
 
 

Delft University of Technology

Primal and dual mixed-integer least-squares
distributional statistics and global algorithm
Teunissen, P. J.G.; Massarweh, L.

DOI
10.1007/s00190-024-01862-1
Publication date
2024
Document Version
Final published version
Published in
Journal of Geodesy

Citation (APA)
Teunissen, P. J. G., & Massarweh, L. (2024). Primal and dual mixed-integer least-squares: distributional
statistics and global algorithm. Journal of Geodesy, 98(7), Article 63. https://doi.org/10.1007/s00190-024-
01862-1

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s00190-024-01862-1
https://doi.org/10.1007/s00190-024-01862-1
https://doi.org/10.1007/s00190-024-01862-1


Journal of Geodesy           (2024) 98:63 
https://doi.org/10.1007/s00190-024-01862-1

ORIG INAL ART ICLE

Primal and dual mixed-integer least-squares: distributional statistics
and global algorithm

P. J. G. Teunissen1,2,3 · L. Massarweh1

Received: 25 February 2024 / Accepted: 5 May 2024
© The Author(s) 2024

Abstract
In this contribution we introduce the dual mixed-integer least-squares problem and study it in relation to its primal counterpart.
The dual differs from the primal formulation in the order in which the integer ambiguity vector a ∈ Z

n and baseline vector
b ∈ R

p are estimated. As not the ambiguities, but rather the entries of b are usually the parameters of interest, the attractiveness
of the dual formulation stems from its direct computation of b. It is shown that this potential advantage relies on the ease
with which an implicit integer least-squares problem of the dual can be solved. For the convoluted cases, we introduce two
methods of simplifying approximations. To be able to describe their quality, we provide a complete distributional analysis
of their estimators, thus allowing users to judge whether or not the approximations are acceptable for their application. It
is shown that this approach implicitly introduces a new class of admissible integer estimators of which we also determine
the pull-in regions. As the dual function is shown to lack convexity, special care is required to be able to compute its global
minimizer b̌. Our proposedmethod, which has finite termination with a guaranteed ε-tolerance, is constructed from combining
the branch-and-bound principle, with a special convex-relaxation of the dual, to which the projected-gradient-descent method
is applied to obtain the required bounds. Each of the method’s three constituents are described, whereby special emphasis is
given to the construction of the required continuously differentiable, convex lower bounding function of the dual.

Keywords Least-squares (LS) · Integer least-squares (ILS) · Primal mixed ILS · Dual mixed ILS · GNSS · Ambiguity
resolution · Pull-in region · Ambiguity success-rate (SR) · Branch-and-bound (BB) · Convex-relaxation · Projected-gradient-
descent (PGD)

1 Introduction

The mixed-integer model forms the basis for ultraprecise
GNSS parameter estimation (Hofmann-Wellenhof et al.
2008; Leick et al. 2015; Teunissen and Montenbruck 2017).
Characteristically the mixed-integer least-squares model
parameters are usually computed in the order of first the
integer ambiguities and then the ambiguity-resolved baseline
parameters. There is in principle however no a-priori reason
for this particular order. In this contribution we study the
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dual mixed-integer least-squares problem by reversing the
computational order of the ambiguities and baseline param-
eters. This has the potential advantage of a direct computation
of the baseline vector, without the need of an explicit com-
putation of the resolved integer ambiguities. We study the
opportunities and drawbacks of this approach, and show
that certain approximations of the dual problem may have
practical potential under specified conditions. We provide
a complete distributional analysis of their estimators, thus
allowing users to judge whether or not the approximations
are acceptable for their application.We also develop the algo-
rithmic details to ensure that the global minimizer of the dual
function can be computed.

This contribution is organized as follows. Section2 pro-
vides a brief review of integer least-squares (ILS) ambiguity
resolution, together with the distributional properties of the
ambiguity- and baseline-estimators. The dual mixed-ILS
formulation is introduced in Sect. 3, together with a repre-
sentation of its objective function D(b). It is shown that it
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implicitly also relies on an ILS-problem, albeit with a metric
driven by the more precise conditional ambiguity variance
matrix. The potential advantage of the dual formulation in
solving for b directly, relies therefore on the ease with which
this implicit ILS problem can be solved. For the purpose of
alleviating the computational demand on the implicit ILS
problem, two approximations to the dual are introduced in
Sects. 4 and 5, respectively. The dual approximation of Sect. 4
consists of approximating the conditional ambiguity variance
matrix. It is shown to which primal formulation this approx-
imate dual belongs and a complete distributional description
of its estimators, together with success-rate bounds, is pro-
vided. The approximation of Sect. 5 consists of replacing the
implicit ILS-estimator of the dual function by a simpler inte-
ger map. It is shown that as a result a new class of admissible
integer estimators is found. Also for this class a distribu-
tional description of its estimators, togetherwith success-rate
bounds, is provided. With the purpose of providing insight
in the challenge of minimizing D(b), Sect. 6 illustrates and
describes the multimodality of the dual function. As the
dual function lacks convexity, special algorithmic care is
required tofind its globalminimizer.Wepresent our proposed
method in Sect. 7. It has finite termination with a guaranteed
ε-tolerance and it is constructed from combining the branch-
and-bound principle, with a special convex-relaxation of
the dual, to which the projected-gradient-descent method
is applied to obtain the required bounds. As the described
approach of our proposed method is not restricted to the
presented dual formulation, we provide an outlook for the
constrained and partitioned dual problems in Sect. 8. Finally,
Sect. 9 contains the Summary and Conclusions.

The following notation is used: E(.) and D(.) stand for
the expectation and dispersion operator, respectively, and
Np(μ, Q) denotes a p-dimensional, normally distributed
random vector, with mean (expectation) μ and variance
matrix (dispersion) Q. Rp and Zp denote the p-dimensional
spaces of real and integer numbers, respectively, and the
range space of a matrix M is denoted as R(M). The least-
squares (LS) inverse of a full column rank matrix M is
denoted as M+ = (MT Q−1

yy M)−1MT Q−1
yy and the orthog-

onal projector onto R(M) as PM = MM+. P⊥
M = I − PM

is then the orthogonal projector that projects orthogonally
on the orthogonal complement of R(M). The Q-weighted
squared norm is denoted as ||.||2Q = (.)T Q−1(.), and �x�
denotes the rounding of x to the nearest integer. If applied to a
vector, the rounding is understood to apply to each of its coor-
dinates. ∪ and ∩ denote the union and intersection operators,
and the vectorial inequality � denotes the all component-
wise inequality ≤. P[A] denotes the probability of event A,
fb̂(b) the probability density function (PDF) of the contin-

uous random vector b̂ and P[ǎ = z] the probability mass
function (PMF) of the integer random vector ǎ. The non-

central Chi-square distribution with p degrees of freedom
and noncentrality parameter λ is denoted as χ2(p, λ) and its
δ-percentage critical value as χ2

δ (p, 0).

2 Brief review of ILS ambiguity resolution

We start from the mixed-integer model of (linearized) GNSS
observation equations (Leick et al. 2015; Teunissen andMon-
tenbruck 2017), which in vector–matrix form reads,

E(y) = Aa + Bb, D(y) = Qyy (1)

with y ∼ Nm(E(y),D(y)) the m-vector of normally dis-
tributedpseudorange andcarrier-phaseobservables, [A, B] ∈
R
m×(n+p) the given design matrix of full rank n+ p, a ∈ Z

n

the unknown ambiguity vector consisting of the integer
carrier-phase ambiguities, b ∈ R

p the unknown baseline
vector consisting of the remaining real-valued parameters,
such as, e.g., position coordinates, atmosphere parameters,
receiver/satellite clock parameters, and instrumental biases,
and Qyy ∈ R

m×m the given positive-definite variance matrix
of the observables. The above GNSS model may be given
in undifferenced, single-differenced or double-differenced
form. In any of these forms, the possible rank-defects in
the design matrix are assumed eliminated through a care-
ful reparametrization in clearly defined estimable parameters
(Odijk et al. 2015; Teunissen 2019).

The mixed integer least-squares (ILS) estimation of the
integer ambiguity vector a ∈ Z

n and the real-valued baseline
vector b ∈ R

p is executed in three steps (float-integer-fixed).
In the first step, the integer constraint on a is discarded, giving
the so-called float-solution of a and b as

â = Ā+y and b̂ = B̄+y (2)

with Ā = P⊥
B A and B̄ = P⊥

A B. In the second step, the
integer constraint a ∈ Z

n is invoked, and â ∈ R
n of (2) is

used as input to obtain the integer estimate of the ambiguity
vector a as

ǎ = arg min
a∈Zn

||â − a||2Qââ
(3)

with Qââ = ( ĀT Q−1
yy Ā)−1 being the variance matrix of â.

Once the integer solution (3) has been obtained, the expres-
sion of the conditional least-squares (LS) baseline estimator,
b̂(a) = b̂ − Qb̂â Q

−1
ââ (â − a) (i.e. conditioned on knowing

a), is used in the third step to compute the ambiguity-fixed
baseline solution as

b̌ = b̂(ǎ) = b̂ − Qb̂â Q
−1
ââ

(
â − ǎ

)
(4)
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That (2), (3) and (4) are indeed the LS and ILS solutions
of the GNSS model (1) follows readily from the orthogonal
decomposition (Teunissen 1998a)

||y − Aa − Bb||2Qyy
= ||P⊥[A,B]y||2Qyy

+ F(a, b) (5)

where

F(a, b) = ||â − a||2Qââ
+ ||b̂(a) − b||2Qb̂(a)b̂(a)

(6)

with Qb̂(a)b̂(a)
= (BT Qyy B)−1 the variance matrix of b̂(a).

As ||P⊥[A,B]y||2Qyy
is independent of a and b, the minimizers

of ||y − Aa − Bb||2Qyy
are those of F(a, b). It therefore

follows from (6), recognizing b̂(â) = b̂, that the real-valued
minimizers of F(a, b) are given by (2), while their mixed-
integer counterparts are given by (3) and (4), respectively.
We therefore have for the LS and the mixed ILS solutions,

â
b̂

}
= argmin

a∈Rn ,b∈Rp
F(a, b),

ǎ
b̌

}
= argmin

a∈Zn ,b∈Rp
F(a, b) (7)

In order to judge the quality of the mixed ILS estimators ǎ
and b̌, we need their probability distributions. They are given
in the following theorem.

Theorem 1 (Teunissen 1999b)The probabilitymass function
(PMF) of ǎ and the probability density function (PDF) of b̌
are given as

⎧
⎨

⎩

P[ǎ = z] = ∫
Pz

fâ(α)dα

fb̌(β) = ∑

z∈Zn
fb̂(z)(β)P[ǎ = z] (8)

with â ∼ Nn(a, Qââ), b̂(z) ∼ Np(b − Qb̂â Q
−1
ââ (a −

z), Qb̂(z)b̂(z)), and the pull-in region of z ∈ Z
n given as

Pz = {x ∈ R
n| ||x − z||2Qââ

≤ ||x − u||2Qââ
, ∀u ∈ Z

n}.
�

In the practice of GNSS ambiguity resolution one aims to
resolve the ambiguities with a high success-rate, i.e. a high
probability of correct integer estimation P[ǎ = a]. When the
success-rate is high enough, one may neglect the uncertainty
in ǎ and describe the uncertainty in b̌ by means of the PDF
of b̂(a). This is made precise by the following bounds of
Teunissen (1999b),

P[b̂(a) ∈ Ω]P[ǎ = a] ≤ P[b̌ ∈ Ω] ≤ P
[
b̂(a) ∈ Ω

]
(9)

which hold true for any convex region Ω ⊂ R
p centred at

E(b̂). Thus when the success-rate P[ǎ = a] is close enough
to one, then

P[b̌ ∈ Ω] ≈ P[b̂(a) ∈ Ω] (10)

which in case of GNSS, due to the very precise carrier-phase
data, is usually a much larger probability than that obtained
from the float-solution b̂, P[b̂(a) ∈ Ω] � P[b̂ ∈ Ω].

3 A dual mixed ILS formulation

3.1 Primal and dual mixed ILS

A characteristic of the 3-step solution approach is the order
in which themixed ILS solutions ǎ and b̌ are computed in the
last two steps. First the integer ambiguity estimate ǎ (cf. 3)
is computed and then the fixed baseline estimate as b̌ = b̂(ǎ)

(cf. 4). There is in principle however no a-priori reason for
this particular order. The same solution will be obtained if
one would interchange the order of the two minimization
steps, since

min
a∈Zn

[
min
b∈Rp

F(a, b)

]
= min

b∈Rp

[
min
a∈Zn

F(a, b)

]
(11)

With this equivalence, the solution to the mixed ILS problem
can be formulated in two alternative ways, each working
with a different objective function, namely a primal function
P(a) that solely depends on the ambiguity vector and a dual
function D(b) that solely depends on the baseline vector b.
With the aid of the following short-hand notation

b̂(a) = arg min
b∈Rp

F(a, b)

ǎ(b) = arg min
a∈Zn

F(a, b)
(12)

we have the following result.

Theorem 2 (Primal and Dual Mixed ILS) Let the primal and
dual objective functions be defined as

Primal : P(a) = min
b∈Rp

F(a, b) = F
(
a, b̂(a)

)

Dual : D(b) = min
a∈Zn

F(a, b) = F
(
ǎ(b), b

) (13)

Then the mixed ILS solution is given as

ǎ = arg min
a∈Zn

P(a) = ǎ(b̌)

b̌ = arg min
b∈Rp

D(b) = b̂(ǎ)
(14)

�

This result shows that one has two routes available for com-
puting the mixed ILS solution. Either one minimizes P(a)

to obtain ǎ first and then b̌ = b̂(ǎ), or one minimizes D(b)
to obtain b̌ first and then ǎ = ǎ(b̌). Both routes determine
the same minimum of F(a, b),

123
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Fig. 1 Primal and dual orthogonal decompositions, after (Teunissen
1998a): ||y − Aa − Bb||2Qyy

= ||P⊥[A,B]y||2Qyy
+ ||P[A,B](y − Aa −

Bb)||2Qyy
, with primal decomposition ||P[A,B](y − Aa − Bb)||2Qyy

=
||PĀ(y− Aa)||2Qyy

+||PB(y− Aa−Bb)||2Qyy
= ||â−a||2Qââ

+||b̂(a)−

b||2Qb̂(a)b̂(a)
and dual decomposition ||P[A,B](y − Aa − Bb)||2Qyy

=
||PB̄(y−Bb)||2Qyy

+||PA(y− Aa−Bb)||2Qyy
= ||b̂−b||2Qb̂b̂

+||â(b)−
a||2Qâ(b)â(b)

min
a∈Zn ,b∈Rp

F(a, b) = P (
ǎ
) = D

(
b̌
)

(15)

The first route is the one described in the previous section.
The second route is the object of study of the present contri-
bution.

3.2 The dual objective function

If the parameters of interest are not the ambiguities, but rather
the entries of b, it seems that working with the dual func-
tion D(b) is a natural way to go. To determine an explicit
expression for D(b), it is useful to start from the orthogo-
nal decomposition (6), but now with the roles of a and b
interchanged, i.e.

F(a, b) = ||b̂ − b||2Qb̂b̂
+ ||â(b) − a||2Qâ(b)â(b)

(16)

where â(b) = â − Qâb̂Q
−1
b̂b̂

(b̂ − b), Qb̂b̂ = (B̄T Q−1
yy B̄)−1,

and Qâ(b)â(b) = (AT Q−1
yy A)−1. For the geometry of the pri-

mal and dual orthogonal decompositions, see Fig. 1. We can
now obtain the following representations of the dual function
D(b).

Lemma 1 (Dual objective function): Let Sz = {x ∈
R
n| ||x − z||2Qâ(b)â(b)

≤ ||x − u||2Qâ(b)â(b)
, ∀u ∈ Z

n} be the

ILS pull-in regions of Qâ(b)â(b), having sz(x) as its indicator
function, i.e. sz(x) = 1 if x ∈ Sz and sz(x) = 0 otherwise.
Then

D(b) = min
a∈Zn

F(a, b)

= ||b̂ − b||2Qb̂b̂
+ ||â(b) − ǎ(b)||2Qâ(b)â(b)

= ||b̂ − b||2Qb̂b̂
+ ∑

z∈Zn
||â(b) − z||2Qâ(b)â(b)

sz(â(b))
(17)

where

ǎ(b) = arg min
a∈Zn

||â(b) − a||2Qâ(b)â(b)
(18)

�

This shows that the dual functionD(b) is a sum of two func-
tions in b,

D(b) = ||b̂ − b||2Qb̂b̂︸ ︷︷ ︸
D1(b)

+ ||â(b) − ǎ(b)||2Qâ(b)â(b)︸ ︷︷ ︸
D2(b)

(19)

As the second function D2(b) is formed from solving again
an ILS problem, one may wonder whether anything would
be gained by working with the dual D(b), in particular if
we also note that the ILS problem of (18) needs to be re-
evaluated for every different value of the unknown b. A
comparison of the two ILS problems, (3) and (18), shows
however that the second is formulated with respect to the
conditional variance matrix Qâ(b)â(b) and not with respect
to Qââ as is the case with (3). Although both ILS problems
can be solved efficiently by means of the LAMBDA method
(Teunissen 1995), we recall that herein the two dominant

123



Primal and dual mixed integer… Page 5 of 26    63 

computational components are (1) the Z -decorrelation, and
(2) the ellipsoidal integer search. Hence, if the structure of
the conditional vc-matrix Qâ(b)â(b) is such that one or both of
these components can be skipped or simplified, then work-
ing with the dual D(b) could perhaps become attractive in
some instances. For instance, if Qâ(b)â(b) is diagonal, ǎ(b)
equals the component-wise rounded version of â(b), and
both components can be avoided. Diagonality of Qâ(b)â(b)

happens when the columns of A are mutually orthogonal in
the metric of Qyy . In the realm of GNSS, this is the case
with the multi-frequency geometry-free GNSS model. Ease
of computation would also be present if ǎ(b) would only be
moderately dependent on b. To provide insight into this, we
consider the probability mass function of ǎ(b) and in partic-
ular its success-rate P[ǎ(b) = a].

3.3 Probability mass function of ǎ(b)

For every b that we need to evaluate D(b), we need to
compute the integer estimate ǎ(b). The performance of this
integer estimator can be described by its probability mass
function (PMF).

Lemma 2 (PMF of ǎ(b)) The probability mass function of
ǎ(b) (cf. 18) is given as

P[ǎ(b) = z] = P[â(b) ∈ Sz]
= ∫

Sz
fâ(b)(x)dx, ∀z ∈ Z

n (20)

with pull-in regions Sz = {x ∈ R
n | ||x − z||2Qâ(b)â(b)

≤
||x − u||2Qâ(b)â(b)

, ∀u ∈ Z
n} and the PDF fâ(b)(x) of â(b)

given as

â(b) ∼ Nn
(
a + Δa, Qâ(b)â(b)

)
(21)

where Δa = −Qâb̂Q
−1
b̂b̂

Δb, with Δb = E(b̂) − b. �

ThePMFof ǎ(b) (cf. 20) is driven by the PDFof â(b) (cf. 21).
Its ambiguity success-rate can be evaluated with the bounds
of Teunissen (2001) or with the simulation algorithms pro-
vided in Ps-LAMBDA (Verhagen et al. 2013). The PDF of
â(b) is usually very peaked, especially in case of GNSS
where we have Qâ(b)â(b) � Qââ due to the very precise
phase data. Would this peakedness of the PDF be such that it
is located over only a single pull-in region, saySu , u ∈ Z

n ,
for a certain b, then the PMF of ǎ(b) could be well approxi-
mated for that value of b by a Kronecker delta function,

P[ǎ(b) = z] ≈ δuz =
{
1 if z = u
0 if z �= u

(22)

The ambiguity success-rate of ǎ(b) would then be large, i.e.
P[ǎ(b) = a] ≈ 1, if u = a. For this to happen however,

we need a + Δa ∈ Sa , i.e. the bias in â(b) needs to be
sufficiently small, with Δa residing in ǎ(b)’s pull-in region
of the origin, Δa ∈ S0. For the squared Qâ(b)â(b)-weighted
norm of this ambiguity bias we have the following result.

Lemma 3 (Bias of â(b)) Let Δa = −Qâb̂Q
−1
b̂b̂

Δb. Then

||Δa||2Qâ(b)â(b)
= ||PABΔb||2Qyy

≤ ||Δb||2Qb̂(a)b̂(a)

(23)

�

Proof see Appendix. ��
This result shows that for the to be accounted range of b-
values, one can generally not expect the bias Δa to be small
enough such that Δa ∈ S0. It would namely require knowl-
edge of b such that Δb = E(b̂) − b is sufficiently small
with respect to the phase-driven, small standard deviations
of b̂(a). Such can only be expected in a model having strong
a-priori constraints on b. As the following example demon-
strates, this cannot be expected from a regular unconstrained
GNSS model.

Example 1 Consider the single-frequency, single epoch, sin-
gle baseline, double-differenced (DD),m+1 satellite GNSS
model

E
[
p
φ

]
=

[
0 DTG
λIm DT G

] [
a
b

]
,D

[
p
φ

]

=
[

σ 2
p D

T D 0
0 σ 2

φ D
T D

]
(24)

with p, φ ∈ R
m the DD pseudorange and carrier-phase data

vectors, λ the wavelength, DT = [−em, Im] the differencing
matrix,G ∈ R

(m+1)×3 the receiver-satellite geometrymatrix,
and σ 2

p, σ
2
φ the variances of the single-differenced pseudor-

anges and carrier-phases. For this model the variance matrix
of â(b) and its bias work out to be

Qâ(b)â(b) =
(
AT Q−1

yy A
)−1 = σ 2

φ

λ2
DT D

Δa =
(
AT Q−1

yy A
)−1

AT Q−1
yy BΔb = 1

λ
DTGΔb

(25)

Recognizing that the rows of DTG consist of differences
of the rows of G and that each row of G consists of a unit
direction vector, the entries ofΔa can be bounded fromabove
as |(Δa)i | ≤ 2

λ
||Δb||, i = 1, . . . ,m. This shows, as λ ≈

20cm in case of GNSS, that Δb = E(b̂) − b has to be very
small indeed to ensure that |(Δa)i | stays below the subcycle
level. ��
As the above has demonstrated, without strong a-priori con-
straints on b, one cannot expect the success-rate of ǎ(b) to

123



   63 Page 6 of 26 P. J. G. Teunissen, L. Massarweh

be large. That is, despite the high precision of the conditional
estimate â(b), the influence of the unknown b is still too large
to have ǎ(b) = a with high probability. This implies that one
will have to evaluate D2(b) = ||â(b) − ǎ(b)||2Qâ(b)â(b)

for a
range of values of b and thus also solve as many ILS prob-
lems. It would therefore be beneficial, in case solving the
ILS-problem is too time-consuming, if we could replace the
evaluation ofD2(b)with a simpler one, without affecting the
performance of the whole estimation process by much. One
can ask oneself for instance, whether one can take advantage
of the peakedness of the PDF of â(b) and replace the ILS
estimator ǎ(b) by the integer-rounding (IR) estimator �â�,
without a serious degradation in performance. Such would
be possible if ’all’ probability of the PDF of â(b) would be
concentrated in the intersections of the ILS and IR pull-in
regions, which would require a + Δa ∈ Su ∩ Ru , with
Ru denoting the integer-rounding pull-in region of u ∈ Z

n .
However, such assumption cannot be generally valid, as by
changing b in Δa = −Qâb̂Q

−1
b̂b̂

Δb, one would also be able
to pull a + Δa out of such intersectionSu ∩Ru . It is there-
fore of importance, if one would replace the evaluation of
D2(b) by a simpler one, that one at the same time also has
the ability to give a rigorous evaluation of the performance
of such simplification. In the following we introduce two
different simplifications of D(b) and study the probabilistic
properties of their minimizers.

4 Dual with approximate weight matrix

In this and the next section we study the properties of the
baseline- and ambiguity estimators when one works, instead
with the dual D(b), with easier-to-compute approximations
to it. The two types of approximation that we consider are,

(a) D◦(b) = ||b̂ − b||2Qb̂b̂
+ min

a∈Zn
||â(b) − a||2Q◦

â(b)â(b)

(b) D•(b) = ||b̂ − b||2Qb̂b̂
+ ||â(b) − I•(â(b))||2Qâ(b)â(b)

(26)

In the first type, we have replaced the conditional variance
matrix Qâ(b)â(b) by an approximation Q◦

â(b)â(b), the idea
being that the approximation will then allow for a sim-
pler ambiguity minimization in (26a). For instance, when
Q◦

â(b)â(b) is chosen to be a diagonal matrix, the minimiza-
tion in (26a) reduces to a straightforward componentwise
integer rounding of â(b). In the second approximation type,
we have replaced the integer ambiguity minimizer ǎ(b) =
arg min

a∈Zn
||â(b) − a||2Qââ

of D2(b) (cf. 19) by an arbitrary

admissible integer estimator ǎ•(b) = I•(â(b)), I• : Rn �→
Z
n . This second type will be studied in the next section.
To determine the properties of the baseline estimator

b̌◦ = arg min
b∈Rp

D◦(b) and its corresponding integer ambiguity

estimator, we again make use of the correspondence between
the primal and dual formulations. The quadratic form iden-
tity, as provided by the following Lemma, forms the basis for
establishing this correspondence.

Lemma 4 Let the conditional ambiguity variance matrix
Qâ(b)â(b) in (16) be replaced by Q◦

â(b)â(b). Then

||b̂ − b||2Qb̂b̂
+ ||â(b) − a||2Q◦

â(b)â(b)

= ||â − a||2Q◦
ââ

+ ||b̂◦(a) − b||2Q◦
b̂(a)b̂(a)

(27)

with

Q◦
ââ = Q◦

â(b)â(b) + Qâb̂Q
−1
b̂b̂

Qb̂â

b̂◦(a) = b̂ − Qb̂â Q
◦−1
ââ (â − a)

Q◦
b̂(a)b̂(a)

= Qb̂b̂ − Qb̂â Q
◦−1
ââ Qâb̂

(28)

Proof see Appendix. ��
This result shows that replacing the variancematrix Qâ(b)â(b)

in D(b) (cf. 19) by Q◦
â(b)â(b) provides an objective function

of the type (6). It therefore again establishes a primal-dual
equivalence, but now one that is driven by the approxi-
mate dual function D◦(b). Note that the single replacement
Qâ(b)â(b) → Q◦

â(b)â(b) resulted in three changes of the

primal formulation: Qââ → Q◦
ââ , b̂(a) → b̂◦(a), and

Qb̂(a)b̂(a)
→ Q◦

b̂(a)b̂(a)
. These changes will therefore also

drive the properties of the corresponding baseline- and inte-
ger ambiguity estimators. Using the quadratic identity (27),
the following equivalence for the minimizer ofD◦(b) can be
established.

Theorem 3 Let the approximate dual be given as

D◦(b) = ||b̂ − b||2Qb̂b̂
+ ||â(b) − ǎ◦(b)||2Q◦

â(b)â(b)
(29)

with ǎ◦(b) = arg min
a∈Zn

||â(b) − a||2Q◦
â(b)â(b)

. Then the corre-

sponding primal is P◦(a) = ||â − a||2Q◦
ââ

and the minimizer

b̌◦ of D◦(b), with corresponding integer ambiguity solution
ǎ◦, satisfies the primal-dual equivalence,

ǎ◦ = arg min
a∈Zn

P◦(a)

b̌◦ = b̂◦(ǎ◦)

}

⇔
{
b̌◦ = arg min

b∈Rp
D◦(b)

ǎ◦ = ǎ◦(b̌◦)
(30)

Proof see Appendix. ��
This equivalence can now be used to apply available theory
for the primal formulation to determine the distributional
properties of the estimators ǎ◦ and b̌◦. It should hereby be
noted, however, although ǎ◦, like ǎ, is still computed as the
solution of an ILS-problem having â as its input, the weight
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matrix used is now different, Q◦−1
ââ instead of Q−1

ââ . Also

note, although b̂◦(a) has the same structure as b̂(a), that â is
now not independent of b̂◦(a). The matrix Q◦

b̂(a)b̂(a)
of (28)

is therefore not the variance matrix of b̂◦(a). We have the
following distributional result.

Theorem 4 (Distributions of ǎ◦and b̌◦) With the PDF of â ∼
Nn(a, Qââ) denoted as fâ(α), the PMF of the ambiguity
estimator ǎ◦ is given as

ǎ◦ ∼ P[ǎ◦ = z] = ∫
P◦

z
fâ(α)dα, with

P[ǎ◦ = a] ≤ P[ǎ = a] (31)

and the limiting PDF of the baseline estimator b̌◦ is given as

lim
P[ǎ◦=a]↑1

b̌◦ ∼ Np(b, Qb̂◦(a)b̂◦(a)
), with

Qb̂◦(a)b̂◦(a)
= Qb̂(a)b̂(a)

+ Tb̂â QââT
T
b̂â

≥ Qb̂(a)b̂(a)

(32)

whereP◦
z =

{
x ∈ R

n| ||x − z||2Q◦
ââ

≤||x − u||2Q◦
ââ

, ∀u∈Z
n
}

and Tb̂â = Qb̂â

[
Q−1

ââ − Q◦−1
ââ

]
. �

Proof See Appendix. ��
The above result shows that replacing Qâ(b)â(b) by Q◦

â(b)â(b)
will always degrade the performance of the associated esti-
mators. It will give a smaller ambiguity success-rate (cf. 31),
as well as a poorer precision of the ambiguity-fixed baseline
(cf. 32). Still, depending on the choice made for Q◦

â(b)â(b),
the degradation could be acceptably small, depending on the
application.

To evaluate the success-rate P[ǎ◦ = a], the multivariate
integral of (31) needs to be computed. This is a nontrivial
numerical task due to the geometric complexity of the pull-
in regionP◦

a , over which the integration needs to be carried
out. One approach is to rely on simulation, whereby the Ps-
LAMBDA simulation tools of (Verhagen et al. 2013) can
be used. Note hereby, that the success-rate P[ǎ◦ = a] is
driven by both Qââ and Q◦

ââ , i.e. by the ambiguity variance
matrix that determines fâ(α) and by its approximation that
determines the pull-in region P◦

a .
The following is such example where the two success-

rates P[ǎ = a] and P[ǎ◦ = a] are compared.

Example 2 Consider the GNSS model of Example 1 (cf. 24)
and assume that in solving the dual problem we approximate

the fully populated variance matrix Qâ(b)â(b) = σ 2
φ

λ
DT D

with the diagonal matrix Q◦
â(b)â(b) = 2

σ 2
φ

λ
Im . Then, with

Qâb̂Q
−1
b̂b̂

Qb̂â = σ 2
p

λ2
DTG

[
GT PDG

]−1
GT D and PD =

D(DT D)−1DT , we get

Q◦
ââ = 1

λ2

(
2σ 2

φ Im + σ 2
p D

T G
[
GT PDG

]−1
GT D

)
(33)

With reference to Theorem 4 (cf. 31), Fig. 2 compares the
two success-rates P[ǎ = a] and P[ǎ◦ = a], based on (33),
for a case of single-epoch, single-frequency L1 GPS, using a
10−4 phase-code variance ratio. It shows indeed that P[ǎ◦ =
a] ≤ P[ǎ = a], but also that P[ǎ◦ = a] can still be acceptably
large for some measurement scenarios. ��
Instead of simulation, success-rate bounds may sometimes
be used as an alternative. Upper-bounds are then useful
to identify when successful ambiguity resolution would be
problematic, while lower-bounds are useful to identify when
to expect successful ambiguity resolution. As upper-bound
of P[ǎ◦ = a], one may directly use the ILS success-rate
P[ǎ = a] (cf. 31), or alternatively, any of its simpler to com-
pute upper-bounds given in (Teunissen 2000a;Verhagen et al.
2013). The following Theorem provides two lower-bounds
on the ambiguity success-rate of ǎ◦.

Theorem 5 (Success-rate lower-bounds) Let â ∼ Nn(a, Qââ)

and ǎ◦ = arg min
a∈Zn

||â − a||2Q◦
ââ
. Then the success-rate of ǎ◦

can be lower-bounded as follows:

(i) If Q◦
ââ ≥ Qââ , then

n∏

i=1

[2Φ
(

1
2
√
di

)
− 1] ≤ P[ǎ◦ = a] (34)

where D = diag(d1, . . . , dn) is the diagonalmatrix of the
triangular decomposition Q◦

ââ = LDLT and Φ(x) =∫ x
−∞

1√
2π

exp(− 1
2v

2)dv.

(ii) For any Q◦
ââ > 0,

P[χ2(0, n) ≤ r2] ≤ P[ǎ◦ = a] (35)

with

⎧
⎪⎨

⎪⎩

r2 = λmin × 1
4 min
z∈Zn/{0} ||z||2Q◦

ââ

λmin = min
x∈Rn

xT Q◦
ââ x

xT Qââ x

(36)

Proof see Appendix ��
Note that lower-bound (34) is somewhat easier to compute
than (35). It requires however that Q◦

ââ ≥ Qââ , while no
such restriction is placed on the lower-bound (35). Also note,
although both lower-bounds are here presented in the context
of the primal-dual formulations, that they are in fact success-
rate lower-bounds of improperly weighted ILS-estimators,
i.e. ILS-estimators that not use the inverse variance-matrix
as their weight-matrix. They can therefore also be used more
generally for studying the impact misspecifications in the
stochastic model have on the success-rate.
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Fig. 2 Comparison of P[ǎ◦ = a] with P[ǎ = a] as described in Example 2, based on the GNSS model of Example 1. The plot on the right side
shows a zoom-in of the left one

5 Dual with approximate integer map

In this section we consider the second approximation of the
dual function, D•(b) (cf. 26), and determine the statistical
properties of its minimizer.

5.1 Theminimizer ofD•(b)

The approximationD•(b) ofD(b) is a result of replacing the
integer vector ǎ(b) = arg min

z∈Zn
||â(b)− z||2Qâ(b)â(b)

inD(b) by

the integer vector I•(â(b)), for which I• : Rn �→ Z
n may

be chosen as any member from the class of admissible inte-
ger estimators, such as, for instance, integer rounding (IR),
integer bootstrapping (IB), integer least-squares (ILS) or vec-
torial integer bootstrapping (VIB) (Teunissen et al. 2021).
The following theorem provides the solution of minimizing
D•(b).

Theorem 6 (Minimizer of D•(b)) Let I• : R
n �→ Z

n be
any admissible integer estimator. Then the minimizer b̌• =
arg min

b∈Rp
D•(b) of the approximate dual

D•(b) = ||b̂ − b||2Qb̂b̂
+ ||â(b) − I•(â(b))||2Qâ(b)â(b)

(37)

is given as

b̌• = b̂(ǎ•), with ǎ• = arg min
z∈Ω•

â

||â − z||2Qââ
(38)

where

Ω•
â = {z ∈ Z

n| z = I•(â + Mβ), ∀β ∈ R
p} (39)

with M = Qâb̂Q
−1
b̂b̂

∈ R
n×p.

Proof see Appendix. ��

Note, in contrast to the baseline estimator b̌◦ (cf. 30), that
the baseline estimator b̌• (cf. 38) is based, like the estima-
tor b̌ (cf. 4), on the conditional LS baseline mapping b̂(a).
However, b̌ and b̌• make use of different integer ambigu-
ity estimators in general. Although the integer estimator ǎ•
(cf. 38) has the appearance of a standard ILS-estimator,
it is generally not, unless of course I•(x) is chosen as
I•(x) = arg min

z∈Zn
||x − z||2Qâ(b)â(b)

, in which case ǎ• = ǎ,

since then D•(b) = D(b).
The difference between the two integer estimators ǎ and ǎ•

is driven by the characteristics of the integer set Ω•
â (cf. 39),

which on its turn is driven by the n × p matrix M in

â(β) = â + M(β − b̂) (40)

The following three cases can be discriminated:

(1) â(β) ≡ â if M = 0, i.e. Qâb̂ = 0 or AT Q−1
yy B = 0

(2) â(β) describes a linear manifold if rank(M) < n
(3) â(β) covers the whole of Rn if rank(M) = n

Case (1) happens if the estimators â and b̂ are uncorrelated.
As the integer set (39) reduces then to the single integer vector
Ω•

â = {z = I•(â)}, we have in that case ǎ• = I•(â). In case
(2), the subsetΩ•

â contains all integer vectors to which I•(x)
is mapped when x varies along the rank(M)-dimensional
linearmanifold (40). This is shown inFig. 3(Top)whenI•(x)
represents integer rounding and n = 2, p = 1, in which case
the pull-in regions ofI•(x) are unit-squares centred at integer
grid points. As Ω•

â �= Z
n , we have ǎ• �= ǎ in case (2). In

case (3), the invertibility of matrix M implies that the whole
R
n is integer-mapped by I•(x), thus giving Ω•

â = Z
n . This

shows that ǎ• = ǎ in case (3).
Note, as rank(M) ≤ min(n, p), that case (3) can only

happen if p ≥ n. Hence, since p < n in most GNSS models,
the equality of the two estimators, ǎ• and ǎ, is very unlikely
in case of GNSS. Although the two estimators ǎ• and ǎ are

123



Primal and dual mixed integer… Page 9 of 26    63 

Fig. 3 (Top) The integer set Ω•
â = {z ∈ Z

n | z = I•(â + Mβ), ∀β ∈
R

p} for n = 2, p = 1, and I(.) = �.�; (Centre) The real-valued set
Ω̄•

z = {x ∈ R
n | z = I•(x + Mβ), ∃β ∈ R

p} for n = 2, p = 1;
(Bottom) The integer set Φ•

z = {u ∈ Z
n | u = I•(x + Mβ), x ∈

Ω̄•
z , ∀β ∈ R

p} for n = 2, p = 1

then generally different, their integer sample outcomes can,
of course, sometimes be the same. This happens when the
outcome of ǎ lies in Ω•

â .

5.2 A qualitative comparison of ǎ• and ǎ

We now compare the two integer estimators for case (2),
i.e. when â(β) describes a linear manifold of dimension
rank(M) < n and ǎ• �= ǎ.

To aid the comparison between ǎ• and ǎ, we first introduce
the ambiguity search space

Eâ =
{
z ∈ Z

n| ||â − z||2Qââ
≤ χ2

}
(41)

where χ2 is assumed chosen such that ǎ ∈ Eâ (note: for any
integer z0 ∈ Z

n , e.g. z0 = �â�, the value χ2 = ||â − z0||2Qââ
satisfies this assumption). With the help of Eâ we may write
ǎ = arg min

u∈Zn
||â − u||2Qââ

in a similar form as that of ǎ•. We

therefore have

ǎ = arg min
u∈Eâ

||â − u||2Qââ

ǎ• = arg min
u∈Ω•

â

||â − u||2Qââ

(42)

which shows that the two estimators can be compared by
comparing their respective search spaces, Eâ vs Ω•

â . For Ω•
â

we have

Ω•
â = {

z ∈ Z
n| z = I•(â + Mβ), ∀β ∈ R

p} (43)

For Eâ we may write, with the help of M = Qâb̂Q
−1
b̂b̂

and

Qââ = Qâ(b)â(b) + MQb̂b̂M
T ,

Eâ =
{
z ∈ Z

n| (â − z)T
[
Qâ(b)â(b) + MQb̂b̂M

T
]−1

(â − z) ≤ χ2
}

(44)

We can now compare the two integer sets (43) and (44). We
will do so, for two extreme cases.

Case (a) : Qâ(b)â(b) = small and Qb̂b̂ = large (45)

This is the typical ‘GNSS case’, in particular for instanta-
neous positioning. As the very precise carrier phase data do
not contribute to the determination of b in case of a single
epoch, the precision of b̂ is solely driven by the noisy pseu-
dorange data and Qb̂b̂ = large. Would b be known, then it
are the very precise carrier phase data that predominantly
determine the ambiguities and Qâ(b)â(b) = small.

When (45) is true, the ellipsoidal search space Eâ (cf. 44)
will have an extreme elongation in the directions of the range
space of M and therefore closely resemble the integer set
Ω•

â , which, afterall, is constructed from integer mapping the
points of the linear manifold â + Mβ. Under case (a) one
can therefore expect the two estimators to be not too dif-
ferent, i.e. sample values of the ILS-estimator ǎ ∈ Eâ will
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not rarely be inside Ω•
â as well. We hereby note that the

GNSS-typical extreme elongation of Eâ results in integer
search-halting when solving for ǎ. Resolving this bottleneck
was the motivation for developing LAMBDA. By means of
its decorrelating Z-transformation, the discontinuity in the
spectrum of sequential conditional ambiguity variances is
largely removed and search-halting avoided, see (Teunissen
1995).

Case (b) : Qâ(b)â(b) = large and Qb̂b̂ = small (46)

Now we have a different situation, which in GNSS-
terminology could be described as having ultra-precise pseu-
dorange data and very poor carrier-phase data. In such
case the shape of the ellipsoidal search space Eâ is pri-
marily driven by Qâ(b)â(b), implying that its shape will
now generally not be aligned with Ω•

â . And this will even
be more so if the ellipsoidal search space would have its
elongation orthogonal to the range space of M . In this
case one would expect the two estimators, ǎ• and ǎ, to
have different performances, i.e. sample values of the ILS-
estimator ǎ ∈ Eâ are then not likely to reside inside Ω•

â as
well.

5.3 The pull-in regions of ǎ•

In order to study the statistical properties of ǎ• and b̌•, it is
useful to first determine the pull-in regions of ǎ•. As the pull-
in region P•

z of ǎ• is the region in which the float solution
â gets mapped to z ∈ Z

n , we have

P•
z =

{
x ∈ R

n| z = arg min
u∈Ω•

x

||x − u||2Qââ

}
(47)

To further characterize this region, we recognize that the
choice of z ∈ Z

n , i.e. the integer-vector for which the pull-in
region is described, already constrains the values of x ∈ R

n

to a subset. As z has to lie in Ω•
x , the choice of z implies the

following subset for the values of x ,

Ω̄•
z = {

x ∈ R
n| z = I•(x + Mβ), ∃β ∈ R

p} (48)

This is the set of x-values for which a β ∈ R
p exists, such

that x + Mβ gets mapped by I•(.) to z, see Fig. 3(Middle).
With the help of the region Ω̄•

z we can now characterize
the whole integer set that is in play in the minimization of
(47). As P•

z is characterized by the minimization of ||x −
u||2Qââ

over the integer subset Ω•
x , while, at the same time,

this is constrained to all x ∈ Ω̄•
z , the integer set considered

is actually

Fig. 4 For p = 1, n = 2, the pull-in regionsP•
z of the integer ambigu-

ity estimator ǎ• are shown, i.e. the regions where float ambiguity values
are mapped to the same integer vector z ∈ Z

n . In green colour, theP•
0

region is depicted for z = 0, surrounded by similar regions (in grey)
for z �= 0. The top plot shows a comparison with ILS pull-in regions,
with the integer set Ω•

0 depicted through encircled gridpoints; the bot-
tom plot shows a zoom-inP•

0 of ǎ• together with the (lower) bounding
ellipse E0 (cf. proof of Theorem 7)

Φ•
z = {

u ∈ Z
n| u = I•(x), ∀x ∈ Ω̄•

z

}
(49)

It consists of all integer vectors to which the elements of Ω̄•
z

are mapped by I•(.), see Fig. 3(Bottom).
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With the above three constructed sets, Ω•
x ⊂ Z

n , Ω̄•
z ⊂

R
n , and Φ•

z ⊂ Z
n , we have the following three representa-

tions of the pull-in regions of ǎ•.

Lemma 5 (Representations of pull-in regionP•
z ) The pull-in

regions P•
z , z ∈ Z

n, of ǎ• can be represented, with

Ω•
x = {z ∈ Z

n| z = I•(x + Mβ), ∀β ∈ R
p}

Ω̄•
z = {x ∈ R

n| z = I•(x + Mβ), ∃β ∈ R
p}

Φ•
z = {

u ∈ Z
n| u = I•(x), ∀x ∈ Ω̄•

z

}

as

P•
z =

{
x ∈ R

n| z = arg min
u∈Ω•

x

||x − u||2Qââ

}

=
{
x ∈R

n| ||x − z||2Qââ
≤||x − I•(y)||2Qââ

,∀y∈Ω̄•
z

}

=
{
x ∈ R

n| ||x − z||2Qââ
≤ ||x − u||2Qââ

, ∀u ∈ Φ•
z

}

(50)

�

We can now use these pull-in representations to show that
ǎ• is an admissible integer estimator. Recall that an integer
estimator is said to be admissible if its pull-in regions are
translational invariant and cover the whole spaceRn without
gaps and overlaps (Teunissen 2002).

Lemma 6 (Admissible integer estimator ǎ•) The integer esti-
mator ǎ• is admissible as its pull-in regions satisfy

(i) ∪
z∈Zn

P•
z = R

n

(i i) P•
z1 ∩ P•

z2 = ∅, ∀z1 �= z2
(i i i) P•

z = P•
0 + z, ∀z ∈ Z

n

(51)

Proof see Appendix. ��
The admissibility property implies that if y is perturbed by
Az to give y′ = y+ Az, the ambiguity float solution changes
from â = Ā+y to â′ = Ā+(y+ Az) = â+ z, and the integer
ambiguity solution from ǎ• to ǎ′• = ǎ• + z. Hence, this
provides the pleasant property, that if one wants to work with
managable numbers, one can subtract arbitrary integers from
the ambiguity float solution and still get the correct integer
solution by restoring the subtracted integer at the end, i.e. if
â′ = â − z then ǎ• = ǎ′• + z.

Figure 4 shows, for n = 2 and p = 1, an example of
the pull-in regions P•

z of the integer ambiguity estimator
ǎ•. The choice made for the integer map I• : Rn �→ Z

n is
in this case integer-rounding, i.e. I•(x) = �x�. The encir-
cled integer gridpoints constitute the integer set Ω•

x=0 (cf.
Lemma 5) and the line through the origin has M = Qâb̂Q

−1
b̂b̂

as its direction vector. For comparison also the hexagonian
ILS pull-in regions of ǎ are shown, thus illustrating the close
overlap between the two types of pull-in regions.

5.4 Distributions of ǎ• and b̌•

With the knowledge that the integer estimator ǎ• is admissi-
ble, we can now apply existing theory of Teunissen (1999b)
to determine the distributions of ǎ• and b̌•.
Corollary (Distributions of ǎ•and b̌•): Let fâ(α) be the
PDF of â ∼ Nn(a, Qââ) and fb̂(z)(β) be the PDF of

b̂(z) ∼ Np(b − Qb̂â Q
−1
ââ (a − z), Qb̂(a)b̂(a)

). Then, as ǎ• is

an admissible integer estimator and b̌• = b̂(ǎ•), their PMF
and PDF follow from (Teunissen 1999b) as

⎧
⎨

⎩

P[ǎ• = z] = ∫
P•

z
fâ(α)dα

fb̌•(β) = ∑

z∈Zn
fb̂(z)(β)P[ǎ• = z] (52)

�
This result shows that the distribution of the ambiguity
resolved baseline b̌• can be approximated well by the peaked
PDF Np(b, Qb̂(a)b̂(a)

) if the ambiguity success-rate P[ǎ• =
a] is sufficiently close to one. Verification whether or not the
success-rate is large enough can be done by simulation or by
using the following lower-bound.

Theorem 7 (Lower-boundofP[ǎ• = a]) Let â ∼ Nn(a, Qââ)

and ǎ• = arg min
z∈Ω•

â

||â − z||2Qââ
, with Ω•

â = {u ∈ Z
n| u =

I•(â + Qâb̂Q
−1
b̂b̂

β), ∀β}. Then

P
[
χ2(0, n) ≤ r2

]
≤ P[ǎ• = a] (53)

with r2 = 1
4 min
z∈Zn/{0} ||z||2Qââ

.

Proof see Appendix. ��

6 On themultimodality ofD(b)

So far we studied the distributional properties of the esti-
mators that follow from the dual formulation. A convergent
algorithm for actually computing these estimators has how-
ever not been developed yet. To be able to do so, it is
useful to first illustrate some insightful characteristics of
the dual function. To highlight some of its characteristics,
we start with the simple one-dimensional case n = p =
1. The two components of D(b) (cf. 19) simplify then
to

D1(b) = ||b̂ − b||2Qb̂b̂
= (b̂ − b)2/σ 2

b̂

D2(b) = ||â(b)−ǎ(b)||2Qâ(b)â(b)
=(

â(b) − �â(b)�)2 /σ 2
â(b)

(54)
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Fig. 5 The dual function D(b) for n = p = 1, σ 2
b̂

= 2.22, σ 2
â = 0.152 and ρâb̂ = 0.5 (left), ρâb̂ = 0.9 (right)

For the second component, we may write D2(b) = (â(b) −
z)2/σ 2

â(b) if â(b) ∈ [z − 1
2 , z + 1

2 ]. Since â(b) = â −
σâb̂σ

−2
b̂

(b̂ − b), we have the equivalence

â(b) ∈ [
z − 1

2 , z + 1
2

] ⇔ b ∈ [
b(z) − 1

2Δ, b(z) + 1
2Δ

]

(55)

where b(z) = b̂ + (z − â)Δ and Δ = σ 2
b̂
/σâb̂ (note: b(z)

should here not be confused with b̂(z)). Using this equiva-
lence one can show that the sum of D1(b) and D2(b) can be
written as

D(b) = σ−2
b̂

{

(b̂ − b)2 +
ρ2
âb̂

1 − ρ2
âb̂

(b(z) − b)2
}

(56)

for b ∈ [b(z) − 1
2Δ, b(z) + 1

2Δ], z ∈ Z, where ρâb̂ denotes

the correlation coefficient of â and b̂. ThusD(b) is the sum of
a parabolasD1(b) = (b̂−b)2/σ 2

b̂
and an infinite z-sequence

of equally shaped parabola D2(b) = ρ2
âb̂

1−ρ2
âb̂

(b(z) − b)2/σ 2
b ,

centred at b(z) andwith domain b ∈ [b(z)− 1
2Δ, b(z)+ 1

2Δ].
Equation (56) shows that the contributionofD2(b) toD(b)

is driven by the correlation coefficient ρâb̂; it is small if the
correlation is small and it gets larger the closer the correlation
coefficient gets to one. An illustration ofD(b), together with
its two components D1(b) and D2(b), is given in Fig. 5 for
two different values of the correlation coefficient, ρâb̂ = 0.5
and ρâb̂ = 0.9. It shows that D(b) is a multimodal function

of which the multimodality, with its multiple local minima,
gets more pronounced the larger the correlation coefficient
gets, i.e. the more weight is given to D2(b) in the sum of
D(b). Figure 6 illustrates the multimodality ofD(b) for p =
1 and n = 2, with diagonal (left) and nondiagonal (right)
conditional ambiguity variance matrix. The multiple local
minima of D(b) and also the domain in which its global
minimizer is guaranteed to reside, are given by the following
Lemma.

Lemma 7 (Local minimizers and global domain)

(a) The local minimizers and corresponding minima ofD(b)
are

⎧
⎨

⎩

b̂(z) = arg min
â(b)∈Sz

D(b)

D(b̂(z)) = ||â − z||2Qââ
, ∀z ∈ Z

n
(57)

(b) The global minimizer of D(b),

b̌ = arg min
b∈Rn

D(b) ∈ E(rz), z ∈ Z
n (58)

resides in the ellipsoidal region E(rz) = {b ∈ R
n | ||b̂ −

b||2Qb̂b̂
≤ r2z }, for all z ∈ Z

n, with r2z = ||â − z||2Qââ
.

�

Proof First we prove (57). For â(b) ∈ Sz , we have ǎ(b) = z,
and therefore
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Fig. 6 The dual function D(b) for p = 1 and n = 2, with diagonal (left plot) and nondiagonal (right plot) conditional ambiguity variance matrix,
having 0.8 correlation

D(b) = ||b̂ − b||2Qb̂b̂
+ ||â(b) − z||2Qâ(b)â(b)

= ||â − z||2Qââ
+ ||b̂(z) − b||2Qb̂(a)b̂(a)

(59)

showing that its local minimizer and minimum are given by
(57). That no otherminima exist ofD(b) follows from the fact
that the pull-in regionsSz partition Rn , ∀z ∈ Z

n (Teunissen
1999a). The proof of (58) follows by recognizing that as the
global minimizer b̌ is one of the local minimizers, b̌ resides
in the set {b ∈ R

p | D(b) ≤ ||â − z||2Qââ
}, and thus also in

the larger set Ez . ��

This result shows the size of the local minima and where they
are located in b-space R

p, but it does not show how their
global minimum can be obtained, other then that it is con-
fined to E(rz). Due to the presence of this multimodality of
D(b), one can therefore not expect standard iterative descent
techniques (Teunissen 1990) to be successful for finding its
globalminimum b̌.Wewill therefore have to develop a global
algorithm dedicated to D(b).

7 Global minimization of dual

In this section we present our proposed method for finding
the global minimizer b̌ of the dual functionD(b). According
to Lemma 7, we can confine the search for b̌ to a convex set
C ⊂ R

p, being either a suitably scaled ellipsoid E(r) = {b ∈
R

p| ||b̂ − b||2Qb̂b̂
≤ r2} or any other of its circumscribing

convex regions. The problem to be solved reads therefore

b̌ = arg min
b∈C⊂Rp

D(b) (60)

The challenge in solving this problem is due to the mul-
timodal dual function not being convex. Although various
heuristic and stochastic methods for the approximate com-
putation of nonconvex global minimizers exist (Zhigljavsky
1991; Horst et al. 2000; Pardalos and Romeijn 2002), we
choose to present a method that has finite termination with a
guaranteed ε-tolerance. Our method for solving (60) is con-
structed from the following three constituents:

1. Branch and bound (BB): Branch and bound algorithms
(Lawler andWood 1966; Balakrishnan et al. 1991; Guida
2015) are methods for globalminimization of nonconvex
problems. They are nonheuristic, in the sense that they
maintain a provable upper and lower bound on the global
minimum, i.e. they terminate with a guarantee that the
computed solution has a prescribed accuracy.

2. Convex relaxation: To be able to compute the required
lower bounds in the BB-algorithm, we construct differ-
entiable, convex lower bounding functions of D(b) over
convex sets. They are constructed such that the lower
bounds converge to the nonconvex dual function as the
convex sets shrink to a point.

3. Projected gradient descent (PGD): As our convex lower
bounding functions are only continuous differentiable
(i.e.C1-functions), the projectedgradient descentmethod
(Bertsekas 1999; Nocedal and Wright 2006) is used for
the computation of their convex constrained minima.
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We now describe each of these constituents and how they
interrelate and integrate.

7.1 Branch and bound (BB)

The basic idea of the BB-algorithm is

• to partition the initial box C ⊂ R
p in k boxes Bi ,

C = ∪k
i=1Bi (61)

• to find local lower and upper bounds of D(b) for each
box Bi ,

L(Bi ) ≤ min
b∈Bi

D(b) ≤ U (Bi ), (62)

• to form global bounds from the local bounds,

Lk ≤ min
b∈C

D(b) ≤ Uk (63)

where

Lk = min
i=1,...,k

L(Bi ) and Uk = min
i=1,...,k

U (Bi ) (64)

• to terminate if the difference of these bounds is small
enough, Uk − Lk ≤ ε, else to refine the partition and
repeat the process.

The efficacy of the BB-concept depends on the chosen
method of partitioning, on the sharpness of the bounds and
on the ease with which they can be computed. Importantly,
for convergence, the bounds should become tight as the box
shrinks to a point.

Although there exist a large variety of different BB-
mechanizations, we shall here restrict ourselves to the simple
approach where the partitioning of C ⊂ R

p is sequentially
constructed through a splitting in half of the boxes. So at the
first level, we start with the trivial partitioning, which is C
itself, and compute the lower and upper bounds L1 = L(C)

and U1 = U (C) (hence, these bounds are local and global at
the same time),

L1 = L(C) ≤ D(b̌) ≤ U1 = U (C) (65)

If U1 − L1 ≤ ε, the algorithm terminates. Otherwise we go
to the second iteration level and partition C into two boxes
C = B1 ∪ B2, and compute L(Bi ) and U (Bi ), i = 1, 2. The
splitting of the box is usually done along its longest edge.
Then we can construct new global lower and upper bounds,

min(L(B1), L(B2))︸ ︷︷ ︸
L2

≤ D(b̌) ≤ min(U (B1),U (B2))︸ ︷︷ ︸
U2

(66)

As both B1 and B2 are ’smaller’ than C (i.e. they are its
partition), one can generally expect the local bounds for Bi

to be sharper than the previous global bounds are for Bi . One
can therefore assume that the lower and upper bounds of the
pair of boxes obtained by splitting are noworse than the lower
and upper bounds of the box they were formed from.

If U2 − L2 < ε, the algorithm terminates. Otherwise, we
partition one of B1 and B2 into two boxes, to obtain a new
partition of C into three boxes, and we compute the local
lower and upper bounds for these new boxes. We then update
the global lower bound L3 as the minimum of the local lower
bounds over the partition of C, and similarly for the upper
bound U3. The choice which of the two boxes to split, B1 or
B2, is based on the value of their local lower bound. The box
to be split is the one of which the local lower bound equals
the global lower bound, i.e. the one that has the smallest local
lower bound. As at each iteration level a box is split into two,
we have after k iterations a partitioning of the form (61),
with associated global lower and upper bounds of D(b̌) as
given in (63), with Lk nondecreasing and Uk nonincreasing.
Note, although the choice of which box to split may not be
correct in the sense that it does not contain the solution b̌,
at a certain following stage the BB-algorithm will revisit the
nonselected box containing b̌ as its local lower bound will
then have become the smallest.

7.1.1 Initialization and bounds

To start the BB-algorithm, the initial box C needs to be
formed. We choose C to be the box

C =
{
b ∈ R

p| |bα − b̂α| ≤ rσb̂α
, α = 1, . . . , p

}
(67)

It follows from the ellipsoidal planes-of-support lemma that
the box C is circumscribed by the ellipsoid E(r) = {b ∈
R

p| ||b−b̂||2Qb̂b̂
≤ r2}, see, e.g. (Teunissen 1995). The scalar

r > 0 is a user-defined parameter. It can be set following
Lemma 7, or by choosing a user-defined confidence-level. In
the latter case, r2 = χ2

α(p, 0) correspondswith a confidence-
level 1 − α.
For the bounds we need to be able to compute upper and
lower bounds of minb∈B D(b) for any relevant box B that
the BB-algorithm creates. The computation of local upper
bounds U (B) is rather straightforward, since any b ∈ B can
be used for that purpose. We choose to compute the bound
as

U (B) = D(b∗) ≥ min
b∈B

D(b) (68)
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Fig. 7 a The function g(x) = (x − �x�)2 as a sequence of cut-off
parabolas on interval [zL − 1

2 , zU + 1
2 ]; b with its parabolic lower

bounding function; and c with its best possible, continuous differen-
tiable lower bounding convex function

with b∗ being the ’centre of gravity’ of the box, i.e. if box B
is bounded as bL � b � bU , then b∗ = 1

2 (bL + bU ).
The computation of local lower bounds L(B) is much more
involved. We cannot use standard gradient-based methods
for computing the minimizer, since D(b) is not convex and
convergence is therefore not assured. The idea is there-
fore to find a differentiable convex lower bounding function
DL(b) ≤ D(b), ∀b ∈ B such that the minimizer of DL(b)
overB can be computed with standard means and used as the
local lower bound

L(B) = min
b∈B

DL(b) ≤ min
b∈B

D(b) (69)

We now show how this can be achieved.

7.2 Convex relaxation

We will develop the convex relaxation for the dual function
D◦(x), as a similar approach can be developed for the other
dual versions, likeD•(x). Using the diagonal approximation
Q◦

â(b)â(b) = diag(σ 2
1 , . . . , σ 2

n ), the dual function (29) can be
written as

D◦(x) = ||b − b̂||2Qb̂b̂
+ G(b) (70)

with

G(b) = ∑n
i=1 g(xi )/σ

2
i

g(x) = (x − �x�)2
xi = âi (b) = âi + mT

i (b − b̂)
mT

i = cTi Qâb̂Q
−1
b̂b̂

ci = i th column of unit matrix In

(71)

Since the first term of (70) is already convex for the whole
space Rp, we can concentrate on the second term and try to
find a convex differentiable lower bounding function GL(b)
such that

GL(b) ≤ G(b), ∀b ∈ B (72)

Once this function is found, we have found the dual convex
lower bounding function asD◦

L(b) = ||b− b̂||2Qb̂b̂
+GL(b) ≤

D(b), ∀b ∈ B.
Note that the lack of convexity of G(b) is due to the single

function g(x), which itself is a sequence of cut-off parabolas,
see Fig. 7a. Hence, if we can find a convex lower bounding
function gL(x) of g(x) on the required interval, thenwe auto-
matically have constructed a convex GL(b) on the required
box B. To do so, we first need to construct the intervals of
âi (b), i = 1, . . . , n, that correspond with bL � b � bU .
As these n intervals will differ, the lower bounding functions
of g(x) on these intervals will differ as well. They will be
denoted as gi,L(x).

The interval [li , ui ] for which gi,L(x) has to be convex
As the function GL(b) = ∑n

i=1 gi,L(âi (b))/σ 2
i has to be

convex for the box bα,L ≤ bα ≤ bα,U , α = 1, . . . , p, the
functions gi,L(x) need to be convex for the intervals li ≤
ai (b) ≤ ui that correspond with this box. Application of
the projection-lemma from the Appendix shows the relation
between these intervals given as

bα,L ≤ bα ≤ bα,U ⇒ li ≤ âi (b) ≤ ui (73)

with

li = âi (0) +
p∑

α=1

(
−b̃α|miα| + b̄αmiα

)

ui = âi (0) +
p∑

α=1

(
+b̃α|miα| + b̄αmiα

) (74)
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Fig. 8 Four convex
differentiable lower bounding
functions (in red) of
g(x) = (x − �x�)2 on the
interval [l, u] ⊂ [z, z + 1],
z ∈ Z

where b̃α = 1
2 (bα,U − bα,L), b̄α = 1

2 (bα,U + bα,L), and
miα = cTi Qâb̂Q

−1
b̂b̂

cα .

Note that the widths of the baseline intervals bα,U − bα,L

propagate into the widths of the ambiguity intervals as
ui − li = ∑p

α=1(bα,U − bα,L)|miα|. Thus as the baseline
intervals get smaller due to the rectangular BB-splitting, the
corresponding ambiguity intervals get smaller as well, pro-
ducing in the limit, when bα,U = bα,L = b̌α , the result â(b̌).

As the BB-splitting acts on only one interval at a time,
we can now also show how this halfway splitting affects the
intervals [li , ui ]. Let the γ th interval [bγ,L , bγ,U ], with γ ∈
{1, . . . , p}be split halfway in [bγ,L , b̄γ ] and [b̄γ , bγ,U ]. Then
the new intervals [l1i , u1i ], corresponding with [bγ,L , b̄γ ], can
be expressed in the old as

l1i = li + 1
2 b̃γ

(|miγ | − miγ
)

u1i = ui − 1
2 b̃γ

(|miγ | + miγ
) (75)

Hence, the length of the interval changes as (u1i − l1i ) =
(ui − li ) − b̃γ |miγ |, i.e. it gets shorter by b̃γ |miγ |, where
b̃γ = 1

2 (bγ,U − bγ,L).
Now that we know the intervals [li , ui ] over which the

functions gi,L(x), i = 1, . . . , n, need to provide a differen-
tiable lower bounding of g(x), we can start constructing these
functions. As we will do so for an arbitrary interval [l, u], we
will dispense with the lower index i and write gL(x) instead
of gi,L(x).

Convex lower bounding function of g(x)on [l, u]
Many different differentiable convex lower bounding func-
tions gL(x) of g(x) = (x − �x�)2 on x ∈ [l, u] can be
constructed. For example, if we assume for the moment that
l = zl − 1

2 , zl ∈ Z, and u = zu + 1
2 , zu ∈ Z, then the parabola

gL(x) = α(x − z̄)2 + β (76)

Fig. 9 The linear-parabolic differentiable lower bounding function (in
red) of g(x) = (x−�x�)2 when l ∈ [zl −1, zl − 1

2 ], u ∈ [zu + 1
2 , zu +1]

for zu ≥ zl

with α = 1
2 (

1
2 + z̃)−1, z̃ = zu−zl

2 , z̄ = zu+zl
2 , and β = − 1

2 z̃,
is such lower bounding function of g(x), see Fig. 7b. It gives
a perfect fit to g(x) if u − l = 1. However, the longer the
interval [l, u] becomes, i.e. the larger the difference u − l,
the more negative the minimum β of the parabola becomes.
With choice (76), the lower bounding fit to g(x) gets thus
poorer the more l and u differ. A much better choice for the
lower bounding function would be (see Fig. 7c)

gL(x) =
⎧
⎨

⎩

(x − zl)2 for l = zl − 1
2 ≤ x ≤ zl

0 for zl ≤ x ≤ zu
(x − zu)2 for zu ≤ x ≤ zu + 1

2 = u
(77)

Also this choice gives a perfect fit when u−l = 1, while now
its minimum is independent of the interval length. In fact, the
minimum value of 0 provides the best possible convex lower
bounding over the interval [zl , zu]. When we compare the
smoothness of the above two choices, we note that (76) is
a C2 function, while (77) is only a C1 function. The con-
tinuous differentiability of (77) is sufficient however for the
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application of the projected gradient descent method (see
Sect. 7.3).

So far we made the simplifying, but unrealistic assump-
tion that l = zl − 1

2 and u = zu + 1
2 . For the general situation

in which [l, u] can be any interval, we first assume that the
interval lies inside the interval bordered by two consecutive
integers: [l, u] ⊂ [z, z+1] for some z ∈ Z. Then the follow-
ing 4 different cases can be discriminated (see Fig. 8):

Case 1: If [l, u] ⊂ [z, z + 1
2 ], then gL(x) = (x − z)2. Thus

if both l and u lie in the first half of the interval, the parabola
itself can be taken as the lower bounding function, see
Fig. 8a.

Case 2: If [l, u] ⊂ [z+ 1
2 , z+1], then gL(x) = (x − z−1)2.

Thus if both l and u lie in the second half of the interval, the
parabola centred at z + 1 can be taken as the lower bounding
function, see Fig. 8b.

For the third and the fourth case, we assume that l and u lie
in different halves of the interval [z, z+1], whereby then the
discrimination has to be made whether or not the function
value at l is larger than at u.

Case 3: Let l ∈ [z, z + 1
2 ], u ∈ [z + 1

2 , z + 1], and (l −
z)2 ≥ (u − z − 1)2. Now the best convex lower bounding
differentiable function is either a decreasing straight line,
connecting the points (l, (l − z)2) and (u, (u − z − 1)2), or
a decreasing straight line that starts at the point (l, (l − z)2),
is tangent of the parabola y = (x − z − 1)2 at the point
(α, (α − z − 1)2), and then continues along the parabola to
the point (u, (u − z − 1)2), see Fig. 8c. It is given as:

gL(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u≤α= a(x − l) + (l − z)2 for l ≤ x ≤ u

u≥α=

⎧
⎪⎪⎨

⎪⎪⎩

= 2(α−z−1)(x−α)+(α − z − 1)2

for l ≤ x ≤ α

= (x − z − 1)2

for α ≤ x ≤ u

(78)

with α = l + √
1 − 2(l − z) and a = (u−z−1)2−(l−z)2

u−l ≤ 0.

Case 4: Let l ∈ [z, z + 1
2 ], u ∈ [z + 1

2 , z + 1], and (l − z)2 ≤
(u − z − 1)2. This case is a ‘mirror image’ of the previous
one, see Fig. 8d. The convex lower bounding differentiable
function is given as:

gL(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

l≥β= a(x − l) + (l − z)2 for l ≤ x ≤ u

l≤β=

⎧
⎪⎪⎨

⎪⎪⎩

= (x − z)2

for l ≤ x ≤ β

= 2(β − z)(x − β) + (β − z)2

for β ≤ x ≤ u

(79)

with β = u − √
2(u − z) − 1 and a = (u−z−1)2−(l−z)2

u−l ≥ 0.

Wecanuse the above insight also to construct lower bounding
functions in case [l, u] ⊂ [z, z + 1] is not true, but instead
l ∈ [zl −1, zl ] and u ∈ [zu, zu +1] for some integers zl ≤ zu ,
see Fig. 9. When l ∈ [zl −1, zl − 1

2 ] and u ∈ [zu + 1
2 , zu +1],

the lower bounding function will be given as

gL(x) =
⎧
⎨

⎩

f1(l, x) for l ≤ x ≤ zl
0 for zl ≤ x ≤ zu

f2(x, u) for zu ≤ x ≤ u
(80)

with f1(l, x) and f2(x, u) constructed such that they provide
the required lower bounds. They can be found directly from
(78), through replacement z := zl−1, and from (79), through
replacement z := zu , as

f1(l, x) ={
2(α − zl)(x − α) + (α − zl)2 for l ≤ x ≤ α

(x − zl)2 for α ≤ x ≤ zl

(81)

and

f2(x, u) ={
(x − zu)2 for zu ≤ x ≤ β

2(β − zu)(x − β) + (β − zu)2 for β ≤ x ≤ u
(82)

where α = l + √
1 − 2(l − zl + 1) and β = u −√

2(u − zu) − 1.
Note that either one or both of the straight line components

of (81) and (82) will be absent when l ∈ [zl − 1
2 , zl ] or/and

u ∈ [zu, zu + 1
2 ]. Both are absent when l ∈ [zl − 1

2 , zl ] and
u ∈ [zu, zu + 1

2 ], in which case the lower bounding function
generalizes (77) to become

gL(x) =
⎧
⎨

⎩

(x − zl)2 for l ≤ x ≤ zl
0 for zl ≤ x ≤ zu

(x − zu)2 for zu ≤ x ≤ u
(83)

With the above construction of gL(x) for the different sce-
narios we are now in the position to formulate our sought
for lower bounding function as D◦

L(b) = ||b̂ − b||2Qb̂b̂
+

∑n
i=1 gi,L(âi (b))/σ 2

i . It is continuous differentiable, convex
and lower bounding D◦(b) on the interval bL � b � bU .
Hence, it is now in the form that the PGD-method can be
applied to it.

7.3 Projected gradient descent (PGD)

The PGD-method is designed to solve a constrained mini-
mization problem

min
b∈B

f (b) (84)
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Fig. 10 The function g′
i,L (x) = dgi,L

dx (x) (cf. 91) on the interval [li , ui ]
for li ∈ [zli − 1, zli − 1

2 ], ui ∈ [zui + 1
2 , zui + 1]

of which the objective function f : R
p → R is only

continuous differentiable, i.e. C1-function (Bertsekas 1999;
Nocedal and Wright 2006; Parikh and Boyd 2013; Nesterov
2018). This implies that only first order gradient informa-
tion of the objective function can be used. If in addition
both the objective function and the constraint are convex,
then any local minimum is automatically a global mini-
mum. This is the case before us when f (b) := DL(b) and
B = {b ∈ R

p| bL � b � bU }.
The PGD algorithmic steps for solving (84) are:

1. Initialize: Start with a feasible solution, b0 ∈ B and then
loop for k = 0, . . . until stop criterium:

2. Gradient descent step: Compute stepsizeμk and gradient
descent

b̂k = bk − μk∇ f
(
bk

)
(85)

such that f (b̂k) ≤ f (bk).
3. Projection step: Project b̂k onto B to ensure conformity

with the constraints,

bk+1 = PB(b̂k) with PB(y) = argmin
b∈B

||y − b||2 (86)

This iterative scheme can be seen as repeatedly solving
an approximate version of the original minimization prob-
lem, namely one in which the objective function f (b) is
approximated by a quadratic function Fk(b) = f (bk) +
∇ f (bk)T (b−bk)+ 1

2μk
||b−bk ||2 (μk > 0). The above iter-

ative scheme can then be summarized as repeatedly solving

bk+1 = argmin
b∈B

Fk(b) (87)

To see this, we first rewrite the quadratic function Fk(b) in the
more convenient form Fk(b) = 1

2μk
||b̂k−b||2+ck , with ck =

f (bk)− 1
2μk ||∇ f (bk)||2 and b̂k = bk −μk∇ f (bk), showing

that the gradient step (85) provides the unconstrained mini-
mizer of Fk(b). Substitution of Fk(b) = 1

2μk
||b̂k − b||2 + ck

into (87) gives bk+1 = argmin
b∈B

||b̂k − b||2 and therefore

bk+1 = PB(b̂k), which is the projection step (86).
For computing the stepsize μk in each iteration, different

linesearch strategies exist, from simple to advanced (Nes-
terov 2018). One of the simplest starts withμk = 1, followed
by halving it, μk ← μk/2, until f (bk − μk∇ f (bk)) <

f (bk). More involved accelerated strategies exist, where
bk+1 is taken as a convex combination (weighted mean) of
bk and PB(bk − μk∇ f (bk)).

A potential complicating factor in applying the PGD-
method lies in the projection onto the convex set B, which,
depending on the geometry of B, can be quite involved. The
PGD-method is only efficient if this projection can be done
efficiently. Fortunately, in our case, with the convex set given
as B = {b ∈ R

p| bL � b � bU }, the projection can be done
very efficiently.

As PB(y) = argmin
b∈B

||y−b||2, the minimization problem

to be solved is

min
bL�b�bU

||y − b||2 = min
bL�b�bU

p∑

α=1
(yα − bα)2

=
p∑

α=1
min

bα,L≤bα≤bα,U
(yα − bα)2

=
p∑

α=1

(
yα − median(bα,L , yα, bα,U )

)2

(88)

in which the minimizer median(bα,L , yα, bα,U ) denotes the
median value of the triplet bα,L , yα , and bα,U . We therefore
have,

PB(y)α =
⎧
⎨

⎩

bα,L if yα ≤ bα,L

yα if bα,L ≤ yα ≤ bα,U

bα,U if bα,U ≤ yα

(89)

What now remains to be determined for the PGD-method to
be applicable to solve L(B) = minb∈B D◦

L(b) is the gradient
of the objective function.

The gradient of D◦
L(b)

The gradient of D◦
L(b) = ||b̂ − b||2Qb̂b̂

+ GL(b) is given as

∇DL(b) = 2Q−1
b̂b̂

(b − b̂) + ∇GL(b)

= 2Q−1
b̂b̂

(b − b̂) +
n∑

i=1
σ−2
i g′

i,L(âi (b))mi

= 2Q−1
b̂b̂

[
b − b̂ + Qb̂â Q

o−1
ââ s(b)

]
(90)

with s(b) = 1
2 [g′

1,L(â1(b)), . . . , g′
n,L(ân(b))]T and g′

i,L(x)

= dgi,L
dx (x). The entries of the vector s(b) are driven by the

intervals [li , ui ], the derivatives g′
i,L(x) of the functions that

are convex lower bounding on [li , ui ], and the locations of
the âi (b) within the intervals [li , ui ]. For instance, for li ∈
[zli − 1, zli − 1

2 ] and ui ∈ [zui + 1
2 , zui + 1], with zui ≥ zli ,
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Fig. 11 Multimodal dual-function of vertical positioningmixed-integer
GNSS model, with its per iteration constructed convex lower bounding
functions (red and blue) over intervals that get split for the red functions

(i.e. intervals for which minimum of lower bounding function is low-
est). Convergence was achieved in 7 iterations. Shown are the results
of iterations #1, #2, #3, #6, and #7, with an additional zoom-in of #7

the applicable derivative g′
i,L(x) follows from (80), (81) and

(82) as

g′
i,L(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2
(
αi − zli

)
for li ≤ x ≤ αi

2
(
x − zli

)
for αi ≤ x ≤ zli

0 for zli ≤ x ≤ zui
2
(
x − zui

)
for zui ≤ x ≤ βi

2
(
βi − zui

)
for βi ≤ x ≤ ui

(91)

with

αi = li + √
1 − 2(li − zli + 1)

βi = ui − √
1 − 2(zui + 1 − ui )

(92)

The behaviour of g′
i,L(x) for x ∈ [li , ui ] is illustrated in

Fig. 10. It shows that the entries of s(b) are determined, in

dependence of the location of âi (b), through a mixed hard-
soft thresholding, see Fig. 10.
We now present two examples to illustrate the workings of
our global algorithm. To provide an insightful graphical dis-
play of the box-splitting iterations, we show the results for
the 1D and the 2D case, i.e. b ∈ R and b ∈ R

2.

Example 3 (Horizontal position known) This example and
the next one are based on the single-frequency, single-epoch,
single-baseline linearizedGNSSmodel of example 1 (cf. 24),
using am+1 = 31 satellite configuration having n = 30 DD
ambiguities,with signalwavelengthλ = 19.03 cm, andpseu-
dorange and carrier-phase standard deviations ofσp = 20 cm
and σφ = 0.2 cm, respectively. As we use satellite-elevation
weighting, the used variance matrices of the observables
are: D(p) = σ 2

p D
T QD and D(φ) = σ 2

φ D
T QD, with
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Q = diag[sin−1(eli ), . . . , sin−1(elm+1)], where eli is the
elevation angle of satellite i . In the current example we have
b ∈ R, as we assume the horizontal positions known, while
in the next example, we have b ∈ R

2, as the vertical positions
are then assumed known. Note, as the model is in linearized
form, that the parameters are increments with respect to the
chosen approximate values, which in our case are taken as
the correct values used for the simulation. Hence, an incre-
ment value of zero implies that the parameter value equals
the correct value. In our case the float increment is computed
to be b̂ = 0.7042 m.

Although the initialization in practice should follow our
description of (67), we here use a larger, and thus more con-
servative, value for the initial box or interval size. Here we
have chosen the initial interval to be [−16m, +16m]. The
reason for this choice of larger interval length is that the cor-
responding increase in required number of iterations allows
us to better show the various steps that are taken in the split-
ting process and construction of the convex lower bounding
functions. The results of the various iteration steps are shown
in Fig. 11, starting at the top of the first column with iteration
#1 and finishing at the bottom of the second column with
iteration #7. The first interval [−16m, +16m] is designated
to be centred at 0, but which corresponds to the float solution
b̂. Thus the horizontal axis denotes the difference b− b̂. The
multimodal dual function is shown as a black curve, while
the convex lower bounding functions are shown as either
red or blue dashed curves. The lower bounding function is
shown as a red dashed curve if its minimum is the smallest,
thus implying that it is its interval that will be split for the
next iteration step. We thus start off with a red dashed lower
bounding function, as is shown in Fig. 11 at iteration #1.

With the initial interval of iteration #1 split in the middle,
we obtain in iteration #2, two lower bounding functions. As
the red curve has the smallest minimum, we continue with
the left interval and split it in the middle, thus again giving us
two lower bounding functions in iteration #3. This time it is
the right interval that has the lower bounding function with
smallest minimum. Splitting this interval in the middle and
continuing in this way with the splitting process, we reach
at the second last iteration #6 an interval that after splitting
has in its left half the lower bounding function with small-
est minimum. With this lower bounding function at iteration
#7, the iteration stops, as then the fulfillment of our stop cri-
terium, set at ε = 10−6, is realized. The obtained minimizer
is then outputted to provide the asked for solution. In the cur-
rent example, the iteration gives b̌− b̂ = −0.7019 m, which
combined with the float increment b̂ = 0.7042 m, gives for
the ambiguity-fixed increment b̌ = 0.0023 m, thus showing
that the fixed-solution differs by 2.3 mm from the correct
value. �

Example 4 (Vertical position known)This example continues
with the same model as used in the previous example, be it
that now the vertical positions are assumed known and thus
b ∈ R

2. The results of the various iteration steps are shown
in Fig. 12, with iterations #1, #2, #10 and #16 columnwise in
the first two rows, while the last iteration #20 is shown in the
third rowas a greater zoom-in. For each iteration, the function
values of the dual function are shown in colour coded form, as
well, next to it, the contour lines of the convex lower bounding
function for the box that is to be split. At each iteration step,
its iteration number is located close to the centre of gravity
of the red box, i.e. the box that will be split. The old iteration
number is then moved to the centre of the box that remains
unsplit. Iteration results #1, #2 and #10 are shown to the
same scale, but for iteration #16 we use a zoom-in to show
a greater detail and this is again done for the last iteration
#20. Note, that even with this greater zoom-in, still a dense
variability of the dual function is apparent, thus showing that
it still has many local minima at this greater scale. In the
red box containing the global minimum however, we now
have a less pronounced multi-modality. At iteration #20 the
stop criterium ε = 10−6 is fulfilled and as before the fixed
solution is obtained at the mm-level. ��

8 Constrained and partitioned dual

In this contribution we restricted our study of the dual prob-
lem to the mixed-integer model (1). It is possible however
to generalize the developed methodology also to the con-
strained case b ∈ C ⊂ R

p or to the case when only part of
b ∈ R

p needs to be ambiguity-resolved. For these two cases
we provide the following outlook.

Constrained Dual
For the constrained mixed-integer model

E(y) = Aa + Bb, a ∈ Z
n, b ∈ C ⊂ R

p (93)

the constrained primal approach would be to first solve for
the integer ambiguity a and then the baseline b. As we have,
using F(a, b) of (6),

ǎ = arg min
a∈Zn

F(a, b̌(a)), b̌(a) = argmin
b∈C

F(a, b) (94)

the primal function F(a, b̌(a)) would be used to set up a
(nonellipsoidal) search space to determine ǎ, which then on
its turn is used to determine the ambiguity-resolved con-
strained baseline as b̌ = b̌(ǎ). This is the approach used
in the LAMBDA-based constrained solutions of GNSS atti-
tude determination (Teunissen 2010; Giorgi et al. 2010) and
rank-defect bias estimation (Khodabandeh 2022; Teunissen
2006).
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Fig. 12 Multimodal dual-function of horizontal positioning mixed-
integer GNSS model, with the contour lines of its per iteration
constructed convex lower bounding functions over the rectangles that

get split (i.e. rectangles for which minimum of lower bounding function
is lowest). Convergence was achieved in 20 iterations. Shown are the
results of iterations #1, #2, #10, #16, and #20

The dual formulation to (94) is

b̌ = argmin
b∈C

F(ǎ(b), b), ǎ(b) = arg min
a∈Zn

F(a, b) (95)

In this case, first the constrained baseline is solved as b̌, from
which the integer ambiguity follows as ǎ = ǎ(b̌). Earlier we

demonstrated in Sect. 3.3, that for the typical unconstrained
mixed-integer GNSS model, one cannot expect the success-
rate of ǎ(b) to be large. This may change however when
constraints onb are included. IfC is such that the variability in
ǎ(b) is small in relation to the size of the pull-in regions, then
only a few integer candidates ǎ(b)mayneed to be considered,
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thus simplifying the computation of b̌ in (95) considerably.
A typical example from the field of GNSS attitude deter-
mination is one where the distance between the antennae is
sufficiently small in relation to the used signal wavelength.

In (95) we recognize the dual function as D(b) =
F(ǎ(b), b), thus giving

b̌ = argmin
b∈C

D(b) (96)

This shows that ifCwouldbe easily and efficiently coveredby
a box B, that our method of the previous section is directly
applicable to the constrained mixed-integer model (93) as
well. In themore general case, one can use the indicator func-
tion of C, pC(b) = ∞ if b /∈ C, and pC(b) = 0 otherwise,
to replace the constrained formulation (96) by the uncon-
strained formulation b̌ = argminb∈Rn [D(b) + pC(b)]. Sim-
ilar to our development in the previous section, the approach
would then be to construct convex lower bounding functions
using a continuous barrier function for pC(b) (Nocedal and
Wright 2006; Nesterov 2018).

Partitioned Dual
Earlier we mentioned that a potentially attractive feature of
the dual formulation is that the minimization of the objective
function takes place in Rp instead of Rn . This can be attrac-
tive if p is much smaller than n and the dual function D(b)
is easily formed or acceptably approximated. This changes
however if the dimension of b ∈ R

p is large as well.
Still, even with p large, it could be that one is only

interested in the ambiguity-resolved solution of some of the
components of b, say b1 of b = [bT1 , bT2 ]T ∈ R

p1+p2 . In
that case one can combine the primal- and dual approach to
obtain the decomposition

F(a, b1, b2) = ||b̂1 − b1||2Qb̂1 b̂1

+||â(b1) − a||2Qâ(b1)â(b1)
+ ||b̂2(a, b1) − b2||2Qb̂2(a,b1)b̂2(a,b1)

By now defining the partitioned dual PD(b1) as

PD(b1) = ||b̂1 − b1||2Qb̂1 b̂1
+ ||â(b1) − ǎ(b1)||2Qâ(b1)â(b1)

(97)

with ǎ(b1) = argmina∈Zn ||â(b1)−a||2Qâ(b1)â(b1)
, the solution

for a and b becomes

⎧
⎪⎨

⎪⎩

b̌1 = arg min
b1∈Rp1

PD(b1)

ǎ = ǎ(b̌1)
b̌2 = b̂2(ǎ, b̌1)

(98)

In this way one can still apply the dual approach to solve
for b1 in a lower-dimensioned space. However, the price one
pays for this reduction in dimension is that â(b1) will be

less precise than â(b), implying that, in dependence of the
application, PD(b1) may be more difficult to construct or to
approximate.

9 Summary and conclusions

In this contribution we introduced and studied the dual
mixed-integer least-squares formulation. The dual differs
from its primal counterpart in the order in which the inte-
ger ambiguity vector a ∈ Z

n and baseline vector b ∈ R
p are

estimated. In the primal formulation, the integer ambiguity
estimator ǎ is computed first, followed by the computation
of the ambiguity-resolved baseline estimator b̌ = b̂(ǎ). In
the dual formulation, the order is reversed, giving first b̌,
followed by the ambiguity estimator ǎ = ǎ(b̌). As not the
ambiguities, but rather the entries of b are usually the param-
eters of interest, the dual formulation seems a natural way to
go. And this seems even more so for applications where the
baseline dimension p is considerable less than the ambigu-
ity dimension n. We show however that this optimism must
somewhat be tempered, due to the fact that the formation
of the dual objective functionD(b) also requires the solution
of an n-dimensional integer least-squares (ILS) problem, and
even one that depends on the unknown baseline b. The poten-
tial advantage of the dual formulation lies therefore in the
easewithwhich this implicit ILS problem can be solved. This
problem is trivially solved in case the conditional ambiguity
variance matrix is diagonal, which in case of GNSS happens
for instance with the multi-frequency geometry-free model.

To make the dual formulation more computationally
attractive, we introduced two approximations to it, both with
the purpose of alleviating the computational demand on the
implicit ILS problem. The first approximation is based on
replacing the variance matrix of â(b) by a matrix of simpler
structure (preferably diagonal), the second by replacing the
integer estimator ǎ(b)by a simpler estimator (preferably inte-
ger rounding). To be able to describe the quality of their dual
solutions, we provided a complete distributional analysis of
the ambiguity- and baseline-estimators that follow from these
approximations. This will allow users to rigorously judge
whether or not the approximations made in the dual formu-
lation are acceptable for their application. We hereby note
that the second approximation of the dual formulation also
resulted in the finding of a new class of admissible integer
estimators, the pull-in regions of which were described as
well.

To characterize the challenges that the computation of b̌, as
a global minimizer ofD(b), poses, we illustrated and empha-
sized the multimodality of the dual function D(b) with its
many local minima. As a consequence, the dual function
lacks convexity, thus requiring special care in developing an
algorithm that is globally convergent. Our proposed method,
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which has finite termination with a guaranteed ε-tolerance,
is constructed from combining the branch-and-bound prin-
ciple, with a special convex-relaxation of the dual, to which
the projected-gradient-descent method is applied to obtain
the required bounds. Each of the method’s three constituents
are described, whereby special emphasis is given to the con-
struction of the required continuously differentiable, convex
lower bounding function of the dual. Illustrative examples
are given to provide insight into the workings of the method,
while in future work its numerical performance for advanced
models will be evaluated. Finally, we provided an outlook on
solving a constrained and partitioned dual.

10 Appendix

Proof of Lemma 3: The equality of (23) follows from substi-
tuting −Qâb̂Q

−1
b̂b̂

= (AT Q−1
yy A)−1AT Q−1

yy B and Qâ(b)â(b)

= (AT Q−1
yy A)−1 in ||Δa||2Qâ(b)â(b)

. The inequality of (23) fol-

lows from Qb̂(a)b̂(a)
= (BT Q−1

yy B)−1 and recognizing that
the norm of a projected vector is never larger than the norm
of the vector itself. ��
Proof of Lemma 4: The quadratic identity follows as

||b̂ − b||2Qb̂b̂
+ ||â(b) − a||2Q◦

â(b)â(b)

=
[
â(b) − a
b̂ − b

]T [
Q◦

â(b)â(b) 0
0 Qb̂b̂

]−1 [
â(b) − a
b̂ − b

]

=
[
â − a
b̂ − b

]T [
Q◦

â(b)â(b) + Qâb̂Q
−1
b̂b̂

Qb̂â Qâb̂

Qb̂â Qb̂b̂

]−1 [
â − a
b̂ − b

]

=
[

â − a
b̂◦(a) − b

]T [
Q◦

ââ 0
0 Qb̂b̂ − Qb̂â Q

◦−1
ââ Qâb̂

]−1 [
â − a

b̂◦(a) − b

]

= ||â − a||2Q◦
ââ

+ ||b̂◦(a) − b||2Q◦
b̂(a)b̂(a)

(99)

��
Proof of Theorem 3: Using the quadratic identity (27), we
may write D◦(b) as

D◦(b) = ||b̂ − b||2Qb̂b̂
+ min

a∈Zn
||â(b) − a||2Q◦

â(b)â(b)

= min
a∈Zn

(
||b̂ − b||2Qb̂b̂

+ ||â(b) − a||2Q◦
â(b)â(b)

)

= min
a∈Zn

(
||â − a||2Q◦

ââ
+ ||b̂◦(a) − b||2Q◦

b̂(a)b̂(a)

)

(100)

from which it follows that b̌◦ = arg min
b∈Rp

D◦(b) can be com-

puted through the primal formulation as b̌◦ = b̂◦(ǎ◦), with
ǎ◦ = arg min

a∈Zn
||â − a||2Q◦

ââ
. What remains to be shown is

that ǎ◦ = ǎ◦(b̌◦). Starting from the definition ǎ◦(b) =

arg min
a∈Zn

||â(b) − a||2Q◦
â(b)â(b)

, we may write with the aid of

the quadratic identity (27),

ǎ◦(b) = arg min
a∈Zn

(
||â − a||2Q◦

ââ
+ ||b̂◦(a) − b||2Q◦

b̂(a)b̂(a)

)

(101)

from which it follows, since b̌◦ = b̂◦(ǎ◦), that ǎ◦(b̌◦) =
arg min

a∈Zn
||â − a||2Q◦

ââ
= ǎ◦. ��

Proof of Theorem 4: As Q◦
ââ is not the variance matrix of â,

inequality (31a) follows directly from Theorem 1 of (Teunis-
sen 2000b). From substituting the given matrices Râb̂, Sââ
and Tâb̂, we obtain

RT
âb̂
Râb̂ = Qb̂â

[
Q◦−1

ââ Qââ Q
◦−1
ââ − 2Q◦−1

ââ + Q−1
ââ

]
Qâb̂

(102)

which proves the equality of (32b). As (102) is positive semi-
definite, the inequality of (32b) follows. ��

Proof of Theorem 5 (Success-rate lower-bounds) (i) Theproof
of (34) follows from combining aninequality-theorem of
(Anderson 1996) with the ILS-theorem of (Teunissen
1999a). Let â ∼ Nn(a, Qââ), â

◦ ∼ Nn(a, Q◦
ââ) and

Q◦
ââ ≥ Qââ . Then it follows from Anderson’s theorem

that P[â◦ ∈ P◦
a ] ≤ P[â ∈ P◦

a ], as the subset P◦
a ⊂ R

n

is convex and symmetric about a. As P[â◦ ∈ P◦
a ] can

now be interpreted being the success-rate of a prop-
erly weighted ILS-estimator, it follows from Teunissen’s
optimality-theorem that any other integer estimator using
â◦ as input, will have a smaller success-rate. This there-
fore also holds true for integer bootstrapping, of which
the success-rate is given by the left-hand side of (34), see
(Teunissen 1998b).

(ii) To prove the given lower-bound (35) of

P[ǎ◦ = a] =
∫

P◦
a

fâ(α)dα (103)

we will work with two ellipsoids, one being a subset of
the other, while both are subsets of the pull-in region
P◦

a . First we describe the pull-in region in a way that
facilitates the comparison with the planes-of-support for-
mulation of ellipsoids:

P◦
a = a + P◦

0

= a +
{
x ∈ R

n | xT Q◦−1
ââ x ≤ ||x − z||2Q◦

ââ
, ∀z ∈ Z

n
}

= a +
{
x ∈ R

n | (zT Q◦−1
ââ x)2 ≤ 1

4 ||z||4Q◦
ââ

, ∀z ∈ Z
n
}

(104)
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Now we construct the first ellipsoid residing in P◦
0 . We

have

E◦
0 =

{
x ∈ R

n | xT Q◦−1
ââ x ≤ χ2

}

a= {
x ∈ R

n | (gT x)2 ≤ χ2gT Q◦
ââ g, ∀g ∈ R

n
}

b=
{
x ∈ R

n | ( f T Q◦−1
ââ x)2 ≤ χ2 f T Q◦−1

ââ f , ∀ f ∈ R
n
}

c⊂
{
x ∈ R

n | (zT Q◦−1
ââ x)2 ≤ χ2||z||2Q◦

ââ
, ∀z ∈ Z

n
}

d⊂
{

x ∈ R
n | (zT Q◦−1

ââ x)2 ≤ χ2
||z||4

Q◦
ââ

min
z∈Zn/{0}

||z||2
Q◦
ââ

, ∀z ∈ Z
n

}

(105)

In (a) we used the planes-of-support formulation of the
ellipsoid (Teunissen 2001), while (b) follows from using
the one-to-one transformation g = Q◦−1

ââ f . With (c) we
obtain a larger set as nowonly the integers are considered,
while with (d) again a larger subset is created due to the
larger right-hand side.
It follows from comparing (105) with (104) that

E◦
a = a + E◦

0 ⊂ P◦
a if χ2 = 1

4 min
z∈Zn/{0} ||z||2Q◦

ââ
(106)

We now construct our second ellipsoid Ea ⊂ E◦
a such

that the probability P[â ∈ Ea] is easy to compute. The
ellipsoid is chosen as

Ea =
{
x ∈ R

n| (x − a)T Q−1
ââ (x − a) ≤ r2

}

=
{
x = a + Q1/2

ââ v, v ∈ R
n| vT v ≤ r2

} (107)

If we use the same transformation also for E◦
a , we may

write

E◦
a =

{
x = a + Q1/2

ââ v, v ∈ R
n | vT [Q1/2

ââ Q◦−1
ââ Q1/2

ââ ]v ≤ χ2
}

(108)

By comparing (108) with (107) and noting that a sphere
best fits inside an ellipsoid if its radius is equal to the
ellipsoid’s minor axis, it follows that

Ea ⊂ E◦
a if r2 = λmin × χ2 (109)

where λmin is the smallest eigenvalue of [Q1/2
ââ Q◦−1

ââ

Q1/2
ââ ]−1 and thus the minimum of the Raileigh quotient

λmin = min
x∈Rn

xT Q◦
ââ x

xT Qââ x
(110)

Since Ea ⊂ E◦
a ⊂ P◦

a (cf. 106 and 109 ), it follows that

P[ǎ◦ = a] = P[â ∈ P◦
a ] ≥ P[â ∈ Ea] = P[χ2(0, n) ≤ r2]

which concludes the proof. ��

Proof of Theorem 6: Recall that any admissible integer esti-
mator I•(x) can be written as (Teunissen 2000b),

I•(x) =
∑

z∈Zn

zι•z (x) (111)

where ι•z (x) is the indicator function of its pull-in region
I •
z = {x ∈ R

n| z = I•(x)}. With (111), we can rewrite the
dual function as

D•(b) = ||b̂ − b||2Qb̂b̂
+ ||â(b) − I•(â(b))||2Qâ(b)â(b)

= ||b̂ − b||2Qb̂b̂
+ ∑

z∈Zn
||â(b) − z||2Qâ(b)â(b)

ι•z (â(b))

= ∑

z∈Zn

(
b̂ − b||2Qb̂b̂

+ ||â(b) − z||2Qâ(b)â(b)

)
ι•z (â(b))

= ∑

z∈Zn

(
||â − z||2Qââ

+ ||b̂(z) − b||2Qb̂(a)b̂(a)

)
ι•z (â(b))

This shows that

D•(b) = ||â − u||2Qââ
+ ||b̂(u) − b||2Qb̂(a)b̂(a)

if â(b) ∈ I •
u

Hence, if â(b) ∈ I •
u for some u ∈ Z

n , then the minimizer
and minimum of D•(b) are given as

b̂(u) = arg min
ι•u(â(b))=1

D•(b), D•(b̂(u)) = ||â − u||2Qââ

(112)

To find the global minimum of D•(b), we need to find the
smallest value ofD•(b̂(u)) for all u ∈ Z

n that satisfy â(b) ∈
I •
u , ∀b ∈ R

p. This integer set consists of the integer grid
points of all pull-in regions I •

z through which â(b) passes
when b is varied,

Ω•
â = {z ∈ Z

n| z = I•(â(b)), ∀b ∈ R
p} ⊂ Z

n (113)

Hence, the global minimum of D•(b) is given as

min
b∈Rp

D•(b) = min
z∈Ω•

â

D•(b̂(z)) = min
z∈Ω•

â

||â − z||2Qââ
(114)

and its corresponding minimizer as

b̌• = arg min
b∈Rp

D•(b) = b̂(ǎ•),with
ǎ• = arg min

z∈Ω•
â

||â − z||2Qââ

(115)

��
Proof of Lemma 6: The first two conditions, (i) and (i i),
for an integer estimator to be admissible, are not difficult
to verify. The pull-in regions cover the whole space as
arg min

u∈Ω•
x

||x − u||2Qââ
maps any x ∈ R

n to an integer vector.

Furthermore, any x ∈ R
n that lies inside a pull-in region will
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be mapped uniquely to one integer vector. To verify the third
condition, (i i i), we need to show that P•

z = P•
0 + z. We

will prove this in steps. First we show that Ω̄•
z = Ω̄•

0 + z and
Φ•

z = Φ•
0 + z (similarly one can show thatΩ•

x + z = Ω•
x+z).

We have

Ω̄•
0 + z = {x + z ∈ R

n| 0 = I•(x + Mβ), ∃β ∈ R
p}

= {y ∈ R
n| 0 = I•(y − z + Mβ), ∃β ∈ R

p}
= {y ∈ R

n| z = I•(y + Mβ), ∃β ∈ R
p}

= Ω̄•
z , ∀z ∈ Z

n (116)

where use was made of the property I•(x + z) = I•(x) + z.
Similarly, we have

Φ•
0 + z = {

u + z ∈ Z
n| u = I•(x), ∀x ∈ Ω̄•

0

}

= {
v ∈ Z

n| v = I•(x) + z, ∀x ∈ Ω̄•
0

}

= {
v ∈ Z

n| v = I•(x + z), ∀x ∈ Ω̄•
0

}

= {
v ∈ Z

n| v = I•(y), ∀y ∈ Ω̄•
0 + z

}

= {
v ∈ Z

n| v = I•(y), ∀y ∈ Ω̄•
z

}

= Φ•
z , ∀z ∈ Z

n (117)

where use was made of Ω̄•
z = Ω̄•

0 + z. Finally, we have

P•
0 + z =

{
x + z ∈ R

n | ||x ||2Qââ
≤ ||x − u||2Qââ

, ∀u ∈ Φ0

}

=
{
y ∈ R

n | ||y − z||2Qââ
≤ ||y − (u + z)||2Qââ

, ∀u ∈ Φ0

}

=
{
y ∈ R

n | ||y − z||2Qââ
≤ ||y − v||2Qââ

, ∀v ∈ Φ0 + z
}

=
{
y ∈ R

n | ||y − z||2Qââ
≤ ||y − v||2Qââ

, ∀v ∈ Φz

}

= P•
z , ∀z ∈ Z

n (118)

where use was made of Φ•
z = Φ•

0 + z. ��

Proof of Theorem 7: As P[ǎ• = a] = P[â ∈ P•
a ] =∫

P•
a
fâ(α)dα, the proof will be based on finding an ellip-

soidal region Ea = {x ∈ R
n| (x−a)T Q−1

ââ (x−a) ≤ r2} that
resides inP•

a . Once such region is found,we have Ea ⊂ P•
a ,

and thus the lower-bound P[â ∈ Ea] ≤ P[â ∈ P•
a ], with

P[â ∈ Ea] = P[χ2(0, n) ≤ r2]. The challenge is therefore
to find the proper value for r2.

First we express the pull-in region P•
a = a + P•

0 in a
more amendable form. We have

P•
0 = {x ∈ R

n | ||x ||2Qââ
≤ ||x − I•(y)||2Qââ

, ∀y ∈ Ω̄•
0 }

= {x ∈ R
n | I•(y)T Q−1

ââ x ≤ 1
2 ||I•(y)||2Qââ

, ∀y ∈ Ω̄•
0 }
(119)

We now show how r2 can be chosen such that E0 ⊂ P•
0 . We

have, with q2 = r2/( min
z∈Zn/{0} ||z||2Qââ

),

E0 =
{
x ∈ R

n | xT Q−1
ââ x ≤ r2

}

(i)= {
x ∈ R

n | [gT x]2 ≤ r2gT Qââ g, ∀g ∈ R
n
}

(i i)=
{
x ∈ R

n | [ f T Q−1
ââ x]2 ≤ r2 f T Q−1

ââ f , ∀ f ∈ R
n
}

(i i i)⊂
{
x ∈ R

n | [zT Q−1
ââ x]2 ≤ r2||z||2Qââ

, ∀z ∈ Z
n
}

(iv)⊂
{
x ∈ R

n | [zT Q−1
ââ x]2 ≤ q2||z||4Qââ

, ∀z ∈ Z
n
}

(v)⊂
{
x ∈ R

n | [I•(y)T Q−1
ââ x]2 ≤ q2||I•(y)||4Qââ

, ∀y ∈ Ω̄•
0

}

(vi)⊂
{

x ∈ R
n | I•(y)T Q−1

ââ x ≤
[
q2||I•(y)||4Qââ

] 1
2

, ∀y ∈ Ω̄•
0

}

(119)= P•
0 if r2 = 1

4 min
z∈Zn/{0} ||z||2Qââ

In (i)we used the planes-of-support formulation of the ellip-
soid (Teunissen 1995), while (i i) follows from using the
one-to-one transformation g = Q−1

ââ f . With (i i i) we obtain
a larger set as now only the integers are considered, while
with both (iv) and (v) again larger subsets are created, once
due to the larger right-hand side and once due to considering
only a subset of integers rather than the whole integer space
Z
n . Finally, with (vi) we replaced the two-sided inequality

by a one-sided one. Comparison with (119) shows thatP•
0 is

obtained as stated. An example of the lower bounding ellipse
E0 is shown in Figure 4 for n = 2 and p = 1. ��
Projection Lemma (projection of cube and rectangle):
(a) Largest and smallest projection of cube on a line:

max−e�x�e
aT x = +

p∑

α=1
|aα|

min−e�x�e
aT x = −

p∑

α=1
|aα|

(120)

with a = (a1, . . . , ap)T and e = (1, . . . , 1)T .

(b) Largest and smallest projection of rectangle on a line:

max
l�x�u

aT x =
p∑

α=1
+ 1

2 (uα − lα)|aα| + 1
2 (uα + lα)aα

min
l�x�u

aT x =
p∑

α=1
− 1

2 (uα − lα)|aα| + 1
2 (uα + lα)aα

(121)

�

Proof (a) is easy to prove; (b) follows from (a) through the
one-to-one transformation x = Ũ x ′+ x̄ , where x̄ = 1

2 (u+l),
ũ = 1

2 (u − l) and Ũ = diag(ũ1, . . . , ũ p). ��
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