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Abstract

To get a clear picture of the earth crust the Helmholtz equation needs to be
solved and a high wave number is needed in order to provide fine grain details.
The Stabilised BiConjugate Gradient method needs to be implemented to solve
the Helmholtz equation. This is done on a Maxeler data flow machine to improve
calculation times. The algorithm is split into 3 parts and all of them use the same
calculation kernel. An improvement in calculation time of 2.4 times faster than in
the literature is achieved and a two times faster calculation is expected with more
modern hardware. Maxeler’s data flow machine shows great possibilities to decrease
calculation times for high performance computing problems.
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1 Introduction

Astounding progress to solve three dimensional (3D) seismic problems has been made
thanks to the availability of immense computing power. Seismic computations are done
to get a clear picture of the earth crust. A clear picture of the earth crust can be useful
for example earthquake predictions but also for example to predict oil reserves.

A prediction of the structure of layers within the earth crust is made. Then a calcula-
tion is made to compare this prediction with measurement data. Then a new prediction
can be made and this process continues until the computations converge with the mea-
surements. This thesis is limited to the computations. 3D simulations with a high wave
number have to be performed in order to provide fine grain details. An iterative method
is developed where the number of iterations scales linearly with the wave number. The
required simulation times on the existing high-performance systems are too long. In order
to do realistic simulations, new parallel hardware platforms could be used. The hardware
devices used in this thesis are known as Field Programmable Gate Arrays (FPGAs) and
are actually old devices used in a new way. Maxeler has developed a machine that uses
FPGAs to solve large scientific problems. The machine is constructed in such a way that
domain experts from different disciplines can use it without the need to understand the
hardware design. The main building blocks of this machine are named Data Flow Engines
(DFEs).

The purpose of this report is to present results of the BiCGSTAB method imple-
mentation for the Helmholtz equation on the Maxeler machine. The preconditioner is
not yet implemented due to time constraints. However, the intention to implement a
preconditioner has influenced the results of this project. For the BiCGSTAB algorithm
an improvement in computation time was achieved compared to simulations with the
Central Processing Unit (CPU) and the Graphics Processor Unit (GPU). A theoretical
performance estimation was also derived for future DFE devices.

Firstly, the math problem is described in Section 2. Then the introduction to the
Maxeler machine or DFE based on a FPGA including an example are presented in Section
3. Theoretical background of the implementation choices is presented in Section 4. In
Section 5 the finite difference matrix vector multiplication is compared to the operator on
the Maxeler machine. In Section 6 the results of the implementation are given. Sections
7, and 8 give the conclusions, and the recommendation on future research respectively.
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2 Introduction of the problem

This section will derive the Helmholtz equation with the boundary conditions. Then the
numerical approximation will be given together with the numerical solver.

2.1 Helmholtz equation

x1

x2

x3 δx1

δx3

δx2

Figure 1: infinitesimally small element of volume V .

Suppose that there is an infinitesimally small element with volume V in a domain
Ω ∈ R3 as shown in Figure 1. Assuming zero deformation, then the spatial variation of
the pressure p = p(x, t) on this element will generate a force F according to Newton’s
second law:

F = m
∂v

∂t
, (2.1)

with m the elements mass, v = v(x, t) the partial velocity, x = (x1, x2, x3) and F =

−
(
∂p
∂x1
, ∂p
∂x2
, ∂p
∂x3

)
V = −∇pV . The operator ∇ is the gradient operator. Substituting F

in Equation (2.1) and rewriting gives:

∇p = −m
V

∂v

∂t
= −ρ0

∂v

∂t
, (2.2)

with ρ0 the static density.

For solids, Hooke’s law gives

dp

dt
= −K

dV
dt

V
, (2.3)

with K the compression modulus of the media. For small spatial variations we assume
that the element holds it shape and stays a cube,
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dV
dt

V
=

dδx1
dt

δx1

+
dδx2

dt

δx2

+
dδx3

dt

δx3

,

=
(v1)x1+δx1 − (v1)x1

δx1

+
(v2)x2+δx2 − (v2)x2

δx2

+
(v3)x3+δx3 − (v3)x3

δx3

,

=

(
∂v1

∂x1

+
∂v2

∂x2

+
∂v3

∂x3

)
,

= (∇ · v) . (2.4)

By using Equation (2.4) and since dp
dt

= ∂p
∂t

, Equation (2.3) becomes

(∇ · v) = − 1

K

∂p

∂t
. (2.5)

Applying the gradient operator to Equation (2.2) gives

∇ ·
(
− 1

ρ0

∇p
)

=
∂

∂t
(∇ · v) . (2.6)

Substitution of Equation (2.5) into Equation (2.6) with assumption that the gradient
density ρ0 is infinitesimally small results in

∆p =
1

c2

∂2p

∂t2
, (2.7)

which is the pressure wave equation for solids, with ∆ ≡ ∇2 the Laplace operator, and

c =
√

K
ρ0

the propagation speed of compressional waves in solids.

The concern is with the time-harmonic waves of time-dependent pressure of the form

p(x, t) = u(x) exp(−iωwt), (2.8)

where ωw > 0 and i denotes the angular frequency and the imaginary unit, respectively.
Substituting Equation (2.8) into Equation (2.7) results in

−∆u(x)− k2(x)u(x) =: Au(x) = 0, (2.9)

with A the Helmholtz operator. In Equation (2.9) k is the wave number, and k(x) = ωw

c(x)
.

Because ωw = 2πf , where f is the wave frequency, it is found that k(x) = 2π
λw(x)

, where

λw(x) = c(x)
f

is defined as the wavelength. Equation (2.9) is known as the Helmholtz
equation for the pressure.

Introducing a source term with the assumption that it is time-harmonic, a more general
formulation of the Helmholtz equation is obtained:

Au(x) := −∆u(x)− k2(x)u(x) = g(x), (2.10)

where g(x) is the source term. The Helmholtz equation can be generalised even further
taking into account the possibility of a barely attenuative medium. For this type of
problem the Helmholtz equation becomes

14



Au(x) := −∆u(x)− (1− αi)k2(x)u(x) = g(x), (2.11)

with 0 ≤ α � 1 indicating the function of damping in the medium. In geophysical
applications this damping can be set up to 5%. Note that α = 0 gives the equation
without damping, Equation (2.10).

2.2 Boundary conditions

For the Helmholtz equation proper boundary conditions are required to have a well-posed
problem. A boundary condition at infinity can be derived by considering the physical
situation at infinity. This situation can be viewed directly from the Helmholtz equation.
Consider a domain Ω with a homogeneous medium and assume spherical symmetric waves
propagating from a source or a scatterer in the domain. Then in most cases, close to the
source/scatterer this assumption is easily violated; over there the waves are arbitrary and
more complex than just spherical. However, we assume that at infinity these complex
waves are disentangled and become spherical. Under this assumption, Equation (2.9) can
be evaluated in a spherical coordinate system in which the Helmholtz equation transforms
into

−(ru)′′ − k2(ru) = 0, (2.12)

with a general solution of the form

u(r) = A
cos(kr)

r
+B

sin(kr)

r
. (2.13)

Combining Equation (2.8) with Equation (2.13) results in

p(r, t) = A∗
exp(i(kr − ωwt))

r
+B∗

exp(−i(kr − ωwt))
r

. (2.14)

In surfaces of constant phase, as ωwt increases in time the first term on the right-hand
side of Equation (2.14) describes the waves propagating away from the source/scatterer.
The second term describes waves propagating inwards from infinity. If a region Ω is
bounded by a spherical surface Γ = ∂Ω, and contains a scatterer then the second term of
the right-hand side of Equation (2.14) cannot be a physical solution. Therefore,

p(r, t) = A∗
exp(i(kr − ωwt))

r
. (2.15)

Since p(r, t) contains a factor r−1, the amplitude of the wave must disappear at infinity.
The vanishing condition ensuring u(r) → 0 as r → ∞ is given in [2]. Hence to have a
well posed problem the following criterion is needed

lim
r→∞

(−u′ − iku) ∼ o(r−1), (2.16)

with “o”a Landau symbol, defined as

f1(x) ∼ o(f2(x)) =⇒ f1(x)

f2(x)
→ 0.

Equation (2.16) is known as the Sommerfeld radiation condition for spherical coordinate
systems [4, 3]. Alternately, Dirichlet boundary conditions can be used as a simplification.
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2.3 Finite difference approximations

i1 − 1 i1 i1 + 1
i2 − 1

i2

i2 + 1

i3 + 1
i3
i3 − 1

Figure 2: 3D finite difference 7-point stencil.

Let the sufficiently smooth Ω be discretised by an equidistant grid with grid size h.
The discretised domain is denoted by Ωh. The approximate solutions of the Helmholtz
equation on Ωh are computed. Considering the solution at the grid point x = (x1, x2, x3) =
{(i1h, i2h, i3h)|i1, i2, i3 = 0, 1, . . . , N − 1} in Ωh, with N the number of unknowns per co-
ordinate direction. Introducing the standard lexicographical numbering and denoting the
approximate solution u(x) = u(i1h, i2h, i3h) as ui1,i2,i3 , see Figure 2, the central difference
scheme for the second order differential term is

∂2u

∂x2
1

≈ 1

h2
(ui1+1,i2,i3 − 2ui1,i2,i3 + ui1−1,i2,i3) , (2.17)

∂2u

∂x2
2

≈ 1

h2
(ui1,i2+1,i3 − 2ui1,i2,i3 + ui1,i2−1,i3) and (2.18)

∂2u

∂x2
3

≈ 1

h2
(ui1,i2,i3+1 − 2ui1,i2,i3 + ui1,i2,i3−1) . (2.19)

Equation (2.11) can now be approximated in Ωh by

− 1

h2
(ui1−1,i2,i3 + ui1,i2−1,i3 + ui1,i2,i3−1

− 6ui1,i2,i3 + ui1+1,i2,i3 + ui1,i2+1,i3 + ui1,i2,i3+1 )

− (1− αi)k2ui1,i2,i3 = gi1,i2,i3 , for i1, i2, i3 = 1, 2, . . . , N.

(2.20)

Equation (2.20) can be written in stencil notation as

Ah,7p=̂

− 1

h2

 0
0 1 0

0


i3−1

 1
1 −6 + (1− αi)k2h2 1

1


i3

 0
0 1 0

0


i3+1

 ,
(2.21)

with h = 1
N

the grid size. For smooth solutions and uniform grids this approximation is
of O(h2) accuracy.
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Left to do are the boundary conditions given in equation (2.16). Those boundary
conditions become (

− ∂

∂η
− ik

)
u = 0, (2.22)

where η is the outward unit normal component to the boundary. Note that in 2D for a
5-point stencil only the boundary conditions at the faces are needed. Next the derivation
of the discretised boundary condition of the left face is presented with a one-sided scheme
and for an equidistant grid.

Hence, for the left face, the outward unit normal component is then − d
dx

and the
discretisation becomes (

d

dx
− ik

)
u0,i2,i3 = 0,

u1,i2,i3 − u0,i2,i3

h
− iku0,i2,i3 = 0,

(1 + ikh)u0,i2,i3 = u1,i2,i3 ,

u0,i2,i3 =
u1,i2,i3

1 + ikh
. (2.23)

Note that these were the intended boundary conditions. However, due to time constraints
only the Dirichlet boundary conditions were used in this project. Then u = 0 on the
boundary. This results in a simple matrix and no corrections for the boundary are needed.

2.4 Krylov subspace iterative methods

In this section the method for solving the linear system will be explained for Equation
(2.20) which is of the form

Au = g. (2.24)

A is a square, complex valued and in general not a symmetric positive definite (SPD)
matrix .

The Krylov subspace iteration methods are based on consecutive iterants in a Krylov
subspace, i.e. a subspace of the form

Kj(A; ro) = span{r0, Ar0, . . . , Aj−1r0}, (2.25)

where r0 := g−Au0 is the initial residual, with u0 the initial solution. The idea of Krylov
subspace methods can be explained as follows. For an initial solution u0, approximations
uj to the solution u are computed every step by iterants uj of the form

uj ∈ u0 +Kj(A; r0), j > 1. (2.26)

The Krylov subspace Kj is constructed by the basis v1,v2, . . . ,vj, where

V j = [v1,v2, . . . ,vj] ∈ Kj. (2.27)

Combining Equation (2.26) with Equation (2.27) gives the expression

uj = u0 + Vjyj, (2.28)
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for some yj ∈ CN . The residual now becomes

rj = g − Auj,

= g − Au0 + AV jyj,

= r0 − AV jyj. (2.29)

From equation (2.29) is deduced that a Krylov subspace method relies on constructing a
basis V j and the vector yj. First the conjugate gradient (CG) method will be explained
then the BiCGSTAB method.

2.5 Conjugate gradient method

For the CG method the matrix A needs to be SPD. Note that the matrix in the problem of
this thesis does not have these properties in general. From the CG method the BiCGSTAB
method will be derived. This method does not require a matrix to be SPD. Therefore,
the CG method will be derived first.

In the CG method the new vector uj ∈ Kj(A; r0) is constructed such that ||u− uj||A
is minimal, where ||u||A = (Au,u)

1
2 and (a,b) denotes the standard Hermitian inner-

product. Therefore, uj+1 is expressed as

uj+1 = uj + αjpj, (2.30)

with pj the search direction. The next residual rj+1 then becomes

rj+1 = rj − αjApj. (2.31)

All rj’s need to be orthogonal to each other: (rj+1, rj) = 0. Hence,

(rj − αjApj, rj) = 0, (2.32)

which gives

αj =
(rj, rj)

(Apj, rj)
. (2.33)

The next search direction pj+1 is a linear combination of rj+1 and pj

pj+1 = rj+1 + βjpj, (2.34)

such that pj+1 is A-orthogonal to pj, i.e. (Apj+1,pj) = 0. Then the denominator in
(2.33) can be written as (Apj,pj − βj−1pj−1) = (Apj,pj). Also

(Apj+1,pj) = 0,

⇒ (A(rj+1 + βjpj),pj) = 0,

⇒ (βjApj,pj) = −(Arj+1,pj),

⇒ βj = −(Arj+1,pj)

(Apj,pj)
. (2.35)
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Symmetry of A and orthogonality of the rj’s results in

βj = −(Apj, rj+1)

(Apj,pj)
,

= −
(r

j−rj+1

αj , rj+1)

(Apj,pj)
,

=
1

αj
(rj+1, rj+1)

(Apj,pj)
,

=
(Apj,pj)

(rj, rj)

(rj+1, rj+1)

(Apj,pj)
,

=
(rj+1, rj+1)

(rj, rj)
. (2.36)

The summary of the CG method is presented in Algorithm 2.1.

Algorithm 2.1 CG.

1: Set initial guess: u0. Compute r0 = g − Au0. Set p0 = r0.
2: for k = 0, 1, . . . do

3: αk = (rk,rk)
(Apk,pk)

.

4: uk+1 = uk + αkpk. If accurate then quit.
5: rk+1 = rk − αkApk.

6: βk = (rk+1,rk+1)
(rk,rk)

.

7: pk+1 = rk+1 + βkpk.
8: end for

Algorithm 2.1 has the good properties that it only requires short recurrences and only
one matrix-vector multiplication and only a few vector updates have to be calculated per
iteration. However, this algorithm may not converge for the Helmholtz equation because
A is not guaranteed SPD. Therefore, the BiCGSTAB method will be presented.

2.6 BiCGSTAB

For non-symmetric or non-SPD matrices an iterative method is developed based on the
bi-Lanczos method. BiCGSTAB [8] is based on the following observation. Iterates ui are
generated so that ri = P̃i(A)Pi(A)r0 with an ith degree polynomial P̃i(A). One possibility
is to take P̃i(A) as a polynomial in the form

Qi(x) = (1− ω1x)(1− ω2x)(1− ωix), (2.37)

and to select suitable constants ωi ∈ R. An almost trivial recurrence relation for the
Qi’s is a result of this expression. In BiCGSTAB, ωi in the ith iteration step is chosen to
minimise ri, with respect to ωi, for residuals that can be written as ri = Qi(A)Pi(A)r0

[10].
The preconditioned BiCGSTAB method for solving the linear system Au = b, with

preconditioner M is presented in Algorithm 2.2.[10]
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Algorithm 2.2 BiCGSTAB.

1: Set initial guess: u0. Compute r0 = g − Au0;
2: r̄0 is an arbitrary vector, such that (r0, r̄0) 6= 0, e.g. r̄0 = r0;
3: ρ−1 = α−1 = ω−1 = 1;
4: v−1 = p−1 = 0;
5: for i = 0, 1, 2, . . . do
6: ρi = (r̄0, ri) ; βi−1 = ρi

ρi−1

αi−1

ωi−1
;

7: pi = ri + βi−1(pi−1 − ωi−1v
i−1);

8: p̂ = M−1pi;
9: vi = Ap̂;

10: αi = ρi
(r̄0,vi)

;

11: s = ri − αivi;
12: if ||s|| small enough then
13: ui+1 = ui + αip̂; quit;
14: end if
15: z = M−1s;
16: t = Az;
17: ωi = (t,s)

(t,t)
;

18: ui+1 = ui + αip̂ + ωiz;
19: if ui+1 is accurate enough then
20: quit;
21: end if
22: ri+1 = s− ωit;
23: end for

The matrix M in Algorithm 2.2 represents the preconditioning matrix and the way of
preconditioning from [8]. This algorithm in fact carries out the BiCGSTAB procedure for
the explicitly post-conditioned linear system

AM−1y = g. (2.38)

However,the vectors yi have been transformed back to the vectors ui corresponding to
the original system Au = g. This solver will be used for our problem due to the spectral
properties of our problem.[9]
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3 The Maxeler Data flow Machine

This section presents the history and the background of Field Programmable Gate Arrays
(FPGAs). Second, the data flow principle is given. Third, the flow diagram node types
are presented. An example of an implementation in the Maxeler machine is given. Then
the difference is explained between a tick and a cycle. Finally, the compiling process is
described from the users point of view.

3.1 FPGAs and their history

FPGAs are hardware devices containing a reconfigurable fabric of arithmetic units that
can be organized in arbitrary configurations. This means that the same hardware device
can be repurposed for different calculations. This will make them cheaper than custom
chip implementations and they are also updatable if they are still only used for one
purpose.

The FPGA industry started from Programmable Read-Only Memory (PROM) and
Programmable Logic Devices (PLDs). PROMs and PLDs were both programmable. How-
ever, the programmable logic was hard-wired between logic gates.

Altera introduced the EP300 in 1984. This was the industry’s first reprogrammable
logic device. If users would shine an UV lamp through a quartz window in the package
on the die, then it erased the Erasable PROM (EPROM) cells that held the device con-
figuration. Hence, after this the chip could be programmed again. It seemed like a minor
convenience, however it proved to be a major influence in the industry.1

Xilinx introduced the XC2064 in 1985. This was the first commercially available FPGA
. It had programmable gates and programmable interconnects between gates. It was the
beginning of a new technology and market. It had 64 Configurable Logic Blocks (CLBs),
with two three-input lookup tables (LUTs)[7]. A LUT stores the results of an expensive
calculation in an array and connects an input of the calculation to a precalculated output.

In the nineties, FPGAs developed both in their sophistication and production volumes.
FPGAs were primarily used in telecommunications and networking. By the end of the
decade, FPGAs found their way into consumer, automotive, and industrial applications.

Most High Performance Computing (HPC) applications in Scientific Computing im-
plemented on CPUs and GPUs are memory bounded. This means that the computer is
faster in calculating compared to the time it has to wait for data from memory to arrive
at the processors. Therefore the Maxeler Data Flow Engines (DFEs) offer a new way of
dealing with this problem by benefiting from the streaming execution model.

3.2 Maxeler’s Data flow Machine

This section explains the separation between a Maxeler’s machine, a FPGA and a DFE.
Maxeler has built their own data flow computer that has FPGAs integrated in them, this
will be called the Maxeler data flow machine. The basic building blocks are called data
flow Engines (DFEs) because the analogy with the steam engines at the beginning of
the industrial revolution and their ability to implementation large-scale, high-throughput

1https://www.altera.com/solutions/technology/system-design/articles/ 2013/in-the-beginning.html
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Figure 3: A MaxWorkstation.

data flow accelerators directly in hardware. Maxeler develops software for their data
flow technology so that a wider community of domain experts can use them. With this
the users do not have to know about the mapping details on the hardware device. The
users only have to understand the data flow programming and execution models. These
principles will be explained in Section 3.3 and an example will be given in Section 3.5.

To introduce programming on the Maxeler machine a few concepts will be explained.
The environment to program in is called MaxIDE. It is the Eclipse2 IDE for Maxeler which
is an open source environment to develop for example Java software. The CPU-side is
programmed in for example C. On the DFE side, the extension of the file names are .maxj
and this is similar to Java (Maxeler Java).

3.3 Data flow principle and Engine

In this section a data flow machine will be explained.
On a CPU, in a language like Matlab, an array is declared and then an operator on

the array is defined and used. In C, for-loops need to be built and then for each step a
calculation is defined.

In a data flow engine the operations on each unit are defined. Instead of building for-
loops, the data flows through the operations constituting the computation kernel graph.

In a data flow engine a kernel is made to define all operations per input element sets.
The input vector is sent from the memory through the kernel. In a kernel a large number
of consecutive operations are performed systolically. All arithmetic and logic operations
are done on the available arithmetic units and then the final results flow back to the
memory.

Of course, not all operators can be done consecutively. A simple multiplication and
addition can be done after each other. However, other operations require storage. For
example, take the average over every two consecutive elements, then there are 2 possibil-
ities. First, the vector can be split before it enters the kernel and added by having two

2eclipse.org
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streams into the kernel. Second, one unit is stored each time, and then added to the next
one to be divided by 2.

The kernel holds the information whether or not it accepts data. For example, in the
average over two consecutive elements with storage, for each 2 data elements in, 1 flows
out. Therefore, for the example, a counter is needed that swaps between true and false
for each tick and set as boolean for the outflow.

A tick is when the output is calculated for an input. It is different from a CPU clock
cycle and will be explained in Section 3.5. However, the FPGA also has cycles. For
example, when the first elements of the two streams flow into one kernel, they need to
be multiplied with a different constant and then added. In the first cycle, an element
of each of the flows will be multiplied by the respective constant. Then a cycle happens
and every element is pushed a step further. The two elements are only then added. In
the next cycle, the new element flows out. The second element of the flows are following
the first ones. Hence, when the first elements are pushed to the addition, the second
elements are pushed into the multiplication by a constant. This will happen during the
whole flow, until there are no more elements. However, still 2 cycles need to happen for
the last elements of the vector to flow through the operations and into the memory.

The basics of a kernel are mentioned above, but the data streams need to be managed
and that is done by the software module describing the ”manager”. So the kernel has
inflows and constants that need to be set, such as the weight for the weighted average.
This constant could change every time the kernel is invoked but not during the process
and the manager sets this constant in the kernel. The manager connects the kernel with
the memory in this case. The manager needs to know how many bits will flow from which
location. Note that when every result is not taken like in the weighted average example,
the outflow connects the units that do flow.

3.4 Flow diagram’s different node types

In this section the different nodes of flow diagrams will be presented. A node is an
operation that needs to be executed in the kernel. Hence, it contains the addition and
or multiplication operators, but also contains the in- and outflow operators. Following
diagrams can give an easy representation of the implementation. The data will flow
through these nodes. All these operation will be applied onto the data and the result will
flow out.

Computation nodes perform arithmetic and logic operations(e.g.,
+,*,<,&) as well as type casts to convert between the floating point,
fixed point, and integer variables. Usually two streams flow in this
node, however in the graph, those flows might come together earlier
above the node. The type of operator will be written in the middle.

Value nodes provide parameters which are either constant or set by the
CPU application on run-time. The name of the constant stands in the
middle.

Stream offsets allows access to past and future elements of data
streams. The amount of offset will be written in the middle.
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Input node connects data streams between the Kernel and Manager.
The name of the input variable is in the middle.

Output node is the same as the Input node excepts the data flows out
instead of in. The picture is an upside down input node.

Multiplexer (mux) nodes for taking decisions. A boolean on the left
decides which of the two flows from the top it takes.

Counter to keep track of individual actions on the elements. The
properties will flow into the counter.

The true or false square. Everything that is build is always active.
However, the calculation is not always needed for the algorithm, because
the kernel is used a number of times for different calculations. This
square is filled with a part number in the middle for when it is true. It
will stand on the left of the in- output and the multiplexer nodes. This
determines which results are used and connected to the memory.

3.5 Implementation of an example on a Maxeler machine

Figure 4: Flow diagram of the example.
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This section will explain how to program a small example on the Maxeler machine. This
will show all the basics from the manual[1] needed to implement the Helmholtz equation.

For this example, the weighted average over 2 elements will be calculated. Figure 4
shows the flow diagram of the example. In C the calculation step is the following for-loop:

for(int i=1;i<N;i++){

result[i] = (weight*input[i]+ input[i-1])/( weight +1);

}

The example is explained from a kernel that does nothing up to this small example. Note
that there is also a manager needed which controls the flow and that will be explained
after. However, keep in mind that there is also a flow of bits into this kernel. The following
code represents the kernel.

package movingaverageoftwo;

import com.Maxeler.maxcompiler.v2.kernelcompiler.Kernel;

import com.Maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;

import com.Maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;

class MovingAverageOfTwoKernel extends Kernel {

MovingAverageOfTwoKernel(KernelParameters parameters) {

super(parameters);

<USER CODE GOES HERE >

}

}

Each line will be explained separately. The first line in the listing above defines the
package and is used so that all functions defined in these files can be used by the other
files within the package. The 3 imports are for the class objects. Then, there is Java code
defining the class that extends the kernel class, which is inheriting those properties and
functions. In the next line the constructor is defined with the incoming parameters. By
the super statement, the parameters inherit their properties from above. These were all
the constructions around the calculations. The user code with the calculations will be
defined next.

DFEVar input = io.input("input", dfeFloat(8, 24));

io.output("output", input , dfeFloat(8, 24));

This kernel links the input in a DFEVar. DFEVar is the class of variables that can
take any arbitrary data type and size. This includes all the primitive instances such as
single and double precision. For example, when floating point data is considered, users can
choose the amount of bits that will be used for the float exponent and for the mantissa.
The link looks like it is stored as in a C-program. However, it is used to link the input to
other places as in this case when it directly links the input to the output.

The input needs the stream-name, which is ”input” in this case, so that it can be
guided from the memory to the kernel. This is controlled in the manager and will be
explained later. The input needs the type of the element that is sent, which is in this
case single precision, IEEE floating point(dfeFloat(8,24)). DfeFloat is the float class for
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a floating point number of the DFE with exponent and mantissa. Then the kernel knows
that for each tick, it needs to take 32 bits in the kernel and do dfeFloat(8,24) operations
on those 32 bits. Afterwards, the input needs to be send back with a stream-name, the
variable and the data type.

Next, the result needs to be multiplied by a constant that is set by the CPU.

DFEVar weight = io.scalarInput("weight",dfeFloat (8,24));

DFEVar input = io.input("input", dfeFloat(8, 24));

DFEVar result = weight*input;

io.output("output", result , dfeFloat(8, 24));

The first line gets the input during runtime. This means that when the kernel is called
the CPU sets the constant. The kernel is given the type of the constant and multiplies it
with the input. Note that the result is a link again as explained earlier.

Next, the previous element is needed. For this purpose the function stream.offset is
used. This function needs two arguments; the stream name and the signed integer of how
big the offset must be. If the offset is negative, then the previous data element is used.

DFEVar weight = io.scalarInput("weight",dfeFloat (8,24));

DFEVar input = io.input("input", dfeFloat(8, 24));

DFEVar prev = stream.offset(input , -1);

DFEVar result = (prev + weight*input)/( weight +1);

io.output("output", result , dfeFloat(8, 24));

The stream.offset uses 1 storage element in this case. Each tick it stores the value of
”input” and gives it on the next tick while storing the input for this tick. If the number
is larger it stores more inputs and provides the required one accordingly. This all is done
for the user by the software. Finally the average is calculated. Note that for the first
element of the stream, stream.offset is not defined and it does not return a good value.

Therefore, the boundary term needs to be considered. For this case, a counter could
be used to know if in this tick something has to happen. In this case it is only in the first
tick and there can be other ways to note this. But for the example it will be used.

Params params = control.count.makeParams (9).withMax (384);

Counter counter = control.count.makeCounter(params);

A counter is built up from 2 steps. First, the parameters of the counter are defined. The
first argument is the amount of bits needed to store the counter. In this case the number
of bits is 9 so the counter can count from 0 up to 29 − 1. The properties can then be
added as the maximum which is 384 in this case. Other counter options are explained in
the DFE programming manual[1]. The counter is defined with the parameters. Note that
this maximum is not used, it is just an example.

The definition of the previous argument needs to be zero when the counter is zero.
This will be done using the ternary operator that implements a multiplexer. ?4

DFEVar result = (counter.getCount () >0 ? (prev + weight*input)/(

weight +1):input);

Hence, when the counter is larger than zero the result is taken. For the boundary, only the
input is taken, which is the average of one point. Note that for an alternative method a
zero constant for the previous vector could be taken, but the result also needs a multiplexer
for the boundary case. Hence, this is the more efficient way.
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For convenience the data type is also stored so that the code is more efficient and is
better presented. Note that DFEType is also imported into the kernel. This can be seen
in Listing 1. However this is suggested by MaxIDE automatically so the user does not
have to worry about that.

DFEType singleType = dfeFloat(8, 24);

All this, will result in the kernel to solve the weighted average example, see Listing 1.

Listing 1: Kernel of the example.

package movingaverageoftwo ;

import com . maxeler . maxcompiler . v2 . k e rne l c omp i l e r . Kernel ;
import com . maxeler . maxcompiler . v2 . k e rne l c omp i l e r . KernelParameters ;
import com . maxeler . maxcompiler . v2 . k e rne l c omp i l e r . s t d l i b . core . Count . Counter ;
import com . maxeler . maxcompiler . v2 . k e rne l c omp i l e r . s t d l i b . core . Count . Params ;
import com . maxeler . maxcompiler . v2 . k e rne l c omp i l e r . types . base . DFEType ;
import com . maxeler . maxcompiler . v2 . k e rne l c omp i l e r . types . base . DFEVar ;

public class MovingAverageOfTwoKernel extends Kernel {
private stat ic f ina l DFEType s ing leType = dfeF loa t (8 , 24) ;
MovingAverageOfTwoKernel ( KernelParameters parameters ) {

super ( parameters ) ;
Params params = c o n t r o l . count . makeParams (9 ) . withMax (384) ;
Counter counter = c o n t r o l . count . makeCounter ( params ) ;
DFEVar weight = i o . s c a l a r I n p u t ( ” weight ” , s i n g l ) ;
DFEVar input = i o . input ( ” input ” , s ing leType ) ;
DFEVar prev = stream . o f f s e t ( input , −1) ;
DFEVar r e s u l t = ( counter . getCount ( )>0 ? ( prev + weight ∗ input ) /( weight+1) : input ) ;
i o . output ( ” output ” , r e s u l t , s ing leType ) ;

}
}

The kernel is built and it expects streams with the proper stream names. Those
streams are provided and orchestrated by the manager. The simplest manager will be
used for this example. This manager will connect all the streams and the constants with
the CPU.

Listing 2: Manager of the example.

package movingaverageoftwo;

import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;

import com.maxeler.maxcompiler.v2.managers.standard.Manager;

import com.maxeler.maxcompiler.v2.managers.standard.Manager.IOType;

public class MovingAverageOfTwoManager {

public static void main(String [] args) {

MovingAverageOfTwoEngineParameters params = new

MovingAverageOfTwoEngineParameters(args);

Manager manager = new Manager(params);

Kernel kernel = new MovingAverageOfTwoKernel(manager.

makeKernelParameters("MovingAverageOfTwoKernel"));

manager.setKernel(kernel);

manager.setIO(IOType.ALL_CPU);

manager.createSLiCinterface ();

manager.build();

}
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}

In Listing 2 the manager of the weighted average is presented. As in the kernel, the
package and imports of the needed classes are given in the first few lines. In the main,
the parameters are set and put in a new manager. Then the kernel is built and added to
the manager. Then the data streams are defined by ”setIO”. In this case all streams are
from and back to the CPU. This is done with the call:

manager.setIO(IOType.ALL_CPU);

Note that the DFE also has a large memory. However to keep the example simple the
CPU main memory is used.

The Simple Live CPU(SLiC) interface creates the interface so that CPU can call
the functions programmed on the DFE. Using the Basic Static SLiC interface level is the
simplest method, yet adequate for this example. This creates the function that the CPU’s
C program calls to perform the computation on the DFE. Finally, the function is built.
Note that when a new project is built, the user can start with the kernel and manager
templates predefined when building a MaxCompiler Project in MaxIDE.

Listing 3 displays the CPU code that builds the vector and calls the DFE function.

Listing 3: Example in C.

#include "Maxfiles.h"

int main(void){

const int size = 384;

int weight = 3;

int sizeBytes = size* sizeof(float);

float *x = malloc(sizeBytes);

float *s = malloc(sizeBytes);

for(int i = 0; i<size; ++i) {

x[i]= random ();

}

MovingAverageOfTwo(size , weight , x, s);

return 0;

}

Maxfiles.h includes the functions prototypes defined in the manager. First, the weight
and size are set in the main part. The memory is allocated using the malloc function.
Then some random numbers are generated. The function executed on the DFE is

MovingAverageOfTwo(size , weight , x, s);

After that, there can be some actions on the result s. However, the example will not be
further elaborated.

3.6 Ticks versus cycles

This section will explain the difference between a tick and a cycle with the weighted
average of Section 3.5 as the example. Figure 4 shows the data flow structure of the
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example in the previous subsection. As a reminder, a tick is the result for an input. A
cycle is what happens when the device sends every element one place further.

A flow needs to have at least 384 bits for the PCIe interface. To keep the exam-
ple small, 6 elements of double precision will be used. Hence, the type will be dfe-
Float(11,53). Six times 64 bits makes a full burst of 384 bits. The input vector is chosen
to be {0.1,2.1,1.3,4.6,0.5,3.8}.

Assume that there is a result after each operator in Figure 4. Each of these points
have a heading in the tables except for the addition of the constant plus one. Since its
value will be the same for the entire run. Figure 4 shows this step for clarity because the
example was built up this way. However, because it is always the same, it is more efficient
to calculate it on the CPU and send as a second constant.

tick counter input multipli- previous addition divide multi- output
cation on the right plexer

1 0 0.1 0.2 ? ? ? 0.1 0.1
2 1 2.1 4.2 0.1 4.3 1.43 1.43 1.43
3 2 1.3 2.6 2.1 4.7 1.57 1.57 1.57
4 3 4.6 9.2 1.3 10.5 3.5 3.5 3.5
5 4 0.5 1.0 4.6 5.6 1.87 1.87 1.87
6 5 3.8 7.6 0.5 8.1 2.7 2.7 2.7

Table 1: Table of tick diagram

cycle counter input multiplication previous addition divide multiplexer output
1 0 0.1 ? ? ? ? ? ?
2 0 2.1 0.2 ? ? ? ? ?
3 0 1.3 4.2 0.1 ? ? ? ?
4 0 4.6 2.6 2.1 4.3 ? ? ?
5 0 0.5 9.2 1.3 4.7 1.43 0.10 0.10
6 1 3.8 1.0 4.6 10.5 1.57 1.43 1.43
7 2 ? 7.6 0.5 5.6 3.50 1.57 1.57
8 3 ? ? 3.8 8.1 1.87 3.50 3.50
9 4 ? ? ? ? 2.70 1.87 1.87
10 5 ? ? ? ? ? 2.70 2.70

Table 2: Table of cycle diagram

Table 1 shows the results for each tick. Hence, for each input the result is calculated.
Therefore, for tick 1 the input is 0. The value of the previous input is unknown and it could
be anything. That value is never used due to the multiplexer in the end. The others are
just the calculations for the inputs. Hence, for tick 3 the addition of the previous element,
which is 2.1, plus 2 times this input, which is 2.6, is 4.7.

Table 2 shows the results for cycles and what the value behind each operation is. On
the first cycle the first data arrives at the input. It gets multiplied by the constant. In
the next cycle it gets added to the previous constant which is unknown for the first data.
It is divided by the other calculated constant. Finally, the multiplexer chooses the result.

29



From Table 2, it can be learned that storage is needed. Because there is a direct flow
from the input into the previous and the multiplexer. However, the table shows that they
are not directly needed. Hence, they have to be stored until they are called upon. For the
previous operator, there actually needs to be a buffer to store an element for 2 cycles. It
is in order to align with the input and be ready for the addition at the same time as the
multiplication is done. For the addition this can be done by storing two elements. The
multiplexer needs to store 4 elements to align with the input.

Note that the output column is not written a tick later. This is because the output is
after the multiplexer. Then the output is buffered in a batch until enough bits are stored
to send a full batch to the memory or another location.

3.7 The compiling process and programming

In this section the compiling process, which are the main steps that the user has to do
and can see when he/she is programming, will be explained in short. An example of the
build-log will be presented in Appendix A. A new MaxCompiler Project will be made in
MaxIDE, which is the editor. This will give all the necessary surrounding for a project,
like the build file.

The programmer begins by changing at least the kernel, manager, and the CPU-side,
see Section 3.5 for an example. With only these three, a program can be run on the CPU
while using the DFE as an accelerator. The programming language on the CPU-side
will be assumed C. However, other interfaces are possible such as Matlab, python, R and
more.

After the program is built, the user can use simulation to check whether it has mistakes
or not. These simulations are done on the CPU and of course they take a lot of computer
power, so the input vectors should be kept small.

When the program is verified, it can be built for the DFE. The engine compiles and
builds an executable program for the C-code to call. The compilation process consists of
12 phases as shown in Appendix A after the date in the middle of the lines. The first 6
steps are the preparation and will result in a preliminary report. It will show the expected
usage of the resources of the device. More explanation will be given later.

The real place and route of the data flow graph on the reconfigurable device will be
done next. This will usually take a very long time. In step 8 the tool chain will run cost
tables. It places the individual operations on specific physical locations on the device. If
a cost table has a score of more than zero it means that the route it tried to make did
not work out. The physical placement reached the end. However, some calculations did
not fit on the device. Multiple cost tables can be run in parallel to save on design time.

When a cost table with score zero is found, all cost tables will stop and the last few
steps will be executed. These steps are building reports and at last they build the Maxfile.
These reports are presenting the timings and the final resource usage. In this, the user can
see how much of the available compute and memory resources he/she is using. This can
lead to instantiating more parallel paths if there are sufficient resources left. The Maxfile
is the executable program that can be called by the CPU-program. The Maxfile contains
all the physical locations of the DFE device. Hence, it contains every reconfigurable
connection and buffer such that are used such that the calculation can be done correctly.
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Finally, the C-file will be compiled as normal. The program is ready to run and the
intended calculations can be performed on the DFE.
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4 Implementation info and background

This section presents the theoretical background of the implementation and problems to
be considered when implementing the BiCGSTAB method on the DFE for the discretised
Helmholtz equation. First the implementation on the CPU is given as the benchmark.
Then the idea is presented and after that the differences with the original idea are given.
Finally, the optimized algorithm is explained.

4.1 Maxeler machine

4.1.1 CPU info

vendor id : GenuineIntel
CPU family : 6
model : 42
model name : Intel(R) Core(TM) i7-2600S CPU @ 2.80GHz
stepping : 7
CPU MHz : 1600.000
cache size : 8192 KB

The computer has 8 cores. However, only one core will be used during this project for
the calculations.

4.1.2 Data flow engine info

frequency : 0-200 MHz
generation : max3
compiler version : 2013.2.2m
lmem capacity : 48GB
communication speed :
between CPU and DFE : 3000 MB/s
lmem bandwidth on DFE : 38 GB/s

4.2 Implementation of the BiCGSTAB method on the CPU

This section explains the implementation of the BiCGSTAB method on the CPU that is
used to check the results. It is also used to compare the speedup of the implementations
on the DFE.

The code of the implementation of the algorithm on the CPU is provided in Appendix
B. The algorithm is using for-loops to address the DFE implementation stage. Hence, for
each step of the algorithm where a vector needs to be updated a double for-loop is used
as shown in the listing below.

for(int j=0;j<N-1;j++)

for(int i=0;i<N-1;i++)

point= i + N*j;

Note that the calculations are done such that the ghost points3 are not calculated, see

3The ghost point is used as padding.
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Section 4.5. Also note that these computations could have been done in parallel. However,
only one core is used for the CPU implementation.

The matrix vector multiplication for the finite difference method is equal to the addi-
tion of five vectors. Each point is calculated with two for-loops. For the update, the finite
difference constants are multiplied by the appropriate points from the vector and added
to each other. For each point it is checked if the point is connected in the boundary. If
not, the element is added. This method will be called the matrix-free method or finite
difference operator, because the matrix is never constructed.

for (int j=0;j<N-1;j++)

for (int i=0;i<N-1;i++)

point =i+N*j;

v[point ]=((4.0L/(h * h)) -(1-( alphaProblem * I)) * (k * k)) * p[

point];

if(j!=0)//south

v[point] -= p[point -N]/(h * h);

if(j!=N-2)//north

v[point] -= p[point+N]/(h * h);

if(i!=0)//west

v[point] -= p[point -1]/(h * h);

if(i!=N-2)//east

v[point] -= p[point +1]/(h * h);

The implementation of the inner-product with the begin vector is only a read of the
element at the source point. This is because the begin vector consists of zeros with only
a one at the source point. This is different than the final implementation on the DFE.
The implementation on the CPU is not changed to keep the same baseline. If the update
would also be made then the CPU calculation time will become slightly larger.

The used norm is the 2-norm. This is also calculated with two for-loops. A sum
variable is used and the square root is taken at the end.

for(int j=0;j<N-1;j++)

for(int i=0;i<N-1;i++)

point= i + N*j;

norm += creal(s[point ])*creal(s[point]) + cimag(s[point])*cimag(s

[point ]);

return sqrt(norm)

4.3 BiCGSTAB on the data flow machine

In this subsection the idea of the implementation will be explained. After this subsection
the changes and improvements on the idea will be presented.

As a starting point, a few assumption will be made. The first assumption is that
r̄0 = r0. Second is that the start-solution u0 is a zero-vector. This will result in an error
in the setup step which is r0 = g and therefore r̄0 = r0 = g. Also k from Equation
2.11 will be assumed to be constant. The last assumption is that the source function is a
point-source. This means that g(x, y, z) = δxs,ys,zs(x, y, z) with δ the Dirac delta function
at point xs, ys, zs. For this project the source is located at the centre of the domain.
The final implementation will not need the last assumption. All these assumptions and
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some renaming of the variables result in Algorithm 4.1, where all variables in bold rep-
resent vectors. Note that M = I, with I the identity matrix, is the algorithm without
preconditioner.

Algorithm 4.1 BiCGSTAB for implementation.

1: u = 0; r̄ = r = g = δxs,ys,zs ; ρold = α = ω = 1; v = p = 0;
2: for i = 0, 1, 2, . . . ,maxit do
3: ρnew = r(xs, ys, zs); β = ρnew

ρold

α
ω

; ρold = ρnew;

4: p = r + β(p− ωv);
5: Solve M p̂ = p;
6: v = Ap̂;
7: α = ρold

v(xs,ys,zs)
;

8: s = r− αv;
9: if ||s|| small enough then

10: u = u + αp̂; quit;
11: end if
12: Solve Mz = s;
13: t = Az;
14: ω = (t,s)

(t,t)
;

15: u = u + αp̂ + ωz;
16: r = s− ωt;
17: if ||r|| is small enough then
18: quit;
19: end if
20: end for

After the literature study [6] the following plan was derived. Three kernels are needed
to be implemented, because three different kinds of calculations have to be done. The first
kernel is the convolve kernel, which calculates the matrix-free finite difference operator.
The second kernel is an inner-product kernel. The third kernel has three streams of data
and two constants and multiplies two of the streams by the two constants and adds the
results up by the first stream. This will be called the addition kernel. The manager
connects these kernels.

4.4 Implementation differences and complications

After the literature study, a plan was formed on how to implement the BiCGSTAB al-
gorithm on the DFE, as described in Section 4.3. However, this creates difficulties which
were not obvious for the user. This subsection will explain those difficulties and how they
are addressed.

4.4.1 Multiple kernels

The original plan was to build 3 different kernels or more and connect them all up with the
manager. This way one calculation can flow into the other. However, this implementation
used many streams and the Maxeler tools simultaneous streams limit is 15. The usage
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of a flow means that the manager connects a stream of data to 2 parts of the program.
Also, because the implementation used the streams limit, the build times were long.
This happens because one of the resources of the machine was used to the maximum.
However, sometimes it was possible to build a Maxfile and sometimes the build failed
after the maximum amount of attempts. This means that no cost table with zero score
was found (see Section 3.7).

The final implementation is all built in a single file. Because some parts are combined,
less streams are needed and therefore build times are shorter.

4.4.2 Complex numbers

The Helmholtz equation is using complex numbers. However, implementing complex
numbers is not fully supported by the Maxeler tools. Only real constants can be set in
the program. The workaround here is to put the real and complex constants in there, and
make a complex constant inside the kernel. This works fine, but leads to more code.

The Maxeler machine expects a flow of doubles and when they are complex doubles,
the flow is twice as long with real and imaginary part alternated. Therefore, a conversion
is needed from complex numbers to a vector of doubles, before sending to the DFE.

Finally, the error is calculated using the complex conjugate. This function does not
exist for DFEVector<DFEComplex>. However, it does exist for scalar DFEComplex
values. Hence, a new DFEVector<DFEComplex> is created and for each element of the
original vector the complex conjugate is connected to the new vector.

4.4.3 Intermediate convergence test

In the BiCGSTAB algorithm in Algorithm 4.1 at steps 9-11 a convergence test is per-
formed. However, this step is sacrificed to save a stream back and forth from the device.
This would also cost extra calculations. This was not beneficial to save half an iteration
on some occasions.

4.4.4 Last steps of algorithm

In Algorithm 4.1 ρnew is calculated at the first step of a new iteration. This can also be
done at the end, after r is calculated. This is needed because constants of the kernel have
to be set before a kernel is called upon by the CPU. Therefore, ρnew will be calculated at
the last step of an iteration instead of the first.

4.4.5 Small improvements

The first small improvement to save a cycle is done when 4 numbers are added. ((a+ b) + c)+
d costs 3 cycles while (a+ b) + (c+ d) costs only 2 cycles. Both implementations use the
same amount of resources.

Next, 2 multiplications could be saved by the following process. Consider the calcula-
tions for the inner-products:

(part1?r0*output :(part3?r0*between:between*output));
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This is a straightforward implementation of required results. Each part has its multiplica-
tion and the multiplexers choose the calculations that are needed per part. The following
implements the same calculation:

(part2?between:r0)*(part3?between:output);

However, this implementation costs 2 multiplications less.
Everything that is programmed in the kernel is calculated on the DFE. This also

holds for constants. Sometimes these constants are the same for each tick. It would be
more efficient if the constant is calculated beforehand and is sent to the kernel as a new
constant.

The last small improvement has a bigger influence. At first to combine line 15 and 16
of Algorithm 4.1 into part 3, an additional stream is added to the kernel and connected
by the manager. However, in part 3 the result of the matrix-vector multiplication is not
used. Hence, this stream is also not used. This improvement adds a multiplexer before
the stream connection of the matrix-vector product. This multiplexer chooses the result
of the matrix-vector multiplication for the first 2 parts and U in the third part. This
improvement saves a stream connection and a lot of resources with it. This improvement
is only implemented in the complex implementation and makes a higher frequency easier
accessible.

4.5 Preconditioning

In the original plan a preconditioner was intended. The preconditioner is the shifted
Laplacian preconditioner introduced by Erlangga (see [3]) which is based on the operator

Mβ1,β2 = −∆− (β1 − β2i)k
2, (4.1)

with the same boundary conditions as the original equation. The precondition steps will be
calculated with a standard multi-grid V-cycle. A damped-Jacobi pre- and post-smoother
will be used.

The grid has to be aligned with the burst-size of the DFE. This burst-size is from the
PCIe interface between the CPU and the DFE. Hence, per dimension a multiple of 384
bits should be used, which is 3 double complex numbers or 6 doubles. Each level is a
multiple of this. However, in the multi-grid V-cycle, a ghost point is needed in the grid
to align the grids equidistantly. Figure 5 shows a 1D grid for 6 points. The first 5 are
spaced out between 0 and 1. Point 6, or 5 if you count from 0, is the ghost point. Then
in the V-cycle, when the grid halves the next grid will become the following; point u1 will
become ū0, u3 will become ū1 and u5 will become ū2. The next level is also equidistantly
spaced out and can be easily calculated. If this was done differently the matrix operator
will be different, the points do not lay on the same place in the grid. For example, take 6
points, then in the next level 3 points remain. If they need to be equidistant the restriction
operator will be harder, that is why this grid is chosen. However, due to time constraints,
the multi-grid pre-conditioner was not implemented, but the grid was already prepared
and is as described in Figure 5.

The difficulty with the multi-grid is with the solve step. When the grid is small enough
on the CPU, then the system is solved with a quick algorithm. However, for the DFE
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Figure 5: 1D discretisation for h = 1
6
.

there are no algorithms developed yet. Hence, an idea was to bring the grid back to
1 point and then expand back again. Another idea was to solve the effective 2 × 2, or
3× 3 system with the ghost points, directly. This can be streamed when it were complex
numbers to comply the burst-size. The last step for doubles has to be done at once from
one level higher with a 6× 6 system..

Finally, note that all these calculations cost space on the DFE that will only be used
in the multi-grid step. Therefore, the efficiency of the implementation will be lower, less
units will be working effectively and less parallel paths can be implemented.

4.6 2D Parallelism

When the algorithm was implemented only a small amount of the arithmetic resources
were used. Therefore, additional parallel paths could be implemented. The parallel paths
are implemented using DFEVectors. Suppose there is a stream of data flowing in a kernel.
Then for each element an operation is applied and it is sent out. With DFEVector, the
kernel accepts the amount of elements of the vector, splits them and applies the operation
in parallel at the same time on all of them at once. Then it combines the result into a
new vector with the original places of data and sends the data to the manager. Hence,
the kernel will process a vector of elements instead of a single data element per tick.

Parallel paths will not result into any problems for a multiplication and an addition,
because the same elements will be added to each other and multiplied with the constants.
The first difference that occurs is in the stream.offset function of the Matrix-free operator.
However, Maxeler has a function called stream.offsetStriped for this. This does what
stream.offset does for normal DFEVars.

Processing the boundary results into some difficulties. A counter is kept in the non-
parallel case to calculate when the next points of the matrix are on the boundary and
are set zero due to the Dirichlet boundary conditions. This is done with a multiplexer
connecting a zero-vector when the boundary condition is met, otherwise it takes the
stream.offset. The stream.offsetStriped function works fine for the Y-direction. Then it
just takes a whole zero vector the way it should. However, for the X-direction only the
first value of the vector should be zero. A new vector is made to solve this and it connects
the original value to all points except for the boundary. For the boundary it connects a
zero element.

Finally, the inner-product also needs a small extra step. The implemented inner-
product function needs scalar values to add the partial sums. Hence, the elements of the
vectors are added up to become scalar and are then added to a partial sum.
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4.7 Final algorithm

Algorithm 4.2 is divided into 3 parts. In each part an update is done to a vector with
an addition kernel. Then a matrix vector product is calculated with the result of the
addition. At last, a constant is calculated with 1 or 2 inner-products. These steps are
separated so that the new constants can be set before the kernel is called upon. Hence,
in Algorithm 4.2, steps 4,5 and 6 are part 1, steps 7, 8 and 9 are part 2. Part 3 is slightly
different. There are 2 additions left with step 10 and 11, an inner-product in step 12 and
an inner-product in step 13. Therefore, an addition is added to each part. However, the
result is only read in part 3. Also note that there is no matrix-vector product in part 3 of
the algorithm. The result of the matrix-vector product is still calculated, but not used.

Algorithm 4.2 BiCGSTAB after implementation

1: u = 0; r0 = r = g = δxs,ys,zs ; ρold = α = ω = ρnew = 1; v = p = 0;
2: for i = 0, 1, 2, . . . ,maxit do
3: Part 0: β = ρnew

ρold

α
ω

; ρold = ρnew;

4: Part 1: p = r + β(p− ωv);
5: Part 1: v = Ap;
6: Part 1: α = ρold

(v,r0)
;

7: Part 2: s = r− αv;
8: Part 2: t = As;
9: Part 2: ω = (t,s)

(t,t)
;

10: Part 3: u = u + αp + ωs;
11: Part 3: r = s− ωt;
12: Part 3: ρnew = (r, r0);
13: if ||r|| is small enough then
14: quit;
15: end if
16: end for

Figure 6 shows a simple representation of the algorithm with the flow diagram with
the nodes of Section 3.4. A lot of details are left out here to get a general overview of
the implementation. The total graph is unreadable. First, the matrix vector operation is
visualized as an addition of the 5 stencil points. The boundary is not taken into account
nor the ghost point. Therefore, the counters are also not shown. Second, parallel paths
are also not displayed. This figure represents the flow of a single path. The changes that
are needed for a parallel path described in Section 4.6 are not displayed. Finally, per
iteration this kernel is used 3 times. When the different parts of the kernel are used,
they are displayed with the square blocks. However, these calculations are always done,
whether or not they are used. Input 3 for example is always used but has no stream in
part 2. Then a zero vector and zero constant are used, but this is not displayed.

Figure 6 gives an overview for how the data flows in the DFE. 4 Input-flows enter into
the kernel and are multiplied by constants and added in the higher part of the graph.
These are the addition kernels. Then the outflows of ”U” on the left and ”between” on
the right are done in the middle as is the matrix-free operator. The result of matrix-free
operation and the result of ”U” are sent to ”output”. The multiplexer on the left above
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Figure 6: Simple representation of the data flow graph of the Kernel.
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”output” chooses the stream.
The bottom part of the graph displays the inner-products. These are filled with

multiplexers, which are filled with ”Between”, ”output” and the last inflow of r0 to
calculate the respective constants per part. The inner-products are displayed with the
sum functions to present the adders. This is again a simplification.
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5 Second order finite difference matrix-vector prod-

uct

In this section the difference between matrix-free operator and matrix-vector multiplica-
tion implementations will be explained. First the difference and second the tiling will be
presented. Finally, the results comparing all these implementations will be given.

5.1 Matrix-free operator versus matrix-vector multiplication

The finite difference operator has only dependencies with the points next to it. The
matrix has 5 non-zero diagonals in 2D or 7 in 3D (see the stencil in Equation 2.21 in
Section 2.3). Hence, for the matrix-free implementation, the stream.offset method will be
used. Then the Matrix-free operator is a simple addition of 5 elements in 2D stored for
the right amount of time. The bigger the sizes of the Nx, Ny and Nz dimensions are the
more storage will be needed. In 2D N = 2 ·Nx and in 3D N = 2 ·Nx ·Ny elements, need
to be stored before they can be added.

In the matrix-vector multiplication the vector x has to be multiplied with the matrix
A. The result is an inner-product for each element. This means that each element on the
same position is multiplied with each other and then all partial results are added up. This
is usually done on a CPU with a temporary sum and then each new number is added to
it.

for(int i=0;i<N-1;i++){

y[j] += A[j,i]*x[i];

}

The DFE operates on streams, and in order to calculate a temporary sum, some special
function is needed. This is done on the Data Flow Engine (DFE) with a number of partial
sums. In this project 16 adders are used. When a new number that has to be added is
calculated, the program adds the number to one of the partial sums. The program creates
a new number by adding that partial sums and the new number and connects it to the old
place of the partial sum. This leads to 16 numbers that together hold the information.
Therefore those numbers should be added. This is done with stream.offset and all the 16
adders are delayed one by one and added up. Of course this process needs to be repeated
for each row of the matrix. Therefore, the vector will be stored in the fast memory (fmem).
A limit of the DFE for this method might be the amount of fmem for the vector. However,
this operator cannot be used for systems larger than the amount of fmem available. The
storage of the full matrix in the memory is the limitation of this method.

5.1.1 Implementation details

Matrix-free operator
The matrix-free implementation will be done the same as explained in Section 4.2. Hence,
4 stream.offset functions will be used for all bordering points. They are added and sent
back. With a tiled implementation the Dirichlet boundary is implemented due to the zero
halo around it. However, for the untiled implementation the boundary has to be taken
into account, see Section 5.2 for more information on tiling.
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For the implementation using the DFE large memory (lmem), nothing changes. Only
that it first has to be send to the lmem and then read from there. Obviously this will
impact the system performance.

Matrix-vector product
A matrix-vector multiplication can be separated into an inner-product per row with the
vector. Hence, the vector is needed for each row and therefore will be stored into the fmem.
The inner-product will be done with partial sums and for each tick the new product will
be added to one of these sums as explained in Section 5.1. Then the sums are added with
stream.offset function to respect the timing.

The large memory implementation is again not very different. The difference is that
the data first has to be sent to the DFE lmem. Then the data will be streamed from the
lmem to the kernel.

5.2 Tiling

To keep the use of the fmem manageable, tiling will be done. Tiling is the process of
splitting the domain into multiple tiles. In Section 2.3 the lexicographical numbering is
introduced. In Table 3 a small 4 by 4 grid is shown as motivational example.

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Table 3: Small 4x4 grid lexicographical numbered.

With tiling, this numbering is different. The first element remains the same and
horizontal is counted first. However, the counting does not count until the end of the row
but until the end of the tile. Then in a row lower, the numbering continues. This is done
until the last line of the tile and then the next tile will begin in the same order as within
the first tile. Table 4 shows this.

1 2 5 6
3 4 7 8

9 10 13 14
11 12 15 16

Table 4: Small 4x4 grid numbered in 2x2 tiles.

To determine the matrix-free operator, for each point, the points next to it are needed.
With the numbering system explained above, the points on the boundary of each tile are
much further away from each other. In Table 4, the distance between point 3 and 9 is
1.5 times larger than in Table 3 between points 5 and 9. This can be bigger for other tile
sizes. Hence, a halo is created. The halo is a ring of all data points around a tile. Hence,
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for the tile 1,2,3,4, or originally 1,2,5,6 all points left, right, above, and below are added.
With the Dirichlet boundary conditions, this leads to Table 5.

0 0 0 0
0 1 2 5
0 3 4 7
0 9 10 13

Table 5: Tile 1 with halo.

Note that tiling also can be done for storing a smaller matrix. In this case the matrix
of the tile and the original is the the same, 16 by 16. However, with tiling, any original
grid can be tiled up till the maximal tile size. When the matrix-vector product has been
calculated for tile one, then only the original tile has been calculated correctly and has to
be de-tiled.

Large matrix-vector products will be compared. Therefore, large matrices have to be
stored. This is of course very inefficient, however it is needed for these tests. This storage
will be the limitation.

In 2D without tiling, 2 · Nx fmem units will be needed for the matrix-free operator.
However, if the x-axis is split into 3 and a halo is used then only 2 · (Nx/3 + 2) fmem
units are needed. Tiling obviously costs extra time because more data needs to be send
in total and the reordering of the data also costs time. However, if the fast memory is the
limiting factor, tiling is a valid option. On the other hand, this will be a bigger problem
for 3D cases, because the bandwidth of the matrix will be much bigger than in 2D.

5.3 Experimental results of matrix-vector product

96x96 100MHz 150MHz
matrix-vector CPU mem 0.90 0.65
DFE matrix-vector lmem 0.85 0.57

Table 6: Matrix-vector product of different memory for different frequencies, times in
seconds.

96x96 CPU DFE 150MHz lmem
matrix-vector 0.33 0.57
matrix-free 0.00015 0.015

Table 7: Matrix-vector product vs matrix-free for the CPU versus the DFE, times in
seconds.

Tables 6 and 7 present the results of the tests over an average of 10 runs for a grid of
96 by 96. This grid is almost as huge as what the CPU can store. The full matrix cannot
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be bigger because the zero’s in the matrix are also stored as doubles and the CPU does
not have more memory. Table 6 compares the difference between using the large memory
(lmem)of the DFE versus the memory of the CPU. It also compares the difference between
using the DFE on 100 MHz versus 150 MHz. Table 7 compares the CPU implementation
with the lmem implementation on 150 MHz. It also compares the matrix-free operator
versus the matrix-vector product.

To analyse the experiments two bounds will be used. The first bound is the Input
Output (IO) bound, this bound is the time it takes to transport all data that is needed
for the calculation. This is al the data divided by the bandwidth of the used connections.
The second bound is the compute bound, this bound is the time it takes the calculations.
This bound will be the amount of ticks divided by the time it takes the DFE to calculate
a tick which is the frequency it is run on. This will lead to a minimal amount of time that
will be needed for the calculations and when the experimental times are close it means
that there is little overhead.

Calculating the matrix-vector product takes the DFE 0.65 seconds on 150 MHz. The
improvement of the use of the lmem is only 10% in this case, that only takes 0.57 seconds.
The higher frequency of the DFE, the faster it is in this case. For the lmem case, the
calculation time decreases 1.5 times while frequency increases 1.5 times. Therefore, it
can be concluded that this implementation is compute bounded. The CPU memory
implementation does not decrease its time by a factor 1.5. Hence, the memory flow has
an influence here. This of course makes sense, because the lmem bandwidth is higher
than the bandwidth between the CPU and the DFE. However, writing the data on the
large memory also costs 0.65 seconds.

In Table 7 is shown that the matrix-vector product takes 0.33 seconds on the CPU,
while it takes 0.57 seconds on the DFE on 150 MHz with the lmem implementation. If
this number is compared with the matrix-free implementations then the difference is huge.
A matrix-free implementation on the CPU only takes 0.00015 seconds and for the DFE
0.015 seconds. The CPU is this much faster because the problem size is small and it can
use its closest caches while running at high frequency. The DFE runs at only 150 MHz.
Matrix-free is much better than a full matrix-vector multiplication. This of course makes
sense, due to the sparseness of the matrix.

A sparse matrix-vector multiplication kernel will be an improvement over the full
matrix-vector multiplication. However, if it will be faster than the matrix-free implemen-
tation will be a project for the future.

5.3.1 Results for large systems

The large system that will be used is a 6000 × 6000 grid. This means that 36 million
complex numbers are used on this grid. With a communication speed between the CPU
and DFE of 3GB per second, only transferring this data will take 2·60002

3000·220 = 0.366 seconds.

With a non-parallel implementation, the compute bound will be 60002

100·106
= 0.36 seconds on

100MHz.
The results are presented in Table 8. The calculation times are not close to the bounds.

This is because making the complex vector in a double precision and back takes twice
0.1 seconds. The kernel only takes 0.44 seconds. Hence, the DFE calculation in total
takes 0.67 seconds to calculate the matrix-vector product and the CPU only 0.38 seconds.
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CPU DFE 100MHz speedup tile size efficiency tiled speedup
0.38 0.67 0.58 6002× 6002 99.93% 0.98 0.39

Table 8: 2nd Order finite difference matrix-vector of 6000× 6000 grid, times in seconds.

However, the computed time of the CPU is as fast as the memory bound. Because the IO-
bound is the same as the calculation time of the CPU, a DFE accelerated implementation
can never be achieved for the PCIe connection.

Tiling and de-tiling both take about 0.15 seconds for this system when the tile is
6002 × 6002. Hence, tiling costs about 30% of the time in this case. However, larger
problems can be calculated then.

46



6 Experimental results of the implementations

This section presents the results of the implementations. The first 5 subsections will start
to specify the implementation and then give the results of that implementation. First,
the fast memory(fmem) implementation and second, the split kernel implementation is
showed. Third, the parallel implementation is presented and as fourth the final implemen-
tation of the real valued problem is given. The optimized complex problem is explained
as fifth. Finally, the results are compared with literature and an analytical indication is
given for newer hardware.

The following constants will be the same for all problems unless otherwise specified:

h =
1

N
, (6.1)

k =
0.625

h
, (6.2)

α = 0.05, (6.3)

with N the grid size per dimension. The constants are derived in Section 2.3. The distance
between grid points is h. The wave number is k. The last constant α is the damping
factor.

6.1 Fast memory implementation

This subsection presents the results of the first complete implementation of the BiCGSTAB
algorithm on the DFE. This implementation was discontinued because it used too many
stream connections and the maximal grid size was only 180× 180. First the implementa-
tion will be described and then these problems will be explained. The code of the kernel
is presented in Appendix C. Algorithm 2.2 contains the referred steps. Note that this
code is not optimised with the later insights.

This implementation runs the entire algorithm at once. This means that the Data
Flow Engine (DFE) is only called once using the SLiC function prototype. However, not
all steps can be calculated at the same time. Therefore, counters and booleans are needed
to trigger calculations at the right times. In total 6 counters are used. Two Counters
for step 4 and step 8 to keep track of the position of the grid in the x- and y-axis. One
Counter for step 14 and one counter for step 15. Note that these counters are similar to
part 1,2,3 from Section 4.7. The boolean of each step is true when the counter of the
same step is ticking.

This implementation is called the ”Fast memory” or ”fmem implementation” because
everything that is reused is saved in the fast memory of the DFE. For example, in Algo-
rithm 2.2 step 4 and step 8, both of them need r. However, they cannot be calculated at
the same time. Hence, r is written in the fmem.

Memory <DFEVar > rInput = mem.alloc(dataType , dataSize);

rInput.write(point4 , r, step4Bool);

Writing in the fmem needs two steps. First, the memory is allocated with mem.alloc and
second, the data is written at ”point4” when ”step4Bool” is true. The ”4” refers to step
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4 of the algorithm. In total 5 vectors are stored on the fast memory. These vectors all
have the size of the grid times the amount of bits of the precision. Therefore, the grid
is limited at 180 × 180 when using double precision data values, because almost all the
fmem will be used in this case.

There are two alternative implementations that will be presented in this subsection.
The difference is in where the data is stored. For the first implementation, the CPU mem-
ory is used and for the second, the large memory(lmem) of the Data Flow Engine(DFE)
is used. The data communication from the lmem to the DFE is faster than the commu-
nication between the CPU memory and the DFE.

Finally, note that the error is calculated on the CPU and not on the DFE. This does
not result to extra streams for the implementation on the CPU memory. However, for
the lmem implementation the CPU needs r. Also u is send to the CPU memory and this
results in extra calculation time, which is not needed. The result only needs to be send
once at the end.

6.1.1 Results of fmem implementation

Table 9 and Table 10 present the results of the fmem implementation with the data
stored on the CPU memory. All the data is real valued. In Table 9 in the first column the

grid CPU DFE 100MHz DFE 125MHz DFE 150MHz
4× 4 2.30 · 10−6 1.23 · 10−3 1.23 · 10−3 1.25 · 10−3

8× 8 1.66 · 10−5 3.74 · 10−3 3.03 · 10−3 3.15 · 10−3

16× 16 2.73 · 10−4 1.34 · 10−2 2.37 · 10−2 1.79 · 10−2

32× 32 5.37 · 10−3 4.60 · 10−2 4.39 · 10−2 4.41 · 10−2(3 · 10−5)
64× 64 8.40 · 10−2 5.90 · 10−1 3.06 · 10−1 2.94 · 10−1

128× 128 1.08 2.55 2.35 2.20

Table 9: Results CPU mem fmem implementation in seconds per grid size. Stop criterion
is 10−6, times are in seconds.

grid sizes are presented. In the second column, the calculation time of the BiCGSTAB
algorithm on the CPU is presented. Column 3-5 presents the calculation time of the
BiCGSTAB algorithm on the DFE for different frequencies. These frequencies are the
clock speed of the DFE. A higher frequency can result in faster calculation times.

First, note that for the grid 32× 32 and the DFE frequency of 150 MHz the problem
did not converge. At some point truncation errors will add up and make the value at
the source point zero and therefore α infinite. The result that is presented had an error
of 3 · 10−5 and was stopped there. The BiCGSTAB algorithm is sensitive to truncation
errors. Especially when the algorithm does not converge fast enough these errors can add
up. Hence, for the algorithm without preconditioner this will happen more often.

At last note that in the last column the first and second calculation times are longer
than their lower frequencies counterparts. This is probably a result of timing errors.
However, it could also be some overhead.

Table 10 presents the difference for different stop criteria of the BiCGSTAB algorithm
of a grid of 128× 128 between the CPU and the 100 MHz DFE implementation. Column
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Stopcriterion #iterationsCPU CPU #iterationsDFE DFE 100MHz
10−1 186 1.07 · 10−1 188 2.01 · 10−1

10−2 1321 6.32 · 10−1 1179 1.27
10−3 2095 9.87 · 10−1 2013 2.17
10−4 2188 1.01 2108 2.29
10−5 2240 1.04 2126 2.29
10−6 2342 1.08 2356 2.55
10−7 2359 1.08 2387 2.57

Table 10: Results CPU mem fmem implementation in seconds per precision for grid size
of 128× 128, times are in seconds.

one sets the minimal stop criterion that needs to be reached. The second and fourth
column presents the amount of iterations that the CPU and DFE needed respectively
to converge. Column 3 and 5 present the calculation times of the CPU and the DFE.
Note that the number of iterations needed for the DFE are different than the CPU due
to truncation errors that add up. In Table 11 the results are presented of a brief analysis

level l 7

N
(
2l
)2

16384

IO Bound (4+4)·N ·8
3000·220

1
4000

s

Compute Bound 4·N
100·109

≈ 1
1520

s

Table 11: Brief analysis of the compute and IO bound.

of the problem. The Maxeler machine that we are using has a PCI-express gen 2 with
8 lanes. This results that effectively 3000 MB per seconds can be transported. In total
4 input vectors and 4 output vectors have to be transported and the size of a double
precision data elements is 8 bytes. This results in an IO bound implementation N

3000·214 s.
The compute bound is the number of ticks divided by the amount in Hertz that the
machine is running, with a standard value of 100 MHz. This results in a bound of 4N

100·106
s.

Therefore the problem is compute bound. We compare the results of Table 9 with the
expectations for level 7. Levels were implemented to be able to implement the V-cycle
of the multi-grid preconditioner(see Section 4.5). Hence, one level higher is twice as big.
2300 iterations were needed, therefore 1.5 seconds is the expected calculation time. The
calculation time is 2.5 seconds. Hence, a loss of less than a factor 2 compare to the
theoretical bound. When we compare the theoretical bound with the results of the CPU
then implementation on the DFE is still slower than the CPU.

Table 12 presents the results of the fmem implementation that stores the data on the
lmem. The first column states the grid size. The second and third column present the
calculation time of the BiCGSTAB algorithm on respectively the CPU and the DFE on
100 MHz. The fourth column presents the speedup from the CPU to the DFE. This is
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size CPU DFE 100MHz speedup
12× 12 1.75 · 10−4 9.81 · 10−3 0.02
24× 24 4.10 · 10−3 4.52 · 10−2 0.09
36× 36 1.87 · 10−2 1.02 · 10−1 0.18
48× 48 5.11 · 10−2 2.01 · 10−1 0.25
60× 60 1.05 · 10−1 3.62 · 10−1 0.29
72× 72 1.88 · 10−1 5.31 · 10−1 0.35
84× 84 3.73 · 10−1 7.09 · 10−1 0.53
96× 96 5.80 · 10−1 1.04 0.56
108× 108 1.02 1.41 0.72
120× 120 1.64 2.54 0.65
132× 132 2.08 2.99 0.70
144× 144 −−− −−− −−−
156× 156 5.25 5.58 0.94
168× 168 5.39 6.78 0.79
180× 180 7.88 10.71 0.73

Table 12: Results of fmem implementation on lmem in seconds per grid size, stop criterion
is 10−6, times are in seconds.

lower than one and thus the CPU is faster than the DFE.

The stop criterion is 10−6. However, the amount of iterations that both implementa-
tions need to converge are not the same. This is due to differences in the value truncation
process. Because this algorithm needs a preconditioner to converge within a reasonable
amount of iterations, this truncation error accumulates and lengthens the calculation.
When the process converge can be considered a bit of lucky with the truncation errors.
Note that the problem did not converge at all for the grid of 144× 144.

Table 12 shows that even though this code is not optimized that for the larger grids in
this table it is almost as fast as the CPU. Also that the DFE scales better than the CPU.
This means that the speedup for larger problems is better than for smaller ones. However,
180× 180 is the largest grid possible. Therefore, another implementation is needed that
uses less fmem.

6.2 Split kernel implementation

This section will explain the split kernel implementation. The fmem implementation was
limited to a grid size of 180 × 180. A new implementation was made with split kernels.
Hence, for each process of the algorithm a new kernel was made. For example, the matrix
vector operator had a kernel that accepted a vector v and calculated Av. Then this vector
was send back to the manager. The manager connected this result to the memory. Some
streams were connected between kernels by the manager and flows were copied. This
resulted in too many streams for the manager to connect and in very long build times.
This implementation was also not optimized. The error is still calculated on the CPU.
This means that the CPU has to read the residual vector from the large memory of the

50



DFE and then calculate the norm of the error.
Algorithm 6.1 presents the calculations needed on the DFE per iteration. Note that the

other constants are calculated on the CPU and for α only the v(sourcepoint) is calculated
on the DFE. Step 2 is an addition kernel. Step 3 is a matrix-free operator kernel. Step 4 is
a source-point kernel. These 3 kernels can all be done for each point after each other and
therefore can be combined into part one. Note that this is similar to the description in
Section 4.7. Then step 5 and 6 are similar and therefore these two are calculated exactly
as part one and the overhead of the source-point is only in computations not in time.

Step 7 is two dot products and it makes part 3 of the algorithm. Step 8 and 9 are
both done by a new addition kernel. However, in this implementation they are done after
each other to make part 4 and 5. Note that this is not optimal. These steps can be
calculated at the same time and this will be done in the next subsection. At last, after
all the iterations the results will be read from lmem.

Algorithm 6.1 Bi-CGSTAB steps for the DFE for the split kernel implementation.

1: for i = 0, 1, 2, . . . do
2: p = r + β(p− ωv);
3: v = Ap;
4: α = ρ

v(sourcepoint)
;

5: s = r − αv;
6: t = As;
7: ω = (t,s)

(t,t)
;

8: u = u+ αp+ ωs;
9: r = s− ωt;

10: end for

6.2.1 Split kernels results

In Table 13 the results of the split kernel implementation of 10 iterations over 10 times
average are presented. In the first column the grid size is given. In the second column
the time it took for the CPU to calculate one iteration is presented. In the third column
the time it took for the DFE and the CPU to calculate one iteration is shown. In the last
column the speedup is reported.

gridsize CPU DFE 50MHz speedup
180× 180 1.37 · 10−3 7.00 · 10−3 0.19
240× 240 2.17 · 10−3 1.00 · 10−2 0.22
6000× 6000 1.13 4.20 0.27

Table 13: Split kernel, times in seconds.

Table 13 shows that this implementation is a lot slower than fmem implementation of
the previous subsection. It shows this by the lower speedup factor in Table 12 compare
to the CPU implementation. This was to be expected because instead of the fmem the
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lmem is used to store the data. However, now larger systems can be calculated. Also the
data transfer is divided over 10 iterations.

In total 5 times N2 ticks are needed. With 50 MHz the expected time needed for the
DFE to calculate the 6000 × 6000 would be 5·60002

50·106
= 3.6 seconds. This is exactly the

time that was measured for the calculation. The other 0.6 seconds of the time are the
writing and reading the data from and to the DFE and the calculations of the constants.
The implementation works as expected but is not an improvement over the CPU. The
resources of the DFE is only used for a small bit. Parallel computations can be done and
will be introduced in the next section.

6.3 Parallel implementation

In this section the results after the first parallelisation will be presented. Hence, for each
tick 2 calculations are done at the same time. Compared to the last section a number of
other improvements have been implemented as well.

The first improvement is that instead of separate kernels, everything is built into a
single kernel. This results in less streams for the manager to control.

The second improvement is that instead of 5 parts, only 4 parts are implemented. Part
3 and 4 were merged together. Only this merge action saves N2 ticks of the execution
time. Now, these parts are all instances of the same kernel with an integer to control
the part active at any moment in time. With this integer, various data flow graph links
are turned on and off when required. However, the part in isolation is of course still
preformed. However, its results are just not used.

The last big difference between the proposal in Section 6.2 and this one is the addition
of the partial sums of the inner-products. In this implementation the partial sums are
sent to the CPU and added up there. This is a complication of implementing the parallel
paths.

6.3.1 Intermediate results

Note that build times were much shorter than in the fmem implementation. The build
times was days for the fmem implementation and this implementation was done within 2
hours. Therefore, higher frequencies could be tested. Hence, in this section the frequency
of the DFE will be 150 MHz.

gridsize CPU DFE 150MHz speedup
180× 180 1.37 · 10−3 1.53 · 10−3 0.90
6000× 6000 1.13 0.48 2.35

Table 14: Parallel kernel per iteration, times in seconds.

Table 14 compares the implementations of the CPU and DFE per iteration. Hence,
the writing and reading is not taken into account. For the grid of 6000× 6000, this costs
0.9 seconds. This means that in total the DFE is slower if only 1 iteration is executed.

The calculation time of the grid 6000× 6000 was 3.6 seconds for the lmemsplit imple-
mentation of section 6.2. Table 14 shows that this implementation takes 0.48 seconds per
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iteration. This is 7.5 times faster than the result of the previous implementation of Table
13. This number is achieved because the machine runs 3 times faster, the parallelisation
makes it 2 times faster and the removal of 1 out of 5 parts makes it 1.25 times faster.
This makes it 7.5 times faster. In the next section the last set of improvements will be
presented.

6.4 Final real valued implementation

In this section the result are presented of the final implementation for the real valued
problem. The last improvements are implemented as explained in Section 4.4.5, a number
of constants are pre calculated. As explained in Section 4.7 the algorithm is split into 3
parts instead of 4. Part 4 is integrated into part 3. This means that again N2 ticks are
saved for the cost of some arithmetic space and an additional stream of data flows into
the kernel. Also this algorithm is parallelised into six parallel paths.
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Figure 7: Calculation times of 1 real valued BiCGSTAB iteration.

Figures 7a and 7b show the computation time of 1 BiCGSTAB iteration for different
grid dimensions, in red it is the time it took the CPU and in blue it is the time it took
using the DFE. Figure 7b shows the small grid size for which the CPU is faster. Figure
7a shows that the DFE implementation scales much better than the CPU.

gridsize CPU DFE 150MHz speedup
180× 180 1.45 · 10−3 1.10 · 10−3 1.32
6000× 6000 1.13 1.87 · 10−1 6.04
16800× 16800 11.6 1.38 8.41

Table 15: Finished real kernel per iteration, times in seconds.

The DFE has a communication speed of 38 GB per second, see Section 4.1.2. The
precision is 8 bytes and there are 17 large in- output streams in the 3 parts. This means
that the IO bound is at least 17·8·N2

38×109
s. For N = 6000 this will result in an IO bound of 0.129
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seconds. The results from Table 15 is 0.187 seconds and therefore the last implementation
is close to the IO bound. The computation bound is the amount of ticks divided by the
frequency times the amount of parallel paths 3·N2

6·150·106
s. This compute bound for N = 6000

is 0.12. However, one bound for the whole implementation is not correct. Each part has a
different IO bound due to the different amount of large streams of date that the calculation
require. The first part has 6 streams, the second art has 4 streams and the third part has
7 streams. Hence, each part has an IO bound of S·8·N2

38×109
s, with S the amount of streams

per part. The first and third part are IO-bounded. However, the second part is compute
bounded. Therefore, the overall bound is 13·8·N2

38×109
+ ·N2

6·150·106
s. For N = 6000 this is 0.138

seconds.

6.5 Final complex valued implementation

In this section the result of the final implementation for the complex valued problem are
presented. As explained in Section 4.4.2 some minor changes were needed to implement
the complex numbers. Hence, complex constants were created and the complex conjugate
was added. The implementation has three parallel paths and also the small improvements
as explained in Section 4.4.5.
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Figure 8: Calculation times of 1 complex valued BiCGSTAB iteration.

Figures 8a and 8b show the computation time of 1 BiCGSTAB iteration for different
grids, in red it is the time it took the CPU and in blue it is the time it took using the
DFE. Figure 8b shows that the CPU is better for small grid sizes. Figure 8a shows that
the DFE implementation scales much better than the CPU. Hence, for bigger problems
the DFE would perform even better. However, bigger problems cannot be computed on
the CPU due to main memory capacity limitations. Therefore, it cannot be tested if the
results are correct but the DFE could handle much bigger problems. The DFE has 48
GB of memory(see Section 4.1.2) and therefore it can store 7 vectors of 20000 × 20000.
Hence. 20000× 20000 is the largest problem in 2D that a MAX3 DFE can compute.

The DFE has a communication speed of 38 GB per second, see Section 4.1.2. The
precision is 8 bytes for both real and complex values and there are 17 large in- output
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gridsize CPU DFE 150MHz speedup
180× 180 3.58 · 10−3 1.20 · 10−3 2.12
6000× 6000 2.913 0.368 7.55
12000× 12000 11.7 1.39 8.42

Table 16: Finished complex kernel per iteration, times in seconds.

streams in the 3 parts. However, as in the final real implementation part 2 is compute
bounded while part 1 and part 3 are IO bounded. This means that the overall bound is
13·16·N2

38×109
+ ·N2

3·150·106
s. For N = 6000 this will result in an overall bound of 0.277s.

6.5.1 Comparison with results from the literature

In this subsection results will be compared with the work of others. There are only 2
comparisons because no preconditioner was implemented and this implementation is only
in 2D.

The first problem is from [5, p. 25]. In this problem k = 40, N = 256 and the stop
criterion is 10−6 while the data elements are in single precision. This will be compared to
double precision. This is the worst case, a single precision will lead to an improvement
in calculation time. However, the grid is chosen to be 252 because the grid needs to be
a multiple of 12 for this implementation. Different truncation errors will lead to different
amount of iterations. The CPU implementation does not converge and therefore will be
compared with the same amount of iterations as in [5] which is 6047. That took the CPU
46.8 seconds to run, while it took the CPU in [5] 370.6 seconds. Hence, the CPU used
in this thesis is much faster than the CPU used in [5], but that is not interesting. The
DFE implementation took 11860 iterations and 22.8 seconds. This means, the DFE was
almost 2 times faster than the CPU while performing twice as many iterations. The GPU
implementation of [5] used a similar amount of iterations, 11000, and took 27.1 seconds.
Therefore, the DFE is slightly faster than the GPU for this problem.

Compared to the problem of [5, p. 27], which is a grid of 1024 and k=40, a better
improvement can be seen. The GPU implementation took 3.2 seconds and the DFE
implementation took 1.32 seconds for a grid of 1020 × 1020. The reason of the small
deviation in grid sizes is because the DFE implementation expects grid sizes to be a
multiple of 12. Note that 0.08 seconds of the 1.32 seconds are used for copying the data
onto the large memory. Both implementations scale well with large grid sizes.

6.5.2 DFE resource usage

Listing 4: Use of Maxeler machine.

FINAL RESOURCE USAGE

Logic utilization: 206977 / 297600 (69.55%)

LUTs: 166760 / 297600 (56.03%)

Primary FFs: 182218 / 297600 (61.23%)

Secondary FFs: 44991 / 297600 (15.12%)

Multipliers (25 x18): 963 / 2016 (47.77%)
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DSP blocks: 963 / 2016 (47.77%)

Block memory (BRAM18): 834 / 2128 (39.19%)

Listing 4 presents the final resource usage of the executable. This report is presented when
the implementation is run and an executable is built. More precise usage reports can be
found in the files. Listing 4 shows that not every hardware resource unit is used. This
means that additional calculations can be placed on the device. In general, to optimally
use the reconfigurable device, every unit should be used and the data communication buses
should be in use all the time. Earlier in this section, it was shown that the implementation
is memory bounded. An other parallel path might fit on the device in terms of resources.
However, it will not be any faster because of the memory bandwidth. The available free
arithmetic space can be used in the future for implementing the multi-grid preconditioner.

Note that the last line in Listing 4 shows how much fast memory is used. In the
implementation presented in Section 6.1, this resource was completely used. However,
fmem is now only used 39%. Therefore, an implementation that uses more of the fmem
can be an improvement over this implementation. This memory could also be used for
the multi-grid preconditioner.

Finally, because the implementation is memory bound, the build has to buffer partial
results so that they can be made available at the right time. This leads to a more difficult
build process and hence longer build times. An implementation that uses almost all of
the DFE resources can also take a long time, because there is much less freedom for the
synthetic tools to place the calculations.

6.6 Plots of the calculations

Figure 9: Solution of the Helmholtz equation with Dirichlet Boundary conditions.

Figure 9 presents the result of the Helmholtz equation with Dirichlet Boundary con-
ditions. In the middle, a big red spike can be seen. This is because b is 1 at the source
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point and 0 elsewhere. The expected result is a nice circular pattern around the middle.
This is because the wave is travelling equally fast in all directions. However, the result
in Figure 9 shows circles with interruptions. This is because the wave is bouncing back
from the boundary due to the Dirichlet boundary conditions. Therefore other boundary
conditions would perform better, because in reality there is no boundary but only a small
part of the domain is modelled. This is why in Section 2.2 the Sommerfeld radiation
condition is presented. This is not implemented in this thesis due to time constraints.
However, instead of correcting the matrix-free operator with zero’s from the Dirichlet
boundary condition now the stream times a constant have to be placed. This leads to 4
more stream inner interactions.
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Figure 10: Convergence progress of a grid of 324× 324.

Figure 10 presents the convergence progress of the BiCGSTAB algorithm. It shows
the overall convergence, however it is not monotone convergence.

6.7 Future performance estimation

Table 16 presents the calculation time of the complex implementation, which is 1.39
seconds for the largest grid of N = 12000 × 12000. The overall IO bound is 17·16·N2

38×109
s =

1.03s. This means a loss of 35%. However, the 3 parts of calculation have their own IO
bound. Then a new prediction can be made, because part 2 of the calculation is compute
bounded. Part 1 has 6 large flows, part 2 has 4 large flows, and part 3 has 7 large flows.
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This means that the IO bound of part 1 is 0.36s, part 2 is 0.24s and part 3 is 0.42s. The
compute bound of all parts is N2

3·150·106
s = 0.32s. This leads to an overall bound of 1.1

seconds. Hence, the overhead is 26%. However, the experimental calculation times of the
12000 × 12000 grid are 0.488s for part 1, 0.333s for part 2, and 0.567s for part 3. From
this it can be deducted that it takes about 0.081 seconds per stream. This means that the
effective communication speed between the DFE and the lmem is about 28.4 GB/s for
this implementation. This is about 10 GB/s below the theoretical communication speed.
However, the above shows that an analytical model can be set up for other devices to
predict performances.

The current implementation is IO bounded, because the frequency could be higher if
the data would be available. The effective communication speed between the DFE and
the large memory is 28.4 GB/s, call it c in GB/s. This means that an improvement in
bandwidth will increase the performance.

However, the compute bound must also be considered. This implementation has a
compute bound of 3·N2

p·f ·106
s, where p is the amount of parallel paths and f is the frequency

in MHz on which the device can run.
Therefore, the maximal performance for this device can be predicted when the com-

munication speed is increased. This device can run at most 4 parallel paths at 200 MHz.
Therefore, the lowest compute bound is 3.75 · 10−9N2s. In order to match the compute
bound, the IO bound is the same when the communication speed between the DFE and
the lmem is 72.5 GB/s. For the grid of 12000× 12000 this bound is 0.54 seconds.

Compute bound =
3 ·N2

p · f · 106
s (6.4)

IO bound =
17 · 16 ·N2

c× 109
s (6.5)
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7 Conclusions

The results and discussions from the previous sections lead to the following conclusions:

• As expected if only the matrix vector multiplication is implemented on the DFE, no
acceleration can be achieved as shown in Section 5.3.1. The PCIe communication
speed between the CPU and the DFE is the limiting factor.

• The BiCGSTAB method can be implemented on the DFE. This is done by splitting
the algorithm in 3 parts, see Section 4.7.

• In Section 5.3.1 results are compared with the literature. An improvement can be
seen over the GPU implementation of [5]. This DFE implementation is 2.4 times
faster for the BiCGSTAB method without preconditioner.

• Finally, an increase in communication speed between the large memory and the
DFE will result in better performance of this BiCGSTAB implementation. When
the communication speed is doubled the calculation time will be halved. See Section
6.7 for estimated performance of other hardware.

8 Future research

• In Section 6.3, it is explained that the partial sums from the inner products are
sent to and added on the CPU. However, the advantages or disadvantages are not
obvious. This can be implemented easily with stream.offset as it was in Section 6.2.
However, the build times to get the same performance as the final implementation
of this thesis are long.

• Sparse Matrix vector products are also something that can be investigated in the
future. In Section 5.3, an obvious answer was achieved for the difference between a
full matrix-vector product versus a matrix-free implementation. However, matrices
of the finite difference approximations are sparse. Hence, a sparse matrix-vector
implementation will lead to an improvement for sparse matrices compared to full
matrices. The matrix-free method is expected to remain the fastest choice. However,
this is still uncertain.

• Section 4.2 explains that the source point kernel was turned into an inner-product
kernel. This is done to make the algorithm more general. However, this is not
optimal for the seismic application. Therefore, taking the value at the source point
instead of using the inner-product with an additional stream of r0 will lead to a lower
IO bound. Therefore an improvement of 0.16 seconds for the grid of 12000× 12000
is expected. This is a 13% improvement in calculation time. Another idea for the
source-point kernel is to either produce r0 on the fly or store it in the fast memory.
This will lead to the same results.

• The goal of this thesis was to implement the preconditioned BiCGSTAB method as
described in [3]. The multi-grid preconditioner still needs to be implemented. Some
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ideas are presented in Section 4.5. This would increase convergence significantly
and therefore decrease the influence of the rounding errors.

• In this thesis the wave number k is constant. To implement the general case, an
additional stream of k needs to be sent to the kernel. The costs in calculation time
are expected to be 13% higher because it adds one stream in the first two parts of
the algorithm.

• The last suggestion for future research is the implementation of the 3D problem.
This may lead to a slower reading of data. Data management will be important and
tiling needs to be considered. Multiple DFEs can be used for the tiles.
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A Build-log of example

Listing 5: Build-log of example from Section 3.5.

Wed 15:41: MaxCompiler version: 2013.2.2m

Wed 15:41: Build "examplereport" start time: Wed Jan 25 15:41:41 CET

2017

Wed 15:41: Main build process running as user onno on host dutifi.ws

.tudelft.net

Wed 15:41: Build location: "/home/location"

Wed 15:41: Detailed build log available in "_build.log"

Wed 15:41: Instantiating manager

Wed 15:41: Instantiating kernel "examplereportKernel"

Wed 15:41: Compiling manager (CPU I/O Only)

Wed 15:41:

Wed 15:41: Compiling kernel "examplereportKernel"

Wed 15:42: Generating input files (VHDL , netlists , MegaWizard/

CoreGen)

Wed 15:42: Running back -end build (12 phases)

Wed 15:42: (1/12) - Prepare MaxFile Data (GenerateMaxFileDataFile)

Wed 15:42: (2/12) - Synthesize DFE Modules (XST)

Wed 15:42: (3/12) - Link DFE Modules (NGCBuild)

Wed 15:42: (4/12) - Prepare for Resource Analysis (

EDIF2MxruBuildPass)

Wed 15:42: (5/12) - Generate Preliminary Annotated Source Code (

PreliminaryResourceAnnotationBuildPass)

Wed 15:42: (6/12) - Report Resource Usage (

XilinxPreliminaryResourceSummary)

Wed 15:42:

Wed 15:42: PRELIMINARY RESOURCE USAGE

Wed 15:42: Logic utilization: 12119 / 297600 (4.07%)

Wed 15:42: LUTs: 8349 / 297600 (2.81%)

Wed 15:42: Primary FFs: 9689 / 297600 (3.26%)

Wed 15:42: Multipliers (25x18): 2 / 2016 (0.10%)

Wed 15:42: DSP blocks: 2 / 2016 (0.10%)

Wed 15:42: Block memory (BRAM18): 22 / 2128 (1.03%)

Wed 15:42:

Wed 15:42: About to start chip vendor Map/Place/Route toolflow. This

will take some time.

Wed 15:42: For this compile , we estimate this process may take up to

30 minutes.

Wed 15:42: We recommend running in simulation to verify correctness

before building a DFE configuration.

Wed 15:42:

Wed 15:42: (7/12) - Prepare for Placement (NGDBuild)

Wed 15:42: (8/12) - Place and Route DFE (XilinxMPPR)

Wed 15:42: Executing MPPR with 1 cost table and 1 thread.

Wed 15:42: MPPR: Starting 1 cost table

Wed 15:42: MPPR: Cost table 1 met timing with score 0 (best score 0)

Wed 15:42: (9/12) - Prepare for Resource Analysis (XDLBuild)

Wed 15:42: (10/12) - Generate Resource Report (

XilinxResourceUsageBuildPass)

Wed 15:42: (11/12) - Generate Annotated Source Code (

XilinxResourceAnnotationBuildPass)
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Wed 15:42: (12/12) - Generate MaxFile (GenerateMaxFileXilinx)

Wed 15:43:

Wed 15:43: FINAL RESOURCE USAGE

Wed 15:43: Logic utilization: 9444 / 297600 (3.17%)

Wed 15:43: LUTs: 7752 / 297600 (2.60%)

Wed 15:43: Primary FFs: 7484 / 297600 (2.51%)

Wed 15:43: Secondary FFs: 1845 / 297600 (0.62%)

Wed 15:43: Multipliers (25x18): 2 / 2016 (0.10%)

Wed 15:43: DSP blocks: 2 / 2016 (0.10%)

Wed 15:43: Block memory (BRAM18): 24 / 2128 (1.13%)

Wed 15:43:

Wed 15:43: MaxFile: "location.max" (MD5Sum:

a377c2826c92a4f430052775e3aa0517)

Wed 15:43: Build completed: Wed Jan 25 15:43:42 CET 2017 (took 2

mins , 0 secs)
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B Ccode

Listing 6: BiCGSTAB on CPU.

1 void matrixVectorDirichlet2D( double _Complex *v, double _Complex *p,

double h, double k,int N)

2 {

3 /*

4 * calculates v=Ap in 2D.

5 * A is the helmholtz matrix with Dirichlet boundary conditions.

6 * A= -laplace - (1-alpha*I)*k*k.

7 * For every point check if it is near the boundary or not.

8 */

9 int point;

10 for (int j=0;j<N-1;j++){

11 for (int i=0;i<N-1;i++){

12 point =i+N*j;

13 v[point ]=((4.0L/(h * h)) -(1-( alphaProblem * I)) * (k

* k)) * p[point ];

14 if(j!=0)

15 v[point] += (-p[i+N * (j-1)]/(h*h));

16 if(j!=N-2)

17 v[point] += (-p[i+N * (j+1)]/(h*h));

18 if(i!=0)

19 v[point] += (-p[i-1+N * j]/(h * h));

20 if(i!=N-2)

21 v[point] += (-p[i+1+N * j]/(h * h));

22 }

23 }

24 }

25
26 #ifdef CPU

27 struct Tuple Bi_CGSTABCPU(double _Complex *u, int max_it , double h,

double k, double tolerance ,int N){

28 /*

29 * The Bi_CGSTAB algorithm solves Au=dirac(sourcePoint),

30 * which is at the center of the grid.

31 * On the CPU

32 */

33 // result variables

34 int iter =0;

35 int flag =0;

36 double error = 0.0L;

37
38 //The point where the source is located

39 int sourcePoint =(N/2-1) *(1+N);

40
41 // variables for the algorithm

42 double _Complex alpha ,rho_old ,rho_new ,beta ,omega;

43 rho_old =1.0L;

44 alpha =1.0L;

45 omega =1.0L;

46 double _Complex boven ,beneden;

47 size_t sizeBytes = N*N*sizeof( double _Complex);
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48 double _Complex *r= malloc(sizeBytes);

49 double _Complex *t= malloc(sizeBytes);

50 double _Complex *v= malloc(sizeBytes);

51 double _Complex *p= malloc(sizeBytes);

52 double _Complex *s= malloc(sizeBytes);

53 for (int i =0;i<N*N;i++){

54 r[i]=0.0L;

55 v[i]=0.0L;

56 p[i]=0.0L;

57 }

58 //for -loop integer

59 int point;

60
61 // residu when u_0 = 0 and b=dirac(sourcePoint)

62 r[sourcePoint ]=1.0;

63
64 //main part

65 for (iter =1;iter <= max_it;iter ++){

66 //Step 3: constants

67 rho_new= r[sourcePoint ];

68 printConstantComplex(rho_new ," rho_new ",3);

69 if(rho_new ==0.0){

70 flag=-1;

71 return (struct Tuple) {flag ,iter ,error};

72 }

73 beta = (rho_new/rho_old)*( alpha/omega);

74 rho_old=rho_new;

75 printConstantComplex(beta ,"beta ",2);

76
77 //Step 4 p=r+beta(p-omega*v)

78 for(int j=0;j<N-1;j++){

79 for(int i=0;i<N-1;i++){

80 point= i + N*j;

81 p[point ]=r[point ]+beta*(p[point]-omega*v[

point ]);

82 }

83 }

84 printVector(p,"p",4,N);

85
86 //Step 6 v=Ap

87 matrixVectorDirichlet2D(v,p,h,k,N);

88 printVector(v,"v",4,N);

89
90 //Step 7 alpha

91 alpha=( rho_old/v[sourcePoint ]);

92 printConstantComplex(alpha ," alpha",2);

93
94
95 //Step 8 s=r-alpha*v

96 for(int j=0;j<N-1;j++){

97 for(int i=0;i<N-1;i++){

98 point= i + N*j;

99 s[point ]=r[point]-alpha*v[point ];

100 }

101 }
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102 printVector(s,"s",5,N);

103
104 Step 9-11 check error

105 error = norm(s,N);

106 if ( error < tolerance ){// ||s|| small enough

107 for(int j=0;j<N-1;j++){

108 for(int i=0;i<N-1;i++){

109 point= i + N*j;

110 u[point] = u[point] + alpha*p[point ];

111 }

112 }

113 flag =0;

114 if(debug >=1)

115 printf ("||s|| is small\n");

116 return (struct Tuple) {flag ,iter ,error};

117 }

118
119 //Step 13 t=As

120 matrixVectorDirichlet2D(t,s,h,k,N);

121 printVector(t,"t",5,N);

122
123 //Step 14 omega

124 boven =0.0L;

125 beneden =0.0L;

126 for(int j=0;j<N-1;j++){

127 for(int i=0;i<N-1;i++){

128 point= i + N*j;

129 boven +=(t[point ]*s[point ]);

130 beneden +=(t[point]*t[point]);

131 }

132 }

133 omega=boven/beneden;

134 printConstantComplex(omega ," omega",2);

135 if(omega ==0.0){

136 flag=-2;

137 return (struct Tuple) {flag ,iter ,error};

138 }

139
140 //Step 15 u=u+alpha*p+omega*s

141 for(int j=0;j<N-1;j++){

142 for(int i=0;i<N-1;i++){

143 point= i + N*j;

144 u[point]=u[point]+ alpha*p[point ]+omega*s[

point];

145 }

146 }

147 printVector(u,"u",4,N);

148
149 //Step 16 r=s-omega*t

150 for(int j=0;j<N-1;j++){

151 for(int i=0;i<N-1;i++){

152 point= i + N*j;

153 r[point]=s[point]-omega*t[point ];

154 }

155 }
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156 printVector(r,"r",4,N);

157
158 //Step 17-19 check error

159 error=norm(r,N);

160 printConstant(error ," relative error ",2);

161
162 if(error <tolerance){ // ||r

|| small enough

163 flag =0;

164 if(debug >=1)

165 printf ("||r|| is small\n");

166 return (struct Tuple) {flag ,iter ,error};

167 }

168 }

169 free(r);

170 free(s);

171 free(v);

172 free(p);

173 free(t);

174
175 // check if max_it is reached

176 if (iter== max_it +1)

177 flag =1;

178 return (struct Tuple) {flag ,iter -1,error};

179 }

180 #endif
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C Kernel Fast Memory

Listing 7: kernel of fmem.

1 package bi_cgstabdirichlet13;

2
3 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;

4 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;

5 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.Count.

Counter;

6 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.Count.

Params;

7 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.Count.

WrapMode;

8 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.Stream.

OffsetExpr;

9 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.memory.Memory

;

10 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEType;

11 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;

12
13 class Bi_CGSTABDirichlet13Kernel extends Kernel {

14
15 private static final int dataSize = 32401;

16 private static final int indexWidth = 15;

17
18 private static final int counterWidth = 32;

19 private static final DFEType scalarType = dfeUInt(counterWidth);

20 Bi_CGSTABDirichlet13Kernel(KernelParameters parameters ,

21 Bi_CGSTABDirichlet13EngineParameters params ,

22 int nxMax ,

23 int loopLength ,

24 int minStreamLength) {

25 super(parameters);

26 DFEType dataType = params.getFloatingPointType ();

27
28 // scalar inputs

29 DFEVar N = io.scalarInput("N", scalarType);

30 DFEVar N2=N*N;

//N^2

31 DFEVar NU = N.cast(dfeUInt(indexWidth));

//N Unsigned

32 DFEVar N2U = N2.cast(dfeUInt(indexWidth));

//N^2 Unsigned

33 DFEVar alpha = io.scalarInput("alpha", dataType);

34 DFEVar omega = io.scalarInput("omega", dataType);

35 DFEVar rho_old = io.scalarInput("rho_old", dataType);

36 DFEVar rho_new = io.scalarInput("rho_new", dataType);

37 OffsetExpr nx = stream.makeOffsetParam("nx", 4, nxMax);

38 DFEVar h = io.scalarInput("h", dataType);

39 DFEVar k = io.scalarInput("k", dataType);

40 DFEVar sourcePoint = (NU/2-1) *(1+NU);

41
42 //Step 3 calculating beta
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43 DFEVar beta = (rho_new*alpha)/( rho_old*omega);

44
45 //Step 4: p=r+beta*(p-omega*v)

46 Counter step41Counter = count(NU ,constant.var(true),WrapMode.

COUNT_LT_MAX_THEN_WRAP);

47 Counter step42Counter = count(NU ,step41Counter.getWrap (),WrapMode.

STOP_AT_MAX);

48 DFEVar point4 = step41Counter.getCount ()+NU*step42Counter.getCount ();

49 DFEVar step4Bool = step42Counter.getCount () < NU ? constant.var(true)

: constant.var(false);

50 // debug.dfePrintf(step41Counter.getCount () ===0& step42Counter.

getCount ()===0, "Tick %d:\n", step41Counter.getCount ());

51 // step4Bool.simWatch (" step4");

52 DFEVar r = io.input("r", dataType ,step4Bool);

53 DFEVar p = io.input("p", dataType ,step4Bool);

54 DFEVar vIn = io.input("vIn", dataType ,step4Bool);

55 DFEVar pOut = r + beta*(p-omega*vIn);

56 io.output("pOut", pOut , dataType ,step4Bool);

57 Memory <DFEVar > pInput = mem.alloc(dataType , dataSize);

58 Memory <DFEVar > rInput = mem.alloc(dataType , dataSize);

59 pInput.write(point4 , pOut , step4Bool);

60 rInput.write(point4 , r, step4Bool);

61 // pOut.simWatch ("pOut");

62
63 //Step 6 v=Ap

64 DFEVar vOut= MV(pOut ,h,k,nx ,N,step41Counter , step42Counter ,params);

65 io.output("vOut", vOut , dataType ,step4Bool);

66 Memory <DFEVar > vInput = mem.alloc(dataType , dataSize);

67 vInput.write(step41Counter.getCount ()+NU*step42Counter.getCount (),

vOut , step4Bool);

68
69
70 //Step 7 alpha=rho_new/v(sourcepoint)

71 DFEVar setAlpha = step41Counter.getCount ()===(NU/2) -1& step42Counter.

getCount ()===(NU/2) -1;

72 Memory <DFEVar > alpha_new = mem.alloc(dataType , 2);

73 alpha_new.write(constant.var(dfeUInt (1) ,0), rho_new/vOut , setAlpha);

74 DFEVar alphaBool = point4 > sourcePoint - minStreamLength & point4 <=

sourcePoint;

75 io.output("alpha_new",rho_new/vOut ,dataType ,alphaBool);

76
77 //Step 8 s=r-alpha*v

78 Counter step81Counter = count(NU ,~step4Bool ,WrapMode.

COUNT_LT_MAX_THEN_WRAP);

79 Counter step82Counter = count(NU ,step81Counter.getWrap (),WrapMode.

STOP_AT_MAX);

80 DFEVar point8 = step81Counter.getCount ()+NU*step82Counter.getCount ();

81 DFEVar step8Bool = ~step4Bool & step82Counter.getCount () < NU ?

constant.var(true) : constant.var(false);

82 // step8Bool.simWatch (" step8");

83 DFEVar s = rInput.read(point8)- alpha_new.read(constant.var(dfeUInt

(1) ,0))*vInput.read(point8);

84 Memory <DFEVar > sInput = mem.alloc(dataType , dataSize);

85 sInput.write(point8 , s, step8Bool);

86 // s.simWatch ("s");
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87
88 //Step 13 t=As

89 DFEVar tOut= MV(s,h,k,nx ,N,step81Counter , step82Counter ,params);

90 Memory <DFEVar > tInput = mem.alloc(dataType , dataSize);

91 tInput.write(point8 , tOut , step8Bool);

92
93
94 //Step 14 omega= <t,s>/<t,t>

95 Counter step14Counter = count(N2U ,~ step4Bool &~step8Bool ,WrapMode.

STOP_AT_MAX);

96 DFEVar step14Bool = ~step4Bool &~ step8Bool&step14Counter.getCount () <

N2U ? constant.var(true) : constant.var(false);

97 // step14Bool.simWatch (" step14 ");

98 DFEVar sRam = sInput.read(step14Counter.getCount ());

99 DFEVar tRam = tInput.read(step14Counter.getCount ());

100 DFEVar omega_new = summation(tRam*sRam , N2 , step14Counter.getCount ().

cast(dfeUInt(counterWidth)), loopLength ,params)/

101 summation(tRam*tRam , N2, step14Counter.getCount ().cast(dfeUInt(

counterWidth)), loopLength ,params);

102 // omega_new.simWatch (" omega_new ");

103 // debug.dfePrintf(step14Bool&step14Counter.getCount ().cast(

dfeUInt(counterWidth))>= N2 - minStreamLength , "Tick 14: %d: %e\n

", step14Counter.getCount (),omega_new);

104 io.output("omega_new", omega_new , dataType , step14Bool&step14Counter.

getCount ().cast(dfeUInt(counterWidth)) >= N2 - minStreamLength);

105
106
107 //Step 15 u=u+alpha*p+omega*s

108 Counter step15Counter = count(N2U ,~ step4Bool &~ step8Bool &~ step14Bool ,

WrapMode.STOP_AT_MAX);

109 DFEVar step15Bool = ~step4Bool &~ step8Bool &~ step14Bool & step15Counter

.getCount () < N2U ? constant.var(true) : constant.var(false);

110 // step15Bool.simWatch (" step15 ");

111 DFEVar u = io.input("u", dataType ,step15Bool);

112 DFEVar uOut = u+ alpha_new.read(constant.var(dfeUInt (1) ,0))*pInput.

read(step15Counter.getCount ())+omega_new*sInput.read(step15Counter

.getCount ());

113 io.output("uOut", uOut ,dataType ,step15Bool);

114 io.output("uOutCPU", uOut ,dataType ,step15Bool);

115 // uOut.simWatch ("uOut");

116
117
118 //Step 16 r=s-omega*t

119 DFEVar rOut = sInput.read(step15Counter.getCount ())- omega_new*

tInput.read(step15Counter.getCount ());

120 io.output("rOut", rOut ,dataType ,step15Bool);

121 io.output("rOutCPU", rOut ,dataType ,step15Bool);

122 // rOut.simWatch ("rOut");

123
124 //Step rho_new=r(sourcePoint)

125 DFEVar rho_newBool = step15Counter.getCount () > sourcePoint -

minStreamLength & step15Counter.getCount () <= sourcePoint;

126 io.output("rho_newOut",rOut ,dataType ,rho_newBool);

127 }

128 private Counter count(DFEVar size ,DFEVar enable ,WrapMode wrapMode){
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129 Params coeffsCounterParams = control.count.makeParams(indexWidth)

130 .withMax(size)

131 .withEnable(enable)

132 .withWrapMode(wrapMode);

133
134 Counter coeffsCounter = control.count.makeCounter(coeffsCounterParams

);

135 return coeffsCounter;

136 }

137 private DFEVar MV(DFEVar input ,DFEVar h, DFEVar k, OffsetExpr nx ,

DFEVar N, Counter xCounter , Counter yCounter ,

Bi_CGSTABDirichlet13EngineParameters params){

138 DFEType dataType = params.getFloatingPointType ();

139 // elements for sum

140 DFEVar prevX = (xCounter.getCount () >0)?

141 stream.offset(input , -1): constant.var(dataType ,0);

142 DFEVar nextX = (xCounter.getCount ().cast(scalarType)<N-1)?

143 stream.offset(input , 1): constant.var(dataType ,0);

144 DFEVar prevY = (yCounter.getCount () >0)?

145 stream.offset(input , -nx): constant.var(dataType ,0);

146 DFEVar nextY = (yCounter.getCount ().cast(scalarType)<N-1)?

147 stream.offset(input , nx): constant.var(dataType ,0);

148
149 //sum

150 DFEVar sum = (4/(h*h)-(k*k))*input -(1/(h*h))*prevX -(1/(h*h))

151 *nextX -(1/(h*h))*prevY -(1/(h*h))*nextY;//alpha =0

152
153 //For the ghost points

154 DFEVar number1 =xCounter.getCount ().cast(scalarType);

155 DFEVar number2 =yCounter.getCount ().cast(scalarType);

156 DFEVar bool =( number1 ===N-1)|( number2 ===N-1);

157 return (bool?constant.var(dataType , 0):sum);

158
159 // output

160
161 }

162 private DFEVar summation(DFEVar newTerm , DFEVar N, DFEVar termNum ,

int loopLength ,Bi_CGSTABDirichlet13EngineParameters params)

163 {

164 DFEType dataType = params.getFloatingPointType ();

165 DFEVar carriedSum = dataType.newInstance(this); // sourceless stream

166 DFEVar sum = (termNum < loopLength) ? 0.0 : carriedSum;

167 DFEVar newSum = newTerm + sum;

168
169 carriedSum <== stream.offset(newSum , -loopLength);

170
171 DFEVar finalSum = summationTree(newSum , 0, loopLength -1);

172 return finalSum;

173 }

174
175
176 // Recursively produce binary tree of additions. Leaf nodes are

177 // offsets to source stream.

178 private DFEVar summationTree(DFEVar src , int left , int right)

179 {
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180 if (left == right)

181 {

182 return stream.offset(src , -left);

183 }

184 int middle = left + (right - left)/2;

185 return summationTree(src , left , middle) + summationTree(src , middle +

1, right);

186 }

187 }
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