Using Graph Neural Networks
and domain knowledge

Relational Reasoning

Observation

Encode Graph

ﬂlill —
E

]
TUDelft

~einforcement learning
wIth domain-specific
relational iInductive biases

Using Graph Neural Networks
and domain knowledge

by

Crik \Vester

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on October 25, 2021 at 13:30.

Student number: 4305388
Thesis committee: Dr. M. T. J. Spaan, TU Delft, supervisor
Dr. J. W. Béhmer, TU Delft, daily supervisor
Dr. L. C. Siebert, TU Delft, external committee member

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Preface

My decision to take a ’'bridging year’ after completing my bachelor’s degree in Applied Earth Sciences,
to be able to take part in the Computer Science master’s program, has been largely based on my
interest into the topics of deep learning and reinforcement learning. This thesis, marking the end of my
studies at the TU Delft, combines exactly these topics. Just a few years ago | hardly understood the
concepts of these two terms and | barely wrote any code, however, | am proud to say that | now feel
like |1 have a solid understanding of these topics. During this thesis project | have learned a lot about
the theory behind Deep Reinforcement Learning and Graph Neural Networks - both new topics for me
- as well as the details and difficulties of the actual application of these methods in practice.

| would not have been able to write this thesis without the help of my supervisors: Wendelin Béhmer
and Matthijs Spaan. | would therefore like to express my gratitude for their support and input throughout
this project. Their detailed feedback and insights have helped me a lot and | have experienced their
calm and supportive attitude - even when my research did not always go as planned - as very pleasant.
Even though Matthijs and Wendelin both have very busy schedules, they always managed to make
time for me, even for a last minute or evening call.

Besides my supervisors, | would also like to thank Luciano Cavalcante Siebert for taking the time
to evaluate my work and take part in the thesis committee.

Finally, | would like to thank Zhengyao Jiang, who did research on a comparable subject and took
the time to talk with me and share his thoughts on the topic.

Besides the theoretical knowledge gained from this project, | have also learned a lot on a personal
level. Writing this thesis largely at home was challenging for me, however, this challenge was made
easier by the presence of my family, roommates and friends, to whom | would therefore also like to
express my gratitude for their support throughout this period.

I hope you enjoy reading!

Erik Vester
Schalkwijk, October 2021

Contents

1 Abstract 2
2 Introduction

3 Background 5

3.1 Deeplearning e 5

3.1.1 Multilayer Perceptrons 6

3.1.2 Convolutional Neural Networks 6

3.2 Deeplearningwithgraphs L 7

3.21 Graphs 7

3.2.2 GraphNeuralNetworks 8

3.2.3 Graph Convolutional Networks 10

3.2.4 Relational Graph Convolutional Networks. 11

3.2.5 Graph Attention Networkso 12

3.3 Relational Inductive Biases 13

3.3.1 Fullyconnectedlayers 13

3.3.2 Convolutionallayers L 13

3.3.3 Graph convolutional layer 13

3.3.4 Relational graph convolutional layer. 14

3.4 Reinforcementlearning e 15

3.4.1 The reinforcement learning problem setting. 15

3.4.2 Methodsoflearningin RL 17

3.4.3 Deep ReinforcementlLearning. 18

3.4.4 Proximal Policy Optimization. 20

3.5 Summaryand conclusion e 22

4 Related work 23

4.1 Relational reinforcementlearning Lo 23

4.2 Reinforcementlearningwith GNNs oo 23

421 Observationsencodedasgraphs 23

4.2.2 Modeling the physical shape ofanagentasgraph. 24

4.3 Summary and conclusion e 25

5 Methodology 26

5.1 Experimentalsetup. 26

5.2 Environments. 27

5.2.1 Random initialization of the environments. 28

522 Observations e 30

523 Actions L 31

524 Rewards 31

5.3 Evaluationofagents 31

5.3.1 Performancemetric 31

5.3.2 Testing for sample efficiency. oL 31

5.3.3 Testing for generalization. o 32

5.4 Architectures L 33

5.4.1 Multilayer Perceptron (MLP) 33

5.4.2 Convolutional Neural Network (CNN) 33

5.4.3 Graph Convolutional Network (GCN) 34

5.4.4 Relational Graph Convolutional Network imitating a CNN (R-GCN¢gnn) - - - - - - 35

5.4.5 R-GCN with domain-specific relations (R-GCNgomain) - « « « = « « =« « v v v v . 36

5.4.6 R-GCNcynn With additional domain-specific relations (R-GCNenn+domain) - - - - - - 38

iv Contents
5.4.7 R-GCN¢ynn with additional random relations (R-GCNgnN+random) « -+« « « v v - - 38
5.4.8 Learning additional relations with attention (R-GCNgan) - - - - - - - . o o . o . .. 38
5.4.9 Readoutfunctions 40

5.5 Implementation of proximal policy optimization., 41
5.5.1 Reasons fortheuseof PPO. 41
5.5.2 Implementationdetails L 41

5.6 Method of hyperparametertuning 42
5.6.1 Additionaltuningmetrics. L 42
5.6.2 Initial hyperparametervalues 43
5.6.3 Considered values for Key-Corridors-Small. 44
5.6.4 Adjusted values for Key-Corridors-Big 45

5.7 Used hyperparameters, activation functions and weight initialization method. 46
5.7.1 Hyperparameters of PPO 46
5.7.2 Weight initialization and activation functions 46
5.7.3 Overview of architectures and their number of trainable parameters 47

58 Usedhardware L 48

6 Experiments and results 49

6.1 Experiment 1: Effects of adding domain-specificrelations. 49
6.1.1 Sample efficiency. 50
6.1.2 In-distribution generalization. o oL 50
6.1.3 Out-of-distribution generalization 51
6.1.4 Conclusion 52

6.2 Experiment 2: Comparing different readout functions 53
6.2.1 Sample efficiency. 53
6.2.2 In-distribution generalization. o oL 53
6.2.3 Out-of-distribution generalization 54
6.2.4 Improved explainability through readout functions 55
6.2.5 Conclusion L 55

6.3 Experiment 3: Elaborate testing of the best performing architectures with the best read-
outfunction L 56
6.3.1 Sample efficiency. 56
6.3.2 In-distribution generalization. L. 56
6.3.3 Out-of-distribution generalization 59
6.3.4 Additional out-of-distribution generalization experiment 62
6.3.5 Conclusion e 64

6.4 Experiment 4: Are the domain-specific relations the real cause of improvement? 65
6.4.1 Sample efficiency. 65
6.4.2 Out-of-distribution generalization 65
6.4.3 Conclusion e e 66

6.5 Experiment 5: Can useful domain-specific relations be learned with R-GCNgan? 69
6.5.1 Sample Efficiency 69
6.5.2 In-distribution generalization. o oL 69
6.5.3 Out-of-distribution generalization 71
6.5.4 Conclusion e 71

7 Discussion and future work 74

7.1 Implicationsofresults 74
7.1.1 Results obtained with R-GCNggmain - « « « = « = =+« v v v v e e e e 74
7.1.2 Results obtained with R-GCNgan « - -+« -« o o v o o i e e 75

7.2 Limitations 76
7.2.1 Strong assumptions for R-GCNggmain - « « = « « =« « v v e b v e 76
7.2.2 Setup for testing in-distribution generalization 76
7.23 Usedenvironments. L 76

7.2.4 Hyperparametertuning. 76

Contents

7.3 Futurework. e
7.3.1 Testonmore environments
7.3.2 Making an end-to-end solution. oo

8 Conclusions

9 Appendix
9.1 Explainability through GAP and max-pooling

Acronyms

Acronyms
Al Atrtificial Intelligence.

CNN Convolutional Neural Network.

DL Deep Learning.

DRL Deep Reinforcement Learning.
GAE Generalized Advantage Estimation.
GAN Graph Attention Network.

GAP Global Attention Pooling.

GCN Graph Convolutional Network.
GNN Graph Neural Network.

MDP Markov Decision Process.

MLP Multilayer Perceptron.

MSE Mean Squared Error.

NN Neural Network.

PPO Proximal Policy Optimization.
R-GCN Relational Graph Convolution Network.
RL Reinforcement Learning.

RRL Relational Reinforcement Learning.
SGA Stochastic Gradient Ascent.

SGD Stochastic Gradient Descent.

Abstract

Reinforcement Learning (RL) has been used to successfully train agents for many tasks, but general-
izing to a different task - or even unseen examples of the same task - remains difficult. In this thesis,
Deep Reinforcement Learning (DRL) is combined with Graph Neural Networks (GNNs) and domain
knowledge, with the aim of improving the generalization capabilities of RL-agents.

In classical DRL setups, Convolutional Neural Networks (CNNs) and Multilayer Perceptrons (MLPs)
are often applied as neural network architectures for an agent’s policy and/or value network. In this
thesis, however, GNNs are used to represent the policy and value network of an agent, which allows
for the application of relational inductive biases that are more domain-specific than those of MLPs
and CNNs. Observations received by the agent from a simple navigation task - which requires some
relational reasoning - are encoded as graphs, consisting of entities and relations between them, which
are based on domain knowledge. These graphs are then used as structured input for the GNN-based
architecture of the agent. This approach is inspired by human relational reasoning, which is argued to
be an important factor in human generalization capabilities.

Several GNN-based architectures are proposed and compared, from which two main architectures
are distilled: R-GCNgomain and R-GCNgan- In the R-GCNyomain architecture, the graph encoding of
observations is based on domain knowledge, whereas in R-GCNgan We aim to combine the relational
encoding of a CNN with additional, learned relations, allowing for an end-to-end solution that does not
require domain knowledge. Sample efficiency and both in- and out-of-distribution generalization per-
formance of our architectures are tested on a new grid world environment called 'Key-Corridors’. We
find that adding domain-specific relational inductive biases with the R-GCNyomain architecture signifi-
cantly improves sample efficiency and out-of-distribution generalization, when compared to MLPs and
CNNs. However, we did not succeed in learning these domain-specific relational inductive biases with
R-GCNgan, Which does not manage to significantly outperform a CNN. Overall, the results indicate
that applying relational reasoning in RL - through the use of GNNs and domain knowledge - can be an
important tool for improving sample efficiency and generalization performance.

Introduction

From industry automation, financial and business management, natural language processing, health
care decision-making, biological data analysis to traffic signal control - RL has proven increasingly valu-
able for developing powerful solutions for important and challenging real-life problems in recent years
(Arel etal., 2010; Kober et al., 2013; Mahmud et al., 2018; Yu et al., 2019; Zhong et al., 2017). Although
trained agents can solve complex tasks, they struggle to generalize their experience to a different task
or even unseen examples of the same task (Cobbe et al., 2019; Farebrother et al., 2018). Gener-
alization therefore remains one of the key challenges for (deep) reinforcement learning algorithms.
However, Packer et al. (2018), among others, argue that this is actually an indispensable feature for
applying advanced intelligent systems in the real world, where they will inevitably encounter unfore-
seen situations. Battaglia et al. (2018) even advocate that combinatorial generalization should be a top
priority for Artificial Intelligence (Al) to reach human-like abilities.

In recognition of the importance of this challenge, much attention and research efforts have been
focused on ways to improve generalization in RL. Zhao et al. (2019), for instance, evaluate several
techniques for improving generalization and find that reducing architecture size or adding regularizers
to reduce overfitting can increase generalization performance. Other work such as by Rajeswaran et al.
(2016), Tobin et al. (2017) and K. Wang et al. (2020) has focused on approaches related to sampling
from diverse environments during training. The latter aim to effectively increase training data diver-
sity by training the RL-agent on a mix of observations collected from different training environments.
Recent work in the field of meta-learning and multi-task reinforcement learning (D’Eramo et al., 2020;
Finn et al., 2017; Hessel et al., 2019; Kirsch et al., 2019; Shu et al., 2017) have also shown promising
advances. For instance, Kirsch et al. (2019) propose a novel meta RL algorithm, which combines the
experiences of many agents to learn an objective function which determines how future individuals
will learn. These are just a few examples of various techniques, each of which attempts to improve
generalization performance in a different way. However, they fall far short of the human capacity for
generalization. Humans solve novel problems - a comparable task to generalization in RL - by com-
posing familiar skills and routines (Anderson, 1982). More specifically, it has been proposed that this
human capacity is rooted in a high-level form of relational reasoning (Waltz et al., 1999). As Holyoak
and Lu (2021, p. 118) explain, relational reasoning refers to “the ability to form explicit representations
of relations between entities, and the ability to make inferences by integrating multiple relations and
comparing relations across domains.”

In this thesis we focus on trying to incorporate this type of relational reasoning into DRL, with the
aim to improve the general performance of the RL-agent and its capacity to generalize. This is done by
encoding observations of a navigation task - requiring some relational reasoning - as graphs, which are
inherently suitable for representing entities (nodes) with relations (edges) between them. Subsequently,
GNNs are applied to these graphs, instead of applying other types of neural network architectures
such as MLPs and CNNs directly on the observations. In general, the structure of a GNN supports
generalization as it performs shared computations across entities and relations and therefore allows
for reasoning about new input when this input is built from familiar components (Battaglia et al., 2018).
Furthermore, we will compare different types of GNNs, which allow for a variety of possible relational
encodings of the observations, each inducing different relational inductive biases and therefore having

3

4 2. Introduction

different effects on the general performance of the agent and generalization performance specifically.

To encode observations as graphs consisting of entities and relations, we assume domain knowl-
edge to be available about useful domain-specific relations present between the entities in the obser-
vations. Even though this is a strong assumption, we argue that in many cases domain knowledge like
this is available, for instance in the form of domain experts or databases describing relations between
objects or persons. In addition to applying domain knowledge to define relations in the observations,
we also explore an approach which tries to learn useful relations in an end-to-end fashion, removing
the need for domain knowledge.

In line with the objectives of this thesis, we pose the following research questions:

Research question 1: Can the sample efficiency of DRL be improved by using GNNs and do-
main knowledge, compared to traditional architectures such as CNNs and MLPs?

Research question 2: Can the generalization performance of DRL be improved by using GNNs
and domain knowledge, compared to traditional architectures such as CNNs and MLPs?

Research question 3: Can the fixed relational inductive biases of a CNN be combined with
learned domain-specific relational inductive biases and GNNs to improve sample efficiency and
generalization performance in an end-to-end fashion, which does not require domain knowl-
edge?

To answer research question 1 and 2 we explore multiple graph encodings of the observations and
apply Graph Convolutional Networks (GCNs) and Relational Graph Convolution Networks (R-GCNs) to
these graphs. Much like the previously mentioned works by Rajeswaran et al. (2016), Tobin et al. (2017)
and K. Wang et al. (2020), we train our agents on different initialization of our environment, where we,
for instance, vary the position of objects and their colors. To test for in-distribution generalization, we
train agents on a subset of all of the possible initializations of the environment and test them on the
remaining ones, which are unseen during training. To test for out-of-distribution generalization perfor-
mance, we slightly modify the training task and evaluate whether the agent can generalize - without
further training - to this task as well. Finally, for research question 3, we apply a combination of R-GCN
and a Graph Attention Network (GAN) with the aim of integrating the relational inductive biases of a
CNN - which are known to perform well on grid-shaped data - with learned relational inductive biases.
This approach would allow for an end-to-end method which does not require domain knowledge. For
research question 3, we again test for sample efficiency and in- and out-of-distribution generalization
performance, compared to a baseline architecture using a CNN.

Background

In this chapter the necessary background for the following chapters of this thesis will be laid out. For
readers with a background in reinforcement learning, machine learning and deep learning many parts
of this chapter will be redundant, however, it will introduce notation used in following sections, as well
as some of the used algorithms.

3.1. Deep Learning

Machine learning or pattern recognition used to require a lot of time and knowledge to create a feature
extractor that mapped raw input (e.g. pixels) to a feature representation which the system could use
to classify or detect patterns (Lecun et al., 2015). In representation learning one tries to automatically
learn these feature representations and Deep Learning (DL) is a form of representation learning, which
introduces representations that are expressed in terms of other, simpler representations (Goodfellow
et al., 2016). In DL this is done with a Neural Network (NN) consisting out of multiple layers, from
which the adjective "deep” is derived. In the domain of natural images, the first layer could for instance
extract edges, after which a second layer could then extract corners and contours, a third layer could
extract complete objects parts, and finally, the last layer - called an ‘output layer’ - predicts an actual
object that is present in the image. In this case the idea of introducing representations expressed in
terms of other, simpler representations is quite intuitive, but in reality - especially on other types of data
- this can be much more abstract and happen in a way that is not necessarily easy to understand for
humans.

In general, NNs can be seen as function approximators. For an example function f* mapping an
input x - often in the form of a vector or matrix of features - to an output y = f*(x), a NN could be trained
as a mapping y = f(x; 6), where f is an approximation of f* and the network learns the parameters
6 that give the best approximation. To train such a NN, a cost or loss function L(8) has to be defined,
which is to be minimized during training. In this training process, input is first fed through the NN in
a so called forward pass’, which results in an output. This output can then be used to compute the

loss, according to L(6). A commonly used loss function in a supervised learning setup is the Mean
Squared Error (MSE) loss: L(0) = %Z?’:O (y; — yl-)z, where y represents ground truth labels, y are the

output predictions and N represents the amount of samples in and y. Sometimes the actual loss
function cannot be optimized in an efficient manner, in which case a surrogate loss can be defined that
can be considered as a proxy for the actual loss. This is for instance used in PPO, the RL algorithm
used in this thesis, which will be discussed in more detail in section 3.4.4. The forward pass is followed
by a backward pass, in which the parameters 6 - sometimes also called weights, which is not fully
accurate as 6 includes both the weights and biases of the network when both are used - of the NN are
updated with the goal to minimize the loss. To optimize these parameters, gradient descent methods
are usually applied, in which the gradient of the loss function - which is the first-order derivative of the
loss function with respect to 6 - is computed. This gradient is denoted by V4 L(8) and during optimization
the parameters are updated in the negative direction of this gradient, thus minimizing the loss (Lecun
et al., 2015). One gradient descent step would then have the following shape:

Onew = 60 —1uVoL(0), (3.1)

5

6 3. Background

where 6’ denotes the updated parameters and u is a learning rate defining how big the update step
should be. To compute the gradient of a multilayer NN with respect to all of its parameters 6, backprop-
agation (Chauvin & Rumelhart, 2013) is applied, which amounts to a smart application of the chain rule
(Lecun et al., 2015). In practice, this is often done with software packages offering automatic differen-
tiation, such as PyTorch (Paszke et al., 2019). This process of first predicting new output values with
the current parameters 6 in a forward pass and then updating the parameters in the backward pass is
applied iteratively until - ideally - a good performance is reached.

The gradient descent optimization methods actually often update parameters 6 based on an ex-
pected value of the loss, which is estimated based on a subset - also called a mini-batch - of all the
available training data. This is called 'mini-batch gradient descent’ butis sometimes also simply referred
to as Stochastic Gradient Descent (SGD) (Goodfellow et al., 2016).

3.1.1. Multilayer Perceptrons
One of the most common architectures for DL is the MLP, which consists of multiple linear - also called
fully connected - layers. Each layer [can be seen as a vector-to-vector function A(+1) = g WORD +

b®), where w® e RI"VIXIRD1 represents a weight matrix and b® a bias vector, which together form
the trainable parameters 8 of the NN. Furthermore, h® is a vector representing the input features, or
the output features of the previous layer, and ¢ is a non-linear activation function.

Another way of looking at MLPs - which is useful for the comparison with GNNs later on - is by
thinking of each layer as many units in parallel, where each unit is a neuron (Goodfellow et al., 2016).
Each of these neurons receive input from all other neurons in the previous layer - or the actual input
in case of the first layer - and computes its own activation. It does this by taking a weighted sum of all
of its inputs and adding a bias value, after which the non-linear activation function ¢ is applied (Lecun
etal.,, 2015).

3.1.2. Convolutional Neural Networks

Another common type of neural networks are CNNs (LeCun et al., 1989). CNNs are well suited for
grid-shaped data such as images - which can be seen as a two-dimensional grid of pixels - and are
known to have good performance on recognition and classification tasks on images and video (He et
al., 2015; Karpathy et al., 2014; Simonyan & Zisserman, 2014).

Instead of only having fully connected layers like a MLP, CNNs usually have three types of layers:
convolutional layers, pooling layers and fully connected layers. The principles behind a convolutional
layer are the same as those of a MLP, as each layer still consist of trainable neurons with weights,
biases and activation functions. However, the input of a convolutional layer usually has a shape of
[X,Y,D], where X, Y and D are the width, height and depth of the input, respectively. The depth of the
input is also referred to as 'channels’ and in the case of images, each pixel in the X by Y grid of pixels
often consists of the 3 RGB color channels: red, green and blue. A convolutional layer is comprised
out of learned kernels - each having its own weights and bias - that convolve over the input to create a
so called feature map. Each feature of the feature map is computed by applying the weights and bias
of the kernel and is only based on a region of the input, defined by the size of the kernel. This region
is called the receptive field of the convolutional layer. To create the full feature map, the kernels are
convolved over the input, which can be thought of as a filter being moved over the input. Whilst the
kernel is convolved over the input, the learned weights remain constant, which is also referred to as
weight sharing (Gu et al., 2018).

It is important to note that although each kernel moves across the X by Y grid, targeting only a
portion of the input grid at each position, it usually does have weights for the entire depth of the input.
Therefore, applying a single kernel at one position results in one output feature based on the entire
depth of the input and if, for instance, 5 output features are required, 5 kernels need to be learned.
Applying a convolutional layer [with kernels of size n X m to compute features h;; at one position [4, j]
of a feature map, can be summarized by the following equation:

n-1m-1
(+1) _ OO
WD =00 3 D WA +5O | @2)
x=0 y=0

3.2. Deep learning with graphs 7

Here, w® e RmxIROIxIR D] g the learned weight matrix, containing all the weights of the [R(+D)|
kernels used to transform the input features h®). Furthermore, b® € RI"“*?I is a vector containing the
learned bias terms of the kernels and ¢ is a non-linear activation function. Equation 3.2 describes
the update of one position in the feature map, however, weight matrix W® and the bias terms b are
shared for all positions in the feature map.

The stride of a kernel defines its 'step size’ when moving over the input grid, where a stride of 1
means that the kernel is shifted one pixel at a time. Furthermore, padding can be added around the
perimeter of the input of a convolutional layer to avoid or reduce a size difference from the input to the
output feature map.

Pooling layers can be applied in between convolutional layers for a reduction of resolution, which
helps to achieve shift-invariance. Examples of commonly used pooling layers are max-pooling and
average-pooling (Boureau et al., 2010; Gu et al., 2018). After a few convolutional layers - possibly with
pooling layers in between - the final feature map is often flattened into a 1D tensor, on which more
linear layers can be applied to learn non-linear combinations of all the features in the output feature
map.

3.2. Deep learning with graphs

The following sections will focus on deep learning with GNNs, which are NNs working on graph-shaped
input. First, graphs and their notation are introduced, after which the general concept of GNNs will be
covered, as well as some specific types of GNNs which will be used later in this thesis.

3.2.1. Graphs

To get into the topic of GNNs we first introduce some background on graphs and the corresponding
notation used in this thesis. The following section on graphs is based on the works by Battaglia et al.
(2018), Bondy and Murty (1976), and Wilson (2005), which together provide an extensive overview of
graph theory and its application in GNNs.

Graphs can be used to represent many real-world data structures or situations, especially those
that can be expressed in the form of entities with certain relationships or interactions between them,
such as the structure of a molecule or a social network. In the case of a social network, nodes can
represent individuals and edges can then define certain relationships between these individuals, such
as friendships or family ties. Another good example of a graph structure - related to this thesis - is a
neural network, where each neuron would be a node and each weight would be represented by an
edge.

In this thesis a graph is defined as a 2-tuple G = (V, E), where V represents a - usually finite - set of
nodes (also called vertices) {v;};—1.|y of cardinality |V|. E is a set of edges {e;} 1. of cardinality |E],
and each edge e; is again a 2-tuple of nodes e; = (v,, v}), indicating a connection or relation between
node v, and node v,. These edges can be directed or undirected; a directed edge being an edge
directed from a source node to a target node, whereas an undirected edge does not have a specific
source and target node but is simply an edge between two nodes. When a graph has directed edges
it is called a directed graph and in this case the 2-tuple per edge e; = (v,, v;) is ordered, where v is
the source node and v; is the target node. See figure 3.1 for an example of how graphs are illustrated
in this thesis. Here, edge e; is an example of a directed edge from source node v, to target node vs,
where the direction of the edge is depicted by the arrowhead. In this thesis, all edges displayed without
arrowheads are actually referring to two separate directed edges in both directions. For example, the
edge between nodes v; and v; in figure 3.1, represent both an edge from v; to v; and an edge from v,
to v;.

The degree d; of a node v; is equal to the number edges that are attached to this node. For
example, in figure 3.1, node v; has a degree of 2 and node v; has a degree of 4. Two nodes are said
to be adjacent if they are connected by an edge and the neighborhood JV; of node v; encompasses
all nodes that are adjacent to v;. A k-hop neighborhood of a node v; defines a set of nodes that are
reachable from node v;, by traversing k edges. For example, in figure 3.1, the 1-hop neighborhood
of node v, is: {v3,v,} and the 2-hop neighborhood of node v, would already include each node of this
small example graph, as all nodes are reachable from v, by traversing 2 edges. A graph is called "fully
connected’ if there is a directed edge from each node v; € V to all other nodes v; € V' \ {1;}. Lastly,
in this thesis, each node v; € V can have a set of properties, described by its node features h;. In

8 3. Background

the previously introduced example of a graph describing a social network where each node represents
an individual, the node features could encode properties of these individuals, such as age, sex and

occupation.
9 eq = (V4,Vs)

Figure 3.1: A graph, where e, is an example of a directed edge from node 4 to node 5, where the direction of the edge is depicted
by the arrowhead. In this thesis, all edges displayed without arrowheads are referring to two separate edges in both directions.
For example, the edge between nodes v, and v, represent both an edge from v, to v; and an edge from v; to v;.

3.2.2. Graph Neural Networks

GNNs is an umbrella term for neural networks designed to operate on graph-shaped input data. The
concept of GNNs was originally introduced by Gori et al. (2005) and, in general, each layer in a GNN can
be seen as a 'graph-to-graph’ function (Battaglia et al., 2018). As there are many different approaches
to GNNs, we will not discuss all of them here and instead focus on the type of GNNs applied in this
thesis. For the interested reader, Battaglia et al. (2018), Wu et al. (2019), and Zhou et al. (2018) can
be used to get a more extensive overview of the research on GNNSs. In this section, we will first explain
the general concept of GNNs, after which section 3.2.3, 3.2.4 and 3.2.5 go into further detail on the
three types of GNNs applied in this thesis.

A GNN layer [takes a graph, in which each node v; € V already has some initial node features h!,
as input and tries to learn new node features h!*! for each node in the graph. The goal is - as with any
type of NN - to learn features that are useful for some downstream task, which in the case of GNNs
usually is node or graph classification. After learning the new features, the layer returns the graph with
the updated node features as output. In the case of node classification, one tries to learn node features
that are useful for predicting the class to which a certain node belongs, whereas for graph classification
the goal is to predict a class for the entire graph.

An intuitive way to describe the internal workings of a GNN is by using the 'message passing’
paradigm. From this perspective and focusing on the type of GNNs implemented in this thesis, one
layer of a GNN usually applies the following steps (see figure 3.2 for a visual representation of these
steps) in succession to update the node features of a graph:

1. Input graph: Each layer [receives an input graph G(V, E) which has node features h! for each
node v; € V. For the first layer of a GNN network these will be the input features k) of all the
nodes.

2. Message passing: Each node sends a 'message’ to all of its neighboring nodes, including itself
in case it has a self-loop. This message can be a learned transformation of the node features,
however in this thesis it will just contain the current features of the node, in the form of a tensor.
In figure 3.2, this step, as well as steps 3 and 4, are only displayed for node v, to avoid cluttering,
however, in reality this happens for all of the nodes in the graph.

3. Message aggregation: After message passing, each node aggregates all the incoming messages
with an aggregation function p. This is usually simply summation or averaging of the incoming

3.2. Deep learning with graphs 9

messages, however, more complex aggregation functions such as an LSTM network (Hochreiter
& Schmidhuber, 1997) can be used as well (Hamilton et al., 2017).

4. Updating node features: The aggregated messages are then used to compute new node features
hi*1 for each node v; € V, which will now include information from neighboring nodes. This is
done by feeding the aggregated messages through an update function ¢. This update function ¢
is a NN which is shared over all nodes in the graph, i.e., the same NN, with the same parameters,
is applied to update each node v; € V.

5. The final step is to return graph G as output, which now has updated node features h!** for each
node v; € V.

1: Input Graph 2: Message Passing 3: Aggregation

" n

m i v 1= o [o88a]

S, 544

4: Update Embedding 5: Output Graph

w]-ofl

Va hiﬂE

Figure 3.2: A visual breakdown of the 5 steps applied in a GNN layer. Step 1 shows the input graph, where each node v; € V
already has some node features hli. Step 2-4 are only visualized for node v, but in reality happen for all nodes, resulting in an
output graph where each node has updated node features h%“, as displayed in step 5. Step 2 applies message passing, which
can be seen as sharing information between connected nodes. In step 3, this information is aggregated, and this aggregated
information is then used in step 4 to update the features of a node. Finally step 5 returns an output graph with all the updated
node features.

Usually a GNN consists of multiple layers of the type described above. When more consecutive
layers are applied, information of nodes is spread further throughout the graph; after applying k layers,
each node contains information from all nodes located in its k-hop neighborhood. Figure 3.3 shows
how this looks like for 2 GNN layers applied to the example graph of figure 3.1. Here it is clear to see
that in the second layer, node v, will incorporate information from all the other nodes in the graph, which
are all in its 2-hop neighborhood.

10 3. Background

Second Layer First Layer

(only displayed for node v4) :
Vi OnQ [MM}>

“ «o(vQ [@D
é e
\

@ ()

Figure 3.3: A visualization of the update of node features in two consecutive GNN layers applied to the graph of figure 3.1. The
colors indicate the distinction between the different layers, where all the grey nodes represent the input graph, all blue elements
represent the first layer and all the red elements represent the second layer. The second layer is only displayed for node v, to
avoid cluttering.

In the case of node classification, the learned node features of the final GNN layer can be used
directly to make an output prediction for each node. Usually, this is done by feeding the node features
of each individual node into a MLP, which then classifies the nodes. However, for graph classification
one needs to somehow summarize the entire graph to be able to use it as input for further MLP layers,
which then compute the final output. To do so, a so called 'readout function’ is applied. One simple
approach would be to just concatenate all node features of the final GNN layer, but this does not allow
for working with variable size graphs as input, which is an important feature of GNNs. Therefore, one
usually applies a readout function that results in a fixed output size, regardless of the input size. Three
commonly used readout functions are summation of the node features, averaging over node features
and max-pooling over the features.

3.2.3. Graph Convolutional Networks

GCNs were introduced by Kipf and Welling (2017) and are based on CNNs. Normal CNNs cannot
be applied to most graph shaped data, as they would require each node in the graph to have the
same degree, such that the neighborhood of each node would contain an equal amount of nodes.
Furthermore, they would require the neighborhood of each node to be an ordered set of nodes. This
is because kernels of a CNN layer have a fixed size and learn a unique weight for each position in
the kernel. Figure 3.4 visualizes this issue, where figure 3.4a shows how an image can be seen as a
special type of grid-shaped graph, where each node represents a pixel (Wu et al., 2019). A 3x3 kernel
of a CNN is displayed by the blue rectangle, which, in order to update the features of the red node,
computes a weighted average over the node features of all nodes contained in the kernel, including
the red node itself. A separate weight is learned and applied for each individual position within the

3.2. Deep learning with graphs 11

kernel, i.e., the 9 positions of the nodes that fall within the kernel. In figure 3.4b the concept of graph
convolution is displayed. It is clear that the kernel from figure 3.4a would not work on this graph, as
nodes have different degrees and the nodes in a neighborhood are unordered, making it impossible
to apply the 9 learned weights of the CNN kernel to their corresponding position within the kernel. In
order to update the features of the red node in figure 3.4b, a GCN layer takes a summation over the
node features of the red node and its neighbors, where each node feature is weighted with the same
weight matrix and a normalization constant is applied. Equation 3.3 shows how the features h; of node
v; are updated in one layer [of a GCN:

1
D = 5 Z _hﬁl)W(l) _ (3.3)
femh U

5 I+
Here, hElH) are the updated node features, JV; is the neighborhood of node v;, W® € Ry My

are the learned weights and ¢ is a non-linear activation function. Furthermore, c;j is the following

normalization constant: ¢;; = ,/d;d;, where d; is the degree of node v;. Unlike a CNN layer, this
works for any amount neighboring nodes and is independent of node ordering, therefore making GCNs
permutation invariant. Equation 3.3 can be efficiently implemented by using sparse-dense matrix mul-
tiplications, as described in the orginal paper by Kipf and Welling (2017).

Tying this back to the general concept of GNNs introduced in section 3.2.2, the aggregation function
p of a CNN is a summation of node features, combined with division by a normalization constant c;;.

The update function ¢ is one linear layer, with weights W®.

/ @

XX
XXX ¢ C
ZaN

N/ —)

(b) The convolutional operation of a GCN. Instead of having

(a) The convolutional operation of a CNN. A kernel is dis-
played by the blue rectangle, which, in order to update the
node features of the red node, takes the weighted average
over the node features of all nodes within the kernel, with
an individual learned weight for each node in the kernel.

a fixed kernel size, the kernel size of a GCN scales with the
size of the neighborhood of the node of which the features
are updated. For example, the features of the red node
are updated by taking a summation over the features of
all nodes in its neighborhood, including its own features,

which are weighted with the same weight matrix and scaled
by a normalization constant.

Figure 3.4: Comparison of convolution in a CNN layer and a GCN layer. This figure is obtained from (Wu et al., 2019).

3.2.4. Relational Graph Convolutional Networks

R-GCNs, introduced by Schlichtkrull et al. (2018), can be seen as an extension of GCNs, allowing for
different types of edges, each encoding a different type of relation between nodes. Instead of one
weight matrix W per layer, a R-GCN layer has a separate weight matrix Wr(l) for each relation r € R,
where R defines a set of relations. Furthermore, each node always has a self-loop for which a separate
weight matrix Wo(l) is used, which can simply be seen as an additional relation for self-loops. Equation
3.4 shows how the features h; of node v; are updated in one layer [of a R-GCN:

12 3. Background

1
WD =05 LpOh® 4 wOh? | 34)
TER jENT €ij

Here ;" defines the neighborhood of node v; under relation r, i.e., all nodes that are connected to

|y A+D
node v; with an edge representing relation r. Wr(l) e RIMy Iyl represents the learned weight matrix

for each relation r and ¢ is again a non-linear activation function.

This addition of relations leads to a much stronger expressive power compared to the traditional
GCNs where each edge was sharing the same weights. In the message passing paradigm used in
section 3.2.2, one could describe this as follows: instead of treating all incoming messages equally,
there are multiple types of messages which are each treated differently in the update of the node
features.

3.2.5. Graph Attention Networks

GANs were introduced by Velickovi¢ et al. (2017) and apply multi-headed self-attention to aggregate
node features from neighboring nodes. The used attention mechanism is a form of additive attention,
as described by Bahdanau et al. (2014). Instead of aggregating all the node features of neighboring
nodes with equal weight, as in GCNs, GANs attend over the neighboring nodes and learn separate
weights for each node, i.e., GANs learn the individual importance of neighboring nodes. Using one
single head, the features h; of node v; are updated in one layer [of a GAN as follows:

R = 6O Z «OwOR® | . (3.5)
JEN (D)

DD
Here, w® ¢ Ry X again represent learned weights that are used to transform the node
features and ai(Jl-) are normalized attention coefficients e. These attention coefficients e are computed
for all of the nodes in the neighborhood %; of node v; and are normalized by applying the softmax
function over these coefficients:

O _ M

a;j = softmax;(e;;) = o (3.6)
Tuen; exp (efy)
where each attention coefficient is computed as follows:
eff = LeakyReLU (A® (WORPIw®RP)) . (3.7)

Here W is the same weight matrix as the one used in equation 3.5 and the || symbol represent

concatenation. Furthermore, A € R2|h§l+1)| represents the weights of a single fully connected layer,
which functions as the attention mechanism. Lastly, LeakyReLU (Maas et al., 2013) is applied as
non-linear activation function, which has a hyperparameter a gy for its negative slope angle.
Equation 3.5 describes the working of one head of GAN, however, Velickovi¢ et al. (2017) found
that using multiple heads is beneficial for a more stable learning process, as also discussed by Vaswani
et al. (2017). The outputs of the individual heads can either be concatenated or averaged. In the case
of averaging and using K attention heads, this would result in the following adjustment to equation 3.5:

K
1
W =00 2D) alweond |, @9
k=1 j€N ()

where al-(]l-’k) and Wk denote the normalized attention coefficients and weights from the k-th attention
head, respectively. Note that this is very similar to equation 3.4, describing the working of a R-GCN.
Therefore, one could argue that each attention head can be seen as learning a unique relation.

3.3. Relational Inductive Biases 13

3.3. Relational Inductive Biases

Mitchell (1980) argues that learning involves generalization from past experiences to deal with new
but related problems and that this only seems to be possible under certain biases for choosing one
generalization over another. In this thesis we will call these biases ’inductive biases’ and define them
as any type of bias that causes a learning algorithm to choose one form of generalization over another,
independent of the observed data (Hamrick et al., 2018). These inductive biases can be seen as a set
of explicit or implicit assumptions of a learning algorithm. Without these assumptions, generalization
would not be possible, as there are many different possible ways of generalizing beyond the observed
samples during training and the algorithm somehow has to favor one over the others (Hullermeier et
al., 2013). In DL, these inductive biases can, for instance, be encoded in the network architecture,
used activation functions, optimization algorithm or the use of dropout (Srivastava et al., 2014). Ideally,
these inductive biases lead to better generalization performance, but the induced biases can also be
too strong or just plain wrong, leading to worse performance. Battaglia et al. (2018, p. 5) introduce
a specific type of inductive biases - termed ’relational inductive biases’ - which "impose constraints
on relationships and interactions among entities in a learning process”. In this case an entity can for
instance be represented by a single pixel of an input image, but it can also represent an entire object
in a more abstract encoding. Each of the weights of a NNs will then represent a ’relation’ between two
entities.

The general structure of deep neural network, consisting of multiple layers, already creates a form
of relational inductive bias; hierarchical processing. For example, in CNNs, more layers typically lead
to the inclusion of longer range relations. However, next to hierarchical processing, the individual
layers within NNs can have their own relational inductive biases as well (Battaglia et al., 2018). These
relational inductive biases of the individual layers is what we will focus on in this thesis and in the
following sections we will discuss them for each type of NN layer used in this thesis.

3.3.1. Fully connected layers

A single fully connected layer, has no relational inductive biases. All neurons have all-to-all connec-
tions and therefore a weight is learned for each possible relation between the entities in the input.
Furthermore, there are no shared weights, i.e., each relation has its own individual weight. Therefore,
a linear layer does not impose any constraints on relationships among entities. See figure 3.5a for an
illustration of these characteristics. As linear layers do not have relational inductive bias, they provide a
good baseline for comparison with convolutional layers and GNN layers. Both of these methods apply
a combination of parameter sharing and removing some of the weights that are present in a fully con-
nected layer, to incorporate relational inductive biases. With respect to relational reasoning, parameter
sharing can be though of as assuming that certain relations are equal or shared between some of the
entities. Removing some of the weights can then be understood as removing some of the all-to-all
relations and therefore having a bias towards more sparse relations between entities.

3.3.2. Convolutional layers

As opposed to a fully connected layer, a convolutional layer does have relational inductive biases.
First of all, the relations they encode are local, only including entities within the size of the kernel.
Therefore the kernels induce a strong relational bias, assuming that entities are only affected by other
entities that are in close proximity. Furthermore, convolutional layers apply weight sharing - by using
the same kernel weights at each position of the kernel during convolution over the input - which leads
to translational equivariance. See figure 3.5b for a visual representation of these relational inductive
biases. These biases make a lot of sense when applied to images, which is exactly the domain for
which CNNs are often used. For an image, it is intuitively understandable that a patch of pixels that are
spatially close to each other should also to be considered together in order to detect, for instance, an
object in the image. Moreover, it also makes intuitive sense that detecting certain patterns at a specific
location in the image is an equal task as detecting them at any other location in the image.

3.3.3. Graph convolutional layer

In GCN layers, the shape of the graph defines the relational inductive bias that is applied during learning.
When there is an edge between two nodes, there is a relation between the two entities encoded by the
nodes. Therefore, the relational inductive bias can be more dependent on the actual input, whereas in

14 3. Background

convolutional layers, the biases are always the same for each input and are solely dependent on the
used kernels. In a GCN layer, edges can indicate all kinds of relations and are not necessarily present
only between entities that are spatially close to each other. Because edges are defined between specific
entities, rather than being based purely on position as in a convolutional layer, graph convolutional
layers are permutation invariant. All edges in a graph convolutional layer share the same weights,
therefore they only encode one type of relation between entities. This is a very strong bias which, as
we will also show in the following sections of this thesis, might sometimes be too strong. See figure
3.5c¢ for a visual representation.

3.3.4. Relational graph convolutional layer

Just as a graph convolutional layer, a relational graph convolutional layer is also permutation invariant.
However, relational convolutional layers can encode different types of relations with different types of
edges. In this case, weights are only shared between edges that represent the same relation, allowing
for much more detailed relational inductive biases than those of a graph convolutional layer, which
shares weights across all edges. See figure 3.5d for a visual representation, in which the edges now
encode 3 different types of relations, compared to only one type of relation in a GCN. This for instance
enables us to replicate the relational inductive biases of both a fully connected layer - by encoding the
input as a fully connected graph with a unique relation for each edge - as well as a CNN, which is
something we will do in this thesis as well.

S

(a) Relational inductive bias of a MLP. MLPs have
all-to-all relations, where each edge represents a
unique relation, indicated by the different colors.

I

(c) Relational inductive bias of a GCN, which allows for
manually choosing the relations. All edges share weights
and therefore represent the same type of relation.

(b) Relational inductive bias of a CNN with 3 x 3
kernels. It has sparser relations than a MLP and
some weights are shared.

(d) Relational inductive bias of a R-GCN. Different type of
relations can be defined, displayed by the different edge
colors. Edges with the same color share weights and there-
fore represent the same relation.

Figure 3.5: Comparison of relational inductive biases of a MLP, CNN, GCN and R-GCN. Edges with similar color share weights.

3.4. Reinforcement Learning 15

3.4. Reinforcement Learning
RL is one of three main machine learning approaches together with supervised learning and unsuper-
vised learning. In RL one tries to let an agent learn a policy « - in the form of actions - that maximizes
a certain reward signal (S.Sutton & G.Barto, 2018). More specifically, the agent interacts with an envi-
ronment and receives a state s; at each timestep t, representing the current state of the environment.
The agent then takes an action a; based on the observed state s,, after which it receives a reward r;, ;
as feedback, as well as a new state s,,,. This process defines a repeating cycle of observing a state,
taking an action and receiving a reward (Arulkumaran et al., 2017). See figure 3.6 for an overview of
this process. The rewards the agent receives determine the best sequence of actions and, typically,
an agent’s goal is not to maximize the immediate reward r; that it receives after taking an action at
timestep t but rather to maximize the expected cumulative reward it will receive in the long-term by
using its learned behavior in its environment (Francois-lavet et al., 2018). This is expected reward, as
there might be stochasticity in the transitions between certain states upon taking an action - i.e., twice
taking the same action from a certain state, does not always result in transitioning to the same next
state - and therefore the cumulative reward is estimated with an expected reward. This is expected
reward, since there may be stochasticity in the transitions between certain states upon taking an action,
i.e., performing the same action twice from a certain state does not always result in transitioning to the
same next state. Therefore, the cumulative reward is estimated with expected reward.

In the following sections, we will first explain and formalize the problem setting in which RL operates,
after which some different methods of learning will be discussed, to then take the step to DRL and the
algorithm used in this thesis: PPO.

STATE (s)

REWARD (r) l l

St+1

ENVIRONMENT AGENT

T ACTION (ay) J

Figure 3.6: The interaction of a RL-agent with its environment. The agent receives a state s; at each timestep t, based on which
it takes an action a,. After taking an action, the agent receives a reward r,,, as feedback, as well as a new state s;,,. This
process defines a repeating cycle of observing a state, taking an action and receiving a reward. This figure is obtained from
(Arulkumaran et al., 2017).

3.4.1. The reinforcement learning problem setting

The problems to which RL is applied are sequential decision making problems, in which actions not
only influence direct rewards, but potentially also the possible rewards that are obtainable in the future
states of the environment. This is because certain actions can determine which future states the agent
gets to see. This problem can be formalized as a Markov Decision Process (MDP), which was originally
introduced by Bellman (1957). A MDP is a 5-tuple (S,4,T,R,y), where:

» S: Is a set representing the state space of the environment, i.e., all possible states s of the
environment are an element of S (Francois-lavet et al., 2018).

+ A: Is the action space of the problem which represents the set of possible actions that the agent
can take.

* T(st+118e, a¢): Is a transition function which takes a state s; and action a; as input and maps this
to a probability distribution over states s;, ;.

16 3. Background

* R(st, aq,5¢41): Is the reward function, indicating the reward r, which the agent receives when
transitioning from state s; to state s,,, after taking action a;.

* y € [0,1): Is a discount factor, for which lower values indicate a stronger emphasis on immediate
rewards (Arulkumaran et al., 2017). The use of this discount factor is further elaborated upon in
equation 3.9.

An important underlying assumption of a MDP is that it has the Markov property, which entails that
the future of a process does not depend on the past but solely on the current state. Therefore, the
agent can base its decision to take action a; at timestep t solely on state s; instead of the full history
of states.

Observability

When an environment enables the agent to observe the entire state s; at each timestep t and not just
an observation that gives the agent some partial information about the state of the environment, it is
called a "fully observable’ environment. In this thesis all environments will be fully observable, however,
it is worth noting that RL is also applied to partially observable environments where the agent receives
an observation - e.g., some sensory input of a robot - which only partially describes the state that the
agentisin.

Episodic tasks

If the task which the agent needs to complete, has a finite amount of timesteps, it is called an episodic
task (S.Sutton & G.Barto, 2018). In this thesis all tasks will be episodic and T, will be used to denote
the number of timesteps in an episode. Here T, will be equal to the amount of actions that the agent
needs to take to solve the episode. Therefore, the entire sequence of state and actions in one episode
will be as follows: (s, ag, 1, a4, -, St,-1, ar,—1, 51,), Where sr, is a terminal state. Note that T, may vary
per episode. Contrary to episodic tasks, there are continuous tasks, such as a robot with a long life
span operating in the real world, for which T, = co.

Deterministic and stochastic policies

An agent’s policy dictates how the agent selects its actions based on the observed state s;. These
policies can be either deterministic - in which case the policy n(s;) is a function mapping a state s; to
an action a, - or stochastic, for which the policy 7(s;) is a function mapping a state s; to a probability
distribution over all possible actions, from which the agent samples its action. In this thesis all policies
will be stochastic.

Return
The ultimate goal of a RL-agent is to learn a policy that maximizes the expected cumulative reward,
also called return, which can be formalized for an episodic task as follows:

T,
Tk: (3.9)

k=t+1

where G; is the return from time step t onward. Equation 3.9 also shows the use of the discount
factor y defined in the MDP. The discount factor controls how much emphasis is placed on rewards in
the near future versus rewards that are only obtained further ahead in time. The lower the value of y,
the more emphasis is put on returns in the near feature. Due the use of the discount factor, G; is also
referred to as discounted return.

Value functions

Now the return G, is defined, we can also introduce a state-value function 1, (s) for a given policy .
The state-value function V;(s) is equal to the expected return of following policy = from state s onward,
which can be formally defined as:

Vi(s) = Ex [G¢ | s¢ = s, 7] (3.10)

3.4. Reinforcement Learning 17

Based on this state-value function, it is possible to formally define what it means for a policy to be
an optimal policy: a policy * is an optimal policy if and only if V- (s) = V,(s) Vs € S and Vr € II, where
I1 denotes the set of all possible policies (S.Sutton & G.Barto, 2018).

In addition to the state-value function, we also define an action-value function Q. (s, a) for a policy
7, which is the expected return of taking action a in state s and from there on out following policy m:

Q:(s,a) =E,[G; | s; =s,a; = a,T] (3.11)

The optimal action-value function Q*(s, a) is the action-value function for an optimal policy =* and can
be defined as:

Q"(s,a) = max Qr(s, a). (3.12)

Reversely, an optimal policy 7* can easily be obtained from Q* (s, a), by taking for each state s € S, the
action that yields the maximum action-value:

n*(s) = argmax Q*(s,a) Vs € S. (3.13)
a€cA

To summarize, the goal of an agent is to find an optimal policy as defined in equation 3.13, which
maximizes the expected cumulative return. However, finding such an optimal policy can be difficult.
One common difficulty in RL is that, due to the nature of the RL problem, there will always be a trade-
off between exploring new policies in the hope of finding a better one and exploiting ones that already
yield good performance. This is commonly known as the ’exploration-exploitation trade-off’. Another
common complication is the credit-assignment problem, which is the problem of determining - in a
successful episode - how to assign credit over the possibly many actions that led to the success (Minsky,
1961). This is partially controlled by y, but can remain a difficulty, especially in environments with very
sparse rewards.

3.4.2. Methods of learning in RL

Before proceeding to deep reinforcement learning, some different methods of learning will be introduced
and discussed. First of all, a segmentation can be made into value-based methods, policy-based
methods and actor-critic methods:

1. Value-based: These methods aim to learn a value function and pick actions based on this value
function. This is usually the action-value function.

2. Policy-based: In policy based methods, one tries to directly learn a policy instead of first learning
a value function and using the value function to pick actions. Typically, policy-based methods
- especially when used with a function approximator - are more stable but less sample efficient
than value-based methods (Nachum et al., 2017).

3. Actor-critic: These methods can be seen as a combination of value-based and policy-based
learning. An ‘actor’ tries to learn the policy and uses feedback from the ’critic’ to do so, where the
critic is a learned value function.

Model-based vs. model-free

Another division can be made between model-based and model-free methods. All the methods men-
tioned above can be used in both a model-based and model-free way. Model-based methods attempt
to learn a model of the environment - in the form of an estimation of the transition function and reward
function - which is then used to define the agent’s policy (Frangois-lavet et al., 2018). In this thesis,
however, we focus on model-free methods which do not learn a model of the environment.

Off- and on-policy learning

A final differentiation between methods is that of off- and on-policy learning methods. On-policy meth-
ods interact with the environment using the same policy as the one being optimized. Off-policy methods,
however, take actions in the environment which are not based on the actual policy that is being opti-
mized. They could for instance collect experience in the environment based on random actions. In the
remainder of this thesis we will focus on on-policy methods.

18 3. Background

3.4.3. Deep Reinforcement Learning
Based on the previously introduced background on RL and the possible methods of learning in RL, it
is relatively easy to make the step to DRL. DRL is RL in which deep learning algorithms are applied,
which is typically done by using a NN as a function approximator for the policy and/or value function.
In addition, a NN can be used in model-based approaches as an approximator for the model of an
environment. The use of NNs makes it possible to apply RL to problems with high-dimensional state
and action spaces, which was infeasible before the use of NNs (Arulkumaran et al., 2017). Although
the combination of RL and NNs had previously been used, for instance to learn to play the game of
backgammon (Tesauro, 1995), the DRL approach only truly gained in popularity after advances in the
field of DL enabled Mnih et al. (2015) to use CNNs to train an algorithm to play Atari games directly
from pixel data.

The DRL method used in this thesis is PPO, which can be seen as an on-policy actor-critic method.
Before introducing the details of PPO, we will first introduce the more general concept of policy gradient
methods and discuss how these can be translated into an actor-critic method, on which PPO is based.

Policy gradient methods
As the name suggests, policy gradient methods fall under the policy-based methods of RL. In this case,
the learned policy is stochastic and is represented by a NN with parameters 6. It is therefore called
a parameterized policy mg, which is defined as follows: my(als,8) = Pr{a; = a|s; = 5,0, = 6}. This
parameterized policy dictates the probability of taking action a at timestep t with the current parameters
6 of the NN. Furthermore, it is assumed that the policy mg is differentiable with respect to its parameters
(S.Sutton & G.Barto, 2018).

As always, a loss function is needed to train the NN. However, in this case we actually speak of
a performance function, which should be maximized rather than minimized, and therefore Stochastic
Gradient Ascent (SGA) is applied instead of SGD. This performance function will be denoted by J(6) =
Vzs (S0), where 1, is the true value function for policy my and s, is the first state of an episodic task
or environment. Therefore, the performance measure is equal to the expected cumulative reward
that can be obtained from this start state (S.Sutton & G.Barto, 2018). As with a loss function in DL, the
gradient of the performance function J (6) with respect to its parameters 8 is computed with an automatic
differentiation package - in our case PyTorch (Paszke et al., 2019) - and is denoted by V4/(0). Based
on this gradient, SGA can be applied to optimize the parameterized policy mgy. Applying the policy
gradient theorem - which will not be discussed in detail here, but background information on this topic
can be found in (S.Sutton & G.Barto, 2018) - results in the following definition for the gradient of the
performance function:

Vo] (6) = E Vg logmg(als, 0)Qr, (s, a)] , (3.14)

where log g (als, 6) is the log probability of taking action a in state s under the current parameterized
policy mg. This can be rewritten into the following form as well:

Vo] (0) = E [Vglogmg(als, 0)G;] . (3.15)

As E denotes an expectation, one can approximated the gradient by computing an empirical average
(Schulman et al., 2017). Computing such an empirical average can be achieved by sampling a batch
of trajectories t € B under the current policy (Duan et al., 2016). Each trajectory is a sequence of
states and actions of length T, where length T again represents the amount of actions that the agent
takes. A trajectory starts from a start state s, and from there on out, actions are sampled from the
policy g, leading to the following type of sequence: 7 = (sg, ay, $1,a4, ---, ST—1, Ar—1,Sr)- 10 indicate
that an approximation of the gradient is used, instead of the actual gradient, the following notation will
be used: V4/(8).

Directly applying the methods described above to estimate the gradient and then using this esti-
mated gradient to optimize the policy my, may suffer from high variance and therefore result in slow
learning. To reduce this problem, a baseline can be subtracted from the policy gradient. An often
used baseline is the state-value function V.. (s), which can be subtracted from the action-value function
Q. (s, a) to form the advantage function:

A™(s,a) = Qr(s,a) = Vr(s), (3.16)

3.4. Reinforcement Learning 19

where A™ (s, a) indicates for state s how good or bad a certain action a is, relative to the expected
performance of policy m from state s. With this added baseline, the policy gradient shown in equation
3.14 would now have the following form:

Vo] (0) = E[Vglogmg(als,0)Qr, (s, @) — Vi, (s)] = E[Vg logmg(als, 0)A™ (s,a)] (3.17)

This formulation of the policy gradient lends itself to an intuitive explanation of what happens in
an update step with SGA: if an action leads to a positive advantage, i.e., it is better than the average
performance of the policy, the policy gradient will be positive and therefore the probability of taking this
action will be increased by making an update with SGA. Vice versa, if the advantage of action a is
negative, the gradient will be negative and thus the probability of taking action a will be decreased by
an update step with SGA.

The actor-critic method in DRL

The policy gradient defined in equation 3.17, introduces a perfect use case for actor-critic methods,
because it not only uses a learned policy g - being the actor - but also requires a state-value function
Vi, (s) to compute the advantage function. This state-value function can also be parameterized and
represented by a NN, which will form the critic of the setup. Usually this critic will have different - or
at least partially different - parameters than the parameters 9 of the actor. Therefore, the critic will be
denoted by V7%, where a stands for the parameters of the critic. Note that the policy is still dependent
on 6, as it is defined by the actor, which is also called ’policy network’. To train the critic - also called
'value network’ - an additional loss or objective function is required. A common approach is to use the
MSE between the actual returns and the values predicted by the critic as a loss function. To compute
this loss, the same batch of trajectories T € B used to compute the expectations in equations 3.14, 3.15
and 3.17, can be used in the following manner:

T-1
1
L (@) = g), D (W ne) = Gee)?. (3.18)
T€EB 0

The loss function LVF («) - where VF stands for value function - can then be applied with SGD to train
the critic. Note that for the critic we apply gradient descent as we want to minimize the loss as opposed
to the performance function, for which the goal is maximization.

Advantage estimation

There are multiple methods to now use the critic to compute an estimate of the advantage function. In
this thesis Generalized Advantage Estimation (GAE) (Schulman et al., 2016) is used to estimate the
advantage for each timestep t of a trajectory of length T as follows:

T
ATo = Z(yl)k_td,‘:”" . (3.19)
k=t

In this equation, A/’?" is the estimated advantage at timestep t, y is the usual discount factor, and
A € [0,1] is a new parameter introduced to control the trade-off between bias and variance. A high
value for A results in high variance, whereas a low value for 1 leads to more bias and lower variance.
Vi . . . ,
The §,.¢ term in equation 3.19 is defined as follows:

Ve
et = —Vio (s0) + 12 + YV (Se41) (3.20)

Equation 3.20 shows how GAE uses the output of the critic network 7, (s;), together with the actual
reward r; of each timestep, to estimate the advantage function. In code, equation 3.19 can be easily
implemented in a recursive fashion.

20 3. Background

Example policy gradient algorithm in an actor-critic setup

Bringing it all together, one could define a simple policy gradient algorithm, using an actor-critic setup.
Here the actor is the parameterized policy and the critic is the parameterized state-value function, used
to compute an estimate of the advantage. An example is shown below, in the pseudo-code of algorithm
1.

Algorithm 1 Policy Gradient Algorithm, Actor-critic set-up

1: Initialize parameters 8 and «a of the actor and critic networks

2: foriteration=0,1,2,... do

3: for trajectory r € B do

4: Execute policy my for T timesteps.

5: Keep track of the visited states s, , taken actions a, ;, received rewards 7, ., predicted values
V& (sz.¢) and the log probabilities logmg (alsz,).

6: Compute and store returns G, and advantages Afg for each timestep ¢ in trajectory 7.

7: end for
8: Estimate the policy gradient:

T-1
_ 1 =
Vo] (0) = BIT Z z Vo logmg (arclSee 0)ArS
0

TEB t=

9: Compute the loss for the critic:

T-1
1
L@ = gz D D, (0 (se) = 6e)’

TEB t=0

10: Update actor parameters 8 with SGA
1: Update critic parameters a by computing the gradient V,L"* (a) and applying SGD
12: end for

This pseudo code is inspired by the ’Vanilla Policy Gradient’ implementation of Achiam (2018), as
well as the work by Schulman (2016b) and Duan et al. (2016).

3.4.4. Proximal Policy Optimization

One of the problems of basic policy gradient methods, such as the one introduced in algorithm 1, is that
they have poor data efficiency as each batch of trajectories is only used once. A tempting solution would
be to update the parameters of the critic and actor not just once with the batch of collected trajectories,
but to perform multiple update steps on the same batch. However, updating the policy parameters 6
multiple times with the same batch of trajectories - or only updating them once with a too high learning
rate - can cause the updated policy g, to diverge too far from the old policy mg. In practice this can
lead to instability leading to big drops in performance or even complete 'unlearning’ of good policies
(Schulman et al., 2017).

PPO - introduced by Schulman et al. (2017) - is a method that does allow for multiple update steps
on the same batch of trajectories. It does so by applying a surrogate performance function that is
intended to prevent the updated policy mg_, from deviating too far from the old policy 7y under which
the batch of trajectories was collected. Here 'surrogate’ has the same meaning as for a surrogate loss
function, as introduced in section 3.1. For a specific timestep t, the surrogate performance function of
PPO is defined as follows:

JEHP(6) = B [min (W, (0) AT, clip (%,(0),1 - €1+ &) 4] , (3.21)

where W, (6) defines a probability ratio between the new and the old policy, as a measure of differ-
ence between the two policies:

"Here st are and rp; stand for the state, action and reward at timestep t of trajectory z, respectively.

3.4. Reinforcement Learning 21

Y ow (atlst)

¥ = = s

(3.22)

The second term inside the min operation - clip (W,(68),1 —¢€,1 + €) A7® - clips the probability ratios
Y, between 1 — € and 1 + ¢, where € is a hyper parameter of PPO. This clipping aims to remove
the incentive, encoded in the performance function, for updating the policy to the point that W¥; falls
outside the interval [1 — ¢, 1 + €]. Note that this is not a hard constraint, but just an adjustment to the
performance function. To explain this more intuitively, figure 3.7 is used, which displays the surrogate
performance function J¢LP(9) as a function of ¥, for one single timestep t. Figure 3.7a shows this for

cases with a positive advantage Ay? and figure 3.7b shows this for cases with a negative advantage.
The red dot on the lines indicates the ratio W, at the beginning of the first update step, where the old
and new policy are still equal and therefore ¥, = 1.

A7 >0 A7 <0

Uy

lIlt JCLI P (9)

(a) Positive advantage case. (b) Negative advantage case.

Figure 3.7: Visualization of the the surrogate performance function of PPO for one single timestep t and two cases: for positive
advantage values and for negative advantage values. This figure is obtained from (Schulman et al., 2017), however, some
symbols are adjusted for consistency of notation with the rest of this thesis.

In figure 3.7a, the advantage is positive, thus the picked action a; is favorable over the average
performance of the current policy my. Therefore, when the critic network is updated by a step of SGA,
the probability of taking action a; will be increased for the updated policy mgpey - Doing so will increase
the value of the ratio W, (8), which also leads to a higher value in the performance function. If this would
be repeated for many update steps, or if one update step already leads to a big increase of W;(6), the
policy update could become too large. However, in PPO, the ratio W;(8) will be clipped when the

threshold of 1 + € is reached, as clip (W;(0),1 — €,1 + €) A7? then yields a lower value than W, (9)A¢®
and is thus chosen by the min operation. As a result, the curve representing the performance function
relative to the ratio W, (0) will flatten off, indicating that there is now no incentive to further increase the
ratio W;(0) by increasing the probability of action a; again in the next update steps.

Figure 3.7b shows the case in which the advantage is negative, i.e., the action a, is unfavorable over
the average performance of the current policy . Because of that, the probability of taking action a; will
now be decreased for the updated policy mgnew, l€ading to a smaller value for ratio W, (6) and therefore
also to a smaller negative value of J°L'P(9). Again, doing this for multiple update steps could cause an
undesirably large update of the policy, which PPO tries to avoid. This time the ratio will be clipped when

the threshold of 1 — ¢ is reached, as clip (¥;(6),1—¢€,1+¢€) A/’?" yields a larger negative value than

W, (0)Ar® and is therefore selected by the min operator. As a result, the performance function relative
to the ratio W, (6) will again flatten out when the updated policy starts to diverge too much from the old
policy, removing the incentive to push them even further apart.

Note that, due to the min operation, the ratio W, (0) is never clipped when the change in the proba-
bility ratio has a negative effect on the performance function. For example, in figure 3.7b a large ratio
Y, (0) is not clipped for a negative advantage value. This has an interesting function: if the ratio W, (68)
is large and the advantage is negative, it means that a bad action has a larger probability of being
chosen under the new policy 7 than under the old policy 7. This is clearly a bad ting and therefore

22 3. Background

it is good to allow for a large update step - proportional to the ratio W, () - to reduce the probability of
taking this action again.

PPO is often used with an actor-critic setup in which the parameters of the two networks are (par-
tially) shared. The complete performance function of PPO therefore looks as follows:

JCLIP+VF+S () = []CLIP (0) — ¢, LYF(0) + ¢3Sont (ﬂe)] . (3.23)

Here 8 represents the shared parameters between the actor and critic networks, J¢L'P(8)) is the per-
formance function for the actor and LVF (9) is the loss function for the critic. Note that the critic loss
is subtracted as J¢LIPTVF+S s defined as a performance function, which one tries to maximize during
training. Furthermore, an entropy bonus S, () is added, which can be used to encourage the agent
to explore more. A high entropy indicates a policy that, for a given state s, picks relatively randomly
from the possible actions a € A, whereas a policy with low entropy often picks the same action. By
adding the entropy of the policy to the performance function, the agent is incentivized to adopt a policy
with a higher entropy, thus choosing actions more randomly and therefore exploring more. Both ¢; and
¢, are hyperparameters, controlling how much the critic loss and entropy bonus are factored into the
overall performance function.

Algorithm 2 shows pseudocode for an example implementation of PPO. Just as the policy gradient
method introduced in algorithm 1 of section 3.4.3, batches of trajectories T € B of length T are collected
and used to update the actor and critic networks. However, now the networks are not just updated
once with SGA, but are updated over multiple epochs of mini-batch-SGA. Each of these mini-batches
has a size of M < |B|T and one epoch covers all experiences collected in the batch of trajectories.
Furthermore, these mini-batches are randomly sampled from the entire batch B of experiences. This
is done to give each mini-batch a variety of experiences, which do not solely come from successive
steps in the environment, resulting in more stable training.

Algorithm 2 PPO, Actor-Critic set-up

1: Initialize parameters 0 of the actor and critic networks

2: foriteration=10,1,2,... do

3 for trajectory T € B do

4: Excecute policy g for T timesteps.

5: Keep track of the visited states s, ¢, taken actions a, ;, received rewards r; ;, predicted values
Vi, (sz,¢) and the probabilities mg (als;, 6).

6: Compute and store returns G, and advantages Afﬁ for each timestep ¢ in trajectory 7.

7: end for

8: Optimize the surrogate performance function J<4/P*VF+5(6) with respect to 6, with Nepochs
epochs of training with minibatch-SGA.

9: end for

3.5. Summary and conclusion

After having introduced all the relevant background theory and terminology, we will shortly summarize
how this is applied throughout the rest of this thesis. The core idea is that we apply PPO as a RL method
to solve a navigation task, however, instead of using standard NN architectures like MLPs and CNNs to
form the actor and critic network, we now apply and compare multiple types of GNNs. The idea behind
applying these GNNs - especially R-GCNs - is that they allow us to encode stronger relational inductive
biases that are more problem specific than those of a MLP or CNN. Ideally, these relational inductive
biases lead to a form of relational reasoning, comparable to how humans reason, which improves
learning performance and generalization. The exact implementation and the used evaluation methods
will be discussed in the following sections.

Related work

In this section we will introduce and discuss some recent work that is related to this thesis. This is by
no means an exhaustive list of all related work, but it aims to give an overview of some of the most
relevant and comparable work.

4.1. Relational reinforcement learning

From a broader perspective, our methods can be seen as a form of Relational Reinforcement Learning
(RRL) in a DRL setting. RRL can be described as the combination of reinforcement learning and
‘relational learning’ (Dzeroski et al., 2001a; Getoor & Taskar, 2007), where relational learning is also
researched under the name of ’inductive logic programming’ (Muggleton & de Raedt, 1994; Zelezny &
Lavracg, 2008). RRL transforms RL to work with states and actions that are represented as relations
(Dzeroski et al., 2001b). More specifically, DZeroski et al. (2001a) define RRL as RL where states,
actions and policies are represented in a relational fashion and background knowledge and declarative
biases are used during learning. These declarative biases are biases which define how the policies
are described. There is a strong similarity between this definition of RRL and our methods, in which
background knowledge is used to define certain relations and the relational inductive biases induced
by our network architectures can be loosely compared to the declarative biases of RRL.

4.2. Reinforcement learning with GNNs

The most tightly related research to this thesis can be categorized as reinforcement learning with graph
neural networks. In recent years, graph neural networks have gained in popularity and are now also
applied to RL. This combination is implemented with both varying RL and GNN methods. Even though
this is not mutually exclusive, nor exhaustive, we divide the related work in which this combination of
RL and GNN is applied, into 2 categories: first, methods that encode the observations of the agent
as graphs, and second, methods that encode the physical shape of the agent itself as graph. There
is also research into encoding multi-agent systems as graphs and applying GNNs to them, such as,
for instance, the work by J. Jiang et al. (2020). However, as this thesis does not consider multi-agent
systems, these are not discussed here.

4.2.1. Observations encoded as graphs

The most comparable work to this thesis - which was actually published during the time span of this
thesis project - is the work by Z. Jiang et al. (2021), who introduce a method under the name 'Grid-
to-Graph'’. In this method, observations are encoded as graphs, to which R-GCNs are applied, as in
this thesis. Grid-to-Graph shows improved in- and out-of-distribution generalization on several tasks,
including some simple visual navigation tasks. Even though this work is comparable, there are numer-
ous distinctive elements to this thesis: our methods are applied to a different problem set with different
domain-specific relations, in-distribution generalization is tested with a different method, a different RL
algorithm is employed and there are many implementation differences. Furthermore, we extend this
research by trying to learn the domain specific relational inductive biases with R-GCNgay- In addition,

23

24 4. Related work

we test against some other baseline architectures, report results for multiple readout functions and
also implement these readout functions for the CNN baseline architecture for a fair comparison with
the R-GCNs. Finally, it is evaluated whether the specific relational inductive biases we apply - based
on domain knowledge - are better than other, more random, relations.

This thesis is partially inspired by Zambaldi et al. (2018), who present another comparable method
under the name 'Relational Deep Reinforcement Learning’. Their method is tested - among other
environments - on a visual navigation task comparable to the Key-Corridors environments. The Rela-
tional Deep Reinforcement Learning method can be seen as encoding observations as fully connected
graphs, on which multi-head dot-product attention (Vaswani et al., 2017) is applied. The multi-head
attention approach is somewhat comparable to R-GCN, as each attention head can theoretically learn
a different set of edges, with their own weights, which can represent a certain type of relation. Our
methods differ in the fact that we apply domain specific relational edges, which are based on domain
knowledge, whereas Zambaldi et al. (2018) try to learn all of these edges with attention during training.
However, for their methods it is assumed that (x, y) positions of the nodes - or grid cells - are available.
This is an assumption that we do not make and therefore their method is not directly applicable to our
problem set. The general idea and results of Relational Deep Reinforcement Learning are promising
though, with improved sample efficiency and generalization over baseline algorithms.

The work of Lu et al. (2021) shows an example application of RL with GNNs on a large scale, real-
world, navigation task. Lu et al. (2021) propose using an abstract map of the environment, modeled as
a Markov network (Koller & Friedman, 2009). They reason that, in real world scenarios, there is often
a certain regularity in the relative positions of objects, e.g., a chair often being next to a desk. This
regularity can be modeled as a probability distribution with a random vector describing the positions of
the objects and a joint probability representing the relative position of the objects. This is what Lu et al.
(2021) model as the Markov network, to which a GNN is applied during learning. They find that this
approach improves the success rate of navigation in novel environments and therefore again shows
good generalization capabilities.

Hamrick et al. (2018) explore a problem in which an agent is given the task of stabilizing an unstable
tower of blocks by applying glue between some of these blocks. The more blocks remain standing, the
higher the reward, but there is also a cost associated with applying glue. The tower of blocks is again
modeled as a graph, where both the position and the orientation of the blocks are encoded as nodes
and the presence of glue between to blocks is encoded as edges. However, in this setup the RL agent
learns an action for each edge, which reflect whether the agent applies glue between two blocks or not,
as well as a global action for indicating that the glueing phase is finished. A setting with fully connected
graphs and one with more sparse graphs - with edges between blocks that are in contact with each other
- were compared against each other. Both topologies gave accurate results, but the sparse topology
resulted in more efficient learning. Furthermore, good generalization performance over differently sized
towers was recorded, which was much better than baseline architectures.

Another interesting approach is to apply the combination of GNNs and RL on problems that are
inherently graph-shaped, as is done by Almasan et al. (2019) on a traffic routing optimization task. This
is in contrast to our problem domain, which is grid-shaped and actually has to be formed into a graph
with the use of domain knowledge. Their routing tasks form an interesting candidate for GNN-based
methods, especially when trying to generalize to unseen graph topologies, which is difficult to do with
traditional architectures such as MLPs or CNNs. In this case, a GNN based on Message Passing Neural
Networks (Gilmer et al., 2017) is applied and the results again show strong generalization performance.

H. Wang et al., 2020 try to tackle the problem of automatic transistor sizing in circuit design by apply-
ing the combination of GCNs and RL. In their work, the actual circuit is modeled as a graph, in which the
nodes represent transistors and edges represent wires. This problem is again, like the previous work
by Almasan et al. (2019), inherently graph shaped. This method was tested against several baselines,
including evolutionary algorithms, human experts and non graph-based reinforcement learning, and
consistently outperformed these baselines. In addition, the method was applied in a transfer learning
setup, which yielded good results, again indicating good generalization performance.

4.2.2. Modeling the physical shape of an agent as graph

In some some other works, the physical shape of an agent is modeled as a graph, to which GNNs are
applied. This is not strictly different from modeling observations as graphs, as the shape of an agent
can actually be seen as part of the environment and these type of agents often receive observations

4.3. Summary and conclusion 25

in the form of sensory input for each physical element of the agent. For example, a human shaped
robot could receive information about the position and orientation of all of its body parts and joints,
which together can represent the entire observation or part of it. Although these works are not entirely
different from encoding observations as graphs, they do provide an interestingly different perspective
on the application of graph neural networks in reinforcement learning. s T. Wang et al. (2018) introduce
NerveNet as an approach to learn structured RL policies with GNNs. They model the physical shape
of an agent into a graph and learn actions for the different parts of the agent. See figure 4.1 for a visual
representation.

Observation Input Propagation Output Controller’s
Vector Model Model Model Output
5 Vector
—
Agent's O / R \
Positional T —
Information o O
Joines || @ @
Velocity State
O Update - 8
Joint’s o O
Angle o O
Theta N O
9 Fulfucitaa e
. —) .
.

Figure 4.1: A visual overview of the NerveNet approach. This figure shows how the 'Walker-Ostrich’ agent is encoded as a
graph, using different parts of the observation vector for the features of different nodes. After the graph is constructed, several
GNN layers are applied. The output consists of a 'controller’ for each body part, which together form the policy of the agent. This
figure is obtained from (T. Wang et al., 2018).

T. Wang et al. (2018) show that NerveNet achieves comparable results to state-of-the-art methods
in MuJoCo environments (Todorov et al., 2012). They further demonstrate that NerveNet has signifi-
cantly better transfer learning and generalization performance than other models and even show that
NerveNet sometimes works for zero-shot transfer learning. To do so, they test for two types of transfer
problems: size transfer and disability transfer. Size transfer refers to training on a smaller agent and
then transferring to a larger agent and disability transfer tests scenarios where a policy is trained for
one agent and is then used on the same agent but with some body parts disabled.

Huang et al. (2020) apply a comparable method to NerveNet but jointly train a set of several different
agents with different morphologies (i.e., body shapes), which consist of similar elements (i.e., body
parts). They show that this approach allows for generalizing to new agent morphologies, unseen during
training.

Although the physical shapes of agents might form an intuitive graph topology, Kurin et al. (2020)
show that these intuitive topologies are not always the best ones to use during training with GNNs. In
addition, they introduce '’Amorpheus’, a method based on transformers (Vaswani et al., 2017). This
method can be seen as applying GNNs on fully connected graphs and using attention to learn which
messages - and with what weight - to aggregate. This therefore shows some resemblance to the
methods applied by Zambaldi et al. (2018), however, applied to a completely different domain. Whereas
Zambaldi et al. (2018) apply this to an object-oriented state space, Kurin et al. (2020) apply this to the
different elements of an agent. Their results show that, Amorpheus substantially outperforms the GNN-
based approaches which encode the physical shape of the agent into the graph topology.

4.3. Summary and conclusion

The combination of RL and GNNs can be seen as a form of RRL and is used in varying approaches
and applied to different types of problems, by various scholars. In general, this often leads to improved
generalization performance when compared to methods that do not use GNNs. However, R-GCNs
are not often applied and using them to incorporate domain knowledge in navigation tasks is, to our
knowledge, only investigated in the recently published study by Z. Jiang et al. (2021). This is the
application domain that we focus on in this research.

Methodology

This chapter explains the methods adopted for this study. First, the experimental setup will be in-
troduced. Following this, we will discuss the Key-Corridors environments used to test our proposed
methods on, after which we introduce the evaluation methods used to test how well our methods per-
form, both in terms of sample efficiency and generalization. Next, the different architectures used in this
thesis will be explained in detail. These are the GNN-based architectures we propose in order to com-
bine relational reasoning with RL, as well as the architectures that are used as baselines. Hereafter, we
will briefly go into some implementation details of PPO, discuss the methods used for hyperparameter
tuning and finally give an overview of the used hyperparameters.

5.1. Experimental setup

The aim of this section is to gives a general overview of the experimental setup for this research. It
presents the methods used to answer the 3 posed research questions, which are repeated here for
readability:

Research question 1: Can the sample efficiency of DRL be improved by using GNNs and do-
main knowledge, compared to traditional architectures such as CNNs and MLPs?

Research question 2: Can the generalization performance of DRL be improved by using GNNs
and domain knowledge, compared to traditional architectures such as CNNs and MLPs?

Research question 3: Can the fixed relational inductive biases of a CNN be combined with
learned domain-specific relational inductive biases and GNNs to improve sample efficiency and
generalization performance in an end-to-end fashion, which does not require domain knowl-
edge?

All proposed methods in this research focus on applying domain-specific relational inductive biases
to the policy and value network of a RL-agent, by encoding observations as graphs and applying GNNs
on these observations. For research question 1 and 2, it is assumed that these added relational in-
ductive biases will be provided in the form of domain knowledge. For research question 3 we seek
to learn these domain-specific relational inductive biases, which would provide an end-to-end solution
that does not require any prior knowledge. All 3 research questions will be explored in a set of simple
gridworld environments whilst using PPO in an actor-critic setting as learning algorithm.

Figure 5.1 provides an overview of the general structure of the used architectures for learning. All
of these architectures can be split up into two parts: the 'feature extractor’ followed by 2 ’linear layers’.
Here, the feature extractor refers to a shared network - meaning that the trainable parameters are
shared between the actor and critic - which extracts hidden features from the observations. Usually,
for grid-shaped observations, this would be a CNN. The output of the feature extractor then serves as
input for the linear layers which are unshared, meaning that the actor and critic have separate linear
layers which therefore also have separate trainable parameters. Multiple GNN-based architectures are
explored as feature extractor - which allow us to induce domain-specific relational inductive biases -

26

5.2. Environments 27

and these are compared to baseline architectures; CNN and MLP. To ensure a fair comparison, all
compared architectures have approximately the same total amount of trainable parameters.

Observation Feature Extractor (shared) Linear Layers (unshared)

Figure 5.1: Learning setup. All layers are meant as illustrative example and are not displayed with the actual number of neurons
used in our methods.

5.2. Environments

The environments that are used to evaluate our approach are navigation tasks which are specifically
designed to test for relational reasoning and generalization. They are based upon the MiniGrid im-
plementation by Chevalier-Boisvert et al. (2018), which works with the OpenAl Gym environments
introduced by Brockman et al. (2016). The general concept behind the environment is inspired by the
Box-World environments developed by Zambaldi et al. (2018). We have chosen to start out with the
MiniGrid implementation and adjust this to our needs as it is designed for simple, lightweight and fast
grid world environments and includes the possibility to render the grid world which is helpful for visu-
alization. In this section, our implemented environments and some elements of MiniGrid - the ones
relevant to this research - are discussed. To discuss these environments, we will make use of the
possibility to render the observations as images. However, it is important to note that these rendered
visualizations are not equal to the actual observations that the agent receives, which will be discussed
in section 5.2.2.

All our environments - from hereon referred to as the Key-Corridors environments - are grid worlds,
which consist of an [X, Y] shaped grid of tiles. Each of these tiles can contain zero or one object and
all objects have a discrete color and type. For example, the 'red key’, where ’red’ is the color and 'key’
is the type. One of these types is the 'agent’ and the presence of this type of object at a particular
tile therefore indicates the position of the agent. In the rendered visualizations of the environment, the
agent is displayed as a red arrowhead and the direction of the arrowhead displays the orientation of
the agent. Furthermore, the agent can move around the gridworld - over empty grid tiles or tiles that
contain objects that allow the agent to overlap with them - and its goal is to reach the green goal tile.
Next to the agent and the goal, the tiles can also contain walls, doors and keys. The agent cannot
overlap with walls and closed doors, but it can pickup and use keys to unlock the doors which then
allows the agent to first open and then overlap with (i.e. walk through) the opened door. A key can only
be used to open a door that has the same color as the key itself. Figure 5.2 gives an overview of an
environment and its present objects.

All of the Key-Corridors environments contain 4 doors, of which one is unlocked at the start of an
episode and the three others are locked. See figure 5.3 for two example renderings. Furthermore, the
environments all have 5 rooms; one central room and a room behind each of the 4 doors. At the start of
an episode the agent is placed at the center tile of the central room and has to reach the room with the
tile that contains the goal to receive a reward. To do so, it will have to start off by opening the already
unlocked door and pick up the key that is behind this door. With the new key the agent can open the
next door, which either opens to a room with another key or to the room with the goal tile.

Two sizes of the Key-Corridors environment are introduced: one small version with a grid of (7x7)
tiles and a larger version with a grid of (9x9) tiles. Both these environments - named Key-Corridors-
Small and Key-Corridors-Big - are visualized in figure 5.3. The small version requires little exploration
and therefore enables relatively fast learning and also simplifies the exploration-exploitation trade-off

28 5. Methodology

Locked
Goal Door
Agent Opened
Door
Key
Empty
Unlocked Tile
Door
Wall

Figure 5.2: Overview of the different elements in a Key-Corridors environment. This image shows the rendered version of the
environment, which is not equal to what the agent gets to see in an observation but it is used for visualization. The item that
is currently being carried by the agent is encoded at the position of the agent in the actual observations, however this is not
displayed during rendering as it would result in an object overlapping with the red arrowhead representing the agent.

B []

(a) The Key-Corridors-Small environment. (b) The Key-Corridor-Big environment.

Figure 5.3: Overview of the two sizes of the Key-Corridors environments.

in this specific environment. For both sizes of the environment, the amount of keys that are needed to
solve the environment is varied as well. The simplest versions only have one key, for which the agent
only needs to open the already unlocked door. The most difficult environments have a key in three
of the 4 rooms - excluding the room that contains the goal - and therefore require the agent to unlock
three doors before being able to reach the goal.

To prevent the agent from infinitely repeating bad actions and getting stuck in an environment, each
environment has a step limit which indicates the maximum amount of steps an agent is allowed to take
in one episode. When the step limit is reached, the episode is truncated and the environment is reset
for a new episode. These step limits are based on the size of the environment and are setto 4 x X x Y.

5.2.1. Random initialization of the environments

If the agent would only be trained on one particular arrangement of keys and doors, it could simply
remember the sequence of actions that it has to take to reach the goal. To prevent this from happening,
the location and colors of the keys and doors are changed between episodes, as well as the location of
the goal tile. The agent, however, is always placed at the same location in the grid and with the same
initial orientation. We refer to each of these different initializations of an environment as an ’instance’.
The method for random initialization of the keys, doors and goal is described in algorithm 3. Both the
keys and doors can have four different colors: Red, Blue, Yellow and Green. Furthermore, the keys can
only be placed in the rooms behind the four doors. We will use the following set of positions to indicate
the location of the doors and keys: Top, Bottom, Left and Right. Where, for example, the position "Top’
refers both to the position of the door at the top of the environment and the position of the key behind
it. 'RandomShuffle’ is a function that randomly shuffles all elements in the input list. The 'PlaceDoor’
function is used to place a door, which takes the color and position of the door as input and whether

5.2. Environments 29

the door is locked or not. In addition, 'PlaceKey’ is a function used for placing keys, and takes the color
and position of the key to be placed as input. The value 'Keys-Placed’ keeps track of the amount of
keys that are already placed and the value 'Number-Of-Keys’ indicates the amount of keys that should
be present in this environment.

Algorithm 3 Random initialization of environments

1: Colors = RandomShuffle([Red, Blue, Yellow, Green]) > Set of possible colors
2: Positions = RandomShuffle([Top, Bottom, Left, Right]) > Set of possible positions
3: Keys-Placed =0

4: foriin range(Colors) do

5 if i == 0 & Keys-Placed < Number-Of-Keys then

6 PlaceDoor(Colors]i], Positions][i], Locked = False) > First door is unlocked
7: PlaceKey(Colorfi+1], Positions][i]) > Placed key has the color of the next door
8: else if Keys-Placed < Number-Of-Keys then

9: PlaceDoor(Colors]i], Positions]i], Locked = True) > All other doors are locked
10: PlaceKey(Colorfi+1], Positions]i]) > Placed key has the color of the next door
11: else if Keys-Placed == Number-Of-Keys then
12: PlaceDoor(Colors]i], Positions][i], Locked = True) > All other doors are locked
13: PlaceGoal(Positions[i]) > Places goal behind a door that can be opened with the last key
14: else
15: PlaceDoor(Colors]i], Positions][i], Locked = True) > Remaining doors are locked
16: end if
17: Keys-Placed += 1
18: end for

This method of initialization ensures that the environment is always solvable. The first key, for
example, is always placed behind the unlocked door and enables the agent to open the correct next door
to be able to solve the environment. The total amount of possible different instances for an environment
is the product of all possible permutations of Colors and Positions. Both Colors and Positions have 24
possible permutations, which leads to a total of 576 different possible instances of the environments.
Even though slightly unintuitive, there are an equal amount of possible instances with 1, 2 or 3 key(s).

We also introduce environments which have a varying amount of keys between instances, i.e.,
one episode could be initialized with 1 key whilst another episode in the same environment could be
initialized with 2 keys. This is done with the aim of speeding up training to environments with more keys.
We reason that solving instances with 1 key is easier than solving those with 2 keys and requires less
exploration, but does help the agent to solve the instances with 2 keys as well. Next to that, training on
a mix of instances with either 1 or 2 key(s) might also improve generalization to instances with 3 keys,
which can be seen as a form of domain randomization. The average number of steps that is required
to solve an environment with a certain amount of keys is displayed in table 5.2. This is an average
because of the random initialization of keys and doors, which results in different amount of minimally
required steps to solve the environment. For the environments that are randomly initialized with both
1 and 2 key(s), there is a total of 2 x 576 = 1152 different instances, as there is of course a difference
between the instances with one key and those with 2 keys. The same holds for the environments with
instances containing either 1, 2 or 3 key(s), which have in total 1728 different initializations.

Table 5.1: Average episode length, under an optimal policy, of the environments with a varying amount of keys.

Environment 1key 2keys 3keys 1and2key(s) 1,2and3Kkey(s)

Key-Corridors-Small (7x7) 9= 15— 203 121 15~
12 12 4 4 12

Key-Corridors-Big (9x9) 11 18 25 14% 18

30 5. Methodology

5.2.2. Observations

The Key-Corridors environments are fully observable and the agent gets to see the entire grid in each
observation. These observations are not in the form of an image, such as the renderings of the environ-
ment displayed in figure 5.3, but come in a more abstract matrix encoding. In these observations, each
of the X x Y grid tiles is encoded as a 6-tuple: (Object, Color, State, Orientation, Carried-object,
Carried-object-color), of which all elements are one-hot encoded and have the following meaning:

Object = The object that is present at the tile.
Color = The color of the object that is present at the tile.
State = The current state of an object. In this case this is only useful for doors,

for which it indicates whether a door is locked, unlocked or open.
Orientation = An encoding of the orientation of the agent, i.e., the direction in which the
agent is facing.
The object that is currently being carried by the agent. This will only be
encoded at the current position of the agent and for all other tiles it will
indicate that there is no object being carried.
The color of the object that is currently being carried by the agent. This
will again only be encoded at the current position of the agent and at all
other positions it will not have any color.

Carried-object

Carried-object-color

Table 5.2 gives an overview of all the available objects, colors, states and orientations. With all
of these objects, colors, states and orientations there are in total 31 features per grid tile. Notice that
besides the objects present in figure 5.2, there is also an additional 'Empty Bag’ object, which is used
to indicate that an agent is currently not carrying anything.

Table 5.2: Overview of all possible objects, colors, states and orientations for the encoding of grid tiles.

Objects | Colors | States | Orientations
Empty Tile Red Locked Up

Door Blue Unlocked | Down

Key Yellow | Open Right

Wall Green Left

Agent Grey

Goal

Empty Bag (indicating that no object is being carried)

Observation normalization is important in RL. Andrychowicz et al. (2020) suggest normalizing ob-
servations by keeping an empirical mean and standard deviation of each feature - based on the obser-
vations seen so far - and normalizing by subtracting the mean and dividing by the standard deviation, or
10° when the standard deviation becomes too small. Unfortunately this is not possible for our research,
because we also test for generalization to different environments which are not seen during training
and therefore do not allow us to keep an empirical mean and standard deviation of each observation
feature. However, the one-hot encoding of our features acts as some form of observation normalization
which at least ensures that all input values are in the same range, in this case just zero or one. The ac-
tual shape of the observation tensor depends on the used feature extractor. For the MLP architecture,
the grid is flattened into a one dimensional tensor with a resulting tensor shape of [X X Y X 41]. The
CNN can be directly applied to the grid-shaped data and gets the observations in the form of a three
dimensional tensor with the following shape: [X,Y,41]. For the GNN-based architectures the observa-
tions will be encoded as graphs. The exact form of these graphs is dependent on the type of GNN that
is used and the relational biases we want to encode. These graph encodings will discussed in detail
in section 5.4. For ease of implementation, these graphs are only constructed during the forward pass
of our GNNs and the actual observations are dictionaries which contain the same three dimensional
tensor as used for CNN, as well as two additional one dimensional tensors which encode the positions
of the keys and doors in the environment.

5.3. Evaluation of agents 31

5.2.3. Actions

Just like the observation space, the action space of our environments is discrete. The agent is allowed
to choose actions from the following set: [Up, Down, Right, Left, Open]. The working of these actions
is listed below:

Up = Turn the orientation of the agent to the upwards direction and try to make a step in this
direction.
Down = Turn the orientation of the agent to the downwards direction and try to make a step in

this direction.

Right = Turn the orientation of the agent to the right and try to make a step in this direction.
Left = Turn the orientation of the agent to the left and and try to make a step in this direction.
Open = Try to open the object that is in front of the agent. When the agent is carrying the correct

key and is standing in front of the door, whilst facing it, the door is unlocked and opened
upon using this action. Because of this action the orientation of the agent is of
importance. Imagine a situation where the agent is in a tile for which two of the adjacent
tiles contain a door. In this case the orientation of the agent is needed to know which
door it is trying to open.

If the agent tries to move onto a tile which contains an object that does not allow the agent to overlap
with it, the agent will stay at its place. However, the agent does change its orientation based on the
action that was taken. For example, if the agent is currently directed towards the right and tries to move
to the left but there is a wall at this position, the agent will not move tiles but will change its orientation
towards the left. As mentioned before, this way of changing the agent’s orientation is important for the
Open action. Furthermore, notice that there is no separate action to pick up objects. This is because
the agent can simply move over an object that can be picked up and by doing so it picks up the object
automatically. The agent is forced to drop the object it is currently carrying when it picks up a new
object by moving over it. This dropped object is placed at the location of the object that was picked
up by the agent. The decision to not add a pick-up and drop action and instead keep the action space
very small was based on the limited amount of time and computational power available for this project.

5.2.4. Rewards

The Key-Corridors environments have very sparse rewards: the agent only receives a reward of 1 when
it reaches the goal state. For all other steps it receives a reward of 0. If the step limit of the specific
environment (steps, ..) is reached, the agent also receives a reward of 0 and the environment is reset.
Therefore the total reward that is obtainable by the agent in one episode can be summarized as follows:

1 if steps < steps

agent

max , (5'1)

max

T =

0, if steps > steps

agent

where steps_. . indicated the amount of steps that the agent took in its current episode. With this
method the received rewards are always 0 or 1 and therefore no further reward scaling or normalization
is required. One might wonder whether these rewards actually encourage the agent to try to reach the
goal state with as few steps as possible, as there is no extra reward for taking less steps. However,
due to the discount factor y the agent does still try to reach the goal state with as few steps as possible,
as longer routes encounter states with more discounting and therefore lower expected return.

5.3. Evaluation of agents

5.3.1. Performance metric

To measure the performance of our agents with respect to the posed research questions, a performance
metric is required. In the Key-Corridors environments, a good performing agent minimizes the amount
of steps that it needs to take to reach the goal tile. Therefore, the average number of steps required to
solve an episode is taken as the performance metric.

5.3.2. Testing for sample efficiency

To test for sample efficiency, we examine how many environment steps the agent requires to obtain an
optimal, or near-optimal policy. If one agent needs less experience from the environment to obtain a
good performing policy than another, it is said to have a better sample efficiency.

32 5. Methodology

5.3.3. Testing for generalization

To test for generalization, agents are evaluated on separate evaluation environments. This allows for
evaluation on different environments than the ones being used for training, which enables us to test
for generalization to unseen environments. Evaluation of the generalization performance of the policy
is done periodically throughout the whole training process. This ensures a fair comparison between
architectures, as generalization performance might decline after more training due to over-fitting on
the training data, which is a common problem in RL and DL in general (Cobbe et al., 2019; Lawrence
& Giles, 2000; Lawrence et al., 1997). As some architectures might reach an optimal policy on the
training environments faster than others, it would not be fair to only compare them at the end of the
training process. In our setup, evaluation is done after approximately every 50 thousand environment
steps during training and the policy is evaluated over 30 episodes in the evaluation environment. The
stochastic policy of the agent is also evaluated stochastically, meaning that - during evalutation - actions
are sampled from the learned probability distribution over the actions, just as during training. Stochastic
policies are often changed to deterministic policies - which take the action with the maximum probability
instead of sampling from the probability distribution - during evaluation as this usually leads to better
performance. We do, however, evaluate our policies stochastically because this yields better - mainly
more stable - results for generalization. This can be explained by the fact that the agent can easily
get stuck by taking one bad action with deterministic policies, especially in environmets which have
deterministic transitions, which the Key-Corridors environments have. The following can, for example,
happen: the agent picks a bad action, walks against a wall, receives the same observation again as
it did not move and from there on stays in a loop of taking the same action and receiving the same
observation. This would result in a reward of 0, whilst the agent might just have taken one wrong
action. By stochastically evaluating the policy, the agent can still take some different actions for the
same observation and therefore get out of these loops. We argue that it is fair to compare policies
which are stochastically evaluated, because by doing so, we are actually evaluating the real policy
that is being optimized by the agent instead of changing from a stochastic to a deterministic policy
during evaluation. Furthermore, agents are encouraged to make the stochastic policy as deterministic
as possible, as taking random actions usually hurts the rewards, and therefore the agent should learn
an almost deterministic policy to obtain good results.

In-distribution generalization

In this thesis, we define in-distribution generalization as generalizing to the same type of environment
as the training environment, however with some small, not previously observed, changes in the en-
vironment. The evaluation environment, to which we aim to generalize, does however represent the
same underlying problem with the same degree of difficulty for the agent.

More specifically, to test for in-distribution generalization, agents are trained on a ’train’ set of in-
stances, which is a set of Key-Corridors instances from which a certain percentage of the total amount
of possible instances is withheld. The agents are evaluated on a separate 'test’ set of instances which
only contains the withheld instances. Therefore, the agent encounters unseen arrangements of the
keys, doors and goal state during evaluation. However, the amount of keys that the agent needs to
use to reach the goal is the same for the train and test set and therefore the task of the agent is equally
difficult in both sets. This proper split of train and test instances for testing generalization is suggested
by Nichol et al. (2018), who argue that it is actually very special that it is so common in RL to test agents
on the exact same environment they are trained on, which is comparable to evaluating on the training
set in machine learning. In our experiments, agents are trained on 70% of the possible instances of an
environment and are evaluated on the remaining 30% of instances.

Out-of-distribution generalization

Out-of-distribution generalization is defined as generalizing to slightly different problems than the ones
seen during training, which is generally a harder task than in-distribution generalization. Testing for
out-of-distribution generalization is done in two ways: either by evaluating on instances with a different
amount of keys than the instances of the training environment or by evaluation on an instances of an
environment with a different size than the environment that the agent is trained on. More specifically,
the following 'train’ and ’test’ splits are tested:

1. Varying the amount of keys for both the small and big key-corridors environment:
In this case, the agent is trained on an environment that has instances with 1 and 2 key(s) and is

5.4. Architectures 33

evaluated on an environment with 3 keys. The choice to train on environments with both 1 and
2 key(s) is again based on the fact that this leads to faster convergence and in addition also to
better generalization. This is probably due to the fact that, in this case, the agent is already used
to solving instances with different amounts of keys, which makes the transfer to yet another key
a bit easier.

2. Varying the size of the environment:
Here we either train on the Key-Corridors-Small environment and evaluate the agent on Key-
Corridors-Big, or we train on Key-Corridors-Big and test for generalization to Key-Corridors-Small.

5.4. Architectures

In this section, the architectures of the different feature extractors will be presented and discussed.
These include MLP and CNN as baseline architectures as well as several GNN-based approaches,
which form one of the main components of this research. Detailed background on the theory behind
these specific architectures can be found in section 3.1, this section focuses on our specific implemen-
tation and use of these architectures. All GNNs are implemented with Deep Graph Library (DGL) from
M. Wang et al. (2019) and PyTorch. All other architectures are implemented with PyTorch (Paszke
et al., 2019).

Only the feature extractor layers differ between the compared methods, while the following linear
layers were kept constant between the methods. However, the output of the feature extractors can
have different sizes. Therefore the input size of the first linear layer depends on the output size of the
final layer of the feature extractor. Details on the number of trainable parameters and how these are
distributed over the different layers will be discussed in section 5.7.1 Each of the compared feature
extractor architectures always consists of two layers. The design choice to keep the depth of the
compared architectures equal is made to allow for a fair comparison between the different methods.
Likewise, many of the design choices for the different architectures, especially for the CNN- and GNN-
based ones, are made with the goal to make them as comparable as possible. In the following sections,
the individual feature extractor architectures will be discussed.

5.4.1. Multilayer Perceptron (MLP)

This is the simplest architecture, which has practically no relational inductive biases since there is an
all to all relationship between all grid tiles in the input. This feature extractor consists of two linear
layers, where the first linear layer has an input dimension equal to the size of the flattened one-hot
observations: X x Y x 41. The output of the feature extractor is simply the output of the last linear
layer, as this can directly be used as input for the following linear layers in the overall architecture, as
previously explained in figure 5.1. This architecture will be referred to as 'MLP’ throughout the rest of
this report.

5.4.2. Convolutional Neural Network (CNN)

After the MLP based feature extractor, a step is taken towards an architecture with stronger relational
inductive biases that are known to work well for grid shaped data; a CNN. The feature extractor again
consists out of two layers, which this time are convolutional layers. Both of these layers use kernels
with a kernel size of 3 X 3 and a stride of 1 pixel. Here ’pixel’ refers to one element of the input grid,
which in our case would be one tile of the observation. The choice for the kernel size of 3 x 3 pixels is
based on the fact that these are the smallest possible kernels that still capture information of a center
tile and the tiles that are located above and below this center tile, as well as the ones to its left and
right.

Often convolutional layers in a CNN are followed by a pooling layer to reduce the dimensionality of
the output. However, in our CNN architecture no pooling layers are added between the two convolu-
tional layers. This is done for two reasons: first, the input is already a relatively small grid and thus
pooling is unnecessary or even harmful and second, the intention is to later compare this method with
the GNN-based methods which also have no downsampling between layers. A 1-pixel padding was
added to also update the features of the outer grid tiles, again leading to better comparability with the
GNN-based methods. A final difference between the CNN- and GNN-based methods is the use of a
readout function in GNNs to go from a graph-shaped output to a 1D tensor, whereas a CNN would
usually just flatten the last feature map into a 1D tensor. To make this comparable between the two

34 5. Methodology

methods, but at the same time also test whether the readout function itself is not the driver between
different results, we propose the following two architectures, both using kernels with a kernel size of
3 x 3, a stride of 1 pixel, 1 pixel padding and no pooling in-between layers:

CNNyat : In this architecture, the feature map outputted by the final layer - which, due to the
lack of pooling layers, still has a shape of [X, Y, F], where F is the number of output
features per pixel - is flattened into a 1D tensor. This is the most traditional way of
going from the output of a CNN to linear layers.

CNNpaxpool ¢ For the second architecture, a similar readout function as used in the GNN-based
architectures, is implemented for the output of the CNN. With this architecture, the
results of a GNN-based architecture with readout - which is the standard way of
using a GNN in graph classification tasks - can be compared to the CNN-based
approach with the same readout function. As it turned out that max-pooling was the
best performing readout function for our problems, we compare the architectures
with max-pooling readout functions.

5.4.3. Graph Convolutional Network (GCN)

The first graph based architecture is based on a GCN (Kipf & Welling, 2017). In order to use a GCN,
the observations need to be encoded as a graph. To do so, the grid-shaped observation will have to be
transformed into nodes and edges. Fortunately, the observations of our environment can be encoded
as nodes and edges quite intuitively. Each grid tile clearly forms a separate entity and will therefore
be encoded as a node in the graph, which gets the features of the corresponding grid tile as node
features. From now on, 'node’ and ’grid tile’ are used interchangeably, i.e., the grid tile with the red
key, can also be referred to as the node with the red key. All directly adjacent grid tiles - excluding
diagonally adjacent tiles - will be connected with a bidirectional edge. Furthermore, each node has
an edge to itself, also called a self-loop, to ensure that nodes do not ‘forget’ their own features. Even
though this environment is specifically chosen to be easily encoded into a graph, one could also first
apply a CNN to, for instance, raw pixel data to extract entities and then encode these entities as the
nodes in a graph. Figure 5.4 illustrates the graph encoding of an example observation.

Observation Input graph for GCN

Graph Encoding

—_—

Figure 5.4: Simple graph encoding. Edges between the nodes are bidirectional.

Our implementation of GCN has two small differences from the one introduced in section 3.2.3: the
normalization constant ¢;; is removed and an extra bias term b is added. The new function describing
the update of the features h; of node v;, in one layer [of our implementation of GCN is shown in equation
5.2.

hHD = 6O Z EOW® 4 p® (5.2)
JEN;

The bias term is added for stronger expressive power, as suggested by Xu et al. (2019). The normal-
ization constant is dropped as this empirically led to better sample efficiency in our setup. Additionally,

5.4. Architectures 35

almost all nodes - except the ones on the outer edge of the grid - have the same degree and the max-
imum difference in node degree is only 2, removing the necessity for the normalization constant. This
architecture will be referred to as GCN in the following sections.

One problem with the GCN architecture in combination with our grid-shaped environment, is the
fact that during the update of the features of a node, the same weights are used for all incoming mes-
sages from its neighboring nodes. Because of this, the GCN would compute the exact same features
for the central node in both hypothetical observations displayed in figure 5.5, whilst these kind of sym-
metries are actually often present in the grid-shaped observations of the Key-Corridors environment.
Consequently, a method with stronger expressive power is needed, which is discussed in the following
section.

Graph construction and graph batching are costly operations in DGL and it is therefore best to avoid
using - especially repeating - these operations as much as possible. As each graph actually has the
same topology for this architecture, the graphs are constructed once and are reused, whilst only the
node features are changed for each observation.

Figure 5.5: lllustrating the shortcoming of a GCN for the grid-shaped Key-Corridors environments. The two displayed graphs
are indistinguishable for a GCN.

5.4.4. Relational Graph Convolutional Network imitating a CNN (R-GCN¢yn)
Since it was concluded in the previous section that a network with stronger expressive power is required,
we propose to use a R-GCN instead. R-GCNs allow for different type of edges between nodes, i.e.,
they are able to encode different type of relations between entities, where each relation has its own set
of weights. This enables us to solve the problem displayed in figure 5.5 by having a different relation
for each adjacent node, as shown in figure 5.6. As a result, it is now possible to encode the fact that
the red door is located to the right of the agent into the features of the central node with the agent,
whereas previously it was only possible to encode the presence of a red door between the adjacent
nodes of the central node and not its relative position.

Figure 5.6: R-GCN allows for introducing a different relation for each adjacent node, illustrated with the differently colored edges,
which provides stronger expressive power than a GCN.

Equation 5.3 is used to update the features of node v; in the I'th layer of a R-GCN. Here we again
- as for GCN - omitted the normalization constant c;; and added a bias term b, compared to equation
3.4 of the background on R-GCNs.

36 5. Methodology

T€Rcnn JEN

As it is known that CNNs perform well on grid-shaped data, we start with imitating the CNNg
architecture with the kernel size of 3 x 3, as also done by Z. Jiang et al. (2021). This architecture will
be referred to as R-GCN¢py in following sections. For each node, a unique relation is added to each
of its adjacent nodes in the grid, which this time includes its diagonally adjacent nodes as well. There
is no need to add a self-loop, as these are always included in the node update of a R-GCN, as can be
seen by the Wolhf term in equation 5.3. This means that, in total, there are 9 separate weight matrices
W for 9 different relations r, of which 8 are included in R.,,, and the 9th is W,. This is exactly like a
3 x 3 kernel of a CNN, which would learn 9 different weight matrices as well.

The concept of imitating CNN with a R-GCN is visualized in figure 5.7. On the left side of the figure,
a section of the graph is displayed, which shows the similarity with a kernel. Here the middle node -
with the light green color - is the node that is updated. The middle section of the image shows how this
‘graph kernel’ would move over the graph and produce the output that is displayed on the right hand
side, where the light green nodes are the nodes that now have been updated. In reality, there is no
kernel that moves over the graph, but the edges displayed in the graph kernel are present for each of
the nodes that are colored light green in the output. Displaying all these edges would therefore make
the figure very cluttered. Note that all nodes also have a self-loop, as is by default already encoded
in the update function of a R-GCN. As a result of these self-loops, the nodes on the outer edge of
the graph are also updated, but only with their own features. One remaining difference to the CNN
architecture is the absence of padding, which is not required in the R-GCN as the size of the graph
already remains constant throughout its layers.

o 6 6 6
L A A A 4

Graph 'kernel’ /

Each edge is a unique relation and
therefore has its own weights

0000000
Q@OOO00@<«
Q@OO0000®
Q@OO0000®
Q@OOO000®
Q@OOOO00®
0000000

After 1 convolution

Figure 5.7: Imitating a convolutional layer with a R-GCN.

5.4.5. R-GCN with domain-specific relations (R-GCNyomain)

In this architecture domain-specific relational inductive biases will be encoded into the architecture in
the form of relations in a R-GCN. The used update function is exactly the same as the one presented
in equation 5.3. However, this architecture employs different relational inductive biases than those of a
CNN. It is assumed that some form of domain knowledge is available, on which these domain-specific
biases are based. In a real-world scenario this could be a domain expert or, for instance, a database
which has information on relations between entities. In our case, it is assumed that there is domain
knowledge about the fact that an agent can pick up keys and should use these keys to open doors.
Furthermore, it is also known that the color of a key indicates which door it can open and that the agent
can take 4 different actions to move: up, down, right and left. Based on this knowledge, 6 different
relational edges are introduced. The first four are based on the possible actions the agent can take to
move around:

5.4. Architectures 37

left : For each node v, that has another node v, to its left, there is an edge from v, to v,,
allowing node v, to encode knowledge about the node that can be reached by taking
action ’left’ at node v,,.

right : For each node v, that has another node v, to its right, there is an edge from v, to v,,
allowing node v, to encode knowledge about the node that can be reached by taking
action ’right’ at node v,.

up : Foreach node v, that has another node v, above its position in the grid, there is an edge
from v, to v,, allowing node v, to encode knowledge about the node that can be reached
by taking action 'up’ at node v, .

down : For each node v, that has another node v, below its position in the grid, there is an edge
from v, to v,, allowing node v, to encode knowledge about the node that can be reached
by taking action '"down’ at node v,.

The remaining two relations are based on the domain knowledge about keys and doors:

Can pick up : An edge is added from the node at which the agent is currently present to each
node that contains a key. These edges can be seen as a ’can pick up’ relation
between agent and keys. If the agent is carrying a key, there is a self-loop edge of
this type present for the node at which the agent is present.

Can open : This relation encodes the knowledge about keys being able to open doors, more
specifically, the fact that keys can open doors with the same color as the key. To
this end, edges - which represent a 'can open’ relation between key and door - are
added from each node with a key to the the node containing the door that can be
opened with this key. If the agent is carrying a key, there is an edge of this type
from the node with the agent to the node containing the door that can be opened
by the agent with this key.

Note that all nodes again have an additional self-loop, which is by default encoded in the update
function of a R-GCN and can be seen as a seventh relation. As mentioned before, these self-loops
enable nodes to not ‘forget’ their own features. See figure 5.8 for an example graph encoding for this
architecture. In this figure the additional self-loops (or seventh relation) are not displayed. In following
sections, we will refer to this architecture with R-GCNgomain-

Input graph for R-GCNyomain

Encode Graph

Figure 5.8: R-GCN with domain-specific relations. The four small orange, green, black and light blue edges which are present at
all of the nodes, indicate the left, right, up and down relations, respectively. The red edges from the agent to the keys represents
the 'can pick up’ relations and the blue edges between keys and doors display the ‘can open’ relations. Note that each node
also has an additional self-loop edge, which can be seen as an extra relation, however, these are not displayed in this figure for
readability.

With this architecture it is not possible to always use the same graph structure and only update
the node features based on the observation. This is due to the extra relations which cause the graph
structures to change between observations. To solve this, each graph is stored in a hash-table during
the forward pass. An incoming observation tensor is hashed and used as key in the hash-table. If

38 5. Methodology

the observation has not been seen before, the graph is constructed and stored as value with its corre-
sponding key; if the observation has been seen before, the key is used to retrieve the graph from the
hash-table.

5.4.6. R-GCN¢y\ With additional domain-specific relations (R-GCNcnn+domain)

In the R-GCNyomain architecture, the ‘can pick up’ and 'can open’ relations intuitively seem to be the
more important relations based on domain knowledge, when compared to the left, right, up and down
relations, which are actually a sub-set of the relations that are also present in the R-GCN¢yny architec-
ture, imitating a CNN with a kernel size of 3 x 3. In order to separately test the importance of the 'can
pick up’ and ’can open’ relations, instead of in combination with the ’left’, 'right’, 'up’ and 'down’ rela-
tions, the R-GCN¢cnN+domain @rchitecture is introduced. With this architecture, the 'can pick up’ and ‘can
open’ relations are directly combined with the relations imposed by a CNN with a kernel size of 3 x 3.
In this case the R-GCN encodes the 9 relations of the CNN, plus the additional 'can pick up’ and ’can
open’ relations, as described in section 5.4.5. This architecture aims to check whether the diagonal
edges that are present between adjacent nodes in the R-GCN¢yy architecture, but are removed in the
R-GCNyomain architecture, are not the main cause of any potential performance differences between
these two architectures.

5.4.7. R-GCN¢y\ With additional random relations (R-GCNcyn+random)

The ’can pick up’ and 'can open’ relations of R-GCNgyomain are based on domain knowledge and there-
fore seem to be fitting for the problem that needs to be solved in the Key-Corridors environments.
However, as also explored by Kurin et al. (2020), intuitively satisfying relations in the graph architec-
ture of a GNN do not always have to be the (only) relations that would improve the performance of the
agent the most. It could for instance be the case that other, more random, additional edges between
nodes that are not directly adjacent to each other would also improve the performance, simply because
they encode some longer distance relations than the ones present in our CNN architecture.

To test for all possible graph structures with a certain amount of nodes and relations is infeasible
in this thesis. However, in an attempt to show that - in this case - the relations based on domain
knowledge are indeed better than random relations, we introduce the R-GCN¢nN+random a@rchitecture.
This architecture again duplicates the relations of a CNN with a kernel size of 3 x 3 - as is done in
the R-GCN¢nn architecture - but now adds two additional relations that intuitively do not seem to help
in solving the problem, as opposed to the 'can pick up’ and ’can open’ relations. The performance of
this architecture will be compared tot the performance of the R-GCNcnn+domain @rchitecture introduced
in the previous section. To make this a fair comparison, and therefore allow us to reason about the
usefulness of domain-specific relations versus more random relations, the two architectures will have
the same amount of additional edges per relation. In practice, we do this by changing the 'can pick up’
and ’can open’ relations as follows:

Can pick up : This relation will again add an additional edge for each key that is present in the
observation, however, these edges now always point from the central room to one
of the rooms behind the doors, independent of the actual location of the goal or
keys. Furthermore, the edges do not move based on the movement of the keys or
agent, whereas before, if a key or the agent moved, the edges were adjusted
accordingly.

Canopen : Forthe ‘can open’ relation, there are still edges between keys and doors, however,
now there is always an edge from a key to a door that can not be opened with that
key. For example, in an observation with a red key, there is an edge from the red
key to the blue door.

5.4.8. Learning additional relations with attention (R-GCNgay)

In the previously introduced R-GCNyomain architecture, domain-specific relations are used, which are
based on domain knowledge. However, there are two strong assumptions that must be met in order
to work with this architecture: it requires the availability of domain knowledge to define the relations
and additionally presupposes that clearly defined entities, such as "key” and "door”, are present in the
observation or that these entities can be extracted from the raw input data. This section will introduce a

5.4. Architectures 39

new architecture that facilitates the learning of additional relations rather than defining them in advance.
This not only removes the assumption of domain knowledge being available, but also eliminates the
need for clearly defined entities.

For this architecture, we start with the same architecture as R-GCN¢ypy, as introduced in section
5.4.4. This time, instead of adding predefined relations, we intend to learn extra relations with a GAN.
For this purpose, another graph is constructed, for which each grid tile is again encoded as a node, but
now the graph is fully connected, i.e., there is an edge between each pair of nodes. A self-loop is added
to each node as well. On this fully connected graph, a GAN with 3 different attention heads is applied,
which gives 3 separate output tensors; one for each head. Because of the fully connected graph this
can be seen as learning pairwise relations between nodes, where, in theory, each head can represent
a different type of relation. Learning pairwise relations with a GAN to induce relational inductive biases
in DRL, is an approach explored by Zambaldi et al. (2018) as well. However, Zambaldi et al. (2018)
assume that the location of a node is encoded in its features. As we do not make this assumption, their
approach would fail in our setup because without these positional features, a GAN on a fully connected
graph could not distinguish two graphs with the same set of nodes, even though the individual nodes
would have different positions within the observation grid. In other words, all positional knowledge is
lost due to the fully connected graph and the absence of positional information in the input features of
our nodes. To overcome this problem, we propose the R-GCNgan architecture which combines R-GCN
and GAN. The overall structure of the architecture is as follows: the first layer is exactly the same as
the first layer of the R-GCN¢ny architecture, which encodes some positional information into the node
features as the CNN-like relations only encodes local information into each node’s features. After this
first layer, both the second layer of R-GCN¢ny and the GAN layer are applied in parallel. The 3 outputs
of the different heads of the GAN are summed together, after which, they are added to the output of the
R-GCN before the activation function of R-GCN is applied. This can be seen as a CNN - implemented
with R-GCN - which learns additional relations, next to the local ones of CNN. The following equations
give an overview of the update functions that are applied to each node i in the observation graph:

Layer 1:
KD = 6O Z Z WOR® + WOR® 4 p© (5.4)
TERcnn JEN

This first layer is exactly the same as the first layer of R-GCNcnn-

Layer 2:
elf) = LeakyReLU (A® (WO w®n{))
For each head k € K: ; (5.5)
g0 exele’)
v Yuen(eXp(ei(S))
K
P =o® | T N WORD L PRD 50+ >N a2 + b (5.6)
T€Rcnn J'E-Nir k=1 jeN(i)

Here, equation 5.5 shows the formulas for each attention head k, which were introduced in section
3.2.5 of the background. Equation 5.6 shows how R-GCN¢cyy and GAN are combined in the second
layer. The LeakyReLU of GAN has a negative slope angle «a g y of 0.2, as suggested by Velickovi¢
etal. (2017). Furthermore, the GAN itself does not apply any activation function ¢ as this is only applied
once the output of the GAN heads is added to the output of the R-GCN. Note that a bias term b is added
to the GAN network as well.

40 5. Methodology

5.4.9. Readout functions

Usually, in a graph classification setting - which is most comparable to our setup - a readout function
is used after some GNN layers to compute one single set of features for the entire graph. This allows
GNNs to work on variable size input, which is one of their key features. We have implemented and
tested several readout functions for all of our architectures, including CNN, as this is later used for
comparison to the GNN-based architectures. These readout functions are introduced below.

Flattening

For this readout, all node features of each of the nodes in the graph are concatenated into one large 1D
tensor. This method of reading out a graph is usually not used for GNNs as it does not allow for variable
size input. This readout function allows us to compare the GNN-based architectures to CNNyy;.

Sum-pooling
The sum-pooling readout function applies a featurewise summation over the nodes, as per equation
5.7. A potential disadvantage of this readout function is the loss of positional information.

r= hi (57)

Average-pooling
This readout function is very similar to sum-pooling and only ads a division of the summed features by
the total amount of nodes |N|. See equation 5.8.

N
1||

r=—
IN| &
i=1

h; (5.8)

Max-pooling

Max-pooling is a frequently used pooling method, both for CNNs and GNNs. Furthermore, it is more
often used, with good results, in graph based RL methods such as Zambaldi et al. (2018) and Z. Jiang
et al. (2021). For max-pooling, a featurewise maximum over the node features is used as readout, as
per equation 5.9.

r = max (hy) (5.9)

Global attention pooling

The final readout function used in this work is Global Attention Pooling (GAP). GAP uses an attention
mechanism to determine how much weight should be put on each of the nodes’ features. This method
of pooling is based on the work by Li et al. (2016) and is displayed in equation 5.10. It works by first
applying a linear layer fyat to each node n;. This layer has as input size the number of features per
node and has an output size of 1. The output values of fy.e can be seen as attention weights a; for
each node n;. All of these attention weights are then fed through a softmax function making them sum
up to a value of 1, after which each attention weight a; is multiplied by its corresponding node features
h;. Finally, the node features h; - which are now scaled by their attention weights - are summed up.
GAP

[N

r = softmax (fe (h) hy (5.10)

i=1

GAP allows for intuitive visualization of the 'focus’ of the agent, as we can plot the attention weights
a; for each node n;, which directly gives us a measure of 'importance’ of each node to the agent. This
might be an interesting benefit for explainability of the behavior of the agent.

5.5. Implementation of proximal policy optimization 41

5.5. Implementation of proximal policy optimization

This section will first explain why PPO was chosen as RL algorithm for this research. This is followed
by some implementation details of PPO, which differ from the previously introduced background on
PPO.

5.5.1. Reasons for the use of PPO

The decision to use PPO as the RL algorithm in this thesis was based on several considerations. First
of all, the decision for an on-policy and policy-based method was made, as these are generally known
to be more stable than (off-policy) value-based methods (Nachum et al., 2017; S.Sutton & G.Barto,
2018). Furthermore, PPO is know to perform well on multiple benchmark tasks, when compared to
alternative RL algorithms and allows us to sample trajectories from multiple parallel environments,
which speeds up training time (Schulman et al., 2017). In contrast to trust region policy optimization
(TRPO) (Schulman et al., 2015), PPO also enables us to easily apply parameter sharing between the
actor and critic (Schulman et al., 2017). Lastly, PPO has good sample efficiency for an on-policy method
as it does multiple updates on one batch of trajectories.

5.5.2. Implementation details

Instead of implementing PPO from scratch, an already implemented version from Stable-Baselines
3 (Raffin et al., 2019) is used in this thesis. Stable-Baselines 3 is a set of reliable implementations
of reinforcement learning algorithms in PyTorch. There are, however, some minor differences to this
implementation compared to the pseudocode for PPO introduced in the background section on PPO
(3.4.4). These implementation details will be discussed in this section.

The first difference is the use of multiple vectorized environments. Instead of training the agent
on one environment at a time, multiple independent environments are stacked to form a vectorized
environment, which allows for training on all of these environments together and thereby makes the
training process faster. When using N vectorized environments, the agent computes a vector of N
actions at a time, which results in N observations and rewards. Because our environments do not
require much computation, the vectorized environments are called in sequence on the same Python
process, as this is actually faster than using multiple processes or threads for the different environments.
A batch B of trajectories t is now obtained by collecting one trajectory 7 of length T in each of the N
environments. Each of these environments is initialized with a different seed and leading to a variety
of different trajectories.

A second implementation detail, different from the pseudocode in the background, is the use of
Adam (Kingma & Ba, 2015) as optimizer instead of standard mini-batch-SGA. This is the optimizer
used in the PPO implementation by OpenAl (Dhariwal et al., 2017), who originally introduced PPO. In
addition, using the Adam optimizer with PPO is also recommended by Andrychowicz et al. (2020). The
use of Adam introduces three new hyperparameters: B;, B, and eagam- Here, B; and B, are set to 0.9
and 0.999 respectively, which are the default values suggested by Kingma and Ba (2015) and are also
suggested by Andrychowicz et al. (2020) for PPO specifically. Furthermore, eagam is setto 1le — 5 as in
the PPO implementation by OpenAl.

Another implementation detail is the use of gradient clipping. This is a commonly used trick in DL,
to avoid exploding gradients (Zhang et al., 2020), which is also applied in the PPO implementation of
OpenAl. Furthermore, Andrychowicz et al. (2020) report that the gradient of the performance function
with respect to all parameters is clipped before it is used by Adam for optimization, to avoid that the
global L? norm of the gradients exceeds a certain threshold. Here the gradient clipping threshold is an
additional hyperparameter.

The final addition to the actual implementation, compared to the previously introduced pseudocode,
is the use of advantage normalization. The advantages are normalized for each mini-batch by subtract-
ing the mean advantage from each advantage value and dividing this by the standard deviation of the
advantage plus 1e-8 to avoid division by zero. This is again also implemented in OpenAl’s implemen-
tation of PPO and can be seen as an adaptive learning rate heuristic which limits the variance of the
gradient (Tucker et al., 2018).

42 5. Methodology

5.6. Method of hyperparameter tuning

This section will present and discuss how the hyperparameters of PPO were tuned. First, the general
approach to tuning the hyperparameters is introduced, after which some of the used tuning metrics are
discussed as well as the considered hyperparemter values.

Ideally, one would use some form of automated optimization over the entire search space of possible
hyperparameters, as is sometimes applied to deep learning methods and DRL (Bergstra et al., 2011;
Feurer & Hutter, 2019; Hertel et al., 2020). Doing this for all compared architectures would allow us
to make the claim that each method is tuned to some degree of optimality and that it is therefore fair
to compare them with these parameters. Unfortunately this is not possible in our case, due to the
following two reasons: there is no single optimization objective for tuning our hyperparameters and the
search space over all possible combinations of hyperparameters is too large for the available amount
of computational resources. There is no single optimization objective for tuning because we try to
balance training time, reaching an optimal policy and stability. Especially stability is hard to define as an
optimization objective. The second problem, of having a large search space, makes it hard to - even with
automated methods - run enough trials to make any claims about all methods being equally well tuned to
allow for fair comparison between the methods. Our implementation of PPO has 12 hyperparameters,
excluding network architectures, activation functions, weight initialization and the hyperparameters of
Adam. Checking all possible combinations of 3 different values for each of these 12 hyperparameters
would already require more than 500.000 runs, which is infeasible for us. Next to being infeasible, this
would only be for 3 values for each of the hyperparameters, which is not nearly enough to provide any
guarantees on how optimally tuned the algorithm is. Therefore, another approach will have to be taken.

Instead of tuning the hyperparameters for each of the different architectures separately, we tune for
CNN and use the same parameters for all other architectures. As CNN is the main baseline against
which the GNN-based approaches are compared, we reason that by tuning for CNN, we favor the base-
line. Thus, if the GNN-based architectures outperform the baseline, it is most probably not caused by
more favorable hyperparameters. This solves the problem of having to separately tune all parame-
ters for each proposed architecture, however, it still does not solve the problem of having a very large
search space. To solve this, tuning is done manually and the hyperparameters are initialized with val-
ues obtained from literature, if available and relevant to our problem. This enables us to start with a set
of initial hyperparameters that should already give reasonable performance and then iteratively tune
these parameters further. To interatively tune these parameters, we not only look at the average reward
obtained or the average number of timesteps needed to solve an episode, but we also keep track of
some extra tuning metrics that are helpful for generating insights into which parameters might have to
be adjusted. These tuning metrics will be introduced in the following section.

5.6.1. Additional tuning metrics

The most important and useful tuning metrics for this thesis, were the entropy of the policy, explained
variance and the clipping fraction, all of which are easily tracked in Stable Baselines 3. These three
metrics will be shortly discussed below, as well as their use for tuning the hyperparameters.

Entropy

This is the same entropy as the entropy term S, in the performance function of PPO. Given a stochastic
policy m, let m(a|s;) define the probability of taking action a from state s;. The entropy H of this policy
at state s, can now be defined as follows:

H(n(-Ist))=—Zn(a|st)logn(a|st), (5.11)

a€eA

where A4 is the action space representing all possible actions that the agent can take (Shannon, 1948).
For a well-tuned algorithm, the entropy should gradually decrease towards 0 during training. If the
entropy does not decrease, the agent continues to take many random actions, i.e., it keeps on exploring
instead of exploiting a good policy. If the entropy drops too fast, the agent may not have explored
enough of the environment, which could lead to convergence to a sub-optimal policy. The mean entropy
of the policy is logged after each update - consisting out of multiple epochs of training - of the policy.
This metric helps determining a good value for the entropy coefficient ¢, of PPO.

5.6. Method of hyperparameter tuning 43

Explained variance
The explained variance can, in this case, be seen as a measure of how good the critic network - a
learned value function - is in predicting the actual returns. The explained variance is calculated as
follows:

Var[Return — Predicted Value] Var[G, — Vr, (sp)]

Ev=1- Var[Return] =<, ‘ (5.12)

where EV stands for the explained variance, G, is the return at timestep t and V7, (s;) is the predicted
value for state s, at timestep t, under the current parameterized policy gy (Gaudet et al., 2020; Schul-
man, 2016a). An explained variance of 1 indicates that the critic network can flawlessly predict the
actual returns. For an explained variance below 0, the predictions by the critic network are worse than
just predicting a constant value. The mean EV is logged after each update - consisting out of multiple
epochs of training - of the policy. This metric is useful for determining how well the critic network is
functioning.

Clipping fraction

This is the fraction of steps at which the probability ratio W,(0) is clipped in the performance function
of PPO. At the beginning of training this value will be relatively high, as the policy will still have to be
adjusted a lot and therefore the ratio between the old and new policy in an update will be relatively high.
Later on, this value should decrease when the policy starts to converge towards an optimal policy. High
values for the clipping fraction can indicate a too high learning rate or a too conservative value for the
clipping parameter €.

5.6.2. Initial hyperparameter values

In this section the initial hyperparameter values - mostly obtained from literature - are introduced. These
values are used as a starting point for tuning the hyperparameter values of PPO with the CNN archi-
tecture and are displayed in table 5.3.

Table 5.3: Overview of the used initial values for the hyperparameter of PPO.

Hyperparameter Starting value Based on

Minibatch size (M) 64 Reported experience with PPO on MiniGrid environ-
ments by Raffin (2020)

Trajectory length (T) 128 Reported experience with PPO on MiniGrid environ-
ments by Raffin (2020)

Number of vectorized environments 8 Reported experience with PPO on MiniGrid environ-
ments by Raffin (2020)

Batch size |B| 1024 T x number of vectorized environments = 8 x 128

Discount factor (y) 0.99 Andrychowicz et al. (2020)

GAE parameter (1) 0.9 Andrychowicz et al. (2020) suggest 0.9 and Schul-
man et al. (2016) recommend a value in the range
[0.9,0.99]

Learning rate (u) 3e-4 Andrychowicz et al. (2020)

Number of epochs (Nepochs) 10 Andrychowicz et al. (2020) and reported experience
with PPO on MiniGrid environments by Raffin (2020)

VF coefficient (c;) 0.5 Raffin (2020)

Entropy coefficient (c;) 0.0 The need for this coefficient can be deduced from
the policy entropy

Clipping parameter (¢) 0.2 Schulman et al. (2017) suggest 0.2 and Andrychow-
icz et al. (2020) recommend starting with 0.25

Gradient clipping threshold 0.5 Andrychowicz et al. (2020)

Adam parameter B; 0.9 Andrychowicz et al. (2020) and Kingma and Ba
(2015)

Adam parameter B, 0.999 Andrychowicz et al. (2020) and Kingma and Ba
(2015)

Adam parameter €,qam 1e-5 Andrychowicz et al. (2020)

44 5. Methodology

5.6.3. Considered values for Key-Corridors-Small

From the initial hyperparameter values, we further tuned the parameters with the CNN architecture on
Key-Corridor-Small instances with 1 and 2 key(s). These tuned parameters are then again used as
a starting point for tuning the parameters for the Key-Corridors-Big instances. Below, the considered
values will be discussed per hyperparameter, as well as some insights gained during the tuning process.
Section 5.7 will follow with an overview of the actual parameters used in the experiments.

Number of vectorized environments

The number of vectorized environments was one of the first parameters that was fixed. Training with
much more environments than the initially used value of 8 made training much faster in wall clock
time. This does lead to a relatively large batchsize, but as there are so many different instances of the
Key-Corridors environments, this is actually a good thing. At a certain point, training with even more
environments does not further decrease the wall clock training time. This is probably either due to
the fact that sample efficiency decreases with too large batch sizes or because the gradient updates
actually become the limiting factor instead of the environment simulations. The following values were
considered: 8, 128, 200, 400 and 500.

Minibatch size (M)

Larger values for the minibatch size M resulted in slower learning, but did result in a more stable
learning process than training with small minibatches. This can probably be explained by the fact that
larger minibatches contain more different variations of the Key-Corridors instances, whereas small mini-
batches might update the policy based on experiences that capture too little of the variation between
the instances. The following values were considered: 64, 128, 160, 256, 320, 512, 1280 and 2560.

Trajectory length (T)

The trajectory length T was an important hyperparameter to tune for the Key-Corridors environments.
Large values for the trajectory length make learning slow, but too small values do not allow the agent
to reach any reward in the the length of trajectory. Especially at the beginning of training this can be
a problem, as in this case the agent still needs to explore and might need many steps to reach the
goal state and receive a reward. If now the trajectory length is made too short, there might be entire
batches that do not contain any experience in which the agent receives a reward. Due to the use of
many vectorized environments - each having a different seed, resulting in different initializations - it
is not needed to make the trajectories span over several episodes in order to collect experience from
multiple instances. The following values for T were considered: 16, 32, 64, 128 and 256.

Discount factor (y)

Just as the trajectory length, the discount factor y was an important hyperparameter to tune. Lower
values than the initial value of 0.99 resulted in a faster learning, however, too low values put too little
emphasis on steps taken further in the past which especially causes problems during the exploration
phase, in which the agent might take useful actions many steps before it reaches the actual reward.
The following values for y were considered: 0.8, 0.85, 0.9, 0.95 and 0.99.

Learning rate (u)

For the learning rate u, higher values lead to faster training, but too high values result in too large
updates, which can make the algorithm unstable. The following learning rates were considered: 2e-4,
2.5e-4, 3e-4 and 4e-4. Furthermore, linearly decreasing rates were considered as well, but these com-
plicated the comparisons between the performance of different architectures.

Number of epochs (K)
The following values were considered for the number of epochs per batch: 2, 3, 4, 5, 6, 8 and 10. More
epochs generally results in faster learning, however, to many epochs of training resulted in an unstable

5.6. Method of hyperparameter tuning 45

learning process. It was important to consider the number of epochs in combination with the learning
rate and the clipping parameter ¢, as these both also have a big impact on the stability of the algorithm.

Clipping parameter (¢)

Picking a value for the clipping parameter ¢ again is a trade-off between training speed and stabil-
ity. A higher value for the clipping parameter allows for larger updates, which usually results in faster
training, however it might cause the algorithm to become unstable. The following values for € were
considered: 0.05, 0.1, 0.2, 0.25 and 0.3. A linearly decreasing € was explored as well, but this again -
just as with the learning rate - resulted in a more difficult comparison between the different architectures.

GAE parameter (1)
The GAE parameter 1 seemed to be of less importance to the performance of the algorithm. The fol-
lowing values were considered: 0.9, 0.95 and 0.99.

Value function coefficient (c,)
The initial value of 0.5 for the value function coefficient ¢, already yielded good performance. The
following values were considered: 0.1, 0.5 and 1.0.

Entropy coefficient (c;)

For the entropy coefficient c,, some other values than the initial value of 0 where tried, however, it could
be concluded from the training curves and the logged entropy of the policy that there was no need for a
stronger incentive to explore and thus no need for a positive entropy coefficient. Negative values were
not considered.

Gradient clipping threshold

For the gradient clipping threshold the following values were considered: 0.1, 0.2, 0.5, 0.8, 2.0 and 5.0.
The exact value of this parameter did not seem to have a very significant effect on the performance of
the algorithm, as also suggested by Andrychowicz et al. (2020) .

Hyperparameters of Adam
For the hyperparameters of Adam - B,, B, and €,4am - the initial (default) values were used, which were
not tuned further.

It is important to emphasize that this was an iterative process instead of a full grid search over all
possible combinations of the above mentioned hyperparameter values. Some of the hyperparameters
were varied in conjunction with other hyper-parameters, for example, trajectory length, batch size, and
the number of vectorized environments are strongly correlated and were therefore often considered
together. Some other parameters - such as the VF coefficient - were considered individually by keeping
all other parameters constant.

5.6.4. Adjusted values for Key-Corridors-Big

For the Key-Corridors-Big instances, the same hyperparameter values as those used for the Key-
Corridors-Small instances were used as starting point. The algorithm is again tuned with the CNN
architecture and on Key-Corridors-Big instances with either 1 or 2 key(s).

As the instances of Key-Corridors-Big require more exploration and also more steps to solve the
instances under an optimal policy, a larger value for the trajectory length T was required. Moreover, a
slightly higher value for the discount factor y also yielded better performance. This fits with the longer
trajectory length and the fact that more exploration is needed, as it then makes sense to give a bit more
weight to experiences gained further in the past. Because of the longer trajectory length, the batch
size also becomes larger. Lastly, for the Key-Corridors-Big instances, we train for more epochs on the
same batch of experiences, resulting in faster training. We reason that this was possible - without the
training process becoming unstable - due to the larger batch size.

46 5. Methodology

5.7. Used hyperparameters, activation functions and weight initial-
ization method

This section will give an overview of the used hyperparameters of PPO, the weight initialization of the
weights of the neural network layers and the distribution of these weights over the layers of the different
architectures. Lastly, we will also mention which activation functions were used.

5.7.1. Hyperparameters of PPO

Table 5.4 gives an overview of all the used hyperparameter values of PPO during the experiments.
Hyperparameters that differ between the Key-Corridors-Small and Key-Corridors-Big environment are
shown in bold.

Table 5.4: Overview of the used hyperparameter values of PPO for both Key-Corridors-Small and Key-Corridors-Big.

Hyperparameter Values for Key-Corridors-Small Values for Key-Corridors-Big
Minibatch size (M) 1280 1280

Trajectory length (T) 32 128

Number of vectorized environments 400 400

Batch size |B| 400 x 32 = 12800 400 x 128 = 51200
Discount factor (y) 0.9 0.93

GAE parameter (1) 0.95 0.95

Learning rate (u) 3e-4 3e-4

Number of epochs (Nepochs) 4 8

VF coefficient (c;) 0.5 0.5

Entropy coefficient (c;) 0.0 0.0

Clipping parameter (¢) 0.2 0.2

Gradient clipping threshold 0.8 0.8

Adam parameter B, 0.9 0.9

Adam parameter B, 0.999 0.999

Adam parameter €,4am 1e-5 1e-5

5.7.2. Weight initialization and activation functions

The weights in each layer of all the architectures are initialized with orthogonal initialization as described
by Saxe et al. (2014). Furthermore, the gain values shown in table 5.5 are applied to each of these
layers during initialization. In general, all the feature extractor layers are initialized with a gain of /2.
This includes the linear layer which is used in GAP. Usually, linear layers are initialized with a gain of
1, but we found empirically that a value of V2 for this linear layer gave better results in our specific
setup. The last linear layers of the critic (value network) is initialized with a gain value of 1, which
is the default for layers that are not followed by an activation function. The last layer of the actor
(policy network), is initialized with a much smaller gain value of 0.01, as suggested by Andrychowicz
et al. (2020). All the other linear layers in the actor and critic networks - this includes the MLP feature
extractor - are initialized with a gain value of 5, which is the default value for layers that are followed

by a Tanh activation function. Table 5.5 also gives an overview of the used activation functions for the
various layers. Lastly, all biases are initialized at 0.

5.7. Used hyperparameters, activation functions and weight initialization method 47

Table 5.5: Overview of the gain values used for weight initialization and the used activation functions per layer.

Layer | Activation | Gain
CNN and R-GCN ReLU V2
GAN - V2
Linear layer of GAP - V2
Last layer of the policy network | - 0.01
Last layer of the value network | - 1

All other linear layers Tanh g

5.7.3. Overview of architectures and their number of trainable parameters

To provide a fair comparison, all architectures being directly compared to each other have approximately
the same number of trainable parameters. For each of the architectures, the total number of trainable
parameters and their distribution across the layers is displayed in table 5.6. During tuning with the
CNN architecture, different layer sizes were considered for both the convolutional layers in the feature
extractor as the following linear layers, however, making these much smaller or larger did not have
favorable effects.

It is important to realize that the two linear layers that follow the feature extractor (Linear Layer 1
and 2) are not shared by the actor and critic networks and that they both have a different output layer.
The actor network has 5 output values, one for each of the possible actions, and the critic network gives
a single predicted value as output. The notation used in table 5.6 to indicate the size of each layer is
introduced below.

Linear Layer : To indicate the size of linear layers, the following notation is used: (hj,, hoyt)- Here
hi, indicates the number of input features and h,; represents the number of
output features.

CNN layer : The size of a convolutional layer of a CNN is indicated with the following notation:
(Rin, hout, 1, M). The variables n and m indicate the width and the height of the
kernel, respectively. Here n x m can be compared to the number of relations in a
R-GCN layer.

GCN layer : To indicate the size of a GCN layer, the following notation is used: (hi,, hout)-

R-GCN layer : The size of a R-GCN layer is indicated as follows: (hj,, hout, |R])- In this case, |R|
represents the number of relations.

GAN layer : A single GAN layer contains both linear layers for the attention mechanism and for
the feature transformation. In addition, a GAN layer can consist of multiple
attention heads. The size of a GAN layer is therefore indicated with the following
notation: K (hin, hout) + K(2hin, 1). Here, K represents the number of attention
heads.

Each of these layers also has a trainable bias vector of size |hqy|, which is also included in the total
number of trainable parameters.

Table 5.6: Number of trainable parameters per architecture, as well as the used readout function and the dimensions of the
individual layers. Max is used as abbreviation for max-pooling.

Feature extractor 1 Feature extractor 2 Readout Linearlayer 1 Linearlayer 2 Total parameters
MLP (1.519,465) (465,466) Flatten (466,128) (128,128) 1.075.810
CNNggat (31,77,3,3) (77,77,3,3) Flatten (3.773,128) (128,128) 1.074.166
GCNgat (31,82) (82,82) Flatten (4.018,128) (128,128) 1.071.318
R-GCNcnN-flat (31,77,9) (77,77,9) Flatten (3.773,128) (128,128) 1.074.166
R-GCNgomain-fiat (31,78,7) (78,78,7) Flatten (3.822,128) (128,128) 1.071.382
CNN,pax (31,114,3,3) (114,114,3,3) Max (114,128) (128,128) 211.462
R-GCNgomain-max (31,129,7) (129,129,7) Max (129,128) (128,128) 211.042
R-GCNcnn+domain-max ~ (31,103,11) (103,103,11) Max (103,128) (128,128) 211.676
R-GCNcnn+random-max ~ (31,103,11) (103,103,11) Max (103,128) (128,128) 211.676
R-GCNgaN-max (31,101,9) R-GCN: (101,101,9) Max (101*128) (128*128) 210.838

GAN: 3(101,101)+ 3(202,1)

48 5. Methodology

5.8. Used hardware

All of the experiments of this thesis are run on Google Colaboratory, which provides free access to a
range of GPUs. The exact type of GPU that is provided varies over time and this is unfortunately not
up to the user to decide. For all architectures being directly compared to each other, an effort has been
made to ensure as much as possible that, for the same seed, the architectures are tested on the same
GPU. Different seeds of the same experiment might however be run on different machines.

Experiments and results

In this section we present the experiments carried out to test the different architectures and report
and discuss the corresponding results. These experiments are designed to test specific elements
of the proposed architectures, such as the readout functions or the added domain-specific relations
in R-GCNyomain, for sample efficiency and in- and out-of-distribution generalization. All experiments
were conducted for 8 different seeds to account for randomness in our methods. Due to the lack of
computational resources we chose to not test on all possible environments for each experiment, both
with respect to the number of keys and the size of the environment. The details of which environments
were considered will be discussed per experiment.

All ’training curves’ presented in the results are produced in the same way as the generalization
curves. The agent is periodically evaluated with the same frequency as is used to evaluate generaliza-
tion performance, however, for the training curves it is evaluated on the actual training environment.
This resulted in more readable plots, which are more similar to the plots used to display generalization
performance and therefore more suitable for comparison.

6.1. Experiment 1: Effects of adding domain-specific relations

In this first experiment MLP, CNNgt, GCNyat, R-GCNenn-fiat and R-GCNyomain-fiat @re compared against
each other. In this case we apply flattening as readout function for all of the graph-based feature extrac-
tors and the CNN, indicated with the ’-flat’ subscripts. This experiment is conducted to first compare the
graph-based methods to CNN in a way that most closely resembles a traditional way of using a CNN.
The architectures are compared against each other on sample efficiency, in-distribution-generalization
and out-of-distribution generalization. Testing for out-of-distribution generalization to a different size
environment is not possible with these architectures - without adding extensive padding - due to the
flattening operation. This experiment is only conducted on the Key-Corridors-Small environment with
instances containing either 1 or 2 key(s) and for out-of-distribution generalization, we evaluate on in-
stances with 3 keys. In Experiment 3 we do train the best performing architectures on the other envi-
ronment and with a varying number of keys.

In this experiment we hope to confirm that CNNg,; outperforms MLP, as it has stronger relational
inductive biases that are known to work well for grid-shaped observations. We have also included
GCNgg4 in this experiment to validate whether the problem of indistinguishability, highlighted in figure
5.5 of section 5.4.3, is indeed an issue during training. Furthermore, we also expect to see that R-
GCNcnn-iat performs comparable to CNNy,t, indicating that we indeed succeeded in imitating CNNg 4
with a graph neural network. Lastly, we want to examine the effects of applying domain-specific re-
lations with R-GCNyomain-fiat- Here we aim to show that its strong relational inductive biases, that are
specifically tailored for the environment, enable this method to outperform the others.

Note that these results will not be directly comparable to those in the following experiments. Due to
the flattening operation as readout function in the architectures used in this experiment, a large linear
layer is required after the readout, which has a lot of parameters. To make these architectures com-
parable - in terms of the number of trainable parameters - to those that use other readout functions,
the number of parameters in the feature extractors used in this experiment would have to be drasti-

49

50 6. Experiments and results

cally reduced, or drastically increased in those architectures that do not use flattening as a readout.
Therefore, we decided to make this a separate experiment.

6.1.1. Sample efficiency
Figure 6.1 displays the training curves for all the different architectures trained on the Key-Corridors-
Small environment with instances containing 1 or 2 key(s).

Training on 1 and 2 key(s) in Key-Corridors-Small

200

175
< 150
I MLP
D 125 —— GCNpat
3 —-— CNNjat
o
2 100 —— R-GCNcww - flat
GC) —— R'GCNdomain—ﬂat
3 75 === Optimal
=

50

25

0
0 100000 200000 300000 400000 500000 600000 700000 800000

Total number of steps

Figure 6.1: Training curves of all architectures with flattening as readout, on Key-Corridors-Small environment with instances
containing both 1 and 2 key(s). All lines display the average over 8 different seeds and the shaded areas indicate the standard
deviations. The striped black line represents the mean episode length that is obtainable by an optimal policy.

There are several interesting observations to be drawn from figure 6.1. First, it is clearly visible from
the results that GCNg,; does not perform well. We argue that this is likely due to the problem of non-
distinguishable observations, which is described in figure 5.5 of section 5.4.3. The underlying problem
of having only one type of edge for which the weights are shared over the entire graph, makes it in gen-
eral much harder to encode the relative positions of nodes, whilst these relative positions are actually
very important for solving the Key-Corridors environments. Furthermore, CNNy_; slightly outperforms
MLP in terms of sample efficiency, although the difference is not significant. MLP also seems to be a
bit less stable around the optimal policy, which might indicate that it has difficulties learning a policy
that generalizes over all the different initializations of the Key-Corridors-Small environment. Figure 6.1
also reveals that we indeed seemed to have succeeded in imitating CNNg, with R-GCNcenn-fiat- This
is an important finding, as it shows that there is no benefit to the R-GCN-based architecture before
adding the domain-specific relations. The final, but perhaps most important observation, is the fact that
R-GCNyomain-fiat OUtperforms all other architectures. It has the best sample efficiency and also seems
to be more stable around the optimal policy than any of the other architectures.

6.1.2. In-distribution generalization

Figure 6.2 shows the result of testing for in-distribution generalization with all the different architectures.
On the left side of the figure, the training curve is displayed, where this time we only train of 70% of all
the possible instances of the Key-Corridors-Small environment with 1 and 2 key(s). On the right hand
side, the results are displayed for evaluation on the remaining 30% of instances, which were withheld
during training. There are two important insights that arise from these results. First, all methods perform
roughly equally well on the withheld instances as on the other 70% of instances that they were trained
on. Second, the training curves of training on 70% of the possible instances are also approximately
equal to those of training on all instances, displayed in figure 6.1. The first observation might be due to
the fact that with 70% of all initializations, we already train on so many different initializations that good
in-distribution generalization is required to reach an optimal policy. The second insight - training on

6.1. Experiment 1: Effects of adding domain-specific relations 51

70% of all instances leads to approximately the same training curves as training on all instances - led
to the decision to also use the results of training on 70% of the instances for the evaluation of sample
efficiency in some of the following experiments, instead of running separate experiments with 100% of
the possible instances for this.

Testing in-distribution generalization on Key-Corridors-Small with 1 and 2 key(s)

Training on 70% of possible instances Evaluation on the 30% withheld instances
200
175
150
<
5 MLP
Q2 125 —— GCNpat
§ —-—= CNNpa
£ 100 —— R-GCNcww - fiat
2 h— R'GCNdomam — flat
S 75 === Optimal
=
50
25
0 200000 400000 600000 800000 0 200000 400000 600000 800000

Total number of steps Total number of steps

Figure 6.2: Testing in-distribution generalization of all architectures with flattening as readout. The left-hand plot displays the
training curves, where the agents are trained on the Key-Corridors-Small environment which is initialized with both 1 and 2 key(s).
However, this time 30% of all possible initialization are withheld. The right-hand plot shows the evaluation of the agents on the
30% of instances that were withheld during training. All lines display the average over 8 different seeds and the shaded areas
indicate the standard deviations. The striped black line represents the mean episode length that is obtainable by an optimal
policy.

6.1.3. Out-of-distribution generalization

The results of testing out-of-distribution generalization performance of the different architectures are
displayed in figure 6.3. These results are obtained by periodically evaluating the agents on the Key-
Corridors-Small environment with 3 keys, during training on Key-Corridors-Small instances with either
1 or 2 key(s). The corresponding training curves are those shown in figure 6.1. In addition to the
evaluation curves of figure 6.3, table 6.1 lists the lowest mean episode length achieved by each of the
architectures during the periodic evaluation of their generalization performance.

Table 6.1: Lowest mean episode length achieved by each of the architectures during the periodical evaluation of their gener-
alization performance to Key-Corridors-Small instances with 3 keys. Al agents were trained on Key-Corridors-Small instances
with either 1 or 2 key(s). The mean values represent the average over the 8 seeded runs, each of which evaluated the agent for
30 episodes. The best results are shown in bold and the standard deviation is denoted by SD.

Trained on: Key-Corridors-Small with 1 or 2 key(s)
Evaluated on: Key-Corridors-Small with 3 keys
MLP 76.30 (SD: 28.0)

GCNgat 166.0 (SD: 0)

CNNp4t 40.65 (SD: 5.59)
R-GCNcnN-fiat 44.79 (SD: 7.75)

(
R-GCNgomain-fiat 20.75 (SD: 0.15)

52 6. Experiments and results

Out-of-distribution generalization to 3 keys in Key-Corridors-Small

200
175 MLP
—— GCNpat

< 150 —-= CNNpat
I —— R-GCNcwn - flat
% 125 R-GCNdomain - flat
° —=- Optimal
(]
7]
a 100
(0]
c
(]
o 75
=

50

25

0 100000 200000 300000 400000 500000 600000 700000 800000
Total number of steps

Figure 6.3: Out-of-distribution generalization to Key-Corridors-Small instances with 3 keys. The corresponding training curves
are displayed in figure 6.1, for which the agents are trained on Key-Corridors-Small instances with either 1 or 2 key(s). All
lines display the average over 8 different seeds and the shaded areas indicate the standard deviations. The striped black line
represents the mean episode length that is obtainable by an optimal policy.

The most important observation from figure 6.3, is the fact that R-GCNyomain-fiat has really good out-
of-distribution generalization performance. Without ever having seen any instance with 3 keys, it still
obtains an optimal policy. Next to this, it can also be seen that CNNg, and R-GCNcnn-iat @gain have
very similar performances, both showing reasonable out-of-distribution performance but ending up with
a policy that, on average, requires significantly more steps to solve the instances than R-GCNgygmain-fiat
does. MLP again seems to perform a bit worse than CNNj,: and R-GCNgyn-fiat- Lastly, GCNg,: does
not manage to solve any of the instances, which is not surprising as it also did not manage to learn a
good policy during training.

6.1.4. Conclusion

From this experiment it can be concluded that adding domain-specific relational inductive biases leads
to better sample efficiency during training and a better out-of-distribution generalization performance
to the same environment with an extra key. Moreover, the experiment shows that using a R-GCN
with the same type of relations as the CNN architecture does not cause these improvements. This
suggests that the improved performance of R-GCNgyomain-fiat OV€r CNNgy; is not just caused by the
use of R-GCN, but actually stems from the specific relations used by the R-GCNgyomain-fiat @rchitecture.
For in-distribution generalization, all methods perform equally well. The best performing GNN-based
method is R-GCNyomain-iast @nd CNNgt is the best performing baseline. Therefore, the performance of
these two architectures will be further explored in the following experiments.

6.2. Experiment 2: Comparing different readout functions 53

6.2. Experiment 2: Comparing different readout functions

Instead of using flattening as readout function, in this experiment the 4 other proposed readout functions
- average-pooling, sum-pooling, max-pooling and GAP - are applied and compared. These readout
functions are preferred over flattening, as they allow us to use the trained agents on variable size input
without having to add extensive padding. The readout functions are tested with the R-GCNgyomain ar-
chitecture, as it was concluded from experiment 1 that this is the best performing GNN-based method.
To determine which readout function works best, agents are trained on the Key-Corridors-Small envi-
ronment with 1 and 2 key(s) and are tested for sample efficiency, in-distribution generalization and out-
of-distribution generalization to both instances with an additional keys and the larger environment. In
the following figures, 'avg’, 'sum’ and 'max’ are used as abbreviation for average-pooling, sum-pooling
and max-pooling, respectively.

6.2.1. Sample efficiency

Figure 6.4 shows the training curves of R-GCNyomain With the 4 different readout functions. It is clear
that GAP and max-pooling are the better performing readout functions, with max-pooling being even
a bit more sample efficient than GAP. Furthermore, based on the standard deviations, max-pooling
also seems to be more consistent over the 8 runs with different seeds. Average- and sum-pooling both
perform much worse, although average-pooling eventually does seem to learn a better policy, at least
for some of the runs.

Training with different readout functions for R-GCNgomain

200 on Key-Corridors-Small with 1 and 2 key(s)

175
150
125 avg
—— sum
100 —— max
— GAP

75 === Optimal

Mean episode length

50

25

0 100000 200000 300000 400000 500000 600000
Total number of steps

Figure 6.4: Training curves of R-GCNgomain With 4 different readout functions, on the Key-Corridors-Small environment with both
1 and 2 key(s). All lines display the average over 8 different seeds and the shaded areas indicate the standard deviations. The
striped black line represents the mean episode length that is obtainable by an optimal policy.

6.2.2. In-distribution generalization

For in-distribution generalization performance, we only consider max-pooling and GAP, because the
other two pooling methods - average-pooling and sum-pooling - did not show good performance during
training and did not reach an optimal policy on the training environments. Figure 6.5 shows both the
results of training on 70% of the possible instances (left-hand plot) and the results of evaluating on the
30% of instances that were withheld during training (right-hand plot). For both readout functions, the
in-distribution generalization performance is roughly equal to the actual training performance and the
max-pooling readout function again slightly outperforms GAP.

54 6. Experiments and results

Testing in-distribution generalization of R-GCNgomain With different readout
functions on Key-Corridors-Small with 1 and 2 key(s)

Training on 70% of possible instances Evaluation on the 30% withheld instances

150
£ 125
c
o —— max
3 100 — GAP
_8 === Optimal
& 75
C
(]
]
= 50

N
[$)]

0 100000 200000 300000 400000 500000 600000 0 100000 200000 300000 400000 500000 600000
Total number of steps Total number of steps

Figure 6.5: Testing in-distribution generalization of R-GCNyomain With max-pooling (indicated with 'max’) and GAP as readout
functions. The plot on the left displays the training curves, where the agents are trained on 70% of all instances of Key-Corridors-
Small with both 1 and 2 key(s). The plot on the right shows the evaluation of the agents on the 30% of instances that were withheld
during training. All lines display the average over 8 different seeds and the shaded areas indicate the standard deviations. The
striped black line represents the mean episode length that is obtainable by an optimal policy.

6.2.3. Out-of-distribution generalization

As for in-distribution generalization, only max-pooling and GAP are considered for out-of-distribution
performance, as these readout functions performed well during training. The results for testing out-of-
distribution generalization performance of R-GCNgyomain With these two readout functions are displayed
in figure 6.6. These results are obtained by periodically evaluating the agents on the Key-Corridors-
Small environment with 3 keys and on the Key-Corridors-Big environment with 1 and 2 key(s), whilst
training on Key-Corridors-Small instances with 1 and 2 key(s). The corresponding training curves are
plotted in figure 6.4.

From from the left-hand plot in figure 6.6 it can be deduced that both architectures perform equally
well for out-of-distribution generalization to instances with 3 keys. Both reach an optimal policy on the
out-of-distribution instances with 3 keys and they do so after roughly the same amount of environment
steps that were required to learn an optimal policy for the actual training environments. Not surprisingly,
the difference in sample efficiency between the two architectures is also reflected in these results as
well.

As the readout functions allow for generalization to an environment of a different size than the train-
ing environment, out-of-distribution generalization performance to the Key-Corridors-Big environment
can now be tested as well. From the right-hand plot of figure 6.6, we see that neither of the readout
functions lead to an optimal policy in the larger environment and for both readout functions the out-
of-distribution generalization performance starts to drop again after more steps of training. The latter,
is most probably caused by overfitting on the training environment, which leads to worse generaliza-
tion performance to the larger environment. Although both readout function do not achieve optimal
performance in the Key-Corridors-Big environment, max-pooling does reach a significantly better per-
formance than GAP.

6.2. Experiment 2: Comparing different readout functions 55

Out-of-distribution generalization performance of R-GCNgomain
with different readout functions

Key-Corridors-Small with 3 keys Key-Corridors-Big with 1 and 2 key(s)

250

200
£
=)
C
K —— max

150 i
3 — GAP
_8 === Optimal
a
[9)
S 100
9]
=

50

0 100000 200000 300000 400000 500000 600000 0 100000 200000 300000 400000 500000 600000
Total number of steps Total number of steps

Figure 6.6: Testing out-of-distribution generalization of R-GCNgyomain With max-pooling (indicated with ‘max’) and GAP as readout
functions. The corresponding training curves are displayed in figure 6.4, for which the agents are trained on Key-Corridors-Small
instances with either 1 or 2 key(s). The left-hand plot of this figure displays out-of-distribution generalization performance on Key-
Corridors-Small instances with 3 keys, i.e., one key more than in the instances seen during training. The right-hand plot displays
out-of-distribution generalization to Key-Corridors-Big. All lines display the average over 8 different seeds and the shaded areas
indicate the standard deviations. The striped black line represents the mean episode length that is obtainable by an optimal
policy.

6.2.4. Improved explainability through readout functions

Both the GAP and max-pooling readout functions enable us to potentially improve the explainability of
the policies learned by our agents. This is because they can be used to reason about which part of
the observation was most important in the agent’s decision to take a certain action. As this subtopic
distracts from and is not directly relevant to this specific experiment and the posed research questions,
it is further elaborated in section 9.1 of the Appendix.

6.2.5. Conclusion

Taking all experiments of this section into account, max-pooling is, when combined with the R-GCNgyomain
architecture, the the best performing readout function on our environments. It obtains better sample
efficiency than any of the other tested readout functions and also shows better out-of-distribution gen-
eralization from Key-Corridors-Small to Key-Corridors-Big.

56 6. Experiments and results

6.3. Experiment 3: Elaborate testing of the best performing archi-

tectures with the best readout function

Based on the results of experiment 1 and 2, the following can be concluded: R-GCNyomain has the best
performance of all GNN-based methods, CNN is the better performing baseline architecture and from
the 4 readout functions, max-pooling performs best. In this experiment we will further compare the best
performing GNN-based architecture (R-GCNgyomain) @gainst the best performing baseline architecture
(CNN), both with max-pooling as readout function for comparability and to allow us to evaluate on
different size environments. To indicate the used readout function, we will refer to these architectures
with CNNax and R-GCNyomain-max- BOth architectures are compared on sample efficiency and in-
distribution generalization on both the Key-Corridors-Small and the Key-Corridors-Big environment.
This is done for 3 different cases: only training on instances with 1 key, training on instances with
either 1 or 2 key(s) and training on instances with 1, 2 or 3 key(s). Out-of-distribution generalization
is also tested for both Key-Corridors-Small and Key-Corridors-Big. To do so, agents are trained on
instances with 1 or 2 key(s) and generalization performance is tested on instances with 3 keys, as well
as generalizing from Key-Corridors-Small to Key-Corridors-Big and vice versa.

6.3.1. Sample efficiency

Since we found in experiment 1 and 2 that training on 70% of all instances gave approximately the
same results for sample efficiency as training on 100% of the instances, we now adopt the same
training curves used to test in-distribution generalization to test sample efficiency.

Figures 6.7a and 6.8a show the training curves of training on 70% of all instances for Key-Corridors-
Small and Key-Corridors-Big, respectively. For both Key-Corridors-Small and Key-Corridors-Big, train-
ing on instances with only 1 key results in approximately equal performance of the CNN,,x and R-
GCNyomain-max architectures. However, when more keys are added the performance of the two meth-
ods starts to diverge. When training on instances with either 1 or 2 key(s) and instances with 1, 2 and
3 key(s), R-GCNyomain-max has a better sample efficiency than CNN,5,, both on Key-Corridors-Small
and Key-Corridors-Big. This indicates that the added domain-specific relational inductive biases of R-
GCNyomain-max €nable the agent to solve the underlying problem of the Key-Corridors instances with
less samples than it needs when using the relational inductive biases of the CNN architecture.

6.3.2. In-distribution generalization

Figures 6.7b and 6.8b show the results of evaluating on the 30% of instances that were withheld dur-
ing training for Key-Corridors-Small and Key-Corridors-Big, respectively. We again conclude that in-
distribution generalization performance is consistently comparable to the actual training performance
for both architectures. For the Key-Corridors-Small there seems to be slightly worse performance of
CNNax on the withheld instances with 1 and 2 key(s) as well as on the instances with 1, 2 and 3 key(s).
However, based on the standard deviations, we argue that this is too little of a difference to draw any
conclusions from.

6.3. Experiment 3: Elaborate testing of the best performing architectures with the best readout
function 57

Training on 70% of all possible Key-Corridors-Small instances
1 key 1 and 2 key(s) 1, 2 and 3 key(s)

s

o

=

@

) —— CNNpax
s —— R-GCNdomain - max
53 —== Optimal
c

[

3}

=

0 100000 200000 300000 0 200000 400000 600000 0.00 025 050 075 1.00
Total number of steps Total number of steps Total number of steps 1e6
(a)
Testing in-distribution generalization on the 30% withheld instances of Key-Corridors-Small
1 key 1 and 2 key(s) 1, 2 and 3 key(s)

ES)

(o))

=

@

o) —— CNNpmax
o

2 —— R-GCNdomain - max
.% —=~ Optimal
c

©

(5]

=

0 100000 200000 300000 0 200000 400000 600000 0.00 025 050 075 1.00
Total number of steps Total number of steps Total number of steps 1e6
(b)

Figure 6.7: Testing in-distribution generalization of R-GCNgomain-max @nd CNN . on Key-Corridors-Small. The upper plots (6.7a)
display the training curves, where the agents are trained on 70% of all instances of Key-Corridors-Small with different amount
of keys. The lower plots (6.7b) show the evaluation of the agents on the 30% of instances that were withheld during training. All
lines display the average over 8 different seeds and the shaded areas indicate the standard deviations. The striped black line
represents the mean episode length that is obtainable by an optimal policy.

58 6. Experiments and results

Training on 70% of all possible Key-Corridors-Big instances
1 key 1 and 2 key(s) 1, 2 and 3 key(s)

ES

jo2}

c

Q@

2 —— CNNpax
S —— R-GCNaomain - max
'% ——- Optimal
c

©

o

=

0 200000 400000 600000 800000 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0
Total number of steps Total number of steps ~ 1e6 Total number of steps ~ 1e6
(a)
Testing in-distribution generalization on the 30% withheld instances of Key-Corridors-Big
1 key 1 and 2 key(s) 1, 2 and 3 key(s)

ES]

(o))

[=4

o

) —— CNNpmax
°

2 —— R-GCNdomain - max
g ——— Optimal
c

[

[}

=

0 200000 400000 600000 800000 0.0 0.5 1.0 1.5 0.0 0.5 1.0 15 2.0
Total number of steps Total number of steps ~ 1e6 Total number of steps ~ 1e6
(b)

Figure 6.8: Testing in-distribution generalization of R-GCNgomain-max @nd CNNax on Key-Corridors-Big. The upper plots (6.8a)
display the training curves, where the agents are trained on 70% of all instances of Key-Corridors-Big with different amount of
keys. The lower plots (6.8b) show the evaluation of the agents on the 30% of instances that were withheld during training. All
lines display the average over 8 different seeds and the shaded areas indicate the standard deviations. The striped black line
represents the mean episode length that is obtainable by an optimal policy.

6.3. Experiment 3: Elaborate testing of the best performing architectures with the best readout
function 59

6.3.3. Out-of-distribution generalization

Figures 6.9a and 6.10a show the results of training on 100% of the possible instances with 1 and 2
key(s) of the Key-Corridors-Small and Key-Corridors-Big environment, respectively. During this train-
ing process, both architectures are evaluated for out-of-distribution generalization to instances with 3
keys. In addition, when the architectures are trained on Key-Corridors-Small instances, they are also
evaluated for generalization to Key-Corridors-Big instances and vice versa for when the architectures
are trained on Key-Corridors-Big instances. These results are displayed in figures 6.9b and 6.10b.

The first conclusion that can be drawn from these results is that R-GCNgyomain-max has better out-of-
distribution generalization performance to 3 keys than CNN,,,, for both Key-Corridors-Small and Key-
Corridors-Big. The difference between the performance of the two architectures is more pronounced
on the Key-Corridors-Small environment than on the Key-Corridors-Big environment. On the Key-
Corridors-Big environment, R-GCNyomain-max pPerforms worse than it did for the smaller environment
and seems to be a bit more unstable around the optimal policy. CNN,.x actually performs better than it
did for the Key-Corridors-Small environment. This varying performance of the architectures on the two
environments can simply be caused by the actual differences between the two environments, however,
it can also be induced by the different hyperparameters that were used to train on the two environments.
For Key-Corridors-Big, we for instance train for more epochs on the same batch of collected data than
we do for the Key-Corridors-Small. This is done since we are also collecting a larger batch of data,
due to the larger trajectory length T. However, it might be that training for more epochs made the
performance of R-GCNyomain-max More unstable around the optimal policy or caused overfitting on the
training environment. On the contrary, CNN,.x seems to actually generalize better to 3 keys for the
combination of these hyperparameters and this environment. The hyperparameters had to be altered
between the two sizes of the environments in order to also achieve good results with KeyCorridorsBig.
Unfortunately, this makes it difficult to train with equal hyperparameters to test whether the different
environments or the different hyperparameters are the root cause of the performance discrepancy.

The second conclusion that can be drawn from figures 6.9b and 6.10b is that R-GCNyomain-max also
has significantly better out-of-distribution generalization from Key-Corridors-Small to Key-Corridors-Big
and vice versa, when compared to CNN,,.x. This might be because the underlying relational reasoning
between entities - which R-GCNyomain-max May be better at representing than CNN,,,o, - remains the
same between Key-Corridors-Small and Key-Corridors-Big, even though their size is different. Gener-
alizing from the larger to the smaller environment works better for both architectures than generalizing
from the Key-Corridors-Small to Key-Corridors-Big. R-GCNgygmain-max €ven almost reaches an optimal
policy when generalizing from Key-Corridors-Big to Key-Corridors-Small. As in experiment 2, gener-
alization performance to an environment of a different size begins to worsen again after more training
steps. We again reason that this is likely caused by overfitting on the training environment.

A final interesting observation is that training on 100% of the possible instances - instead of only
training on 70% as in figure 6.8a - seems to result in a slightly better and more stable policy when
training on Key-Corridors-Big.

Table 6.2 provides an overview of the lowest mean episode lengths achieved by the CNN,ox and
R-GCNyomain-max architectures throughout the periodical evaluation of their out-of-distribution gener-
alization performance. It is important to note that the previously discussed plots have shown us that
these are snapshots that can be highly dependent on the duration of training and can also deteriorate
again with more training.

Table 6.2: Overview of the lowest mean episode lengths achieved by the CNN,ox and R-GCNgomain-max architectures during the
periodical evaluation of their generalization performance. The reported mean values represent the average over 8 seeded runs,
which each evaluated the agent for 30 episodes. The best results are shown in bold and the standard deviation is denoted by
SD.

Trained on: Key-Corridors-Small Key-Corridors-Big
rained on. with 1 or 2 key(s) with 1 or 2 key(s)
Evaluated on- Key-Corridors-Small Key-Corridors-Big Key-Corridors-Big Key-Corridors-Small
valuated on- with 3 keys with 1 or 2 key(s) with 3 keys with 1 or 2 key(s)
CNNnax 53.0 (SD: 12.68) 206.05 (SD: 20.92) 42.93 (SD: 11.85) 75.86 (SD: 9.76)

R-GCNgomain-max 20.78 (SD: 0.17) 56.10 (SD: 16.37) 26.78 (SD: 1.61) 16.33 (SD: 3.0)

60 6. Experiments and results

Training on 1 and 2 key(s) in Key-Corridors-Small

175
150
s
2 125
Q
% —— CNNpax
8 100 — R'GCNdomaIn — max
o ——— Optimal
c 75
@©
5}
=
50
25
0 100000 200000 300000 400000 500000 600000 700000 800000
Total number of steps
(a)
Out-of-distribution generalization performance
Key-Corridors-Small with 3 keys Key-Corridors-Big with 1 and 2 key(s)
250
200
£
[®))
IS
o 150
°
2
5y
C
§ 100
=
— CNNmax
50 —— R-GCNgomain — max
=== Optimal
0 200000 400000 600000 800000 0 200000 400000 600000 800000
Total number of steps Total number of steps
(b)

Figure 6.9: Testing out-of-distribution generalization of R-GCNgomain-max @nd CNNax. The corresponding training curves are
displayed in figure 6.9a, for which the agents are trained on Key-Corridors-Small instances with either 1 or 2 key(s). The left-
hand plot of figure 6.9b displays out-of-distribution generalization performance on Key-Corridors-Small instances with 3 keys,
i.e., one key more than in the instances seen during training. The right-hand plot displays out-of-distribution generalization to
Key-Corridors-Big. All lines display the average over 8 different seeds and the shaded areas indicate the standard deviations.
The striped black line represents the mean episode length that is obtainable by an optimal policy.

6.3. Experiment 3: Elaborate testing of the best performing architectures with the best readout
function 61

Training on 1 and 2 key(s) in Key-Corridors-Big

300
250
=
)
5
é 200 —— CNNpax
8 — R'GCNdomaIn — max
S 150 === Optimal
c
®
o)
= 100
50
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Total number of steps 1e6
(a)
Out-of-distribution generalization performance
Key-Corridors-Big with 3 keys Key-Corridors-Small with 1 and 2 key(s)
300
250
£
g —— CNNpax
B 200 D R'GCNdomar’nfmax
B === Optimal
k2]
& 150
C
[
Q
= 100
50
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Total number of steps 1e6 Total number of steps 1e6
(b)

Figure 6.10: Testing out-of-distribution generalization of R-GCNggmain-max @hd CNNpax. The corresponding training curves are
displayed in figure 6.10a, for which the agents are trained on Key-Corridors-Big instances with either 1 or 2 key(s). The left-
hand plot of figure 6.10b displays out-of-distribution generalization performance on Key-Corridors-Big instances with 3 keys,
i.e., one key more than in the instances seen during training. The right-hand plot displays out-of-distribution generalization to
Key-Corridors-Small. All lines display the average over 8 different seeds and the shaded areas indicate the standard deviations.
The striped black line represents the mean episode length that is obtainable by an optimal policy.

62 6. Experiments and results

6.3.4. Additional out-of-distribution generalization experiment

An interesting feature of the Key-Corridors environments is that the instances with only 1 or 2 key(s)
do not necessarily require the agent to make use of the fact that a key of a certain color can only
open a door of the same color. For instances with only 1 key, the agent can hypothetically solve the
environment by picking up the first key behind the already unlocked door and then - instead of reasoning
about the color of the key and which door it can therefore open - determine behind which door the goal
is present and thus open this door. In the case of 2 keys, after picking up the first key, the agent can
first determine behind which door there is another key and then open this door to reach the last key,
from which the agent can apply the same trick to open the door behind which the goal lies. However,
for instances with 3 keys the agent does need to reason about the colors of keys and doors to obtain
an optimal policy. In this case, the agent encounters a situation where it is already carrying the first key
and the 3 remaining doors, behind which it can find 2 more keys and the goal, are still locked. Now
the agent has to decide which door, with a key behind it, it will try to open first. This time the agent can
not make this decision solely based on which door has a key behind it, as there are still two doors with
keys behind them. Therefore, the agent is forced to reason about the colors of the keys and doors.
See figure 6.11 for a visual example of this scenario.

Figure 6.11: Example scenario of a Key-Corridors-Big instance, where the agent is already carrying the green key and now has
to decide which door to open next. To make the correct decision the agent will have to reason about the colors of the doors and
keys.

This is an important aspect of the Key-Corridors environments, as it could mean that a policy that
works well for instances with 1 or 2 key(s) - without learning the color relation between keys and doors
- does not scale well to 3 keys. One could argue that the biases added in R-GCNgomain-max favor
reasoning about the colors of keys and doors over reasoning about which doors have a key or goal
behind them. This might explain, in part, why R-GCNgomain-max generalizes better to instances with 3
keys than CNN,,,zx does. To further explore this, an additional experiment is conducted on a modified
version of the Key-Corridors-Small environment. The general setup of this environment is exactly the
same as Key-Corridors-Small, however, now there is always a key present behind each door that does
not have the goal behind it, regardless of whether the agent needs to use 1, 2 or 3 key(s) to reach the
goal. Figures 6.12a, 6.12b and 6.12c each show an example instance of this adjusted environment,
requiring 1, 2 and 3 key(s) to reach the goal, respectively. For both the instances that require the use of
2 keys to reach the goal, and those that require 3 keys, the agent will have to reason about the colors
of the keys and doors and cannot possibly apply the previously discussed strategy that does not use
this information.

6.3. Experiment 3: Elaborate testing of the best performing architectures with the best readout
function 63

(a) Example instance requiring 1 key to (b) Example instance requiring 2 keys (c) Example instance requiring 3 keys
reach the goal. to reach the goal. to reach the goal.

Figure 6.12: Examples of the different type of instances of the adjusted Key-Corridors-Small environment, which either require
the use of 1, 2 or 3 key(s) to reach the goal.

If the agent is now again trained on a mix of instances that require 1 or 2 key(s) to reach the goal,
the agent will already encounter scenarios in which it is forced to use the colors of the keys and doors,
potentially making it easier to generalize to instances that require 3 keys to reach the goal. The left-
hand plot of figure 6.13 shows the results of training on instances requiring 1 or 2 key(s) to reach the
goal, and the right-hand plot shows the generalization performance to instances requiring 3 keys.

Performance on adjusted Key-Corridors-Small

Training on instances requiring 1 or 2 Evaluation on instances requiring
key(s) to reach the goal 3 keys to reach the goal
200
175
< 150
2
D 125 —— CNNpax
% — R‘GCNdomain —max
_2 100 === Optimal
o
[0
§ 7
g 5
=
50
25 e - =
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Total number of steps 1e6 Total number of steps 1e6

Figure 6.13: Testing out-of-distribution generalization of R-GCNgomain-max @nd CNNp,ax on the adjusted Key-Corridors-Small
environment. The training curve is displayed in the left plot, for which the agents are trained on the adjusted Key-Corridors-Small
instances which either require the agent to use 1 or 2 key(s) to reach a reward. The plot on the right displays the out-of-
distribution generalization performance on instances requiring the use of 3 keys to reach a reward. All lines display the average
over 8 different seeds and the shaded areas indicate the standard deviations. The striped black line represents the mean episode
length that is obtainable by an optimal policy.

Based on the left-hand plot of figure 6.13, it can be concluded that R-GCNgyomain-max Still has sig-
nificantly better sample efficiency than CNN,,,.«. The right-hand side plot of figure 6.13 shows that the
difference in out-of-distribution generalization performance - for generalization to instances which, com-
pared to the training instances, require an extra key to reach the goal - is now much smaller. However,
R-GCNgomain-max does still reach a lower mean episode length than CNN,,,ox and also has a much more
stable performance during generalization, almost consistently reaching an optimal policy. In table 6.3,
we again report the lowest mean episode lengths achieved by the CNN;,ox and R-GCNggmain-max archi-
tectures throughout the periodical evaluation of their out-of-distribution generalization performance.

The fact that the out-of-distribution generalization performance of these two methods is now more
similar could indicate that R-GCNygmain-max, iN the original Key-Corridors environment, indeed made

64 6. Experiments and results

better use of the relationship between keys and doors during training, than CNN,5x did. This can ac-
tually be seen as a feature of the R-GCNgyomain-max architecture, which is guided by the domain knowl-
edge to learn a policy that better represents the underlying problem of the environment - which is the
same for instances with 3 keys - and thus generalizes better. However, it is a satisfying result that
R-GCNyomain-max Still has better sample efficiency and out-of-distribution generalization performance
than CNN,,.x on the adjusted Key-Corridors-Small environment as it shows that, even in an environ-
ment where both architectures are forced to make use of the colors of doors and keys during training,
R-GCNgomain-max Still outperforms CNN,x-

Table 6.3: Lowest mean episode length achieved by the CNN,ax and R-GCNgomain-max architectures during the periodical eval-
uation of their generalization performance to the adjusted Key-Corridors-Small instances requiring 3 keys to obtain a reward.
Al agents were trained on the adjusted Key-Corridors-Small instances which either require 1 or 2 key(s) to reach the goal. The
mean values represent the average over 8 seeded runs, each of which evaluated the agent for 30 episodes. The best results
are shown in bold and the standard deviation is denoted by SD.

Trained on: Adjusted Key-Corridors-Small requiring 1 or 2 key(s) to obtain a reward
Evaluated on: Adjusted Key-Corridors-Small requiring 3 keys to obtain a reward
CNNax 24.60 (SD: 2.11)

R-GCNgomain-max 20.81 (SD: 0.20)

6.3.5. Conclusion
In general, when comparing R-GCNgomain-max @nd CNN,ox, it can be concluded from this experiment
that R-GCNgomain-max has better sample efficiency for instances with more than 1 key. Both methods
have comparable in-distribution generalization performance and R-GCNgygmain-max has a better out-of-
distribution generalization performance. All of these results hold for training on Key-Corridors-Small
and Key-Corridors-Big, however, R-GCNgomain-max outperforms CNN,.x more significantly in out-of-
distribution generalization to instances with 3 keys when trained and evaluated on Key-Corridors-Small.
The additional out-of-distribution generalization experiment, conducted in section 6.3.4, verifies that
even when both architectures are forced to use the colors of keys and doors during training - they might
in reality already do this in the original Key-Corridors environments - R-GCNgomain-max Still outperforms
CNNhax in sample efficiency and when evaluated for out-of-distribution generalization to an instance
that requires the use of an additional key to reach the goal.

6.4. Experiment 4: Are the domain-specific relations the real cause of improvement? 65

6.4. Experiment 4: Are the domain-specific relations the real cause

of improvement?

In this experiment the R-GCNcnN+domain @Nd R-GCNenn+random @rchitectures will be used to further
validate whether the specific relations of R-GCNyomain are the real cause of improvement over the
CNN architecture. First, the R-GCNcnn+domain @rchitecture will be used to check whether the ’can pick
up’ and 'can open’ relations of R-GCNyomain are the main cause of improvement, instead of the 4 other
relations based on the possible movements of the agent: left, right, up and down. To do so, the R-
GCNcnN+domain @rchitecture combines the 9 relations of R-GCN¢ny With the additional ‘can pick up’
and 'can open’ relations, as discussed in section 5.4.6. Secondly, the R-GCN¢cnN+random @rchitecture
- as introduced in section 5.4.7 - will be applied to check what happens when the relations of the R-
GCNcnn architecture are combined with arbitrary relations, instead of the domain-specific ones of R-
GCNyomain- With this architecture we aim to show that the 'can pick up’ and 'can open’ relations, based
on domain knowledge, outperform other random relations, thereby demonstrating the importance of
domain knowledge.

For both these architectures, max-pooling is again employed as readout function, therefore we will
refer to them as R-GCN¢cnN+domain-max @Nd R-GCNenN+random-max iN the following results and discussion.
Once again, both the Key-Corridors-Small and Key-Corridors-Big environments are considered for this
experiment. For both environments, agents are trained on instances with either 1 or 2 key(s) and
evaluated for generalization to instances with 3 keys, as well as generalization to the other environment
with 1 or 2 key(s) - the same number of keys as in the training instances. For this experiment we focus
on sample efficiency and out-of-distribution generalization, as there was no large difference in the in-
distribution generalization performance of the different architectures tested in the previous experiments.

6.4.1. Sample efficiency

Figures 6.14a and 6.15a feature the results for training on 100% of the possible instances with either
1 or 2 key(s) of Key-Corridors-Small and Key-Corridors-Big, respectively. These results will be used
to evaluate the sample efficiency of the R-GCNcnN+domain-max @Nd R-GCNcnN+random-max @rchitectures.
Two important insights can be drawn from these results, which count for both Key-Corridors-Small
and Key-Corridors-Big: first, R-GCNcnN+domain-max @S approximately the same sample efficiency as
R-GCNgomain-max,» and second, R-GCNcnn+random-max has a very similar sample efficiency to that of
CNNpax- The first insights tells us that the ‘can pick up’ and ‘can open’ relations of R-GCN yomain-max
are indeed the driving factor for its good performance, as adding these relations to the relations of R-
GCNcnn-max Yields almost identical results as those obtained with R-GCNyomain-max- From the second
insight, it can be concluded that using the ’can pick up’ and 'can open’ relations based on domain
knowledge, leads to a better performance than using the random relations of R-GCNcnN-+random-max-
This is a satisfactory result, as it indicates that there is indeed a need for domain-knowledge to improve
sample efficiency.

6.4.2. Out-of-distribution generalization

During the training process discussed in section 6.4.1, the different architectures are periodically eval-
uated for out-of-distribution generalization to instances with 3 keys. When trained on Key-Corridors-
Small instances, the architectures are also evaluated for generalization to Key-Corridors-Big instances
and vice versa for the architectures trained on Key-Corridors-Big instances. Figure 6.14b shows the
generalization results for the architectures that were trained on Key-Corridors-Small and figure 6.14b
shows the results for architectures trained on Key-Corridors-Big.

For generalization to instances with 3 keys, both on Key-Corridors-Small and Key-Corridors-Big, it
can be concluded that R-GCNcnN+domain-max has comparable performance to that of R-GCNyomain-max-
Itis, however, a bit less stable than R-GCNygmain-max @around the optimal policy for Key-Corridors-Small.
The R-GCNcnN+random-max architecture also performs more or less similar to CNN,,o, just as it did during
training. This is inline with expectation, as it shows that the additional relations of R-GCNcnN+random-maxs
which are not based on domain knowledge but arbitrary, do not help with generalization to instances
with 3 keys.

From the right-hand plots of figures 6.14b and 6.15b, it can be concluded that generalizing from Key-
Corridors-Small to Key-Corridors-Big and vice versa, works slightly less well for R-GCNcnN+domain-max
than it does for R-GCNgygmain-max- 1his could be because the CNN-like relations of R-GCN cnN+domain-max

66 6. Experiments and results

do not generalize as well as the ’left’, 'right’, 'up’ and 'down’ relations of R-GCNygmain-max- HOwever, it
may also be an effect of the fact that R-GCNcnN+domain-max €Ncodes 11 relations, compared to the 7 of
R-GCNyomain-max @nd therefore has fewer features (trainable parameters) per relation.

A final insight can be drawn from the right-hand plot of figure 6.14b. Here we see that for R-
GCNcNN+random-max. generalization from Key-Corridors-Small to Key-Corridors-Big actually works slightly
better than it did for CNN,.x, however, this is only marginally and both methods do not get anywhere
near to the optimal policy. Furthermore, this improvement is not observed for generalization from Key-
Corridors-Big to Key-Corridors-Small, as displayed in the right-hand plot of figure 6.15b.

To conclude the results, table 6.4 provides an overview of the best obtained out-of-distribution gener-
alization performances of the compared architectures. It does so by reporting the lowest mean episode
length achieved by each of the architectures during the periodical evaluation of their generalization per-
formance.

Table 6.4: Overview of the lowest mean episode lengths achieved by each of the architectures during the periodical evaluation of
their generalization performance. The reported mean values represent the average over 8 seeded runs, which each evaluated
the agent for 30 episodes. The best results are shown in bold and the standard deviation is denoted by SD.

Trained on: Key-Corridors-Small Key-Corridors-Big
rained on. with 1 or 2 key(s) with 1 or 2 key(s)
Evaluated on: Key-Corridors-Small Key-Corridors-Big Key-Corridors-Big Key-Corridors-Small
valuated on. with 3 keys with 1 or 2 key(s) with 3 keys with 1 or 2 key(s)
CNNpax 53.0 (SD: 12.68) 206.05 (SD: 20.92) 42.93 (SD: 11.85) 75.86 (SD: 9.76)
R-GCNgomain-max 20.78 (SD: 0.17) 56.10 (SD: 16.37) 26.78 (SD: 1.61) 16.33 (SD: 3.0)

R-GCNgnnsdomainmax 21.35 (SD: 0.73) 91.60 (SD: 20.41) 27.36 (SD: 1.78) 31.42 (SD: 7.41)
R-GCNgnNsrandom-max 59.46 (SD: 17.12) 169.45 (SD: 34.95) 51.93 (SD: 16.78) 78.33 (SD: 13.85)

6.4.3. Conclusion

From this experiment, two important conclusions can be drawn. The first finding is that the 'can pick
up’ and 'can open’ relations of R-GCNyomain-max are the main cause for improvement over the CNN 54
architecture. Adding these relations to R-GCNcnn-max - Which imitates the CNN,,5, architecture - yields
a performance that is close to that of R-GCNyomain-max-

The second conclusion is that we cannot simply add some arbitrary, longer distance relations -
which are not based on domain knowledge - to our CNN architecture to increase its performance,
as tested with R-GCN¢cnn+random-max- 1his architecture has exactly the same number of relations and
edges per relation as R-GCN¢nN+domain-max Ut performs much worse, in fact almost exactly the same
as R-GCNc¢nn-max» Which does not have any additional relations.

6.4. Experiment 4: Are the domain-specific relations the real cause of improvement? 67

Training on 1 and 2 key(s) in Key-Corridors-Small

175
150
s
g 125 —— CNN,pax
é —— R-GCNgomain - max
8 100 - R'GCNCNN+domain—max
8 R-GCNcww + random — max
S 75 === Optimal
[0}
=
50
25
0 100000 200000 300000 400000 500000 600000 700000 800000
Total number of steps
(a)
Out-of-distribution generalization performance
Key-Corridors-Small with 3 keys Key-Corridors-Big with 1 and 2 key(s)
250
200
<
2
Q@
o 150
°
2
[oN
(0]
§ 100
(]
= CNN o
h— R'GCNdomain—max
50 —-= R-GCNcwn + domain — max
R'GCNCNN + random — max
=== Optimal
0 200000 400000 600000 800000 0 200000 400000 600000 800000
Total number of steps Total number of steps
(b)

Figure 6.14: Testing sample efficiency and out-of-distribution generalization of R-GCNgcnN+domain-max @nd R-GCNcNN+random-max -
The results of R-GCNgomain-max @and CNNp.x are added in the same figure for comparison. Figure 6.14a shows the training
curves of training the agents on Key-Corridors-Small instances with either 1 or 2 key(s). The left-hand plot of figure 6.14b
displays out-of-distribution generalization performance on Key-Corridors-Small instances with 3 keys, i.e., one key more than
in the instances seen during training. The right-hand plot displays out-of-distribution generalization to Key-Corridors-Big. All
lines display the average over 8 different seeds and the shaded areas indicate the standard deviations. The striped black line
represents the mean episode length that is obtainable by an optimal policy.

68 6. Experiments and results

Training on 1 and 2 key(s) in Key-Corridors-Big

300
< 250
g — CN Nmax
g 200 —— R-GCNomain - max
8 —-= R-GCNcwn + domain — max
8 150 R'GCNCNN + random — max
s ——-— Optimal
(0]
= 100
50
= _——————
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Total number of steps 1e6
(a)
Out-of-distribution generalization performance
Key-Corridors-Big with 3 keys Key-Corridors-Small with 1 and 2 key(s)
300
CNNpmax
250 R-GCNgomain — max
£ R'GCNCNN + domain — max
8’ R'GCNCNN + random — max
2 200 Optimal
(0]
°
2
& 150
C
®
(] \
= 100 N =
. v\ /
50 : \Y :

0.00 0.25 050 0.75 1.00 1.25 1.50 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Total number of steps 1e6 Total number of steps 1e6

(b)

Figure 6.15: Testing sample efficiency and out-of-distribution generalization of R-GCNcnN+domain-max @Nd R-GCNcNN+random-max
by training on Key-Corridors-Big instances. The results of R-GCNgomain-max @nd CNNp.x are added in the same figure for
comparison. Figure 6.15a shows the training curves of training the agents on Key-Corridors-Big instances with either 1 or 2 key(s).
The left-hand plot of figure 6.15b displays out-of-distribution generalization performance on Key-Corridors-Big instances with 3
keys, i.e., one key more than in the instances seen during training. The right-hand plot displays out-of-distribution generalization
to Key-Corridors-Small. Alllines display the average over 8 different seeds and the shaded areas indicate the standard deviations.
The striped black line represents the mean episode length that is obtainable by an optimal policy.

6.5. Experiment 5: Can useful domain-specific relations be learned with R-GCNgan? 69

6.5. Experiment 5: Can useful domain-specific relations be learned
with R'GCNGAN?

In this experiment the proposed R-GCNgan architecture, introduced in section 5.4.8, is tested against
R-GCNyomain-max @nd CNN,.x. As max-pooling will also be used as readout function for R-GCNgan,
we will refer to this architecture as R-GCNgan-max in the following sections. The goal is to test whether
this architecture is able to learn useful relations with the attention mechanism of the GAN, on top of the
relations of a CNN with a 3 x 3 kernel size, which are in this case encoded by a R-GCN. This would
theoretically allow R-GCNgan-max t0 learn similar kind of relations between keys, doors and the agent,
as the ones that are encoded in the R-GCNyomain-max architecture. If it succeeds in doing so, we expect
to also see improved sample efficiency and out-of-distribution generalization performance compared
to CNNpax, @s was the case for R-GCNgyomain-max iN the previous experiments.

To test whether R-GCNgan-max IS @ble to learn useful relations, it is trained on the Key-Corridors-
Small environment with 1 and 2 key(s), as well as the they Key-Corridors-Big environment with 1 and
2 key(s). Sample efficiency, in-distribution generalization and out-of-distribution generalization are
tested. For out-of-distribution generalization, both generalizing to 3 keys and from Key-Corridors-Small
to Key-Corridors-Big, and vice versa, are considered.

6.5.1. Sample Efficiency

In this experiment, the sample efficiency can be evaluated based on both the training curves of training
on 70%, and training on 100% of all possible instances of the Key-Corridors-Small and Key-Corridors-
Big environments with 1 and 2 key(s). The left-hand side plots of figures 6.16 and 6.17 show the training
curves for training on 70% of all possible instances of Key-Corridors-Small and Key-Corridors-Big,
respectively. Figures 6.18a and 6.19a show the results of training on 100% of the possible instances
for Key-Corridors-Small and Key-Corridors-Big, respectively.

The performance of R-GCNgomain-max @Nd CNN,,ox are added to all of these plots for comparison.
On both Key-Corridors-Small and Key-Corridors-Big we have to conclude that R-GCNgan-max does not
outperform CNN,,.x, and performs significantly worse when compared to R-GCNyomain-max- 1 his indi-
cates that - at least for sample efficiency - the attention mechanism of R-GCNgan-max did not succeed
in learning useful relations.

6.5.2. In-distribution generalization

To test for in-distribution generalization performance, the agents trained on 70% of all instances of
the Key-Corridors-Small and Key-Corridors-Big environments with 1 and 2 key(s), are evaluated on
the remaining 30% of instances. These results are displayed in the right-hand side plots of figures
6.16 and 6.17, for Key-Corridors-Small and Key-Corridors-Big, respectively. Like all other methods in
the previous experiments, R-GCNgan-max displays perfect in-distribution generalization performance.
This is not completely surprising, as this was also the case for CNN,,,ox and we do not expect a worse
performance by adding extra relations through the attention mechanism of R-GCNgan-max-

70 6. Experiments and results

Testing in-distribution generalization on Key-Corridors-Small with 1 and 2 key(s)

Training on 70% of possible instances Evaluation on the 30% withheld instances
175 b
\
150
<
5 125
C
o —— CNNpax
% 100 h— R‘GCNduma/’n —max
g R‘GCNGAN— max
2 75 === Optimal
©
]
=
50
25
———————————————— \-— —————
0 200000 400000 600000 800000 0 200000 400000 600000 800000

Total number of steps Total number of steps

Figure 6.16: Testing in-distribution generalization of R-GCNgan-max- The left-hand plot displays the training curves, where the
agents are trained on 70% of all instances of Key-Corridors-Small with both 1 and 2 key(s). The right-hand plot shows the
evaluation of the agents on the 30% of instances that were withheld during training. All lines display the average over 8 different
seeds and the shaded areas indicate the standard deviations. The striped black line represents the mean episode length that is
obtainable by an optimal policy.

Testing in-distribution generalization on Key-Corridors-Big with 1 and 2 key(s)

Training on 70% of possible instances Evaluation on the 30% withheld instances

300

250
e
S)
c
@ 200 —— CNNpax
% — R'GCNdoma/’nfmax
] 150 R-GCNgan - max
o === Optimal
C
[\
(]
= 100

50

____________________ ——
0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Total number of steps 1e6 Total number of steps 1e6

Figure 6.17: Testing in-distribution generalization of R-GCNgan-max- The left-hand plot displays the training curves, where the
agents are trained on 70% of all instances of Key-Corridors-Big with both 1 and 2 key(s). The right-hand plot shows the evaluation
of the agents on the 30% of instances that were withheld during training. All lines display the average over 8 different seeds and
the shaded areas indicate the standard deviations. The striped black line represents the mean episode length that is obtainable
by an optimal policy.

6.5. Experiment 5: Can useful domain-specific relations be learned with R-GCNgan? 71

6.5.3. Out-of-distribution generalization

The setup for testing out-of-distribution generalization performance is the same as the one used in
experiment 3. Figures 6.18a and 6.19a show the results of training on 100% of the possible instances
with 1 and 2 key(s) of the Key-Corridors-Small and Key-Corridors-Big environment, respectively. During
training, the agent is periodically evaluated for out-of-distribution generalization to instances with 3 keys.
When trained on Key-Corridors-Small instances, the agent is also evaluated for generalization to Key-
Corridors-Big instances and vice versa for when the agent is trained on Key-Corridors-Big instances.
These results are displayed in figures 6.18b and 6.19b. The results for of R-GCNgyomain-max @Nd CNNax
are again added in the same plots for comparison.

From the left plot of figure 6.18b, it can be observed that, on average, R-GCNgan.max S€ems to
have slightly better performance than CNN,,.x on the out-of-distribution instances of Key-Corridors-
Small with 3 keys. However, the standard deviations of R-GCNgan-max @nd CNN,,., overlap too much
to qualify this as a significant difference. Furthermore, when compared to R-GCNgyomain-max. the perfor-
mance of R-GCNgan-max IS much worse. The right-hand side plot of 6.18b, displaying evaluation perfor-
mance on the out-of-distribution instances of Key-Corridors-Big, show that R-GCNgan.max does reach
a significantly better performance than CNN,.x, but still performs much worse than R-GCNyomain-max-
This does, however, indicate that R-GCNgan.max S€€MS to learn some relations with its attention mech-
anism, which have a positive influence on its generalization capabilities to the larger environment.

In figure 6.19b, which displays the out-of-distribution generalization performance of the agents
trained on Key-Corridors-Big instances with either 1 or 2 key(s), the performance of R-GCNgan-max
is unfortunately even less impressive. For generalization to Key-Corridors-Big instances with 3 keys -
displayed in the right-hand side plot - R-GCNgan.max Performs roughly equal to CNN,,ox. For out-of-
distribution generalization to Key-Corridors-Small, R-GCNgan-max @gain seems to outperform CNN 4y,
as was the case with generalization from Key-Corridors-Small to Key-Corridors-Big. However, this time
it only performs slightly better on average and there is a lot of overlap between the standard deviations,
indicating that for some seeds it might even perform worse.

Table 6.5 provides an overview of the lowest mean episode lengths achieved by each of the archi-
tectures during the periodical evaluation of their out-of-distribution generalization performance.

Table 6.5: Overview of the lowest mean episode lengths achieved by the R-GCNgan.max architecture during the periodical
evaluation of its generalization performance. The results for the CNNp.x and R-GCNgomain-max architectures are included for
comparison. The reported mean values represent the average over 8 seeded runs, which each evaluated the agent for 30
episodes. The best results are shown in bold and the standard deviation is denoted by SD.

Trained on- Key-Corridors-Small Key-Corridors-Big
rained on: with 1 or 2 key(s) with 1 or 2 key(s)
Evaluated on- Key-Corridors-Small Key-Corridors-Big Key-Corridors-Big Key-Corridors-Small
aluated on: with 3 keys with 1 or 2 key(s) with 3 keys with 1 or 2 key(s)
CNN,ax 53.0 (SD: 12.68) 206.05 (SD: 20.92) 42.93 (SD: 11.85) 75.86 (SD: 9.76)
R-GCNgomain-max 20.78 (SD: 0.17) 56.10 (SD: 16.37) 26.78 (SD: 1.61) 16.33 (SD: 3.0)
R-GCNgaN-max 42.08 (SD: 7.16) 139.23 (SD: 24.32) 42.14 (SD: 8.18) 65.76 (SD: 16.14)

6.5.4. Conclusion

It has to be concluded that the attention mechanism of R-GCNgan-max did not succeed in learning
useful extra relational inductive biases, when compared to CNN,,5«. In terms of sample efficiency and
in-distribution generalization, R-GCNgan-max has very similar performance to that of CNN,,. For out-
of-distribution generalization there are a few cases where R-GCNgan.max does seem to perform slightly
better than CNN,,,.x, however, this is not significant, nor comparable to the performance of the relational
inductive biases imposed by R-GCNyomain-max-

72 6. Experiments and results

Training on 1 and 2 key(s) in Key-Corridors-Small

175 B
150
=
2 125
Q —— CNNpax
)
-8 100 — R-GCNgomain - max
2 R-GCNgan - max
qc) 75 ——- Optimal
®
o)
=
50
25
0 100000 200000 300000 400000 500000 600000 700000 800000
Total number of steps
(a)
Out-of-distribution generalization performance
Key-Corridors-Small with 3 keys Key-Corridors-Big with 1 and 2 key(s)
250
200
£
[®))
IS
o 150
°
2
5y
C
§ 100
=
— CNNmaX
— R'GCNdomain —max
50 R-GCNGa - max
=== Optimal
0 200000 400000 600000 800000 0 200000 400000 600000 800000

Total number of steps Total number of steps

(b)

Figure 6.18: Testing out-of-distribution generalization of R-GCNgan-max, compared to CNNax and R-GCNgomain-max- The cor-
responding training curves are displayed in figure 6.18a, for which the agents are trained on Key-Corridors-Small instances
with either 1 or 2 key(s). The left-hand plot of figure 6.18b displays out-of-distribution generalization performance on Key-
Corridors-Small instances with 3 keys, i.e., one key more than in the instances seen during training. The right-hand plot displays
out-of-distribution generalization to Key-Corridors-Big. All lines display the average over 8 different seeds and the shaded areas
indicate the standard deviations. The striped black line represents the mean episode length that is obtainable by an optimal
policy.

6.5. Experiment 5: Can useful domain-specific relations be learned with R-GCNgan?

73

Training on 1 and 2 key(s) in Key-Corridors-Big

—— R-GCNdomain — max
R‘GCNGAN— max

300
250
=
o))
[
2 200 — CNNmax
'8 —— R-GCNgomain — max
() -
‘2 150 R-GCNgan - max
o --—- Optimal
[
3
= 100
50
—an —— ——
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14
Total number of steps 1e6
(a)
Out-of-distribution generalization performance
Key-Corridors-Big with 3 keys Key-Corridors-Small with 1 and 2 key(s)
300
250
_% - CNNmaX
C
2 200
(0]
8
@ AN --- Optimal
2 150 7
C
[
Q
= 100
50
S I N O D O O e ot ot i s i
0.00 0.25 0.50 0.75 1.00 1.25 1.50 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Total number of steps 1e6 Total number of steps 1e6
(b)

Figure 6.19: Testing out-of-distribution generalization of R-GCNgan-max, compared to CNNax and R-GCNgomain-max- The corre-
sponding training curves are displayed in figure 6.19a, for which the agents are trained on Key-Corridors-Big instances with either
1 or 2 key(s). The left-hand plot of figure 6.19b displays out-of-distribution generalization performance on Key-Corridors-Big in-
stances with 3 keys, i.e., one key more than in the instances seen during training. The right-hand plot displays out-of-distribution
generalization to Key-Corridors-Small. All lines display the average over 8 different seeds and the shaded areas indicate the

standard deviations. The striped black line represents the mean episode length that is obtainable by an optimal policy.

Discussion and future work

This chapter provides a more general discussion of the previously reported results. Furthermore, some
of the methods and experimental setups applied in this thesis are evaluated, limitations are pointed out
and implications for possible future work are discussed.

7.1. Implications of results

The aim of this thesis was to investigate whether the general performance of a RL-agent and its capacity
to generalize can be improved by incorporating relational reasoning into DRL through the use of GNNs.
To this end, observations of a navigation task were encoded as graphs and GNNs, forming part of the
actor and critic network of the agent, were applied to these structured, relational representations of the
observations.

More specifically, we first investigated whether the combination of GNNs and domain knowledge -
used for the relational graph encodings - can be used to improve sample efficiency and generalization
performance, aiming to answer research questions 1 and 2, respectively. The main method used to
answer these research questions is the R-GCNyomain architecture. In search of an answer to research
question 3, we proposed the R-GCNgan architecture to investigate whether the relational inductive
biases of a CNN can be combined with learned domain-specific relational inductive biases and GNNs
to improve sample efficiency and generalization performance in an end-to-end fashion.

In this section, the main findings obtained and presented in the previous sections are discussed
with regards to the research objectives and are placed in a broader perspective. To do so, we will sep-
arately look at the results of our two main methods: the R-GCNgyomain architecture and the R-GCNgan
architecture.

7.1.1. Results obtained with R-GCN 4o main

For experiments 1, 2, 3 and 4 the use of R-GCNyomain @s network architecture of the RL-agent improves
both sample efficiency and generalization performance, when compared to traditional architectures
with MLPs and CNNs. This is in line with the expectations raised by the discussed related work on the
combination of GNNs and RL in section 4. In this case, however, it is explored for a novel navigation
task requiring relational reasoning and for the specific use of R-GCNs in combination with domain
knowledge. These results provide several new insights in the use of R-GCNs and domain knowledge
in RL.

First of all, they show that R-GCNs can form a valuable tool for encoding domain knowledge into
existing RL algorithms such as PPO, by applying domain-specific relational inductive biases in the
network architecture of the agent.

Furthermore, the results indicate that domain-specific relational inductive biases - other than the
generic ones of a CNN or MLP - can improve an agent’'s sample efficiency and generalization perfor-
mance. This is likely due to the inductive biases that force the architecture to place more emphasis
on elements and relationships that we know - from domain knowledge - are important to the under-
lying problem of the environment. If the underlying problem is the same in the new environments to

74

7.1. Implications of results 75

which the agent must generalize, the same biases are probably still useful to the agent in these new
environments.

Finally, the results of experiment 4 demonstrate that adding the 'can pick up’ and ‘can open’ relations
to those of R-GCN¢pny - an imitation of a CNN with a kernel size of 3 x 3 - results in a comparable
performance to that of R-GCNgyomain- This tells us that, the ’can pick up’ and ’can open’ relations are
the drivers behind the improved performance of R-GCNyomain 0ver the CNN architecture. Perhaps more
importantly, experiment 4 also shows that adding random relations - not based on domain knowledge -
does not yield this improved performance, suggesting that there is indeed a need to base these relations
on domain knowledge.

These results further strengthen our confidence in the use of GNNs to induce relational inductive
biases that improve the sample efficiency and generalization of RL-agents. This extents the work
of Zambaldi et al. (2018) by applying domain-specific relational inductive biases, based on domain
knowledge, with a R-GCN. In addition, our results also confirm the findings reported in the recently
published work of Z. Jiang et al. (2021) and provide further insights into the use of different readout
functions and which type of relations - including random ones - result in increased performance over
baseline architectures.

The improved performance of R-GCNy,main OvVer the baseline architectures is significant, however,
it is based on the assumed presence of domain knowledge and the possibility to split-up observations
into separate entities. Even though these are both strong assumptions, there are multiple scenarios
where this could realistically be applied. First of all, the concept behind the R-GCNgyomain architecture
can be applied to abstract problem domains, where observations are easily encoded as graphs and
domain knowledge is at hand. Examples could be RL problems on power- or traffic-networks, social
networks or financial transactions, in which, clearly defined entities and relations are often inherently
present in the data used to form the agent’s observations. Another option would be to create an end-
to-end setup for visual tasks, where some form of object detection is used to first define entities in the
visual input. The detected objects can then define the entities in the graph encoding of the observation
and these entities could be combined with a database defining relations between objects. Next to the
relations from the database, which might be sparsely present, more generic relations - like those of
a CNN - could still be added as well, comparable to the R-GCNcnn+domain @rchitecture of this thesis.
Alternatively, a CNN and a R-GCN could be trained in parallel, where the CNN operates on the raw
input data and the R-GCN on the extracted objects, combined with relations. This last option has some
resemblance to the proposed architecture by Lu et al. (2021), who apply the combination of GNNs and
RL on a real-world navigation task.

7.1.2. Results obtained with R-GCNgay

The R-GCNgan architecture was explored as an alternative to R-GCNyomain that does not require do-
main knowledge. However, the R-GCNgpp architecture performed significantly worse than R-GCNgyomain
both in terms of sample efficiency and generalization, and only slightly outperformed CNN in some
cases of out-of-distribution generalization. Multiple variations were tested, where we varied the num-
ber of attention heads, the negative slope angle a, g,y of the LeakyReLU and also explored the option
of concatenating the outputs of the attention heads instead of summing them together. However, none
of this improved the performance of R-GCNgan-

One of the problems with the R-GCNgan architecture might be that a GAN, from the perspective of
a single node in a fully connected graph, computes attention coefficients for all other nodes and then
takes a softmax over these coefficients. The GAN architecture therefore inherently assumes that each
relation is present for all of the nodes in the graph. In the R-GCNyomain architecture, however, some of
the the relations - 'can pick up’ and 'can open’ - are actually sparse and are only present between a few
nodes. In an attempt to solve this problem, self-loops were added for all nodes, enabling each head of
the GAN to let nodes attend to themselves as well. However, this still does not allow for learning sparse
relations that are, for instance, only present between a key and a door. The network would have to
apply the same weights to self-loop edges, as it applies to the edges that do actually encode a relation
between keys and doors.

Another issue could be the fact that the CNN architecture - duplicated in the R-GCNgay architecture
by the R-GCN - already enables the agent to solve the environments that it is being trained on, as was
concluded from experiment 1 and 3. This could result in R-GCNgan learning to simply ignore the
additional relations learned by the GAN, by making their weights very small.

76 7. Discussion and future work

A final cause for the unsatisfactory results of the R-GCNgan architecture could be a failure of the
first R-GCN layer to encode sufficient positional information into the node features. This would make
it difficult for the GAN - which is operating on a fully connected graph - to distinguish between distinct
observations where the same nodes occupy different positions in the grid world.

Additions or adjustments to this architecture remain an interesting topic to explore further, as Zam-
baldi et al. (2018) have shown that GANs alone are capable of learning useful relations for another,
comparable RL problem. As mentioned earlier, Zambaldi et al. (2018) do include positional information
in the node features, which remains a difference to our setup. Our results might also indicate that the
performance of GAN, on these type of tasks, is highly dependent on the specific setup and parameter
turning, however, making any statements about this would require further research.

7.2. Limitations

In this sections, some limitations of both the used methods and the experimental setup of this thesis
are pointed out and discussed.

7.2.1. Strong assumptions for R-GCNy,n.in

One of the biggest limitations of the R-GCNyomain architecture - the architecture with the best overall
performance - remains its use of domain knowledge and the assumption that observations can be
defined as separate entities with relations between them. As this limitation has already been mentioned
and explained in previous sections, it will not be discussed in detail here, however, it is important to
mention again that these assumptions limit the applicability of this method in its current form.

7.2.2. Setup for testing in-distribution generalization

For all experiments where in-distribution generalization was tested - experiments 1, 2, 3 and 5 - it was
hard to detect differences in the performance of the various architectures. All architectures seemed
to perform equally well on the withheld instances, as they did on the actual training instances. We
therefore have to assume that the setup used for testing in-distribution was not ideal. The initial decision
to train and test on many different initialization of the same Key-Corridors environment was made
to ensure that our methods were tested on a variety of initializations and were not merely working -
or failing - for certain specific initializations used during training or evaluation. However, training on
so many different instances works as a form of domain randomization, which is known to improve
generalization, as for instance discussed by Tobin et al. (2017). This domain randomization might
have caused the good in-distribution generalization performance of all architectures.

7.2.3. Used environments

The Key-Corridors environments used to test the architectures presented in this thesis only provide a
limited validation of our methods. The environments serve well as an initial test case, however, more
varied environments should be explored to further validate our methods. More specifically, a set of
environments designed to test and benchmark generalization would be ideal. Nichol et al. (2018),
for instance provide such an environment, with a proper split between ’train’ and ’test’ environments.
However, these environments have to be suitable to use with the strong assumptions of R-GCNyomain
or a more end-to-end version of R-GCNyomain Will have to be developed and applied.

7.2.4. Hyperparameter tuning

Due to computational constraints, it was not possible to perform an extensive grid-search or some
form of automated tuning for the hyperparameters of PPO and the architecture-specific parameters.
However, the choice of hyperparameters can be crucial for a fair comparison between the different
architectures, as also argued by Henderson et al. (2018). They also found that many studies in this
field do not report the considered hyperparameters, which is why we decided to include these values in
this thesis. Although all hyperparameters were chosen to benefit the baseline architectures, it remains
difficult to make formal guarantees about the optimality of our hyperparameters for the performance of
the baseline architectures.

7.3. Future work 77

7.3. Future work

This thesis has been able to provide a ’proof of concept’ of applying R-GCNs in combination with domain
knowledge to create a form of relational reasoning in DRL and thereby improve sample efficiency and
generalization performance. Based on this result, there are many possible extensions to this research
that are worth exploring. Some of these will be discussed in this section.

7.3.1. Test on more environments

Our proposed R-GCNyomain architecture produced promising results on the Key-Corridors environ-
ments, however, the concepts underlying this architecture should be tested on more environments.
This would act both as a broader validation of these methods, and as a test of their applicability to
different domains. In particular, environments that require complex relational reasoning would be good
candidates.

7.3.2. Making an end-to-end solution

This research can be further extended by developing an end-to-end version of the R-GCNyomain ar-
chitecture. One way to achieve this, would be through the previously discussed method of extracting
entities - for instance with a network trained for object detection - from raw input data and then combin-
ing these entities with relations, based on domain knowledge stored in a digital format. This possible
approach was already introduced in section 7.1.1, and will therefore not be discussed in further detail
here. However, it remains an important topic to address in future work. Another approach to an end-
to-end solution is to actually learn relations, instead of using domain knowledge for this, which was
explored in this thesis with the R-GCNgay architecture. Benefits of these kind of methods are that they
do not require domain knowledge and do not necessarily require the observations to be split up into
entities between which relations can be defined with domain knowledge. Instead, they would hypothet-
ically also work on more abstract entities, such as pixels or groups of pixels, for which there is no need
to first apply a complex method to extract these entities. However, the current results of the R-GCNgap
architecture were unsatisfactory, but do leave open options for future research. One possible direction
of future work would be the application of solutions that allow for more sparse relations in the GAN
network, as explored by Ye and Ji (2021). Furthermore, one could investigate methods that ensure
that the overall R-GCNgay architecture, which also employs the same relations as a CNN with a kernel
size of 3 x 3, does not ignore the additional relations learned by the GAN.

Conclusions

This chapter will first reiterate and summarize the main findings of this thesis per research question,
followed by a more general conclusion.

Research question 1: Can the sample efficiency of DRL be improved by using GNNs and domain
knowledge, compared to traditional architectures such as CNNs and MLPs?

Based on experiments 1, 2, 3 and 4 it can be concluded that - for the Key-Corridors environments
- it is indeed possible to improve sample efficiency with the combination of domain knowledge and
GNNs, compared to applying more traditional architectures such as CNNs and MLPs. The combination
of GNNs and domain knowledge allows us to form domain-specific relational inductive biases in the
neural network architectures of the actor and critic network of the agent. Using a simple GCN to do so,
does not yield good performance, as it can only encode one type of relation between nodes. This does
not allow for a rich relational encoding based on the domain knowledge. Moreover, for our specific
use on the grid-shaped graphs resulting from the observations of the Key-Corridors environments,
using only one relation also makes it impossible for the agent to distinguish between many of the
symmetric observations. In contrast, a R-GCN is capable of encoding multiple relations, which does
allow for a rich relational encoding of the observations, based on the assumed domain knowledge.
Adding these domain-specific relational inductive biases to the agents architecture - as is done in the
R-GCNyomain architecture - significantly increases the sample efficiency of the agent when compared
to traditional MLP and CNN architectures, both with and without readout function. Of the 4 considered
readout functions (GAP, max-pooling, average-pooling, and sum-pooling), max-pooling gave the best
performance. The sample efficiency of agents with the R-GCN yomain architecture, combined with max-
pooling as readout function, was explored with the R-GCNgomain-max a@rchitecture on multiple instances
of both the Key-Corridors-Small and Key-Corridors-Big environment. For both the Key-Corridors-Small
and Key-Corridors-Big environments, R-GCNgyomain-max has a comparable sample efficiency to CNN
when it is solely trained on instances with only 1 key. However, when more difficult instances, that
have more than 1 key, are added to the training instances, R-GCNyomain-max has a significantly better
sample efficiency than CNN on both the Key-Corridors-Small and Key-Corridors-Big environment.

Research question 2: Can the generalization performance of DRL be improved by using GNNs and
domain knowledge, compared to traditional architectures such as CNNs and MLPs?

To answer this research question both in- and out-of-distribution generalization were considered.
In order to test in-distribution generalization, agents were trained on a set of instances - each instance
being a different initialization of the same environment with the same number of keys - of which 30%
of all possible instances were withheld. During training, the agents were periodically evaluated on
the set of withheld instances. The results of experiment 1, 2 and 3 show that all of the architectures
have a good in-distribution generalization performance, making it hard to determine whether one of the
architectures has a better in-distribution generalization performance than the others, as discussed in
section 7.2.2 of the discussion.

78

79

Adding domain-specific relational inductive biases based on domain knowledge - as is done in
the R-GCNyomain architecture - significantly increases out-of-distribution generalization performance,
when compared to CNN. For out-of-distribution generalization, max-pooling was again the best per-
forming readout function. On both the Key-Corridors-Small and Key-Corridors-Big environments, R-
GCNyomain-max oOutperforms CNN, and it does so for generalizing to instances with an extra key, as well
as generalizing from Key-Corridors-Small to Key-Corridors-Big and vice versa.

Research question 3: Can the fixed relational inductive biases of a CNN be combined with learned
domain-specific relational inductive biases and GNNSs to improve sample efficiency and generalization
performance in an end-to-end fashion, which does not require domain knowledge?

In an attempt to answer this research question, the R-GCNgan-max architecture was introduced,
which again applies max-pooing as readout function. However, this architecture did not succeed in
improving sample efficiency over CNN. The R-GCNgan-max architecture does in some cases have a
slightly better out-of-distribution generalization performance than CNN, but this is not significant and
R-GCNyomain-max - With its relations based on domain knowledge - still significantly outperforms this
method.

Overall, we conclude that adding relational reasoning - in the form of relational inductive biases
imposed by a R-GCN and based on domain knowledge - improves the performance of RL-agents, both
in terms of sample efficiency and out-of-distribution generalization.

This approach shows several clear advantages over traditional techniques but will have to be fur-
ther validated on a wider range of environments. Another remaining challenge for future work is to
apply these methods in an end-to-end manner which relies less heavily on an abstract encoding of the
environment and preferably does not require domain knowledge. However, for problems where do-
main knowledge is available and observations can easily be encoded as graphs based on this domain
knowledge, the concepts of the R-GCNyomain architecture are worth applying, especially when sample
efficiency and generalization performance are important.

The results of this thesis will be valuable for further advancing the use of GNNs in RL and we hope
that it can thereby act as a small step in the direction of human-like relational reasoning in RL, which
is known to be a core aspect of our incredible generalization abilities.

Bibliography

Achiam, J. (2018). Spinning Up in Deep Reinforcement Learning. https://github.com/openai/spinningup

Almasan, P., Suarez-Varela, J., Badia-Sampera, A., Rusek, K., Barlet-Ros, P., & Cabellos-Aparicio,
A. (2019). Deep Reinforcement Learning meets Graph Neural Networks: exploring a routing
optimization use case. http://arxiv.org/abs/1910.07421

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89(4), 369-406. https:
//doi.org/10.1037/0033-295X.89.4.369

Andrychowicz, M., Raichuk, A., Stanczyk, P., Orsini, M., Girgin, S., Marinier, R., Hussenot, L., Geist,
M., Pietquin, O., Michalski, M., Gelly, S., & Bachem, O. (2020). What Matters In On-Policy
Reinforcement Learning? A Large-Scale Empirical Study. http://arxiv.org/abs/2006.05990

Arel, 1., Liu, C., Urbanik, T., & Kohls, A. (2010). Reinforcement learning-based multi-agent system for
network traffic signal control. /et Intelligent Transport Systems, 4, 128—135.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep reinforcement learn-
ing: A brief survey. IEEE Signal Processing Magazine, 34(6), 26—38. https://doi.org/10.1109/
MSP.2017.2743240

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to Align
and Translate. https://arxiv.org/abs/1409.0473

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., Tac-
chetti, A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre, C., Song, F., Ballard, A., Gilmer,
J., Dahl, G., Vaswani, A., Allen, K., Nash, C., Langston, V., ... Pascanu, R. (2018). Relational
inductive biases, deep learning, and graph networks. https://arxiv.org/abs/1806.01261

Bellman, R. (1957). A Markovian Decision Process. Indiana University Mathematics Journal, 6(4), 679—
684. https://doi.org/10.1512/iumj.1957.6.56038

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization.
Advances in Neural Information Processing Systems, 24.

Bondy, J. A., & Murty, U. S. R. (1976). Graph Theory with Applications. The Macmillan Press Ltd.

Boureau, Y. L., Ponce, J., & Lecun, Y. (2010). A theoretical analysis of feature pooling in visual recogni-
tion. ICML 2010 - Proceedings, 27th International Conference on Machine Learning, (Novem-
ber), 111-118.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W. (2016).
OpenAl Gym. http://arxiv.org/abs/1606.01540

Chauvin, Y., & Rumelhart, D. E. (2013). Backpropagation: theory, architectures, and applications. Psy-
chology press.

Chevalier-Boisvert, M., Willems, L., & Pal, S. (2018). Minimalistic Gridworld Environment for OpenAl
Gym. https://github.com/maximecb/gym-minigrid

Cobbe, K., Klimov, O., Hesse, C., Kim, T., & Schulman, J. (2019). Quantifying generalization in rein-
forcement learning. International Conference on Machine Learning (PMLR), 1282—-1289.

D’Eramo, C., Tateo, D., Bonarini, A., Restelli, M., Milano, P., & Peters, J. (2020). Sharing Knowledge
in Multi-Task Deep Reinforcement Learning. International Conference on Learning Represen-
tation (ICLR), 1-18. https://openreview.net/forum?id=rkgpv2VFvr

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S., Wu,
Y., & Zhokhov, P. (2017). OpenAl Baselines. hitps://github.com/openai/baselines

Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. (2016). Benchmarking deep reinforce-
ment learning for continuous control. 33rd International Conference on Machine Learning,
ICML 2016, 3, 2001-2014.

DzZeroski, S., De Raedt, L., & Driessens, K. (2001a). Relational reinforcement learning. Machine Learn-
ing, 43(1-2), 7-52. https://doi.org/10.1023/A:1007694015589

Dzeroski, S., De Raedt, L., & Driessens, K. (2001b). Relational reinforcement learning: An Overview.
Machine Learning, 43(1-2), 7-52. https://doi.org/10.1023/A:1007694015589

Farebrother, J., Machado, M. C., & Bowling, M. (2018). Generalization and Regularization in DQN.
https://arxiv.org/abs/1810.00123

80

https://github.com/openai/spinningup
http://arxiv.org/abs/1910.07421
https://doi.org/10.1037/0033-295X.89.4.369
https://doi.org/10.1037/0033-295X.89.4.369
http://arxiv.org/abs/2006.05990
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1109/MSP.2017.2743240
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1806.01261
https://doi.org/10.1512/iumj.1957.6.56038
http://arxiv.org/abs/1606.01540
https://github.com/maximecb/gym-minigrid
https://openreview.net/forum?id=rkgpv2VFvr
https://github.com/openai/baselines
https://doi.org/10.1023/A:1007694015589
https://doi.org/10.1023/A:1007694015589
https://arxiv.org/abs/1810.00123

Bibliography 81

Feurer, M., & Hutter, F. (2019). Hyperparameter Optimization. In F. Hutter, L. Kotthoff, & J. Vanschoren
(Eds.), Automated machine learning: Methods, systems, challenges (pp. 3-33). Springer In-
ternational Publishing. https://doi.org/10.1007/978-3-030-05318-5

Finn, C., Abbeel, P., & Levine, S. (2017). Model-Agnostic Meta-Learning for Fast Adaptation of Deep
Networks. In D. Precup & Y. W. Teh (Eds.), Proceedings of the 34th international conference
on machine learning (pp. 1126—1135). PMLR. https://proceedings.mir.press/v70/finn17a.html

Francois-lavet, V., Henderson, P., Islam, R., Bellemare, M. G., Frangois-lavet, V., Pineau, J., & Belle-
mare, M. G. (2018). An Introduction to Deep Reinforcement Learning. (Vol. 2). https://doi.org/
10.1561/220000007 1

Gaudet, B., Linares, R., & Furfaro, R. (2020). Deep reinforcement learning for six degree-of-freedom
planetary landing. Advances in Space Research, 65(7), 1723-1741. https://doi.org/https:
//doi.org/10.1016/j.asr.2019.12.030

Getoor, L., & Taskar, B. (2007). Introduction to statistical relational learning (Ser. Adaptive computation
and machine learning). MIT Press. https://doi.org/10.7551/mitpress/7432.001.0001

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message passing
for quantum chemistry. 34th International Conference on Machine Learning, ICML 2017, 3,
2053-2070.

Goodfellow, ., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. https://doi.org/10.1007/
s10710-017-9314-z

Gori, M., Monfardini, G., & Scarselli, F. (2005). A new model for learning in graph domains. Proceedings.
2005 IEEE International Joint Conference on Neural Networks, 2005., 2, 729-734. https://doi.
org/10.1109/IJCNN.2005.1555942

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., &
Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77,
354-377. https://doi.org/10.1016/j.patcog.2017.10.013

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Inductive representation learning on large graphs.
Proceedings of the 31st International Conference on Neural Information Processing Systems,
1025-1035.

Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., McKee, K. R., Tenenbaum, J. B., & Battaglia, P. W.
(2018). Relational inductive bias for physical construction in humans and machines. arXiv.
https://arxiv.org/abs/1806.01203

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. http:
/larxiv.org/abs/1512.03385

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., & Meger, D. (2018). Deep reinforcement
learning that matters. 32nd AAAI Conference on Atrtificial Intelligence, AAAI 2018, 3207-3214.

Hertel, L., Baldi, P., & Gillen, D. L. (2020). Quantity vs. Quality: On Hyperparameter Optimization for
Deep Reinforcement Learning. http://arxiv.org/abs/2007.14604

Hessel, M., Soyer, H., Espeholt, L., Czarnecki, W., Schmitt, S., & van Hasselt, H. (2019). Multi-Task
Deep Reinforcement Learning with PopArt. Proceedings of the AAAI Conference on Atrtificial
Intelligence, 33(01 SE - AAAI Technical Track: Machine Learning), 3796—3803. https://doi.org/
10.1609/aaai.v33i01.33013796

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735—
1780. https://doi.org/10.1162/neco.1997.9.8.1735

Holyoak, K. J., & Lu, H. (2021). Emergence of relational reasoning. Current Opinion in Behavioral
Sciences, 37, 118. https://doi.org/https://doi.org/10.1016/j.cobeha.2020.11.012

Huang, W., Mordatch, I., & Pathak, D. (2020). One Policy to Control Them All: Shared Modular Policies
for Agent-Agnostic Control. arXiv. https://arxiv.org/abs/2007.04976

Hullermeier, E., Fober, T., & Mernberger, M. (2013). Inductive Bias. In W. Dubitzky, O. Wolkenhauer,
K.-H. Cho, & H. Yokota (Eds.), Encyclopedia of systems biology (pp. 1018-1018). Springer
New York. https://doi.org/10.1007/978-1-4419-9863-7

Jiang, J., Dun, C., Huang, T., & Lu, Z. (2020). Graph Convolutional Reinforcement Learning. arXiv.
https://arxiv.org/abs/1810.09202

Jiang, Z., Minervini, P., Jiang, M., & Rocktaschel, T. (2021). Grid-to-Graph: Flexible Spatial Relational
Inductive Biases for Reinforcement Learning. (Aamas). http://arxiv.org/abs/2102.04220

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale Video
Classification with Convolutional Neural Networks. Proceedings of the IEEE conference on

https://doi.org/10.1007/978-3-030-05318-5
https://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.1561/2200000071
https://doi.org/10.1561/2200000071
https://doi.org/https://doi.org/10.1016/j.asr.2019.12.030
https://doi.org/https://doi.org/10.1016/j.asr.2019.12.030
https://doi.org/10.7551/mitpress/7432.001.0001
https://doi.org/10.1007/s10710-017-9314-z
https://doi.org/10.1007/s10710-017-9314-z
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1016/j.patcog.2017.10.013
https://arxiv.org/abs/1806.01203
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/2007.14604
https://doi.org/10.1609/aaai.v33i01.33013796
https://doi.org/10.1609/aaai.v33i01.33013796
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/https://doi.org/10.1016/j.cobeha.2020.11.012
https://arxiv.org/abs/2007.04976
https://doi.org/10.1007/978-1-4419-9863-7
https://arxiv.org/abs/1810.09202
http://arxiv.org/abs/2102.04220

82 Bibliography

Computer Vision and Pattern Recognition, 1725-1732. http://cs.stanford.edu/people/karpathy/
deepvideo

Kingma, D. P, & Ba, J. L. (2015). Adam: A method for stochastic optimization. 3rd International Confer-
ence on Learning Representations, ICLR 2015 - Conference Track Proceedings. https://arxiv.
org/abs/1412.6980

Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks.
5th International Conference on Learning Representations, ICLR 2017 - Conference Track
Proceedings. https://arxiv.org/abs/1609.02907

Kirsch, L., van Steenkiste, S., & Schmidhuber, J. (2019). Improving Generalization in Meta Reinforce-
ment Learning using Learned Objectives. Published as a conference paper at ICLR 2020.
http://arxiv.org/abs/1910.04098

Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The In-
ternational Journal of Robotics Research, 32(11), 1238—1274. https://doi.org/10.1177/
0278364913495721

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques (Ser. Adap-
tive computation and machine learning). MIT Press.

Kurin, V., Igl, M., Rocktaschel, T., Boehmer, W., & Whiteson, S. (2020). My Body is a Cage: the Role
of Morphology in Graph-Based Incompatible Control. http://arxiv.org/abs/2010.01856
Lawrence, S., & Giles, C. L. (2000). Overfitting and neural networks: Conjugate gradient and backprop-
agation. Proceedings of the International Joint Conference on Neural Networks, 1, 114-119.

https://doi.org/10.1109/ijcnn.2000.857823

Lawrence, S., Giles, C. L., & Tsoi, A. C. (1997). Lessons in neural network training: overfitting may be
harder than expected. Proceedings of the National Conference on Artificial Intelligence, 540—
545.

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436—444. https://doi.org/
10.1038/nature14539

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel, L. (1989). Hand-
written digit recognition with a back-propagation network. Advances in neural information pro-
cessing systems, 2.

Li, Y., Zemel, R., Brockschmidt, M., & Tarlow, D. (2016). Gated graph sequence neural networks. 4th
International Conference on Learning Representations, ICLR 2016 - Conference Track Pro-
ceedings, (1). https://arxiv.org/abs/1511.05493

Lu, Y., Chen, Y., Zhao, D., & Li, D. (2021). MGRL: Graph neural network based inference in a Markov
network with reinforcement learning for visual navigation. Neurocomputing, 421, 140-150.
https://doi.org/10.1016/j.neucom.2020.07.091

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic
models. ICML Workshop on Deep Learning for Audio, Speech and Language Processing.

Mahmud, M., Kaiser, M. S., Hussain, A., & Vassanelli, S. (2018). Applications of Deep Learning and Re-
inforcement Learning to Biological Data. IEEE Transactions on Neural Networks and Learning
Systems, 29(6), 2063-2079. https://doi.org/10.1109/TNNLS.2018.2790388

Minsky, M. (1961). Steps Toward Atrtificial Intelligence. Proceedings of the IRE, 49(1), 8-30. https:
//doi.org/10.1109/JRPROC.1961.287775

Mitchell, T. M. (1980). The Need for Biases in Learning Generalizations. Readings in Machine Learning,
(CBM-TR-117), 184—191. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.5466

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller,
M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, 1., King, H.,
Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540), 529-533. https://doi.org/10.1038/nature 14236

Muggleton, S., & de Raedt, L. (1994). Inductive Logic Programming: Theory and methods. The Journal
of Logic Programming, 19-20, 629—-679. https://doi.org/10.1016/0743-1066(94)90035-3

Nachum, O., Norouzi, M., Xu, K., & Schuurmans, D. (2017). Bridging the gap between value and policy
based reinforcement learning. Advances in Neural Information Processing Systems, Decem-
ber(Nips), 2776—-2786. https://arxiv.org/abs/1702.08892

Nichol, A., Pfau, V., Hesse, C., Klimov, O., & Schulman, J. (2018). Gotta Learn Fast: A New Benchmark
for Generalization in RL, 1-21. http://arxiv.org/abs/1804.03720

http://cs.stanford.edu/people/karpathy/deepvideo
http://cs.stanford.edu/people/karpathy/deepvideo
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1910.04098
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
http://arxiv.org/abs/2010.01856
https://doi.org/10.1109/ijcnn.2000.857823
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/1511.05493
https://doi.org/10.1016/j.neucom.2020.07.091
https://doi.org/10.1109/TNNLS.2018.2790388
https://doi.org/10.1109/JRPROC.1961.287775
https://doi.org/10.1109/JRPROC.1961.287775
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.5466
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/0743-1066(94)90035-3
https://arxiv.org/abs/1702.08892
http://arxiv.org/abs/1804.03720

Bibliography 83

Packer, C., Gao, K., Kos, J., Krahenbdihl, P., Koltun, V., & Song, D. (2018). Assessing generalization in
deep reinforcement learning. arXiv. https://arxiv.org/abs/1810.12282

Paszke, A., Gross, S., Massa, F., Lerer, A, Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-
amkurthy, S., Steiner, B., Fang, L., ... Chintala, S. (2019). PyTorch: An Imperative Style, High-
Performance Deep Learning Library. http://arxiv.org/abs/1912.01703

Raffin, A. (2020). RL Baselines3 Zoo. https://github.com/DLR-RM/rl-baselines3-zoo

Raffin, A, Hill, A., Ernestus, M., Gleave, A., Kanervisto, A., & Dormann, N. (2019). Stable Baselines 3.
https://github.com/DLR-RM/stable-baselines3

Rajeswaran, A., Ghotra, S., Ravindran, B., & Levine, S. (2016). EPOpt: Learning Robust Neural Net-
work Policies Using Model Ensembles. Published as a conference paper at ICLR 2017. https:
/larxiv.org/abs/1610.01283

Saxe, A. M., McClelland, J. L., & Ganguli, S. (2014). Exact solutions to the nonlinear dynamics of learn-
ing in deep linear neural networks. 2nd International Conference on Learning Representations,
ICLR 2014 - Conference Track Proceedings. https://arxiv.org/abs/1312.6120

Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I., & Welling, M. (2018). Modeling Re-
lational Data with Graph Convolutional Networks. Lecture Notes in Computer Science, 10843,
593-607. https://doi.org/10.1007/978-3-319-93417-4_38

Schulman, J. (2016a). Nuts and Bolts of Deep RL Research. http://joschu.net/docs/nuts-and-bolts.pdf

Schulman, J. (2016b). Optimizing Expectations: From Deep Reinforcement Learning to Stochastic
Computation Graphs, Dept. of Computer Science University of California, Berkeley, Ph.D. the-
sis. Ph.D thesis.

Schulman, J., Levine, S., Moritz, P., Jordan, M., & Abbeel, P. (2015). Trust region policy optimization.
32nd International Conference on Machine Learning, ICML 2015, 3, 1889-1897.

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., & Abbeel, P. (2016). High-dimensional continu-
ous control using generalized advantage estimation. 4th International Conference on Learning
Representations, ICLR 2016 - Conference Track Proceedings, 1-14.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization
algorithms. arXiv. https://arxiv.org/abs/1707.06347

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal,
27(3), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Shu, T, Xiong, C., & Socher, R. (2017). Hierarchical and Interpretable Skill Acquisition in Multi-task
Reinforcement Learning. Published as a conference paper at ICLR 2018. http://arxiv.org/abs/
1712.07294

Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale Image
Recognition. http://arxiv.org/abs/1409.1556

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A Simple
Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15,
1929-1958.

S.Sutton, R., & G.Barto, A. (2018). Reinforcement Learning An Introduction (Second). MIT Press.

Tesauro, G. (1995). Temporal Difference Learning and TD-Gammon. Communications of the ACM,
38(3), 58-68. https://doi.org/10.1145/203330.203343

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel, P. (2017). Domain randomization
for transferring deep neural networks from simulation to the real world. IEEE International Con-
ference on Intelligent Robots and Systems, 2017-Septe, 23-30. https://doi.org/10.1109/IROS.
2017.8202133

Todorov, E., Erez, T., & Tassa, Y. (2012). MuJoCo: A physics engine for model-based control. 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, 5026—-5033. https://
doi.org/10.1109/IROS.2012.6386109

Tucker, G., Bhupatiraju, S., Gu, S., Turner, R., Ghahramani, Z., & Levine, S. (2018). The Mirage of
Action-Dependent Baselines in Reinforcement Learning. In J. Dy & A. Krause (Eds.), Proceed-
ings of the 35th international conference on machine learning (pp. 5015-5024). PMLR. https:
/lproceedings.mir.press/v80/tucker18a.htmi

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, t.., & Polosukhin,
I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, De-
cember(Nips), 5999-6009.

https://arxiv.org/abs/1810.12282
http://arxiv.org/abs/1912.01703
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/stable-baselines3
https://arxiv.org/abs/1610.01283
https://arxiv.org/abs/1610.01283
https://arxiv.org/abs/1312.6120
https://doi.org/10.1007/978-3-319-93417-4_38
http://joschu.net/docs/nuts-and-bolts.pdf
https://arxiv.org/abs/1707.06347
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://arxiv.org/abs/1712.07294
http://arxiv.org/abs/1712.07294
http://arxiv.org/abs/1409.1556
https://doi.org/10.1145/203330.203343
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
https://proceedings.mlr.press/v80/tucker18a.html
https://proceedings.mlr.press/v80/tucker18a.html

84 Bibliography

Velickovi¢, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention
networks. arXiv. https://arxiv.org/abs/1710.10903

Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F. S., de Menezes Santos, M.,
Thomas, C. R., & Miller, B. L. (1999). A System for Relational Reasoning in Human Prefrontal
Cortex. Psychological Science, 10(2), 119-125. https://doi.org/10.1111/1467-9280.00118

Wang, H., Wang, K., Yang, J., Shen, L., Sun, N., Lee, H. S., & Han, S. (2020). GCN-RL circuit de-
signer: Transferable transistor sizing with graph neural networks and reinforcement learning.
57th IEEE Design Automation Conference (DAC). https://arxiv.org/abs/2005.00406

Wang, K., Kang, B., Shao, J., & Feng, J. (2020). Improving Generalization in Reinforcement Learning
with Mixture Regularization. http://arxiv.org/abs/2010.10814

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T.,
Karypis, G., Li, J., & Zhang, Z. (2019). Deep Graph Library: A Graph-Centric, Highly-Performant
Package for Graph Neural Networks. http://arxiv.org/abs/1909.01315

Wang, T, Liao, R., Ba, J., & Fidler, S. (2018). Nervenet: Learning structured policy with graph neural
networks. 6th International Conference on Learning Representations, ICLR 2018 - Conference
Track Proceedings.

Wilson, R. J. (2005). Introduction to Graph Theory (Fourth Edi). Longman.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A Comprehensive Survey on Graph
Neural Networks. https://doi.org/10.1109/TNNLS.2020.2978386

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph neural networks? Interna-
tional Conference on Learning Representations, ICLR 2019 - Conference Track Proceedings.
https://arxiv.org/abs/1810.00826

Ye, Y., & Ji, S. (2021). Sparse Graph Attention Networks. IEEE Transactions on Knowledge and Data
Engineering, 1. https://doi.org/10.1109/TKDE.2021.3072345

Yu, C., Liu, J., & Nemati, S. (2019). Reinforcement Learning in Healthcare: A Survey. http://arxiv.org/
abs/1908.08796

Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y., Babuschkin, I., Tuyls, K., Reichert, D., Lilli-
crap, T., Lockhart, E., Shanahan, M., Langston, V., Pascanu, R., Botvinick, M., Vinyals, O., &
Battaglia, P. (2018). Relational deep reinforcement learning. arXiv, https://arxiv.org/abs/1806.01830.

Zelezny, F., & Lavrag, N. (2008). Inductive Logic Programming. 18th International Conference, ILP.

Zhang, J., He, T., Sra, S., & Jadbabaie, A. (2020). Why gradient clipping accelerates training: A theo-
retical justification for adaptivity. ICLR. http://arxiv.org/abs/1905.11881

Zhao, C., Sigaud, O., Stulp, F., & Hospedales, T. M. (2019). Investigating Generalisation in Continuous
Deep Reinforcement Learning. https://arxiv.org/abs/1902.07015

Zhong, V., Xiong, C., & Socher, R. (2017). Seq2SQL: Generating Structured Queries from Natural
Language using Reinforcement Learning. https://arxiv.org/abs/1709.00103

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., & Sun, M. (2018). Graph Neural Networks:
A Review of Methods and Applications. http://arxiv.org/abs/1812.08434

https://arxiv.org/abs/1710.10903
https://doi.org/10.1111/1467-9280.00118
https://arxiv.org/abs/2005.00406
http://arxiv.org/abs/2010.10814
http://arxiv.org/abs/1909.01315
https://doi.org/10.1109/TNNLS.2020.2978386
https://arxiv.org/abs/1810.00826
https://doi.org/10.1109/TKDE.2021.3072345
http://arxiv.org/abs/1908.08796
http://arxiv.org/abs/1908.08796
http://arxiv.org/abs/1905.11881
https://arxiv.org/abs/1902.07015
https://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1812.08434

Appendix

9.1. Explainability through GAP and max-pooling

Applying GAP enables us to visualize the attention weights which the agent learns. Doing so provides
a simple method to improve explainability, as we can then reason which nodes of the observation are
weighted most heavily in the agent’s decision for a certain action.

As our best performing graph-based methods use max-pooling as readout function, it would be
interesting to have a similar kind of visualization of the 'focus’ of the agent as is possible with GAP. We
reason that the most important nodes for the agent, are the nodes from which the most features get
pooled. To visualize this, we store - for each feature - the index i of the node n; at which the maximum
value was present, after which we count for each node n; € N how many features were pooled from
that specific node. The number of features pooled from node n; is denoted with p; € P where P has
a cardinality of |[N|. A softmax is then applied over all elements in P, giving a similar kind of measure
as the attention scores of GAP. If all features would be pooled from one node, this node would have a
value of 1 and if - hypothetically, as this is not exactly possible in our graphs - the exact same amount
of features are pooled from each node in N, each node would have a weight of 1/|N|. Figures 9.1-9.20
show an example of this visualization method for an agent with the R-GCNyomain-max @rchitecture being
tested for out-of-distribution generalization to the Key-Corridors-Small environment with 3 keys, whilst
it was trained on Key-Corridors-Small with either 1 or 2 keys. One can clearly see in these figures that
the agent often 'focuses’ on 1 or 2 nodes, which are often the nodes to which the 'can open’ relation of
the key that the agent is carrying is pointing.

1.0

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.1: The image on the left side (a), shows the rendered version of the observation of the agent. lts corresponding graphical

representation is illustrated on the right (b), which displays the focus’ of the agent. Note that the edges are added to illustrate
the grid and do not represent the edges of the R-GCNgomain-max architecture.

85

86 9. Appendix

1.0

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.2: The image on the left side (a), shows the rendered version of the observation of the agent. Its corresponding graphical
representation is illustrated on the right (b), which displays the 'focus’ of the agent. Note that the edges are added to illustrate
the grid and do not represent the edges of the R-GCNyomain-max architecture.

1.0

0.8

0.6

0.4

0.2

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.3: The image on the left side (a), shows the rendered version of the observation of the agent. lts corresponding graphical
representation is illustrated on the right (b), which displays the 'focus’ of the agent. Note that the edges are added to illustrate
the grid and do not represent the edges of the R-GCNygmain-max architecture.

10

0.8

0.6

0.4

0.2

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.4: The image on the left side (a), shows the rendered version of the observation of the agent. Its corresponding graphical
representation is illustrated on the right (b), which displays the focus’ of the agent. Note that the edges are added to illustrate
the grid and do not represent the edges of the R-GCNggmain-max architecture.

9.1. Explainability through GAP and max-pooling 87

1.0

0.8

0.6

0.4

0.2

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.5: The image on the left side (a), shows the rendered version of the observation of the agent. Its corresponding graphical
representation is illustrated on the right (b), which displays the 'focus’ of the agent. Note that the edges are added to illustrate
the grid and do not represent the edges of the R-GCNyomain-max architecture.

1.0

0.8

0.6

0.4

0.2

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.6: The image on the left side (a), shows the rendered version of the observation of the agent. lts corresponding graphical
representation is illustrated on the right (b), which displays the 'focus’ of the agent. Note that the edges are added to illustrate
the grid and do not represent the edges of the R-GCNygmain-max architecture.

10

0.8

0.6

0.4

0.2

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.7: The image on the left side (a), shows the rendered version of the observation of the agent. Its corresponding graphical
representation is illustrated on the right (b), which displays the 'focus’ of the agent. Note that the edges are added to illustrate
the grid and do not represent the edges of the R-GCNygmain-max architecture.

88 9. Appendix

1.0

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.8: The image on the left side (a), shows the rendered version of the observation of the agent. Its corresponding graphical
representation is illustrated on the right (b), which displays the 'focus’ of the agent. Note that the edges are added to illustrate
the grid and do not represent the edges of the R-GCNyomain-max architecture.

1.0

0.8

0.6

0.4

0.2

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.9: The image on the left side (a), shows the rendered version of the observation of the agent. lts corresponding graphical
representation is illustrated on the right (b), which displays the 'focus’ of the agent. Note that the edges are added to illustrate
the grid and do not represent the edges of the R-GCNygmain-max architecture.

10

0.8

0.6

0.4

0.2

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.10: The image on the left side (a), shows the rendered version of the observation of the agent. Its corresponding
graphical representation is illustrated on the right (b), which displays the ‘focus’ of the agent. Note that the edges are added to
illustrate the grid and do not represent the edges of the R-GCNyomain-max architecture.

9.1. Explainability through GAP and max-pooling 89

1.0

0.8

0.6

0.4

0.2

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.11: The image on the left side (a), shows the rendered version of the observation of the agent. Its corresponding
graphical representation is illustrated on the right (b), which displays the 'focus’ of the agent. Note that the edges are added to
illustrate the grid and do not represent the edges of the R-GCNyomain-max architecture.

1.0

0.8

0.6

0.4

0.2

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.12: The image on the left side (a), shows the rendered version of the observation of the agent. Its corresponding
graphical representation is illustrated on the right (b), which displays the focus’ of the agent. Note that the edges are added to
illustrate the grid and do not represent the edges of the R-GCNgomain-max architecture.

10

0.8

0.6

0.4

0.2

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.13: The image on the left side (a), shows the rendered version of the observation of the agent. Its corresponding
graphical representation is illustrated on the right (b), which displays the 'focus’ of the agent. Note that the edges are added to
illustrate the grid and do not represent the edges of the R-GCNyomain-max architecture.

90 9. Appendix

1.0

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.14: The image on the left side (a), shows the rendered version of the observation of the agent. Its corresponding
graphical representation is illustrated on the right (b), which displays the 'focus’ of the agent. Note that the edges are added to
illustrate the grid and do not represent the edges of the R-GCNyomain-max architecture.

1.0

0.8

0.6

0.4

0.2

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.15: The image on the left side (a), shows the rendered version of the observation of the agent. Its corresponding
graphical representation is illustrated on the right (b), which displays the focus’ of the agent. Note that the edges are added to
illustrate the grid and do not represent the edges of the R-GCNgomain-max architecture.

10

0.8

0.6

0.4

0.2

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.16: The image on the left side (a), shows the rendered version of the observation of the agent. Its corresponding
graphical representation is illustrated on the right (b), which displays the ‘focus’ of the agent. Note that the edges are added to
illustrate the grid and do not represent the edges of the R-GCNyomain-max architecture.

9.1. Explainability through GAP and max-pooling 91

1.0

0.8

0.6

0.4

0.2

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.17: The image on the left side (a), shows the rendered version of the observation of the agent. Its corresponding
graphical representation is illustrated on the right (b), which displays the 'focus’ of the agent. Note that the edges are added to
illustrate the grid and do not represent the edges of the R-GCNyomain-max architecture.

1.0

0.8

0.6

0.4

0.2

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.18: The image on the left side (a), shows the rendered version of the observation of the agent. Its corresponding
graphical representation is illustrated on the right (b), which displays the focus’ of the agent. Note that the edges are added to
illustrate the grid and do not represent the edges of the R-GCNgomain-max architecture.

10

0.8

0.6

0.4

0.2

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.19: The image on the left side (a), shows the rendered version of the observation of the agent. Its corresponding
graphical representation is illustrated on the right (b), which displays the 'focus’ of the agent. Note that the edges are added to
illustrate the grid and do not represent the edges of the R-GCNyomain-max architecture.

92 9. Appendix

1.0

0.0

(a) Observation. (b) The higher the value of a node, displayed by its color, the more
features were pooled from this node.

Figure 9.20: The image on the left side (a), shows the rendered version of the observation of the agent. Its corresponding
graphical representation is illustrated on the right (b), which displays the 'focus’ of the agent. Note that the edges are added to
illustrate the grid and do not represent the edges of the R-GCNyomain-max architecture.

	Abstract
	Introduction
	Background
	Deep Learning
	Multilayer Perceptrons
	Convolutional Neural Networks

	Deep learning with graphs
	Graphs
	Graph Neural Networks
	Graph Convolutional Networks
	Relational Graph Convolutional Networks
	Graph Attention Networks

	Relational Inductive Biases
	Fully connected layers
	Convolutional layers
	Graph convolutional layer
	Relational graph convolutional layer

	Reinforcement Learning
	The reinforcement learning problem setting
	Methods of learning in RL
	Deep Reinforcement Learning
	Proximal Policy Optimization

	Summary and conclusion

	Related work
	Relational reinforcement learning
	Reinforcement learning with GNNs
	Observations encoded as graphs
	Modeling the physical shape of an agent as graph

	Summary and conclusion

	Methodology
	Experimental setup
	Environments
	Random initialization of the environments
	Observations
	Actions
	Rewards

	Evaluation of agents
	Performance metric
	Testing for sample efficiency
	Testing for generalization

	Architectures
	Multilayer Perceptron (MLP)
	Convolutional Neural Network (CNN)
	Graph Convolutional Network (GCN)
	Relational Graph Convolutional Network imitating a CNN (R-GCNCNN)
	R-GCN with domain-specific relations (R-GCNdomain)
	R-GCNCNN with additional domain-specific relations (R-GCNCNN+domain)
	R-GCNCNN with additional random relations (R-GCNCNN+random)
	Learning additional relations with attention (R-GCNGAN)
	Readout functions

	Implementation of proximal policy optimization
	Reasons for the use of ppo
	Implementation details

	Method of hyperparameter tuning
	Additional tuning metrics
	Initial hyperparameter values
	Considered values for Key-Corridors-Small
	Adjusted values for Key-Corridors-Big

	Used hyperparameters, activation functions and weight initialization method
	Hyperparameters of PPO
	Weight initialization and activation functions
	Overview of architectures and their number of trainable parameters

	Used hardware

	Experiments and results
	Experiment 1: Effects of adding domain-specific relations
	Sample efficiency
	In-distribution generalization
	Out-of-distribution generalization
	Conclusion

	Experiment 2: Comparing different readout functions
	Sample efficiency
	In-distribution generalization
	Out-of-distribution generalization
	Improved explainability through readout functions
	Conclusion

	Experiment 3: Elaborate testing of the best performing architectures with the best readout function
	Sample efficiency
	In-distribution generalization
	Out-of-distribution generalization
	Additional out-of-distribution generalization experiment
	Conclusion

	Experiment 4: Are the domain-specific relations the real cause of improvement?
	Sample efficiency
	Out-of-distribution generalization
	Conclusion

	Experiment 5: Can useful domain-specific relations be learned with R-GCNGAN?
	Sample Efficiency
	In-distribution generalization
	Out-of-distribution generalization
	Conclusion

	Discussion and future work
	Implications of results
	Results obtained with R-GCNdomain
	Results obtained with R-GCNGAN

	Limitations
	Strong assumptions for R-GCNdomain
	Setup for testing in-distribution generalization
	Used environments
	Hyperparameter tuning

	Future work
	Test on more environments
	Making an end-to-end solution

	Conclusions
	Appendix
	Explainability through GAP and max-pooling

