

Delft University of Technology

AFSRAM-CIM: Adder Free SRAM-Based Digital Computation-in-Memory for BNN

Arrassi, Asmae El; Yaldagard, Mohammad Amin; Tao, Xingjian; Shahroodi, Taha; Mir, Fouwad; Biyani,
Yashvardhan; Gomony, Manil Dev; Gebregiorgis, Anteneh; Joshi, Rajiv; Hamdioui, Said
DOI
10.1109/vlsi-soc62099.2024.10767789
Publication date
2024
Document Version
Final published version
Published in
Proceedings of the 2024 IFIP/IEEE 32nd International Conference on Very Large Scale Integration (VLSI-
SoC)

Citation (APA)
Arrassi, A. E., Yaldagard, M. A., Tao, X., Shahroodi, T., Mir, F., Biyani, Y., Gomony, M. D., Gebregiorgis, A.,
Joshi, R., & Hamdioui, S. (2024). AFSRAM-CIM: Adder Free SRAM-Based Digital Computation-in-Memory
for BNN. In Proceedings of the 2024 IFIP/IEEE 32nd International Conference on Very Large Scale
Integration (VLSI-SoC) (IEEE/IFIP International Conference on VLSI and System-on-Chip, VLSI-SoC).
IEEE. https://doi.org/10.1109/vlsi-soc62099.2024.10767789
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/vlsi-soc62099.2024.10767789
https://doi.org/10.1109/vlsi-soc62099.2024.10767789

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

AFSRAM-CIM: Adder Free SRAM-Based Digital
Computation-in-Memory for BNN

Asmae El arrassi∗, Mohammad Amin Yaldagard∗, Xingjian Tao†, Taha Shahroodi∗, Fouwad Mir∗,
Yashvardhan Biyani ∗,Manil Dev Gomony†, Anteneh Gebregiorgis∗, Rajiv Joshi ‡, Said Hamdioui∗
∗Department of Quantum and Computer Engineering, Delft University of Technology, Delft, The Netherlands

Email: {a.elarrassi, m.a.yaldagard, t.shahroodi, f.j.mir, y.biyani, a.b.gebregiorgis, S.Hamdioui} @tudelft.nl
†Eindhoven University of Technology, Eindhoven, The Netherlands

Email: {x.tao1@student, m.gomony@} tue.nl
‡Thomas J. Watson Research Center IBM, New York, USA Email: rvjoshi@us.ibm.com

Abstract—Binary Neural Networks (BNNs) have demonstrated
significant advantages in reducing computation and memory
costs, all while maintaining acceptable accuracy on various
image detection tasks. Thus, BNNs have the potential to support
practical cognitive tasks on resource-constrained platforms, such
as edge computing devices. To realize this, SRAM-based digital
Computation-in-Memory (CIM) has gained growing attention
as it overcomes the analog CIM architecture bottlenecks such
as limited computing accuracy due to process variation, non-
linearity, power and area-hungry Analog-to-Digital Converters
(ADCs), etc. However, digital CIM architectures are highly domi-
nated by power-hungry adder-trees, which can nullify the benefits
of SRAM-based digital CIM. To address this issue, this paper
proposes an adder free SRAM-based digital CIM, AFSRAM-
CIM, for BNN acceleration. The proposed CIM architecture
utilizes a multi-functional 10-T SRAM cell-based crossbar array
and a new energy-efficient approach to perform the popcount
operation. Simulation results using the MNIST dataset show that
the proposed architecture maintains the state-of-the-art inference
accuracy of 99.21% with only 11.86 fJ energy per operation.
Moreover, AFSRAM-CIM achieves over 3× energy and ≈17×
area savings when compared to the conventional digital CIM
approaches.

Index Terms—Computation-in-Memory, SRAM, Fully-digital,
BNN, MAC

I. INTRODUCTION

Smart applications have become a crucial part of human
daily life. These applications are gaining growing interest for
their potential to deliver high accuracy and performance in
multiple domains such as computer vision applications [1].
However, due to various architectural challenges and tech-
nological limitations, the existing Von-Neumann architecture
cannot deliver the computing efficiency required by resource-
constrained platforms such as edge devices [2], [3]. Hence,
designing energy-efficient architectures and simplified network
models is important to deploy AI on edge devices. As a
result, emerging CIM architectures are widely studied for their
potential to eliminate the excessive time and energy spent
on moving massive amounts of data between the memory
and processing unit [4], [5]. Moreover, BNNs have shown
significant improvements in reducing the complexity of neural
network models [6] by aggressively quantizing the parameters
to 1-bit precision while maintaining reasonable accuracy [7].

Therefore, there is a clear need to exploit the huge potential
of energy-efficient CIM architectures for BNN acceleration.

CIM integrates computing and storage together and provides
an efficient implementation of Vector-Matrix Multiplication
(VMM), which is the key operation in BNN [8]. Therefore,
CIM provides a huge potential for energy-efficient BNN
implementation on edge devices [9]. CIM can be realized in an
analog domain using emerging/CMOS technologies [10]–[13]
or in a digital domain using SRAM cells as its core building
block [14], [15]. Digital CIM has an edge over its analog
counterpart as it avoids the need for energy and area-hungry
ADCs, which represents a vital block for analog CIM [16].
Moreover, CMOS technology maturity and EDA tool sup-
port availability make it favorable for fabrication and near
future industry-scale adaptation of digital CIM [16]. Several
works have presented solutions for SRAM-based digital CIM
to perform Multiply-and-Accumulate (MAC) operations [8],
[14]–[17]. However, state-of-the-art approaches [8], [14]–[17]
require additional circuits to perform multiplication and adder-
trees to perform accumulation which dominates the energy and
area consumption of the array. As a result, digital SRAM-
based CIM computing overheads and challenges need to be
minimized to further enhance and optimize CIM architecture
for edge applications.

In this work, we propose an energy-efficient adder SRAM-
based CIM architecture, AFSRAM-CIM, for BNN accelera-
tors. For this purpose, a multi-functional 10-T SRAM cell is
designed to support multiple logic operations such as (XOR,
XNOR, OR, etc...). The logic operations are performed within
the cell-specific to the targeted application. We propose a
new approach to perform accumulation that eliminates the
use of the power-hungry adder-trees used in state-of-the-art
solutions [9], [14]. The proposed AFSRAM-CIM is evaluated
with BNN using the MNIST dataset. Simulation results of
post-layout extraction show that the proposed AFSRAM-CIM
is highly energy-efficient with a consumption of 11.86 fJ per
operation while maintaining state-of-the-art inference accuracy
of 99.21%. Thus, AFSRAM-CIM realizes more than 3× and
≈17× energy and area savings over the conventional adder-
tree based digital CIM approaches. The main contributions of
the paper are summarized as follows:

979-8-3315-3967-2/24/$31.00 ©2024 IEEE

20
24

 IF
IP

/I
EE

E
32

nd
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 V
er

y
La

rg
e

Sc
al

e
In

te
gr

at
io

n
(V

LS
I-S

oC
) |

 9
79

-8
-3

31
5-

39
67

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
VL

SI
-S

O
C6

20
99

.2
02

4.
10

76
77

89

Authorized licensed use limited to: TU Delft Library. Downloaded on December 05,2024 at 08:39:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. an illustration of a) BNN inference binary MAC operation and b)
Binary Convolutional Neural Network (CNN) architecture.

• A multi-functional SRAM cell design to perform multiple
logic operations within the cell;

• An adder-tree free SRAM-based digital CIM architecture
to perform binary MAC operation for BNN applications;

• Validation of the proposed architecture shows high energy
efficiency of 11.86 fJ per operation with more than 3×
energy efficiency improvement compared to state-of-the-
art approaches;

The remainder of the paper is organized as follows, Sec-
tion II presents the basic concepts. Section III presents the
proposed architecture. Section IV presents experimental results
and discussion. Finally, Section V concludes the paper.

II. PRELIMINARIES

A. Binary Neural Network

BNN is a type of artificial neural network where weights
and activation are binarized. BNN reduces memory and com-
putation requirements and offers great potential to improve
energy efficiency [18]. Despite the extreme quantization to 1-
bit weights and activations, BNN still delivers good inference
accuracy for several applications such as object detection and
classification [19]. The main operation for BNN is binary
MAC operation. The binary MAC operation can be expressed
as follows:

BinMAC(In,W) = popcount(In XNOR W) (1)
Where In is the input/activation vector and W is the weight
vector. Fig. 1(a) illustrates the MAC operation for BNN
inference. The signed weights and inputs/activations can be
represented by two values ”+1” or ”-1” [6]. However, previous
works [20] explored further simplification of the computation
by encoding the values to ”1” or ”0”. The first phase of
the MAC operation consists of the XNOR boolean operation
between the inputs/activation and the weights. The popcount
operation is then performed. The outputs of the popcount rep-
resent the accumulation of the output of the XNOR operation.
An activation function is then applied to the output of the
popcount. The sign activation function can be expressed as
follows:

sign(x) =

{
1 if x ≥ Threshold

0 if x < Threshold
(2)

Where Threshold can be expressed as follows:

Threshold =
Th+N

2
(3)

Fig. 2. An illustration of a) analog CIM architecture [24] and b) all digital
CIM architecture [14].
Where Th is the activation threshold (ex. Th = 1) and N is the
input vector size (ex. N = 9). Fig. 1(b) illustrates an example
of a CNN architecture for binary classification. The binary
MAC operation reduces the computation costs and memory
storage of BNNs.

B. SRAM-based CIM architectures

CIM architectures have the potential to overcome the Von-
Neumann challenges by integrating computation and storage
in the same physical location [21]. CIM can be realized
using different memory technologies such as memristors [22],
SRAMs [21], and DRAMs [23]. SRAM-based CIM can be
realized in the analog [24] or digital [9] domain. In the analog
domain, the first operands (e.g., weight values) are stored in
the SRAM cells while the second operands (e.g., activation
inputs) are provided through the wordlines (WLs). Then, each
column performs the MAC operation by multiplying the input
operands and the operands stored in the SRAM cells, the
output current is accumulated through the bitlines (BLs) and
forms a dot-product according to Kirchhoff’s law [3]. The
output current through the Bitline (BL) is then fed to an
ADC to be converted to its digital value. Fig 2.(a) shows
an SRAM-based analog CIM macro with SRAM crossbar
array to perform the MAC operation and ADC to convert
the MAC output current to digital values. Several works have
studied SRAM-based analog CIM. The work in [25] proposes
a 10-T SRAM cell to store 1-bit of the weight. The MAC
operation is performed in the charge domain, and each column
has a dedicated ADC. This approach has addressed the write
disturb limitation by decoupling the write path and the read
path. However, the power-hungry ADCs used for each column
decrease the energy efficiency of the array. Analog-based CIM
offers advantages such as high parallelism [9], [10]. However,
there are certain design challenges associated with analog-
based CIM, including process variation, ADCs overhead, and
computing non-linearity, which can limit its scalability [16].

To address these limitations SRAM-based digital CIM elim-
inates the need for energy and area excessive ADCs [9].
MAC operation can be realized in the digital domain by
storing the first operand (eg. weight) in the SRAM-based CIM
array. The second operand is provided through the WLs. In
each column, the two operands are provided to multipliers
to perform multiplication. The multiplication outputs are then
fed to an adder-tree to perform the accumulation. Fig. 2(b)
illustrates an example of an SRAM-based digital CIM for
MAC operation [14]. The work in [9] has proposed an

979-8-3315-3967-2/24/$31.00 ©2024 IEEE

Authorized licensed use limited to: TU Delft Library. Downloaded on December 05,2024 at 08:39:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Illustration of a) the overview of the proposed CIM architecture, b) A column and periphery structure to perform binary MAC operation,c) the Binary
MAC operation implementation, and d) A BNN inference binary MAC operation.

SRAM-based CIM architecture for BNN applications. In this
approach [9], the weights and activations are stored in the
SRAM array. The XNOR operation is performed by activating
two rows of the array. For each column, two sense amplifiers
(SAs) are added to read the output of the XNOR operation.
Furthermore, the outputs of each column are accumulated us-
ing an adder-tree. Additionally, the work in [14] has presented
a new adder-tree structure to perform accumulation. In this
approach, each 4-bit column has a dedicated adder tree which
results in a high area consumption. SRAM-based digital CIM
offers advantages such as high precision, energy efficiency,
and high scalability. However, these approaches suffer from
the overhead of the adder-tree units that dominate the area and
energy consumption of the array. To address these limitations,
we propose a new energy-efficient SRAM-based digital CIM
architecture, AFSRAM-CIM, for BNN accelerators.

III. AFSRAM-CIM ARCHITECTURE

The proposed AFSRAM-CIM architecture is realized as
follows. First, a multi-functional 10-T SRAM bit cell is
designed to perform different logic operations. Then, an adder-
tree free CIM macro is designed using the 10-T SRAM cell
and popcount logic as its building blocks. In this section, first
the design of the 10-T SRAM bit cell is discussed. Then, the
proposed CIM macro is presented followed by the discussion
of the BNN mapping to the CIM macro.

Fig. 4. Illustration of a) the 10-T SRAM cell and b) the XOR operation
performed within the memory cell.

A. 10-T SRAM cell design
In this work, we propose a 10-T SRAM cell design that

supports multiple logic operations within the cell-specific to
the targeted application. Fig. 4(a) illustrates a schematic of the
proposed 10-T SRAM cell. The write operation is performed
by driving the Write Wordline (WWL) and BL to write 1 (or
0). To perform the read operation, The Read Bitline (RBL) is
first precharged to VDD and the Read Wordline (RWL) is then
activated. The RBL is discharged to 0 when the content of the
cell Q = 1 and remains charged when Q = 0. The output of
the RBL is then inverted for each column using an inverter
as shown in Fig. 3(b). Additionally, the 10-T SRAM cell can
support multiple logic operations. The XOR/XNOR operation
can be performed within the cell by storing the first operand
in the cell and driving the second operand to the RWL/RWLB
and its invert to RWLB/RWL. The RBL is precharged to VDD

initially when the RWL or RWLB is activated and the content
of the cell is Q = 1 or Qb = 1, respectively, the RBL discharges
while it remains charged in the other cases. Fig. 4 illustrates
how XOR and XNOR operations can be performed within the
memory cell.

The SRAM cell supports other logic operations such as
NAND and OR operation depending on how the inputs are
driven. NAND and OR operations can be performed by dis-
abling RWLB/RWL and driving the IN/INB to RWL/RWLB.
The RBL is discharged when (IN = 1 and W = 1) or (IN = 0
and W = 0) to perform NAND or OR operation, respectively.
The 10-T SRAM cell has decoupled read-and-write paths
which eliminate the read-disturb limitation present in the
conventional 6-T SRAM. The cell design is used as the core
building block of the CIM macro.

B. 10-T SRAM-based CIM macro
The proposed CIM macro is composed of 10-T SRAM

crossbar array, shared flip-flops, shared multiplexers and coun-
ters. The crossbar array consists of multiple subarrays that
are arranged in a bank structure. Each bank is organized into

979-8-3315-3967-2/24/$31.00 ©2024 IEEE

Authorized licensed use limited to: TU Delft Library. Downloaded on December 05,2024 at 08:39:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. a) Conventional adder-tree versus b) proposed adder-tree free
architecture.

16 rows and 128 columns. For each column in a bank, the
rows share the RBLs, BLs, and BLBs while for each row, all
the columns share the WWLs, RWLs, and RWLBs as shown
in Fig. 3(a). The columns in the first bank are connected
to dedicated flip-flops that receive as input the output of
their respective RBLs (digitalized with the column inverters).
However, the columns in the remaining banks are connected
to a multiplexer (MUX) and a flip-flop. The MUXs receive
an input signal from the column RBLs and a signal from the
flip-flops outputs of the preceding bank. The MUX outputs
are then stored in their respective flip-flops. Finally, the flip-
flop outputs of the last bank are connected to the counters
dedicated for each column as shown in Fig. 3(b).

The proposed AFSRAM-CIM architecture increases the
parallelism and reduces the RBLs, BLs, and BLBs charging
and discharging delays. The digital counter offers high area
efficiency compared to the adder tree approach. Fig. 5 illus-
trates a comparison between an adder-tree approach and the
proposed adder-tree free architecture.

C. BNN mapping

1) BNN implementation of the proposed SRAM-based CIM:
The BNN architecture adopted in this work is the LeNet-
5 network topology [26]. Fig. 6 illustrates the mapping of
the BNN architecture on the proposed CIM design. To map
the convolutional layers each filter weight vector is stored in
the same column and distributed on different banks while, for
the fully connected layer, the weights connected to the same
output neuron are stored in one column of the SRAM-based
crossbar array. We activate in parallel one row from each bank
where the input is provided through the RWLs. The memory
bank structure can allow maximum use of the memory storage
and parallelism in the array for different layer parameters.

2) Binary MAC operation implementation: To implement
binary MAC operation, We perform the XOR operations
within the SRAM cell between the weights stored in each cell
and the inputs provided through the RWLs. The XOR results
are inverted in the RBLs to get the intended XNOR results as
shown in equ. 1. We activate n RWLs in parallel, where n is
the number of banks in the SRAM-based crossbar array.

To perform the popcount operation, the RBLs of each bank
drive the output of the XNOR operation of one SRAM cell
at a time. Next, The first bank RBLs are connected to flip-
flops that store the signal and provide it to the next bank. The
next bank consists of MUXs that receive input signals from

Fig. 6. BNN mapping scheme to the proposed CIM architecture.

the RBLs of the same memory bank and signals from the flip-
flops output of the preceding bank. The MUXs are connected
to flip-flops. During the first clock cycle, the MUXs provide as
output the XNOR outputs provided by the connected RBLs.
During the remaining cycle time, These MUXs provide as
output the outputs of the preceding flip-flops. The last flip-
flops provide inputs to digital counters connected to each
column. These flip-flops deliver the RBLs output signal of
each bank sequentially. Therefore, in each clock cycle the
counter receives the XNOR operation outputs from all the
array rows sequentially as shown in Fig. 3(c). The binary MAC
operation implementation using digital counters is illustrated
in Fig. 3(c)-(d).

To implement large kernel sizes of the convolutional layer,
multiple arrays can be used to store the weights, and the
resulting partial sum from the digital counters can be accu-
mulated. AFSRAM-CIM architecture offers high accuracy due
to the digital logic units used for computation that give an
exact and accurate output similar to software implementation.
additionally, The low area overhead of the proposed adder-tree
free architecture enables accumulation units to be assigned
to every column, which offers high parallelism with low
overhead.

IV. EXPERIMENT RESULTS AND DISCUSSION

A. Experiment setup

The simulation setup used in this work is presented in
Table. I. The proposed AFSRAM-CIM architecture is simu-
lated with SPICE using TSMC 40 nm CMOS technology. The
energy, area, and latency results are extracted using post-layout
simulations. It is worth noting that the results were reported
in a worst-case scenario with high sparsity (IN = 1, weights
50%). The network is trained offline and then implemented in
hardware with VHDL. We performed synthesis using digital
design flow for area evaluation.

In this work, We have trained a BNN architecture based
on the LeNet-5 network topology [27] as shown in Table. I.
The architecture delivers high performance and accuracy in a
compact topology [26]. For the MNIST dataset, the size of

979-8-3315-3967-2/24/$31.00 ©2024 IEEE

Authorized licensed use limited to: TU Delft Library. Downloaded on December 05,2024 at 08:39:26 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SIMULATION SETUP.

Technology 40 nm
Supply voltage (V) 1 V

Temperature 27 °C
SRAM cell 10-T

Unit macro size 16 kb (128x128b)
BNN topology Lenet-5

Dataset MNIST
Conv1 (5,5)×20
Conv2 (5,5)×50

Fully-connected layer 1 800×500
Fully-connected layer 2 500×10

the input matrix is (28,28). In the first convolutional layer, we
apply a filter of dimension (5x5) with 20 channels followed
by a pooling layer performing max pooling with a pool
size of (2x2). In the second convolutional layer, the applied
filter size is (5x5) with 50 channels and a pooling layer
with a pool size of (2x2). The network contains two fully
connected layers with a size of (800,500) and (500,10). We
have trained the network using the BCIM framework [27]
using a feedforward model and backpropagation algorithm.
The trained network is mapped to implement the inference
on the proposed AFSRAM-CIM architecture. the network
parameters are presented in Table. I.

B. Energy and area results

To perform energy and area evaluation, a 128×128 SRAM-
based crossbar array was simulated in SPICE using the TSMC
40 nm technology. Results show that the proposed AFSRAM-
CIM implementation performs MAC operation in an energy-
efficient manner with an energy consumption of 11.86 fJ
per operation. An operation is defined as one binary multi-
plication and accumulates operation performed in the array.
The recorded energy efficiency and peak throughput are 157
TOPS/W and 496 GOPS, respectively.

Fig. 7 illustrates the array and Bitcell layout and a compar-
ison of the area consumption of different units. The Bitcell
occupies an area of 3.407 µm2. The SRAM 16 kb array
occupies 86% area. The counters and the additional units to
perform the popcount operation occupy 14% of the total area
of the array as shown in Fig. 7(c).

C. Accuracy results

To evaluate the application accuracy, we trained the BNN
network with LeNet-5 topology using BCIM framework [27].
The MNIST dataset is used for training. We have mapped the
trained weights to the array for inference. The weights are
preloaded before performing the MAC operation through the
write ports to the SRAM cell. To ensure the maximum use of
parallelism and memory storage the weights of the same filter
were stored in the same column and the same row of each
memory bank. The inputs were provided in parallel through
the read ports as described in Section. III-A. The AFSRAM-
CIM architecture has achieved the ideal accuracy of 99.28%.

D. State-of-the-art comparison

Table. II shows the performance comparison of the proposed
AFSRAM-CIM architecture and state-of-the-art SRAM-based

Fig. 7. a) crossbar array layout, b) bitcell layout and c) Post-layout area
breakdown of different units.

digital CIM neural network implementations. The work in [16]
has presented an SRAM-based digital CIM architecture where
each bitcell consists of a 6-T SRAM, full adder, two MUXs,
and an XNOR gate. The multiplication and partial sum are
performed within the array. However, the additional computing
units in the bitcell increase the area consumption, resulting
in a low-density array. Additionally, the work in [14] has
presented an SRAM-based digital CIM architecture. In this
work, additional circuitries and adder-trees are used to perform
multiplication and accumulation, respectively. However, the
high number of adder-trees makes it area inefficient.

In order to compare our solution with the state-of-the-
art SRAM-based digital CIM presented in [8], we simulated
the CIM architecture using 28 nm technology. The power
consumption comaprison of AFSRAM-CIM and the digital
CIM [8] is presented in Fig. 8. The reported average power
shown in Fig. 8 represents wide range of weight sparsities
(percentage of binary weights with the value of ”1”) in order
to compare the worst-case and best-case scenarios. Fig. 8
demonstrates that the proposed AFSRAM-CIM architecture
consumes ≈4× less power compared to the approach in [8].
As illustrated in the figure low-weight sparsity (less binary ”1”
weight values) reduces the average power consumption. The
50% weight sparsity shows the highest average power con-
sumption due to the high switching activity of the XNOR re-
sults. Moreover, it is worth mentioning that the reported reduc-
tion in power consumption is without considering the power
reduction benefit of 28 nm implementation over AFSRAM-
CIM’s 40 nm. Thus, for similar technology nodes, the power
saving of AFSRAM-CIM will be even higher than what is
shown in Fig. 8.

For area evaluation, we simulated a 128-bit adder-tree and
the proposed adder-tree free approach including all the addi-
tional units (digital counter, flip-flops, and MUXs) using the

Fig. 8. Power consumption comparison of (right) the proposed architecture
and (left) an adder-tree based approach [8] for 32× 32 array.

979-8-3315-3967-2/24/$31.00 ©2024 IEEE

Authorized licensed use limited to: TU Delft Library. Downloaded on December 05,2024 at 08:39:26 UTC from IEEE Xplore. Restrictions apply.

TABLE II
STATE-OF-THE-ART COMPARISON OF THE SRAM-BASED DIGITAL CIM MACROS.

ICTA’22 [17] ISSCC’21 [14] VLSIS’22 [15] JSSC’21 [16] ISSCC’22 [8] This Work
Technology (nm) 28 22 12 65 5 40

Supply Voltage (V) 0.9-0.8 0.72 0.72 0.6-0.8 0.5-0.9 1
Input/Output Precision (bit) 4-to-4 (1-8)-to-4 (1-8)-to-(4-16) 1-to-16 4-to-4 1-to-1

GOPS/mm2 N/a 16000 N/A 6750 (1b) 221000 (4b) 7638 (1b)
Throughput (GOPS) 2632 (4b) N/A 1343 (4b) 576 (1b) N/A 496.48 (1b)

Energy efficiency (TOPS/W) 61 (4b) 89 (4b) 121 (4b) 117.3 (1b) 254 (4b) 157.1 (1b)
Energy per operation (pJ/op) N/A N/A N/A 0.017 (1b) N/A 0.0118

Bitcell density (kb) 64 64 8 64 64 16
Bitcell area (µm2) N/A 0.379 N/A 10.53 0.075 3.407

Bitcell array area (mm2) 0.19 0.202 0.0323 0.19 0.0133 0.0659

same 40 nm technology node. The results show that the pop-
count units of the proposed AFSRAM-CIM architecture for
128-bit binary MAC operations occupy ≈ 17× less area than
a conventional adder-tree structure. Furthermore, the proposed
solution occupies 74.91 µm2, while the conventional adder-
tree approach occupies 1246 µm2 for 128-bit accumulation.
Therefore, AFSRAM-CIM achieves high energy efficiency
while occupying a relatively low area with an area efficiency
of 7638 GOPS/mm2.

V. CONCLUSION

In this work, we proposed an energy-efficient BNN im-
plementation using SRAM-based digital CIM. The proposed
AFSRAM-CIM architecture minimizes the high energy over-
head of the accumulation units by presenting an adder-tree free
SRAM-based digital CIM architecture to perform binary MAC
operation. Simulation results demonstrated that the proposed
AFSRAM-CIM architecture is highly energy-efficient with an
energy consumption of 11.86 fJ per operation while maintain-
ing state-of-the-art accuracy of 99.21%. This work achieved
over 3× energy and ≈17× area savings when compared to
the conventional adder-tree approach.

ACKNOWLEDGEMENTS

This work is funded by CONVOLVE (Grant No.
101070374).

REFERENCES

[1] G. Wang and J. Gong, “Facial expression recognition based on improved
lenet-5 cnn,” in CCDC, 2019.

[2] S. Hamdioui et al., “Memristor based computation-in-memory architec-
ture for data-intensive applications,” in DATE, 2015.

[3] G. W. Burr, A. Sebastian, T. Ando et al., “Ohm’s law+ kirchhoff’s
current law= better ai: Neural-network processing done in memory with
analog circuits will save energy,” IEEE Spectrum, 2021.

[4] H. A. Du Nguyen, J. Yu, L. Xie, M. Taouil, S. Hamdioui, and D. Fey,
“Memristive devices for computing: Beyond cmos and beyond von
neumann,” in VLSI-SoC, 2017.

[5] M. Hu, C. E. Graves, C. Li, Y. Li, Ge et al., “Memristor-based
analog computation and neural network classification with a dot product
engine,” Advanced Materials, 2018.

[6] M. Courbariaux, I. Hubara, D. Soudry et al., “Binarized neural networks:
Training deep neural networks with weights and activations constrained
to+ 1 or-1,” arXiv, 2016.

[7] M. Rastegari, V. Ordonez et al., “Xnor-net: Imagenet classification using
binary convolutional neural networks,” in ECCV, 2016.

[8] H. Fujiwara, H. Mori, Zhao et al., “A 5-nm 254-tops/w 221-tops/mm
2 fully-digital computing-in-memory macro supporting wide-range
dynamic-voltage-frequency scaling and simultaneous mac and write
operations,” in ISSCC, 2022.

[9] A. Agrawal, A. Jaiswal, D. Roy, B. Han et al., “Xcel-ram: Accelerat-
ing binary neural networks in high-throughput sram compute arrays,”
ISCAS-I, 2019.

[10] Q. Dong, M. E. Sinangil, B. Erbagci et al., “15.3 a 351tops/w and 372.4
gops compute-in-memory sram macro in 7nm finfet cmos for machine-
learning applications,” in ISSCC, 2020.

[11] R. Kozma, R. E. Pino, and G. E. Pazienza, Advances in neuromorphic
memristor science and applications, 2012.

[12] S. Yin, Z. Jiang, J.-S. Seo, and M. Seok, “Xnor-sram: In-memory
computing sram macro for binary/ternary deep neural networks,” IEEE
Journal of Solid-State Circuits, 2020.

[13] H. Benmeziane et al., “Analognas: A neural network design framework
for accurate inference with analog in-memory computing,” in EDGE,
2023.

[14] Y.-D. Chih, P.-H. Lee, Fujiwara et al., “16.4 an 89tops/w and 16.3
tops/mm 2 all-digital sram-based full-precision compute-in memory
macro in 22nm for machine-learning edge applications,” in ISSCC, 2021.

[15] C.-F. Lee, C.-H. Lu, C.-E. Lee, H. Mori et al., “A 12nm 121-tops/w
41.6-tops/mm2 all digital full precision sram-based compute-in-memory
with configurable bit-width for ai edge applications,” in ISVLSI, 2022.

[16] H. Kim, T. Yoo, T. T.-H. Kim, and B. Kim, “Colonnade: A recon-
figurable sram-based digital bit-serial compute-in-memory macro for
processing neural networks,” IEEE Journal of Solid-State Circuits, 2021.

[17] D. Wanq, Z. Li, C. Chang, W. He et al., “All-digital full-precision in-
sram computing with reduction tree for energy-efficient mac operations,”
in ICTA, 2022.

[18] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, “Fp-bnn: Binarized neural
network on fpga,” Neurocomputing, 2018.

[19] R. Liu, X. Peng, X. Sun, W.-S. Khwa et al., “Parallelizing sram arrays
with customized bit-cell for binary neural networks,” in DAC, 2018.

[20] X. Sun, X. Peng, P.-Y. Chen et al., “Fully parallel rram synaptic array
for implementing binary neural network with (+ 1,- 1) weights and (+
1, 0) neurons,” in ASP-DAC, 2018.

[21] Z. Lin, Z. Tong, J. Zhang et al., “A review on sram-based computing
in-memory: Circuits, functions, and applications,” Journal of Semicon-
ductors, 2022.

[22] A. Gebregiorgis, A. Singh, A. Yousefzadeh et al., “Tutorial on
memristor-based computing for smart edge applications,” Memories-
Materials, Devices, Circuits and Systems, 2023.

[23] D.-Y. Lim, I.-J. Jung, D.-H. Kim et al., “Computing-in-memory using
1t1c embedded dram cell with micro sense amplifier for enhancing
throughput,” in ICCE-Asia, 2022.

[24] J.-S. Kim, J.-W. Lee et al., “10t sram computing-in-memory macros
for binary and multibit mac operation of dnn edge processors,” IEEE
Access, 2021.

[25] A. Biswas and A. P. Chandrakasan, “Conv-sram: An energy-efficient
sram with in-memory dot-product computation for low-power convolu-
tional neural networks,” IEEE Journal of Solid-State Circuits, 2018.

[26] E. Kussul and T. Baidyk, “Improved method of handwritten digit
recognition tested on mnist database,” Image and Vision Computing,
2004.

[27] M. Zahedi, T. Shahroodi, S. Wong, and S. Hamdioui, “Bcim: Efficient
implementation of binary neural network based on computation in
memory,” arXiv, 2022.

979-8-3315-3967-2/24/$31.00 ©2024 IEEE

Authorized licensed use limited to: TU Delft Library. Downloaded on December 05,2024 at 08:39:26 UTC from IEEE Xplore. Restrictions apply.

