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Using passenger flows to determine key interchange 
connections for public transport synchronization 
 
 
Menno Yap · Ding Luo · Oded Cats 
 
 
 
 
Abstract For large urban networks and hubs, optimizing transfer synchronization 
becomes computationally challenging. The objective of this paper is therefore to 
develop a generic, data-driven methodology to determine the key line/direction-
combinations to synchronize based on passenger flows. We developed an approach 
to detect communities of directional lines based on passenger transfer flows, by 
calculating modularity using a C-space inspired network representation. Our results 
show intuitive clusters to prioritize for synchronization on a network level for 
tactical planning, and on the hub level for real-time coordination. 
 
Keywords: Clustering · Hubs · Passenger flow · Synchronization · Transfers  
 
 
1 Introduction 
 
Transfers are an inevitable part of public transport journeys, since it is not 
economically viable to directly connect all origin-destination pairs in a network. 
Empirical studies however show that transfers are perceived as one of the most 
negative components in the public transport journey (e.g. Schakenbos et al., 2016; 
Van Oort et al., 2016). Therefore, several studies focus on improving the transfer 
experience at hubs, for example by transfer synchronization (e.g. Goverde, 1998) or 
by improving the waiting experience (e.g. Van Hagen and Sauren, 2013). 



 
 

 

Although optimizing transfer synchronization has been studied by several 
researchers, there are limits in terms of scalability and complexity for optimizing 
synchronization for both tactical planning and real-time operations. For example, 
Lee et al. (2014) consider the impact of synchronizing two lines during tactical 
planning on service reliability, whereas Gavriilidou et al. (2016) study real-time 
synchronization of two tram lines based on passenger data. Nesheli and Ceder 
(2014) compare the effects of different control tactics on optimal synchronization, 
applied to a case study network of three bus lines with two transfer locations. 
However, for large, real-world urban public transport networks with multiple lines 
and transfer locations, optimizing transfer synchronization becomes mathematically 
expensive, if not infeasible. Optimizing transfer synchronization is considered NP-
hard due to the combinatorial nature of the problem (Desaulniers and Hickman 
2007). For practical problems in larger real-world PT networks, computation time 
for solving this problem can rise substantially, making it infeasible to solve. A hub 
with |𝑙𝑙| lines provides (2 ∗ |𝑙𝑙|) ∗ (2 ∗ |𝑙𝑙| − 2) transfer possibilities, excluding 
transfers to the same line in either direction. Thus, a hub with 15 lines already 
provides 840 transfer possibilities, which makes optimizing real-time coordination 
between all lines simultaneously computationally challenging. Enumerating all 
transfer possibilities for the urban metro, tram and bus lines of a large and high-
density real-world network such as London (Figure 1) would make a network-wide 
optimization of the synchronization of all transfer possibilities infeasible within 
reasonable computation times. 
 

 
Fig. 1 Illustration transfer possibilities for the London public transport network  

(Map memomaps.de CC-BY-SA, map data Openstreetmap ODbL) 
 
Our research objective is therefore to develop a generic, data-driven methodology to 
determine the most important line connections based on passenger flow data, in 
order to select key line/direction-combinations to synchronize on a network level for 
tactical planning and specifically for a hub for real-time coordination. We detect 
communities of lines with strong transfer relations by applying modularity to a 
public transport network or hub using a C-space inspired representation. 



 
 

 

2 Methodology 
 
In this section our methodology is explained. First, the inference of transfer flow 
data is explained (2.1), after which the C-space network representation is addressed 
(2.2) to which modularity is applied to identify line communities to synchronize 
(2.3). 
 
2.1 Passenger transfer flow input 
 
As input we use passenger transfer flows obtained from Automated Fare Collection 
(AFC) systems for the AM peak and PM peak respectively, in order to investigate 
whether different key interchange connections exist for different time periods. Table 
1 provides the format of the AFC data, where each row represents a separate AFC 
transaction. Only AFC transactions of morning and evening peaks without 
disruptions are included in our dataset, to make sure that synchronization priorities 
are determined based on regular passenger flow distribution patterns. Each AFC 
transaction represents a passenger journey leg. To determine whether a passenger 
alighting is considered a transfer or final destination, we apply the transfer inference 
algorithm detailed in Yap et al. (2017), which is an extension of the algorithm 
developed by Gordon et al. (2013). This results in a transfer flow matrix with the 
number of transferring passengers between each line/direction combination for the 
AM and PM peak period. This matrix is obtained for the whole urban public 
transport network considered for tactical planning purposes, as well as for a specific 
hub for real-time synchronization purposes.  
 

Table 1 Illustration format AFC data 
Tap-in  

date and time 
Tap-in 

stop 
Tap-

in line 
Tap-out  

date and time 
Tap-out 

stop 
Trip-

ID 
Vehicle ID Smart-card 

ID 
4-3-2018  
11:42:37 

35309 6 4-3-2018 
12:03:19 

34997 3423 3050 81675688 

4-3-2018  
12:15:57 

30091 18 4-3-2018 
12:23:04 

32857 6545 187 81675688 

 
2.2 Network representation in C-space 
 
Inspired by the public transport C-space representation where individual lines are 
represented as nodes and are connected (via a link) only if they share common 
transfer stops, the transfer topology is represented as a directed graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸). 
Each node 𝑣𝑣 ∈ 𝑉𝑉 corresponds to a public transport line 𝑙𝑙 ∈ 𝐿𝐿 in a certain direction, 
whereas each link 𝑒𝑒 ∈ 𝐸𝐸 represents an observed transfer possibility between two 
lines. An illustration is presented in Figure 2. Links are also weighted by two 
different types of attributes, either the passenger transfer flow 𝑤𝑤𝑞𝑞  or passenger 
transfer waiting time 𝑤𝑤𝑡𝑡. By applying two different link weights, clustering results 
can be compared when only passenger transfer flows are incorporated, or when 
passenger transfer flows and the expected transfer waiting time are incorporated. 
The first type of link weight corresponds to the number of passengers transferring 
between two lines in a certain direction, which is defined as follows: 
 

𝑤𝑤𝑖𝑖𝑖𝑖
𝑞𝑞 = 𝑞𝑞𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗       (1) 

 



 
 

 

In this equation 𝑤𝑤𝑖𝑖𝑖𝑖
𝑞𝑞  denotes the flow-based weight between node 𝑖𝑖 and 𝑗𝑗 (line 𝑖𝑖 and 

𝑗𝑗 in a specific direction) and 𝑞𝑞𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗  denotes the observed transfer flow between line 𝑖𝑖 
and 𝑗𝑗. The second type of link weight 𝑤𝑤𝑡𝑡 relates to passenger transfer waiting time 
which is calculated as follows: 
 

𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡 =
ℎ𝑗𝑗∗𝑞𝑞𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗

2
        (2) 

 
In this equation 𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡  denotes the passenger transfer time based weight between node 
𝑖𝑖 and 𝑗𝑗 (line 𝑖𝑖 and 𝑗𝑗 in a specific direction). 𝑞𝑞𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗  and ℎ𝑖𝑖, respectively, denote the 
observed transfer flow between line 𝑖𝑖 and 𝑗𝑗, and the planned headway of line 𝑗𝑗. For 
the tactical planning purpose of our study, the entire public transport network is 
represented in C-space. Given the direction-specific network representation, the 
graph consists of |𝑙𝑙|*2 nodes. The link label represents the total transfer flow or 
transfer waiting time between two lines. These transfers can occur anywhere within 
the considered network, hence the link label does not have a direct geographical 
meaning. For the second study purpose of real time synchronization, a specific hub 
is represented in C-space. In this case, the number of nodes equals twice the number 
of lines serving that specific hub, whereas the link label represents the intra-hub 
passenger transfer flow or transfer waiting time. 
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Fig. 2 Illustration of network representation for a hub transfer pattern. The original layout of 
an identified hub (shaded area) is presented on the left with four directed lines marked, i.e. 1-
E, 1-W, 2-S and 2-N. The transfer pattern is then represented as a graph (middle). The graph 
label matrix is displayed on the right. 
 
2.3 Modularity 
 
Based on the constructed networks (graphs) labelled with observed transfer patterns, 
a community detection technique from the field of complex network science is 
applied to identify line bundles. In essence, the problem that community detection 
intends to address is to partition a network into communities of densely connected 
nodes, with the nodes belonging to different communities being only sparsely 
connected. In our application, line bundles will thus become the partitioning result, 
in which within-transfer flows/waiting time are maximized.  
 
Given our aforementioned objective, an optimization-based method called the 
Louvain method is adopted to identify line bundles. Proposed by Blondel et al. 
(2008), the Louvain method is a heuristic method based on modularity optimization. 
As a class of community detection method that has received the greatest attention 
from researchers, the optimization technique aims at finding an extremum - usually 



 
 

 

the maximum - of a function indicating the quality of a clustering, over the space of 
all clustering possibilities (Fortunato and Hric, 2016). The most popular quality 
function is the modularity proposed by Newman and Girvan (2004), which 
estimates the quality of a partition of the network in communities. The essential idea 
of this measure is to reveal how non-random the network structure is by comparing 
the actual structure and its randomization where network communities are 
destroyed. The value of modularity varies between −1 and 1, which measures the 
density of links inside communities as opposed to links between communities. Its 
general expression is formulated as follows: 
 

𝑄𝑄 = 1
2𝑚𝑚
∑ (𝑎𝑎𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑖𝑖)𝛿𝛿(𝐶𝐶𝑖𝑖 ,𝐶𝐶𝑖𝑖)𝑖𝑖𝑖𝑖      (3) 

 
In this equation m represents the number of edges of the network. The sum runs 
over all pairs of nodes 𝑖𝑖 and 𝑗𝑗, in which 𝑎𝑎𝑖𝑖𝑖𝑖  and 𝑝𝑝𝑖𝑖𝑖𝑖 denote the element of the 
adjacency matrix and the null model term, respectively. Derived by randomizing the 
original graph, the term 𝑝𝑝𝑖𝑖𝑖𝑖  indicates the average adjacency matrix of an ensemble 
of networks to preserve some of its features. 𝐶𝐶𝑖𝑖 indicates the community to which 
node 𝑖𝑖 is assigned. The Kronecker delta function is as follows: 
 

𝛿𝛿�𝐶𝐶𝑖𝑖 ,𝐶𝐶𝑖𝑖� = �
1, 𝑖𝑖𝑖𝑖 𝐶𝐶𝑖𝑖 = 𝐶𝐶𝑖𝑖     
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒  

     (4) 

 
The modularity measures thus how different the original graph is from such 
randomizations. Since weighted networks (links are weighted by transfer 
flows/waiting time) are used in our application, the modularity is reformulated as 
follows (Newman, 2004): 
 

𝑄𝑄 = 1
2𝑚𝑚
∑ (𝑎𝑎𝑖𝑖𝑖𝑖 −

𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗
2𝑚𝑚

)𝛿𝛿(𝐶𝐶𝑖𝑖 ,𝐶𝐶𝑖𝑖)𝑖𝑖𝑖𝑖       (5) 
 

where 𝑘𝑘𝑖𝑖 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖  denotes the sum of the weights of the edges attached to node 𝑖𝑖.  
 
The Louvain method is adopted because it has been recognized as one of the best-
performing clustering algorithms after a comparative evaluation (Lancichinetti and 
Fortunato, 2009). The Louvain method has several advantages. First, the algorithm 
is quite intuitive and easy to implement. Second, the outcome is unsupervised and 
computationally light, which requires the link label matrix as the only input. The 
essence of this method is a greedy optimisation of Q in a hierarchical manner. It 
assigns each node to the cliques of their neighbours that can yield the largest Q, and 
thus creates a smaller weighted super-network whose nodes are the clusters already 
found. Therefore partitions found on this super-network consist of clusters that 
contain previous ones as well, resulting a higher hierarchical level of clustering. 
This procedure is not stopped until the largest possible modularity value is reached.  
 
 
 
 
 



 
 

 

3 Case study 
 
We applied our methodology to the urban public transport network of The Hague, 
the Netherlands, operated by HTM. The network consists of 12 tram lines and 10 
urban bus lines (Figure 3). For the tactical planning study purpose, the C-space 
network representation thus consists of 44 nodes. For the real-time coordination 
study purpose we consider the main interchange hub, the central train station which 
is served by 9 tram lines and 6 bus services, resulting in a graph of 30 nodes. 
 
We used all AFC transactions on the network for the 20 working days between 
November 2 and November 29, 2015, as demand input. After removing days where 
one or more disruptions occurred anywhere on the network, AFC transactions of 10 
working days were finally used in the analysis. Table 2 provides an overview of the 
8 experiments for which modularity is applied to identify community structures for 
different analysis units, time periods and using different link labels. 
 

Table 2 Overview of experiments for which modularity is applied 
 
 
Link label 

Tactical planning:  
entire urban network 

Real-time coordination: 
 Central Station hub 

AM PM AM PM 
Transfer flow Experiment 1 Experiment 2 Experiment 5 Experiment 6 
Transfer waiting time Experiment 3 Experiment 4 Experiment 7 Experiment 8 
 
 

 
Fig. 3 Overview of urban tram (green) and urban bus services (red) in The Hague. The train 

services (yellow) are not incorporated in this study. The main train station hub is marked red. 
 
 
 
 
 
 



 
 

 

4 Results 
 
4.1 Results summary 
 
Table 3 summarizes the main results of community detection for all 8 experiments: 
the number of communities, modularity], and the percentage of intra-community 
flows compared to total flows: the latter two are partitioning evaluation measures, 
where a higher value indicates a stronger partitioning.  
 

Table 3 Summary of performance of community detection algorithm for all 8 experiments 
Experiment Number of 

communities 
Modularity % intra-flow 

/ total flow 
Experiment 1 
network; AM; transfer flow 

5 0.225 47% 

Experiment 2 
network; PM; transfer flow 

4 0.258 51% 

Experiment 3 
network; AM; transfer wait time 

4 0.223 51% 

Experiment 4 
network; PM; transfer wait time 

4 0.258 51% 

Experiment 5 
hub; AM; transfer flow 

2 0.276 85% 

Experiment 6 
hub; PM; transfer flow 

2 0.290 83% 

Experiment 7 
hub; AM; transfer wait time 

3 0.285 67% 

Experiment 8 
hub; PM; transfer wait time 

2 0.288 83% 

 
For each scenario the heuristic for modularity optimization is performed 1,000 
times, after which the results of the run with the highest modularity are used. For the 
network level, results are quite robust over experiments 2-4: four communities are 
identified, resulting in 51% of the transfer flow / transfer waiting time to be intra-
communal. In experiment 1 five cliques are detected, with a slightly lower intra-
communal percentage of 47%. For the Central Station hub, experiments 5, 7 and 8 
identify two communities, whereas experiment 6 identifies three communities. In 
general, the percentage intra-communal flow compared to the total flow decreases 
with an increasing number of detected communities. 
 
4.2 Tactical planning: results for the entire network 
 
For all four experiments it can be observed that public transport lines heading into 
the same direction are clustered together (Figure 4). In experiments 2-4 in each of 
the obtained communities one direction - eastbound, westbound, northbound or 
southbound – dominates. In experiment 1 the five communities are dominated by 
lines bounded north-west, south-east, south, west and north. These results are 
intuitive, indicating dominant transfer flows between lines in the same overall 
direction. In experiment 1 the fifth community shows a strong transfer flow from 



 
 

 

tram line 9 (eastbound from a residential area) to bus lines 69 and 79 (northbound 
towards an employment area). This is a very concentrated passenger stream 
particularly for the AM peak resulting in a separate community, while these transfer 
flows in the PM are not sufficient to be identified as separate community.  
 

(a) (b) 

(c) (d) 

Fig. 4 Community structure for entire network based on AM transfer flows (a), PM transfer 
flows (b), AM transfer waiting time (c) and PM transfer waiting time (d). Each node 
represents a service line-direction; each link with arrow shows the directional transfer flows. 

When modularity is based on transfer flows (experiments 1-2), one can see that no 
community consists of the same line in the opposite direction. This could be 
expected, since the largest transfer flows occur between high frequent, radial tram 
lines, and thus it is plausible that a same line in the opposite direction is not 
clustered in the same group. However, when the clustering is based on transfer 
waiting time incorporating service frequencies (experiments 3-4), it can be observed 
that in the morning peak bus lines 21, 22 and 23 in both directions are part of the 
same community. This can be explained, since these bus lines are relatively less 
frequent, tangential or circular services. Transfers between the radial tram lines and 
these tangential or circular bus lines can occur in both directions (see the green and 
red lines in Figure 4). Although these transfer flows are relatively small compared to 
transfer flows between radial tram lines, incorporating the relatively low frequency 
of these bus lines does result in a separate community for the AM peak, in which 
average passenger demand is higher for our case study network compared to the PM 
peak. 
 



 
 

 

4.3 Real-time coordination: results for the Central Station hub 
 
For the Central Station hub, in experiments 5, 6 and 8 two clear communities can be 
observed with lines heading into northern and eastern directions, and with lines 
heading into southern and western directions (Figure 5). In experiment 7 northbound 
and eastbound lines are clustered into separate communities. For all experiments 5-
8, lines in opposite direction are not part of the same community. Since almost all 
lines serving this hub are radial lines, this result shows the partitioning is plausible. 
Results are quite robust over all four experiments. Since almost all radial lines 
serving this hub operate with relatively high frequencies, differences between 
applying transfer flow (experiments 5-6) and transfer waiting time (experiments 7-
8) as link label are limited.  
 

(a) (b) 

(c) (d) 

 
Fig. 5 Community structure for main station hub based on AM transfer flows (a), PM transfer 
flows (b), AM transfer waiting time (c) and PM transfer waiting time (d). Each node 
represents a service line-direction; each link with arrow shows the directional transfer flows. 

 
5 Conclusions 
 
We develop a data-driven, generic and passenger-oriented methodology to 
determine line bundles to be prioritized in devising transfer synchronization 
measures. The proposed non-supervised learning technique enables identification of 
line bundles based on passenger transfer flows, independent of local knowledge. 
The application of a modularity-based community detection technique to a public 
transport hub represented in C-space shows intuitive lines grouped together to 
prioritize during transfer synchronization. Our results illustrate the necessity of 
synchronizing different line bundles during different periods of the day, depending 
on the travel patterns prevailing during the relevant time period. Our methodology 
and study results support public transport operators in timetable design and when 
performing real-time control decisions, such as holding, to determine where and 
which lines to synchronize. Moreover, public transport agencies can select hubs and 



 
 

 

line bundles in determining where to invest in measures for improving the design of 
a seamless transfer experience (e.g. amenities, physical environment, island vs. side 
platforms). 
 
We recommend extending the line bundle identification in our study by applying a 
link-based clustering technique, rather than node-based clustering. In our 
modularity-based community detection technique the nodes – i.e. lines in a certain 
direction – are clustered. However, when the transfer links between nodes would be 
clustered, one would be able to distinguish between transfer flows from line 𝑙𝑙𝑖𝑖 in 
direction 𝑎𝑎 to 𝑙𝑙𝑖𝑖 in direction 𝑏𝑏, and flows from 𝑙𝑙𝑖𝑖 in direction 𝑏𝑏 to 𝑙𝑙𝑖𝑖 in direction 𝑎𝑎. 
Incorporating the transfer direction between two lines, next to the lines itself, 
enables deriving further recommendations for timetable planning and real-time 
coordination by specifying the desired sequence of arrivals.  
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