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Data-driven ballast layer degradation identification and 
maintenance decision based on track geometry irregularities
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aInfrastructure Inspection Research Institute, China Academy of Railway Sciences Co., Ltd, Beijing, China; bSchool of 
Civil Engineering, Beijing Jiaotong University, Beijing, China; cFaculty of Civil Engineering and Geosciences, Delft 
University of Technology, Delft, Netherlands

ABSTRACT
Ballast layer defects are the primary cause for rapid track geometry 
degradation. Detecting these defects in real-time during track inspections 
is urgently needed to ensure safe train operations. To achieve this, an 
indicator, the track degradation rate (TDR) was proposed. This rate is 
calculated using track geometry inspection data to locate and predict 
railway-line sections with ballast layer defects. The TDR is determined by 
the monthly standard deviation of the rail longitudinal level, which is one 
aspect of track geometry. The Ballast Layer Health Classification (BLHC) is 
designed by assessing the two successive TDRs before and after track 
geometry maintenance actions. The BLHC is used to categorize the con-
ditions of the ballast layer, including normal periodic deterioration, abrupt 
deterioration, effective maintenance, rising deterioration, and severe 
deterioration. Both the TDR and BLHC were validated through field assess-
ments of ballast layer conditions, where the two indicators were found to 
be effective in revealing defects. The results indicate that the TDR is 
sensitive to ballast layer defects, while the BLHC can quickly identify the 
location of these defects. Consequently, the BLHC can provide real-time 
guidance for ballast layer maintenance.

ARTICLE HISTORY 
Received 4 January 2023  
Revised 16 June 2023  
Accepted 19 June 2023 

KEYWORDS 
Ballast inspection; data 
science; maintenance; ballast 
degradation; track geometry; 
track irregularity

1. Introduction

Ballasted tracks, as one conventional railway infrastructure, can offer significant benefits compared 
to other types of tracks, including low construction costs, rapid construction, and ease of main-
tenance. As such, ballasted tracks are widely used in various types of rail transportation infra-
structure globally [1]. An essential component of ballasted tracks is the ballast layer, which serves to 
secure the sleepers, transfer train loads to the subgrade, and provide some degree of drainage [2,3].

Despite its importance, the ballast layer is also regarded as one of the weakest parts of the track 
structure due to its discrete nature, which often leads to unpredictable defects [4,5]. Research has 
shown that ballast layer undergoes both vertical and lateral deformation when subjected to external 
loads, leading to track instability [6]. In particular, differential settlement of the ballast layer can 
directly impact the alignment of the track geometry (track height in the longitudinal direction), 
posing a serious threat to the safety of train operations [7].
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As trains pass over the tracks, relative motions between ballast particles (also between ballast and 
sleeper) can result in particle abrasion and breakage [8]. The resulting fine particles, also known as 
ballast contamination or fouling, accumulate from the base of the ballast layer to its surface [9]. This 
process is especially problematic at the interface between the ballast and subgrade, where water 
tends to accumulate, leading to the formation of ‘ballast pockets’ that are difficult to inspect and 
maintain [10].

In addition, ballast particle degradation is the principal source of ballast fouling. According 
to a study [11], fouling caused by ballast particle degradation accounts for 70% of the total 
ballast layer fouling. More concerning is that in the interaction of water and fine particles, 
and with the inclusion of subgrade soil, the ballast layer can quickly lose its elasticity and 
permeability [12,13], eventually leading to an undesirable phenomenon, known as mud- 
pumping [14].

These ballast layer and ballast particle degradations not only impair the performance of the 
ballast layer but also contribute to rapid deterioration of other track components due to ballast 
degradation-caused impact loading. For example, this can lead to intensified rail–wheel interaction, 
hanging sleepers and lost fasteners [15,16]. Literature suggests that 50–70% of ballasted track 
defects stem from issues within the ballast layer [11]. This results in not only extremely high 
maintenance costs to restore ballast layer functionality but also impacts the safety of operations and 
passenger comfort.

To elaborate, defects in the ballast layer can reduce the layer’s bearing capacity by 
diminishing its shear strength and overall track elasticity [17,18]. Moreover, a fouled ballast 
layer can lead to issues such as poor drainage (resulting in mud-pumping) and frost heave 
during winter [19,20]. Most notably, uneven deformation, or differential settlement of the 
ballast layer, causes the tracks to endure the impact of train loads, which in turn accelerates 
the development of track geometry irregularity [21]. As train speeds increase, track geometry 
irregularities lead to more intense train–track interaction vibrations, causing track compo-
nents to degrade more rapidly [22].

In order to mitigate the impact of ballast layer defects on the performance of ballasted tracks, the 
rapid detection of these defects and condition-based maintenance are urgently needed. Ballast layer 
inspection methods include manual visual inspection, track inspection vehicles (also known as 
inspection trains), and machine vision-based inspections.

● Manual visual inspection is a traditional method where obvious ballast layer defects, such as 
mud-pumping, are observed. Traditionally, the identification of ballast layer defects involves 
drilling and then sieving the obtained samples. However, this method is both destructive to the 
ballast layer and time-consuming.

● Machine vision-based inspection is a current area of intense research. Technologies used 
include ground penetrating radar (GPR), LiDAR, and InSAR [23–27]. While these methods 
have been used to identify ballast fouling, analysing the resultant image data is very time- 
consuming and requires experienced experts.

● Track inspection trains primarily measure track geometry, rail wear, and similar track condi-
tion indicators. However, they have not yet been successful in truly identifying the root cause 
of these track defects, particularly those arising from ballast layer defects [24].

Addressing these limitations, the proposed track geometry-based method is faster than both 
manual and machine vision inspections, as it can process data more rapidly, in real-time 
identifying the locations with ballast layer defects. Additionally, track inspection trains can 
initially locate the sections of railway lines with ballast layer defects, and then ground- 
penetrating radar (GPR) can be used to accurately analyse the cause of these defects (water 
content, layer thickness, mud-pumping, etc.).
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Several studies have been conducted on analysing track geometry data. Below are some repre-
sentative studies, with more relevant ones being available in [28–30].

● In [31], researchers measured the long-term track geometry and track stiffness of a heavy haul 
railway line. They confirmed the relationship between track stiffness and track geometry 
degradation rates.

● The study outlined in [32] shows that ballast layer settlement has an approximately positive 
relationship with track geometry irregularities. The influence of ballast layer deformation on 
track geometry irregularities becomes increasingly decisive with the prolonged service duration.

● Studies in [33,34] suggest that track geometry irregularities exhibit a linear deterioration trend 
between two adjacent maintenance actions. The progression of track geometry was predicted 
using linear regression models.

● In [35], an artificial neural network was used to predict the track geometry degradation rate. 
The study found a strong correlation between ballast layer degradation and the track geometry 
degradation rate.

The aforementioned studies suggest that the condition of the ballast layer (including defects and 
performance) can be strongly correlated with track geometry. However, very few studies have been 
conducted on locating ballast layer defects or conditions using track geometry data (e.g., data from 
inspection trains). The track geometry inspection train used in this study is shown in Figure 1.

Figure 1. Inspection train of China academy of railway sciences.
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Therefore, this study concentrates on establishing a correlation between ballast layer defects 
and track geometry data. Furthermore, we validate this methodology by comparing the track 
geometry results with Ground Penetrating Radar (GPR) results and field observations. The 
primary contribution of this paper lies in the development of this methodology, which serves as 
our motivation.

In essence, with the development and application of mobile track inspection equipment 
(comprehensive inspection train), large amounts of track geometry data have been collected. 
This paper aims to leverage this data to identify railway-line sections with ballast layer 
defects, thereby providing a scientific basis for track maintenance. Specifically, we analysed 
consecutive track irregularity inspection data for a railway line section to derive the law of 
track geometry irregularity development. Based on this law, we used the track geometry 
deterioration rate to calculate a new indicator, the Track Degradation Rate (TDR), which 
can identify and predict ballast layer defects. The Ballast Layer Health Classification 
(BLHC) is derived based on TDR feature analysis, which is used to categorize the condi-
tions of the ballast layer.

The results of this study can promptly identify, locate, and predict sections with ballast layer 
defects, thereby informing timely maintenance measures (such as tamping and renewal of the 
ballast layer) to prevent further deterioration. This can prolong the service life of the ballast layer 
and, consequently, the overall ballasted track. In conclusion, this study can provide technical 
support for the scientifically sound and economically efficient maintenance of ballasted tracks. 
The structure of this study is depicted in Figure 2.

2. TRrate (TDR) indicator

In this section, we will explain the reasoning behind choosing the longitudinal level (one index for 
track geometry). Subsequently, we will introduce the method for processing longitudinal level data. 
Finally, using the processed longitudinal level data, we will provide the method for calculating the 
Track Degradation Rate (TDR).

Figure 2. Structure of this paper: methodology and validation.
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2.1. Track irregularity index selection

2.1.1. Track geometry irregularity calculation method
The objective of the method developed is to establish correlations between track geometry irregu-
larities and ballast layer conditions. The first step in the method is identifying the most suitable 
index (presenting track geometry irregularity) to reflect ballast layer defects.

The track geometry data used in this paper was obtained from an inspection train developed by 
the China Academy of Railway Sciences (as depicted in Figure 1). This inspection train can measure 
various track geometry data used to calculate the Track Quality Index (TQI) and monitor train– 
track interactions.

We chose the longitudinal level, one type of track geometry, for calculating the track degrada-
tion rate (TDR). Also, the railway-line section length used for calculating the longitudinal level is 
less than 42 metres, as it has a good correlation with ballast layer conditions. Specifically, track 
geometry irregularity exhibits randomness because it arises from the superposition of simple 
harmonics at various frequencies and different phase angles. The formation and development of 
track irregularities are the results of these harmonics. The long-wave composition (longer than 42 
metres) is primarily due to the deformation of the subgrade and foundation [36]. In contrast, the 
medium-short wave composition (shorter than 42 metres) arises from the deformation of the 
ballast layer.

Track quality evaluation is primarily based on a combination of two methods: local spot 
observation and railway-line section assessment. According to the European standard, track 
geometry irregularities include alignment, track gauge, longitudinal level, cross level, and twist 
[37]. Similarly, the Track Quality Index (TQI) is the standard indicator used in China’s railways for 
evaluating overall track geometry quality. The TQI is calculated based on seven factors: longitudinal 
level (left rail and right rail), alignment (left rail and right rail), track gauge, cross level, and twist, as 
per Equations 1–4. 
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1
n

Xn

j¼1
xij (1) 
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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TQI ¼
X7

i¼1
σi (4) 

In the Equations, xij is the measured track irregularity value (TQI factors) at the j-th sampling point 
of the i-th TQI factor; �xi is the arithmetic mean of the i-th TQI factor; σi is the SD of the i-th TQI 
factor; n is the number of sampling points.

The standard deviation (SD) of each TQI factor reflects the dispersion degree of track 
irregularity within one line section. To accurately reflect the SD trends and precisely locate 
track geometry irregularities, the SD data are modified, and the effects can be found in 
Figure 3.
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The SD is calculated for every 200 m length section. However, the SD sequence can omit some 
high amplitude values and may not accurately pinpoint the variations along the railway line (see 
Figure 3, traditional data). To more accurately locate track geometry irregularities, it is necessary to 
increase the sampling frequency. In this paper, we used a 20 m resampling rate. This means that 
every 20 m length section is used to calculate the SD of track irregularity, which can reflect SD 
trends more accurately and identify track irregularity sections with more precision (see Figure 3, 
modified data).

2.1.2. Correlation between track irregularity indices and ballast layer condition
According to field experiences, a poor ballast layer condition often correlates with poor track 
geometry, and the track is more likely to have a high Track Quality Index (TQI). Tracks with poor 
ballast layers require frequent tamping and stabilization and deteriorate at a relatively rapid 
rate [38].

The thickness of the clean ballast layer is a sensitive indicator reflecting the condition of 
the ballast layer [23]. This is because under cyclic loading, the ballast layer becomes fouled by 
various types of contamination. These contaminations accumulate at the base of the ballast 
layer, dividing it into clean and fouled layers [4]. The fouled ballast layer experiences an 
increase in cumulative deformation (settlement) [39], while a thick clean ballast layer provides 
sufficient elasticity and stability [40,41]. The thicknesses of the clean and dirty layers can be 
detected using ground penetrating radar. This inspection method was validated in our earlier 
study [42].

To obtain a statistical correlation between the TQI factors and the thickness of the clean ballast 
layer, we compared the inspection results of a railway line section using a scatter plot (Figure 4). 
Each point in the scatter plot represents the measured data in the same section. From the graph at 
row 4, columns 2 (Figure 4), it can be seen that the thickness of the clean layer shows a negative 
correlation with the longitudinal level, while there is no obvious correlation with other TQI 
factors.

Next, the Pearson correlation coefficient is used to analyse and quantify the correlation between 
the TQI factors (standard deviations) and the thickness of the clean ballast layer. The Pearson 
correlation coefficient is calculated as shown in Equation 5, and its resulting value ranges from −1 to 

62 64 66 68

0.5
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1.5

2.0

2.5
)

m
m(

D
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 Traditional data
 Modified data

Modified 1.81
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Figure 3. SD trends of longitudinal level as an example of all track quality index factors.
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1. A negative value indicates a negative correlation between the two variables, while a positive value 
indicates a positive correlation. The larger the absolute value, the stronger the linear correlation. 

ρX;Y ¼
E X � �Xð Þ Y � �Yð Þ½ �

σXσY
(5) 

In the equation, E is the expected value; X and X are the variables; �X and �Y are the mean values of 
the two variables; σX and σY are the standard deviations of the two variables.

Figure 4. Correlation between TQI factors and thickness of clean ballast layer.

Table 1. Pearson correlation coefficient between TQI factors and thickness of clean ballast layer.

TQI Longitudinal level Alignment Track gauge Cross level Twist Thickness of clean layer

TQI 1.00 0.38 0.74 0.67 0.69 0.53 −0.29
Longitudinal level 0.38 1.00 −0.26 −0.24 0.68 0.64 −0.68
Alignment 0.74 −0.26 1.00 0.84 0.25 −0.04 0.12
Track gauge 0.67 −0.24 0.84 1.00 0.06 −0.11 0.05
Cross level 0.69 0.68 0.25 0.06 1.00 0.62 −0.35
Twist 0.53 0.64 −0.04 −0.11 0.62 1.00 −0.46
Thickness of clean layer −0.29 −0.68 0.12 0.05 −0.35 −0.46 1.00

INTERNATIONAL JOURNAL OF RAIL TRANSPORTATION 7



Table 1 presents the Pearson correlation coefficient between TQI factors and the thick-
ness of the clean ballast layer. It reveals that the correlation coefficient between the 
thickness of the clean ballast layer and the longitudinal SD is −0.68, which has the largest 
absolute value. This implies a relatively strong negative correlation between these two 
factors, while correlations with other factors are not as strong. Therefore, subsequent 
research in this paper primarily utilizes the longitudinal level to investigate its application 
in ballast layer inspection.

2.2. TDR calculation method

The indicator TDR is calculated using the standard deviation (SD) of the longitudinal level 
(vertical track irregularity) in a time series. The rationale behind choosing the track longitudinal 
level for TDR calculation was explained in Section 2.1. Track geometry data was collected by the 
Chinese comprehensive inspection train, which completes inspections twice a month. This 
enables the collection of long-term track geometry irregularity inspection data for the same 
section.

The change rate of the SD value of the longitudinal level is calculated as the indicator TDR 
(Equation 6), because the SD value of the longitudinal level increases with the deterioration of track 
geometry. Since the monthly inspection times were not fixed and each of the periods between two 
inspection times varied, to accurately calculate the indicator, monthly units were used, expressed as 
(mm/month). 

TDR ¼

Pns

q¼1
tq � �t
� �

sq � �s
� �

Pns

q¼1
tq � �t
� �2

� 30 (6) 

In Equation 6, ns is the number of inspection data between two adjacent maintenance actions 
(details about the inspection data processing can be found in Section 2.3); tq is the test date; sq is the 
longitudinal level deviation values of the corresponding date; �tand �s are the mean values of tq and sq.

2.3. Longitudinal level data processing method

The longitudinal level data used for calculating TDR underwent two steps of processing, specifically 
data pre-processing and data segmentation, which are explained in this section. Notably, the 
longitudinal level data in this section is in a time series, which differs from the longitudinal data 
in the last section (in mileage series).

● The original inspected longitudinal level values are susceptible to interference from factors 
such as weather and equipment, so the outliers must first be removed.

● The back propagation (BP) method for the segmentation of time series is proposed and 
explained.

2.3.1. Data pre-processing
During the inspection of track geometry irregularities using an inspection train (under dynamic 
conditions), outliers may occur in the longitudinal level data (time series). Outliers appear as 
a significant deviation of the current test result from the results of adjacent tests, as shown in 
Figure 5a.

The median filtering method was applied to reduce the impact of these outliers on the long-
itudinal level data. Specifically, in an array of time series with multiple consecutive longitudinal 
levels for one railway-line section, a sliding window of size k is set. The size k means that the sample 
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size in the window is k. The value for k was chosen as 5. This choice was made because k can be set 
as 3, 5, 7. . . and after multiple trials, it was found that data outliers are easily filtered out with a value 
of k = 5.

The window is slid from left to right in the array of time series, calculating the median of the 
k consecutive data in each window. When there is an outlier in the original sequence, the 
outlier shows a significant deviation from the median of the k consecutive data. Through this 
process, the outliers within this window are eventually identified and removed by setting 
a deviation threshold value. That is, if the deviation between a longitudinal level value and 
the median of the k consecutive data is larger than the threshold value, then this longitudinal 
level value is removed.

The threshold value was determined through probabilistic cumulative statistics on the change in 
longitudinal level of one railway line for two adjacent times, as shown in Figure 5b. From the figure, 
it can be seen that 95% of longitudinal level SD changes are smaller than 0.52 mm, so the threshold 
value was set as 0.5 mm.
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Figure 5. Data pre-processing method for longitudinal level SD: (a) Comparison of longitudinal level SD before and after median 
filtering method, (b) Change of two adjacent longitudinal level SDs in time series.
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2.3.2. Data segmentation
Data segmentation points (time series) of the longitudinal level are not fixed, which can cause 
traditional data segmentation methods to be inaccurate. A new segmentation method was devel-
oped to process data with different time series. This method is known as the back propagation 
segmentation method (BP method).

Over a period of time, track geometry irregularity can exceed the maintenance standard limits. 
After track geometry maintenance procedures, such as tamping and stabilization are performed, the 
track geometry immediately experiences a rapid change, followed by a slower, more gradual change 
(Figure 5a serves as an example). 

f ðtÞ ¼ a1t þ b1 t< t0
a2t þ b2 t � t0

�

(7) 

In the equation, t is the variable, time; a1, a2, b1 and b2 are linear regression coefficients. 
Traditionally, Equation 7 shows the date segmentation of the longitudinal level SD in time series 
requires, which treats the duration the same value separated by the date segmentation points, t0.

While the intervals between two inspections may not always be consistent, the back-propagation 
(BP) method has been designed to handle this variance. This allows for the batch processing of date 
segmentation across different railway-line sections, creating efficiency and uniformity in the 
analysis process. The detailed steps of the BP method are illustrated in the flowchart shown in 
Figure 6.
The specific steps are introduced as follows:

Step 1. Each segment comprises left endpoints (LE) and right endpoints (RE). The goal of date 
segmentation in a time series is to identify the set of LE and RE. The set of all extreme points (E) in 
the entire time series is first established, thus creating subsets E, LE, and RE. The first element in set 
E is designated as the left endpoint L.

Figure 6. Flow chart of BP method for date segmentation of longitudinal level SD in time series.
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Step 2. The right endpoint (R) is determined based on certain segmentation conditions, which 
include amplitude limits and time length limits among others. If R is empty, the next extreme point 
in set E is designated as the new left endpoint, and Step 2 is repeated until R becomes non-empty.

Step 3. The largest element in set R is assigned as the right endpoint. An extreme point is then 
found whose detection time is earlier than the right endpoint, whose amplitude is lower than the 
right endpoint, and whose segment length satisfies certain conditions. This extreme point becomes 
the new left endpoint. The sets LE and RE are updated accordingly. The extreme point following the 
right endpoint of this segment is selected as the next left endpoint, and the left endpoint is updated.

Step 4. Repeat Steps 2 and 3.
Step 5. To precisely locate each endpoint, the algorithm determines whether each element in the 

set of left endpoints (LE) and the set of right endpoints (RE) is an extreme value point. LE and RE 
are then updated based on this information.

3. Ballast layer health classification using TDR

3.1. TDR feature extraction

Several mixed passenger and freight railway lines (operating at speeds of 160–200 km/h) were 
chosen for this study, incorporating total track geometry data of a railway-line length of 2150 km. 
This equates to 10,500 effective railway-line sections. The track geometry irregularity data were 
collected by comprehensive inspection trains between January 2015 and September 2019, which 
were then used to extract the TDR features.

Figure 7 provides two examples of the TDR. It can be observed that the longitudinal level SD 
experiences periodic changes under the influence of maintenance operations.

Maintenance divides the data into separate cycles. Furthermore, within each cycle, the long-
itudinal level SD tends to increase in an approximately linear manner. It is worth noting that the 
TDR can be viewed as the slope of the SD of the longitudinal level within each cycle. The TDR 
values vary between cycles.

The study discovered that a sudden change in TDR between two adjacent cycles could indicate 
rapid degradation of the ballast layer. On this basis, we have defined the TDR feature as the 
difference between two consecutive TDRs.

Figure 8 depicts five typical TDR features, with each ‘P’ representing one feature and ‘t’ 
representing the inspection date. Five TDR features are proposed. It should be noted that these 
five TDR features have already been utilized and validated by field measurements and vision 
inspections (Section 4).

The principle behind using the TDR features to locate the railway-line section with ballast layer 
defects involves observing the change of TDRs in two adjacent cycles. For instance, if the line shape 
of the longitudinal level SD for one railway-line section resembles P1, it suggests that the ballast in 
this railway-line section is in good condition. P1 can also refer to the data from December 2014 to 
December 2016 in Figure 7a.

P1: TDRs in two adjacent cycles exhibit minor changes.
P2: The TDR suddenly increases on a specific date.
P3: Following maintenance, the TDR becomes smaller than the TDR in the previous cycle.
P4: The longitudinal level SD continues to increase after maintenance, and the TDR undergoes 

little change.
P5: The TDR is significantly larger than other cycles, as well as TDRs in other adjacent railway- 

line sections.

Based on the TDR features, we propose the Ballast Layer Health Classification (BLHC), which can 
quickly identify railway-line sections with defects or impending defects. As depicted in Table 2, 
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a classification of C = 2 and C = 5 indicates that the ballast layer is likely to develop defects in the 
near future.

In the following sections, we’ll explain why we chose the magnitude of TDR as the indicator for 
possible ballast layer defects. More specifically, for example, we’ll address why ‘TDR exceeds 0.1  
mm/month’ is considered a significant value for BLHC (as shown in Table 2). In summary, we 
extracted the TDR features by processing the TDR data of 5000 railway-line sections and then 
analysed the distribution pattern (probability density distribution) of these data to finally establish 
the BLHC criteria.

3.2. TDR feature distribution pattern

Because the C = 2 and C = 5 are the indicators, predicting possible ballast layer defects, for which 
how the TDR value thresholds were chosen is explained.

3.2.1. Feature analysis for obtaining classification 5 (C = 5)
Through the track geometry data of 5000 different railway-line sections, diverse TDRs were 
obtained. To guarantee the diversity of the TDRs, operating lines under various field conditions 
were selected to capture all kinds of TDRs. These TDRs were suitable for obtaining the distribution 
pattern of the TDRs. Based on the distribution pattern of the TDRs, the BLHC can be made more 
reliable and applicable for ballast layer health monitoring.
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Figure 7. Two examples of longitudinal level SD to feature TDR: (a) Railway line section #1, (b) Railway line section #2.
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The probability density of the TDRs was fitted with a lognormal distribution function, and the 
fitting formula is given in Equation 8 [43]. The goodness-of-fit R2 is used to evaluate the efficacy of 
the fit, as shown in Equation 9 [44].  

f ðTDR; μTDR; σTDRÞ ¼ c0 þ
A

ffiffiffiffiffi
2π
p

TDRσTDR
e
�
ðln TDR� μTDRÞ

2

2σ2
TDR (8) 

R2 ¼

PB

i¼1
ðPÔDi � P�ODÞ2

PB

i¼1
ðPODi � P�ODÞ2

(9) 

t0 t2 t4 t6 t8 t10 t12
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P1

T2

P3

T1

P4

P2

)
m

m(
D

SlevellanidutignoL

Inspection date

 Same TDR
 Increased TDR
 Reduced TDR
 Same TDR
 Distinguished TDR

Maintenance
P5

Figure 8. Illustration of five typical TDR features.

Table 2. Ballast layer health classification using TDR features.

Classification Name TDR features
Railway line health 

condition

C=1 Normal periodic 
deterioration

No significant changes in TDR gradient compared to the previous 
cycle, and the TDR value is relatively small

Line quality in good 
condition

C=2 Abrupt 
deterioration

The TDR gradient has changed abruptly compared to the previous 
TDR gradient, and the difference exceeds 0.05 mm/month

Possible upcoming 
defects

C=3 Effective 
maintenance

After maintenance, the TDR gradient becomes smaller and the TDR 
values are small.

Line quality in good 
condition

C=4 Deterioration 
rising

A continuous or fluctuating rise in TDR value, 0<TDR<0.1 Ballast layer 
continues on 
degradation

C=5 Severe 
deterioration

In the same degradation cycle, the TDR gradient of this section is 
much greater than the TDR gradient of adjacent cycles as well as 
gradient of other adjacent sections and the TDR exceeds 
0.1 mm/month.

Possible upcoming 
defects
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In the equation, c0 and A are two constants; μTDR μTDRand σTDR are the mean and SD of the 
logarithm of the variable, respectively; PODi is the actual probability density; P�OD is the mean 
probability density; PÔDi is the fitted probability density; R2 is the goodness of fit.

The results of the TDR probability density distribution are shown in Figure 9, indicating that the 
TDR primarily ranges between 0.02 and 0.08 mm/month. The goodness-of-fit R2 is 0.997, demon-
strating clear log-normal distribution characteristics. The specific fitting parameters are presented 
in Table 3.

The TDR values outside the normal range require attention because, based on maintenance 
experience with railway lines, locations with abnormal TDRs have a higher likelihood of defect 
occurrence. The normal range of the TDR was ultimately set between 0 and 0.1 mm/month. 
Initially, using a 90% confidence interval, the normal range of the TDR was calculated to be 
between 0 and 0.13 mm/month. However, considering that the quality of the ballast layer varies 
across different lines, causing variations in TDR values, the range was adjusted to 0–0.1 mm/ 
month to avoid overlooking sections with potential ballast layer defects. In other words, any 
sections with a TDR exceeding 0.1 mm/month should be monitored more closely for potential 
degradation.

3.2.2. Feature analysis for obtaining classification 2 (C = 2)
The Classification 2 (C = 2) was obtained by measuring the changes in TDR during different 
degradation cycles for the same section. Dispersion indicators were used for quantitative analysis. 
As demonstrated in Figure 7a,b the mean values of the TDR in different sections vary, making direct 
comparisons of their standard deviations (SDs) impractical. As such, the Coefficient of Variation 
(CV) was employed to compare the changes in TDR across different degradation cycles for the same 
section [45]. The CV is the ratio of the SD to the mean, which can eliminate the influence of 
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Figure 9. Statistical graph of TDR.

Table 3. Parameters for fitting distribution of TDR.

Parameter c0 A μTDR σTDR R2

Fitted value 0.027 1.98 0.051 0.769 0.997
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different mean values on the comparison of multiple degrees of variation. A low CV value indicates 
low dispersion, as shown in Equation 10. In this equation, σ represents the SD and µ represents the 
mean value. 

CV ¼
σ
μ
� 100% (10) 

The CVs for the TDR of each railway-line section were computed for statistical analysis and are 
illustrated in Figure 10. The median CV displayed in the graph is 28%, and half of the CVs in the 
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Figure 10. Coefficient of variation for TDR.
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Figure 11. Statistical graph of the TDR difference in each adjacent two degradation cycles.

Table 4. Parameters for fitting distribution of TDR change.

Parameter μΔTDR σΔTDR R2

Fitted value 0 0.028 0.986
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sample fall between 21% and 38%. This suggests that the dispersion in the TDR across the railway- 
line sections is relatively uniform and minor.

The TDR for the same railway section displays minor dispersion, yet there still exists 
a certain difference in the TDR of adjacent degradation cycles. For a quantitative analysis of 
the TDRs in two consecutive degradation cycles, data from 5000 railway-line sections (span-
ning two adjacent degradation cycles) were statistically analysed. The results, presented in 
Figure 11, demonstrate that the differences in TDR across each pair of adjacent cycles follow 
a normal distribution.

The fitting formula is provided in Equation 11 [46], with the parameters for the normal 
distribution given in Table 4. The goodness-of-fit R2 reached 0.986, indicating that the 
assumption of a normal distribution is valid. This suggests that the variability of the TDR 
change follows a normal distribution. According to the cumulative percentage of TDR change, 
the maximum value of the TDR change under a 90% confidence interval is calculated to be 
0.05 mm/month. 

f ðμΔTDR; σΔTDRÞ ¼
A

ffiffiffiffiffi
2π
p

σΔTDR
e
�
ðΔTDR� μΔTDRÞ

2

2σ2
ΔTDR (11) 

4. Field validation for TDR and BLHC

4.1. Correlation of TDR and ballast layer fouling index

Earlier studies have demonstrated that the scattering characteristics of Ground Penetrating Radar 
(GPR) waves can be used to ascertain the porous structure of ballast layers. It has been proven that 
there is a strong correlation between the GPR-based fouling index (calculated based on radar 
detection data) and the actual fouling level of the ballast layer [4,23,47]. This suggests that GPR can 
effectively reflect the health condition of the ballast layer.

In this study, we employed GPR inspection data of the ballast layer to validate the TDR. The GPR 
inspection methodology and signal processing means can be found in the authors’ previous 
publications [4,47]. We compared the GPR-based fouling index with the TDR, as shown in 
Figure 12.
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Figure 12. Correlation between TDR and GPR-based fouling index.
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From the figure, it is evident that sections with high TDR values also exhibit a high fouling level 
(as inspected by GPR). In nearly all cases, a ballast layer with high fouling levels also shows severe 
ballast degradation. Furthermore, fouled ballast layers usually lead to rapid track irregularity 
degradation. Therefore, when the TDR value is high, the track can be identified as requiring 
maintenance. Ultimately, combining these two types of ballast layer inspection methods (GPR 
and inspection train) provides a more precise method for ballast layer health inspection and 
monitoring.

Upon identifying this correlation, further validations were carried out in field tests, as 
depicted in Figure 13. Specifically, a 2 km railway line section (section mileage: K36 + 600 – 
K38 + 600) was selected for the case study. The TDR, GPR fouling index, and field ballast 
layer condition (ascertained by digging a hole) for the same section were compared, as 
shown in Figure 13. In the GPR detection figure, the black colour indicates a high fouling 
level.

From the figure, it can be observed that the section near K36 + 800 has a low ballast layer fouling 
level, while the section from K38 + 200 to K38 + 400 has a high ballast layer fouling level. 
Accordingly, the TDR values in these sections correlate with the fouling level (K36 + 800: low 
TDR; K38 + 200 - K38 + 400: high TDR).

Figure 13. GPR-based fouling index, field conditions and TDR.
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Figure 14. Longitudinal level SD of section near K106+300.
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4.2. Ballast layer health classification validation

In the first case study, the railway-line section near K106 + 300 was selected due to suspicion of 
a ballast layer defect, as its BLHC was rated as C = 5. The longitudinal level SD and corresponding 
TDR values are shown in Figure 14. The following explanations are provided, with further details on 
the BLHC found in Table 2. For C = 5: the TDR measures 0.213 and 0.195 mm/month, both of 
which exceed the threshold value of 0.1 mm/month.

The inspected raw longitudinal level data (obtained from the inspection train) of the section 
K106 + 200 - K106 + 400 was examined (see Figure 15a), which shows a significant increase in the 
longitudinal level value along with the inspection date. This validates the sensitivity and accuracy of 
the TDR. Moreover, the application of TDR was corroborated by the distinct mud-pumping 
phenomenon evident in this section (see Figure 15b).

In the second case study, the railway-line section near K17 + 700 was analysed due to the 
suspected ballast layer defects with a BLHC of C = 5. The longitudinal level SD and TDR of the 
section near K17 + 700 are shown in Figure 16a. It is evident from the figure that the TDR surpassed 
the threshold value of 0.1 mm/month and is notably higher than the TDR values of the two adjacent 
sections (Figure 16b/c).
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Figure 15. Ballast layer condition of railway line section near K106.300: (a) Raw longitudinal level data of section near K106.300, 
(b) Ballast layer condition (mud-pumping, high fouling level).
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Based on the longitudinal level and TDR results, the railway-line section at L17 + 700 was 
inspected in the field. The condition of the ballast layer is shown in Figure 17. It is evident that 
the ballast particles have undergone significant crushing, resulting in a detrimental impact on the 
bearing capacity of the ballast layer and the ride comfort of the track. Consequently, it is recom-
mended to renew the ballast layer in this section.

From Figures 16 and 17, it is evident that the TDR values in railway sections with ballast layer 
defects exhibit significant changes, whereas in the neighbouring sections without defects, the TDR 
changes are relatively small and stable. This observation underscores the effectiveness of using TDR 
as a tool for identifying ballast layer defects.
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Figure 16. Longitudinal level SD and TDR of railway line section near K17+700: (a) Longitudinal level and TDR of railway line 
section at K17+700, (b) Longitudinal level and TDR of railway line section at K17+500, (c) Longitudinal level and TDR of railway 
line section at K18+000.
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5. Conclusions

In this study, a new method called the back propagation segmentation method was proposed to 
process track geometry data and establish a new indicator called the track degradation rate (TDR) 
for identifying ballast layer defects. The TDR was calculated based on the track geometry irregu-
larity represented by the longitudinal level standard deviation (SD), and statistical analysis was 
performed on 5000 railway-line sections to evaluate the condition of the ballast layer through 
the TDR.

The main conclusions of this study are as follows:

(1) There is a relationship between track geometry irregularity and the ballast layer condition, 
particularly a significant negative correlation between the longitudinal level SD and the 
thickness of the clean ballast layer.

(2) The longitudinal level exhibits a periodic deterioration trend, and the trend is approximately 
linear within the same period/cycle. The TDR variation coefficient is generally within 30%. 
The maximum TDR value within the 90% confidence interval is 0.1 mm/month, and the 
maximum TDR change compared to adjacent periods is 0.05 mm/month.

(3) Based on the characteristics of TDR changes, the ballast layer conditions are classified into 
five classes: normal periodic deterioration, abrupt deterioration, effective maintenance, 
deterioration rising, and severe deterioration. The classification was validated by reviewing 
railway-line sections with severe deterioration.

The comparison between the TDR-BHLC evaluation and field measurements demonstrates that 
this method can effectively identify sections with serious ballast layer deterioration. These 
findings contribute to the understanding and assessment of ballast layer conditions in railway 
tracks.

The TDR and BLHC indicators proposed in this study have the potential to facilitate the health 
monitoring and evaluation of ballast layers, providing valuable support for maintenance decisions 
in ballasted tracks. The next steps in this research will focus on refining the evaluation method to 
enhance its accuracy and reliability. This refinement process will involve incorporating specific field 
maintenance practices and historical data to further improve the effectiveness of the evaluation.

Furthermore, the BLHC classification can efficiently identify the locations of ballast layer 
defects. This information can be combined with ground penetrating radar (GPR) inspections to 

Figure 17. Ballast layer in the field at railway line section K17+700.
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analyse the underlying reasons for these defects. Ongoing research is underway to establish 
correlations between the ballast layer fouling index, TDR values, and GPR inspection results. By 
integrating these different inspection techniques, a comprehensive understanding of the ballast 
layer condition can be achieved, enabling more informed decision-making and targeted main-
tenance strategies.
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