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Preface

Wissal Khiar and Yassir Alami
Delft, June 2025

This paper marks the completion of our Bachelor’s graduation project, conducted as part of a collabo-
rative effort to develop a real-time Brain-Computer Interface (BCI) system. The project was carried out
by three dedicated groups: GUI and Stimulus Design, Signal Acquisition, and Signal Processing and
Classification. Our group was responsible for the second, focusing on reliably capturing and delivering
clean EEG signals from the Unicorn Hybrid Black headset for further processing and classification.

Working on this project has been both challenging and rewarding. It provided us with the opportunity
to apply and expand our knowledge in biomedical signal acquisition, while also learning how to col-
laborate effectively within a multidisciplinary team. The experience gave us valuable insights into the
practical challenges of recording high-quality brain signals in real time and the importance of precise
measurement setups in the success of BCI systems.

We would like to sincerely thank our supervisors, Tiago Costa and Dante Muratore, for their ongoing
support, guidance, and constructive feedback throughout the course of the project. Their expertise and
encouragement played a crucial role in helping us stay motivated and on track.

We hope this work will contribute to further developments in the field of BCI, and we are excited to see
how future students and researchers will build upon it.



Abstract

This project explores the development of a real-time Brain-Computer Interface (BCl) system based on
Steady-State Visually Evoked Potentials (SSVEPs). The aim is to enable hands-free computer control
by detecting brain responses to visual stimuli flickering at specific frequencies. Our focus was on the
acquisition of clean and stable EEG signals using the Unicorn Hybrid Black headset. Key challenges
included minimizing noise from motion and eye artifacts, selecting the right channels for SSVEP de-
tection, and applying appropriate filters. While the hardware setup and real-time streaming via Lab
Streaming Layer (LSL) were successfully established, consistent frequency detection during visual
stimulus trials remains an unresolved issue. Controlled tests with simulated signals confirmed that the
pipeline can detect known inputs, indicating that future work should focus on improving artifact removal
and stimulus reliability. The current system provides a solid foundation for further development toward
robust, real-time brain-controlled interfaces
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Introduction

1.1. State-of-the-Art Analysis

Brain-Computer Interfaces (BCls) are systems that enable direct communication between the brain and
an external device by translating neural activity into actionable commands, bypassing peripheral nerves
or muscular control [1]. Non-invasive BCI systems, particularly those based on electroencephalography
(EEG), are very attractive due to their safety, portability, and relatively low cost [2]. BCls have shown
promise in restoring communication or control abilities to individuals with severe motor impairments. In
recent years, however, BCI applications have extended into broader domains including entertainment,
neurofeedback training, and assistive technologies for the general population [3], [4].

Among various BCI paradigms, the Steady-State Visual Evoked Potential (SSVEP) approach stands
out for its robustness, minimal training requirements, and high information transfer rates. SSVEPs are
brain responses elicited when a user focuses on a visual stimulus flickering at a constant frequency,
making this paradigm particularly suitable for real-time applications [5]. Thanks to advances in signal
processing and machine learning, modern SSVEP-based BCIs now achieve significantly improved
accuracy and responsiveness, bringing real-time control applications closer to practical deployment
[6]. However, achieving seamless integration between signal acquisition, real-time processing, and
graphical interface design remains a key technical challenge [7].

1.2. Problem Definition

For this project a real-time SSVEP BCI is being developed that moves a computer cursor. The data-
acquisition subgroup must deliver a continuous, low-latency EEG stream that preserves SSVEP infor-
mation while operating with:

» Fixed hardware: The eight-channel Unicorn Hybrid Black with dry electrodes is predetermined,
limiting electrode placement and access to raw firmware settings.

» Real-world conditions: Recordings must remain usable when users blink, shift slightly, or when
environmental electromagnetic noise is present.

* Live processing needs: Data have to be time-synchronized (via Lab Streaming Layer) so that
stimulus presentation, filtering, and classification run in their usual procedure.

If clean, stable signals cannot be guaranteed, downstream modules—stimulus design and classification—
cannot reach the accuracy required for reliable cursor control. The core challenge is therefore to refine
the measurement setup, optimise electrode contact, apply on-the-fly noise suppression, and stream
the data with minimal delay.
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1.3. Thesis Synopsis

This thesis documents the work of the data acquisition subgroup in setting up a reliable EEG measure-
ment system for an SSVEP-based BCI. The report begins with a specification of the programme of
requirements, defining the key performance and technical targets for the system. Next, the measure-
ment setup is described in detail, including hardware use, electrode positioning, and testing conditions.
Following that, the filtering and artifact removal strategies are presented to show how signal quality
was improved in real time. The results chapter then evaluates the effectiveness of the setup based on
both controlled signal injections and actual recordings. Finally, the report concludes with a discussion
on system performance, encountered limitations, and recommendations for future improvements.



System Overview

This section presents a high-level overview of the SSVEP-based BCI system developed in this project.
It describes the overall system architecture, including its core subsystems and their interactions, and
clarifies the role of the Data Acquisition sub-group within the larger system. The objective is to es-
tablish a clear conceptual understanding of the system’s structure and data flow before addressing
implementation details and integration strategies in later chapters.

2.1. Overall System Architecture

The BCI system is composed of three main subsystems: Graphical User Interface (GUI), Data Acqui-
sition, and Signal Processing. These components form an integrated loop that enables both various
EEG-driven functionalities and real-time cursor control.

As illustrated in Figure 2.1, the pipeline begins with the GUI, which initiates a connection to the EEG
headset using the Lab Streaming Layer (LSL) protocol. LSL is an open-source framework designed for
real-time collection, transmission, and synchronization of EEG data from devices such as the Unicorn
Hybrid Black headset and other biosignal devices. Once the stream is active, the headset continu-
ously transmits raw EEG data. This data is utilized by the GUI in multiple contexts, such as live EEG
visualization or during configurable recording trials for data collection.

In parallel, the streamed EEG data is forwarded to the backend pipeline responsible for real-time control.
This begins with the Data Acquisition subsystem, which applies pre-processing techniques including
filtering and artifact removal. The cleaned EEG data is then passed to the Signal Processing subsys-
tem, where classification is performed to determine the user’s intended action by detecting SSVEP
responses associated with specific visual stimuli. The resulting classification output, consisting of the
predicted frequency and a confidence score, is returned to the GUI, which translates this output into
interactive feedback, including cursor movement and on-screen visual indicators.
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Figure 2.1: Overall System Architecture

2.2. Role of Data Acquisition Subgroup

The data acquisition subgroup was tasked with setting up a reliable system to record brain signals in
real time. The EEG headset used—Unicorn Hybrid Black—had already been provided at the start of

the project, so no hardware selection was required.

Care was taken to ensure the headset was fitted properly and that the electrodes made solid contact
with the scalp. Various methods were tested to improve signal quality, including careful positioning and
the use of conductive gel to reduce interference caused by small movements or external disturbances.

The subgroup was also responsible for making sure that the recorded brain signals could be streamed
live to the other parts of the system, allowing real-time collaboration with the stimulus presentation and

classification components.

In summary, the role of the data acquisition subgroup was to ensure that high-quality EEG signals were

captured and made available for further processing by the other subsystems.



Programme of Requirements

The following key requirements were defined for the signal acquisition subsystem of the BCI:

Dry Electrode EEG Acquisition: Use the Unicorn Hybrid Black headset to record EEG signals
from the scalp using dry electrodes. The system must capture brain signals relevant to SSVEP
while maintaining user comfort and safety.

Targeted Channel Selection: Focus on electrode locations over the visual cortex (occipital region)
to maximize SSVEP signal strength. In particular, utilize the headset channels corresponding to
occipital and parietal-occipital sites for SSVEP detection, while also monitoring a frontal channel
for artifacts.

Noise and Artifact Minimization: Ensure that the acquired signals have a high signal-to-noise ratio
by minimizing common EEG noise sources. The hardware and software design should mitigate
power-line interference (50 Hz mains noise), environmental electromagnetic disturbances, and
movement artifacts. Physiological artifacts such as eye-blinks and muscle activity should be
actively monitored and filtered out to prevent contamination of the SSVEP signals.

Filtering and Preprocessing Pipeline: Implement a preprocessing pipeline that conditions the raw
EEG signals for analysis. This includes removal of DC offsets and slow drifts, bandpass filtering
to isolate the frequency range of interest for SSVEP (while preserving relevant harmonics), and
notch filtering to suppress line noise. All filtering stages should be designed to introduce minimal
distortion or delay, preserving the integrity of genuine SSVEP features.

Reliability under Real-World Conditions: The acquisition setup should be robust against typical
real-world conditions. It must maintain signal quality over the course of an experiment, account-
ing for factors like slight headset shifts, varying impedance at the electrode-skin interface, and
external distractions. The system should produce stable and repeatable results without requiring
excessive recalibration or user intervention during operation.

Integration for Cursor Control: Deliver sufficiently clean and discriminative EEG signals to enable
the detection of user intent via SSVEP frequency recognition. The end-to-end performance of
the acquisition system should support the overall goal of controlling a computer cursor, meaning
the captured signals must allow the classification subsystem to reliably distinguish different visual
stimulus frequencies corresponding to control commands.



Measurement setup

To obtain reliable EEG signals from the brain, careful attention was given to the setup of the measure-
ment system. As these signals are inherently weak and highly sensitive to noise and movement, this
chapter outlines how the measurement setup was constructed, evaluated, and refined through system-
atic testing.

4.1. Brain Patterns

Certain parts of the brain can be used to detect electrical activity linked to specific functions. In the case
of visual stimulation, activity is mainly generated in the visual cortex, which is located in the occipital
lobe at the back of the head. When a person focuses on a flickering visual stimulus, the brain produces
signals known as Steady-State Visual Evoked Potentials (SSVEPS).

These signals are strongest in the occipital and parietal-occipital regions, which is why electrodes
placed in those areas are commonly used for SSVEP-based Brain-Computer Interfaces. This study
[8] shows that the strength and clarity of SSVEP responses depend heavily on electrode placement in
the visual areas of the brain

4.2. Electrode Placement and Brain Regions

The Unicorn Hybrid Black is a non-invasive EEG headset that records brain activity through scalp
electrodes. Internally, the Unicorn headset amplifies and digitizes the EEG signals at a sampling rate
of 250 Hz with 24-bit resolution. The device communicates wirelessly to a computer via Bluetooth.
It uses dry electrodes that make contact with the scalp to pick up tiny voltage differences caused by
neuronal activity. To record these signals, two additional electrodes are placed on the mastoid area
(behind the ears) serving as the reference. Once the headset is properly positioned, each electrode is
adjusted (by slight twisting or pressing through hair) to ensure it contacts the scalp securely. In some
cases, a small amount of gel was applied to each electrode to improve conductivity. Good electrode-
skin contact lowers the impedance and significantly improves signal quality, making the system less
sensitive to small movement

The Unicorn Hybrid Black headset is equipped with a fixed number of electrodes in predefined positions
(shown in Figure 2.1) . Based on previous research, channels 6, 7, and 8 were selected as the primary
focus for SSVEP signal acquisition [8] [9]. These channels correspond to the occipital and parietal-
occipital regions of the brain, which are responsible for visual processing (shown in Figure 2.2). Since
SSVEP responses originate in the visual cortex when a flickering stimulus is observed, these channels
are considered the most effective for detecting such activity.

Channel 1, located near the frontal region, was monitored for eye-blink artifacts. Although not used for
SSVEP detection, it serves as a useful reference channel for identifying and mitigating signal artifacts
caused by blinking or facial movements. A more detailed discussion of artifact removal can be found
in Section 4.3, Artifact Removal.
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Figure 4.1: Channels on the Unicorn Hybrid Black headset
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Figure 4.2: Top view of the standard 10-20 EEG layout, highlighting occipital and parietal-occipital electrode sites (in purple)
typically used for SSVEP recordings. The visual cortex is located beneath the occipital scalp region, so electrodes placed here
capture the strongest SSVEP signals [8].

4.3. EEG Data Collection: Recorder vs GUI

Two tools were used for collecting EEG data: the Unicorn Recorder and a custom-built GUI. The Uni-
corn Recorder, provided by the headset manufacturer, was initially used to check signal quality. Once
all channels showed stable, low-noise readings, data collection could begin.

For the main experiments, a custom GUI was used instead. This setup allowed real-time EEG plots
via LSL-streaming. The Lab Streaming Layer (LSL) is a tool that sends data from one program to
another in real time, making it useful for live EEG recordings. Unlike the Unicorn Recorder, which
required manual start/stop actions for each trial, the GUI automated the process—presenting stimuli
and recording everything in sync.
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Additionally, the GUI offered clearer and more organized signal plots. Instead of eight signals stacked
vertically, it displayed them in two columns of four, allowing for higher resolution and easier monitoring.
The GUI also included labeled axes (e.g., voltage in pV), which the Unicorn Recorder did not provide

This made the setup more efficient and user-friendly. Real-time measurements became possible, trials
ran automatically, and the data could be accessed and processed in real time—all things the Unicorn
Recorder did not support.

Figure 4.3: The custom-built GUI

4.4. Practical Testing and Setup Refinement

Once the initial setup was in place, several practical steps were taken to improve the stability and
reliability of the EEG recordings. Testing was done under controlled conditions to identify and reduce
sources of noise and signal loss.

The participant was seated at a fixed distance from the stimulus screen in a quiet environment with
minimal background movement and distractions. This helped limit external interference during data
collection. The headset was tightly secured to reduce shifts during trials, and electrode contact was
carefully adjusted for each participant to ensure consistent readings.

To further improve signal stability, saline gel was applied to all electrodes. This helped reduce impedance
and made the system less sensitive to small movements, especially around the hairline. Small adjust-
ments in posture and screen distance were also tested to optimize user comfort while maintaining signal

quality.

The recordings were only started when the signal was visibly stable across all channels. In between
trials, short breaks were included to keep the participant focused and avoid fatigue-related artifacts.
Through this process of repeated testing and refinement, a consistent and repeatable setup was devel-
oped for use in later experiments.



Filtering

Filtering is a critical step in EEG signal processing. EEG signals are inherently prone to various artifacts,
classified broadly into physiological and non-physiological artifacts. The presence of these artifacts sig-
nificantly impacts the performance of Brain-Computer Interfaces (BCls), reducing accuracy and com-
plicating user intention detection. Effective filtering methods are therefore necessary to mitigate these
issues and ensure robust and precise BCI operation.

5.1. Background and Theoretical Foundation

5.1.1. Types of EEG Noise and Artifacts

In BCI applications, physiological artifacts originate from the user’s biological activities, prominently
including muscle contractions, eye blinks, and cardiac rhythms. Muscle artifacts (EMG) introduce high-
frequency noise into EEG data, complicating signal analysis and accurate intention detection. Eye
blinks and movements (EOG) produce distinctive low-frequency distortions, particularly affecting frontal
electrode signals, while cardiac signals (ECG) may interfere primarily in lower frequency bands, poten-
tially obscuring relevant EEG components.

Non-physiological artifacts arise from external sources such as equipment interference and electrical
line noise, notably at 50 Hz. Line noise commonly occurs due to power supply interference, producing
persistent artifacts that significantly degrade the quality of the EEG signal. Furthermore, electromag-
netic interference from EEG hardware, cables, or nearby electronic devices introduces unpredictable
distortions. Addressing these artifacts through careful hardware setup and targeted filtering techniques
is crucial for maintaining the reliability and accuracy of BCI systems.

5.1.2. Butterworth Filter
The Butterworth filter, an Infinite Impulse Response (lIR) design, is characterized by its maximally flat
magnitude response within the passband. Its squared magnitude response is given by:

_ 1
1+(u%)2n’

where w,. denotes the cutoff frequency and n specifies the filter order. In EEG-BCI preprocessing,
a zero-phase implementation is preferred: the filter is applied forward and then backward (e.g., via
the filtfilt function) to eliminate phase shifts. This approach preserves the amplitude of SSVEP
components while effectively attenuating noise outside the desired frequency band.

[H(w)? (6.1)
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5.1.3. Signal-to-Noise Ratio in SSVEP

Welch power—spectral density

Before any SNR is calculated, EEG power is estimated with the Welch PSD. Welch’s method splits
each epoch into overlapping segments, applies windowing, computes a periodogram for every segment,
and then averages those periodograms. Averaging lowers the variance of single-segment FFTs, while
windowing limits spectral leakage. For the present data a 2s window with 50 % overlap was used, giving
a frequency resolution of A f = 0.2 Hz. This resolves the 8.57 Hz and 12 Hz targets yet leaves enough
segments for a stable average. The resulting spectrum P(f) is therefore smoother and more reliable
than a raw FFT and is used in both SNR definitions below.

Time-domain SNR

Time-domain SNR in SSVEP experiments is defined by comparing the signal power during stimulation
against a separate baseline (no-stimulus) period. One computes the power spectral density (PSD) of
the EEG during stimulation and during baseline, then takes their ratio:

~_ Paim(fo)
SNane N Pbase(fo) ’

For instance, if the EEG shows a spectral peak at the stimulus frequency during flicker, this peak’s
power is divided by the power at the same frequency in the baseline recording [10].

(5.2)

Frequency-domain SNR

Frequency-domain SNR leverages the narrowband nature of SSVEP responses by estimating noise
from neighboring frequency bins within the same trial. If P(f,) is the power at the target stimulation
frequency fy, and P,.ise the average power of adjacent bins (excluding fy), then

P
SNRfeq = P(f o). (5.3)
noise
often expressed in decibels as 101og;,[P(fo)/Proise]- An SNR > 1 indicates a clear spectral peak above
the local noise floor.

5.1.4. Fast Fourier Transform for Signal Validation

To validate the integrity of our recorded EEG data prior to classification, we apply the Fast Fourier
Transform (FFT) to each epoch. The FFT converts a time-domain signal z[n] of length N into its
discrete frequency components:

2
A

X[k] = z[n] e~ 12mmk/N (5.4)
0

n

where k corresponds to frequency f;, = k (Fs/N) and F; is the sampling rate. By choosing N so that
each stimulation frequency aligns exactly with an FFT bin (i.e. an integer number of cycles per epoch),
we maximize resolution at those frequencies.

From the complex spectrum X|[k], we compute the magnitude |X[k]| or power | X[k]|?. SSVEP re-
sponses appear as pronounced peaks at tag frequencies in the power spectrum. We therefore inspect
power at each expected stimulation frequency across occipital channels, averaging over electrodes
and epochs. Clear, high-amplitude peaks (or elevated SNR) confirm that our EEG acquisition captured
the expected neural responses with sufficient fidelity. These FFT-derived spectral features serve as
both a quality check and inputs for subsequent classification analyses.
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5.2. Preprocessing
The preprocessing stage can be split in 4 stages as can be seen in the following flowchart.

{ Raw EEG Signal }

1. DC Removal
& Baseline
Detrending

2. Bandpass
Filtering

3. Line Noise
Removal

4. Artifact
Removal

[ Cleaned EEG }

5.2.1. DC removal and Baseline Detrending

DC removal eliminates constant voltage offsets to center signals around zero, while baseline detrending
removes slow, non-linear drifts caused by artifacts like sensor instability or movement, ensuring clean
and interpretable data for downstream analysis. A 4th order butterworth high pass filter with a cutoff
frequency of 0.5 Hz is sufficient to tackle this [11].

5.2.2. Filtering frequency ranges for SSVEP

Another study [12] suggests using a filter range of 0.5 to 50 Hz because this range includes most of the
energy of the brain signal. A major benefit of this approach is that the 0.5 Hz lower limit automatically
removes DC shifts and reduces slow drifts in the data, which results in not having to use the filter as
mentioned in 5.2.1.

The frequency range that is ultimately used is 5 - 45Hz. This range was chosen, because it includes
the SSVEP range and their harmonics which are used for classifying.
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5.2.3. Line noise removal

Line noise (also called power-line interference) refers to unwanted electrical interference in EEG record-
ings caused by AC power systems. The most common suppression method, as discussed in [11], is to
apply a narrow-band notch filter centered on the supply frequency 50 Hz.

All data are processed with a zero-phase, 2"-order IIR bi-quadratic (also called biquad) notch cen-
tred at f, = 50 Hz. A quality factor of Q = 25 yields a —3 dB stop-band half-width of approximately
fo/Q = 2 Hz, which suffices to suppress the mains component while preserving nearby SSVEP harmon-
ics. Offline recordings are filtered with a forward-reverse implementation (filtfilt) to avoid phase
distortion. For real-time streaming the same biquad runs causally, introducing a fixed group delay of
four samples (=~ 16 ms), later compensated in software. The frequency response of the notch can be
seen in the appendix A.1

Note on Q-factor. QQ = fo/bandwidth at the —3 dB points. Higher @ values produce a narrower, deeper
notch; lower Q) values widen the notch but risk attenuating adjacent frequencies. A value of 25 provides
a practical compromise for the 5-45 Hz SSVEP analysis band.

5.3. Artifact Removal

Brain—computer interface (BCl) applications using EEG, such as SSVEP-based systems, must contend
with various physiological artifacts that can obscure the true brain signals. In the context of BCls,
the most significant artifacts are those generated by eye activity (blinks or eye movements) and by
muscle activity [13]. These artifacts can introduce large spurious EEG fluctuations that distort the
genuine neural activity as can be seen in figure 5.1, potentially leading to misinterpretation of user intent.
Eye-blink artifacts are typically low-frequency, high-amplitude deflections most pronounced in frontal
electrodes, while muscle artifacts (from facial or neck muscles) have a broad frequency spectrum and
can occur across many channels. Eye movement and cardiac (ECG) artifacts tend to be more localized
and can often be mitigated using reference channels (e.g. EOG electrodes), but muscle (EMG) artifacts
are especially challenging to remove due to their high amplitude and widespread, multi-source nature
[14]. Robust artifact removal methods are therefore critical to ensure the reliability of EEG-based BCI
systems. The focus will be on removing ocular and muscular artifacts using the adaptive filtering

ch
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Figure 5.1: Eye blink artifacts

5.3.1. Artifact Removal via Adaptive Filtering

Adaptive filtering is a real-time signal processing technique that can continuously estimate and subtract
artifacts from EEG signals [15]. The principle is to treat the artifact removal problem as an adaptive
noise cancellation task: one channel (or set of channels) serves as a reference that captures the artifact,
and an adaptive filter tries to regress out that artifact from the primary EEG channels. In our setup, we
use channel 1 as a reference for eye-blink artifacts, since channel 1 is located near the eye and reliably
picks up blink-related EOG activity [16]. Not having dedicated EOG electrodes, channel 1 effectively
acts as an EOG channel in this context. Prior to feeding channel 1 into the adaptive filter, we apply a
Savitzky—Golay (SG) smoothing filter to it [17]. The Savitzky—Golay filter performs a local polynomial
smoothing of the signal, which helps reduce high-frequency EEG and noise while preserving the shape
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and peak of the blink artifact. This yields a cleaner reference signal r(n) that predominantly contains
the blink artifact to be removed.

In summary, the LMS-based artifact removal as dicussed here [15] treats the blink signal as a regres-
sor that is adaptively scaled and subtracted from each contaminated channel. This approach does not
require an explicit calibration (unlike standard regression methods which need a predetermined regres-
sion coefficient), because the filter weights automatically adjust to the optimal values over time. The
use of a reference channel is of course crucial: the adaptive filter cannot remove artifacts for which
it has no reference. Thus, it is effective for artifacts like eye blinks or heartbeats if a reference is pro-
vided, but purely internal artifacts like widespread muscle noise are harder to eliminate unless some
reference or modeling of them is available. In our SSVEP BCI, we found the LMS filter to be effective
in suppressing blink transients in the occipital channels in real time. The adaptive filter quickly zeroed
in on the appropriate weight to subtract out each blink, while largely preserving the frequency-specific
SSVEP content of the EEG.

The adaptive filter then operates as follows. Let z(n) denote the raw EEG signal from a channel of
interest (e.g. an occipital channel used for SSVEP) which is a mixture of the true brain signal s(n) and
artifact a(n). This can be modeled as:

x(n) = s(n) 4+ a(n) (5.5)

where s(n) is the underlying clean EEG (desired signal) and a(n) is the artifact. The reference input r(n)
is fed into an adaptive filter (a Finite Impulse Response filter of order M) that produces an output a(n),
which is the estimator of the artifact in 2(n). In a simple configuration, a(n) can be a linear combination
of the reference signal and its recent samples:

a(n) = Z wi(n)r(n —k) (5.6)

where wy(n) are the adaptive filter weights at time n. Initially, the weights can be zero or small random
values. At each time step, the filter output a(n) is subtracted from the primary input x(n) to obtain the
error (or cleaned signal)

e(n) = z(n) — a(n). (5.7)
This error e(n) is the current estimate of the artifact-free EEG (it contains the residual brain signal plus
any remaining artifact). The adaptive algorithm then updates the filter weights w(n) = [wo(n), . .., war—1(n)]T

in @ manner that minimizes the mean squared error E[e(n)?]. A widely used adaptation rule is the
Least Mean Squares (LMS) algorithm, which adjusts the weights in the negative gradient direction of
the squared error. The LMS weight update equation is:

wp(n+1) = wi(n) + pe(n)r(n—k), k=0,1,....M -1, (5.8)
where 1 is a small positive step-size (learning rate) controlling the adaptation speed. In vector form,
w(n+1) =w(n) + pe(n)r(n), r(n)=I[r(n), r(n—1),...,7(n — M +1)]*. (5.9)

By minimizing the error, the algorithm effectively cancels the artifact from z(n), yielding e(n) ~ s(n),
the cleaned EEG signal. We note that other adaptation algorithms exist (e.g. Recursive Least Squares,
which converges faster at the cost of higher computation), but LMS is attractive for its simplicity and
low computational load, making it feasible for real-time use. In fact, adaptive filtering approaches have
been demonstrated to be stable, fast-converging, and suitable for on-line removal of EOG artifacts in
EEG.
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5.4. Summary
Table 5.1 summarises the filter chain applied in the order listed, it delivers a processed EEG stream
that is phase-accurate offline and latency-bounded online.

Table 5.1: Digital filters and artefact-removal stage in the preprocessing pipeline

Stage Method Order / Length  Cut-offs (Hz)  Q/BW
DC removal HP Bultter. 4 >0.5 —
Band-pass SSVEP  BP Bultter. 4 5-45 —
Line noise Notch biquad 2 50 Q=25
Artifact removal LMS adaptive filter 5 — —

Figures 5.2 and 5.3 show a 10-s epoch before and after the full filtering chain.
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Figure 5.2: Raw EEG: drifting baseline, broadband muscle noise, and a dominant 50 Hz mains peak obscure the SSVEP
content.
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Figure 5.3: Filtered EEG: preprosessing and artifact removal applied.



Results

In this chapter, the outcomes of our analyses are presented. First, the signal-to-noise ratios computed
in both the time and frequency domains are reported. Then, the spectral integrity of our EEG recordings
is assessed via FFT-based validation.

6.1. SNR results

Time Domain SNR Results

Time-domain SNR was computed by comparing the power at each stimulation frequency during flicker
against the corresponding frequency’s power in baseline recordings. Mean SNR values across subjects
and conditions are presented in table 6.1.

Frequency-Domain SNR Results

Frequency-domain SNR was calculated by dividing the power at each target frequency by the average
power of its neighboring bins. The distribution of frequency-domain SNR values across participants
is shown in table 6.1. This measure emphasizes the presence of the SSVEP peak above the local
spectral background.

Time-SNR Time-SNR Freq-SNR Freq-SNR
Trial linmean linstd dBmean dBstd linmean Ilinstd dB mean dB std

1 3.203 2.175 5.056 3.374 1.063 0.083 0.265 —10.794
2 1.882 1.029 2.745 0.123 1.772 1.659 2.485 2.199
3 124.714  124.205 20.959 20.941 1.703 1.406 2.313 1.479
4 1.204 1.110 0.806 0.454 1.050 1.022 0.211 0.096
5 15.864 12.129 12.004 10.838 4.985 2.238 6.976 3.498
6 10.702 9.280 10.294 9.679 4.105 1.265 6.133 1.020
7 3.709 0.846 5.692 —0.730 3.242 1.686 5.108 2.267
8 8.210 3.564 9.144 5.522 8.872 6.726 9.480 8.278
9 4.740 2.195 6.758 3.415 1.896 0.927 2.779 —0.331
10 0.872 0.754 —0.594 —-0.473 0.929 0.897 —0.320 —-0.473
11 2.642 2.465 4.219 3.918 3.797 3.695 5.794 5.676
12 0.397 0.284 —4.015 —5.462 0.188 0.044 —7.266 —13.560

Table 6.1: Time- and Frequency-Domain SNR from figures 6.1 and 6.2

In Table 6.1, the frequency-domain SNR values line up with the single-trial spectra in Figures 6.1 and
6.2. Ratios above about 2, as in Trials 5 and 8, come with a clear peak at the stimulus frequency.
Ratios near or below 1, as in Trials 2, 4, 10, and 12, match spectra that follow a 1/f curve and show no
peak. Trial 3 exposes a weakness of the time-domain metric; its very high baseline-referenced SNR
is driven by a short broadband burst, so the frequency-domain measure still reports only a modest
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response. Overall, the frequency-domain SNR gives the clearest view of stimulus-locked activity, while
the time-domain SNR mainly flags large power shifts that may be artifacts. Because most trials sit
close to the noise floor, we find no significant peaks at the intended stimulation frequencies, and the
data lack SSVEP responses strong enough for high-quality classification.

6.2. FFT-Based Signal Validation

To confirm spectral fidelity, the FFT was applied to channel 6, 7 and 8 and the power spectra were
examined at stimulus frequencies.

FFT Analysis of Subject Recordings

The frequency-domain plots created by the signal-processing group do not show the strong spectral
peaks that should appear at 8.57 Hz or 12 Hz. As seen in Figures 6.1 and 6.2, most power lies at low
frequencies and then falls off in a typical 1/f pattern. Near the red lines that mark the target frequencies,
only small bumps are visible. Their height is about the same as the power in neighbouring bins, so the
evoked signal is almost lost in the noise.

Because the target bins are barely higher than the local baseline, the estimated SNR is low. In other
words, the brain’s response at the flicker frequency is roughly equal to the background EEG fluctua-
tions. The second harmonics at 17.14 Hz and 24 Hz (green dashed lines) behave the same way: no
clear peaks appear, which further suggests that the visual stimulus failed to drive a strong steady-state
response.

Without sharp spectral lines at the stimulus frequencies, there is no narrowband “signal” towering above
the “noise.” This makes reliable SSVEP detection difficult. In recordings with high SNR one would
expect a pronounced spike that rises several-fold above the baseline. Here, the data show either
a very weak response or one that is masked by ongoing activity—possibly the brain’s natural alpha
rhythm in the 8-12 Hz band. As a result, these trials do not provide SSVEP signals strong enough for
dependable analysis or classification.
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FFT analysis of induced sine wave
Figure 6.1 and 6.2 show the FFT across channels 6, 7 and 8 during visual stimulation at 8.57 Hz and

12 Hz. Although past studies have reported clear SSVEP peaks in this range, our recordings did not

reveal consistent peaks at the stimulus frequencies. To confirm that this absence of peaks was not due
to a flaw in our processing or hardware, we next injected a clean 12 Hz sine wave into the headset via a
function generator, this circuit can be found in appendix B.1. As illustrated in Figure 6.3, this produced a
sharp, narrowband peak at 10 Hz, demonstrating that our filtering and PSD estimation procedures and
the acquisition system itself are capable of resolving periodic signals when presented under controlled

conditions.
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Figure 6.3: induced sine wave FFT at 10 Hz
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6.3. Future work

Current blink suppression relies on LMS with channel 1 as a reference. A first improvement is using an
EOG electrode (detects pure eyeblinks) [18]. A cleaner reference should speed up convergence and
lower residual blink leakage.

The LMS stage itself can grow. A multi-reference adaptive canceller could ingest vertical and horizontal
EOG together with a neck-EMG channel. More inputs let the filter tackle saccades and jaw-tension
bursts in one pass[19].

ICA already works offline but still needs manual bad-IC pruning. Automatic classifiers such as /CLabel
[20], MARA, or ADJUST can take that task over. Integrating one of them or training a small CNN on
our own SSVEP data—would remove the bottleneck without heavy runtime costs.

Hybrid pipeline Combine speed and depth:

» LMS (cheap) runs continuously for blinks.

* A sliding-window ICA or SOBI executes every few seconds to remove residual EMG [16].

This staggered scheme keeps latency low while maintaining high overall SNR.

Wavelet or CNN denoisers Wavelet-thresholding can target burst EMG with no reference channels.
Recent work [21] shows 1-D U-Nets removing both EOG and EMG in under 10 ms once trained. Eval-
uating such models on our dataset would test whether deep learning can replace manual parameter
tuning.

To conclude, incorporating a dedicated EOG reference and combining ICA with LMS filtering are the
next steps for future development of this project.



Conclusion

In this report, the development and testing of an EEG data acquisition and preprocessing system for an
SSVEP-based Brain-Computer Interface were described. The signal was processed through several
filtering steps and cleaned using an adaptive filter based on the LMS algorithm. The system was tested
using both flickering visual stimuli and a clean sine wave to check if everything worked as expected.

The filtering methods successfully removed common types of noise, such as baseline drift, electrical
interference, and blinking. However, during the tests with real participants, strong SSVEP responses
were not consistently seen. In most cases, the expected frequency peaks were missing or too weak to
stand out from the background brain activity.

To check whether this was a problem in the system itself, a 12 Hz sine wave was injected directly into the
headset. This test did show a clear frequency peak, confirming that the system and signal processing
steps were working correctly. It is therefore likely that the problem lies in how the brain responses are
triggered or how much noise is present during recording.

Several suggestions have been made for future improvements, such as using better reference signals,
combining multiple artifact removal methods, or trying machine learning tools to clean the signal. These
steps could help improve the signal quality and make the system more reliable for real-time use in a
BCI.
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Figure A.1: Frequency response of Butterworth bandstop filter from 48 Hz to 52 Hz. Different orders are compared
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Figure A.2: Frequency response of Butterworth bandpass filter from 5 Hz to 45 Hz. Different orders are compared.
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Circuit

B.1. Function generator circuit
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Figure B.1: Measurement setup with function generator and tuneable voltage divider
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