Topology-Aware Distributed
Multi-Robot Coordination

MSc Thesis
Jules Zwanen
‘5;-\:,'i

\
W
.
'R

A
AR

>
(@)
£
O
=
e
O
(D}
=
(v
(@]
>
Y

@e!'{ Univers

NS

%
TUDelft




Topology-Aware

Distributed Multi-Robot
Coordination

by

Jules Zwanen

to obtain the degree of Master of Science
at the Delft University of Technology,

Thesis committee:

Chair: Dr. L. Ferranti

Supervisors: Dr. L. Ferranti, (TU Delft)

External Examiners: Dr. M. Khosravi (TU Delft)
Prof.dr. J. Alonso-Mora (TU Delft)

Project duration: June, 2025 — January, 2026

Student number: 4959361

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft



Abstract

Explicit trajectory communication can be used to coordinate multiple robots, but communicating at
every planning iteration can lead to congestion of the communication network, increase message
delays and message loss. At the same time, collision-free trajectory planning is often formulated as
a nonconvex optimization problem, which can converge to different locally optimal solutions across
consecutive planning iterations. When this happens, a robots planned motion can switch between
distinct high-level avoidance behaviors, such as passing an obstacle on the left versus on the right,
which can lead to inefficient or unsafe behavior. Topology-based motion planners address this by
explicitly computing multiple candidate motion plans that represent these different passing decisions,
each associated with a distinct homotopy class. This work asks how (changes in) homotopy-class
representations can trigger communication to reduce communication load while maintaining safe and
efficient behavior. Building on the topology-driven trajectory optimization (T-MPC) approach of [?],
we propose T-DMPC, a topology-aware distributed motion planner in which each robot, computes
multiple guidance trajectories in distinct homotopy classes and refines them via parallel local trajectory
optimization within the corresponding homotopy classes, selects a solution using a consistent decision
rule that prioritizes the previously executed homotopy class, and communicates the selected trajectory
using an event-triggered policy. Communication is triggered by homotopy changes and complemented
by geometric-deviation and time-based triggers to bound trajectory staleness. In addition, the robots
communicate a fallback trajectory during planning failures (e.g. infeasibility). We evaluate T-DMPC on
antipodal swap maneuvers with 2 and 3 robots in simulation and on physical robots, comparing against
T-VMPC (no communication, constant-velocity predictions) and T-AMPC (always communicate). The
experiments show that, T-DMPC achieves task duration and traveled distance comparable to T"AMPC
and T-VMPC, while reducing communication to about 9.8% (2 robots) and 13.2% (3 robots) of planning
iterations in simulation, and 17.8% (2 robots) and 13.2% (3 robots) in real-world experiments, with no
observed physical collisions. Ablations however show that topology-change alone is insufficient for
safety, motivating the combined trigger design.



Topology-Aware Distributed Multi-Robot
Coordination

Jules Zwanen

Abstract—Explicit trajectory communication can be used
to coordinate multiple robots, but communicating at every
planning iteration can lead to congestion of the communication
network, increase message delays and message loss. At the same
time, collision-free trajectory planning is often formulated as a
nonconvex optimization problem, which can converge to different
locally optimal solutions across consecutive planning iterations.
When this happens, a robots planned motion can switch between
distinct high-level avoidance behaviors, such as passing an obstacle
on the left versus on the right, which can lead to inefficient or
unsafe behavior. Topology-based motion planners address this
by explicitly computing multiple candidate motion plans that
represent these different passing decisions, each associated with
a distinct homotopy class. This work asks how (changes in)
homotopy-class representations can trigger communication to
reduce communication load while maintaining safe and efficient
behavior. Building on the topology-driven trajectory optimization
(T-MPC) approach of [1], we propose T-DMPC, a topology-aware
distributed motion planner in which each robot, computes multiple
guidance trajectories in distinct homotopy classes and refines them
via parallel local trajectory optimization within the corresponding
homotopy classes, selects a solution using a consistent decision
rule that prioritizes the previously executed homotopy class, and
communicates the selected trajectory using an event-triggered
policy. Communication is triggered by homotopy changes and
complemented by geometric-deviation and time-based triggers to
bound trajectory staleness. In addition, the robots communicate
a fallback trajectory during planning failures (e.g. infeasibility).
We evaluate T-DMPC on antipodal swap maneuvers with 2 and
3 robots in simulation and on physical robots, comparing against
T-VMPC (no communication, constant-velocity predictions) and
T-AMPC (always communicate). The experiments show that, T-
DMPC achieves task duration and traveled distance comparable
to T-AMPC and T-VMPC, while reducing communication to
about 9.8% (2 robots) and 13.2% (3 robots) of planning iterations
in simulation, and 17.8% (2 robots) and 13.2% (3 robots) in real-
world experiments, with no observed physical collisions. Ablations
however show that topology-change alone is insufficient for safety,
motivating the combined trigger design.

I. INTRODUCTION

OBOTS (and other autonomous systems) are increasingly

integrated into daily life with applications in transporta-
tion, logistics, healthcare, hospitality and agriculture. Rather
than operating in isolation, robots are increasingly deployed
in settings, where multiple robots share environments and
tasks. For example, small fleets of self-driving taxis operate
in public traffic and autonomous robots move goods in large-
scale warehouses. In such settings the main challenge is to
have each robot reach their goal efficiently while avoiding
collisions with other robots, humans and other obstacles. A way
to approach this challenge is through the planning architecture.
In centralized planning, a single computation unit computes
trajectories for all robots, which can result in globally optimal

Distinct Locally Optimal
Candidate Trajectories

Fig. 1: Illustration of one planning iteration of T-DMPC
from the perspective of Robot i. The guidance planner first
generates multiple guidance trajectories (time visualized as
increases upward), each belonging to a different homology
class, denoted with ID: 7. Each guidance trajectory initializes
a (parallel) local optimization instance, producing a locally
optimal candidate trajectory in the same homology class (shown
without time upward), which move in different ways around
obstacles(predicted obstacle motion from the other robots is
visualized as cylinders). The candidate trajectory selected for
execution in the current iteration (red) is then passed to the
communication policy. The communication policy decides
whether to communicate it to the other robots based on the
homology class chosen in the previous iteration(h?"") and the
current iteration(h§u""¢mt),

plans but is limited by scalability, robustness and the need
for complete system information. In decentralized planning,
each robot plans trajectories independently and treats other
robots as non-communicating moving obstacles, relying on
local sensing and prediction to avoid them. This scales well but
can lead to wrong beliefs and prediction errors. In distributed
planning, robots still plan trajectories independently but can
communicate information explicitly (e.g., intended trajectories).
This can scale well and lead to less uncertainty about the
intended motion of other robots when communication is fast and
reliable. However, distributed approaches are also susceptible
to communication delays, network congestion and packet loss.
If these effects are not accounted for, coordination performance
can degrade and lead to unsafe behavior and even collisions.



The three architectures above describe how multi-robot plan-
ning can be organized: whether trajectories for each robot are
computed by a single computation unit, independently without
communication or independently with explicit communication.
However, these architectures do not specify how a motion
planner computes safe and efficient trajectories(motion plans).
Optimization-based motion planners are widely used to generate
safe and efficient trajectories, but the underlying optimization
problems are often nonconvex. As a result, the solution tends
to converge to local optima. In order to solve this researchers
have introduced concepts of topology into motion planning.
Topology-based motion planners are of interest because they
can compute multiple collision-avoidance trajectories that
belong to different homology classes. Intuitively, trajectories
belong to different homology classes if they pass obstacles in
different topological ways (e.g. passing another robot on the
left versus on the right). One can thus interpret a homology
class as a high-level interaction strategy for navigating around
other robots and obstacles. Topology-based motion planners
obtain topologically distinct trajectories by reasoning about
the topology of trajectories in relation to the collision-free
space. While topological concepts have been used to compute
multiple topologically distinct (high-level) motion plans, they
are rarely used as an explicit coordination or communication
mechanism in distributed multi-robot motion planning. This
work proposes a topology-aware communication strategy in
which robots communicate their predicted trajectories in each
planning iteration only when a change in homology class
occurs. A robot changing its homology class can be interpreted
as a switch in its high-level interaction strategy(e.g. switching
from passing an obstacle on the left to passing it on the
right). By restricting communication to these topologically
interesting events, the approach aims to reduce unnecessary
communication traffic and reduce network congestion, while
maintaining safe and efficient behavior.

Research question: How can (a change in) homology class
representations of trajectories be used to trigger (explicit)
communication in distributed multi-robot motion planning, so
as to reduce communication load while preserving safe and
efficient coordination? Building on the recent topology-based
trajectory optimization approach (T-MPC) presented in [1],
this work develops and evaluates a topology-aware distributed
planning framework (T-DMPC)(see Fig. [I). We quantitatively
and empirically study its coordination and communication
behavior under multi-robot interactions in both simulation and
real-world experiments.

II. RELATED WORK

This section reviews prior work on (multi-robot) motion
planning methods. It highlights key challenges in the distributed
planning architecture, explains why the concept of topology is
useful for optimization-based planners that have to deal with a
nonconvex collision-free space and positions this thesis within
the literature. The goal is not to list methods exhaustively, but
to group common approaches by their main characteristics and
to identify limitations that motivate this work.

Reactive methods. Reactive collision avoidance methods
compute short-horizon motion plans from the current perceived
state. Examples include artificial potential field methods [2] and
velocity-obstacle methods [3]], [4], with ORCA [J5] as a widely
used variant. These methods are computationally efficient, but
they are short-sighted and can lead to oscillations and deadlocks
in dense scenes. These methods are often executed within a
decentralized coordination architecture. Other classical methods
coordinate robots through a priority order (prioritized planning)
[6]]. Priority schemes can work well however however they
often rely on a predetermined priority ordering, which is non-
trivial and can result in overly conservative solutions.

Learning-based methods. Learning-based methods use learn-
ing to generate collision-free motion. Learning-based motion
planners [7]] can capture complex (interaction) patterns from
data and can be efficient at run time once trained . However,
they require representative training data, can generalize poorly
outside the training distribution and typically provide limited
interpretability and safety guarantees. These methods are
also often executed within the decentralized coordination
framework.

Optimization-based methods. A third group formulates
motion planning as trajectory optimization [, [9], [10]], [1L1]
, including Model Predictive Control (MPC) [12], [13], [14],
[[1S]}, [L6]. These planners can incorporate nonlinear dynamics,
actuator limits and (hard) collision-avoidance constraints, while
optimizing objectives such as tracking, smoothness and jerk.
In multi-robot settings, the predicted motion of other robots
is often included through collision avoidance constraints or
reflected in the costs function. A difficulty is that collision
avoidance constraints lead to a nonconvex collision-free space
. As a result, the optimized solution may converge to different
local optima depending on the initialization, can become
temporarily infeasible and may oscillate between distinct local
solutions across consecutive iterations. Consequently, high-level
interaction decisions such as whether to pass another robot
on the left or the right are often made implicitly rather than
explicitly [[1].

Centralized optimization methods. Some optimization-based
planners formulate the optimization in a centralized way by
formulating it as a joint optimization problem over all robots
[lL7].

Distributed optimization methods with explicit trajectory
exchange. Within optimization-based planning, a large body of
work targets distributed settings in which robots plan locally but
exchange information explicitly, for example by communicating
their planned trajectories or state [12], 18], [19]. Compared to
purely sensor prediction-based decentralized planning, explicit
communication reduces reliance on onboard prediction via
sensors. However, distributed methods must handle network
effects such as delay, packet loss and congestion. When shared
information becomes outdated due to these effects, robots may
enforce collision-avoidance constraints against stale trajectories,
which can degrade coordination performance and safety [20],
[9], [21], [22]]. This motivates communication policies that
reduce communication load while still exchanging information
when it matters.



Topology-based motion planning. Optimization-based (dis-
tributed) planners can, as already mentioned, converge to
different local optima due to the nonconvex collision-free
space induced by other robots and obstacles. Which local
optimum is reached depends on the initial guess and the
tuning of the cost function [1]. As a result, different ini-
tializations can produce different solutions that correspond
to different high-level interaction strategies, such as passing
another robot on the left versus on the right. The authors
in [1] note that collision-avoidance related local optima are
closely linked to the topology of trajectories through the
collision-free space. Roughly speaking, two trajectories belong
to the same homotopy class if one can be smoothly deformed
into the other without intersecting obstacles [23]] (they pass
obstacles on the same side). However, computing homotopy
classes of trajectories is difficult in general. Therefore to
represent and distinguish homotopy classes of trajectories an
approximation is used, called homology classes. Homology
classes are often be calculated via the H-signature [23] and
winding numbers [24]. Several authors exploit such topological
representations in relation to optimization-based planning.
A common pattern is to optimize over multiple candidate
trajectories in parallel, each of which is in a different homotopy
class and to select the best solution after optimization. For
instance in [23]], the authors use the H-signature to construct
and optimize several trajectories online in distinct homotopy
classes. Similarly in [26]], the method applies the same idea in
3D by optimizing over multiple trajectories that are initialized
from different topological paths through the collision-free space.
More recently, topology has been integrated directly into MPC-
based formulations. In [1]], they run multiple MPC instances
initialized in distinct homotopy classes and add linear topology
constraints to keep each instance within its assigned class,
enabling a consistent comparison across planning iterations. In
an extension, [27], replaces the explicit cost-based selection
with a learned selection rule. Instead of choosing the homotopy
class based only on the optimized trajectory costs, the authors
learn preferences from human data to bias the choice toward
socially preferred interaction strategies. Parallel optimization
over different (high-level) interaction strategies also appears in
settings such as self driving cars. The authors in [28] initialize
multiple MPC instances in parallel each in a different homotopy
class (similar to [1]]) but solve a joint optimization that includes
other agents as decision variables, rather than treating them
only through fixed predicted trajectories.

Other works use different topological concepts to encode and
influence coordination outcomes. [29]] incorporates a winding-
number cost term into an MPC formulation to encourage
passing progress and select the motion plan that realizes the
maximum passing progress in relation to all obstacles. In a
related direction, they use braid representations to describe
multi-agent interaction strategies (e.g., ordering at intersections)
and design a decentralized policy that reduces uncertainty over
these modes to improve safety [30].

Finally, these topology-aware ideas have also been explored in
distributed planners. [10] adapts the idea of optimizing multiple
trajectories in distinct homotopy classes of [25] to a distributed
trajectory-optimization setting and [22] similarly employs

topological structure in a distributed multi-robot system.
Overall, topology-aware methods complement standard trajec-
tory optimization methods by explicitly representing multiple
distinct high-level motion strategies, by distinguishing trajec-
tories via their topological relationship to obstacles and other
robots. These methods expose high-level choices (e.g., pass
left vs. pass right) that can be used to find diverse candidates,
mitigate poor local minima and improve robustness in cluttered
or crowded interactions.

Positioning of this work. This work builds on distributed
optimization-based planning and uses homology classes to
represent high-level interaction strategies of trajectories. Instead
of communicating continuously or at a fixed rate, communi-
cation is triggered by changes in homology class, i.e., when
the planner switches between distinct high-level interaction
strategies. The aim is to reduce unnecessary communication
while still communicating decisions that are most relevant
during close interactions. The remainder of this work details
the resulting planning framework and evaluates its behavior in
simulation and real-world experiments.

A. Contributions

This work builds primarily on the method presented in [31]]
and [1]] and extends the proposed motion planning framework
to a distributed multi-robot setting. The main contributions of
this work are as follows:

« An extension of the topology-driven motion planning
method introduced in [1] to a distributed multi-robot
system, leveraging explicit trajectory communication
between robots.

e An extension of the homology classification framework to
the non-guided motion planner, allowing its trajectories to
be assigned to homology classes whenever possible using
the same H-signature implementation as in [[1]]. This aims
to increase consistency in high-level motion planning,
even when the non-guided planner is selected.

« A novel topology-based communication strategy that
reduces the amount of communication by triggering
communication only upon changes in homology class.

o A trajectory consistency cost term is incorporated into the
MPC formulation of [1], penalizing deviations from the
previously computed trajectory within the same homology
class and thereby encouraging the predictability of the
distributed system. The cost is applied only to the MPC
instance associated with the previously selected homology
class. All other MPC instances exclude this term and
remain unaffected by the consistency cost component.

o Evaluations of the proposed method in both simulation
and real-world experiments.

III. PROBLEM FORMULATION

This section defines the multi-robot motion planning problem
studied in this work. It introduces the assumptions used
throughout the remainder of the chapter, the objective and
the workspace setting.



Terminology convention. Throughout this work, the term
robot refers to a communicating robot that participates in
explicit trajectory exchange. The term Agent refers to a non-
communicating dynamic object whose motion is observed and
predicted locally. The term dynamic obstacle refers to both
robots and agents. The term obstacle is used as an umbrella
term that includes dynamic obstacles and, when stated explicitly
static obstacles.

A. Assumptions

The problem formulation uses the following assumptions:

o Each robot can estimate its own position and velocity.

o Each robot runs the same motion planning algorithm
locally.

o Each robot can estimate the current position and velocity
of agents.

o Communicating robots can exchange predicted trajectories
with all other robots.

o All robots start at the same initial time, and each Robot
has a given start state and a fixed reference path.

B. Problem formulation

We consider a team of communicating robots that move in
a shared workspace containing static obstacles and dynamic
obstacles. We distinguish two classes of dynamic obstacles:
(i) communicating dynamic obstacles, which correspond to
other robots that exchange predicted trajectories, and (ii) non-
communicating dynamic obstacles, which include agents such
as pedestrians, non-communicating robots, or other unknown
dynamic objects. Each robot is assigned a fixed reference path
from a given start position to a goal position. The objective of
each robot is to make progress along its reference path while
respecting a maximum reference speed. Each robot must avoid
collisions with static obstacles, non-communicating dynamic
obstacles, and other robots. An illustration of this problem is
shown in Fig.

Formal problem formulation. We consider a team of R
communicating robots indexed by I := {1,...,R}. For a
Robot ¢ € Ir, we denote any other communicating Robot
by j € Ir\; := Ir \ {i}. In addition, we consider A non-
communicating dynamic obstacles, also referred to as agents,
indexed by I4 := {1,..., A}. Then the set of all dynamic
obstacles considered by Robot i is defined by Ipy\; := Ip\; U
I4, and we denote a generic dynamic obstacle by o € Ip\;.
Each Robot i € Iy is described by a discrete-time nonlinear
dynamical system

zi(thi1) = flai(tr), ui(tr)), 1

where z;(t;) € R™ and w;(t;) € R™ denote the state and
control input at discrete time step k, respectively, and f :
R™ x R™ — R™= denotes the (possibly nonlinear) dynamics.
Planning is performed at the current planning time ¢. over a
horizon of length N with sampling time dt, which defines the
time-grid

Vi € Ip.

thi=te+kdt, k=0,...,N, ty:=Ndt.

For collision checking, Robot ¢ is modeled as a disc of
radius 7; > 0 centered at its 2D position p;(tx) € R? C R"=,
Communicating Robot j is modeled as a disc of radius 7; > 0
centered at p;(t;) € R? and Agent a as a disc of radius
rq > 0 centered at p,(tz) € R2. Robot i maintains predictions
of all dynamic obstacles over the time-grid {¢})_, at each
planning time .. For each Robot j, Robot ¢ receives a predicted
2D position trajectory through explicit communication. These
received predictions are denoted by {p’7%(tx)}_,. Since
robots do not communicate their trajectories at every planning
iteration, the received predictions may be time-misaligned with
the current planning time ¢. of Robot 7. Therefore, each received
trajectory of a generic Robot j is shifted forward in time based
on its last update time tJ, to obtain a prediction that is consistent
with the current time-grid. We denote the resulting time-
aligned prediction trajectory of Robot j, available to Robot
at planning time t., by 777t t.) = {f)j_’i(tk)}]kvzo
(Section for a detailed explanation).

The collection of all time-aligned trajectory predictions
received by Robot ¢ at planning time t. is defined as the
(updated communicating) robot prediction set:

Pi(te) = {777t te)} @

In addition to the explicitly communicated Robot trajectories,
Robot ¢ locally predicts the motion of Agent a in the envi-
ronment using a prediction module. The resulting predicted
positions of these agents are denoted by {p*~(;)}1_, and
the respective predicted trajectory is denoted by 727 (¢t.) =
{f)“”i(tk)}fj:o. The collection of all agent trajectory predic-
tions is defined as the agent prediction set:

Silte) == {77 (tc)} (©)

These predictions define a time-varying set of dynamic
obstacles for Robot 7 over the horizon: at each planning time
t., Robot 7 considers (i) the communicated robot predictions
in P;(t.) and (ii) the locally predicted agent motion in S;(t.).
Each element corresponds to the predicted motion of a single
obstacle (either a communicating robot or a locally predicted
agent). We denote the time-indexed prediction trajectory of a
generic obstacle o € Ip\; available to Robot 7 over the planning
horizon by 7°7*(t.), which contains the predicted obstacle
positions p ° () for k = 0, ..., N. Dynamic obstacles make
the collision-free workspace time-dependent. We therefore
consider the finite space-time domain X := R? x [to,tn].
For Robot 7, let O;(t;,) C R? denote the area of the workspace
occupied by the union of all obstacles for Robot ¢ at time ¢y,
(induced by the predicted obstacle positions at time t;). The
corresponding dynamic obstacle prediction set in space-time
is defined by

Vj e IR\i-

Va € 14.

Oilte) = |J (Oiltr), tx) C X, 4)
tr€[to,tN]
and the collision-free space-time for Robot ¢ is C; := X'\

O;(t.). The planning objective of each robot is to make
progress along a given reference path «; : [0,1] — R? while
avoiding collisions with obstacles and tracking a reference
velocity vef. Deviations from the reference path are allowed.



C. Optimization

For a Robot i, to reach the planning objective we define the
problem as a trajectory optimization problem over a horizon
of N steps:

N
uie%fiiiex I;J(xi(tkL w; () (5a)
st Xi(te1) = f(xi(te), wi(te)), Vk  (Sb)
X (t0) = Xinit (5¢)
g(xi(te), P (tk)) <0, Vk, 0 (5d)

where the cost function J in Eq. (5a) encodes the planning
objectives (e.g., tracking a reference path). The system dynam-
ics and initial condition are enforced by Eq. (5b) and Eq. (5¢),
respectively, while collision avoidance with dynamic obstacles
is imposed through Eq. (5d). Since dynamic obstacles make
the collision-free space nonconvex, the optimization problem
can lead to multiple locally optimal solutions. The particular
solution obtained depends on the initialization of Eq. (5).

D. Homotopic Trajectories

The goal is to address the multiple local optimal solutions
in Section |LII-C] which arise from the nonconvex collision-free
space induced by obstacles. We exploit that these local optima
are closely linked to the different ways how the resulting
(optimal) trajectories pass obstacles. This can be captured by
the topology of trajectories in space-time. By exploring multiple
such locally optimal trajectories in parallel, each representing
a different passing mode, it is possible to find a solution that
is closer to the globally optimal trajectory than what would be
obtained from a single initialization. We therefore rely on the
concept of homotopic trajectories to find and compare candidate
(initialization) trajectories. For a more detailed and theoretical
explanation of homotopy-based trajectory classification the
reader is referred to [1]. Here we provide a compact description
relevant to this work.

To capture fundamentally different ways of navigating around
obstacles, we rely on the notion of homotopic trajectories. Two
trajectories that connect the same start and goal positions are
said to be homotopic if one can be continuously deformed
into the other while remaining entirely within the collision-free
space. Intuitively, homotopic trajectories avoid obstacles in
the same way and therefore belong to the same homotopy
class. An illustrative example of different homotopy classes is
shown in Fig. [J] To distinguish between trajectories belonging
to different homotopy classes, we use a homotopy comparison
function:

H(Tim’Tinvoi) = {

Directly verifying whether two trajectories are homotopic
according to the formal definition is, in general, computationally
expensive and therefore impractical for online planning. Instead,
we make use of the H-signature [1]], which provides the efficient
approximate representation called the homology class of the
homotopy class of a trajectory and enables real-time homotopy
comparison.

m n
7%, 7" same homotopy class

(6)

0, otherwise.

Time

(@) (b)

Fig. 2: Illustration of trajectories in the same versus different
homotopy classes: (a) top-down view and (b) space—time
domain. Trajectories 1 and 2 share a homotopy class, whereas
Trajectories 1 and 3 belong to different classes. Reproduced
from [1l], licensed under CC BY 4.0.

IV. TOPOLOGY-AWARE DISTRIBUTED MODEL PREDICTIVE
CONTROL(T-DMPC) - METHODOLOGY

This section describes the proposed topology-aware dis-
tributed motion planning framework which we call T-DMPC.
We first present the overall per-robot planning loop and a
general description of the main modules, we then provide a
more detailed description of each module.

Per-robot planning framework. We consider a team of robots
indexed by ¢ € Ir. Each Robot runs the same planner
locally and coordinates with other robots through explicit
communication. Planning is performed asynchronously, such
that each Robot executes its planning loop independently,
without requiring synchronization with other robots. At the
beginning of each planning iteration, Robot ¢ updates its
estimate of the environment and incorporates the most recent
communicated trajectories of the other robots (Section [[V-A).
It then computes multiple candidate trajectories corresponding
to distinct topological alternatives (Section following
[31], [1], refines them through local trajectory optimization
Section (Section [[V-C)), selects one trajectory for execution
(Section [IV-D)), and optionally communicates the selected
trajectory to the other robots based on a communication policy
Section (Section [I[V-E). An overview of the proposed planning
framework can be seen in Fig. [3]

Module 1 - Dynamic obstacle representation. Robot 1
maintains a prediction trajectory of dynamic obstacles over a
planning horizon N. These trajectories are updated in each
planning iteration using a constant velocity model for the non-
communicating dynamic obstacles or with the communicated
trajectory of the other robots. Robots do not broadcast a new
trajectory at every planning iteration. Therefore, when the most
recently received trajectory from a Robot j is timestamped in
the past, Robot ¢ time-shifts it to the current planning time ¢..
The output of this module is a set of prediction trajectories of
all dynamic obstacles O;(t.), used by both the guidance and
the local planner.



Prediction (it

Robot i @ @G

Traj. Optimized
robot),j+1 ral

Proposed Planner(Robot j+1)

[ Proposed Planner(Robot j)

Proposed Planner(Robot i)

Guidance-Planner

Local-Optimization

: i
' Dynamic Obs. Tra).
% Representation |

! € Tip,

Decision-Making —zec?i © ication Policy
T,

i ) i ()

i
' S L —

exec

Gazebo/MotionCapture

- ------- Controller
iW’:I

Fig. 3: Illustration of the complete motion planning framework of the proposed method T-DMPC. Each Robot ¢ runs the same
planner locally and replans asynchronously, without synchronization. At each iteration, (a) Robot 7 updates its environment
estimate and incorporates the most recent communicated trajectories of the other robotsj(Section [[V-A), (b) generates multiple
candidate trajectories corresponding to distinct topological alternatives (Section [[V-B)), (c) refines them via local trajectory
optimization (Section |IV_T|) (d) selects one trajectory for execution (Section |TV_:5|),and (e) optionally communicates it to the

other robots based on a communication policy (Section [[V-E)

Module 2 - Guidance planner. Given the current state x; (o),
Pf , which denotes a set of goal positions, and the current

collision free space C;, the guidance planner GG; generates a
set of topologically distinct guidance trajectories for Robot 4:

Gizi(to), PL,C;) ={7t,....7{'} = Tip, (N

Here, 77 denotes the p-th guidance trajectory for Robot i, and
P; is the number of guidance candidates found for Robot
in the current plannings iteration (which may differ across
robots and over time). In addition each guidance trajectory 7%
is associated with a homology class label A’

Module 3 - Local trajectory optimization (one instance per
guidance trajectory). For each guidance trajectory 7%, Robot i
initializes a local planner to obtain a locally optimized trajectory
79 within the same homology class. We denote this as a
mapping:

Li: XN xN P

7

= L;(7) ®)

The optimization accounts for (i) Robot dynamics and actuation
limits and collision avoidance with dynamic obstacles. To
ensure that each local planner instance remains within the
intended homology class, the local planners also incorporate
additional constraints from its assigned guidance trajectory
7. As a result, Robot ¢ computes a set gf locally optimal
candidate trajectories 7;p, 1= (... ,Tf" }, each trajectory
T ’ corresponding to a distinct topological alternative.

Module 4 - Decision making (trajectory selection). Robot 4
selects one trajectory from 7 for execution based on
comparing the cost of each trajectory. Denoting the selected
index by p*:

exec p

- *_ : p”
T =1 D —argnzl)l*nJi(Ti )

Here J;(-) is the cost function used by Robot i as defined in
Section

Module 5 - Communication policy. A communication policy
determines whether Robot i communicates the execution
trajectory 75*°(¢..) to the other robots. We introduce a discrete
communication trigger variable:

ki€ CZT )

where KC is a finite set of trigger states encoding the reason
for a communication decision. The trigger variable resembles
high-level events detected by Robot i(e.g., feasibility changes,
topological changes, or timing conditions). Based on the trigger
state, a binary communication decision is taken:

61(“2) € {07 1}7

where d;(k;) = 1 indicates that Robot i communicates its
selected trajectory 77*°(¢..). If ;(k.) = 0, Robot i executes
TE¥C(¢t,.) without communicating 77*°°(¢,.) to the other robots.

(10)

A. Dynamic Obstacle Representation - Detailed Description

This section details how Robot ¢ maintains a consistent
dynamic obstacle prediction set O;(¢.) in the presence of com-
municating robots and non-communicating agents. As defined
in Section [lII-B] Robot ¢ evaluates prediction trajectories of
robots and agents on the time-grid {tk}kN:O at each planning
time t..

Communicated robot trajectories. For each other communi-
cating Robot j € Ig\;, Robot 7 receives a prediction trajectory
at irregular times, and consecutive messages may be separated
by multiple planning iterations (e.g., when Robot j does not
broadcast because its intended behavior remains unchanged).
We denote the most recently received trajectory from Robot j
by 777%(t,), where ¢/ is the time at which Robot i received



the trajectory. Additionally ¢/,, where tJ < tJ, < t, is the time
at which Robot ¢ last updated the prediction trajectory of Robot
j. The prediction age is:

At:=t.—t) >0. (11)

If At > 0, Robot ¢ time-shifts the received trajectory forward
by At such that it can be used on the current time-grid. The
resulting Robot prediction set P;(t.) on the current time-grid
is defined by Eq. (2).

Non-communicating dynamic obstacles. As mentioned in
Section Section Robot 7 does not receive prediction
trajectories for agents a € I4. Instead, at each planning
iteration Robot i propagates the current estimated agent state
forward over the horizon N using a constant-velocity model.
The resulting agent prediction set S;(t.) on the current time-
grid is defined by Eq. (3).

Dynamic obstacles. The combined dynamic obstacle predic-
tion set, O;(t.) of Robot ¢ at planning time t. is defined by
Eq. @). This dynamic obstacle set is used by both the guidance
layer and the local trajectory optimization layer.

Alignment of Robot i’s last communicated traj. Finally,
Robot ¢ also time-aligns its own last communicated trajectory to
the current time-grid by propagating it forward, this is denoted
by 7eomm(¢i t.). Here t, is the time at which Robot i last
updated its own communicated trajectory (so it is not the time
when it communicated the trajectory). This trajectory represents
what the other robots currently believe Robot ¢ will execute
until it communicates a new trajectory. After solving the new
optimization, Robot ¢ compares the newly selected trajectory
T¥¢C(t,.) against this time-aligned last communicated trajectory
to check whether the planned motion deviates significantly from
what other robots expect. This will be explained in more detail
in Section

B. The Guidance Planner - Detailed Description

This section details how Robot 7 generates a set of topology-
distinct guidance trajectories that serve as initializations for
the local trajectory optimization layer. The guidance planner
operates on the time dependent collision free space C; induced
by the dynamic obstacle prediction set O;(t.)( Section
and follows the Visibility-PRM-based approach of [31], [
We summarize the essential steps here and refer to [31]], [1]
for full implementation details.

Visibility-PRM. At planning time ¢., Robot ¢ constructs (or
updates) a sparse roadmap G; in the collision-free space C;.
The roadmap is built in space-time and connects the intial
Robot state x;(tg) to a set of goal nodes x;(ty) by randomly
sampling positions. These goals are placed around the reference
path near the end of the planning horizon. A set of goals nodes
is used instead of a single goal to increase robustness when a
single goal becomes unreachable.

DepthFirstSearch and FilterAndSelect. Given the roadmap
Gi, Robot 7 extracts candidate paths to each goal node using
depth-first search, yielding a set 7;r, of feasible paths. The
procedure FilterAndSelect then removes homotopy-equivalent
candidates using a homotopy comparison function H(-) and
returns a set of filtered guidance trajectories 7, that satisfies

The P; lowest-cost trajectories in 7;7 make up the selected
guidance set T;p,. In this work, H(-) is implemented only
using the H-signature Eq. (23). We refer to [1] for the precise
definition and implementation details.

Re-identification and propagation across iterations. To
maintain behavioral consistency across planning iterations, the
guidance planner links new trajectories to trajectories from
the previous planning iteration. Let 7,5 denote the set of
previously found guidance trajectories. For each 7"~ € T,
we check whether there exists a trajectory 7" € 7, p, such that:

ElTin € 7—iP7:7 ,H(T*mi

mnt) =1

13)

If such a match exists, the homology class of 7/ is propagated
to 7;*. This enables us to refer to consistent topological
alternatives over time.

C. Local planner - Detailed Description

This section details how Robot 7 refines the set of guidance
trajectories by initializing multiple local trajectory optimizers
each with its own guidance trajectory in parallel. Each local
planner operates in the time dependent collision free space
C; induced by the dynamic obstacle set O;(¢.). The overall
procedure follows the approach of [[1l], with several adjustments.

To refine the guidance trajectories generated by the guidance
planner of Robot %, we initialize P; local planners in parallel.
Each local planner optimizes one guidance trajectory 77 and
produces a dynamically feasible trajectory that satisfies all
imposed constraints (e.g., dynamics, actuation limits, and
collision avoidance). In this work, each local planner is
instantiated as a trajectory optimization problem Eq. (3) with
two modifications to ensure that the optimized solution remains
in the same homotopy class as its associated guidance trajectory.
First, the guidance trajectory 77 is used as the initial guess.
Second, we augment the optimization with additional topology-
preserving constraints that keep the optimized trajectory in the
same homology class as indicated by the guidance trajectory.
To keep each optimized trajectory in the same homology class
as its associated guidance trajectory, we augment every local
planner with an additional set of linear topology constraints
To keep each optimized trajectory in the same homology
class as its associated guidance trajectory, we augment ev-
ery local planner with linear topology-preserving constraints
g (xi(tk), P~ (tk), PY (tr)). Here, p¥(t)) denotes the 2D
position of the guidance trajectory associated with guidance
candidate p at time tj, and should not be confused with the
position which is part of x;(¢). Following [, these constraints
are written as A(tg)x;(tx) < b(tx). For each time index
k =0,...,N and each predicted dynamic obstacle position
p°i(t1,) (from O;(t.)), we construct a separating half-plane
with respect to the guidance trajectory 77’:

PO (tk) — PY(tk)
A = 505100 — pl T
b(tr) = Ats) T (B (t) — A1) (B (ri +10))) -

Here 8 =~ 0 is a relaxation factor. These constraints prevent
the optimizer from switching sides relative to obstacles while

(14)



remaining compatible with standard collision-avoidance con-
straints. We refer to [1]] for a more detailed derivation and
discussion.
The resulting local planner for guidance candidate p can be
written as:

N
le* = min Z J(xi(tk),ui(tk)) (153.)
Ry
s.t. Xi<tk+1) = f(Xi(tk),ui(tk)), vk, (15b)
Xi(to) = Xinit, (15¢)
g(xi(te), "7 (tr)) <0, Vk,o,  (15d)

g (xi(te), P77 (te), PL(tk)) <0 Vk,o0
(15¢)

where ¢(-) denotes the collision-avoidance constraint{] and
gu () encodes the topology-preserving constraints constructed
from the guidance trajectory as in Eq. (I4). The P; local
planners yield a set of locally optimal candidate trajectories,
which are passed to the decision-making layer for selection.
Trajectory consistency cost. In addition to the objective
function defined in Eq. (I5a), which follows the formulation
of [1l], we introduce an additional trajectory consistency cost.
This term encourages spatial-temporal consistency when the
planner continues to execute trajectories within the same homol-
ogy class across consecutive planning iterations. Specifically,
if Robot 7 selected a guided trajectory in homology class
h¥Y*®V at the previous planning time, the corresponding guided
local planner is penalized for deviating from the previously
executed trajectory. Let 777" := {p?"®(t1)}1_, denote the
time-aligned trajectory executed by Robot 7 in the previous
planning iteration. The additional cost term is defined as:

N—-1
Jorev =wr Y |pi(te) = PV ()*,  (16)
k=1

where p;(tx) C x;(tx) denotes the position decision variable
of the current local optimization at time step t; and w, > 0 is
a weighting parameter. This cost is applied only to the guided
local planner associated with the homology class selected in the
previous iteration. For all other guided planners, the consistency
weight is set to w, = 0, making Eq. (T6) inactive.
Non-guided Local Planner in Parallel. While the topology-
preserving constraints Eq. (I4) enforce consistency with the
guidance trajectories, they also restrict the feasible set of the
local optimization problem. As a result, there may be situations
in which the local optimization becomes suboptimal or even
infeasible. In such cases, the guidance constraints themselves
can thus limit the performance of the local planner. To mitigate
this effect, we augment the set of P; (guided) local planners
with an additional non-guided local planner. This planner
solves the same trajectory optimization problem as in Eq. (I5)),
but without the topology-preserving constraints Eq. (15¢))
and without relying on a guidance trajectory as initialization.
As such, the non-guided planner is less restricted and can
discover solutions with lower costs than the guided local
planners. In addition to the approach of [1], we also attempt

A compact formulation of Egs. and (15d) is provided in Section|VIII-B

to associate the trajectory produced by the non-guided local
planner with one of the P; homology classes identified by
the guidance module. To this end, the non-guided trajectory
TZNG is projected onto the guidance roadmap Gi, after which
its homology class is determined by evaluating the mapping
in Eq. for all 77" € T;p,. An illustration of this mapping
is shown in Fig. The inclusion of a non-guided local
planner provides two key benefits. First, it improves robustness
by allowing the guided planning architecture to recover from
infeasibility. Second, it guarantees that the proposed parallel
planning architecture does not perform worse than the non-
guided local planner in isolation. When a matching homology
class is identified for the non-guided trajectory, the trajectory
is assigned to the corresponding homology class and included
in the same decision-making and communication logic as the
guided candidates associated with that class.

NG .,

NG 9
; 1

-TiNG T’i,

Fig. 4: Tllustration of how the optimized trajectory 7V pro-
duced by the non-guided local planner is assigned a homology
label. The trajectory 7V (green) is initially unlabeled. Using
Eq. (I2), it is matched to homology ID 2, corresponding to
the guided optimized trajectory T7.

D. Decision Making Layer - Detailed Description

This section details how Robot ¢ decided on which one
of the ¥ optimized trajectories from the set of optimized
trajectories 7;p. to execute in the current planning iteration.

Since Robot i can execute only a single trajectory at each
planning iteration, the set of candidate solutions must be
reduced to a single execution decision. The set of optimized
trajectories produced by the P; guided local planners and the
non-guided local planner, with corresponding optimal costs
JP s )

7;;1_ = {7} ,...,Tfi }

For the guided local planner associated with the homology
class selected in the previous planning iteration, the local
optimization includes an additional trajectory consistency
JIprev(Eq. @). To ensure a fair comparison between candi-
date trajectories during decision making, this consistency term
is removed prior to selection.

Since all local planners minimize the same nominal objective
function, the trajectory with the lowest cost J represents the

a7



best solution under the specified objective. The minimal-cost
decision is therefore given by:

*
exec , P
% =T

, p° :argmpi*n Jf*, (18)

As described in [[1], frequent switching between topologically
distinct trajectories across consecutive planning iterations can
degrade navigation performance. Following their approach, we
apply a consistency rule that prefers the trajectory in the same
homology class as the one executed in the previous iteration.

This consistent decision is defined by:

. .
7, p*=argmin wy,J!’ ,
P

i 19)

Here, w, = ¢, € [0,1], if the corresponding homology
class was selected in the previous iteration, provided that a
feasible trajectory in that class exists. Intermediate values of ¢,
trade off minimization of the “normal” trajectory cost against

topological consistency across consecutive iterations.

E. Communication Policy - Detailed Description

This section details how Robot ¢ decides whether to broadcast

TE*¢(t.), based on the current value of the trigger variable

Kj (tc).

After the decision-making layer selects a single execution
trajectory 77%°(t,) at planning time ., Robot i decides whether
this trajectory should be communicated to other robots. Since
planning is asynchronous and communication is event-triggered,
other robots may base their predictions on a previously received
plan for multiple planning iterations. The communication policy
therefore aims to (i) limit bandwidth usage, while trying to
(ii) prevent other robots from relying on stale predictions of
Robot i’s motion. When communication is triggered meaning
di(ki(t:)) = 1, Robot ¢ communicates the selected execution
trajectory 75*°°. The trigger variable r;(t.) is evaluated in
a fixed priority order (highest priority first). The following
triggers are used:

1) Infeasibility. If none of the P; + 1 local trajectory
optimizations results in a feasible solution, then other
robots must be informed to avoid relying on an outdated
prediction of Robot 3.

2) Non-guided / unmapped . If the selected execution
trajectory cannot be assigned to any homology class, then
the other robots must be informed because a topology
switch might happend. This can happen when the chosen
trajectory is the non-guided trajectory but the mapping
failed.

3) Topology-change. Robot i triggers communication if the
homology label of the selected execution trajectory differs
from the one executed in the previous planning iteration,
ie., A" #£ hgTec,

4) Geometric-deviation . Even if topology remains un-
changed, the executed trajectory may deviate significantly
from what other robots currently believe, this can result
in a collision. Robot ¢ therefore triggers communication
if the deviation between 77*°(t.) and the time-aligned
last communicated plan exceeds a threshold € > 0:

D (78X (1), £t 1)) > €

K2

(20)

In this work we have chosen for:

) lp(te) —P(tr)l . (2D

max

yeeny

D(r,7) := e N
We use the maximum position deviation over the horizon
N, because it captures the worst-case discrepancy be-
tween what other robots enforce as collision-avoidance
constraints (based on 7£°™™ (¢35t ¢ )) and what Robot
1 is actually executing. In other words, even if most of
the trajectory matches, a single large deviation at any
horizon index can invalidate another Robot j’s prediction
and potentially lead to a collision.

5) Time-based trigger. To avoid unbounded silence and
to reduce uncertainty in the true trajectory Robot ¢
is following, Robot i also communicates a periodic
“heartbeat” update: if no other trigger fires for ATy,
seconds, it transmits its current trajectory. Here #.25!
denotes the time at which Robot ¢ last communicated a
trajectory.

te — 10 > Ty, (22)

If none of the above conditions hold, d;(x;) = 0 and Robot 4
executes 77%°°(t.) without transmitting.

The resulting (event-triggered) communication policy com-
municates irregularly during “steady-state” motion (unchanged
topology and small deviation from the last communicated
plan). It reacts immediately to interaction-critical events, such
as infeasibility, non-guided/undetermined topological plans,
or large deviations from the belief trajectory. The time-based
trigger can refresh a Robot j’s predictions even when no relevant
events occurred.

V. SIMULATION EXPERIMENTS

This section describes the simulation setup and evaluation
metrics used to compare the proposed topology-aware dis-
tributed motion planner (T-DMPC) against baseline methods
in multi-robot scenarios. It then presents and analyzes both the
overall results and the behavior of the communication triggers,
and includes an ablation study to isolate the impact of each
individual component of the proposed method.

A. Planner Implementation and Parameters

The planner is implemented in C++/ROS1. For the
optimization-based planner we use Local Model Predictive
Contouring Control (LMPCC) [32 with second-order unicycle
dynamics. The parallel local optimization problems are solved
using acados [33]]. For more details on the LMPCC objective
function and collision avoidance constraints we refer the reader
to [32], [1]]. All planner parameters are summarized in Table E}
The guidance and local-planner weights are the same once
used in [1]]. The communication-policy parameters are manually
tuned on a small set of pilot runs until no collisions occured, and
then held fixed across all experiments (they are not optimally
tuned to trade off safety against the amount of communication;
this is left as future work). All simulations (and real-world)
experiments are executed on a laptop with an Intel 19 CPU

2A compact formulation is provided in Section [VIII-B



(2.4GHz, 16 cores). The implementation runs with P + 1
CPU threads, where P is the number of guided local planners
executed in parallel(for 1 robot). Each planning thread is
stopped if it runs longer than the control period of 50 ms.
The robot then executes the best trajectory among the local
optimizations that finished within this time. If none of the local
optimizations finishes in time or returns a feasible solution, we
apply a fallback command corresponding to a braking maneuver
with 3.0m/s%. In this case, the resulting braking trajectory
is always communicated to the other robots as described in
Section [V-El

Note: All robots are simulated on a single laptop, meaning that
all planning threads must share the same CPU. As a result,
some planning threads may occasionally receive less processing
time and fail to finish within the 50 ms control period. This can
introduce compute-induced artifacts that would be unlikely in
truly distributed deployment, where each robot runs its planner
on its own onboard computer. To mitigate this effect and keep
compute availability fair and realistic, we run the simulation
in slow motion by scaling the simulation clock by a factor 0.5.

TABLE I: Experimental settings.

Parameter Value Description

N 30 Global and local planner horizon

AT 0.2s Integration time step

h 0.05s Planning time step

n 30 Visibility-PRM sample limit

Timax 10ms Visibility-PRM time limit

Eqgs. and H-signature Homotopy comparison function

P 4 Number of distinct guidance trajectories

G 5Xx5 Grid of goals (longitudinal X lateral)

T 0.850m Combined radius of two robots

We 0.05 Optimization contouring weight

wy 0.75 Optimization lag weight

Wy 0.55 Optimization velocity tracking weight

We, 0.85 Optimization rotational velocity weight

Weq 0.34 Optimization acceleration weight

Wy 0.4 optimization previous trajectory weight

Decision Eq. Type of decision-making

ci 0.75 Discount factor for previously followed ho-
motopy class

Homology ID(non-guided)  True Assign a homology ID to the non-guided
trajectory (False for baselines)

Communication policy True Enable communication policy (False for base-
lines)

€ 1.1m Max deviation threshold (see Eq.

Thy 3.0s Heartbeat period

B. Scenario

We consider scenarios with R € {2,3} communicating
robots. In each run, the robots perform an antipodal swap
maneuver on their assigned reference path. The robot tries to
follow the reference path with a reference velocity of 2m/s
and is controlled at 20 Hz. Each robot has a radius of 0.325m

(@) (b)

Fig. 5: Illustration of the simulation scenarios. (a) R = 2, two
robots perform an antipodal swapping maneuver. (b) R = 3,
three robots perform the same swapping maneuver.

but the planners work with a more conservative radius of
0.425 m for increased distance between the robots. A simulation
experiment starts from the initialized robot and agent states; a
trial is successful when all robots reach the end of the reference
path within a specified goal tolerance. After reaching the path
endpoint, each robot rotates by 7 and waits until all other robots
have reached their respective endpoints. Once all robots have
arrived, each robot repeats the same maneuver on the reversed
reference path. This cycle is repeated for a fixed number of
trials, resulting in multiple swaps per experiment. Even though
all planner settings are identical for a given scenario, trials
can still differ due to small variations in each robot’s starting
pose and the sensitivity of the nonconvex motion-planning
pipeline in combination with the communication policy. Small
perturbations, noise, and sampling effects(Section [[V-B) can
lead to different outcomes in the guidance module and make
the local optimization converge to different local optima, which
changes the executed trajectory and therefore the outcome of
the communication policy. Since our communication policy
is based on the executed trajectory, this directly affects when
communication is triggered. We therefore perform 11 trials per
experiment to capture this variability and to avoid conclusions
from a single favorable or unfavorable trial (i.e., a “lucky” or
“unlucky” outcome). A visualization of the scenarios is shown

in Fig. j]

C. Baselines

We compare T-DMPC against two baselines that separate
the benefits of having communication at all from the benefits
of our (event-triggered) communication policy. All methods
use identical guidance and local-planner weights Table
The prediction and communication mechanisms differ across
methods. In addition, the baselines disable the non-guided
trajectory mapping step (Section [[V-C) and the trajectory-
consistency cost term (Eq. (16)).

1) T-MPC + Local CV Predictions (No Communication) — T-
VMPC: Uses T-MPC as the motion planner and predicts
all dynamic obstacles locally at each planning iteration
using a constant-velocity (CV) model over the horizon,
without communicating trajectories. Apart from treating
the other robots as the dynamic obstacles (instead of



pedestrians following a social-forces model), this baseline
matches the implementation in [[1]] and uses the same
local constant-velocity prediction model.

2) T-MPC + Always-Communicate Trajectory (No Policy) —
T-AMPC: Uses T-MPC as the motion planner and commu-
nicates the newly computed execution trajectory at every
planning iteration, without applying a communication
policy.

D. Evaluation metrics

We evaluate the methods at both the individual robot level
and the system level. System-level results summarize team
performance per trial by aggregating the per-robot metrics
across all robots (e.g., by averaging across robots within a
trial), after which we report summary statistics over the 11
trials. Each method is evaluated using the following metrics:

1) Task duration: time required to reach the end of the
reference path.

2) Traveled distance: total path length executed before
reaching the end of the reference path.

3) Runtime: average computation time per control-loop iter-
ation (including trajectory update, prediction alignment,
and optimization solve).

To quantify communication efficiency, we additionally report
for, T-DMPC:

1) Communication count: the total number of messages
communicated by a robot per experiment.

2) Critical communication count: The number of messages
robot ¢ communicated per experiment during critical
planning iterations. A plannings iteration is considered
critical if robot 4’s distance to all other robots is
decreasing (i.e. the robots are moving closer to each
other). The total number of plannings iterations is always
greater than the number of critical iterations.

Note: The communication metrics are not reported for T-VMPC
because it is not communication based, and not for T-TAMPC
because it communicates at every planning iteration.

E. Analysis

The results of the 11 trials are reported per scenario and
per robot in Table [[I] and Table System-level results,
obtained by aggregating the per-robot metrics, are summarized
in Table Communication metrics (only for T-DMPC)
per robot and on a system-level are reported in Table [V| and
Table For the 2-robot scenario, the per-robot results show
no meaningful differences in task duration or distance traveled
across methods. At the system level, there is also no meaningful
difference across methods for the 2-robot scenario. For the 3-
robot scenario, the distance traveled per robot is similar across
all methods. For task duration, however, we observe small
variation in both the mean duration and the duration standard
deviation across methods. In particular, T-VMPC shows for
Robot 1 a mean duration of 13.6s with a standard deviation of
1.5s, compared to 13.1s(0.3s) and 12.8s(0.5s) for T-AMPC
and T-DMPC, respectively, where values in parentheses denote
the standard deviation. The same patterns holds for the other

2 robots. At the system level, T-VMPC also shows the largest
duration standard deviation 1.5s and the highest maximum
duration 17.7s. Fig. [6] visualizes the system paths over the
11 trials for both scenarios. As can be seen, " AMPC and
T-DMPC yield smoother paths in both scenarios and track
the reference path more closely in the 3-robot scenario. We
quantitatively capture this smoothness by computing, for each
method, the system-level mean squared integral jerk of the
acceleration and angular-acceleration components across trials.
Specifically, we report J,(R=2, R=3) for the acceleration
jerk and J, (R=2, R=3) for the angular-acceleration jerk. The
integral jerk values for T-VMPC are higher in both scenarios
J, = (28.2,35.5) and J, = (51.1,40.3), than for T-AMPC
with J, = (24.8,19.8) and J, = (2.3,7.1), and for T-DMPC,
with J, = (20.53,19.2) and J, = (5.2,10.45). This indicates
less smooth (i.e., more oscillatory) motion under T-VMPC
in both the 2-robot and 3-robot scenarios. This was also
empirically observed during the experiments. Fig. [/| shows
the minimum pairwise distance between robots over time.
No trial resulted in a physical collision, the distance never
drops below the collision threshold of 0.65m. However, in
the 2 robot scenario(Fig. all methods slightly violate
the (more conservative) intrusion radius used in the local
optimization, indicating close interactions even when collisions
are avoided. In the 3-robot scenario(Fig. , intrusions occur
for T-VMPC, whereas T-AMPC and T-DMPC, remain above the
intrusion threshold. However, a small caveat is that although no
intrusions were observed in the recorded experiment, intrusions
can still occur for T"AMPC and T-DMPC in the 3-robot
scenario (see Fig. [8). In particular, T-DMPC can occasionally
show large intrusions. Overall, closer passes (smaller minimum
distances) occur more often in the 2-robot scenario, likely
because the interaction is less constrained than with three robots.
Finally, T"TAMPC and T-DMPC achieve a similar distance
traveled and task duration, both per robot and at the system
level. However, T-DMPC attains this performance with less
communication, only about 9.8% of the critical plannings
iterations triggers communication in the 2-robot scenario and
about 13.7% in the 3-robot scenario.

F. Communication-trigger behavior

To better understand how T-DMPC communicates in
the R € {2,3} robot scenarios, we analyze where in
the workspace the communication triggers occur. We
additionally relate these trigger events to the objective
values of the P 4 1 local planners, to assess how trigger
activations relate to changes in the local optimization outcomes.

1) Spatial distribution of communication triggers Fig.
shows the robot positions at which communication is triggered.
Most critical communication events occur near the initial states
of the reference paths and around the middle of the maneuver.
This pattern becomes clearer when separating the triggers
by type. The topology-change triggers in Fig. [0b occur
predominantly near the start of the reference paths, suggesting
that robots initially switch between homology classes while
resolving the interaction and selecting a consistent passing



TABLE II: Quantitative simulation Results: 2 robots of Sec-
tion [V=E] over 11 trials. Task duration(Dur.), distance(Dist.) and
runtime are reported as “mean(std.dev.)”. The results indicate
similar performance across methods.

Robot Method Dur. [s] Dist. [m] Runtime [ms]
T-VMPC (CV) 13.0(0.2) 11.6(0.4) 8.1(4.0)
Robotl T-AMPC (AC) 12.9(0.2) 11.5(0.4) 4.5(0.7)
T-DMPC (ours) 12.6(0.2) 11.6(0.4) 5.4(0.8)
T-VMPC (CV) 13.0(0.2) 11.6(0.4) 4.5(0.8)
Robot2 T-AMPC (AC) 12.9(0.2) 11.5(0.5) 6.8(3.4)
T-DMPC (ours) 12.6(0.2) 11.5(0.4) 5.5(0.8)

TABLE IV: Quantitative simulation system results: 2(Fig.
and 3(Fig. [b) robots of Section over 11 trials. Task
duration(Dur.), distance(Dist.) and runtime are reported as
“mean(std. dev.)”. Results indicate similar system-level perfor-
mance, however in the 3 robot scenario we see for T-VMPC a
higher duration standard deviation compared to T-AMPC and
T-DMPC.

TABLE III: Quantitative simulation Results: 3 robots of Sec-
tion [V-E] over 11 trials. Task duration(Dur.), distance(Dist.) and
runtime are reported as “mean(std. dev.)”. The results indicate
similar performance across methods, however T-VMPC shows
a larger duration standard deviation compared to T-AMPC and
T-DMPC.

Robot Method Dur. [s] Dist. [m] Runtime [ms]
T-VMPC (CV) 13.6 (1.5) 11.7 (0.5) 5.0 (1.6)
Robotl T-AMPC (AC) 13.1 (0.3) 11.6 (0.4) 4.8 (1.2)
T-DMPC (ours) 12.8 (0.5) 11.6 (0.4) 6.3 (1.7)
T-VMPC (CV) 13.1 (1.2) 11.7 (0.5) 9.5 (5.5)
Robot2 T-AMPC (AC) 13.1 (0.3) 11.6 (0.4) 59 (2.2)
T-DMPC (ours) 12.8 (0.2) 11.7 (0.4) 11.3 (4.9)
T-VMPC (CV) 12.4 (1.6) 11.7 (0.6) 13.2 (4.2)
Robot3 T-AMPC (AC) 13.7 (0.6) 11.6 (0.5) 9.5 (4.5)
T-DMPC (ours) 13.0 (0.3) 11.6 (0.4) 5.8 (1.3)

in which components and triggers are enabled step by step.
Across all ablations, the motion-planning pipeline and all
planner parameters remain fixed. The triggers for infeasibility
and non-guided/unmapped execution remain enabled in all
variants, since they represent explicit fallback behaviors that
other robots must be aware of Section The performance
and the communication results are shown in Table Note:
We restrict the ablation study to the R = 3 scenario because

Dur. Dur. Dist. Dist. Runtime . . . .
Scenario Method s min-max (m] min-max mms] (I is the smallest team size where each robot can be influenced
Is] tm] by more than one other robot at the same time. This makes
T-VMPC (CV) 13.002) [12.7 — 13.5] 11.6(0.4) [11.2 — 12.9] 6.3(3.4) e ; ; ; ;
2 Robots T-AMPC (AC) 12.9(02) [12.7 — 13.6] 11.50.4) [11.1 —12.9] 5.62.7) ¥ rediction errors anc{ stale trajectory inf ormatzon more lzke.ly
T-DMPC (ours) 12.6(0.2) [12.4 — 13.2] 11.6(04) [11.2 — 12.8] 5.4(0.8) t0 affect safety than in the largely symmetric R = 2 scenario,
TVMPC (CV) 13.0(1.5) [8.8— 17.7] 11.7(0.5) [11.2 — 13.3] 9.1(5.3) While still covering the same pairwise interactions. Given the
3 Robots T-AMPC (AC)  133(05) [12.7 — 15.2] 11.6(04) [11.1 —12.8] 68G.6) number of ablation variants and trials, we therefore focus on
T-DMPC (ours) 12.8(0.3) [12.2 — 13.6] 11.6(0.4) [11.2 — 12.8] 7.7(3.7)

side. In contrast, the geometric triggers in Fig. cluster
around the middle of the reference paths, where robots are
already committed to a homology class but still adapt their
motion plans within that class due to nearby interactions. In
this phase, deviations from the time-aligned last communicated
trajectory can become large enough to exceed the geometric
threshold (Eq. (20), Eq. (2I)), which leads to communication.

2) Objective-gap and topology-switching behavior Fig.
and Fig. relate topology switches to the objective gap
between the best solutions returned by the P+ 1 local planners.
When this gap is small, multiple homology classes yield nearly
identical costs. In that case, small noise or minor changes in
the local environment can make a different homology class
become optimal at the next planning iteration, which increases
the likelihood of a topology switch (and thus a communication
event). As the robots approach each other, the objective
gap typically increases, the interaction pattern converges and
one homology class becomes preferable. Therefore, topology
switches become less frequent during close interactions.

G. Ablation Studies

To investigate the contribution of each component of our
method and the communication policy, we evaluate variants

R = 3 as the most informative setting.

1) Only topology-change trigger This ablation isolates
the core idea of topology-aware communication, a robot
communicates only when its selected homology class changes
between consecutive planning iterations. It therefore quantifies
how much communication can be reduced by relying solely
on these high-level “topology switches,” and shows the
main failure mode. The main failure mode is substantial
changes within a homology class can remain uncommunicated,
causing robots to maintain wrong predictions of each other.
At the system level in the 3-robot scenario, the resulting task
duration and distance traveled are comparable to T-DMPC,
indicating that the overall efficiency is not affected. However,
the system-level communication amount decreases from
approximately 13.2% to 8.6 % because communication is
triggered less often. This reduction comes at the cost of
safety: the minimum-distance plot in Fig. shows that
the topology-only trigger leads to more intrusion of the
conservative radius and even leads to collisions. This is caused
by a mismatch between robot ¢’s prediction of robot j’s
trajectory and robot j’s actual executed trajectory. In other
words, topology-change alone is an insufficient communication
trigger, additional triggers are required to capture interaction
relevant deviations within the same homology class.



TABLE V: Simulation communication results: 2 robots. The
results are reported for each individual robot and for the
complete system where the communication amount for Robot 1
and Robot 2 are aggregated. The results show that T-DMPC
uses about 9.8 % of communication to complete the experiment
with comparable performance results as T-DMPC.

TABLE VI: Simulation communication results: 3 robots. The
results are reported for each individual robot and for the
complete system where the communication amount for Robot 1,
Robot 2 and Robot 3 are aggregated. The results show that
T-DMPC uses about 13.2 % of communication to complete the
experiment with comparable performance results as T-DMPC.

Robot Total ’Fotal Comm/Iter  Critical Cl.'itical Cl.‘it. ) comm/ Robot Total "!‘otal Comm/Iter  Critical Cfitical Cl:it. . comm/
comm. iter. [%] comm. iter. Crit. iter [%] comm. iter. [%] comm. iter. Crit. iter [%]

Robotl 153 2789 5.5 93 1001 9.3 Robot1 193 2815 6.9 135 1089 12.4
Robot2 160 2785 5.7 103 1003 10.3 Robot2 204 2835 7.2 141 1071 13.2
System 313 5574 5.6 196 2004 9.8 Robot3 213 2861 7.4 153 1097 13.9
System 610 8511 7.2 429 3257 13.2

TABLE VII: Ablation study results for 3 robots: system-level performance results and system-level critical communication
results. Task duration(Dur.), distance(Dist.) and runtime are reported as “mean(std. dev.)”.

Method Duration . Dur. Distance . Dist. Runtime Cl"itical Critical Comm
[s] min-max [s] [m] min-max [m] [ms] iter. comm. [%]
topology( SeCtion 13.0(0.4) [11.9 - 13.9] 11.6(0.4) [11.1 - 12.9] 13.7(6.3) 3222 278 8.6
topology_consistency( Seclion 12.8(0.3) [12.3 - 13.7] 11.6(0.4) [11.1-12.8] 12.7(6.3) 3210 264 8.2
topology_consistency_geo( Section 12.8(0.3) [12.4-13.8] 11.6(0.4) [11.1 -12.8] 14.4(6.5) 3205 448 14
topology_consistency_time( Section 12.8(0.3) [12.3 - 13.6] 11.6(0.4) [11.2-12.8] 8.0(4.0) 3205 291 9.1
topology_consistency_time_2( Seclion 12.7(0.7)  [9.2 - 14.1] 11.6(0.4) [11.1-12.8] 15.8(6.5) 3265 363 11.1
topology_geo_time( Section 13.1(0.4) [12.7 - 14.0] 11.6(0.4) [11.2-12.9] 11.9(6.1) 3257 461 142

2) Topology-change trigger + trajectory consistency In
addition to topology-change communication, this variant
activates the trajectory-consistency mechanism Eq. (I6)
that discourages deviations from the previously executed
trajectory when staying in the same homology class. The
goal is to improve predictability and reduce within homology
class trajectory drift and therefore reduce the amount of
communication. This ablation tests whether increasing
behavioral continuity can reduce the need for additional
communication while maintaining safety and efficiency. At the
system level, performance remains comparable to T-DMPC,
while communication is reduced. However, a collision and
multiple intrusions of the conservative radius still occur,
although less frequently than with the topology-only trigger.
Topology-change plus trajectory consistency is therefore still
insufficient. The main reason is that the consistency term is
enforced with respect to robot ¢ previously executed trajectory,
which may differ from what the other robots believe robot 7
will do (i.e., the last communicated trajectory time-aligned to
the current planning iteration). As a result, robot ¢ can remain
“consistent” locally while still deviating from the trajectory
that others are predicting, leading to mismatched plans and
collisions.

3) Topology-change trigger + trajectory consistency +
geometric trigger Even when the homology class stays the
same and trajectory consistency is encouraged, Robot i
can still change its motion in a way that is not shown in
the last trajectory communicated to the other robots. The
geometric trigger addresses this by communicating whenever
the newly selected trajectory deviates too much from the

time-aligned last communicated trajectory Eq. (20). This
ablation therefore highlights the increased safety of preventing
wrong predictions. At the system level, performance is
comparable to T-DMPC. Communication increases relative to
the previous ablations (Section to 14 % and becomes
comparable to T-DMPC. Importantly, Fig. [TI] shows no
collisions. This is because robots now communicate when
their actual behavior no longer matches what the other robots
are predicting.

4) Topology-change trigger + trajectory consistency +
time-based trigger Only using the topology-change and
geometric trigger can result in periods of no communication.
The time-based (heartbeat) trigger therefore enforces periodic
updates. This ablation shows the effect of occasional
refreshes, and the amount of communication. At the system
level, performance remains comparable to T-DMPC. The
amount of communication is lower 9.1 % compared to the
geometric-trigger variant and also slightly lower than T-DMPC,
because the chosen T}, = 3s triggers less frequently than the
geometric trigger. However, Fig. [IT] shows that T}, = 3s
leads to collisions, the amount of communication is too low
and is not able to capture mismatches between predicted and
executed behavior fast enough. Reducing the heartbeat to
Thy = 25 avoids collisions, but still produced visibly unsafe
behavior in practice.

5) Topology-change trigger + geometric trigger + time-
based trigger To isolate the effect of the trajectory-consistency
term in Eq. (I6), we disable it while keeping the topology-
change, geometric, and time-based triggers enabled. At the



T-AMPC T-VMPC T-DMPC

10 10 10

E E E
> > >
4 4 4
2 2 2
0 0 0
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
X [m] X [m] X [m]
(a)
T-AMPC T-VMPC T-DMPC
10 10 10
8 8 8
6 6 6
E E E
> > >
4 4 4
2 2 2
0 0 0
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
X [m] X [m] X [m]

Fig. 6: Executed paths during the simulation experiments for (a) 2 robots and (b) 3 robots. The paths indicate that T-VMPC
produces less smooth trajectories and tracks the reference path less closely than T-AMPC and T-DMPC. In the 3-robot scenario,
T-AMPC also shows slightly more variability around the reference path than T-DMPC, whereas T-DMPC remains more
consistent across runs.

system level, performance remains comparable to T-DMPC.
However, the amount of communication increases slightly
relative to T-DMPC(from 13.2 % to 14.2 %). This suggests that
without Eq. (I6) the planner exhibits a marginally larger within-
class trajectory variation, which causes the geometric trigger
to trigger more frequently. However the observed differences
are (really) minor indicating a limited effect of the trajectory-
consistency term.



Min Distance (m)

Min Distance (m)

Min Distance (m)
o m ok
@ o =

o
@

Min Distance (m)
ok m
@ o =

o
@

Min Distance (m)
ok m
e o =

o
@

Robotl - Minimum Distance Over Time

18

Intrusion (0.85 m)
= = Collision (0.65 m)

Robot2 - Minimum Distance Over Time

—— TVMPC

—— TAMPC

—— T-DMPC
Intrusion (0.85 m)

— = Collision (0.65 m)

1500 2000 2500
Iteration

(@ R=2

Robotl - Minimum Distance Over Time

—— TVMPC

—— TAMPC

—— TDMPC
Intrusion (0.85 m)

— = Collision (0.65 m)

1500 2000 2500
Robot2 - Minimum Distance Over Time

——————
pa———
——

= T-VMPC

= T-AMPC

—— TDMPC
Intrusion (0.85 m)

— = Collision (0.65 m)

0 500
0 500
0 500

0 500

1500 2000 2500
Robot3 - Minimum Distance Over Time

TH i

= T-VMPC

= T-AMPC

—— TOMPC
Intrusion (0.85 m)

= = Collision (0.65 m)

1500 2000 2500
Iteration

(b) R=3

Fig. 7: Minimum inter-robot distance over time in simulation across all methods. (a) R = 2 robots

and (b) R = 3 robots.



Robot3 - Minimum Distance Over Time

2073 2100 2125
Iteration

Fig. 8: Illustration of the variation in the violation of the

conservative radius(orange dotted line) exhibited by T-DMPC.

For the x, y-axis and line color definitions, see Fig. [/} they
are omitted here to reduce figure size and avoid repetition.

2 Robots

2 n g g ‘ 0

X Position [m]

3 Robots

. E
»
‘x
4
2 n g g 0

X Position [

¥ Position [m
Communications

(a) Heatmap of (all) critical communication events over the simulation
workspace. Brighter regions indicate higher communication density.

3 Robots

©
. M
5

B

2

2 a g g I

X Position (m)

2 Robots

20
. N
50

|,

w0

X Position (m)

¥ Position (m)
Topology Triggers

(b) Heatmap of topology-trigger critical communication events
over the simulation workspace. Brighter regions indicate higher
communication density.

3 Robots

6
.

3

2
| ‘

1

o

2 4 g g
X Position (m)

2 Robots

. s
E |
2
1 2 3 7 ] 9 o

4 5 6
X Position (m)

¥ Position (m)
Geomerric Triggers

(c) Heatmap of geometric-trigger critical communication events
over the simulation workspace. Brighter regions indicate higher
communication density.

Fig. 9: Heatmaps of critical communication events over the
simulation workspace. The color intensity indicates how
frequently communication was triggered at each (z, y) position,
with brighter (more yellow) regions corresponding to higher
communication density.



20

2 Robots 3 Robots

Value
Value

8441444244497

00 1000 o 00 1000 200
eration eraton

(a) (b)

Fig. 10: Objective-gap and topology-switching behavior in simulation for (a) R = 2 and (b) R = 3, shown from the perspective
of Robot 1. At each planning iteration, Robot 1 compares the objective values of the P+1 parallel local planners (each
associated with a distinct homology class) and evaluates the minimum objective gap between the best and second-best candidate.
When this gap is small, multiple homology classes yield nearly identical costs, so minor noise or small changes in the perceived
environment can change which class is optimal, increasing the likelihood of a topology switch. As the robots approach each other
and interactions become more constrained, the objective gap typically increases and one homology class becomes preferable,
after which topology switching becomes less frequent.

JACKALL - Minimum Distance Over Time

12 f
— TOPOLOGY
11 —— TOPOLOGY_CONSISTENCY_TIME_2
—— TOPOLOGY_CONSISTENCY_TIME
10 —— TOPOLOGY_CONSISTENCY_GEO
z TOPOLOGY_CONSISTENCY
@ 09 —— TOPOLOGY_GEO_TIME
e Intrusion (0.85 m)
g8 — = Collision (0.65 m)
a
€ 07
e e e e e e e,
06
05
o4 0 500 1000 2000 2500
JACKAL2 - Minimum Distance Over Time
12
— TOPOLOGY
11 —— TOPOLOGY_CONSISTENCY_TIME_2
—— TOPOLOGY_CONSISTENCY_TIME
10 —— TOPOLOGY_CONSISTENCY_GEO
z TOPOLOGY_CONSISTENCY
@ 09 ~—— TOPOLOGY_GEO_TIME
e Intrusion (0.85 m)
g 08 = = Collision (0.65 m)
a
c 07
e e SR,

o 500 1000 1500 2000 2500 2000
JACKALS - Minimum Distance Over Time

12
U V —— TOPOLOGY
11 —— TOPOLOGY_CONSISTENCY_TIME_2
—— TOPOLOGY_CONSISTENCY_TIME
10

—— TOPOLOGY_CONSISTENCY_GEO
TOPOLOGY_CONSISTENCY

— TOPOLOGY_GEO_TIME
Intrusion (0.85 m)

— = Colision (0.65 m)

Min Distance (m)
g

0 500 1000 1500 2000 2500 3000
Iteration

Fig. 11: Minimum inter-robot distance across for all ablation study experiments. The yellow dashed line denotes the conservative
intrusion radius used in the optimization, and the red dashed line denotes the robots true physical radius



VI. REAL-WORLD EXPERIMENTS

This section describes the real-world experimental setup used
to validate the proposed topology-aware distributed motion plan-
ner (T-DMPC) on physical robots. It then reports and analyzes
the experimental results, and the observed communication-
trigger behavior, and demonstrates additional real-world vari-
ants such as static and dynamic obstacle experiments to show
that the method is applicable to multiple scenarios.

A. Planner Implementation and Parameters

The implementation used in the real-world experiments
closely follows the simulation implementation described in
Section [V] Each robot is assigned a reference path between
two opposite corners of the arena. Upon reaching a corner, the
robot rotates by 7 and waits until the other robots have also
reached their respective corners. Once all robots have arrived,
the maneuver is repeated on the reversed reference paths. Two
implementation aspects differ from simulation. First, robot
and agent states are obtained from a motion-capture system at
20 Hz. These measurements are filtered using a Kalman filter to
estimate velocities and to provide constant-velocity predictions
of the non-communicating agent for the motion planner. Second,
the trajectory communication mechanism differs due to the
distributed ROS setup: in contrast to simulation, where all nodes
operated under a single ROS master, each physical robot runs
its own roscore. To enable trajectory communication across
multiple ROS masters, we run the motion planner of each robot
inside a dedicated Docker container on a single computer and
add an external communication layer based on ZeroMQ [34].
This layer transports planned trajectories between containers,
enabling communication of the prediction trajectories, while
being on separate ROS networks. The resulting communication
architecture is illustrated in Fig. [12]

B. Real-world Scenario

We evaluate the real-world performance of the planner in
the same antipodal swap maneuvers as in simulation, with
R € {2,3} communicating robots and one additional non-
communicating agent A = 1. The agent is used in two variants:
(i) as a moving obstacle, and (ii) as a static obstacle. All
experiments take place in a 5 mXx8m environment. Each robot
is assigned a reference path between two opposite corners of
the arena. A trial starts from the initialized robot (and agent)
states and ends when all robots reach the end of their respective
reference paths within a goal tolerance. To ensure safe and
real-time execution, we adjust the the following parameters
depending on the team size. For R = 2, the reference velocity
is reduced to 1.5m/s. For R = 3, all planners still run on
the same computer, which increases the computational load.
To ensure that all planning iterations finish within the control
period, we reduce the control frequency to 10 Hz, giving each
planning thread 100 ms instead of 50 ms. We also lower the
reference velocity to 1 m/s to compensate for the lower control
frequency. A visualization of the real-world scenario for 3
robots is shown in Fig. [I3]

21

Physical environment

- ..

> 1

Fig. 12: Real-world communication architecture for the R = 3
scenario. Three Docker containers (C1-C3) run on a single
physical computer but appear as separate networked devices.
The containers exchange data via ZeroMQ, and each container
connects to its color-matched robot through that robot’s isolated
ROS network and corresponding ROS master to send the
computed motion commands in each planning iteration.

Fig. 13: Real-world R = 3 scenario, each robot performs an
antipodal swap, moving across the arena to the opposite corner.

TABLE VIII: Quantitative real-world system results: 2 and
3 robots of Section [VI-B] over 11 trials. Task duration(Dur.),
distance(Dist.) and runtime are reported as “mean(std. dev.)”.
The results indicate similar performance across methods,
however T-VMPC and T-DMPC show a larger duration standard
deviation in the 3 robot scenario.

Dur. . Dist. .
Scenario Method D[:]r min-max l?:;; min-max RlEE:;I]ne
[s] [m]
T-VMPC(CV) 8.0(0.6) [7.0 —9.2] 9.1(0.8) [8.0 — 10.1] 11.4(5.0)
2 Robots T-AMPC(AC) 8.1(0.5) [7.3 — 8.9] 9.0(0.6) [8.0 — 10.1] 12.9(5.8)
T-DMPC(ours) 8.4(0.5) [7.8 —9.4] 9.1(0.6) [8.3 —9.8] 12.9(5.1)

T-VMPC(CV) 10.7(1.0) [9.0 — 12.3] 8.6(0.5)
3 Robots T-AMPC(AC) 11.3(0.6) [9.9 — 12.3] 8.7(04) [8.0 — 9.3]
T-DMPC(ours) 11.2(1.1) [9.4 — 14.7] 8.7(0.5) [7.7 — 9.5]

[7.7 —9.6] 20.5(11.7)
18.0(8.9)
15.8(7.6)




TABLE IX: Real-world communication results 2 robots. The
results are reported for each robot and for the complete system
where the communication amount for Robot 1 and Robot 2 are
aggregated. The results show that T-DMPC uses about 9.8 %
of communication to complete the experiment.

22

TABLE X: Real-world communication results 3 robots. The
results are reported for each robot and for the complete system
where the communication amount for Robot 1, Robot 2 and
Robot 3 are aggregated. The results show that T-DMPC uses
about 13.2 % of communication to complete the experiment.

Robot Total Total Comm/Iter Critical Cl.'itical Cl'"it.'comm/ Robot Total Total ComnV/Iter Critical Cl"itical Cl.'it..comm/
comm. iter. [%] comm. iter.  Crit. iter [%] comm. iter. [%] comm. iter.  Crit. iter [%]
Robotl 224 1793 12.5 111 637 17.4 Robotl 154 1281 12 116 781 14.9
Robot2 228 1935 11.8 114 625 18.2 Robot2 154 1321 11.7 122 924 13.2
System 452 3728 12.1 225 1262 17.8 Robot3 110 1121 9.8 88 759 11.6
System 418 3723 11.2 326 2464 13.2

C. Analysis

The results of the 11 trials are reported per scenario. System-
level results, obtained by combining all robots, are summarized
in Table for all methods. Communication metrics per
robot are reported in Table [[X] and Table

Overall, the real-world experiments indicate that the robots
can execute the maneuver using our method while requiring, on
average, about 17.8 % of communication in the R = 2 scenario
and about 13.2% of communication in the R = 3 scenario,
while achieving comparable performance (see Table [VIII).
Across all trials and methods, no physical collisions were
observed. This is consistent with the minimum pairwise
distance analysis in Fig. [[6] where the inter-robot distance
remains above the collision threshold and also above the more
conservative intrusion threshold in both scenarios. That said, in
all methods the robots occasionally pass close to the intrusion
threshold, which matches the close interactions observed during
the experiments. When inspecting the paths followed by the
robots for each method and scenario in Fig. we observe that
T-VMPC produces less smooth paths and tracks the reference
path not as close as T-AMPC and T-DMPC. This matches our
(empirical) experimental observations: T-VMPC exhibited the
most oscillatory motion, with occasional “ping-pong” behavior
in some trials. Visually, T-AMPC appeared the smoothest, with
slightly less oscillation than T-DMPC. A likely reason is that
T-AMPC updates and exchanges information every planning
iteration, allowing it to respond even to small changes, whereas
T-DMPC only communicates when its triggers fire. To better
understand when communication is triggered in the real-world
experiments, Fig. visualizes the robot positions at which
communication occurs. Most critical communication events
occur near the initial states of the reference paths and around
the middle of the maneuver. This pattern becomes clearer when
separating triggers by type. The topology-change triggers in
Fig. occur predominantly near the start of the reference
paths, suggesting that robots initially switch between homology
classes while resolving the interaction and committing to a
consistent passing side. In contrast to the simulation results, the
geometric-deviation triggers in Fig. show a different pattern,
they occur more frequently near the beginning of the reference
paths. This indicates that, in the real-world experiments, robots
often deviate from the last communicated trajectory earlier in
the maneuver.

3 Robots

3
z-
2

3 2 n 2 3 4

2 Robots

¥ Position [m]

X Position [m] |7;
(a) Heatmap of (all) critical communication events over the real-

world workspace. Brighter regions indicate higher communication
density.

3 Robots

2 Robots

- 6
4 |
2

1
X Position (m »
X Position [)

Fp\awgg

(b) Heatmap of topology-trigger critical communication events
over the real-world workspace. Brighter regions indicate higher

communication density.

(c) Heatmap of geometric-trigger critical communication events
over the real-world workspace. Brighter regions indicate higher
communication density.

3 Robots

2 Robots

Y Position (m)

X Posio [)

XP( ()

Fig. 14: Heatmaps of critical communication events over
the real-world workspace. The color intensity indicates how
frequently communication was triggered at each (z, y) position,
with brighter (more yellow) regions corresponding to higher
communication density.



T-AMPC (Real-World)

Y [m]
¥ [m]

X [m]

T-VMPC (Real-World)

23

T-DMPC (Real-World)

Y [m]

X [m] X [m]

(@ R=2

T-AMPC (Real-World)

Y [m]
¥ [m]

T-DMPC (Real-World)

T-VMPC (Real-World)

Y [m]

by R=3

Fig. 15: Executed paths during the real-world experiments for (a) 2 robots and (b) 3 robots. The paths indicate that T-VMPC
produces less smooth trajectories and tracks the reference path less closely than T-AMPC and T-DMPC. In the 3-robot scenario,
T-AMPC also shows slightly more variability around the reference path than T-DMPC, whereas T-DMPC remains more

consistent across runs.

D. Static Obstacle

We include an additional demonstration in which a static
obstacle is placed near the middle of the reference paths,
illustrating that T-DMPC can incorporate static obstacles. The
results show that the maneuver can still be executed in the
real-world with less communication, which was also observed
empirically during the experiments. Fig. visualizes
the scenario and the collision free paths followed by each
robot for a given trial. Compared to the case without a
static obstacle, the R = 2 scenario required around 24 %
of communication. For R = 3, the overall communication
amount was approximately 16.1%. Interesting is that the
topology-change triggers concentrate even more strongly near
the beginning of the reference paths, suggesting that the static
obstacle forces the robots to commit earlier to a consistent
homology class.

E. Dynamic Agent

Finally, we demonstrate T-DMPC in a scenario with a
dynamic obstacle that performs a swapping maneuver as well.
While we do not analyze and draw conclusions from this experi-
ment, it illustrates that the proposed framework can incorporate
non-communicating dynamic obstacles, see Fig.

VII. DISCUSSION

This section discusses the proposed topology-aware dis-
tributed motion planner (T-DMPC), the main limitations, the
assumptions under which the reported results were obtained
and ideas for future work.

A. Main Findings

Overall, the results indicate that, for the tested scenar-
ios, T-DMPC can achieve performance comparable to the
always-communicating baseline T-AMPC while needing less
communication by making use of topological (homology-
class) information. The results further suggest that relying
on constant-velocity predictions of other robots can result
in more oscillatory and less consistent motion than using
trajectory predictions derived from a robots communicated
planned trajectory. Possible reasons are that constant-velocity
predictions do not capture changes in speed and heading along
the executed trajectory. As a result, the predicted trajectory can
differ from what is actually executed. In addition, small changes
in the state of a robot over consecutive iterations (especially
orientation) can lead to large changes in the predicted constant-
velocity trajectory over consecutive iterations. Together, this can
cause more oscillatory (ping-pong like) motion. The presented
findings come with several caveats.



Robotl - Minimum Distance Over Time

Min Distance (m)
- - - - - o
o ~ - @ @ o
—
—
= —

0 250 500 750 1000 1250 1500 1750

Robot2 - Minimum Distance Over Time

Min Distance (m)
= - e = = n
B ~ S @ @ >
—_—

0 250 500 750 1000 1250 1500 1750 2000
Iteration

(@ R=2

Robotl - Minimum Distance Over Time

==
£ —
i
=
=
==
—
=
==
=

0 200 400 600 800 1000 1200
Robot2 - Minimum Distance Over Time

——
— e
%
=
— et
%
=
_
==
e
<

Robhot3 - Mlnlllll.lm Distance Over TimE

VI

Min Distance (m)
o B R R e
® o~ a @

o
S

0 200 400 600 800 1000 1200
Iteration

(b) R=3

Fig. 16: Minimum inter-robot distance across all real-world experiments. (a) R = 2 robots and (b) R = 3 robots.

24

—— TVMPC
Intrusion (0.85 m)
— — Collision (0.65 m)

= T-AMPC

—— TDMPC

— TVMPC
Intrusion (0.85 m)

= = Collision (0.65 m)

= T-AMPC

= T-DMPC

— TvMPC
Intrusion (0.85 m)

= = collision (0.65 m)

= T-AMPC

= T-DMPC

— TvMPC
Intrusion (0.85 m)

= = collision (0.65 m)

= T-AMPC

—— TDMPC

— TVMPC
Intrusion (0.85 m)

= = collision (0.65 m)

The yellow

dashed line denotes the conservative intrusion radius used in the optimization, and the red dashed line denotes the robots’ true

physical radius.



25

(b)

Fig. 17: Illustration of two additional real-world variants for R = 3. (a) Antipodal swap maneuver with an added static obstacle
placed near the middle of the reference paths, demonstrating that T-DMPC can incorporate static obstacles. (b) Antipodal swap
maneuver with one additional non-communicating agent (A = 1), whose motion is predicted locally using a constant-velocity
model, demonstrating that T-DMPC can incorporate non-communicating dynamic obstacles. Time progresses from left to right.

B. Evaluation Scope and Scalability.

The evaluation is limited to antipodal swap maneuvers with
R € {2,3} communicating robots and a single additional
non-communicating agent. While these scenarios capture
interaction behavior, the approach has not yet been validated
with larger team sizes or in more difficult environments. It
could be that with larger team sizes robots keep on switching
between homology classes which can results in oscillatory
movement and even collisions. In addition, both computation
and communication scale with the number of robots. Each robot
solves multiple local optimization problems in parallel, and all-
to-all trajectory exchange can become a bottleneck as R grows.
Extending the approach to larger teams will likely require
additional structure (e.g., neighborhood-based communication
and collision-avoidance constraints).

C. Simulation and Real-World Experiment Realism

In the simulation and real-world experiments, the current
evaluation uses state information from Gazebo or a motion-
capture system (Vicon), both of which provide low uncertainty
robot states. In real deployments, each robot must estimate
its own state onboard, which introduces additional uncertainty
that can degrade performance and safety. Additionally for the
simulation, we slowed down the clock, so the results should be
interpreted with this in mind. For the real-world experiments
with R = 3, we reduced the control-loop frequency and the
reference velocity to stay within the available computation time
budget, this should also be considered when interpreting these
results.

D. Communication Realism

The reported results do not explicitly evaluate the impact
of communication delay or packet loss. In addition, the real-
world experiments use an external communication layer to
exchange trajectories across multiple ROS masters, with the
planners running in separate containers on a single computer.
This setup enables controlled trajectory exchange, but it does
not capture the full variability and impact of onboard wireless

communication. As a result, the observed trigger behavior and
safety margins may change under realistic network conditions,
and additional mechanisms may be required to handle delayed
or dropped messages.

E. Conservative Safety Margin (inflated robot radius)

In both simulation and real-world experiments, each robot
is modeled with an increased planning radius of 0.425m. This
additional margin provides a buffer for differences between (i)
the trajectory that other robots believe robot ¢ is executing (i.e.,
the time-aligned last communicated plan) and (ii) the trajectory
robot i actually executes. While this improves robustness,
it also makes the optimization more conservative and may
affect how closely robots can pass in reality. Moreover, no
collisions should be interpreted in context of this increased
radius. Results showed that trails still contain close interactions
that temporarily violate the conservative radius used by the
optimization (intrusions), even if physical collisions are avoided.
Using the true radius would reduce the safety buffer and could
increase the risk of collisions, so the no collision result should
be interpreted in the context of the inflated planning radius.

FE. Topology-Only Communication and Safety

Topological information alone is not sufficient to decide
when robots should communicate. Collision-avoidance con-
straints are space-time dependent. Therefore if the prediction
of another robot becomes stale, the local planner may enforce
constraints against a wrong trajectory, which can lead to
unsafe situations. This motivated incorporating an additional
space-time communication mechanism, such as the geometric-
deviation trigger and the time-based (heartbeat) trigger, to
bound prediction staleness. In real deployments, onboard
sensing (e.g., camera, LiDAR and radar) would likely also
be required to validate and correct beliefs from communicated
information. Perhaps a different view could be using commu-
nication as an additional, irregular sensor that can reinforce
the predictions made with the sensors.



G. Trigger Parameter Tuning

The effectiveness of the communication policy depends on
different thresholds (e.g., the geometric-deviation threshold and
the heartbeat period). These thresholds trade off safety against
amount of communication. Too high thresholds will make
the amount of communication too low, allowing prediction
mismatches to exist long enough to cause collisions. Too
small thresholds will increase the amount of communication,
making the communication policy less effective. Tuning these
parameters is not straightforward, and they were not optimized
in this work. Here, “optimal” refers to the trade-off between
minimizing communication and avoiding collisions. Instead,
we tuned them empirically until no collisions were observed.
Finding this optimal balance is left as future work.

H. Planning failure modes

A limitation of the framework is its behavior under failure
modes. In some iterations, the guidance planner may return
no guidance trajectories (e.g., due to the computation time
budget). In that case, the robot switches to the fallback braking
maneuver and communicates the resulting braking trajectory
to prevent other robots from relying on a stale prediction.
When the guidance set is empty, the guided local planners are
disabled and only the non-guided local planner can produce a
feasible trajectory. However, the non-guided solution cannot be
mapped to a homology class, the communication policy triggers
(since a topology change cannot be ruled out), even though
communication might have been unnecessary. Similarly, the
local trajectory optimizations can become infeasible (e.g., due
to restrictive topology-preserving constraints or challenging
interactions) or fail to return a feasible solution within the
time limit. This again triggers fallback behavior and additional
communication to avoid stale predictions at other robots.
Overall, these fallback mechanisms improve safety during
undefined or degraded behavior, but they do not provide a
formal safety guarantee.

L. Topology Classification Errors

Topology switches may be detected even when the executed
trajectory is still in the same homology class as the previously
executed trajectory. This can happen due to infeasibility
fallbacks and approximation errors in the H-signature-based
homology representation (mainly in symmetric low obstacle
situations). As a result, the measured topology-change events
can overestimate actual behavioral switches.

J. Future Work

Based on the discussion several directions can extend this
work. First, the method should be evaluated in a more realistic
distributed setting, where each robot runs its planner onboard
and communicates over a wireless network. This would allow
studying how communication delay and message loss affect
system performance and safety. If such network effects degrade
behavior, a natural extension is to incorporate delay and loss
robust mechanisms, for example along the lines of [16[], [21],
[22]. Note, however, that the approaches in [21], [22] are

26

formulated in a plan-and-track style and do not continuosly
replan, whereas our framework relies on continuous replanning,
and adapting these ideas would therefore require additional
design choices. In addition, the method should be tested with
more robots to assess scalability and to study whether frequent
switching between homology classes occurs as interaction
complexity increases. A second direction is to investigate
how to integrate irregular communication with sensor-based
prediction in a single prediction module. One approach could
be to treat communicated trajectories as intermittent, higher-
certainty information that can inform and reinforce sensor-based
predictions, while ensuring the planner remains robust when
communication is temporarily unavailable or delayed. A third
direction is to explore distributed parallel joint optimization
with communication, where each robot explicitly includes other
agents as decision variables in its local optimization(along the
lines of [28]). Such a formulation would explicitly capture
how the robots decisions influence each other, and it would
enable a more direct analysis of these interaction effects. For
example, one could quantify how much a robots optimized
trajectory causes other robots to deviate from their previously
intended trajectories to maintain safety, and whether these
induced deviations change the homology class of the interaction
(e.g., switching the passing side) relative to the previous
iteration or the last communicated plan. Finally, it would
be interesting to study how communication can be used to
negotiate and converge on an explicit system-level decision
about the homology class of an interaction, for example along
the lines of [30]. At the same time, such a mechanism should
still allow the robots to adapt quickly to unexpected events in
the environment, such as a pedestrian changing direction. Other
approaches could range from simple distributed agreement
mechanisms to more advanced approaches, like game-theoretic
formulations in which robots exchange information in a
distributed way and reach a consistent topology decision.

VIII. CONCLUSIONS

This work presented a topology-aware distributed motion
planner that uses topological information as a communication
trigger to reduce communication load in multi-robot coor-
dination. For the tested scenarios, the results indicate that
T-DMPC can achieve system-level performance comparable to
the always-communicating baseline T-AMPC while requiring
less communication. At the same time, the results show that
restricting communication to topology changes alone is not
sufficient for safe motion planning. Because collision-avoidance
constraints are space-time dependent, additional space-time
mechanisms are needed capture significant deviations between
what a robot is executing and what the other robots are
predicting, such as the geometric-deviation trigger or a time-
based trigger. In our experiments, we additionally used a
more conservative radius which served as safety buffer, the
reported outcomes should be interpreted in that context. Finally,
we noted that communication should probably not be used
as the only information source in a real-world deployment.
Since communication can suffer from message loss and delays.
Communication-based predictions could perhaps be combined



with onboard sensing and sensor-based prediction. In that view,
communicated trajectories can act as an additional, information
source that can reinforce the robots belief about what other
robots intend to do.

ACKNOWLEDGMENTS

I would like to thank my supervisor, Dr. Laura Ferranti,
for her valuable insights and for the time she dedicated to
discussions on robotics, education, and their implications for
society. I also thank Khaled Mustufa for taking the time to
discuss directions and ideas for my thesis. Additionally, I would
like to thank Diego Martinez Baselga for explaining one of his
research papers in detail and for a valuable follow-up discussion
that helped shape the direction of my thesis. Finally, I would
like to thank my fellow students in the Cognitive Robotics
department at Delft University of Technology for their insights,
as well as the practical tips and tricks they shared along the
way.

REFERENCES

[1] O. de Groot, L. Ferranti, D. M. Gavrila, and J. Alonso-Mora, “Topology-
Driven Parallel Trajectory Optimization in Dynamic Environments,” IEEE
Transactions on Robotics, vol. 41, pp. 110-126, 2025.

[2] N. B. Hui, “Coordinated motion planning of multiple mobile robots using
potential field method,” in 2010 International Conference on Industrial
Electronics, Control and Robotics, Dec. 2010, pp. 6-11.

[3] P. Fiorini and Z. Shiller, “Motion Planning in Dynamic Environments
Using Velocity Obstacles,” The International Journal of Robotics
Research, vol. 17, no. 7, pp. 760-772, Jul. 1998.

[4] J. Alonso-Mora, A. Breitenmoser, P. Beardsley, and R. Siegwart,
“Reciprocal collision avoidance for multiple car-like robots,” in 2012
IEEE International Conference on Robotics and Automation, May 2012,
pp. 360-366.

[5] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-
Body Collision Avoidance,” in Robotics Research, B. Siciliano, O. Khatib,
F. Groen, C. Pradalier, R. Siegwart, and G. Hirzinger, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, vol. 70, pp. 3-19.

[6] M. Cép, P. Noviak, A. Kleiner, and M. Selecky, “Prioritized Planning
Algorithms for Trajectory Coordination of Multiple Mobile Robots,”
IEEE Transactions on Automation Science and Engineering, vol. 12,
no. 3, pp. 835-849, Jul. 2015.

[71 Y. E. Chen, M. Liu, M. Everett, and J. P. How, ‘“Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), May 2017, pp. 285-292.

[8] H. Zhou and C. Liu, “Distributed Motion Coordination Using Convex

Feasible Set Based Model Predictive Control,” in 2021 IEEE International

Conference on Robotics and Automation (ICRA), May 2021, pp. 8330~

8336.

J. Tordesillas and J. P. How, “MADER: Trajectory Planner in Multiagent

and Dynamic Environments,” IEEE Transactions on Robotics, vol. 38,

no. 1, pp. 463-476, Feb. 2022.

Y. M. Chung, H. Youssef, and M. Roidl, “Distributed Timed Elastic

Band (DTEB) Planner: Trajectory Sharing and Collision Prediction for

Multi-Robot Systems,” in 2022 International Conference on Robotics

and Automation (ICRA), May 2022, pp. 10702-10708.

S. Wu, G. Chen, M. Shi, and J. Alonso-Mora, “Decentralized Multi-

Agent Trajectory Planning in Dynamic Environments with Spatiotemporal

Occupancy Grid Maps,” in 2024 IEEE International Conference on

Robotics and Automation (ICRA), May 2024, pp. 7208-7214.

Y. Zhang, J. Yang, S. Chen, and J. Chen, “Decentralized cooperative

trajectory planning for multiple UAVs in dynamic and uncertain environ-

ments,” in 2015 IEEE Seventh International Conference on Intelligent

Computing and Information Systems (ICICIS), Dec. 2015, pp. 377-382.

C. E. Luis and A. P. Schoellig, “Trajectory Generation for Multiagent

Point-To-Point Transitions via Distributed Model Predictive Control,”

IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 375-382, Apr.

2019.

[9

—

[10]

(1]

[12]

[13]

27

[14] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online Trajectory
Generation With Distributed Model Predictive Control for Multi-Robot
Motion Planning,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 604-611, Apr. 2020.
J. Xin, Y. Qu, F. Zhang, and R. Negenborn, “Distributed Model Predic-
tive Contouring Control for Real-Time Multi-Robot Motion Planning,”
Complex System Modeling and Simulation, vol. 2, no. 4, pp. 273-287,
2022.
L. Ferranti, L. Lyons, R. R. Negenborn, T. Keviczky, and J. Alonso-Mora,
“Distributed Nonlinear Trajectory Optimization for Multi-Robot Motion
Planning,” IEEE Transactions on Control Systems Technology, vol. 31,
no. 2, pp. 809-824, Mar. 2023.
F. Bertilsson, M. Gordon, J. Hansson, D. Moéller, D. Soderberg, Z. Zhang,
and K. Akesson, “Centralized versus Distributed Nonlinear Model
Predictive Control for Online Robot Fleet Trajectory Planning,” in
2022 IEEE 18th International Conference on Automation Science and
Engineering (CASE), Aug. 2022, pp. 701-706.
J. Filho, E. Lucet, and D. Filliat, “Real-time distributed receding
horizon motion planning and control for mobile multi-robot dynamic
systems,” in Proceedings - IEEE International Conference on Robotics
and Automation, 2017, pp. 657-663.
Y. Zhou, H. Hu, Y. Liu, S.-W. Lin, and Z. Ding, “A Real-Time and
Fully Distributed Approach to Motion Planning for Multirobot Systems,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49,
no. 12, pp. 2636-2650, Dec. 2019.
J. Gielis, A. Shankar, and A. Prorok, “A Critical Review of Communica-
tions in Multi-robot Systems,” Current Robotics Reports, vol. 3, no. 4,
pp. 213-225, Dec. 2022.
K. Kondo, R. Figueroa, J. Rached, J. Tordesillas, P. C. Lusk, and J. P. How,
“Robust MADER: Decentralized Multiagent Trajectory Planner Robust
to Communication Delay in Dynamic Environments,” IEEE Robotics
and Automation Letters, vol. 9, no. 2, pp. 1476-1483, Feb. 2024.
X. Liu, Z. Miao, and Y. Wang, “Distributed Drone Swarm Trajectory
Planner Using Topology Planning Under Communication Delay,” in
2024 IEEE International Conference on Unmanned Systems (ICUS), Oct.
2024, pp. 1629-1634.
S. Bhattacharya, M. Likhachev, and V. Kumar, “Topological constraints
in search-based robot path planning,” Autonomous Robots, vol. 33, no. 3,
pp- 273-290, Oct. 2012.
M. A. Berger, “Topological Invariants in Braid Theory,” Letters in
Mathematical Physics, vol. 55, no. 3, pp. 181-192, Mar. 2001.
C. Rosmann, F. Hoffmann, and T. Bertram, “Integrated online trajectory
planning and optimization in distinctive topologies,” Robotics and
Autonomous Systems, vol. 88, pp. 142—153, Feb. 2017.
X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “EGO-Planner: An
ESDF-free Gradient-based Local Planner for Quadrotors,” Dec. 2020.
D. Martinez-Baselga, O. de Groot, L. Knoedler, L. Riazuelo, J. Alonso-
Mora, and L. Montano, “SHINE: Social homology identification for
navigation in crowded environments,” The International Journal of
Robotics Research, p. 02783649251344639, Jun. 2025.
Y. Chen, S. Veer, P. Karkus, and M. Pavone, “Interactive Joint Planning
for Autonomous Vehicles,” IEEE Robotics and Automation Letters, vol. 9,
no. 2, pp. 987-994, Feb. 2024.
C. Mavrogiannis, K. Balasubramanian, S. Poddar, A. Gandra, and
S. S. Srinivasa, “Winding Through: Crowd Navigation via Topological
Invariance,” IEEE Robotics and Automation Letters, vol. 8, no. 1, pp.
121-128, Jan. 2023.
C. Mavrogiannis, J. A. DeCastro, and S. Srinivasa, “Implicit Multiagent
Coordination at Uncontrolled Intersections via Topological Braids,” in
Algorithmic Foundations of Robotics XV, S. M. LaValle, J. M. O’Kane,
M. Otte, D. Sadigh, and P. Tokekar, Eds. Cham: Springer International
Publishing, Feb. 2023, vol. 25, pp. 368-384.
O. de Groot, L. Ferranti, D. Gavrila, and J. Alonso-Mora, “Globally
Guided Trajectory Planning in Dynamic Environments,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA), May 2023,
pp- 10118-10124.
B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model Predictive
Contouring Control for Collision Avoidance in Unstructured Dynamic
Environments,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp.
4459-4466, Oct. 2019.
R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren,
A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl, “acados
— a modular open-source framework for fast embedded optimal control,”
Mathematical Programming Computation, 2021.
[34] ZeroMQ. (2026) Pyzmq: Python bindings for zeromq. GitHub repository.
[Online]. Available: https://github.com/zeromq/pyzmq

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

[31]

[32]

(33]


https://github.com/zeromq/pyzmq

APPENDIX

This appendix provides additional details for the homotopy
comparison function in Eq. (6). In particular, we use the H-
signature, which compares trajectories via a homology-based
approximation. It also provides a compact formulation of the
local planner objective in Eq. (I5a) and the collision-avoidance

constraint in Eq. (T5d).

A. H-signature

The H-signature maps a trajectory to a scalar value based
on a virtual magnetic field induced by the predicted obstacle
motion. Each predicted obstacle trajectory is modeled as a
virtual current-carrying wire in the space-time domain, which
induces a magnetic field B(r)(for details on B(r), the reader
is referred to [1]]). For two trajectories 71 and 7o that share the
same start and end points, we form the closed loop 7 U —79,
where —79 denotes 7o traversed in reverse direction. The H-
signature is then defined as the line integral of the magnetic
field B(r) along this loop:

H(m U—19) = / B(r) dr. (23)

T1U—T2

Intuitively, this integral indicates whether the looped trajectories
enclose the space-time skeleton of an obstacle prediction
trajectory: it evaluates to 1 if the obstacle is enclosed by
71 U —T9, and to 0 otherwise. Since we represent obstacle
predictions as piecewise-linear (discrete-time) trajectories, the
integral can be evaluated by summing the contributions of the
individual prediction segments over the time-grid. Note: If 11
and 19 do not share the same end point, we close the loop by
adding a straight line segment that connects their end points
at ty of the planning horizon.

B. Optimization-based local planner (LMPCC)

Cost function. In our implementation, each local planner is
an optimization-based planner based on Local Model Predictive
Contouring Control LMPCC [32] with second-order unicycle
dynamics. At each time step ¢;, over the horizon N the cost is
defined by

J(xi(th), wi(tr)) = wede(ty) +wiJi(ty)
Sy [[03 (k) = veer3 + w [lwi (85 (24)
2
Fwa [|ai(tr)ll; -
Here, J.(t;;) and J)(¢)) denote contour and lag error w.r.t. the
reference path.

Collision avoidance. We model Robot i and obstacle o as
circles with radii r; and r,, respectively, and define r :=
r; + r,. Collision avoidance with a predicted obstacle position
p o7 (ty) is imposed by g(x;(tx), P (tx)) < 0. Following
the formulation in [[1]], the constraint is written as

g(xitr), P (tr)) =1 — Af’’Hi(tk)TR(Q%)T
{TS (1)2] R(¢s) AP 77 (tr).

where Ap ¢ (ty) := pi(ty) — p°*(tx) and R is rotation
matrix with ¢; the orientation of Robot ¢ (i.e., the two circles
do not overlap).

(25)

28



	Introduction
	Related Work
	Contributions

	Problem Formulation
	Assumptions
	Problem formulation
	Optimization
	Homotopic Trajectories

	Topology-Aware Distributed Model Predictive Control(T-DMPC) - Methodology
	Dynamic Obstacle Representation - Detailed Description
	The Guidance Planner - Detailed Description
	Local planner - Detailed Description
	Decision Making Layer - Detailed Description
	Communication Policy - Detailed Description

	Simulation Experiments
	Planner Implementation and Parameters
	Scenario
	Baselines
	Evaluation metrics
	Analysis
	Communication-trigger behavior
	Spatial distribution of communication triggers
	Objective-gap and topology-switching behavior

	Ablation Studies
	Only topology-change trigger
	Topology-change trigger + trajectory consistency
	Topology-change trigger + trajectory consistency + geometric trigger
	Topology-change trigger + trajectory consistency + time-based trigger
	Topology-change trigger + geometric trigger + time-based trigger


	Real-World Experiments
	Planner Implementation and Parameters
	Real-world Scenario
	Analysis
	Static Obstacle
	Dynamic Agent

	Discussion
	Main Findings
	Evaluation Scope and Scalability.
	Simulation and Real-World Experiment Realism
	Communication Realism
	Conservative Safety Margin (inflated robot radius)
	Topology-Only Communication and Safety
	Trigger Parameter Tuning
	Planning failure modes
	Topology Classification Errors
	Future Work

	Conclusions
	References
	H-signature
	Optimization-based local planner (LMPCC)


