 0 and the semi-supervised and supervised
estimator have the same asymptotic behavior. The primary
difference to the previous subsection is that now we have an
impossibility of gain in Fisher information, rather than one
of Bayes updating.

2.1.3 Because of Causal Direction
Ref. [16] analyzes a functional causal model, such as the
one in Fig. 2. Different learning scenarios are considered
under the assumption that the label is the cause C and the
feature is the effect E and vice versa. This model introduces
an asymmetry in cause and effect, since it leads to the fact
that P(C) and P(E|C) are independent, while P(E) and
P(C|E) are not. Assuming that X is the cause of the label
Y, the prediction P(Y|X) is independent of newly gained
information about P(X). This independence vanishes, if we
assume that the label Y is caused by X. This excludes the
possibility to improve the posterior prediction P(Y|X) with
the help of unlabeled data. However, as mentioned in the
beginning of Section 2, the unlabeled data may still help to
reduce the risk, as the risk always depends on P(X).

Nc Ne

C E
$

Fig. 2: Simple functional causal model [16]. The effect E is
caused by C given a deterministic mapping $. E and C are
influenced by noise variables NE and NC, respectively.

2.1.4 To Always Outperform Supervised Learner
Inspired by a successful approach for a generative linear
discriminant model from [17] (see Subsection 6.2.2), [18]
investigates a similar approach to find semi-supervised
solutions for discriminative models that are never worse
than their supervised counterparts. Discriminative models
are considered that use a monotonously decreasing loss
function, while the setting is transductive, i.e., interest is
in the performance of the model on the unlabeled data Um
only. (Subsection 6 discusses this setting in more detail.) The
work essentially shows that, under some mild conditions,
there is always a labeling of the unseen data Um such that
a semi-supervised learner performs worse on Um than the
supervised solution does. It is impossible, therefore, to guar-
antee that the semi-supervised solution always outperforms
the supervised solution.
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2.1.5 Only Knowing the Manifold
Ref. [19] shows that knowledge of the manifold alone, with-
out additional assumption, is not sufficient to outperform
a purely supervised learner (cf. Subsection 1.1 the second
definition of manifold assumption). It works in a regression
setting and extends work in [20], which introduces a su-
pervised learner that performs regression on an unknown
manifold, to show that there is a supervised learner that can
adapt to the dimension of the manifold and thus can achieve
worst case rates, also called minimax rates, equivalent to
a learner that directly works on the lower dimensional
manifold.

We note that [19] also shows that one can achieve essen-
tially faster rates by making a proper smoothness assump-
tion. A qualitatively very similar analysis of this is offered
in Subsection 5.4.

2.1.6 Not Making Additional Assumptions
Ben-David et al. [1] provide a series of investigations starting
from the conjecture that SSL is, in some sense, not possible
without any additional distributional assumptions, such as
those from Subsection 1.1. They hypothesize that, a semi-
supervised learner cannot have essentially better sample
complexity bounds than an SL (see Definitions 1 and 2). This
setting is essentially different from the previous subsections,
as there are no further restrictions on the model or the data
generation process. In the following two subsections, we
illustrate the precise idea of these conjectures. Additionally,
we clarify why they do not hold generally and in which
scenarios they are generally true. We start, however, with
the main contributions from [1].

The generic hypothesis is that the worst-case sample
complexity for any semi-supervised learner improves over a
supervised learner at most by a constant that only depends
on the hypothesis class. The first conjecture states this for
the realizable case.

Conjecture 1 ( [1, Conjecture 4]). For any hypothesis class H,
there exists a constant c(H) such that for any domain distribution
D on X it holds that

sup
h∈H

m(H, Dh, ε, δ) ≤ sup
h∈H

c(H)mSSL(H, Dh, ε, δ), (1)

for ε and δ small enough. Here Dh is the distribution on
X ×Y with marginal distribution D and conditional distribution
Dh(Y = h(x)|X = x) = 1.

The second states the same for the agnostic case, i.e., we
can replace Dh with any arbitrary distribution P.

Conjecture 2 ( [1, Conjecture 5]). For any hypothesis class H,
there exists a constant c(H) such that for any domain distribution
D

sup
P∈ext(D)

m(H, P, ε, δ) ≤ sup
P∈ext(D)

c(H)mSSL(H, P, ε, δ), (2)

for ε and δ small enough and where ext(D) is the set of all
distributions P on X × Y such that the marginal distribution
fulfills P(X) = D.

In other words, the paper conjectures that if we are given
a fixed domain distribution, one can always find a labeling
function (h in the realizable and P(Y | X) in the agnostic

case) for it such that the sample complexity gap between SL
and SSL can only be a constant. The paper proves these
conjectures for smooth distributions on the real line and
threshold functions in the realizable case and for threshold
functions and unions of intervals in the agnostic case.

We note that the sample complexity comparison is, by
construction, a worst case analysis. This means that in cases
where the target hypothesis behaves benign, we could still
get non-constant improvement. This is further explored in
Section 5. On another note, we can also ask the question
how good a constant improvement by itself can already be.
We elaborate on this in the discussion section.

Conjectures 1 and 2 are both not true in full generality,
which we will explain in the following subsections, but
slightly modified statements may be shown.

In the realizable case, [21] shows that Conjecture 1 is
true with a small alteration and when the hypothesis class
has finite VC-dimension: if H is even finite, the supervised
learner is allowed to be twice as inaccurate (note the 2ε in
Inequality (3) below). If H is not finite but with finite VC-
dimension, we get an additional term of log( 1

ε ) in Inequality
(4). [22] takes this idea a step further and shows that there
is a setting in which manifold regularization, which uses
the manifold assumption, obeys the limits stated by the
conjecture, even though in this case the domain distribution
carries information about the labeling function. Specifically,
[21] proves the following.

Theorem 1 ( [21, Theorem 1]). Let H be a hypothesis class such
that it contains the constant zero and constant one function. Then
for every domain distribution D and every h ∈ H, if H is finite,
then

m(H, Dh, 2ε, δ) ≤ O(ln |H|)mSSL(H, Dh, ε, δ), (3)

if H has finite VC-dimension, then

m(H, Dh, 2ε, δ) ≤ O(VC(H)) log
(

1
ε

)
mSSL(H, Dh, ε, δ).

(4)

Note that this statement holds for all Dh, so in particular
if we take the supremum over all h ∈ H as in Conjecture 1.
Ref. [23] shows that if the hypothesis class H is given by the
projections over {0, 1}d, there is a set of domain distribu-
tions such that any supervised algorithm needs Ω(VC(H))
as many samples as the semi-supervised counterpart, which
has knowledge of the full domain distribution. So in par-
ticular Inequality (4) is tight up to logarithmic factors.
This actually shows that the constant improvement can be
arbitrarily good, as we can increase the VC-dimension by
increasing the dimension [23, Proposition 4].

Regarding the agnostic case, Theorem 9 from [12] shows
Conjecture 2 with some small modifications and assump-
tions. Like Theorem 1 it assumes finite VC-dimension to-
gether with further mild assumptions on the domain distri-
bution D (while Conjecture 2 is formulated to hold for all
distributions D). Another difference is that they consider an
in-expectation and not a high-probability framework. The
intuition for that result is straightforward: if we allow all
labeling functions, i.e. consider the agnostic case, there is no
label information about the support of X that we did not
observe yet. Finding the labels for this part is equally slow
for supervised and semi-supervised learners.
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In the case of a hypothesis class with infinite VC-
dimension, however, both conjectures cease to hold, also for
the slightly altered formulations. This is the case because
we can start with a class that has infinite VC-dimension,
and thus cannot be learned by a supervised learner. A semi-
supervised learner, however, can restrict this class in a way
such that it has finite VC-dimension. We elaborate on this in
the next subsection where we collect three different setups
in which a semi-supervised learner can PAC-learn, while a
supervised learner cannot.3

2.1.7 Not Restricting Possible Labeling Functions

We end with a related negative result from Ref. [23], which
shows that if the domain X is finite and we allow all
deterministic labeling functions on it, no semi-supervised
learner can improve over a supervised learner that achieves
0 training error in the realizable PAC-learning framework,
not even by a constant. The supervised learner is, however,
to be allowed twice as inaccurate and twice as unsure, which
is respectively captured by the 2ε and 2δ below.

Theorem 2 ( [23, Theorem 8]). Let X be a finite domain, and
let Hall = {0, 1}X be the set of all deterministic binary labeling
functions on X . Let A be any supervised learner that achieves 0
training error, P a distribution over X and ε, δ ∈ (0, 1). Then
m(A, Hall, P, 2ε, 2δ) ≤ mSSL(Hall, P, ε, δ).

While the more general Theorem 1 states that a semi-
supervised can still be better by a constant depending on the
hypothesis class, we find that in this setting one even loses
this advantage. The idea of the result is similar to Theorem
9 from [12], discussed above: if there is no restriction on
the labeling function it is difficult to learn the labels for the
unobserved support.

In the next subsection, we see that positive results are
still possible and present hypothesis classes on which semi-
supervised learners can be effective. Following the previous
result, it is not surprising, however, that those classes and
the domain distributions they may operate on are carefully
chosen.

2.2 On the Possibility of Semi-Supervised Learning

We consider three specific settings in which it can be
shown that a semi-supervised learner can learn, while a
SL cannot. We present the two works of [21] and [24],
these aim to answer Conjectures 1 and 2 covered in the
previous subsection. They show that there is a hypothesis
class H∗ and a collection of domain distributions D∗ such
that no supervised learner can learn H∗ uniformly over the
distributions ofD∗, while a semi-supervised learner that has
access to the domain distribution can learn H∗. As a third,
we present the work of [25] as we think it provides the
most insightful example of how a shift from not learnable
to learnable is possible when going from SL to SSL, even
though in there we assume that the domain distribution
restricts the possible labeling functions.

3. Here, PAC-learnability means m(H, ε, δ) is finite for all ε, δ > 0.

2.2.1 Proving the Realizable Case with a Discrete Set
Ref. [21] gives the first example that shows that Conjecture 1
does not hold in general. This is captured in the first theorem
to follow.

Theorem 3 ( [21, Theorem 2]). There exists a hypothesis class
H∗ and a family of domain distributions D∗ such that for every
D ∈ D∗,

mSSL(H∗, D, ε, δ) ≤ O
(

1
ε2 +

1
ε

log
(

1
ε

))
and, for all ε < 1

2 and δ < 1,

m(H∗, ε, δ) = sup
D∈D∗

m(H∗, D, ε, δ) = ∞.

In order for the semi-supervised learner to be able to
PAC-learn for all D ∈ D∗, it needs knowledge of the full
distribution D. (Although for each fixed D ∈ D∗, a finite
amount of unlabeled data suffices.) Since the supervised
learner can only collect labeled samples, it will never be able
to achieve this knowledge with a finite number of samples
and thus has an infinite sample complexity.

Let us give some intuition for [21]’s example, which is
also at the basis of the other results in this subsection. The
setup is as follows. The domain X consists of all sequences

x = (x1, x2, . . . , xl)

of arbitrary finite length l and xi ∈ {0, 1}. The distributions
D ∈ D∗ on X are such that there is a sequence

D(xσ(1) = 1) > D(xσ(2) = 1) > . . . ,

where σ is a random permutation of the indices of x, and
the distribution drops sufficiently quick in σ(i).4

The hypothesis class H∗ contains all hypotheses hi with
hi(x) = xi and the constant 0 hypothesis. Note that, al-
though the class has infinite VC-dimension, it still takes
some effort to show that no supervised learner can learn it
w.r.t. to all distributions in D∗. After all, the VC-dimension
could be finite over D∗. We want to sketch how the semi-
supervised learner can learn it. After fixing a D ∈ D∗ and
ε, δ > 0, we draw enough unlabeled samples to identify all
positions i ∈N such that xi is with a high probability 0. For
all those indices i we can remove hi from H∗ as the constant
0 hypothesis is good enough for predicting accurately. One
then shows that the remaining hypotheses in H∗ can be
learned from finitely many samples.

The foregoing example, like those that follow, are essen-
tially set up such that H and D have a certain link where
knowledge about D can actually give knowledge about H.
Note, however, that knowledge about D does not restrict
the set of possible labeling functions from H, but it helps to
identify which hypotheses can be safely ignored. Note also
that it is important that the admissible domain distributions
are restricted. If D∗ would also include distributions that
essentially put equal weight on all positions i, there would
be no position xi which are with high probability 0 and we
thus could not remove the corresponding hypotheses.

4. Note that with xσ(i) = 1 we mean the subset V ⊂ X with

V := {x = (x1, x2, . . . , xl) ∈ X |xσ(i) = 1}.
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2.2.2 Proving the Agnostic Case using Algebraic Varieties
Ref. [24] provides a different example of Theorem 3 for a
continuous space X , which may also be extended to the
agnostic case, and thus refuting Conjecture 2 in full gen-
erality. Here the set of admissible distributions are given by
specific manifolds. As such, they use the second, alternative,
manifold assumption as given in Subsection 1.1.

Theorem 4 ( [24, Theorem 5]). There exists a hypothesis class
Halg and a set of distributionsDalg such that, for every D ∈ Dalg,

mSSL(Halg, D, ε, δ) <
2
ε

log
2
δ

, (5)

and the supervised sample complexity is infinite, i.e.,

sup
D∈Dalg

m(Halg, D, ε, δ) = ∞. (6)

The hypothesis class Halg consists of all hypotheses that
have class label 1 on an algebraic set and 0 outside of
that set. This algebraic set can essentially be considered a
manifold of sorts. The hypotheses class is very rich and
has infinite VC-dimension. If, however, we restrict the set of
admissible domain distributions Dalg to be particular types
of algebraic sets, a semi-supervised learner with knowledge
of D ∈ Dalg can learn efficiently. We can think of Dalg as the
set of distributions that have support on a finite combination
of distinguishable algebraic sets V1, . . . , Vk. Once we know
that the distribution has support on V1, . . . , Vk, we only have
to figure out which of those algebraic sets have label 1 and
which have label 0. A semi-supervised learner can thus
reduce the class Halg by only considering the hypotheses
that have class label 1 on combinations from V1, . . . , Vk.
Since the set of all possible combinations is finite, a semi-
supervised learner can learn them with a sample complexity
bounded by Inequality (5).

The extension to the agnostic case might appear prob-
lematic at first, because the semi-supervised algorithm
restricts the hypothesis set Halg. To guarantee PAC-
learnability, we need to know that the best predictor from
Halg is still in this restricted set. But this is indeed the case,
because the set of domain distributions Dalg was exactly
created for that to hold. To show this, assume that the
distribution is supported on one irreducible algebraic set
V0. Our semi-supervised learner can now choose to label it
completely 1 or 0, where both options may lead to non-
zero error. But labeling it completely as either 1 or 0 is
already ideal, as using any algebraic set V1 ∈ Halg will by
construction be equal to V0 (which leads to label everything
as 1) or has an intersection of zero mass with V0 (which
leads to labeling almost everything as 0).

Interestingly, the findings above seems to contradict the
results from Subsection 2.1.5. [19] shows that a supervised
learner can also adapt to the underlying manifold. This
discrepancy is explained by the fact that [19] restricts the
target functions to be smooth, which presents the supervised
learner with a sufficiently easy problem. The work in this
section on the other hand confronts the supervised learner
with an impossible, meaning not PAC-learnable, task.

2.2.3 Enforcing Learnability with the Manifold Assumption
Ref. [25] provides a third example in which a semi-
supervised learner can effectively learn, while a supervised

-1

+1

(a)

-1

+1

(b)

Fig. 3: The shapes shown in (a) and (b) are two different
embeddings of a circle in the Euclidean plane. One half of
the circle is labeled +1, while the other half is labeled as −1.
Everything outside the circle is labeled +1.

Fig. 4: A schematic proof why the hypothesis set Hc has an
infinite VC-dimension. The embedded circle, its upper half
assigning points to +1 and its lower to −1, can label the
seven points correctly.

learner cannot. The motivation for this, however, was inde-
pendent of [1] and meant as a general theoretical analysis of
the manifold learning framework as introduced in [7]. Also,
their results are in-expectation, while the previous papers
give PAC bounds, i.e., they hold with high probability. The
work relies on the manifold assumption, which limits the
possible labeling functions, and thus is not a counterexam-
ple to 1. We believe, however, that it is the most intuitive
setting to understand why a supervised learner cannot
learn, while a semi-supervised learner can. Though the
paper presents the example in an in-expectation framework,
we alter the setup slightly and present it in the PAC learning
framework, which makes the comparison to the previous
sections easier.

The example starts by assuming that the admissible
domain distributions are given by the class of distributions
Pc that have support on embeddings of a circle in the
Euclidean plane (see Figure 3). The hypothesis class Hc
consists of all possible binary labelings of half circles, while
everything outside the circle is labeled as 1.5 The semi-
supervised learner that knows the specific embedding of
the circle only needs to find two thresholds on the given
circle. This is a hypothesis class with a VC-dimension of
2, which implies that the semi-supervised learner can learn
efficiently. In Figure 4, we illustrate in a schematic way why
Hc has an infinite VC-dimension and thus cannot be learned
by any supervised learner.

5. The labeling outside of the circle is a formality to ensure that
the supervised learner makes predictions for the whole space, as the
learner does not a priori know in which part of the space the circle is
embedded.
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3 LEARNING WITHOUT ASSUMPTIONS

As we have seen in the previous section, it can be difficult
to exploit unlabeled data not making additional assump-
tions. In fact, we saw that in various of these situations
one can show that unlabeled data cannot help at all. As
already mentioned in the introduction of Section 2, this
impossibility sometimes stems from the fact that we only
consider improvements of the estimate of the conditional
probability P(Y|X). This section looks at the complete risk
EX,Y [l(h(X), Y)], a quantity which is always influenced
by the marginal distribution P(X). Still, no additional as-
sumptions about the distribution P are considered and the
theoretical guarantees are weak accordingly.

Ref. [26] uses the unlabeled data to reweigh the labeled
points and show improvements in terms of asymptotic effi-
ciency. Interestingly, their result implies that strict improve-
ments are only possible under model miss-specification.
[27] employs the unlabeled data to determine the center of
the version space. The best possible improvements in the
learning rate as reported in that work are bounded by a
factor of 2.

3.1 Reweighing Labeled Data by True Marginal
The work in [26] proposes a semi-supervised learner that
has full knowledge of the marginal distribution P(X) in a
reweighing scheme, while X is assumed to be finite. [28]
extends this to non-discrete features spaces. [26] considers
models that directly estimate class probabilities p(y|x, θ),
measuring performance by the negative log-likelihood

l(x, y|θ) = − ln p(y|x, θ).

What is analyzed in the end is the asymptotic variance of
the model estimation, in which two models are compared:
the classical maximum log-likelihood estimate based on the
labeled data only, i.e.,

θSL = arg min
θ∈Θ

∑
(x,y)∈Sn

l(x, y|θ), (7)

and a semi-supervised learner that also takes the marginal
P(x) into account:

θSSL = arg min
θ∈Θ

∑
(x,y)∈Sn

P(x)
∑z∈Xn I{x=z}

l(x, y|θ). (8)

Note that the semi-supervised learner weighs each feature
with the true, instead of the empirical, distribution.

Theorem 5 ( [26, Theorem 1]). Let

θ∗ ∈ arg min
θ∈Θ

E[l(x, y|θ)]

and define the following matrices

H(θ∗) = EX

[
VY|X [∇θ l(X, Y|θ)|X]

]
(9)

I(θ∗) = EX,Y

[
∇θ l(X, Y|θ)∇T

θ l(X, Y|θ)
]

(10)

J(θ∗) = EX,Y

[
∇T

θ∇θ l(X, Y|θ)
]

, (11)

where VY|X is the variance over the conditional random variable
Y|X. Then θSL and θSSL are consistent and asymptotically normal
estimators of θ∗ with

√
n(θSL − θ∗)→ N (0, J−1(θ∗)I(θ∗)J−1(θ∗)) (12)

√
n(θSSL − θ∗)→ N (0, J−1(θ∗)H(θ∗)J−1(θ∗)) (13)

and θSSL is asymptotically efficient, meaning that it achieves
asymptotically the smallest variance of any unbiased estimator.

Asking now when θSSL dominates θSL, we get the sur-
prising answer that this actually happens when the model
is misspecified. It can certainly not happen, however, if
the model is well-specified. In the latter case—along with
some other regularity conditions, the MLE θSL is already
asymptotically efficient. Moreover, we have that H(θ∗) =
J(θ∗) = I(θ∗), which recovers the classical result that the
MLE is asymptotically normal with a covariance that equals
the inverse Fisher information matrix I(θ∗).

The paper examines, based on the logistic regression
model, when the difference between I(θ∗) and H(θ∗) is
particularly big and shows that this is the case the more
P(Y|X) is bounded away from 1/2, so in particular when
the Bayes error is small. Such requirement on P(Y|X) is
very similar to the Tsybakov-margin condition [29], which is
used in statistical learning to come to fast learning rates. In
Subsections 5.1 and 5.2, similar assumptions are presented
based on which particular semi-supervised learners can
converge exponentially fast to the Bayes error.

3.2 The Center of Version Space
Ref. [27] introduces a method for bounding the risk by using
unlabeled data to collect information about the agreement of
two classifiers. A semi-supervised estimator is then derived
as the hypothesis that minimizes this bound. Unfortunately,
the idea only really works in the realizable case. Although
we do not get a new algorithm for the agnostic case, the
paper presents novel bounds for supervised methods that
make use of the unlabeled data.

3.2.1 Realizable Case
The idea for the realizable case is to consider the version
space, i.e., the space that contains all hypotheses that have
no training error. The unlabeled data gives rise to a pseudo-
metric on this space by measuring the disagreement of
its hypotheses on this data. We are then going to take
the hypothesis that has the lowest worst-case disagreement
to all other hypothesis, amongst which must be the true
hypothesis, as we assume realizability. Let us now make
this more precise.

Given two hypotheses f , g ∈ H we define the disagree-
ment pseudo-metric d( f , g) as

d( f , g) = P( f (X) 6= g(X)). (14)

This metric is specifically useful in the semi-supervised case
since is does not depend on labels. We can approximate it
using its empirical version

d̂( f , g) =
1
m

n+m

∑
i=n

I{ f (xi)=g(xi)}. (15)

The version space is defined as H0 = {h ∈ H|R̂(h) = 0}. If
h0 is the true hypothesis, then we know that h0 ∈ H0 and
one can show that R(h) = d(h, h0) for all h ∈ H. This, in
turn, gets us to the following bound.

R(h) = d(h, h0) = d̂(h, h0) + (d̂− d)(h, h0)

≤ sup
g∈H0

d̂(h, g) + sup
g,g′∈H0

(d̂− d)(g, g′) (16)
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As Inequality (16) bounds the true risk of a hypothesis h,
we try to minimize this risk by choosing the hypothesis
that minimizes the right-hand side of Inequality (16). More
specifically, we choose the semi-supervised estimator to be
the so-called empirical center of the version space:

hSSL = arg inf
h∈H0

sup
g∈H0

d̂(h, g). (17)

With this we can of course only control the first term on
the right-hand side of Inequality (16). In a standard way, we
can bound the second term with concentration inequalities
derived from a Rademacher complexity for the space

G = {x 7→ I{ f (x)=g(x)}| f , g ∈ H0}.

Ultimately, this leads us to the result that with probability
at least 1− δ [27, Theorem 3]

R(hSSL) ≤

inf
h∈H0

sup
g∈H0

d̂(h, g) + empRad(G) + 3√
2

√
ln 2

δ

m
.

(18)

Note the two terms on the right-hand side of Inequality
(18) go to 0 for increasing m and that, in this case, we also
have that d̂( f , g) → d(g, g). So, ignoring that we only have
finitely many samples, we can compare the semi-supervised
learner (17) to purely supervised solutions. Note that in
the realizable case a purely supervised method would also
choose a hypothesis in H0. As the supervised learner hSL

has no additional information, we can always find a target
hypothesis h∗ such that

R(hSL) = sup
g∈H0

d(hSL, g) = d(hSL, h∗).

So the best bound for any supervised learner hSL is given by

R(hSL) ≤ sup
g∈H0

d( f , g).

The SSL bound (18), on the other hand, allows us to come
to the following bound:

R(hSSL) ≤ inf
h∈H0

sup
g∈H0

d(h, g),

which holds at least for m going to infinity.
From a geometric viewpoint, supg∈H0

d(hSL, g) is the
diameter of H0, while, infh∈H0 supg∈H0

d(h, g) is the radius.
As the difference between the radius and the diameter, with
respect to d, is at most 2, we find that the differences in the
SSL and SL risk bounds is at most a constant factor of 2.

3.2.2 Bounds for the General Case
In the agnostic case, we do not assume that the target
hypothesis is part of our hypothesis class. To still make use
of the considered disagreement pseudo-metric to come to
bounds, the author proposes the following general recipe.

The starting point is the observation that bounds for
randomized classifiers are generally tighter compared to
their deterministic counterparts [30], [31]. The idea is now
to use such a randomized classifier frand as a kind of anchor.
This anchor takes on a role similar to the target hypothesis in
the realizable case. To get a bound for a classifier f , we can
use the bound for the randomized classifier together with

a slack term that includes d̂( frand, f ). Depending on which
kind of randomized classifier we take, we obtain different
bounds. This includes for example PAC-Bayesian bounds
as well as bounds based on cross-validation and bagging
methods. The paper additionally derives an explicit cross-
validation bound, where the randomized classifier is given
by a uniform distribution over the classifiers obtained in the
multiple cross-validation rounds.

4 LEARNING UNDER WEAK ASSUMPTIONS

In the previous two sections, we investigated what is pos-
sible for semi-supervised learners when we do not have
any additional assumptions. Here we investigate what can
be achieved assuming, what we refer to as, weak assump-
tions. With weak assumptions we mean those that cannot
essentially change the learning rate of O( 1√

n ), but rather
give improvements by a constant which may depend on the
hypothesis class. In Section 5, we investigate what we have
to assume to actually escape the 1√

n regime.
We first cover the work of [32], as it provides a rather

general framework that allows one to analyze the learning
guarantees for various semi-supervised learners. This initial
paper shows that semi-supervised learners that fall in this
framework learn by a constant faster then supervised learn-
ers, where the constant depends on the hypothesis class and
the semi-supervised learner considered. We then cover, in
more detail, the idea of co-training. It can be studied within
the framework of [32], but we present some additional
details of interest not fully captured by this framework.
In particular, we present the work in [33], that formulates
the assumption of co-training in an information theoretical
framework, which allows one to precisely quantify the bias-
variance trade-off.

4.1 A General Framework for Weak Assumptions
Ref. [32] offers an elegant way to formalize different as-
sumptions in a general framework. Many existing methods
can be cast in this framework: transductive support vector
machines [6], [34], multi-view assumptions [33], [35], and
transductive graph-based methods [36] are just some exam-
ples. The idea is to introduce a function χ that measures
the compatibility between a hypothesis h and the marginal
distribution P(X). For example, we can deem a hypothesis h
compatible with a marginal distribution P(X), if its decision
boundary goes through low-density regions, encoding one
assumption explained in Subsection 1.1.

Although χ should connect the marginal distribution
P(X) to the compatibility of a hypothesis h, it is much
more useful to define χ for each point in the feature space
individually. This way we can estimate χ based on a finite
unlabeled sample, when we do not have access to the full
distribution P(X). Therefore χ is a mapping

χ : H ×X → [0, 1]. (19)

The compatibility measure χ then gives rise to the function

Runl(h) := 1−EX∼P(X)[χ(h, X)], (20)

which we refer to as the unsupervised loss. The aim is to
optimize it in addition to the loss on the labeled sample.
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Here, we focus on a single core theorem. The other
results in the paper are similar in flavor and mostly differ
in the realizability assumptions w.r.t. the unsupervised and
the supervised error made and the bounding techniques em-
ployed. The paper presents bounds derived from uniform
convergence as well as bounds based on covering numbers.
The theorem presented considers the double agnostic case
in which neither the labeled nor the unlabeled loss have to
be zero.

Theorem 6 ( [32, Theorem 10]). Let

h∗t = arg min
h∈H

[R(h)|Runl(h) ≤ t].

Then, given an unlabeled sample size of at least

64
ε2

2

(
2 max[VC(H), VC(χ(H))] ln

1
ε2

+ ln
1
δ

)
,

we have that

m(hSSL, H, ε, δ) ≤ 32
ε2

[
VC(H(t + 2ε2)) + ln

2
δ

]
, (21)

where hSSL is the hypothesis that minimizes R̂(hSSL) subject to
R̂unl(hSSL) ≤ t + ε, while H(t) := {h ∈ H|Runl(h) ≤ t}. Here
R̂ is the empirical risk measured with the sample Sn and R̂unl is
the empirical unlabeled risk measured on the sample Um.

We note that the original paper uses (exponentiated)
annealed entropy, see [5], instead of VC-dimension to mea-
sure complexity. To allow for an easier comparison to
other results and avoid additional notation, we express the
above theorem in terms of the standard VC-dimension. The
difference of the latter measure is that it is distribution
independent.

Let us briefly compare Theorem 6 to results from the
previous section. In particular, let us consider Conjecture
1 and the answers to this as found in Theorems 3 and
4. We know that in the purely supervised case, we can
achieve a similar sample complexity as in Equation (21)
by replacing VC(H(t + 2ε2)) with VC(H). As we know
that the complexity given by Equation (21) is tight up to
some constants (see also [8], Chapter 6), we know that the
sample complexity between a purely supervised learner and
the semi-supervised learner as defined in this paper cannot
differ by more thanO

(
VC(H)

VC(H(t+2ε2)

)
. So the gap in the learn-

ing rates is indeed given by a constant that only depends
on the hypothesis class as postulated by Conjecture 2. This
constant can, however, be infinite if VC(H) is infinite but
VC(H(t + 2ε2)) is finite. It is exactly this type of example,
as covered in Subsection 2.2, that refutes the conjecture.

Theorem 6 quantifies, to some degree, the fundamental
bias-variance trade-off in SSL when we rely on additional
assumptions. Employing a semi-supervised compatibility
function, we reduce the variance of the training procedure
as we effectively restrict the original hypothesis space H. If
the compatibility function does not match the underlying
problem however, we bias the procedure away from good
solutions at the same time.

4.2 Assuming that the Feature Space can be Split
In multi-view learning, incidentally also referred to as co-
regularization or co-training, one assumes that the feature

space X can be decomposed as X = X 1 × X 2 and each
partial feature space X 1,X 2 is, in principle, enough to learn.
In the early work on co-training, [35] uses the idea in a
web page classification set. One part of the features, say
X 1, is given by the text on the web page itself, while the
other one, X 2, is given by the anchor text of hyperlinks
pointing to the web page. The idea is that if both partial
features spaces have sufficient information about the correct
label, we expect that a correct classifier predicts the same
label given any of the two partial features. We can thus
discard classifiers that disagree on the two views, and this
disagreement can be measured with unlabeled data.

There are multiple theoretical results that pertain to this
approach. It can, for example, be analyzed in the frame-
work of the previous subsection. Alternatively, [37] and [38]
analyze a Rademacher complexity term under the multi-
view assumption, while [39] defines a kernel that directly
includes the assumption as a regularization term, and thus
find a RKHS where co-regularization automatically applies.
Here, we detail the approach of [33] as it ties in best with
the other results we present. In addition, [33]’s information
theoretic framework allows us to also analyze the penalty
one suffers if the assumption is not exactly true.

As above, we split the random variable X, which takes
values in X , into two: X = (X1, X2). Now, the multi-
view assumption from [33] can be formalized as follows:
let I(A; B|C) be the mutual information between random
variables A and B, conditioned on the random variable C.
We assume there exists an εinfo such that

I(Y; X2|X1) ≤ εinfo (22)

and
I(Y; X1|X2) ≤ εinfo. (23)

In words: once we know one set of features, the other does
not tell us much more about Y. Comparing this to co-
training, we can see it as a relaxation: assuming that each
view is already sufficient to fully learn, corresponds to an
εinfo that equals 0. If, however, εinfo > 0, we cannot learn
perfectly from one view.

Subsequently, we assume that we have for each view X1

and X2 a corresponding hypothesis set H1 and H2. We carry
out predictions with pairs of hypotheses

( f1, f2) ∈ H1 × H2.

The paper uses the notion of compatibility functions, as
generally defined through Equation (19). In particular, they
define the compatibility function

χ : H := H1 × H2 → [0, 1]

as
χ(h1, h2, x) := d( f1(x1), f2(x2)),

where d : Y × Y → [0, 1] is a specific pseudo-distance
measure that fulfills a relaxed triangle inequality and x =
(x1, x2) is a sample. In essence, the distance d measures how
much f1 and f2 agree on a sample x. For a given threshold
t ∈ R we then find the best pair of hypotheses based on the
empirical risk minimization problem

min
(h1,h2)∈H

n

∑
i=1

l(h1(x1
i ), yi) + l(h2(x2

i ), yi) (24)
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with additional constraint R̂unl(h1, h2) ≤ t.
The main theorem, which gives guarantees on the so-

lution found by the procedure above, needs the following
notation. Let β∗, β1

∗ and β2
∗ be the Bayes errors, correspond-

ing with the loss l, when learning from X1 × X2, X1 and X2,
respectively. Also set

εbayes = max{R( f 1
∗ )− β1

∗, R( f 2
∗ )− β2

∗},

where f i
∗ is the best predictor from Hi. Finally, recalling the

definition of Runl(h) from Equation (20), define

Ĥ(t) = {(h1, h2) ∈ H|R̂unl(h1, h2) ≤ t}.

Theorem 7 ( [33, Theorem 2]).6 Assuming the loss l is bounded
by 1, there exists a t ∈ R (depending among others on εinfo,
εbayes, and m), such that, if we have a labeled sample of size at
least m(Ĥ(t), ε, δ), it holds with probability at least 1− δ that

R(ĥ1) + R(ĥ2)

2
≤ β∗ + ε + εbayes +

√
εinfo. (25)

We can see now that the information theoretic assump-
tion allows us to describe the bias introduced when switch-
ing from the full hypothesis set H to the restricted one Ĥ(t).
In fact, this bias is given explicitly by

√
εinfo.

5 LEARNING UNDER STRONG ASSUMPTIONS

In the previous chapter, we analyzed assumptions that
only could give improvements in terms of a multiplicative
constant. These did not allow us to come to semi-supervised
learners that improve beyond the general learning rate of

1√
n . Here, we analyze assumptions, cf. Section 1.1, that en-

able us to escape this regime, even leading to exponentially
fast convergence in some cases.

To illustrate how such improvements are possible, as-
sume that one comes to a clustering based on all of the
data provided and assume that this clustering is correct,
i.e., each cluster corresponds mainly to one class. Under
this assumption, we only need enough labeled data to
identify which cluster belongs to which class, and this can
be done exponentially fast. The work in the current section
extends this idea in various ways and answers the following
questions. What if we have class overlap? What if there is
noise in the clusters? How can we go beyond classification
and deal with regression?

5.1 Assuming the Model is Identifiable

One of the classic analyses in semi-supervised learning deals
with identifiable mixture models and deals with a particular
notion of sample complexity [40]. As it turns out, the setting
is quite restrictive but can, as such, give exponentially fast
convergence to the Bayes risk. The outcome is very strong,
considering that the results covered in the previous sections
were essentially unable to improve upon the standard con-
vergence rate of 1√

n . Consider for instance Inequality (21)
after solving for ε.

The first key assumption to actually obtain these results
lies in the data generation process. First, the label is drawn

6. The theorem actually needs some additional regularity conditions.
These are not made explicit to aid in focusing on the main point.

with P(y = 1) = η and P(y = 0) = η̄. Then a feature
vector is drawn according to a density fy(x). Unlabeled
data is thus drawn from the mixture η f1 + η̄ f2. The sec-
ond key assumption is that the class of mixture models is
identifiable, i.e., we can infer the mixture model uniquely
given enough unlabeled data. After identifying the mixture,
we merely have to figure out how to label each part of the
two mixture components. Deciding between the remaining
alternatives can be done by a simple likelihood ratio test,
which converges exponentially fast to the Bayes risk in the
number of labeled samples n:

R(h)−min
h∈H

R(h)

≤ exp
(

n ln(2
√

µµ̄
∫ √

f1(x) f2(x)dx) + o(n)
) (26)

For the analysis it is necessary to assume that one has an
infinite amount of unlabeled data. The work is continued in
[41], where the authors consider cases where we already
have knowledge about the densities fy. [42] considers a
similar framework for the case where the marginal distri-
bution P(x) is unknown, and instead assume that P(x) can
be well estimated with a mixture of two spherical Gaussian
distributions.

The above work ties in with the impossibility result from
Subsection 2.1.1. Here, however, the data generating process
is reversed: the feature x depends on y and thus violates
the data generation of Figure 1 from 2.1.1, which led to an
impossibility result.

5.2 Assuming Classes are Clustered and Separated
Reference [43] presents explicit bounds on the generaliza-
tion error using an alternative formulation of the cluster
assumption. The approach closely resembles the work de-
scribed in the previous subsection and, similarly, enables
exponentially fast convergence under semi-supervision.

The work’s initial, elementary setup is that we are given
a collection of pairwise disjoint clusters C1, C2, . . . for which
we assume that the optimal labeling function

x 7→ sign(P(Y = 1|X = x)− 1
2 )

is constant on each cluster Ci. So the clusters have a label-
purity of some degree, which we can express as follows:

δi =
∫
Ci

|2P(Y = 1|X = x)− 1|dP(x). (27)

The cluster Ci is called pure if and only if δi = 1.
Assuming now that we know the clusters, we let hSSL

n (x)
be the majority voting classifier per cluster. More formally,
given a labeled sample Sn let X+

i := {(x, y) ∈ Sn|x ∈ Ci, y =
1} and similarly X−i := {(x, y) ∈ Sn|x ∈ Ci, y = −1}. Then
given a new data point x ∈ Ci we set

hSSL(x) =

{
1 if |X+

i | ≥ |X
−
i |

−1 if |X+
i | < |X

−
i |.

(28)

Note that this defines only a function on the clusters. The
paper argues, however, that unlabeled data cannot help
where no unlabeled data was observed. Consequently it
only analyses the possible gain from unlabeled data on
the clusters, avoiding the slow rates that we otherwise
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may obtain as explained in the penultimate paragraph from
Subsection 2.1.6. Thus the excess risk of interest is restricted
to the set C :=

⋃
Ci and so we consider the risk

EC(h) =
∫
C

|2P(Y = 1|X = x)− 1|I{h(x) 6=h∗(x)}dP(x),

where h∗ is the Bayes classifier. The following theorem
expresses the possible gain with respect to the expected
cluster excess risk.

Theorem 8 ( [43, Theorem 3.1]). Let (Ci)i∈I be a collection of
sets with Ci ⊂ X for all i ∈ I such that this collection fulfills
the above defined cluster assumption. Then the majority voting
classifier hSSL

n as defined above satisfies

ESn ,Um

[
EC(hSSL

n )
]
≤ 2 ∑

i∈I
δie

−nδ2
i

2 . (29)

That is, knowing the clusters, we recover the exponential
convergence in the labeled sample size as in Subsection 5.1.

The biggest effort of the paper goes into the definition
of clusters and the finite sample size estimation of such.
The derivations are rather extensive and, as in most of
the review, we limit ourselves here to a description of the
underlying intuition. To start with, one assumes that the
marginal distribution P(X) allows for a density function
p(x). One can then define the density level sets of X w.r.t.
a parameter λ > 0 as Γ(λ) := {x ∈ X | p(x) ≥ λ}. For
a fixed λ > 0, we think of a clustering essentially as path-
connected components of the density level sets Γ(λ), where
it is ensured that pathological cases are excluded. Estimating
the set Γ(λ) with finitely many unlabeled samples adds
a slack term to Inequality (29) that drops polynomially in
the unlabeled sample size. Therefore, to ensure that we
still can learn exponentially fast, the number of unlabeled
samples has to grow exponentially with the number of
labeled samples.

Finally note that the previous analysis is not a PAC-
analysis: the result in Inequality (29) is not over a worst case
distribution. Performing such worst case analysis, we may

for a given n chose a distribution with δi =
√

1
n . Plugging

this δi into Inequality (29), we observe that the exponential
rate actually turns into a slow rate (cf. Figure 1 from [44] for
a similar observation). One way to avoid this problem is to
assume that the posterior distribution P(Y | X) is bounded
away from 1

2 , which directly implies that we cannot chose
δi as above. Consequently, one may wonder if the PAC-
framework isn’t overly pessimistic, which is a topic we
return to briefly in the discussion.

5.3 Classes Clustered but not Necessarily Separated
Reference [45] propose yet another formalization of the clus-
ter assumption. More specifically, it is one that allows to dis-
tinguish cases where SSL does help and where not. This is
achieved by restricting the class of distributions P and then
investigating which of those distributions allow for success-
ful semi-supervised learning. The class P is constructed
such that the marginal distributions constitute of different
clusters that are at times easy to distinguish and in other
cases not. The marginal densities p(x) from P are given by
mixtures of K densities pk. That is, p(x) = ∑K

i=1 ak pk(x) with

ak > 0 and ∑K
i=1 ak = 1 and each pk has support on a set

Ck ⊂ X which fulfills particular regularity conditions. We
refer to these sets Ck as clusters and each of these is assumed
to have its own smooth label distribution function pk(y|x).
So with probability ak we draw from pk(x) and then label x
according to pk(y|x). We further only consider distributions
that lead to clusters with margin, with our without overlap,
of at least γ (see also Figure 5), and denote the resulting
class of distributions by P(γ).

(a) The clusters C1 and C2
are separated with margin
γ. The different decision re-
gions are just the clusters.

(b) Light blue is the cluster
overlap with margin γ. The
three colors constitute three
different decision sets.

Fig. 5: The idea of (a) a positive and (b) a negative γ-margin.

The clusters are not the main interest, but rather what
the authors call the decision sets. To define a decision set, we
take Cc

k to be the complement of Ck and, in addition, define
C¬c

k := Ck. Now, a set D ⊂ X is called a decision set if it
can be written as D =

⋂
k∈K

Cik
k with ik ∈ {c,¬c} for all k ∈ K.

See Figure 5(b) for an example. On the decision sets p(x, y)
is smooth as long as each pk(y|x) is smooth, while p(x, y)
is not necessarily smooth on each cluster, as it might exhibit
jumps at the borders. Consequently, knowing the decision
sets, one can use a semi-supervised learner that exploits the
smoothness assumption.

The main theorem answers the question whether one can
learn the decision sets from finitely many unlabeled points,
which is done with the help of a marginal density estimator
whose spacing is proportional to a parameter κ0.

Theorem 9 ( [45, Corollary 1]). Let E(h) = R(h) − R∗ be
the excess risk with respect to the Bayes classifier R∗. Assume
that E is bounded by Emax and that there is a learner hD

n that
has knowledge of all decision sets D and, additionally, fulfills the
excess risk bound

sup
P∈P(γ)

EP[E(hD
n )] ≤ ε2(n). (30)

Assume that |γ| > 6
√

dκ0

(
(ln m)2

m

) 1
d , then there exists an hSSL

n,m
such that

sup
P∈P(γ)

EP[E(hSS
n,m)] ≤ ε2(n)+

Emax

 1
m

+ 2κ0C
√

d(n + 1)
(
(ln m)2

m

) 1
d

 , (31)

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3198175

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Delft Library. Downloaded on September 13,2022 at 13:54:17 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, ZED 2020 12

where C ≥ 1 is a constant that depends on smoothness properties
of the boundary of the decision sets.

We immediately note the following. If the learner hD
n that

knows the decision sets has a convergence rate of ε2(n), it
follows from Inequality (31) that the unlabeled data needs
to increase with a rate of ε2(

1
n ) to ensure that the semi-

supervised learner has the same convergence rate as hD
n .

For example, if hD
n converges exponentially fast, we need

exponentially more unlabeled than labeled data, which cor-
responds exactly to the finding in the previous subsection.

All in all, the intuition behind the theorem is fairly
straightforward. The bigger γ, the less unlabeled samples
we need to estimate the decision sets D. Moreover, once we
know those sets, we can perform as well as hD

n . Now, to
analyze if a semi-supervised learner that first learns the de-
cision sets empirically has an advantage over all supervised
learners, we first find minimax lower bounds for all fully
supervised learners. We can then give upper bounds for a
specific semi-supervised learner and the conclusions follow
easily: for SSL to be useful, the parameter γ and the number
of unlabeled samples should be such that the fully super-
vised learner cannot distinguish the decision sets, while the
semi-supervised learner can. As a consequence, γ should
not be too big, because then the supervised learner can also
distinguish the decision sets. Of course, the unlabeled data
should not be too small, for then the semi-supervised learner
cannot distinguish the decision sets either.

To showcase specific differences between SSL and SL,
the authors assume that X = [0, 1]d and that the conditional
expectations EY∼pk(Y|X=x)[Y|X = x] are Hölder-α smooth
functions in x. Depending on γ, the paper presents cases
where SSL can be essentially faster than SL. In those cases,
the SL has an expected lower bound for the convergence rate
of n−

1
d while the convergence rate of the semi-supervised

learner is upper bounded by n−
2α

2α+d .

5.4 Smooth Regression Along a Manifold

As we elaborate on in the discussion section, an issue in
SSL is that most methods are based on assumptions on the
full distribution. The core problem is that we usually cannot
verify whether such assumptions hold or not. This is crucial
to know, since in case the assumption does not hold, it is
quite likely that we want to use a supervised learner instead.
The work of [46] is one of the few papers that touches on this
topic and introduces a semi-supervised learner that depends
on a parameter α, where α = 0 recovers a purely supervised
learner. The paper then gives generalization bounds for the
semi-supervised learner when we cross-validate α. As this
work gives a formalization of the manifold assumption and
uses regression, while most others deal with classification,
we decided for a fairly detailed presentation.

The authors use a version of the manifold assumption,
so we enforce our estimated regression function hSSL(x) to
behave smoothly in high density regions. The density of the
marginal distribution P(X) is measured with a smoothed
density function pσ(x)

pσ(x) :=
∫ 1

σd K
(
||x− u||

σ

)
dP(u), (32)

where K is a symmetric kernel on Rd with compact support
and σ > 0. Let Γ(x1, x2) be the set of all continuous paths
γ : [0, L(γ)] → Rd from x1 ∈ R to x2 ∈ R with unit speed
and where L(γ) is the length of γ. With this we can define a
new metric on Rd, i.e., the so-called α, σ-exponential metric,
that depends on an α ≥ 0 and the smoothed density pσ(x):

D(x1, x2) = inf
γ∈Γ

L(γ)∫
0

e−αpσ(γ(t))dt. (33)

First, note that α = 0 corresponds to the Euclidean distance.
Second, note that high values of pσ(x) on the path between
two points x1 and x2 lead to shorter distances between those
points in the new metric. This behavior gets of course more
emphasized with large α. If we assume that Q is another
kernel and we set Qτ(x) := 1

τd Q( x
τ ) we can define a semi-

supervised estimator as follows:

hSSL(x) :=
∑n

i=1 yiQτ(D̂(x, xi))

∑n
i=1 Qτ(D̂(x, xi))

. (34)

The estimator is a nearest-neighbor regressor, where neigh-
bors are weighted according to their distance in terms of
the previously defined exponential metric. The manifold
assumption is employed by restricting the analysis to a
class of distributions, P(α, σ, L), which only contains dis-
tributions such the regression task is L-Lipschitz w.r.t. the
α, σ-exponential metric.

The following theorems gives bounds on the squared
risk of hSSL under the assumption that sup

y∈Y
|y| = M < ∞.

Theorem 10 ( [46, Theorem 4.1]). Assume we have an un-
labeled sample size m large enough to ensure that that for all
P ∈ P(α, σ, L), P(|| p̂σ − pσ|| ≥ εm) ≤ 1/m. Then

ESn ,Um [R(h
SSL)] ≤

L2(τeαεm )2 +
1
n

M2(2 +
1
e
)NP,α,σ(e−αεm

τ

2
) +

4M2

m
. (35)

Here, NP,α,σ(ε) is the covering number of P in the expo-
nential metric, i.e., the minimum number of closed balls in
X of size ε (w.r.t. to the exponential metric) necessary to
cover the support of P(X) (see also [8], Chapter 27). In the
Euclidean case, when α = 0, we can boundNP,α,σ(ε) ≤ (C

ε )
d

with the help of a constant C. The covering number can be
much smaller when α > 0 and P(X) is concentrated on a
manifold with dimension smaller than d.

The previous theorem may be difficult to grasp in full
at a first read and the paper offers, under some further
regularity conditions, a simplified corollary in addition.

Corollary 1 ( [46, Corollary 4.2]). Assume that NP,α,σ(δ) ≤
(C

δ )
ξ for a certain range of δ. Furthermore, assume that m is large

enough and that τ decreases at an appropriate rate, depending on
n, α and ξ.7 Then for all P ∈ P(α, σ, L) the following inequality
holds asymptotically and up to constants

ESn ,Um [R(h
SSL)] ≤

(
C
n

) 2
2+ξ

. (36)

Following this, the paper analyzes the additional penalty
one occurs by trying to find the best α. We start by dis-
cretizing the parameter space Θ = T × A × Σ such that

7. This rate is specified in the actual paper.
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θ = (τ, α, σ) ∈ Θ and |Θ| = J < ∞. Assume now that we
have, in addition to the training sample Sn, also a validation
set V = {(v1, z1), . . . , (vn, zn)}, which, for convenience, is
also of size n. Let hSSL

θ be the semi-supervised hypothesis
trained on Sn with parameters θ. We then choose the final
hypothesis hSSL by optimizing for θ on the validation set:

hSSL := arg min
hSSL

θ

n

∑
i=1

(hSSL
θ (vi)− zi)

2. (37)

Theorem 11 ( [46, Theorem 6.1]). Let E(h) := R(h)− R(h∗)
be the excess risk, where h∗ is the true regression function. There
exist constants8 0 < a < 1 and 0 < t < 15

38(M2+σ2)
such that

ESn ,Um ,V [E(hSSL)]

≤ 1
1− a

(
min
θ∈Θ

ESn ,Um [E(h
SSL
θ )] +

ln(nt4M2) + t(1− a)
nt

)
.

(38)

This result is particularly interesting since we can always
compare implicitly to the supervised solution, as long as
we include α = 0 ∈ A. From Inequality (38) we see that
the validation process introduces a penalty term of size
O( ln(n)

n ). This of course allows us to flexibly choose between
the semi-supervised and the supervised method.

In a final contribution, the authors identify a case where
the semi-supervised learning rate can be strictly better than
the supervised learning rate. The setting considered is much
like the one we have seen in Subsection 2.2. In particular,
they construct a set of distributions Pn, which depends on
the number of labeled samples, such that 1) the estimator
hSSL(x)τ,α,σ, as defined in Equation (34), fulfills

sup
P∈Pn

ESn [R(h
0SSL)] ≤

(
C
n

) 2
2+ξ

,

under the assumption that m ≥ 2
2

2+ξ ; and 2) for all purely
supervised estimators hSL we have that

sup
P∈Pn

ESn [h
SL] ≥

(
C
n

) 2
d−1

.

To obtain essentially different learning rates, we need that
ξ < d− 3, which is the case if P is concentrated on a set with
dimension strictly less than d− 3 [46, Lemma 1]. Worth not-
ing is that the construction of Pn works by concentrating the
distributions more for larger n. If Pn does not concentrate,
and remains smooth for bigger n, the labeled data is already
enough to approximate the marginal distribution.

This is similar to the work presented in Subsection 5.3,
as they also show that SSL can only work if the marginal
distribution P(X) is not too easy to identify. We can also
draw parallels to the work presented in Subsection 2.2.3: if
we would restrict the domain distributions such that only
smooth circle embeddings would be allowed, a supervised
learner could also learn efficiently as then a finite number
of labeled samples would be sufficient to learn the domain
distribution uniformly.

8. It should be noted that these are not universal. They depend to
some degree on the problem at hand.

6 LEARNING IN THE TRANSDUCTIVE SETTING

SSL methods use unlabeled data to try and find better in-
ductive classification rules, i.e., rules that apply to the whole
input domain X . Some works, however, consider schemes
where one only cares about the labels of the unlabeled data
specifically at hand. Such methods are often referred to as
transductive and have been argued to be an essential step
forward compared to inductive methods, in particular by
Vapnik (see, for instance, [5, Chapter 8] and [4, Chapter 25].
While we review the most important theoretical results, a
more detailed overview can be found in Chapter 2 of [47].
In Subsection 6.1, we present learning bounds that apply
specifically to this transductive setting, though they often
arise as direct extensions to the supervised inductive case.
In Subsection 6.2, we present two papers that touch on the
topic of so-called safe semi-supervised learners9, where one
constructs semi-supervised learners that are never worse
than their supervised counterparts.

One essential difference, based on which two distinct
transductive settings can be identified, is the way the sam-
pling of the labeled and unlabeled data comes about.

Setting 1.

1) We start with a fixed set of points Xn+m =
{x1, . . . , xn+m}.

2) We reveal the labels Yn of a subset Xn ⊂ Xn+m,
which is uniformly selected at random. For nota-
tional convenience and without loss of generality,
we usually assume that Xn are the first n and Xm
are the last m points of Xn+m.

3) Based on Sn = (Xn, Yn) and Xm we aim to find
a classifier h with good performance as given by
Rm(h) := ∑n+m

i=n+1 l(h(xi), yi).

Setting 2.

1) We start with a fixed distribution P on X ×Y .
2) We draw n i.i.d. samples according to P to obtain

a training set Sn. We draw an additional m i.i.d.
samples according to P(X) to obtain a test set Xm.

3) Based on Sn = (Xn, Yn) and Xm we try to find a
classifier h with good performance as specified by
ESn ,Xm [

1
m ∑n+m

i=n+1 l(h(xi), yi)].

The work we present here deals with Setting 1. This is pri-
marily out of convenience, but we note that one can always
transform bounds from Setting 1 to bounds in Setting 2 [5,
Theorem 8.1].

Note that in this subsection our test error is denoted by
Rm(h) and the training error by Rn(h). This reflects that the
test set is of size m while the training set is of size n. We do
not use the hat notation here, as in the transductive setting,
we do not necessarily have an underlying distribution.

6.1 Transductive Learning Bounds

The study of transductive inference goes back at least to the
original work by Vapnik [48]. In this subsection, our primary
source is [5] and we mainly consider the result found as
Equation (8.15) in Theorem 8.2 of that work.

9. Incidentally, this is a topic that is not covered in [47].
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Assume that we are given n + m samples and we take at
random n samples on which to train. We then want to esti-
mate the error on the remaining m samples. Vapnik shows
that a hypergeometric distribution describes the probability
that the observed error on the train and test set is larger than
ε. Let ε∗ be the smallest ε > 0 such that

P

(
|Rm(h)− Rn(h)|√

Rn+m(h)
> ε

)
≤ 1− δ.

Using a uniform bound10 and substituting Rn+m =
m

n+m Rm + n
n+m Rn one can derive the following result.

Theorem 12 ( [5, Eq. (8.15)]). For all h ∈ {−1, 1}n+m, the
following inequality holds with a probability of 1− δ:

Rm(h) ≤ R(h)

+
(ε∗)2m

2(m + n)
+ ε∗

√
R(h) +

(
ε∗m

2(m + n)

)2
.

(39)

A core problem with this inequality is that the term ε∗ is
an implicit function of n, m, δ and h and, as such, it is unclear
what the learning rates are that we can actually achieve. The
paper addressing this issue is covered next.

6.1.1 Bounds as a Direct Extension of Inductive Bounds
Ref. [49] finds explicit transductive bounds in a PAC-Bayes
framework. We present a bound from the paper that is es-
sentially a direct extension of a supervised inductive bound
from [50]. Their result considers a Gibbs classifier, which we
first introduce.

Let q be any distribution over the H. The Gibbs classifier
Gq classifies a new instance x ∈ X with an h ∈ H drawn
according to q. The risk of Gq over the set Sn is then

Rn(Gq) = Eh∼q[
1
n

n

∑
i=1

l(h(xi), yi)].

Theorem 13 ( [49, Theorem 17]). Let p be any (prior) distribu-
tion on H, which may depend on Sn+m, and let δ > 0. Then for
any randomly selected subset Sn ⊂ Sn+m and for any distribution
q on H, it holds with probability at least 1− δ that

Rm(Gp) ≤ Rn(Gp) +
m + n

m

√
2Rn(Gp)(KL(q||p) + ln n

δ )

n− 1

+
m + n

m
2(KL(q||p) + ln n

δ )

n− 1
.

(40)

This theorem is indeed a direct extension of the inductive
supervised case as found under Equation (6) in [50]. The
only difference is that the term m+n

m is missing. Although
[51] shows that under certain conditions one can select the
prior p after having seen Sm, this is generally not allowed in
inductive PAC-Bayesian theory. In the transductive setting
this is allowed, however, as we only care about the perfor-
mance on the points from the set Sn+m. In a way, this is the
same as learning with a fixed distribution when our fixed
distribution has only mass on finitely many points [52].

[49] exploits the previous observation by choosing a
prior p with a cluster method. More precisely, after observ-
ing the dataset (Xn+m) one constructs c different clusterings

10. Note that in the transductive case we effectively can have only
finitely many different hypotheses.

on it. Each clustering leads to multiple classifiers by assign-
ing all points in a cluster to the same class. One then puts a
uniform prior p on those classifiers and we select a posterior
distribution q over the classifiers by minimizing Inequality
(40), and obtain the Gibbs classifier Gq.

Comparing this approach to the fully supervised (and
thus necessarily inductive) case, one should realize that the
possible performance improvements have the same flavor as
the improvements one can gain in semi-supervised learning
with assumptions, as analyzed in Sections 4 and 5. Using
the clustering approach sketched above reduces the penalty
in Inequality (40), which is coming from KL(q||p). In other
words: we reduce the variance of the classifier. Clearly,
on the other hand, using a clustering approach biases our
solution and we get degraded performance compared to a
supervised solution if the clusterings have a high impurity,
i.e., clusters do not have clear majority classes.

6.1.2 Bounds Based on Stability
In [53], transductive bounds are explored under the as-
sumption of stability, i.e., the notion that the output of a
classifier does not change much if we perturb the input a bit.
The transductive bounds presented are an extension of the
inductive bounds that use the notion of uniform stability (see
[54]) and weak stability (see [55], [56]). We cover the simpler
transductive bound based on uniform stability and explain
the difference to weak stability.

Assume that htrans ∈ H is a transductive learner. That is,
a hypothesis that we (deterministically) choose based on a
labeled set Sn and an unlabeled set Xm. Furthermore, define
Sij

n := (Sn \ {(xi, yi)})∪ {(xj, yj)}. So Sij
n is the set we obtain

when we replace in Sn the i-th example from the training
set with the j-th example from the test set. Similarly, define
Xij

m :=
(
Xm \ {xj}

)
∪ {xi}. We say that htrans is β-uniformly

stable if for all choices Sn ⊂ Sn+m and for all 1 ≤ i, j ≤ n + m
such that (xi, yi) ∈ Sn and xj ∈ Xm it holds that

max
1≤k≤n+m

|htrans
(Sn ,Xm)(xk)− htrans

(Sij
n ,Xij

m)
(xk)| ≤ β. (41)

In words: the transductive learner htrans is β-uniformly
stable if the output changes less than β if we exchange two
points from the train and test set.

The bounds are formulated using a γ-margin loss. With
γ > 0, we define

lγ(y1, y2) = max(0, min(1, 1− y1y2

γ
)). (42)

Consequently, we can write Rγ(h) for the risk of h when
measured with the loss lγ. Note that for γ → 0 the lγ loss
converges to the 0-1 loss.

Theorem 14 ( [53, Thereom 1]). Let htrans be a β-uniformly
stable transductive learner and γ, δ > 0. Then, with probability
of at least 1− δ over all train and test partitions, we have that

Rm(htrans) ≤ Rγ
n(htrans)

+
1
γ

β

√
mn ln 1

δ

m + n

+

(√
(

1
m

+
1
n
) ln

1
δ

)
.

(43)

Note that β is depended on n and m and we expect that
the bigger our training set is, the less our algorithm changes
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if we exchange two samples from the train and test set. The
transductive bounds based on Rademacher complexities,
reviewed in the next subsection, can achieve convergence
rates of 1√

min(m,n)
. To obtain the same rate with Inequality

(43), we need that β behaves as O(
√
( 1

n + 1
m ) 1

min(n,m)
). This

stability rate can indeed be achieved for regularized RKHS
methods as demonstrated in [57] for laplacian normalization
for graph-based SSL.

6.1.3 Transductive Rademacher Complexities

Rademacher complexities are a well studied and established
tool for risk bounds in the inductive case [58]. [59] introduce
a transductive version of these quantities. While in the
inductive case, we have to chose our hypothesis class before
seeing any data, the transductive case allows us to chose
the hypothesis class H data-dependent. The definition of
the transductive Rademacher complexity of a hypothesis
class H closely follows the inductive case and is denoted by
tRad(H). Utilizing the γ-margin loss function (42) and the
corresponding empirical risk Rγ(h), the paper shows then
that (Theorem 6) for all h ∈ H, we have that with probability
of at least 1− δ

Rm(h) ≤ Rγ
n(h) +

tRad(H)

γ
+(

2√
min(m, n)

)(√
32 ln(4e)

3
+

√
8
3

ln(
1
δ
)

)
.

This bound can be used to directly estimate the transductive
risk for transductive algorithms.

At a first glance, the inequality may seem somewhat
surprising considering that the labeled and unlabeled data
play an equivalent role in terms of convergence. While slow
convergence for n � m may be expected, one has to realize
that, in case m � n, the transductive risk has very high
variance and therefore large intervals for high-confidence
estimations are obtained.

[60] makes different use of Rademacher complexities
in their derivation of risk bounds for a specific multi-class
algorithm. Their algorithm uses a given clustering based
on the full data to find a hypothesis which is in a certain
way compatible with the clusters obtained. The transductive
multi-class Rademacher complexities then make direct use
of this clustering. With this algorithm the authors show that
if we have K initial classes one can achieve a learning rate
in the order of Õ(

√
K√
n + K3/2

√
m ) (see [60], Corollary 4). Not

surprisingly, the learning rates are essentially the same as
in the binary transductive cases. We note, however, that the
analysis was done within Setting 2.

6.1.4 Bounds Based on Learning a Kernel

As a direct extension of the inductive case (see, for example,
[61]), [62] proposes to use the unlabeled data to learn a
kernel that is suitable for transductive learning. The idea is
to use a kernel method that allows to choose from a certain
class of kernels in order to optimize the objective function.
The presented PAC-bound shows that good (transductive)
performance is achieved with a good trade-off between the
complexity of the kernel class and the empirical error.

Their example kernel classes are designed as follows.
Given an initial set of kernels {K1, . . . , Kk}, define

Kc := {K =
k

∑
j=1

µjKj|K < 0, µj ∈ R, trace(K) ≤ c} and

K+
c := {K =

k

∑
j=1

µjKj|K < 0, µj ∈ R, µj ≥ 0, trace(K) ≤ c}.

Restricting the trace of the kernels allows us to bound later
the complexity of the following defined hypothesis set.

HK = {h(xj) :=
2n

∑
j=1

αiKij|

|K ∈ K, α = (α1, . . . , α2n) ∈ R2n, αtKα ≤ 1
γ2 }.

We now come to the paper’s claim, which is a bound on
the transductive risk when using the above hypothesis set.
The original formulation of the theorem is rather long and
contains some additional definitions and clarification as part
of it. In an attempt to make the presentation easier to access,
we formulate the core result as a theorem, which should
convey its basic structure and idea. Only afterwards, we
will provide the missing details of the theorem.

Theorem 15 ( [62, Theorem 24]). For every γ > 0, with
probability at least 1− δ over every training and test set of size
n (so m = n), uniformly chosen from (X, Y), we have for every
h ∈ HK:

Rm(h) ≤ R̂hinge
n (h) +

1√
n

(
4 +

√
2 log(

1
δ
) +

√
comp(K)

nγ2

)
,

where R̂hinge(h) is the empirical hinge loss of h and comp(K) is
a complexity measure of K.

This last measure of complexity, K, is defined as

comp(K) = E max
K∈K

σtKσ

with σ being a vector of 2n Rademacher variables. For the
previously defined kernel classes Kc and K+

c , this complex-
ity measure can, in turn, be bounded by

Kc = cE

[
max
K∈K

σt K
trace K

σ

]
≤ cn,

and

K+
c ≤ c min

(
k, n max

1≤j≤k

λj

trace(Kj)

)
.

In this last expression, λj is the largest eigenvalue of Kj.
Since m is taken to equal n, we find that the above bound

gives the same learning rate O( 1√
m+n ) as we also found in

Subsections 6.1.2 and 6.1.3. We would, however, not expect
that the rate of O( 1√

m+n ) also holds for different choices of

m and n. We would rather expect to find O( 1√
min(m,n)

), for

the same reason as in the previous subsection (high variance
of test risk for small m).

On another note, we point out that the effect the un-
labeled data has on this procedure depends on the initial
kernel guesses {K1, . . . , Kk}, but the choice of the kernels is
actually independent of the unlabeled data. The unlabeled
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data may, however, inform the choice for the kernels as
proposed in [63] and [64]. In essence, these works construct
kernels that encode a manifold assumption by constraining
the kernels to be smooth with respect to a given graph-
structure of the unlabeled data.

6.2 Safe Transductive Learning
In the semi-supervised learning community, it is well known
that using a semi-supervised procedure comes with a risk
of performance degradation [2]. This problem leads some
authors to ask the question whether it is possible to perform
semi-supervised learning in a safe way: can one guarantee
that the semi-supervised learner is not worse than its super-
vised counterpart. We note that, for risk bounds, a smaller
bound still does not guarantee improvement, even if the
underlying assumptions are correct.

We look specifically at the approaches from [65] and [17].
The results from both works are based on a minimax formu-
lation and show that, in certain settings, one can indeed get
to guarantee performance improvements by using SSL. The
analysis is done in transductive Setting 1, which means that
we have a training set Sn and a test set Xm.

6.2.1 A Minimax Approach for SVMs
The baseline for the model proposed in [65] is the S3VM
[66], which takes the unlabeled data into account by finding
a large-margin solution. The proposed model S4VM finds
a few diverse proposal large-margin solutions, and then
picks amongst these by means of a minimax framework
to hedge against possible worst case scenarios. The idea is
that, given that we found a set of a few potential solutions
Hp = {h1, . . . , hT}, we compare those solutions to hSVM and
then choose the one with the biggest gain over hSVM within
a minimax framework.

Assume for now that we know the true labels Ym =
(yn, . . . , yn+m) of Xm. With this we can calculate the gain
and loss in performance when comparing the supervised
hSVM to any other classifier h:

gain(h, Ym, hSVM) :=
n+m

∑
i=n

I{h(xi)=yi} I{hSVM(xi) 6=yi}, (44)

loss(h, Ym, hSVM) :=
n+m

∑
i=n

I{h(xi) 6=yi} I{hSVM(xi)=yi}. (45)

Defining our objective to be the difference, i.e.,
J(h, y, hSVM) = gain(h, Ym, hSVM) − loss(h, Ym, hSVM),
we can define a semi-supervised model hSSL as the
maximizer of this difference. The problem is, of course,
that we actually do not know the true labels. Therefore,
let us assume a worst-case scenario, which leads us to the
following max-min formulation:

hSSL = arg max
h∈Hp

min
Y∈Yp

J(h, Y, hSVM). (46)

Here Yp = {(h(u1), . . . , h(um))|h ∈ Hp} is the set of all
possible labelings that we can achieve with Hp. To guarantee
that our semi-supervised learner is not worse than the
supervised learner it is important to assume that the true
labels Ym are part of the set Yp, because only then we can
guarantee what follows.

Theorem 16 ( [65, Theorem 1]). If Ym ∈ Yp, the accuracy of
hSSL is never worse than the accuracy of hSVM, when performance
is measured on the unlabeled data Xm.

The crucial assumption is that Ym ∈ Yp, which corre-
sponds in this case exactly to a low-density assumption. This
is because the set Yp contains possible labelings that come
from classifiers that fulfill the low density assumption. One
can imagine to use the same procedure also for different
assumptions as we can encode them through Yp, i.e, the
set of all labelings that we consider possible. While this
result still relies on some assumptions, [17] gives a case of
guaranteed assumption-free improvements. This, however,
comes at the cost of measuring improvement in terms of
likelihood, and not accuracy, as described in what follows.

6.2.2 A Minimax Approach for Generative Models
The technique taken from [17], also in the line of safe
SSL research, is, to our knowledge, the only approach
to semi-supervised learning that considers a completely
assumption-free setting. This comes at a cost, of course,
which we will expand on later.

The starting point is a family of probability density func-
tions p(x, y|θ) on X × Y , where θ ∈ Θ is a parametrization.
We then fix θSL to be the supervised maximum likelihood
estimator for the model p(x, y|θ), i.e.,

θSL = arg min
θ∈Θ

 ∑
(x,y)∈Sn

ln p(x, y|θ)

 .

Let us assume for now that we know the true condi-
tional probabilities p = (p1, . . . , pm+n) ∈ [0, 1]m+n with
pi = p(1|xi) for xi ∈ Sn ∪ Xm. Indeed knowing this, we
would rather optimize the expected log-likelihood of the
model p(x, y|θ) evaluated on the complete dataset Xn+m =
{x1, . . . , xn+m}. This likelihood is given by

L(θ|Xn+m, p) = EY∼p

[
∑

x∈Xn+m

ln p(x, Y|θ)
]

. (47)

To be better than the supervised model θSL on the complete
(transductive) likelihood in Equation (47), we would like to
maximize the likelihood gain over it. In other words, we
want to find the θ that maximizes the difference

C(θ, θSL|Xn+m, p) = L(θ|Xn+m, p)− L(θSL|Xn+m, p). (48)

Clearly, we cannot maximize (48) directly, as we do not
know the true probabilities p. Take, however, p(yi|xi) =
1 for all labeled points (xi, yi) ∈ Sn and set pn =
(p(1|x1), . . . , p(1|xn)) ∈ {0, 1}n. For the unlabeled points
Xm, we assume worst case posteriors denoted by the m-
vector pm, and consider the following max-min formulation:

θSSL = arg max
θ∈Θ

min
pm∈[0,1]m

C(θ, θSL|Xn+m, (pn, pm)). (49)

Note that the vector pm can be the true labels Ym of the
unlabeled data Xm. Now, C(θSSL, θSL|Xn+m, (pn, pm)) ≥ 0
for all pm ∈ [0, 1]m, in particular if pm = Ym, as we can
always chose θSSL = θSL and so we have the following.

Theorem 17 ( [17, Lemma 1]). Let θSSL be a solu-
tion found in Equation (49), then L(θSL|Xn+m, Yn+m) ≤
L(θSSL|Xn+m, Yn+m).
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Subsequently, [17] shows that for some specific choices
for the model p(x, y|θ), the previous inequality is strict
almost surely, i.e., with probability 1 and we are guaran-
teed that the transductive likelihood of our semi-supervised
model is larger than that of the supervised model. [67]
proofs similar results for the least squares classifier using
projection estimators.

An important difference between this work and the one
from the previous subsection is that here one employs a
generative model p(x, y), while the SVM used in [65] is
a discriminative model that inherently optimizes the class
probability p(y|x). The work in [18] (see also Subsection
2.1.4) shows that, to some degree, it is actually necessary to
use a generative model as the semi-supervised estimator of
Equation (49) coincides with the supervised estimator for
a large class of discriminative models. There are several
explanations why a joint model p(x, y) helps out in the
situation. The intuitive and obvious one is that the likeli-
hood of this model takes the marginal distribution P(X)
into account, which is a quantity that can be measured in
part from unlabeled data.

One can imagine to use the minimax concept of this sec-
tion also in the framework explained in Section 4.1, which
uses any type of unlabeled loss. Note that the generative
model of this section can always be decomposed into a
class probability and a marginal distribution, which strongly
resembles the decomposition into labeled and unlabeled
loss of Section 4.1.

7 DISCUSSION AND CONCLUSION

We comprehensively surveyed the theory that informs us
about the potential of semi-supervised learning for improve-
ments and the possible lack of it. Wrapping up, we point out
some issues that, we believe, get to the core of the matter.

7.1 On the Limits of Assumption Free SSL
In Section 2, we reviewed work that analyzes the limits of
semi-supervised learning when no particular assumptions
about the distribution are made that a semi-supervised
learner can exploit. The most general formulation is cap-
tured in Conjectures 1 and 2. They essentially state that a
semi-supervised learner can beat all supervised learners by
at most a constant. We then cover work that shows that the
conjectures do actually not hold generally for hypothesis
spaces of infinite VC-dimension. They do hold for finite VC-
dimension spaces, but only under further relaxations.

7.2 How Good Can Constant Improvement Be?
The question studied Subsection 2.1.6 is whether a semi-
supervised learner can offer more than a constant improve-
ment in terms of sample complexity. It seems equally fair,
however, to ask how good a constant improvement can be.
It is at least something that, certainly from a practical point
of view, could still be very beneficial. The answer can be
obtained through a thought experiment.

Assume that we have two classes given by two con-
centric d-dimensional spheres. Even if we assume that we
have enough unlabeled data for a manifold regularization
scheme to identify the spheres, we know that manifold

regularization can only achieve constant improvement [22].
The intuitive explanation is the same as for Theorem 9 from
[12] as explained in Subsection 2.1.6: if we allow arbitrary
noise levels on the spheres we can only learn with same
slow rate of any supervised learner, so we may only get
constant improvements.

This constant, however, can be arbitrarily large. If the
supervised classifier uses a hypothesis space H, we can
interpret manifold regularization as switching to a restricted
space H̃λ. This space only contains hypotheses that fulfill a
manifold assumption, where the regularization parameter λ
indicates to which degree this assumption is enforced. [22]
shows that the improvement of using manifold regulariza-
tion is at most VC(H)/ VC(H̃λ). If we set λ high enough we
can keep VC(H̃λ) constant, while VC(H) increases with the
dimension d. This shows that the constant improvement can
be arbitrarily large. While this example uses the manifold
assumption, [23] gives an example, cf. Subsection 2.1.6, with
a semi-supervised learner that has full knowledge of the
domain distribution.

All in all, this shows that constant improvement can
be arbitrarily large under the right assumptions, e.g. the
manifold assumption, or full knowledge of the marginal
distribution. An open problem that we identify is whether
one can also have arbitrarily high constants with limited
unlabeled and data without assumptions.

7.3 The Amount of Unlabeled Data We Need

In Subsection 2.2, we treated three settings in which a
semi-supervised learner can PAC-learn, while no supervised
learner can. For that, we need, in principle, an infinite
amount of unlabeled data. If a fixed finite amount of un-
labeled data would be enough to learn under any given
distribution P, we could just use the same strategy to learn
in a supervised way, as we can always chose to ignore the
label [12, Theorem 1]. The way the examples of Subsection
2.2 work is that for each fixed P a finite, bur arbitrarily large,
amount of unlabeled data is sufficient. As a consequence, if
we want to learn over all possible distributions, we need an
arbitrarily large, i.e., infinite, amount of unlabeled data.

The semi-supervised improvements which we presented
in Sections 3, 4 and 5, do not necessarily need an infi-
nite amount of unlabeled data, although this is sometimes
assumed for convenience. The difference is that, in those
settings, supervised learners are also able to PAC-learn, but
a semi-supervised learner is able to do this with fewer
labeled samples. In Subsections 5.2 and 5.3, we saw two
instantiations of the cluster assumption where, to exploit
them, the amount of unlabeled data needs to increase ex-
ponentially with the amount of labeled data. This is because
the error in finding the clusters decreases only polynomially
in the number of unlabeled points as shown in Inequality 31.

Having a finite amount of unlabeled data turns out to be
surprisingly restrictive. In the light of the previous results,
we believe that any limit on unlabeled data prevents us
from proving results that hold uniformly over all data dis-
tributions. Identifying settings where a such limited amount
leads to large (constant) improvements remains an open and
challenging problem. We note that a positive result such
as Theorem 3 is impossible with a fixed finite amount of
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unlabeled data [12, Theorem 7]. One may thus wonder what
the strongest possible results are in the setting with a fixed
amount of unlabeled data.

7.4 Assumptions in Semi-Supervised Learning
In Sections 4 and 5, we investigated what a semi-supervised
learner can achieve once assumptions such as those from
Subsection 1.1 are made. Any such assumption is a link
between the domain distribution and the labeling func-
tion. In particular, we assume that we can ignore certain
labeling functions after we have seen a specific domain
distribution. The cluster assumption, for example, would
exclude labeling functions that do not assign the same label
to points belonging to the same cluster. The problem with
this is that we do not know if such assumptions do hold
or not. Clearly, one may be able to test the validity of
certain assumption, but we conjecture that testing for an
assumption consumes as many labeled points as learning
directly a good classification rule with a supervised learner.
In other words, the test would defy its purpose.

To make this claim a bit more precise, let us define an
assumption as a property of the distribution P on X × Y .
Let PA be a set of distributions on X × Y . We say that P
fulfills assumption A if and only if P ∈ PA. For example,
PA could only contain distributions such that the marginal
distributions P(X) have always support on clusters and
each cluster has a unique label. The important thing to note
is that assumption A is a property on P, so we need labeled
samples to test its validity. It is thus of interest to compare
the consumption of labeled data for reducing the uncer-
tainty about the assumption to the consumption of labeled
data for the convergence of the semi-supervised learner. We
might of course know a priori that the assumption is true
and do not need to test it, but what if not?

One of the few works that analyze this is reviewed
in Subsection 5.4. [46] shows that one can get essentially
faster rates if the assumption is true, but we pay a penalty
of O(ln(n)/n) if it is not true. [68] investigates how one
can test for a property in an active way, so when we can
choose which samples we want to label. Analyzing the
assumptions made of different SSL methods this way could
shed more light on their applicability. The implications of
this testing procedure for semi-supervised learning are, at
this point, a further open research question. Of course, one
could insist that it is just not necessary to test whether an
assumption is true or not. Following Vapnik’s motto, we
may want to avoid any intermediate form of testing to
decide if an assumption is true or not, when, ultimately,
we are merely interested in whether the semi-supervised
learner performs better or not. Investigating whether semi-
supervised learning is only possible with prior knowledge
is thus an further interesting open problem.

7.5 Weak vs Strong Assumptions
Distinguishing between weak and strong assumptions can
be motivated through their (in)ability to improve the learn-
ing rate. Section 5 (particularly the discussion at the end of
Subsection 5.2) suggests that an improvement in learning
rate can only occur if we make assumptions about P(Y | X).
Conversely, restricting the possible labeling functions may

not lead to more than constant improvements. To see this,
consider encoding the manifold assumption in the frame-
work of Section 4.1, which immediately restricts the possible
labelling functions, but [22] shows we can only get constant
improvements in that case. The difference is that, in the
framework of Subsection 4.1, one cannot infer enough about
P(Y|X). That is, even if we know that the best solution is one
that separates two clusters, deciding which cluster belongs
to which class can still be of worst-case order 1√

n by the
same arguments as in Theorem 9 from [12].

7.6 SSL in Deep Learning
SSL has seen a resurgence in this era of deep learning,
where, in some settings, significant performance improve-
ments have been reported. The reader may wonder, there-
fore, why none of such works are covered in this survey.
The reason is that we present strict mathematical analyses
for possible improvements through SSL, something that
remains elusive in the deep learning literature. Neverthe-
less, we want to sketch here what has been done at the
intersection of deep learning and SSL and how this relates
to topics covered in this survey.

The two paradigms that have been adopted for deep
learning models are entropy and consistency regularization.

The main idea of entropy regularization [69], [70] is that
we try to enforce low entropy predictions on the unlabeled
data, which is equivalent to the decision boundary being in
a low density region. In the deep learning community, this
idea became known as pseudo-labeling [70] and is effectively
a revival of self-learning, which was proposed in [71] as
early as 1968. [72] shows that this procedure minimizes
entropy and [73] demonstrates that this procedure may ac-
tually close a sample-complexity gap between standard and
robust classification. The latter relies on a performance metric
designed to study classification under adversarial attacks.
As such, SLL may play a special role for deep models, which
are known to be sensitive to adversarial attacks [74], [75].

Consistency regularization [76]–[78] exploits the idea
that if we transform an unlabeled data point u in a mean-
ingful way into û, e.g. the slight rotation of an image, then
the predictions h(u) and h(û) should be similar. The idea is
thus to add a regularizer of the form d(h(u), h(û)) to the loss
term, where d is some sort of distance function. This idea
actually ties directly in with the results presented in Section
4.1 and we suspect that similar performance guarantees
hold. It would be of interest to see how the complexity of
a neural network class shrinks under a consistency regular-
ization method. In an optimistic mood, one may even hope
that, in this way, one can generate non-vacuous performance
guarantees with classical statistical learning theory.

7.7 Beyond PAC-Learnability
Arguably, the most general results of this survey are formu-
lated in the PAC-learning framework, as presented in Sec-
tions 2.1.6 and 2.2. An exciting new type of learning frame-
work was recently proposed in [44] and designated universal
learning. The difference between this and PAC-learning is
in essence the relationship between the error bound and
the distribution P over X × Y . In PAC-learnability, any
error bound has to hold uniformly over all distributions,
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i.e., it is the same bound for all distributions. In universal
learning, we can have constants in the bound that depend
on the distribution. This has some dramatic consequences.
In realizable PAC-learning, we either cannot learn at all or
we learn with a linear rate. In universal learning, we have a
trichotomy into linear, exponential, or arbitrarily slow rates.
That this may play an important role in the interpretation
of results can be seen through the analysis in Subsection 5.2.
For each fixed distribution one may show an exponential
learning rate, while a strict PAC-analysis leaves us with a
slow rate, at least without further assumptions.

APPENDIX
SAMPLE-COMPLEXITY DEFINITIONS AND NOTATION

Let (P, l, H) be a learning problem and ε, δ > 0.

Definition 1 (supervised sample complexity). The sample
complexity m(B, H, P, ε, δ) ∈ N of a supervised learner B is
the smallest natural number k, such that with probability at least
1− δ over all possible draws of a labeled sample Sk, it holds that

R(B(Sk))− inf
h∈H

R(h) ≤ ε.

In short: m(B, H, P, ε, δ) ={
min k ∈N | P

(
R(B(Sk))− inf

h∈H
R(h) ≤ ε)

)
≥ 1− δ

}
.

Definition 2 (semi-supervised sample complexity). The sam-
ple complexity mSSL(B, H, P, ε, δ) ∈ N of a semi-supervised
learner B, which has additional information about the marginal
in the form of U ∈ {Um, P(X)}, is the smallest natural number
k, such that with probability at least 1− δ over all possible draws
of the labeled sample Sk and the unlabeled sample Um, it holds
that

R(B(Sk, U))− inf
h∈H

R(h) ≤ ε.

In short mSSL(B, H, P, ε, δ) ={
min k ∈N | P

(
R(B(Sk, U))− inf

h∈H
R(h) ≤ ε)

)
≥ 1− δ

}
.

To generate meaningful results, the unlabeled sample
size m = |U| will depend in most cases on the labeled
sample size k. While this is not explicit in the definition
of mSSL, we specify this relationship at the appropriate
moments throughout the paper. We usually omit the learner
B from the sample complexity notation, and write either
m(H, P, ε, δ) or mSSL(H, P, ε, δ) if there exists respectively
a supervised or semi-supervised learner that achieves this
sample complexity. Similarly, we omit the distribution P
from the notation and write m(H, ε, δ) or mSSL(H, ε, δ) if
we can achieve this sample complexity uniformly for all
distributions P.
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for the fruitful discussions that, among others, helped to
identify the open questions in the field.

REFERENCES

[1] S. Ben-David, T. Lu, and D. Pál, “Does unlabeled data provably
help? worst-case analysis of the sample complexity of semi-
supervised learning,” in COLT, 2008.

[2] F. Cozman and I. Cohen, “Risks of semi-supervised learning: How
unlabeled data can degrade performance of generative classifiers,”
in Semi-Supervised Learning. The MIT Press, 2006, ch. 4, pp. 57–72.

[3] J. E. Van Engelen and H. H. Hoos, “A survey on semi-supervised
learning,” Machine Learning, vol. 109, no. 2, pp. 373–440, 2020.

[4] O. Chapelle, B. Schölkopf, and A. Zien, Semi-Supervised Learning,
1st ed. The MIT Press, 2010.

[5] V. N. Vapnik, Statistical Learning Theory. Wiley-Interscience, 1998.
[6] T. Joachims, “Transductive inference for text classification using

support vector machines,” in ICML, 1999, pp. 200–209.
[7] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization:

A geometric framework for learning from labeled and unlabeled
examples,” J. Mach. Learn. Res., vol. 7, pp. 2399–2434, 2006.

[8] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge University Press, 2014.

[9] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of
Machine Learning. The MIT Press, 2012.

[10] J. Peters, D. Janzing, and B. Schölkopf, Elements of Causal Inference:
Foundations and Learning Algorithms. The MIT Press, 2017.

[11] M. Seeger, “Input-dependent Regularization of Conditional Den-
sity Models,” Tech. Rep., 2000.
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