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Abstract
For performing technical maintenance, it is important to keep a detailed schedule of resources and
temporal constraints. The Resource Constrained Project Scheduling Problem (RCPSP) is a well de-
fined scheduling model with both resources and temporal constraints. Precedence Constraint Posting
(PCP) is a technique to solve the NP-hard RCPSP problem, that currently uses heuristics for making
decisions for selecting and resolving conflicts. Our work focuses on improving the quality of the so-
lutions for PCP by replacing these heuristics by a machine learning classifier. In this work, several
datasets are generated that are used for training classifiers. The performance of the PCP solver when
replacing the heuristics with these classifiers is comparable with the performance of the solver when
using heuristics, but on average it is slightly worse than the best performing heuristics. After implement-
ing Monte Carlo simulation, we concluded that there was a slight, but statistically significant decrease
in average makespan when using the machine learning classifiers for simulating the behaviour of the
solver compared to the average makespan when using random heuristics for simulating the behaviour
of the solver. However, future research is needed to further improve the performance of the machine
learning classifiers, for which we propose a list of improvements based on our observations.
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1
Introduction

NedTrain is a company that is part of the NSGroup (Dutch Railways). The task of NedTrain is to achieve
a high availability of the rolling stock of NS. The rolling stock consists of locomotives, railroad cars,
coaches and wagons of NS. NedTrain is responsible for the maintenance, repair and refurbishment of
the complete rolling stock. In order to perform these tasks, NedTrain has depots in locations all over
the Netherlands. NedTrain would like to improve the process of maintenance scheduling. In this work
we will focus on the technical scheduling of the maintenance process.

1.1. Maintenance scheduling
In order to perform technical maintenance, it is important to keep a detailed schedule of resource
and deadline management. At NedTrain, there are several kinds of tasks present. First of all, there
are recurring check-ups, which are predefined tasks that can consist of inspections, maintenance or
cleaning. These check-ups are performed dependent on the mileage per train or after a certain amount
of time after the previous check-up. Furthermore, when a train enters a depot for technical maintenance,
additional unexpected repairs and small refurbishments can be performed. With all these different
tasks, which all can require different resources, the planning for technical maintenance is complex.
Therefor, when scheduling technical maintenance, several challenges arise.

First of all, the arrival and departure times of trains are very strict. Since around 1 million people
travel by train every day, it is important to keep the passenger schedule as stable as possible. This
results in the fact that trains need to be available at strict time slots, which forces all tasks to be com-
pleted before a train is needed in the passenger schedule. Furthermore, the railway network in the
Netherlands is very complex and dense. Trains can only leave the depot and enter the railway network
in a certain assigned time slot.

The second challenge of maintenance scheduling for NedTrain is the uncertainty that is present at
the execution of maintenance projects. Many tasks only occur after inspection, so they are not known
beforehand. Furthermore, the duration of the tasks heavily depends on the condition of the train, which
is not available beforehand either. This may cause problems, especially in combination with the strict
deadlines that trains in the maintenance depot have.

Besides these two challenges, every task within maintenance scheduling projects has both resource
and precedence constraints. A task has a resource constraint if that specific task needs additional
resources that have a certain amount of capacity. An example of a resource constraint present at
NedTrain is the limited number of maintenance tracks. Tasks that require the use of such amaintenance
track cannot be scheduled all at the same time. A precedence constraint requires a task to be executed
after a certain other task. This can be for example the case when accessibility or safety reasons force
a preparation task to be completed before the other tasks starts.

Currently, the planning of maintenance scheduling is mostly done by hand. By providing the sched-
ule makers with better software tools, the process of scheduling can be improved drastically. However,
instead of only providing the schedulers with a powerful solver, it is also important to provide them with
more insight into the scheduling choices that can be made. So the software need to be both fast and
interactive so it can provide both high quality and well understandable schedules.
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2 1. Introduction

1.2. Use of heuristics
In the work of Evers[11], it is already showed that the temporal constraints can be solved efficiently
with the Simple Temporal Network, which is explained in more detail in Chapter 2. However, when
resource constraints are taken into account, this Simple Temporal Network is not sufficient anymore.
In this paper, it is also proven that the scheduling problem of NedTrain is a NP-complete problem, thus
cannot be solved efficiently.

It is preferred to use an interactive approach in order to create schedules which are understand-
able by the schedule makers. Therefore, heuristic solvers are used, since when using these heuristics
solvers, the decisions that are taken can be seen per step. This makes the process more understand-
able. Heuristic solvers are in general much faster in solving problems. Heuristic solvers attempt to find
solutions of satisfactory quality using for example a rule of thumb, an educated guess, profiling or best
practices. These solvers are fast and can operate on incomplete information, which can be used to
adjust constraints until a suitable solution is found[31].

Heuristic solvers often do not find optimal solutions for difficult problems. Furthermore, a deep un-
derstanding of the problem is needed in order to be able to improve the quality of the solutions. There-
fore, a well defined problem of the maintenance scheduling problem has to be used. The scheduling
problem of NedTrain, with both temporal and resource constraints, is well suited for the Resource Con-
strained Project Scheduling Problem (RCPSP). This is a well defined model, first described by Prisker
et al.[27], which is studied extensively and extensively explained later in this work.

1.3. Use of machine learning
Until now, when automating the process of maintenance scheduling, heuristics are used for decision
making in every step of the solver. The heuristics make choices based on specific rules of thumb,
an educated guess, profiling or best practices, based on specific features of the problem. Machine
learning methods are suitable for discovering these kind of rules when providing these features. These
models can find more and even more complex rules in order to make better decisions. We can explore
the possibilities of replacing heuristics by a machine learning approach, in order to improve the decision
making in the solver.

People are often prone to making mistakes during analyses or, possibly, when trying to establish
relationships between multiple features. However, machine learning can often be successfully applied
to these problems, improving the efficiency of systems and the designs of machines. Machine learning
is for example already used for this kind of problems by using models for an ”Algorithm Selection
Problem”[28]. For these kind of problems, the idea is that a machine learning model tries to predict the
behaviour of a perfect oracle that selects the algorithm that preforms best for that specific problem. We
therefor expect that applying a machine learning model that replaces the current heuristics can improve
solutions for maintenance scheduling problems.

In order to use a machine learning model for replacing the heuristics, we have to determine which
features we will use. Furthermore, we need to determine the best machine learning algorithm for this
specific problem. Machine learning models could improve the selections that these heuristics make,
resulting in an improvement of the performance of the solver for this kind of maintenance scheduling
problems.

1.4. Research questions
Later in this work we discuss several algorithms for solving RCPSP instances. The goal of this research
is to improve these algorithms by replacing the heuristics used by the algorithms, by a machine learning
classifier. In order to achieve this, several research questions need to be answered. The research
questions that are used for this research are explained below.

1.4.1. Feature selection
There are a lot of heuristics in order to select and resolve conflict pairs. However, it may be possible
to improve these heuristics by looking at the properties of the tasks and/or task pairs. So the first part
of this research will be to select the features that will be used to generate the dataset that will be used
to train the classifier.



1.4. Research questions 3

Research Question 1: Which properties of tasks and/or task pairs have an influence on selecting
and resolving conflict pairs?

1.4.2. Method selection
After it is clear which properties have influence on the resulting schedule, a machine learning algorithm
can be applied to make decisions on how these properties should be used to select and resolve conflict
pairs. However, it is also crucial to choose the right machine learning method to classify the instances.

Research Question 2: Which machine learning method(s) is/are the most effective method(s) for
solving RCPSP instances?

1.4.3. Improving RCPSP
After the dataset is generated and the machine learning method is chosen, the heuristics can be re-
placed by a machine learning method. However, it still needs to be validated that the machine learning
method produces better solutions than the individual heuristics or if additional steps need to be taken
in order to improve the results.

Research Question 3: Can a machine learning algorithm improve the choices of selecting and re-
solving conflict pairs?

In Chapter 2 we study the current and relevant literature available for the project scheduling problem.
Next, in Chapter 3 a brief overview of different machine learning techniques is given. In Chapter 4,
our approach for improving RCPSP by using machine learning is explained, together with the results of
these experiments. Lastly, in Chapter 5, the conclusions of this work and the future work are described.





2
Background in maintenance scheduling

In this chapter, an overview of the current methods to solve the problem present at NedTrain will be
given, in order to find out which methods we can use for improving the quality of the current solutions.
We focus mainly on the Resource Constrained Project Scheduling Problem (RCPSP), which is the
abstract problem behind the problem present at NedTrain, rather than the specific case of the NedTrain
scheduling problem.

First of all, and introduction to constraint programming is given and RCPSP is explained extensively,
in order to give a good overview of the several challenges that lie within this problem. Next, Prece-
dence Constraint Posting (PCP) is explained as a method to solve the RCPSP problem instances.
Furthermore, several PCP algorithms and related heuristics are explained.

2.1. Constraint Satisfaction Problem
Constraint Programming[29] is an approach to solving combinatorial search problems based on the
Constraint Satisfaction Problem (CSP)[4]. Constraints are just relations and a CSP states which rela-
tions should hold among the given problem decision variables. CSP approaches have proven to be an
effective way to model and solve complex scheduling problems.

The formal definition of the Constraint Satisfaction Problem, for example given by Staats[31], is a tuple
⟨𝑉, 𝐷, 𝐶⟩ where:

• 𝑉 = {𝑣 , 𝑣 , ..., 𝑣 } is a set of 𝑛 variables.

• 𝐷 = {𝐷 , 𝐷 , ..., 𝐷 } is a set of 𝑛 corresponding domains for the variables in 𝑉 where 𝑣 ∈ 𝐷 .

• 𝐶 = {𝑐 , 𝑐 , ..., 𝑐 } is a set of 𝑚 constraints. Each constraint is a predicate (or function): 𝑐 ∶
𝐷 ×𝐷 × ... ×𝐷 → {1, 0}. In order words, each predicate is a function that takes a set of variable
values and returns true if it satisfies the constraint and false if it does not.

Each instance of a CSP can be represented as a constraint graph, 𝐺 = (𝑉, 𝐸). For each variable
𝑣 ∈ 𝑉, there is a corresponding node in the graph. For every set of variables connected by a constraint
𝑐 ∈ 𝐶, there is a corresponding edge. Temporal constraints in the Resource Constrained Project
Scheduling Problem are binary and can be modelled as a graph. Another well known example of a
binary CSP is the Simple Temporal Problem, which is explained in more detail in Section ??.

A CSP can be solved by a procedure that consists of three steps. First, the input problem is checked
for consistency. If at least one constraint is violated, the algorithm will be stopped and will fail. If the
input problem is also a solution, the algorithm will be stopped and the problem will be returned as a
solution. The next step is to select a constraint conflict by using a heuristic. Then, a value is chosen
by a value ordering heuristic and this will be added to the problem. The last step is to recursively call
the algorithm on the updated problem.

5



6 2. Background in maintenance scheduling

2.2. The Resource Constrained Project Scheduling Problem
As mentioned earlier, a well defined scheduling model is the Resource Constrained Project Scheduling
Problem (RCPSP). In this section, the basic definition of RCPSP is given.

The first two basic elements of a RCPSP instance are tasks and resources. Each instance consists
of a set of tasks that need to be executed and a set of resources that may be used while executing
the task. Each task has a processing duration and each resource has a finite amount of capacity.
Both tasks and resources are dependent on practical constraints. There are two general types of con-
straints, namely temporal constraints and resource constraints. Temporal constraints are constraints
that restrict the start time of tasks based on time related properties, such like deadlines and precedence
constraints, while resource constraints are associated with the resource properties of the problem in-
stance, for example the amount of resources required by a task and the resource capacity.

The goal of RCPSP is to create a schedule where the runtime is as short as possible. In order
words, the goal is to minimise the makespan of the schedule. A schedule is an assignment of starting
times of tasks, in which all constraints are satisfied. With a feasible schedule, all tasks can be executed
while it is guaranteed that there are enough resources available and all required precedence tasks are
completed. The formal definition, as used by for example Staats[31], is as follows:

RCPSP An RCPSP instance is a tuple 𝑃 = ⟨𝑇, 𝑅, 𝐶⟩ where:

1. 𝑇 is a set of 𝑛 tasks. Each task 𝑡 has a duration 𝑑 ∈ ℝ and zero or more resource requirements
𝑟𝑒𝑞(𝑟 , 𝑡 ) ∈ ℕ .

2. 𝑅 is a set of 𝑚 resources. Each resource 𝑟 has a capacity 𝑐𝑎𝑝(𝑟 ) ∈ ℕ .

3. 𝐶 is a set of precedence constraints between tasks (𝑡 ∈ 𝑇 → 𝑡 ∈ 𝑇).

For each task and resource the following properties must always hold:

1. For each (𝑡 → 𝑡 ) ∈ 𝐶, task 𝑡 must be completed before task 𝑡 can start.

2. For each resource 𝑟 ∈ 𝑅 and concurrent set 𝑇 ⊂ 𝑇 the following must always hold 𝑐𝑎𝑝(𝑟 ) ≥
∑
∈
𝑟𝑒𝑞(𝑟 , 𝑡 ), where 𝑇 is a set of tasks that can be executed concurrently.

The associated solution of RCPSP is defined as follows:

Solution of an RCPSP instance Given an RCPSP instance 𝑃 = ⟨𝑇, 𝑅, 𝐶⟩. Each task 𝑡 ∈ 𝑇 is given
a start-time variable 𝑠 , ..., 𝑠 , where 𝑠 ∈ ℝ . To solve an RCPSP instance one needs to create a
schedule, which is a tuple of start-time assignments 𝑆 = (𝑠 , ..., 𝑠 ) (fixed-time schedule), for which all
constraints are satisfied and the make-span of 𝑆 is minimised.

As explained before, the precedence constraints of an RCPSP instance can be modelled as a graph.
This is an acyclic graph, called the project graph[20]. In this project graph, the nodes correspond with
the tasks in 𝑇 and the edges correspond with the precedence constraints 𝑡 → 𝑡 .

If the project graph has cycles, the RCPSP instance becomes unsolvable, because that would
mean that there are at least two tasks that are constrained in two different orderings at the same time.
Furthermore, if there is a single tasks which requires more resources than the total resource capacity,
the RCPSP instance becomes unsolvable as well. When these two properties are not violated, it is trivial
to find an arbitrary schedule without violating the precedence and resource constraints. However, it is
also the goal to minimise the makespan of the schedule, which is a NP-hard problem.

The previous definition of RCPSP does not allow for tasks to define an earliest starting time or a
deadline. Therefore, we will look at an extension of RCPSP, first presented by Hartmann et al[13] and
explained under the name Task RCPSP by Staats[31]. In this extension of RCPSP, release times and
deadlines are added to tasks, where the release time is the earliest starting time of the task and the
deadline is the latest finishing time of the task. At NedTrain the release time is the time at which a
train arrives at the depot and the deadline is when the train leaves the depot. Together with constraints
modelled by the standard RCPSP definition, this gives a complete overview of the constraints required
by NedTrain. The formal definition of Task RCPSP is as follows:
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Task RCPSP A Task RCPSP instance 𝑃 is an extension of an RCPSP instance 𝑃 = ⟨𝑇, 𝑅, 𝐶⟩, where
each task 𝑡 ∈ 𝑇 has a release time 𝑟𝑡(𝑡 ) ∈ ℕ and a deadline 𝑑𝑙(𝑡 ) ∈ ℕ . It must always hold that
a task 𝑡 starts after 𝑟𝑡(𝑡 ) and completes before 𝑑𝑙(𝑡 ). To solve Task RCPSP one needs to create a
schedule the same way as for standard RCPSP.

In RCPSP, the temporal constraints and resource constraints are divided into two layers. The tem-
poral layer contains the temporal constraints and the resource layer contains the resource constraints.

2.2.1. Temporal layer
Temporal constraints define in what range a temporal value has to be, in other words, what are the
possible starting times of a task. In Task RCPSP, there are two kind of temporal constraints, deadlines
and precedence constraints. A deadline is defined as 𝑠 < 𝑑𝑙(𝑡 ), where 𝑠 is the starting time of task
𝑡 , with deadline 𝑑𝑙(𝑡 ). Precedence constraints between task 𝑡 and task 𝑡 are defined as 𝑡 ≺ 𝑡 ,
where task 𝑡 has to be completed before task 𝑡 is started.

Deadline constraints are relatively simple compared to precedence constraints, since deadline con-
straints only influence one variable. One precedence constraint is also simple, but a set of precedence
constraints can create a complex network of interdependencies. The temporal constraints can be rep-
resented as a graph, where the nodes represent the tasks and the edges represent the precedence
constraints. The temporal graph of Task RCPSP is only able to define that two tasks are executed
before or after each other and not able to define a maximum or minimum distance.

2.2.2. Resource layer
As stated in the definition of RCPSP, resources in Task RCPSP are both renewable and multi-capacity.
A renewable resource is a resource that becomes available again after a task is completed. Multi-
capacity means that multiple tasks are allowed to use the resource.

One of the challenges in maintenance scheduling is finding resource over-allocation in a timely
manner. It is simple to check if a resource is over-allocated, given a set of concurrent tasks 𝑇 , and
a resource 𝑟 . If 𝑟𝑒𝑞(𝑟 , 𝑡 ) is the amount of resource 𝑟 that is needed by task 𝑡 ∈ 𝑇 and 𝑐𝑎𝑝(𝑟 )
is the capacity of resource 𝑟 , then the set 𝐴 ⊆ 𝑇 is resource consistent with respect to 𝑟 if it holds
that 𝑐𝑎𝑝(𝑟 ) ≥ ∑

∈
𝑟𝑒𝑞(𝑟 , 𝑡 ). However, there can be many different concurrent sets depending on

the complexity of the temporal graph and finding and checking all possible conflict sets can become
intractable with only a few tasks. There are multiple general approaches for identifying potential re-
source conflicts, for example clique-based approaches and profile-based approaches[2]. Clique-based
approaches reduce to the maximum clique problem, which is a NP-complete problem. Resource-profile
approaches, however, can be calculated in 𝑂(𝑛 × 𝑙𝑜𝑔(𝑛)) time, by iterating over a list of tasks sorted
by earliest starting times, while maintaining an ordered set of active tasks sorted on finishing time with
the current resource load[31]. We will therefore focus on resource-profile based approaches, since we
aim solve the RCPSP problem instances in a timely manner.

The general idea of profile-based approaches is that it is built as a function of time and resource
allocation. If a resource has a certain capacity, time points can be identified where the resource is
over-allocated, these time points are called peaks.

2.3. Simple Temporal Problem
Most temporal models use variables to represent events or starting times of tasks. In order to solve
these models, an assignment of starting times need to be found. The temporal problem instance in
consistent if all temporal constraints are satisfied.

A way to model simple temporal problems is the Simple Temporal Problem (STP)[8]. This model
only allows each precedence constraint to define one time interval between tasks. This interval defines
the minimum and maximum amount of time that is allowed between tasks. A problem instance can be
checked to be consistent in polynomial time[22]. The definition of a STP is as follows:

STP An STP instance is a tuple 𝑃 = ⟨𝑇, 𝐶⟩ where 𝑇 = {𝜏 , ..., 𝜏 } is a set of 𝑛 time point variables
and 𝐶 is a set of binary constraints. For each constraint 𝑐 ∈ 𝐶 with 𝑐 = (𝑎 , 𝑏 ) the following must
hold: −𝜏 + 𝜏 ≤ 𝑏 and 𝜏 − 𝜏 ≤ −𝑎 . A solution 𝑆 for 𝑃 is an assignment of values for the time point



8 2. Background in maintenance scheduling

variables in 𝑇, such that all constraints hold.

The time points 𝜏 , ..., 𝜏 have values that can be restricted using the given intervals, which allows
for many temporal restrictions to be applied to the starting times of a task.

The STP can also be represented as a constraint graph. Such a graph is called a Simple Temporal
Network (STN). In such a graph, the nodes represent the time points and the edges are labeled as
constraints.

An STP can be solved in linear time, because each constraint can be represented as the following
two inequalities: −𝜏 +𝜏 ≤ 𝑏 and 𝜏 −𝜏 ≤ −𝑎 , where 𝜏 are continuous variables in the linear model.
This model can be solved using linear solvers.

We could express the Task RCPSP problem in an STP, but as stated in the section before, Task
RCPSP has enough expressive power to model the temporal constraints present at the scheduling
problem at NedTrain. We therefore not need to model it using STP, but STP can still be useful for
problems later in this work.

2.4. Interval schedules
The schedules that are defined in the solutions of RCPSP and STP both are fixed-time schedules. A
fixed-time schedule is a mapping of tasks to starting times, where every task only has one time point at
which it can start. This has the advantage that all temporal or resource information can be ignored as
long as the tasks do not suffer any form of delay. But when there are even small delays, the schedule
will not be useful anymore. The schedule cannot continue because it is not known how the delay will
impact the other tasks. When working with dynamic schedules, fixed time schedules do not provide
the flexibility that is needed. In order to solve this, the scheduling process can be split in two steps.
First, the dynamic scheduling problem is partly solved, which still results in a dynamic schedule. In
the second step , this dynamic schedule is converted into a fixed-time schedule. This conversion is a
fast process, and therefore can be executed again when a delay has occurred. One partial solution
representation is an interval schedule[10].

An interval schedule does not assign a single time value to a task, but instead assigns an interval
of time points. The starting time of the task can be anything in this interval, without being worried about
breaking any constraint. An interval schedule is defined as follows:

Interval schedule Given an STP instance 𝑃 = ⟨𝑇, 𝐶⟩. An interval schedule 𝑆 is a set of intervals
𝑆 = {𝐼 , ..., 𝐼 } for each time-point variable in 𝑇, with 𝐼 = [𝑎 , 𝑏 ] where 𝑎 ≤ 𝑏 and for all 𝑐 ∈ 𝐶 it holds
that 𝑏 ≤ 𝑎 . 𝑆 is a valid interval schedule for 𝑃 iff for all values between 𝑎 , 𝑏 is a possible assignment
of the variable 𝜏 ∈ 𝑇 without violating the temporal constraints in 𝑃.

Interval schedules have more flexibility than fixed-time schedules, but they do not retain the original
precedence relations. This means that a schedule can still be feasible when one of the tasks is started
outside it’s interval. Partial Order Schedules[23] on the other hand does maintain structural data.

2.5. Partial Order Schedules
A Partial Order Schedule (POS) is introduced in order to provide more robustness and flexibility in a
schedule. The idea of a POS is that it is only a partially ordered set of tasks. It differs from an STN
since there are no fixed starting times, but it only uses simple precedence constraints. For every task
it is defined which tasks has to be completed in order for the task to start. Delays can be dealt with
very easily and quick in this way. A POS can also be seen as a graph that defines a set of feasible
fixed-time schedules. During the execution of the project the set of solutions is reduced as tasks are
completed and delays are spread to future tasks. The formal definition Policella[24] has given is as
follows:

POS A POS, 𝐺 = ⟨𝑁, 𝐸⟩ is a directed graph, where 𝑁 is a set of nodes representing temporal variables
𝜏 , ..., 𝜏 and 𝐸 is a set of edges representing binary precedence constraints between two temporal vari-
ables (𝜏 → 𝜏 ). A schedule 𝑆 of 𝐺 is an assignment of values to 𝑁 for which all precedence constraints
hold. 𝐺 is a valid POS of a given RCPSP instance 𝑃 iff all possible schedules of 𝐺 also satisfies all
constraints in 𝑃.
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A POS is more robust since external changes can be include in the underlaying temporal network.
The POS only contains resource feasible schedules, so the resource constraints can be ignored during
the spreading to future tasks. At some point new external changes can no longer be spread, at which
point a new schedule needs to be calculated from scratch. Solutions can be found using Precedence
Constraint Posting, which is explained in the next section.

2.6. Precedence Constraint Posting
The difficult part of solving an RCPSP instance is the part with resource constraints. Temporal con-
straints are much easier to satisfy. Having only temporal constraints opposed to both temporal and
resource constraints restricts the search space from NP to P. Precedence Constraint Posting (PCP) is
a technique that simplifies resource constrained problems to problems containing only temporal con-
straints. This has as advantage that the resulting problem, with only temporal constraints, is relatively
easy to solve. However, the step of converting the resource constraints to temporal constraints is still
a complex problem.

The way PCP converts a problemwith both resource and temporal constraints to a problemwith only
temporal constraints is by continually adding extra precedence constraints to the temporal layer, until all
possible temporal constraints are also consistent with the resource constraints. This is done by adding
a precedence constraint between two tasks that have a resource conflict. By adding the precedence
constraint, the two tasks cannot be executed together, so they do not use the same resource.

A basic greedy PCP solver has a problem with both resource and temporal constraints as input
and outputs a schedule. The greedy algorithm is an iterative algorithm. In every iteration, the algorithm
finds all resource conflicts, select one conflict out of this set and after that solves the conflict by adding a
precedence constraint. This is done until no more resource conflicts can be found, or until the problem
becomes unsolvable. This algorithm has two points at which it has to make a search decision, namely
selecting a conflict to solve and choosing a precedence constraint to solve this conflict.

The first step of PCP is to find resource conflicts. As stated before, we will focus on using a resource
profile to achieve this. A resource set is usually a set of tasks competing for the same resource, also
called a conflict set. A conflict set can be resolved by simply selecting two random tasks in the resource
set and adding a precedence constraint between these two tasks. But selecting tasks randomly is not
the most effective way of resolving conflict sets. The randomly posted constraint might have very little
impact in solving the set.

When selecting a conflict or resolving a conflict, usually a least-commitment strategy is applied. A
least-commitment strategy means that the choices are made so that the amount of restrictions added
to a set of possible solutions is minimised. This allows the solver to avoid dead-ends and increases its
chances of finding a solution.

There are two common approaches for conflict resolution, a Minimal Critical Set (MCS) approach
and pair-wise conflict resolution. A Minimal Critical Set is a set of tasks where if all tasks are executed
together, a resource constraint is violated, but any strict subset of this set of tasks does not exceed the
resource capacity. It is proposed to use MCS’s for conflict resolution by only solving conflicts that are
also a MCS[18][3], in order to restrict the number of precedence constraints posted. However, finding
the most critical MCS is a hard problem for larger scheduling instances, since there are an exponential
number of MC’s to the number of tasks in a resource peak.

Pair-wise conflict resolution is a much simpler approach to resolve conflicts. Given a conflict set,
a set of conflict pairs will be created. All the tasks in the conflict set compete for the same resource.
Resolving only some of the conflict pairs will resolve the conflict set. Conflict pairs will be resolved by
posting a precedence constraint between the two tasks in the conflict pair. As stated by Staats[31],
there are four cases of conflict pairs, containing task 𝑡 and task 𝑡 , which can be used to prune the
search space of conflict pairs:

Case 1: 𝑡 cannot be executed before 𝑡 and 𝑡 cannot be executed before 𝑡

Case 2: 𝑡 cannot be executed before 𝑡

Case 3: 𝑡 cannot be executed before 𝑡
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Case 4: 𝑡 can be executed before 𝑡 and 𝑡 can be executed before 𝑡

By classifying all the conflicts early pruning can be done by removing all conflicts of Case 1 because
any extra posted constraint will create an inconsistent temporal network. Cases 2 and 3 are trivial to
resolve because only one ordering is possible. Case 4 conflicts are open to any ordering and often
requires more calculations to resolve.

Finding all pair-wise conflicts is, opposed to usingMCS’s, amuch simpler problem, since the number
of conflict pairs is bounded by 𝑂(𝑛 ). Therefore, pair-wise conflict resolution is much faster than using
MCS’s, but it can post more precedence constraints than using MCS’s. Using the right heuristics
influences the effectiveness of the posting of precedence constraints. An overview of possible heuristics
is given in Section 2.9

2.7. Flexibility
Flexibility can help to make better decisions in the heuristics to eventually make better schedules.
For NedTrain, a flexible schedule should give management reliable information and give maintenance
teams autonomy while minimizing the duration of the maintenance project. Flexibility can be defined
as the number of possible concrete schedules represented in a flexible schedule, however it is not
generally possible to count the exact number of possible schedules, so most flexibility metrics are
estimations of flexibility. There are multiple metrics to measure the flexibility of a POS. One of these
metrics is 𝑓𝑙𝑒𝑥 [31]. Each task 𝑡 ∈ 𝑇, where 𝑇 is a set of tasks in the scheduling problem instance, is
assigned an interval [𝑎 , 𝑏 ]. Each task is free to start within this interval without taking the behaviour
of other tasks into account. We can define that amount of independent slack or flexibility as follows:
𝑓𝑙𝑒𝑥 = ∑

∈
(𝑏 − 𝑎 )

2.8. PCP algorithms
There are different existing algorithms to implement PCP. Two of the existing algorithms are the Conflict
Free Solution Algorithm, and Solve and Robustify.

2.8.1. Conflict Free Solution Algorithm
The Conflict Free Solution Algorithm(CFSA) takes a bounding approach to solving RCPSP problems.
The idea behind CFSA is to keep adding precedence constraints until there are no more resource
constraints. In other words, all possible solutions allowed by the temporal constraints must not exceed
the resource capacity. A resource profile is used to find pairs of tasks that cause resource conflicts.
However, to be able to create a resource profile that can find the exact number of conflict pairs, it needs
to know the exact starting time of tasks, but CFSA does not maintain the exact starting time of tasks,
it only maintains temporal bounds in the form of an STN. With a temporal network it is impossible to
construct an exact resource profile because of possible interactions between tasks. Instead CFSA
maintains two profiles: the worst case profile (upper-bound) and a best case profile (lower-bound).
Unfortunately, this approach has the tendency to post too many precedence constraints. The resulting
POS has too many constraints and therefore represents only a small set of possible schedules.

2.8.2. Solve and Robustify
A second approach for solving RCPSP problems is Solve and Robustify, which is proposed by Policella
et al.[25]. This approach is based on the idea to separate the phase of obtaining a problem solution and
the phase of adding flexibility to the resulting schedule, which results in a Partial Order Schedule. So,
Solve and Robustify first tries to find a single fixed-time solution and in the second phase, the schedule
is expanded into a POS, as is illustrated in Figure 2.1. In this way, any state of the art solver that has
been designed to obtain optimal solutions for a certain objective can be used to retrieve an schedule.
After that, in the second step, additional flexibility can be added, without altering the makespan of the
schedule.

For the first step, the Earliest Start Time Algorithm (ESTA) can be used and for the second step, the
Chaining Algorithm can be used. Both algorithms are explained in more detail in the following sections.
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Figure 2.1: Graphical representation of Solve and Robustify[31].

Earliest Start Time Algorithm
The Earliest Start Time Algorithm(ESTA)[2] is an algorithm that was introduced by Cesta et al as an
algorithm to solve the Multiple Capacitated Metric Scheduling Problem. This problem is very similar to
the Resource Constrained Project Scheduling Problem and in later work it is showed that this algorithm
can be used to solve RCPSP as well.

For the Earliest Start Time Algorithm, only the earliest start times are allowed by the temporal net-
work. This results in only one fixed time schedule. This has as result that, contrarily to CFSA, an exact
resource profile can be calculated. Therefor, it will be possible to select much more relevant prece-
dence constraints. With an exact resource profile, ESTA can make better predictions for selecting
resource peaks and constraints in order to minimise the resulting makespan.

For CFSA, every task has an interval in which the task can be executed. A consistent temporal
solution for such a schedule can be retrieved by using only the earliest start times, which results in an
Earliest Start Time Schedule(ESTS). It is also possible to use the Latest Start Time Schedule, but since
we are interested in minimising the makespan, using the ESTS is more useful. The ESTS is temporal
consistent, but it does not have to be resource consistent as well. However, it is a good start schedule
for using a resource peak levelling algorithm for Precedence Constraint Posting.

Algorithm 1 shows the general process of ESTA. The first step is to calculate the Earliest Start Time
Schedule. After that, the resource conflicts are calculated. If there aren’t any resource conflicts, the
schedule is also resource consistent, so the schedule can be returned. If the conflict set is unsolvable,
for example when a conflict is found that cannot be put into sequence due to temporal restrictions, the
schedule is considered unsolvable an a failure is returned. If this both doesn’t happen, first a conflict is
selected out of all conflicts in the resource conflicts and after that, a precedence constraint is selected,
so which task has to be executed first out of the two tasks in the conflict. Finally the precedence
constraint is posted to resolve it. This algorithm will start over until a resource consistent ESTS is
found. It is important to choose the right conflicts and constraints, since the quality of the solution
depends on the selection of these. There are several heuristics that make these kind of decisions, both
for conflict selection as conflict resolution. An overview of such heuristics is given in Section 2.9.

Chaining Algorithm
The second step of Solve and Robustify is the robustify step. As mentioned earlier, this is done in
order to add flexibility to the solution, by transforming the fixed time solution that is the result of the
ESTA algorithm, to a POS. The chaining algorithm sees each resource as a distinct unit that flows
through a sequence of tasks, called a chain. The algorithm creates such a flow by posting precedence
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Algorithm 1 ESTA
1: Input: A problem 𝑃
2: Output: A schedule 𝑆
3: while 𝑡𝑟𝑢𝑒 do
4: 𝑆 ← CalculateESTS(𝑃)
5: 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡 ← FindResourceConflicts(𝑆)
6: if 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡 = ∅ then
7: return 𝑆
8: end if
9: if Unsolvable(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡) then

10: return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
11: end if
12: 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 ← SelectConflict(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡)
13: 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ← SelectPrecedenceConstraint(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡)
14: PostPrecedenceConstraint(𝑃, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡)
15: end while

constraints. Two tasks that compete for the same resource unit will be added to the same chain and will
therefor no longer be able to conflict with each other. Since there are as many chains as the number
of resources, the resource capacities will never be exceeded.

A basic algorithm that can be used for chaining is introduced by Policella et al[24] and is showed
in Algorithm 2. The Chaining Algorithm first sorts the tasks based on their start time, since using this
approach it is guaranteed that each task that is added will not violate any temporal constraint. Adding
tasks ordered by start time also ensures that there are enough free chains at the given start time of the
task, which ensures that the makespan is not increased during the chaining process. After the sorting,
for each resource a separate chain is created, containing the first task 𝑡 . For every task 𝑡 and for
every chain, a precedence constraint is posted between 𝑡 and the last task in the chain. Once all the
tasks have been assigned to chains and all the needed precedence constraints have been posted, the
temporal network will be a valid POS.

Algorithm 2 Chaining Algorithm
1: Input: A problem 𝑃 and one of its fixed-time schedules 𝑆 = 𝑠 , ..., 𝑠
2: Output: A POS in chain-form
3: 𝑃𝑂𝑆 ← 𝑃
4: Sort 𝑆 by start time of tasks in 𝑆
5: Initialise all chains with the start task 𝑡
6: for all resources 𝑟 do
7: for all tasks 𝑡 do
8: for 1 to 𝑟𝑒𝑞(𝑟 , 𝑡 ) do
9: 𝑐ℎ𝑎𝑖𝑛 ← SelectChain(𝑡 , 𝑟 )

10: 𝑡 ← last(𝑐ℎ𝑎𝑖𝑛)
11: 𝑃𝑂𝑆 ← 𝑃𝑂𝑆 ∪ {𝑡 ≺ 𝑡 }
12: 𝑙𝑎𝑠𝑡(𝑐ℎ𝑎𝑖𝑛) ← 𝑡
13: end for
14: end for
15: end for
16: return 𝑃𝑂𝑆

2.8.3. Conclusion
In this section, two different Precedence Constraint Posting algorithms are explained, CFSA and Solve
and Robustify. CFSA is a straightforward implementation of PCP, which reduces the RCPSP instance
directly into a POS. However, since the input is not an fixed time schedule, it is not possible to calculate
an exact resource profile. Therefor, the conflict pairs cannot be retrieved precisely. Solve and Robus-
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tify overcomes this problem by first converting the problem to a fixed time schedule, then solving the
problem and after that add flexibility to the schedule.

Both methods can be used to solve an RCPSP instance. However, we want to have as much
information as possible about the conflicts. This is desirable since decisions will be made based on
the available information of the conflicts. Therefor, in this work we will be focusing on the Solve and
Robustify algorithm for improving the solutions of RCPSP instances.

2.9. Heuristics for conflict selection and conflict resolution
It is important to select the right conflicts and constraints, since the resulting schedule depends on
these selections. Heuristics are used in order to choose the conflicts and constraints. In this section,
the heuristics for conflict selection and resolution will be described.

2.9.1. Heuristics for conflict selection
The conflict selection heuristics that are available are Min-Slack and 𝜔 . These heuristics are defined
as follows.

Min-Slack
Min-Slack is a pair-wise resource conflict heuristic that is proposed by Smith[30]. This heuristic uses
the amount of slack between two tasks in a conflict pair. The slack is used to rank the conflict pairs.
Slack is the amount of time between the tasks. Slack is calculated using the earliest starting time (est),
latest finishing time (lft) and duration (d) of tasks. The formula for calculating the slack between two
tasks is:

𝑠𝑙𝑎𝑐𝑘(𝑡 ≺ 𝑡 ) = 𝑙𝑓𝑡(𝑡 ) − 𝑒𝑠𝑡(𝑡 ) − (𝑑 + 𝑑 )
The heuristic uses this slack to rank the conflict pairs. The pair with the least amount of slack will be
considered as the most critical, which results in the following formula:

min
( , )

{min(𝑠𝑙𝑎𝑐𝑘(𝑡 ≺ 𝑡 ), 𝑠𝑙𝑎𝑐𝑘(𝑡 ≺ 𝑡 ))}

The conflict with the least amount of slack is chosen first, because there is a higher probability that this
conflict pair will contribute to an unsolvable resource peak later on in the PCP process.

Flexibility metric
Another pair-wise resource conflict heuristic is 𝜔 , which is proposed by Cesta[2]. This is a flexibility
metric that also uses a temporal distance between two tasks. Just as with Min-Slack, the pair with
the least amount of flexibility will be chosen to be resolved first. The formula of 𝜔 makes use of a
distance graph, which uses start times and end times. Therefor, each task is split into a start time,
𝜏 = 𝑠 , and a end time, 𝜀 = 𝑠 + 𝑑 . Furthermore, if all conflict pairs in the peak are of case 4, which
means that for every pair task 1 can be executed before task 2 and task 2 can be executed before task
1, 𝜔 uses an extra metric 𝑆 in order to take both orderings of the tasks into account. Since both
tasks can be executed before the other task, there are two possible orderings of which one can might
be critical but the other not. The resulting formula is:

𝜔 (𝑡 , 𝑡 ) = {
{ ( , ), ( , )}

√
if all conflicts are case 4

min{𝑑(𝜀 , 𝜏 ), 𝑑(𝜀 , 𝜏 )} else

Where 𝑆 = { ( , ), ( , )}
{ ( , ), ( , )} .

2.9.2. Heuristics for conflict resolution
There are also several heuristics for conflict resolution, so which task must be executed first. The
heuristics that are considered are max-slack, a makespan heuristic and the flexibility metrics 𝑓𝑙𝑒𝑥 ,
𝑅𝑀1 and 𝑅𝐵. These heuristics are used to determine which of the two options remove the least so-
lutions from the solution space. Max-slack uses the slack between the two tasks in the conflict, but
the flexibility and makespan metrics use the flexibility, or makespan, of the problem after posting the
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constraint of task 1 ≺ task 2, versus the flexibility of the problem after posting task 2 ≺ task 1. The
different heuristics are defined as follows.

Max-slack
This heuristic uses the amount of slack between the two tasks to determine which task must be exe-
cuted first. This is based on the assumption that having more slack means that there is a larger amount
of solutions. So removing the least amount of slack will remove the least amount of solution space.
This results in the following constraint selection formula.

selected constraint = { task 1 ≺ task 2 if 𝑠𝑙𝑎𝑐𝑘(task 1, task 2) > 𝑠𝑙𝑎𝑐𝑘(task 2, task 1)
task 2 ≺ task 1 else

𝐑𝐌𝟏
As stated earlier, the flexibility metrics calculate the flexibility of an entire problem, rather dan just two
tasks. 𝑅𝑀1 is a slack based metric proposed by Chtourou[7]. It sums up the slack of all tasks. The
resulting formula for calculating 𝑅𝑀1 of problem 𝑇 is as follows.

𝑅𝑀1(𝑇) = ∑
∈
𝑙𝑠𝑡(𝑡 ) − 𝑒𝑠𝑡(𝑡 )

𝐑𝐁
Another metric, which is proposed by Cesta[2], is 𝑅𝐵. 𝑅𝐵 is the ratio between the average distances in
time between tasks and the scheduling horizon. The scheduling horizon is the sum of the duration of
all tasks in the problem. 𝑅𝐵 also uses a distance graph, and 𝑑(𝑡 , 𝑡 ) is the temporal distance between
the two tasks 𝑡 and 𝑡 . Given the horizon as 𝐻, the formula of 𝑅𝐵 of problem 𝑇 is as follows.

𝑅𝐵(𝑇) = 100 × ∑
, ∈ ,

|𝑑(𝑡 , 𝑡 ) + 𝑑(𝑡 , 𝑡 )|
𝐻 × (𝑛(𝑛 − 1))

𝐟𝐥𝐞𝐱𝐈
Another metric is 𝑓𝑙𝑒𝑥 , which is proposed by Wilson[32]. This metric uses an interval schedule, which
is used to calculate the amount of freedom the interval schedule has. This is also called the amount of
independent slack. In an interval schedule, each task 𝑡 has an interval [𝑎 , 𝑏 ] in which the task can be
executed without having to worry about exceeding any constraints. The formula for calculating 𝑓𝑙𝑒𝑥
is as follows.

𝑓𝑙𝑒𝑥 (𝑇) = ∑
∈
(𝑏 − 𝑎 )

Makespan
The last metric we will use uses the makespan of the two resulting problems. The makespan of a
problem is calculates as follows, where 𝑒𝑓𝑡(𝑡 ) is the earliest finishing time of task 𝑡 .

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑇) = max
∈
(𝑒𝑓𝑡(𝑡 ))
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Background in machine learning

As explained in the introduction, we would like to improve the constraint selection and conflict resolution
by replacing the heuristics by a machine learning model. In this chapter, an introduction to machine
learning is given, in order to be able to support the selection of the features and machine learning
methods we use. We will use these methods later in this work to improve the current solver for the
RCPSP problem.

We focus on machine learning classifiers, since the goal of the heuristics replacement is to classify
each conflict and constraint in order to makes choices for selecting and resolving conflict pairs.

First of all, we give a general introduction to machine learning, after which we will explain several
classifiers that we can use in more detail. At the end of this chapter, we select some machine learning
models that could be effective for classifying the instances in our problem.

3.1. Introduction to machine learning
Machine learning is a field that often uses statistical models to give computers the ability to learn. This
learning is done based on data that is provided, but without requiring the computer to be explicitly
programmed to process the data. Each data example in a dataset is called an instance. Each instance
in the dataset used by machine learning algorithms is represented using the same set of features. The
features may be continuous, categorical or binary. In this work, we will work with instances with known
labels. A label indicates in which corresponding class the instance belongs. These labels are the
corresponding correct outputs. This kind of machine learning is called called supervised learning[16].

Inductive machine learning is the process of creating a classifier that can be used to generalise from
new instances. The process of applying supervised machine learning to a real-world problem consist
of multiple steps. When having a problem, the first important step is to identify the data and select the
features that have influence on the comprehensibility of the classifier. It can also be possible that some
extra data preprocessing is necessary for the classifier in order to be able to process the data. When
the training set is generated, the appropriate machine learning algorithm with the right parameters
needs to be selected. The model can be trained based on this training set, and is evaluated based on
a different test set. Based on the results of this evaluation, some of the steps can be executed again.
A graphical representation of this process is given in Figure 3.1.

The choice of which specific learning algorithm we should use is a critical step. The performance
of the algorithm depends on the type of data and the type of features that is available. Therefor, we
look at the properties of different algorithms and compare them. The different algorithms also need to
be evaluated. In the next section, different evaluation methods are considered.

3.2. Evaluation of methods
Estimating the accuracy of a classifier is important not only to predict its future prediction accuracy,
but also for selecting the correct machine learning classifier from a given set. It is important to avoid
overfitting of the data. Any learned hypothesis ℎ, is said to overfit training data if another hypothesis
ℎ exists that has a larger error than ℎ when tested on the training data, but a smaller error than ℎ
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Figure 3.1: The process of supervised ML

when tested on the entire dataset. In order to avoid overfitting, 𝑘-fold cross-validation is used for the
evaluation of the machine learning models that will be used. In 𝑘-fold cross-validation, the dataset 𝐷 is
randomly split in into 𝑘 mutually exclusive subsets, which are the folds, 𝐷 ,𝐷 , ..., 𝐷 of approximately
equal size. Then, the training and testing is done 𝑘 times, each time 𝑡 ∈ {1, 2, ..., 𝑘}. It is trained on
𝐷\𝐷 and tested on 𝐷 [14].

Using this cross-validation, the confusion matrix and ROC curve are calculated. The confusion
matrix is a matrix that visualises the performance of a machine learning algorithm. Each row of the
matrix represents the instances in an actual class while each column represents the instances in a
predicted class. In this way, the amount of false negatives and false positives can be easily shown. A
false negative is an instance that is classified as class 0, while it is actually member of class 1. A false
positive is an instance that is classified as class 1, while it is actually a member of class 0.

The receiver operating characteristic (ROC) curve is a graphical plot that illustrates the diagnostic
ability of a binary classifier system as its discrimination threshold is varied. With a classifier, the output
can be a probability, a value between 0 and 1. Ideally you want to say that everything larger 0.5 is
member of one class and everything less than 0.5 is member of the other class. This value is called
the threshold. However, depending on the specific problem, you can be more concerned with false
negatives or with false positives. The ROC curve is created by plotting the true positive rate against
the false positive rate at various threshold settings, to take into account the sensitivity of the model in
general. We also use the area under the curve (AUC) of the ROC curve as evaluation metric. The
machine learning community most often uses the ROC AUC statistic for model comparison [12]. A
reliable and valid AUC estimate can be interpreted as the probability that the classifier will assign a
higher score to a randomly chosen positive example than to a randomly chosen negative example.

3.3. Parameter tuning
Besides choosing the best machine learning algorithm to achieve the best results, choosing the best
parameters for the method is also important. Every machine learning method has several parameters
that influence the performance of the model. Each parameter can be seen as a dimension on a graph
with the values of a given parameter as a point along the axis. Therefor, 𝑛 parameters will result in
an 𝑛-dimensional hypercube of possible configurations of the algorithm. Tuning these parameters can
therefor improve the performance of the model.
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The goal of parameter tuning is to find a point in this 𝑛-dimensional hypercube in which the algo-
rithm performs best. This can be done by using automated methods that uses a grid on the space
of possibilities. However, overfitting of the model must be avoided. Therefor, it is important to use
cross-validation in this step as well.

3.4. Overview of different machine learning algorithms
In order to choose the right machine learning algorithm to use in this research, we give an overview
of different machine learning techniques in this chapter. Kotsiantis et al[16] have given an exhaustive
overview of different techniques, which will be explained in this section.

3.4.1. Logic based algorithms
In this section we will concentrate on two groups of logical (symbolic) learning methods: decision trees
and rule-based classifiers.

Decision trees
Decision trees are trees that classify instances by sorting them based on feature values. Each node in
a decision tree represents a feature in an instance to be classified, and each branch represents a range
of values that the node can assume. In the leaves, the class for an instance with the corresponding
features is defined. Instances are classified starting at the root node and sorted based on their feature
values. The problem of constructing optimal decision trees is an NP-complete problem and thus theo-
reticians have searched for efficient heuristics for constructing near-optimal decision trees. The feature
that best divides the training data would be the root node of the tree. There are numerous methods for
finding the feature that best divides the training data. The same procedure is then repeated on each
partition of the divided data, creating sub-trees until the training data is divided into subsets of the same
class.

The most straightforward way of tackling overfitting in decision trees is to pre-prune the decision
tree by not allowing it to grow to its full size. Establishing a non-trivial termination criterion such as a
threshold test for the feature quality metric can do that. Decision tree classifiers usually employ post-
pruning techniques that evaluate the performance of decision trees, as they are pruned by using a
validation set.

One of the most useful characteristics of decision trees is their comprehensibility. People can easily
understand why a decision tree classifies an instance as belonging to a specific class. Since a decision
tree constitutes a hierarchy of tests, an unknown feature value during classification is usually dealt
with by passing the example down all branches of the node where the unknown feature value was
detected, and each branch outputs a class distribution. The output is a combination of the different
class distributions that sum to 1. The assumption made in the decision trees is that instances belonging
to different classes have different values in at least one of their features. Decision trees tend to perform
better when dealing with discrete/categorical features.

Learning set of rules
Decision trees can be translated into a set of rules by creating a separate rule for each path from the
root to a leaf in the tree. However, rules can also be directly induced from training data using a variety
of rule-based algorithms. Classification rules represent each class by disjunctive normal form (DNF).
The goal is to construct the smallest rule-set that is consistent with the training data. A large number of
learned rules is usually a sign that the learning algorithm is attempting to ”remember” the training set,
instead of discovering the structure that the data governs.

The most useful characteristic of rule- based classifiers is their comprehensibility. In addition, even
though some rule-based classifiers can deal with numerical features, some experts propose these
features should be discretised before induction, so as to reduce training time and increase classification
accuracy.

3.4.2. Perceptron based algorithms
Other well-known algorithms are based on the notion of perceptron. We can divide perceptron based
algorithms into single layered and multilayered perceptrons.
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Single layered perceptrons
A single layered perceptron can be briefly described as follows: If 𝑥 through 𝑥 are input feature values
and 𝑤 through 𝑤 are the corresponding weights which are assigned to the features, typically real
numbers in the interval [-1, 1], then the perceptron computes the sum of weighted inputs: ∑𝑥 𝑤 and

output goes through an adjustable threshold: if the sum is above threshold, the output is 1, otherwise
the output is 0.

The most common way that the perceptron algorithm is used for learning from a batch of training
instances is to run the algorithm repeatedly through the training set until it finds a weight vector and a
threshold which is correct on all of the training set. This prediction rule is then used for predicting the
labels on the test set.

Generally, all perceptron-like linear algorithms are anytime online algorithms that can produce a
useful answer regardless of how long they run. The longer they run, the better the result they produce.
Finally, perceptron-like methods are binary, and therefore in the case of multi-class problem one must
reduce the problem to a set of multiple binary classification problems.

Multilayered perceptrons
Perceptrons can only classify linearly separable sets of instances. If a straight line or plane can be
drawn to separate the input instances into their correct categories, input instances are linearly separable
and training algorithm will find the right perceptron in order to find the solution. If the instances are
not linearly separable learning will never reach a point where every instance is classified properly.
Multilayered Perceptrons (Artificial Neural Networks (ANNs)) have been created to try to solve this
problem.

A multi-layer neural network consists of large number of units (neurons) joined together in a pattern
of connections. Units in a net are usually segregated into three classes: input units, which receive
information to be processed; output units, where the results of the processing are found; and units in
between known as hidden units. Feed-forward ANNs allow signals to travel one way only, from input
to output.

First, the network is trained on a set of labeled data to determine input-output mapping. The weights
of the connections between neurons are then fixed. These fixed weights are then used to determine
the classifications of a new set of data.

During classification the signal at the input units propagates all the way through the net to determine
the activation values at all the output units. Each input unit has an activation value that represents some
feature external to the net. Then, every input unit sends its activation value to each of the hidden units
to which it is connected. Each of these hidden units calculates its own activation value and this signal
is then passed on to output units. The activation value for each receiving unit is calculated according
to a simple activation function. The function sums together the contributions of all sending units, where
the contribution of a unit is defined as the weight of the connection between the sending and receiving
units multiplied by the sending unit’s activation value. This sum is usually then further modified, for
example, by adjusting the activation sum to a value between 0 and 1 and/or by setting the activation
value to zero unless a threshold level for that sum is reached.

The multiple layers and the nonlinear activation function distinguishes the multilayered perceptron
from a single layered perceptron, so it can also identify non binary problems.

ANNs have been successfully applied to many real-world problems but still, their most striking disad-
vantage is their lack of ability to reason about their output in a way that can be effectively communicated.

3.4.3. Statistic learning algorithms
Conversely to ANNs, statistical approaches are characterised by having an explicit underlying proba-
bility model, which provides a probability that an instance belongs in each class, rather than simply a
classification. Bayesian networks are the most well known representative of statistical learning algo-
rithms.

Naive bayesian network
Naive Bayesian networks (NB) are very simple Bayesian networks which can be used for simple clas-
sifier construction. It is a model that assigns class labels to problem instances. These instances are
represented as vectors of feature values and the class labels is an finite set. Naive Byes classifiers
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assume that the value of each feature is independent from the value of any other feature. Many ap-
plications use the method of maximum likelihood for parameter estimation. The maximum likelihood
estimator attempts to find the parameter values that maximise the likelihood function, given the obser-
vations.

The major advantage of the naive Bayes classifier is its short computational time for training. In
addition, since the model has the form of a product, it can be converted into a sum through the use of
logarithms - with significant consequent computational advantages. If a feature is numerical, the usual
procedure is to discretise it during data pre-processing.

Instance-based algorithms
Another category under the header of statistical methods is Instance-based learning. Instance-based
learning algorithms are lazy learning algorithms, as they delay the induction or generalisation process
until classification is performed. Lazy-learning algorithms require less computation time during the
training phase than eager-learning algorithms (such as decision trees, neural and Bayesian networks)
but more computation time during the classification process. One of the most straightforward instance-
based learning algorithms is the nearest neighbour algorithm.

The higher stability of nearest neighbour classifiers distinguishes them from decision trees and some
kinds of neural networks. A learning method is termed ”unstable” if small changes in the training-test
set split can result in large changes in the resulting classifier.

The major disadvantage of instance-based classifiers is their large computational time for classifi-
cation. A key issue in many applications is to determine which of the available input features should be
used in modelling via feature selection, because it could improve the classification accuracy and scale
down the required classification time. Furthermore, choosing a more suitable distance metric for the
specific dataset can improve the accuracy of instance-based classifiers.

3.4.4. Support Vector Machines
Using Support Vector Machines (SVMs) is another supervised machine learning technique. SVMs re-
volve around the notion of a ”margin”, either side of a hyperplane that separates two data classes.
Maximising the margin and thereby creating the largest possible distance between the separating hy-
perplane and the instances on either side of it has been proven to reduce an upper bound on the
expected generalisation error.

In the case of linearly separable data, once the optimum separating hyperplane is found, data points
that lie on its margin are known as support vector points and the solution is represented as a linear
combination of only these points. Other data points are ignored. Therefore, the model complexity of an
SVM is unaffected by the number of features encountered in the training data (the number of support
vectors selected by the SVM learning algorithm is usually small). For this reason, SVMs are well suited
to deal with learning tasks where the number of features is large with respect to the number of training
instances.

However, when non-separable data is involved, SVM’s can also be used. One solution to the insep-
arable data problem is to map the data onto a higher dimensional space. The separating hyperplane
can then be defined on this higher dimensional space. With an appropriately chosen transformed fea-
ture space of sufficient dimensionality, any consistent training set can be made separable.

The training optimisation problem of the SVM necessarily reaches a global minimum, and avoids
ending in a local minimum, which may happen in other search algorithms such as neural networks.
However, the SVM methods are binary, thus in the case of multi-class problem one must reduce the
problem to a set of multiple binary classification problems. Discrete data presents another problem,
although with suitable rescaling good results can be obtained.

3.4.5. Ensemble learning
The ensemble learningmethods aremethods that generatemany classifiers and aggregate their results[19].
Two well known methods are bagging and boosting, which are explained in more depth in the following
sections.

Bagging
In bagging, successive prediction methods do not depend on earlier prediction methods. Each pre-
diction method is independently constructed using a bootstrap sample of the data set. In the end, a
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simple majority vote is taken for prediction. An example of such a bagging method is a Random Forest
classifier[19].

In random forest, each tree is constructed using a different bootstrap sample of the dataset. Fur-
thermore, in each node of the tree, a subset of the available predictors is taken. The best among this
subset of predictors is chosen at that specific node. This strategy results in a method that is robust
against overfitting. After this step, there are multiple trees for the classification. The final prediction is
done using an aggregation of these multiple trees, for example using majority vote.

Boosting
In boosting, successive prediction methods give extra weight to points incorrectly predicted by earlier
predictors. In the end, a weighted vote is calculated to use as prediction. Gradient Boosting Decision
Trees are trained iteratively. Each decision tree is trained to minimise a certain loss function, for exam-
ple the mean squared error. This is done by recursively splitting the data such that maximises a certain
criterion. This is done until some limit, for example the depth of the tree, is reached. This criterion is
chosen in such a way that the loss function is minimised at each split.

The next tree is constructed in such a way that minimises the loss function when the outputs are
combined with the outputs of the first tree. The hardest part is computing the best split for each tree.
There is no analytical solution for choosing the best split.

An example of such a, improved, boosting method is XGBoost[6]. This method can construct
boosted trees in an efficiently way and can furthermore operate in parallel.

XGBoost is an improved boosting algorithm, based on decision tree gradient boosting[34] and it can
construct boosted trees in an efficiently way and can furthermore operate in parallel. The main goal of
XGBoost is to optimise the value of the objective function.

3.4.6. Conclusions
In order to make a decision in which machine learning algorithm is suitable for our problem, we discuss
some advantages and disadvantages of the different algorithms.

Generally, SVMs and neural networks tend to performmuch better when dealing withmulti-dimensions
and continuous features. On the other hand, logic-based systems tend to perform better when deal-
ing with discrete/categorical features. For neural network models and SVMs, a large sample size is
required in order to achieve its maximum prediction accuracy whereas NB may need a relatively small
dataset.

Instance-based algorithms are very sensitive to irrelevant features. Moreover, the presence of
irrelevant features can make neural network training very inefficient, even impractical.

Lazy learning methods require zero training time because the training instance is simply stored.
Naive Bayes methods also train very quickly since they require only a single pass on the data either
to count frequencies (for discrete variables) or to compute the normal probability density function (for
continuous variables under normality assumptions). Univariate decision trees are also reputed to be
quite fast-at any rate, several orders of magnitude faster than neural networks and SVMs.

In our problem, we have mainly continuous attributes. Discrete attributes are attributes that can
only take particular values. There may potentially be an infinite number of those values. An example
of a discrete attribute is number of resources a task is dependent on. Continuous attributes are not
restricted to defined separate values, but can occupy any value over a continuous range. Between any
two continuous attribute value, there may be an infinite number of others. An example of a continuous
attribute is the release time or deadline of a task.

So we are looking for an algorithm that can handle mainly continuous attributes. Decision trees
are capable of dealing with both continuous as discrete attributes. Furthermore, Neural Networks
and Support Vector Machines can also deal with continuous attributes. However, Neural Networks
are sensitive to overfitting in relation to SVM’s and Decision Trees. Furthermore, they have a lower
tolerance for irrelevant and redundant features. Therefor, we will mainly focus on using Support Vector
Machines and Decision trees. Furthermore, we will look at Tree Ensemble methods, which often have
a better performance than normal Decision Trees.
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Improving Solve and Robustify with a

machine learning model
In this chapter, we describe howwe have tried to improve the Solve andRobustify algorithm by replacing
the heuristics with a machine learning classifier that makes better decisions than the heuristics. First,
we have executed several experiments in order to decide which machine learning methods obtain the
best results. We have used several datasets for this. After generating the datasets, we have trained
several classifiers to replace the heuristics and evaluated their performances when they are used in
the solver. Lastly, we have implemented Monte Carlo simulation for improving the performance of the
solver that uses the machine learning classifiers.

4.1. Motivation
As explained before, there are multiple heuristics that can be used for conflict selection and conflict
resolution, we have selected two heuristics for conflict selection and five heuristics for conflict resolution.
So in total, there are ten different combinations of heuristics that can be used for the precedence
constraint posting solver. However, there is no combination of heuristics that is significantly better than
any other. The average makespan of the solved problems is similar. In fact, different combinations of
heuristics perform best on different scheduling problem instances. Choosing one of these combinations
is not a good approach. Indeed, it is the case that one combination is better than others at a specific
problem instance, but it can be dramatically worse on other problem instances.

Since we want to obtain the lowest makespan for each problem, it is preferred to choose the right
combination of heuristics for each problem. This is called an ”Algorithm Selection Problem”[28]. This
determines which algorithm(s) should be run in order to minimise some performance objective, for
example the minimummakespan. The ideal solution to this algorithm would be to consult an oracle that
knows the makespan of each combination of heuristics for each problem instance, and then to select
the combination of heuristics that has the lowest makespan. Unfortunately, since we cannot precisely
determine an arbitrary makespan result without actually running the algorithm, computationally cheap,
perfect oracles do not exist for NP-problems.

There are approaches that are based on an heuristic approximation to a perfect oracle. For example,
Xu et al.[33] have used machine learning techniques to build a computationally inexpensive predictor
of such an oracle on a given problem instance of a Satisfiability problem, based on features of the
instance and the past performance of the algorithms. This solution is based on algorithm portfolios.
This is the strategy of selection of one or more algorithms, out of a set of algorithms, to execute and
use the results of the executions to obtain a final result. This selection is done, as mentioned earlier,
based on machine learning techniques. Since the effectiveness of these techniques are demonstrated
in extensive experimental results[33], this could be a useful strategy to apply on our problem as well.

However, these solvers use a fixed algorithm per problem. The solvers can additionally be improved
by dynamically switching between search strategies. Each encountered subproblem is a different in-
stance of the problem, where the structure could be changed drastically. For example the Dynamic
Approach for Switching Heuristics (DASH)[9] uses a dynamic approach for solving Mixed-Integer Pro-
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gramming problems. This algorithm computes the features of the subproblem in each step. Based in
these features, it determines the nearest cluster and based on this nearest cluster, it selects a heuristic
for making decisions. This approach could also be used in order to improve the PCP problem solver.

However, we expect that the choices could be further improved by using a slightly different ap-
proach. As explained before, DASH, for example, makes choices based on the choice the heuristic,
that is associated to the nearest cluster of the subproblem, makes. Our approach is slightly different,
since we do not choose a heuristic that makes the decision, but we let the classifier make the decisions
itself. All conflicts or constraints are classified into good and bad conflicts or constraints. The conflict
or constraint that has the highest probability of being in the class of good choices is eventually chosen.
So instead of using a machine learning model to select a heuristic, we will implement machine learning
models to select conflicts and constraints directly.

4.2. Use of heuristic data as features
Our first research question addressed the problem of which properties of tasks and/or task pairs have
an influence on selecting and resolving conflict pairs. In other words, which features are useful to use
in the dataset that we use for our classifier.

In Section 2.9, heuristics that are used for both conflict selection and conflict resolution are ex-
plained. Based on these heuristics, selections for conflicts are made. The heuristics use an educated
guess, based on different features. Each heuristic uses its own property of the conflicts and tasks in
order to make these decisions, which can cause each heuristic to make other choices than the other
heuristics. Therefor, different heuristics result in a different makespan, depending on the problem and
the properties of the conflicts and tasks present at that problem. There is no combination of heuristics
that always perform better than any other combination. It depends on the problem which heuristics
perform best.

Because these different features of the conflicts and tasks, which are used by the different heuris-
tics, all have problems on which they perform best, we have decided to use these features to create
our datasets for both conflict selection and conflict resolution. The goal for the machine learning model
to eventually find all best practices of the heuristics. In other words, learn why the choices that the best
heuristic for that specific problem makes work best.

After the decision was made to use the features that the heuristics use for decision making, the dataset
that was used for training the classifiers were made. There are two different classifiers required, one
for conflict selection and one for conflict resolution. These datasets are created based on the selec-
tions that the different heuristics make. Per problem, we have calculated which combination, or which
combinations, of heuristics for conflict selection and conflict resolution resulted in the lowest makespan.
The combinations which resulted in the best makespan per problem are run again, and each choice
that was made by the heuristics, is added as an instance to the dataset. The generation of the datasets
is explained in more detail in Section 4.4 and Section 4.5.

However, in order to generate these datasets, we also needed a set of Resource Constrained
Project Scheduling Problems. We have used the PSPLIB benchmark dataset for this, which is ex-
plained in more detail in the next section.

4.3. Benchmark dataset
In order to compare the results of the different heuristic combinations, we need to have a test set with
RCPSP instances. Fortunately, there is a benchmark test set available for the Resource Constrained
Project Scheduling Problem, which is often used in previous literature. This test set is called PSPLIB
and is designed by Kolisch[15]. It provides the scientific community a way to compare RCPSP solvers
with each other, therefore it also can be used to compare the results of our experiments. This PSPLIB
data set contains both Multi Mode and Single Mode instances. Multi Mode instances are instances
where it is possible for tasks to pick different resources, for example having different modes, where
tasks in Single Mode instances have no choice and have to pick one specific resource. Since the prob-
lem that is present at NedTrain is a problem, with tasks, precedence constraints and a finite resource
capacity, the Single Mode data instances are sufficient to test the problem. Therefore, we will use the
Single Mode PSPLIB data set as benchmark for comparing the results of our experiments.

There are however several differences between the PSPLIB data set and the problem that is present
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at NedTrain. First of all, the tasks in PSPLIB data set do not have deadlines and release times. This
problem is resolved by Staats[31], where every task has a release time of 0 and a deadline of 250 for
the problems with 60 tasks. Earlier experiments has showed that all instances are still solvable when
using these release times and deadlines.

The dataset of RCPSP instances from the PSPLib are split up into four benchmark sets of different
sizes. Each benchmark set is named: j30, j60, j90 and j120, where the numbers refer to the number
of tasks in each RCPSP instance. Each benchmark set has constant properties and variable proper-
ties. The constant properties are the number of tasks and resource types. Within each set there are 3
properties that are variable. These properties are:

NC Temporal network complexity, which is the average number of precedence constraints per task

RS Resource strength , which defines how scarce (not abundant) the resources are

RF Resource factor, which defines how many different resources one task requires.

There are 48 different combinations of these three properties in a benchmark set. Each combina-
tion has 10 problem instances, which gives each benchmark set 480 instances.

We have used the j30 benchmark set for our experiments. We have chosen this set, because with
480 problems with 30 tasks each, the datasets that are generated are already large, with hundreds of
thousands of choices that are made by the heuristics. These datasets are large enough to train the
classifiers.

4.4. Selecting machine learning method
For our second research question, we wanted to find out which machine learning method(s) is/are the
most effective method(s) for solving RCPSP instances. Selecting the best machine learning methods
for our problem is crucial for obtaining good results. The performance of the classification heavily
depends on using the appropriate classifier.

In this section, we only determine which machine learning method performs best on the problem
instances we have. The classifiers that we learn in this step are not yet suited for making decisions in
the Solve and Robustify algorithm. However, the selection of machine learning methods that is done in
this section is used in the experiments described Section 4.5, in which we have learned the classifiers
that are suited for replacing the heuristics.

In order to determine which machine learning method(s) generate the best results, we have first
tried to train classifiers that imitate the heuristics separately. This is done in order to determine which
method(s) can deal with the heuristics data as samples the best. As explained in Section 3.4.6, we have
used Support Vector Machines, Decision Trees, Random Forest and XGBoost for these experiments.

The selection of the machine learning method is done by learning all heuristics separately and
determine which methods perform best for all heuristics. This is done in order to determine which
machine learning methods are able to imitate the behaviour of all heuristics. As input for the models,
we use the heuristic values of all heuristics as features, and the goal is to learn each heuristic separately,
which labels based on the choices the each specific heuristic makes. The expectation is that the rules
of thumb that are used by the heuristics can be learned perfectly, since there are only some simple
rules that need to be learned, like choosing the sample with the smallest value.

This experiment is executed separately for conflict selection and conflict resolution. In the next
sections, we explain how the datasets are generated and we discuss the results of the selection of the
machine learning methods.

4.4.1. Conflict selection
As explained before, the datasets are generated by running the solver on PSPLIB instances and creat-
ing an instance per time the heuristic selects a conflict. The values of the heuristics are used as feature
and the choices that the heuristics make are used as label.

For conflict selection, we have two datasets per step. One dataset for 𝜔 and one dataset for Min-
Slack. All samples in both datasets have two features, both the 𝜔 value and the Min-Slack value of
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the conflict.
For all datasets, the labels of the instances are determined in the same way. There are two possible

labels that a sample can have, 0 and 1. A label of 0 means that the corresponding conflict is not chosen
and a 1 means that the corresponding conflict is chosen by the heuristic. An example of a part of the
dataset that is used for learning the 𝜔 heuristic is showed below.

# 1 : wres 2 : s lack
0 1:203.703215 2:234
0 1:215.608441 2:245
0 1:204.843843 2:237
0 1:223.494966 2:238
0 1:217.485632 2:235
0 1:207.060378 2:237
1 1:195.468668 2:234

After generating the datasets for both 𝜔 and Min-Slack, we have evaluated the classifiers that
have been learned based on these datasets. The first results are not very promising. For example, the
confusion matrix and ROC curve of the classifier for 𝜔 with a random forest classifier, after using
cross-validation, result in a lot of false positives and false negatives, as can be seen in Figure 4.1 and
Figure 4.2.

Figure 4.1: Imitating , confusion matrix for Random
Forest classifier

Figure 4.2: Imitating , ROC curve for Random
Forest classifier

This poor performance has multiple reasons. These reasons are explained in the next sections.

Scaling instances
One of the reasons the classifiers do not perform perfectly, like we expected, is that for conflict selection,
the heuristics use values that are relative to the values of other conflicts in the conflict set, as explained
in Section 2.9.1. The conflict with the lowest heuristic value of the specific conflict set is chosen.
Therefor, nothing useful can be said about a single sample for conflict selection. In order to overcome
this, we have scaled the feature values per conflict set, to a value between zero and 1. The feature
value of the conflict with the lowest heuristic value of the conflict set becomes zero and the feature
value of the conflict with the highest heuristic value of the conflict set becomes one. The values of the
other conflicts are scaled relatively to a value between zero and one. This results in all samples with
feature value zero being assigned to class 1 and all other samples being assigned to class 0.

Handling imbalanced data
Besides the values that are relative to each other, there are also a lot more conflicts that are not chosen
than conflicts that are chosen each conflict selection moment, there are lot more instances of class 0
than instances of class 1. The datasets for conflict selection are therefor quite imbalanced. In order to
overcome this problem of imbalance, we have used an oversampling technique called SMOTE, which
stands for Synthetic Minority Oversampling TEchnique, to create additional synthetic instances. We
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have chosen an technique that uses oversampling by adding synthetic instances, because oversam-
pling by replication can lead to similar but more specific regions in the feature space as the decision
region for the minority class[5]. This can potentially lead to overfitting on the multiple copies of minority
class examples.

With SMOTE, the minority class is oversampled by taking the minority class sample and introducing
synthetic samples based on these samples. Depending on the amount of oversampling that is required,
neighbours from the 𝑘 nearest neighbours are chosen randomly. The synthetic samples are then
generated by taking the difference between the sample and its nearest neighbour, this difference is
multiplied by a random value between 0 and 1 and this value is added to the sample. This approach
is a good way to make the minority class become more general compared with replication of samples.
The generated examples cause the classifier to create larger and less specific decision regions, instead
of smaller and more specific regions.

Conflict selection after data preprocessing
After applying both the scaling and the oversampling on our datasets, we have learned the classifiers
on the new datasets. An example of a part of the dataset that is used for learning the 𝜔 heuristic
after scaling and oversampling is showed below.

# 1 : wres 2 : s lack
0 1:0.293815 2:0
0 1:0.718603 2:1
0 1:0.334514 2:0.272727
0 1:1 2:0.363636
0 1:0.785582 2:0.090909
0 1:0.413601 2:0.272727
1 1:0 2xx :0

The results are as we expected, the heuristics can be imitated by a classifier perfectly. We have
used cross-validation on our datasets to test the performance of the classifiers. All samples are classi-
fied correctly with each machine learning method, as can be seen for example for 𝜔 with XGBoost
in Figure 4.3 and Figure 4.4.

Figure 4.3: Imitating after scaling and
oversampling, confusion matrix for XGBoost classifier

Figure 4.4: Imitating after scaling and
oversampling, ROC curve for XGBoost classifier

4.4.2. Conflict resolution
For conflict resolution, the datasets are generated in the same way as for conflict selection, by running
the solver on the PSPLIB dataset. For every conflict that is examined by the heuristics, a sample is
added to the dataset. However, for conflict resolution we have generated five datasets per step, one
dataset for each conflict resolution heuristic, namely Max-Slack, RM1, RB, 𝑓𝑙𝑒𝑥 and makespan.

All samples in the datasets have ten features, the heuristic values of all conflict resolution heuristics
for that specific conflict.
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In the conflict resolution datasets, there are also two possible labels for a sample, also 0 and 1. The
input of the constraint selection algorithm is a conflict with two tasks, 𝑡 and 𝑡 . A sample with label 1
means that the resulting precedence constraint will be that 𝑡 will be executed before 𝑡 and a sample
with label 0 means that 𝑡 will be executed before 𝑡 .

An example of a part of the dataset that is used for learning the 𝑓𝑙𝑒𝑥 heuristic showed below.

# 1 : d i j 2 : d j i 3 :RM1_1 4:RM1_2 5:RB_1 6:RB_2 7: f l e x i _ 1
# 8: f l e x i _ 2 9 :makespan_1 10:makespan_2
1 1:201 2:184 3:6565 4:6369 5:192.9268 6:183.1396 7:1905 8:1681 9:57 10:66
1 1:201 2:185 3:6557 4:6382 5:191.2924 6:182.8581 7:1905 8:1889 9:57 10:65
0 1:189 2:202 3:6441 4:6541 5:184.1990 6:188.9160 7:1893 8:1897 9:61 10:57
0 1:191 2:207 3:6391 4:6536 5:181.5589 6:188.0177 7:1855 8:1897 9:59 10:57
1 1:212 2:191 3:6533 4:6439 5:187.4236 6:183.3066 7:1893 8:1879 9:57 10:59
1 1:210 2:196 3:6529 4:6448 5:186.8176 6:180.0295 7:1893 8:1871 9:57 10:57
0 1:192 2:202 3:6420 4:6513 5:177.7688 6:185.1772 7:1858 8:1893 9:58 10:57
1 1:203 2:209 3:6550 4:6556 5:192.3255 6:192.7264 7:1894 8:1684 9:57 10:57
0 1:211 2:188 3:6542 4:6431 5:191.0848 6:187.0705 7:1689 8:1879 9:57 10:62
1 1:187 2:191 3:6385 4:6358 5:184.1429 6:182.2783 7:1877 8:1861 9:63 10:62

Not all classifiers were able to imitate the heuristics perfectly. Only the SVM and XGBoost classifiers
were able to imitate the conflict resolution heuristics. The results for 𝑓𝑙𝑒𝑥 and the SVM classifier can
be seen in Figure 4.5 and Figure 4.6.

Figure 4.5: Imitating , confusion matrix for SVM
classifier Figure 4.6: Imitating , ROC curve for SVM classifier

4.4.3. Conclusion
The heuristics can be imitated by machine learning classifiers for both conflict selection as conflict
resolution. After some data preprocessing, scaling the features per conflict set and applying oversam-
pling, each machine learning classifier can imitate the conflict selection heuristics perfectly. The rules
of thumb that the conflict selection heuristics use are easy to learn for the different classifiers. For
the conflict resolution heuristics however, only XGBoost and Support Vector Machines could imitate
the heuristics nearly perfectly. The rules of thumb that the conflict resolution heuristics use are harder
to learn for the Random Forest and Decision Tree classifiers, but still easy to learn for XGBoost and
Support Vector Machines. So for our further research, we have focussed on XGBoost and Support
Vector Machines classifiers, since these classifiers perform best on our datasets.

4.5. Training of model for replacing heuristics
After we have decided which machine learning methods we have used, we could start training the
classifier which is used as replacement for the heuristics. For this classifier, as stated earlier, the goal
is to learn the best practices of all heuristics, based on their heuristics feature values. In order to this, a
dataset with the best practices is needed. We need only two datasets this time, one for conflict selection
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and one for conflict resolution.
In order to generate such a dataset, we first have run the problem set with all ten combinations of

heuristics separately, in order to determine which combination, or combinations, of heuristics perform
best on which problem. For the generation of the datasets, only the combinations which perform best
are used. In the following sections, the generation of the datasets is explained in more detail.

4.5.1. Conflict selection
As stated before, only one classifier needs to be learned for conflict selection. The goal for the classifier
is to learn the best practices from the𝜔 and theMin-Slack heuristics. In order to generate the dataset,
we have used the best performing combinations of heuristics per problem. While running these best
combinations, every choice that the conflict selection heuristics make is saved as an instance in the
dataset. For example, for the first problem in the benchmark test set, problem j301_1, the combination
of the Min-Slack heuristic for conflict selection and the Max-Slack heuristic for conflict resolution results
in the lowest makespan of 51. So in order to generate the dataset for conflict selection, we have run
the solver with these heuristics for this specific problem, and for every step the Min-Slack heuristic is
called, every conflict is saved as an instance in the dataset.

The dataset consists of, just as in the datasets for the second step, of two features, both the 𝜔
value and the Min-Slack value of the conflict. Just as before, there are two possible labels that a sample
can have, 0 and 1. A label of 0 means that the corresponding conflict is not chosen and a 1 means that
the corresponding conflict is chosen by the heuristic. An example of a part of the dataset, for problem
j301_1, can be found below.

# 1 : wres 2 : s lack
0 1:0.814033 2:0.846154
0 1:0.601177 2:0.384615
0 1:0.653788 2:0.461538
0 1:0.620828 2:0.230769
0 1:0.652197 2:0.384615
0 1:0.342146 2:0.307692
0 1:0.812947 2:0.384615
0 1:0.628188 2:0.923077
0 1:0.336483 2:0.461538
0 1:1.000000 2:0.769231
0 1:0.263479 2:0.230769
1 1:0.261197 2:0.000000
0 1:0.499304 2:0.615385
0 1:1.000000 2:0.769231
0 1:0.604496 2:0.307692

Figure 4.7: Confusion matrix of XGBoost classifier for
conflict selection

Figure 4.8: ROC curve of XGBoost classifier for conflict
selection

After we have generated this dataset, we have used both SVM and XGBoost in order to learn a
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classifier. XGBoost performed best, especially after parameter tuning. Eventually we have used an
XGBoost classifier, with a number of estimators, which is the number of boosted trees to fit, of 200 and
a maximum depth, which is the maximum tree depth for base learners, of 10. This classifier performed
quite well, with a relatively small amount of false positives and false negatives, which can be seen in
Figure 4.7 and Figure 4.8.

4.5.2. Conflict resolution
For conflict resolution, there is also only one classifier needed. For this classifier, the goal is to learn
from all best practices of the other heuristics too, this time from 𝑓𝑙𝑒𝑥 , 𝑅𝑀1, 𝑅𝐵, Max-Slack and
Makespan. For the generation of this dataset, we have run the best combinations of all heuristics
as well. For the same example of problem j301_1 as used for conflict selection, where the combination
of the Min-Slack heuristic for conflict selection and the Max-Slack heuristic for conflict resolution results
in the lowest makespan, we have run the solver with these heuristics for generating the dataset for
conflict resolution as well. This time, for every step the Max-Slack heuristic is called, every selection
made by the heuristic is saved as an instance in the dataset.

The dataset consists of 10 features, the heuristic values of all conflict resolution heuristics. In the
dataset, a sample with label 1 means that the resulting precedence constraint will be that 𝑡 will be
executed before 𝑡 and a sample with label 0 means that 𝑡 will be executed before 𝑡 . An example of
a part of the dataset, for problem j301_1, can be found below.

# 1 : d i j 2 : d j i 3 :RM1_1 4:RM1_2 5:RB_1 6:RB_2 7: f l e x i _ 1
# 8: f l e x i _ 2 9 :makespan_1 10:makespan_2
0 1:203 2:212 3:6796 4:6900 5:208.3303 6:214.2502 7:2199 8:2218 9:47 10:40
0 1:208 2:215 3:6842 4:6885 5:209.0562 6:212.8692 7:2196 8:2203 9:42 10:40
1 1:205 2:200 3:6832 4:6685 5:211.3130 6:198.3681 7:2203 8:1972 9:45 10:50
0 1:204 2:207 3:6792 4:6814 5:208.7626 6:209.0864 7:2192 8:1983 9:46 10:45
1 1:224 2:202 3:6813 4:6672 5:208.5017 6:199.4732 7:1983 8:1743 9:45 10:48
1 1:224 2:205 3:6811 4:6732 5:207.8843 6:202.7797 7:1981 8:1746 9:45 10:45
1 1:214 2:207 3:6792 4:6729 5:206.1479 6:202.6638 7:1973 8:1963 9:45 10:45
1 1:201 2:197 3:6712 4:6686 5:198.3568 6:201.8346 7:1965 8:1973 9:49 10:53
0 1:210 2:215 3:6667 4:6703 5:194.0776 6:196.6885 7:1951 8:1965 9:49 10:49
1 1:217 2:201 3:6699 4:6597 5:196.2676 6:188.9667 7:1961 8:1717 9:49 10:49

For this dataset, the XGBoost classifier worked best as well, as can be seen in Figure 4.9 and Fig-
ure 4.10. This time, after parameter tuning, we have use a number of estimators of 150 and maximum
depth of 4. The number of false negatives and false positives is relatively low and the area under the
ROC curve is really high, so the classifier has a good performance here as well.

Figure 4.9: Confusion matrix of XGBoost classifier for
conflict resolution

Figure 4.10: ROC curve of XGBoost classifier for conflict
resolution
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Table 4.1: The average makespans with all combinations of heuristics

Conflict selection heuristic Constraint selection heuristic Average makespan
𝜔 Max-Slack 71.870
Min-Slack Max-Slack 71.670
𝜔 𝑓𝑙𝑒𝑥 72.308
Min-Slack 𝑓𝑙𝑒𝑥 73.047
𝜔 𝑅𝑀1 71.833
Min-Slack 𝑅𝑀1 71.662
𝜔 𝑅𝐵 71.943
Min-Slack 𝑅𝐵 72.054
𝜔 Makespan 85.845
Min-Slack Makespan 85.147
ML conflict selection ML constraint selection 71.850

4.6. Replacing heuristics by the model
In order to be able to answer research question 3, if a machine learning algorithm can improve the
choices of selecting and resolving conflict pairs, we needed to implement the classifiers into the PCP
solver. The classifiers replaced the heuristics in Algorithm 1, in the steps for SelectConflict and Select-
PrecedenceConstraint. Per step in the solver, every heuristic feature is calculated and used as input
for the classifiers.

For conflict selection, the 𝜔 and Min-Slack features are calculated for each conflict in the conflict
set and per conflict, the classifier classifies the conflict. The goal is to choose the conflict that is classi-
fied with label 1, since a label 1 means that the corresponding conflict is chosen by the best practices
of the heuristics. The classifier is able to return the probability of each instance of belonging to class
1. Therefor, the solver chooses the conflict that results in the highest probability for class 1 as to be
chosen as conflict to resolve first.

For conflict resolution, the input is the conflict that is chosen in the previous step. For this conflict,
the values for 𝑓𝑙𝑒𝑥 , 𝑅𝑀1, 𝑅𝐵, Max-Slack and Makespan are calculated and used as input for the clas-
sifier for conflict resolution. If the classifier classifies the instance as class 1, a constraint is posted that
enforces the first task of the conflict to be executed before the second task. If the instance is classified
as class 0, this will be the other way around.

In order to avoid overfitting, we have divided the problem set into 6 parts, each containing 80 prob-
lems. When running the solver on one of the parts, a classifier that is learned based on the data of the
problems of the other 5 parts is used. Otherwise, we would use a classifier that is partly learned based
on the problems that it is classifying, which could lead to influenced results.

After running the precedence constraint posting solver with the machine learning classifiers replac-
ing the heuristics, we have compared the results with the results of using the heuristics. These results
can be found in Table 4.1. In this table, the results of all combinations of heuristics are shown, with the
average makespan of all 480 problems. In the last row, the average makespan of the solver that uses
the machine learning classifiers instead of the heuristics is shown.

As can be seen, the solver with machine learning classifiers performs better than most combinations
of heuristics, but there still are combinations that perform better than the classifiers in general, such
as when using the solver with the combination of the Min-Slack heuristic for conflict selection and the
𝑅𝑀1 heuristic for conflict resolution.

So the classifiers were not able to learn all best cases of the heuristics, while the classifiers per-
formed well on the dataset. This can have several causes. First of all, it is possible that the more trivial
choices, for example the choices that all heuristics make the same, can be learned really well, but the
more difficult choices, where the heuristics make different choices, are learned more difficultly, while
these are the most important choices to be learned. This is possibly caused by the problems having
not enough tasks and therefor not being difficult enough to learn the difficult choices. In Section 4.7,
we have used larger problems in order to overcome this.

Furthermore, there is a difference in approach in generating the datasets and using the classifiers
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for solving the problems. When generating the datasets, a fixed combination of two heuristics that
performs best on that specific problem is used. However, different combinations of heuristics can
perform best per step in the solver. Therefor, the classifier may be learned with the wrong input data.
We have tried to overcome this with an alternative dataset, which is explained in Section 4.8.

4.7. Using problems with more tasks
In the previous sections, we have used the j30 PSPLIB benchmark test set for generating the datasets
and running the solver. In order to test if problems with more tasks result in a better dataset and
therefor better results when replacing the heuristics by the machine learning classifier, we have also
tested using the j60 PSPLIB benchmark test set. In this test set, each problem had 60, instead of 30,
tasks.

The training of the models is done exactly the same as the training of the j30 dataset. The dataset
is build based on the best perform combination of heuristics for each problem. The performance of the
classifier was equally good as the performance of the classifier for the j30 test set, as can be seen in
Figure 4.11, Figure 4.12, Figure 4.13 and Figure 4.14.

Figure 4.11: Confusion matrix of XGBoost classifier on
the j60 test set for conflict selection

Figure 4.12: ROC curve of XGBoost classifier on the j60
test set for conflict selection

Figure 4.13: Confusion matrix of XGBoost classifier on
the j60 test set for conflict resolution

Figure 4.14: ROC curve of XGBoost classifier on the j60
test set for conflict resolution

After using the learned classifiers as replacement for the heuristics, the results are similar to the
results after replacing the heuristics on the j30 test set. The averagemakespan when using themachine
learning classifiers is lower than with most of the combinations of heuristics, but there are still some
combinations that perform better than the classifiers in general. An overview of average makespan
with all combinations of heuristics and the machine learning classifiers is given in Table 4.2.
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Table 4.2: The average makespans with all combinations of heuristics on the j60 test set

Conflict selection heuristic Constraint selection heuristic Average makespan
𝜔 Max-Slack 102.825
Min-Slack Max-Slack 102.185
𝜔 𝑓𝑙𝑒𝑥 104.264
Min-Slack 𝑓𝑙𝑒𝑥 103.272
𝜔 𝑅𝑀1 102.595
Min-Slack 𝑅𝑀1 101.818
𝜔 𝑅𝐵 102.831
Min-Slack 𝑅𝐵 101.993
𝜔 Makespan 126.854
Min-Slack Makespan 122.533
ML conflict selection ML constraint selection 102.262

4.8. Using an alternative dataset
In order to address the problem of a difference in approach in generating the datasets and using the
classifiers for solving the problems, we have used a different approach of generating the dataset for
learning the models. The previous datasets were build using the solver with a fixed combination of
heuristics per problem, that performed best on that specific problem. The solver in which we used
the classifier however, classifies the conflicts and constraints per step. Therefor, we have tried to
generate a dataset that is generated with using the best combination of heuristics per step instead of
per problem. We expected the dataset to result in a better classifier for conflict selection and conflict
resolution, since the classifier is trained for selecting the optimal conflict and constraint per step, instead
of a fixed combination of heuristics

In order to generate this dataset, we needed to know which combination of heuristics per step result
in the best makespan per problem. However, it was not possible to brute force every combination of
heuristics for every step in the solver, since this are way too many combinations. Therefor, we have
chosen to select a random combination of conflict selection heuristic and conflict resolution heuristic per
step in the solver and to save the sequence of heuristics that are chosen per problem, combined with
the resulting makespan. Since the sequence is also saved, it was possible to rerun the sequences that
resulted in the best makespan in order to generate the dataset. After running the solver with random
heuristics, we had an extensive overview of different sequences with the best makespan per problem.

After reviewing these best makespans per problem, we noticed that there are problems that have a
lot of different sequences of heuristics that result in the optimal makespan, while other problems have
only a few, or even one, sequence that result in the lowest makespan. This is the case since some
problems are easier to solve than other problems. In order to avoid overfitting the classifier to certain
problems that have a lot of samples in the dataset, we have used oversampling and undersampling of
the instances per problem, so that every problem has equal importance in the dataset.

4.8.1. Oversampling and undersampling the dataset
For oversampling, we have used SMOTE again. For undersampling however, we have used a method
called Cluster Centroids. Cluster Centroids is a method that uses a K-means clustering algorithm[1].
Let 𝑁 and 𝑁 be the number of samples for respectively the minority and majority classes, so 𝑁 > 𝑁 ,
and let 𝜇 , 𝑘 = 1, ..., 𝑁 be the cluster centroids of the majority class, that are obtained by applying the
K-means algorithm. These cluster centroids replace the samples of the majority class. So the number
of samples of the majority class after undersampling is the same as the number of samples of the
minority class. This approach has advantages over randomly selection samples from themajority class.
For example, the selection of samples which are similar to each other and have similar classification
difficulties is avoided.

4.8.2. Results
After applying oversampling and undersampling in order to even out the amount of samples per prob-
lem, the classifiers for both conflict selection and conflict resolution are trained. After evaluating the
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classifiers, we noticed that the dataset was harder to classify than the previous dataset. The amount
of false positives and false negatives was higher than before and the area under the curve of the ROC
curve was also lower, as can be seen in Figure 4.15, Figure 4.16, Figure 4.17 and Figure 4.18.

We have also used the two learned classifiers, one for conflict selection and one for conflict resolu-
tion, in the solver as replacement of the heuristics. The average makespan when using the alternative
dataset was 73.062, even higher than when using the original datasets, as can be seen in Table 4.3.

We think this is the case because we cannot retrieve all optimal sequences of the problems, since
brute forcing all sequences is not possible. Therefor, only a subset of the optimal solutions can be
found. It is hard to find the rules for the best case decisions that the heuristics make for all problems.

Figure 4.15: Confusion matrix of XGBoost classifier for
conflict selection with the alternative dataset

Figure 4.16: ROC curve of XGBoost classifier for conflict
selection with the alternative dataset

Figure 4.17: Confusion matrix of XGBoost classifier for
conflict resolution with the alternative dataset

Figure 4.18: ROC curve of XGBoost classifier for conflict
resolution with the alternative dataset

4.9. Monte Carlo Simulation
The use of an alternative dataset did not improve the quality of the solutions. The average makespan of
the solutions of the benchmark dataset was even higher than when we used the first dataset. However,
the machine learning model can also be used in an other way than as just a classifier. The classifier
is able to return a probability of the likeliness of belonging to class 1, for each conflict for both conflict
selection and conflict resolution. We have used these probabilities for Monte Carlo simulation to further
improve the solutions of the precedence constraint posting algorithm.

4.9.1. Introduction to Monte Carlo techniques
The essence of Monte Carlo simulation is the generation of random objects or processes using a
computer[17]. These objects could arise naturally, for example as part of the modelling of a real-life
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Table 4.3: The average makespans with all combinations of heuristics including the classifier with the alternative datasets

Conflict selection heuristic Constraint selection heuristic Average makespan
𝜔 Max-Slack 71.870
Min-Slack Max-Slack 71.670
𝜔 𝑓𝑙𝑒𝑥 72.308
Min-Slack 𝑓𝑙𝑒𝑥 73.047
𝜔 𝑅𝑀1 71.833
Min-Slack 𝑅𝑀1 71.662
𝜔 𝑅𝐵 71.943
Min-Slack 𝑅𝐵 72.054
𝜔 Makespan 85.845
Min-Slack Makespan 85.147
ML conflict selection ML constraint selection 71.850
ML conflict selection alternative dataset ML constraint selection alternative dataset 73.062

system. However, the random objects are often artificially introduced in order to solver purely deter-
ministic problems. With these artificial introduced problems, Monte Carlo simulation simply involves
random sampling from certain probability distributions, such as we have encountered with our classi-
fier. The general idea of Monte Carlo techniques is to repeat the experiment many times in order to
obtain many quantities of interest.

Optimisation is a typical use case of Monte Carlo simulation. In many applications, complicated
objective functions are deterministic and the randomness is introduced artificially to more efficiently
search the domain of the objective function. In our case, the choices of conflict selection and conflict
resolution are introduced artificially.

There are multiple reasons why Monte Carlo techniques are useful[17]. First of all, Monte Carlo
algorithms are easy and efficient to use. The implementations tend to be highly scalable. Monte Carlo
algorithms are very easy to parallelise too, since the various repetitions of the experiment can be run
independently. This allows the repetitions to run parallel, which significantly reduces the computation
time. Furthermore, the randomness of the Monte Carlo simulation is also a strength. It is not only
essential for the simulation of random systems, but it is also a great benefit for deterministic numerical
computation. For example, with randomised optimisation, the randomness can cause the algorithm to
naturally escape local optima, which results in a better exploration of the search space.

We have applied Monte Carlo simulation in our precedence constraint posting solver, Solve and
Robustify. In order to test if the probabilities that our classifier result in a better performance of the
Monte Carlo simulation than when using the heuristics, we have implemented a Monte Carlo simulation
for both the heuristics and our classifier, which are explained in the next sections. We expect the
solutions to be better than when not using Monte Carlo simulation, since the solver looks ahead to see
which decisions are better to make in 5 steps. We have chosen 5 steps, since the average amount of
precedence constraint posting steps in our problem set is around 10 steps per problem. This is both for
usingMonte Carlo simulation with themachine learning classifier as when using random heuristics. The
most important motivation for this experiment is to check wether the classifier makes better decisions
for the random walk in the Monte Carlo simulation.

The idea behind the Monte Carlo solvers is to simulate the behaviour of the solver and to select
and resolve conflicts based on the result of that simulation. For our experiment we have chosen to
take 100 samples per choice with a simulation depth of 5 and then choose the conflict or constraint that
results in the lowest makespan after these 5 steps. This means that for each selection moment, 100
parallel simulations are run that simulate 5 steps of the solver. With using only 5 steps, the runtime
of the algorithm still reasonably manageable. The result of these simulations are problems that have
a makespan. Eventually, the conflict or constraint that is chosen in the first step, that results in the
lowest makespan after 5 steps, is chosen as the next conflict or constraint. The exact algorithms are
explained in the following sections.
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Algorithm 3 Monte Carlo solver with random heuristics
1: Input: A problem 𝑃, number of Monte Carlo samples 𝑛, Monte Carlo depth 𝑚
2: Output: A schedule 𝑆
3: while 𝑡𝑟𝑢𝑒 do
4: 𝑆 ← CalculateESTS(𝑃)
5: 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡 ← FindResourceConflicts(𝑆)
6: if 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡 = ∅ then
7: return 𝑆
8: end if
9: if Unsolvable(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡) then

10: return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
11: end if
12: for 1 to 𝑛 do
13: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 ← SelectConflictRandomHeuristic(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡)
14: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑝𝑟𝑜𝑏𝑙𝑒𝑚 ← SelectMonteCarloConflictHeuristic(𝑃, 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝑛)
15: end for
16: 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 ← 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 with lowest makespan of associated 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑝𝑟𝑜𝑏𝑙𝑒𝑚
17: for 1 to 𝑛 do
18: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ← SelectConstraintRandomHeuristic(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡)
19: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑝𝑟𝑜𝑏𝑙𝑒𝑚 ← SelectMonteCarloConstraintHeuristic(𝑃, 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡, 𝑛)
20: end for
21: 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ← 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 with lowest makespan of associated 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑝𝑟𝑜𝑏𝑙𝑒𝑚
22: PostPrecedenceConstraint(𝑃, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡)
23: end while

Algorithm 4 Monte Carlo conflict selection with random heuristics
1: Input: A problem 𝑃, a conflict 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, a depth 𝑚
2: Output: A problem 𝑃_𝑟𝑒𝑠𝑢𝑙𝑡
3: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 ← SelectConstraintRandomHeuristic(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡)
4: PostPrecedenceConstraint(𝑃, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡)
5: if 𝑚 - 1 is 0 then
6: return 𝑃
7: else
8: 𝑆 ← CalculateESTS(𝑃)
9: 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡 ← FindResourceConflicts(𝑆)

10: if 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡 = ∅ then
11: return 𝑆
12: end if
13: if Unsolvable(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡) then
14: return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
15: end if
16: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 ← SelectConflictRandomHeuristic(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡)
17: return SelectMonteCarloConflictHeuristic(𝑃, 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝑚 − 1)
18: end if

4.9.2. Random heuristics
When using the Monte Carlo solver with random heuristics, each time a conflict selection is done, one
of the two possible conflict selection heuristics is taken to choose the conflict. For conflict resolution,
one of the five possible conflict resolution heuristics is taken to choose the constraint. The basis of
the Monte Carlo solver is the same as the ESTA algorithm, Algorithm 1. The differences are the parts
of conflict selection and precedence constraint selection. For both conflict selection and precedence
constraint selection, a number of 𝑛 samples are executed. In each sample, a number of𝑚 next steps of
the solver are executed, which results in a scheduling problem. For each sample, the makespan of the
resulting problem is calculated and the conflict or constraint of the sample with the lowest makespan
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is chosen as the next conflict or constraint. This can be seen in Algorithm 3, where Algorithm 4 and
Algorithm 5 perform the simulations steps for conflict selection and constraint selection respectively.

Algorithm 5 Monte Carlo constraint selection with random heuristics
1: Input: A problem 𝑃, a constraint 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡, a depth 𝑚
2: Output: A problem 𝑃_𝑟𝑒𝑠𝑢𝑙𝑡
3: PostPrecedenceConstraint(𝑃, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡)
4: if 𝑚 - 1 is 0 then
5: return 𝑃
6: else
7: 𝑆 ← CalculateESTS(𝑃)
8: 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡 ← FindResourceConflicts(𝑆)
9: if 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡 = ∅ then

10: return 𝑆
11: end if
12: if Unsolvable(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡) then
13: return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
14: end if
15: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 ← SelectConflictRandomHeuristic(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡)
16: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ← SelectConstraintRandomHeuristic(𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡)
17: return SelectMonteCarloConstraintHeuristic(𝑃, 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡, 𝑚 − 1)
18: end if

After using the random heuristics Monte Carlo solver on the 480 PSPLIB benchmark test sets, the
resulting average makespan is 68.991. This is indeed better than the average makespan using only
heuristics, which can be found in Table 4.1.

Algorithm 6 Monte Carlo solver with machine learning classifier
1: Input: A problem 𝑃, number of Monte Carlo samples 𝑛, Monte Carlo depth 𝑚
2: Output: A schedule 𝑆
3: while 𝑡𝑟𝑢𝑒 do
4: 𝑆 ← CalculateESTS(𝑃)
5: 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡 ← FindResourceConflicts(𝑆)
6: if 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡 = ∅ then
7: return 𝑆
8: end if
9: if Unsolvable(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡) then

10: return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
11: end if
12: 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 ← ClassifyConflicts(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡)
13: for 1 to 𝑛 do
14: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 ← SampleConflict(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡, 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠)
15: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑝𝑟𝑜𝑏𝑙𝑒𝑚 ← SelectMonteCarloConflictHeuristic(𝑃, 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝑛)
16: end for
17: 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 ← 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 with lowest makespan of associated 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑝𝑟𝑜𝑏𝑙𝑒𝑚
18: 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 ← ClassifyConstraints(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡)
19: for 1 to 𝑛 do
20: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ← SampleConstraint(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠)
21: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑝𝑟𝑜𝑏𝑙𝑒𝑚 ← SelectMonteCarloConstraintHeuristic(𝑃, 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡, 𝑛)
22: end for
23: 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ← 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 with lowest makespan of associated 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑝𝑟𝑜𝑏𝑙𝑒𝑚
24: PostPrecedenceConstraint(𝑃, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡)
25: end while
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4.9.3. Machine learning classifier
We have also implemented the Monte Carlo solver with use of the machine learning classifiers that
we have learned in Section 4.5, instead of using random heuristics. The selection of conflicts and
constraints deviates slightly from the selection for the random heuristics. The process of Monte Carlo
simulation, with 100 samples and 5 steps per sample is the same. The difference lays within the
random selection of the conflicts and constraints. Instead of using a random heuristic for the selection,
the classifiers for conflict selection and conflict resolution, that are explained in Section 4.5, are used.
The algorithm can be seen in Algorithm 6.

For conflict selection, the classifier returns per conflict a probability of belonging to class 1, or in
other words the probability for being chosen by the best cases of the heuristics. Every time a random
conflict needs to be chosen, a conflict is sampled from the conflict set, with a probability based on the
probabilities of belonging to class 1. Therefor, the conflict with the highest probabilities of belonging to
class 1 have the highest chance to be selected every step. The algorithm for selecting conflicts can be
seen in Algorithm 7.

For conflict resolution, there are two possible constraints that can be chosen. The classifier for con-
flict resolution returns a probability for each constraint to be chosen by the best cases of the heuristics,
just as with conflict selection. In every step, a constraint is chosen based on these probabilities and
therefor, the constraint with the highest probabilities of being chosen by the best cases of the heuristics
has the highest chance of being selected every step. The algorithm for selecting conflicts can be seen
in Algorithm 8.

Algorithm 7 Monte Carlo conflict selection with machine learning classifier
1: Input: A problem 𝑃, a conflict 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, a depth 𝑚
2: Output: A problem 𝑃_𝑟𝑒𝑠𝑢𝑙𝑡
3: 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 ← ClassifyConstraints(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡)
4: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ← SampleConstraint(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠)
5: PostPrecedenceConstraint(𝑃, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡)
6: if 𝑚 - 1 is 0 then
7: return 𝑃
8: else
9: 𝑆 ← CalculateESTS(𝑃)

10: 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡 ← FindResourceConflicts(𝑆)
11: if 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡 = ∅ then
12: return 𝑆
13: end if
14: if Unsolvable(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡) then
15: return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
16: end if
17: 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 ← ClassifyConflicts(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡)
18: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 ← SampleConflict(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡, 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠)
19: return SelectMonteCarloConflictHeuristic(𝑃, 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝑚 − 1)
20: end if

After using the machine learning Monte Carlo solver on the 480 PSPLIB benchmark test sets, the
resulting average makespan is 68.818750. This is indeed better than using only heuristics, as can be
seen in Table 4.1. Furthermore, it is also lower than the average makespan of using the heuristics
Monte Carlo solver, which was 68.991667.

4.9.4. Conclusion
As stated earlier, the average makespan after solving the 480 PSPLIB benchmark test set problems
was 68.818 with the machine learning Monte Carlo solver and 68.991 for the heuristics Monte Carlo
solver, see Figure 4.19. The distribution of the makespans is more or less the same, as can be seen
in Figure 4.20.

The average makespan of the Monte Carlo solver when using the machine learning classifiers is
slightly lower than when using random heuristics, while the solver without Monte Carlo simulation with
the machine learning classifier performs worse than the best combination of heuristics. This means
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Algorithm 8 Monte Carlo constraint selection with machine learning classifier
1: Input: A problem 𝑃, a constraint 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡, a depth 𝑚
2: Output: A problem 𝑃_𝑟𝑒𝑠𝑢𝑙𝑡
3: PostPrecedenceConstraint(𝑃, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡)
4: if 𝑚 - 1 is 0 then
5: return 𝑃
6: else
7: 𝑆 ← CalculateESTS(𝑃)
8: 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡 ← FindResourceConflicts(𝑆)
9: if 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡 = ∅ then

10: return 𝑆
11: end if
12: if Unsolvable(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡) then
13: return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
14: end if
15: 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 ← ClassifyConflicts(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡)
16: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 ← SampleConflict(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑆𝑒𝑡, 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠)
17: 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 ← ClassifyConstraints(𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡)
18: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ← SampleConstraint(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠)
19: return SelectMonteCarloConstraintHeuristic(𝑃, 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡, 𝑚 − 1)
20: end if

that the machine learning classifier is worse in selecting the best conflict and constraint, but it is better
in selecting the set of best conflicts and constraints. The set of best conflicts and constraints are
chosen more often, which results in better makespans after five steps of Monte Carlo simulation, which
eventually results in better results for the Monte Carlo solver with machine learning classifier.

Figure 4.19: The average makespans after solving the 480 PSPLIB benchmark test set problems with Monte Carlo solvers

In Figure 4.21, the makespan of the Monte Carlo solver with random heuristics is plotted against the
makespan of the Monte Carlo solver with machine learning classifiers. As can be seen, for some prob-
lems the Monte Carlo solver with random heuristics performs better and for other problems the Monte
Carlo solver with machine learning classifiers performs better. Out of the 480 problems, the Monte
Carlo solver with machine learning classifiers performs better on 136 problems and the Monte Carlo
solver with random heuristics perform better on 99 problems. In order to test whether the decrease in
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Figure 4.20: The boxplot after solving the 480 PSPLIB benchmark test set problems with Monte Carlo solvers

makespan is a statistically significant decrease, we have used a statistical hypothesis test.
The differences between the two makespan scores is not normally distributed. In Figure 4.22,

the Q-Q plot of the differences in makespan is shown. Since the data is not aligned on the red line,
the difference in makespan is not distributed normally. Therefor, we could not use the Student’s t-
test for checking statistical significance. Therefor, we have used the Wilcoxon singed-ranked test
in order to verify whether the decrease in makespan was statistically significant. This is statistical
hypothesis test for comparing two related samples when the population cannot be assumed to be
normally distributed[21]. In this test, the hypothesis that is being tested is:

• Null hypothesis: The difference between the pairs follows a symmetric distribution around zero

• Alternative hypothesis: The difference between the pairs does not follow a symmetric distribu-
tion around zero

If the resulting p-value of the test is less than 0.05, the null hypothesis can be rejected. However,
the limitation of the Wilcoxon signed-rank test is that it discards samples with a difference of 0. Since
our results have 245 out of 480 results with a difference of 0, we have used the modification of the
Wilcoxon test proposed by Pratt[26]. This modification incorporates the zero differences. The resulting
p-value after running the Wilcoxon test is 1.7127512595031528e-12, which is lower than 0.05. There-
for, we can conclude that the average makespan when using random heuristics was higher compared
to the average makespan when using machine learning classifiers. There was a statistically significant
decrease in makespan.
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Figure 4.21: The scatter plot of resulting makespan per problem after solving the 480 PSPLIB benchmark test set problems
with Monte Carlo solvers

Figure 4.22: Q-Q Plot of difference in makespan for the Monte Carlo solvers





5
Conclusion and future work

Maintenance scheduling is a difficult problem when dealing with both temporal constraints and resource
constraints. Several kind of tasks are present, such as recurring check-ups, additional unexpected
repairs and small refurbishments. All these tasks have strict deadlines that need to be met. There are
currently several methods for solving these kind of problems, but since it is a hard problem there are no
exact solvers that run in a reasonable amount of time yet. The solvers that are currently available make
use of heuristics, since they are in general much faster in solving problems. However, heuristic solvers
often do not find optimal solutions for difficult problems. Therefor, we have researched the possibility of
replacing the heuristics by machine learning classifiers that make better decisions and therefor result
in better performance of the solver.

In this work we first described the challenges faced by maintenance scheduling with both resource
constraints and temporal constraints. We studied the well defined scheduling model named Resource
Constrained Project Scheduling Problem, together with a technique that simplifies resource constrained
problems to problems containing only temporal constraints, named Precedence Constraint Posting.
Furthermore, we studied several machine learning techniques and the advantages and disadvantages
of these several techniques. We formulated detailed research questions and in this work we focused
on answering these questions. In the next section we will look at the results of the research, based on
these research questions.

5.1. Research
The goal for this work was to improve the performance of the Precedence Constraint Posting algo-
rithm, Solve and Robustify, by replacing the used heuristics by machine learning classifiers. Using
several datasets and machine learning techniques, we proposed to improve the quality of the resulting
maintenance schedules.

5.1.1. Research questions
In Chapter 1, we proposed three research questions. We have answered these research questions in
Chapter 4. The first question we have answered is:

Research Question 1: Which properties of tasks and/or task pairs have an influence on selecting
and resolving conflict pairs?

We have eventually chosen to use the same input data for our datasets as the data that is input for the
heuristics. Each heuristic uses its own property of the conflicts and tasks in order to make an educated
guess for making choices. The different heuristics can make different choices regarding conflict selec-
tion and conflict resolution and therefor may result in a different makespan for the same problem. The
features used by the heuristics have different problems on which they perform best. The goal of the
machine learning classifiers is to learn the best practices of each heuristics in order to make choices
based on the heuristic that works best for that particular problem.

When replacing the heuristics for machine learning classifiers, two classifiers are needed. One
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classifier for conflict selection and one classifier for conflict resolution. We have used two different
approaches for generating the datasets. For conflict selection, the input data first had to be scaled and
oversampled in order to be able to handle the values that are relative to the other values in a conflict
set.

First of all, we have generated the datasets using a fixed combination of heuristics for conflict se-
lection and conflict resolution that perform best per problem. After these combinations are determined
for each problem, the solver is executed with these combinations and the choices that are made by the
heuristics are used as instances for the datasets.

Furthermore, we have used an alternative method for generating the datasets that not uses a fixed
combination of heuristics per problem, but uses a different combination of heuristics that perform best
per step in the algorithm. We have done this in order to overcome the problem where the solver clas-
sifies the conflicts and constraints per step instead of per problem. We have selected random combi-
nations of heuristics per step in each problem and executed the solver multiple times. The sequences
of heuristics were saved and the sequences that resulted in the lowest makespan were run again for
the generation of the datasets.

Next, we focused on the selection of the machine learning methods that are most effective on the
datasets. The second research question we have answered in this work is:

Research Question 2: Which machine learning method(s) is/are the most effective method(s) for
solving RCPSP instances?

In order to select the most effective machine learning methods, we have learned classifiers on a slightly
easier problem. We have first imitated each heuristic separately using machine learning classifiers.
This is done in order to determine which machine learning methods generate the best results when
the heuristics data is used as input. We have run these experiments separately for conflict selection
and conflict resolution. In Chapter 3, we already decide to focus only on Support Vector Machines,
Decision Trees, Random Forest and XGBoost.

For conflict selection, all heuristics could be imitated perfectly after the scaling and oversampling
was applied to the dataset. Every machine learning technique was able to imitate the heuristics.

For conflict resolution, not every machine learning technique was able to imitate the heuristics per-
fectly. Only Support Vector Machines and XGBoost were able to imitate the heuristics perfectly. There-
for, we selected Support Vector Machines and XGBoost as the most effective methods for classifying
the conflicts for our solver.

Lastly, we have tried to improve the solutions of the Solve and Robustify algorithm by replacing the
heuristics by machine learning classifiers. The last research question we have answered in this work
is:

Research Question 3: Can a machine learning algorithm improve the choices of selecting and re-
solving conflict pairs?

In order to answer the last research question, we have learned the classifiers on the datasets. We
first used the first datasets, with the fixed combination of heuristics, to train the classifiers that replaced
the heuristics in the solver. When solving the problems with the solver that uses these classifiers,
the solver performed better than most combinations of heuristics, but there were still combinations of
heuristics that performed better than the classifiers in general. So the classifiers were not able to learn
all best cases of the heuristics.

In order to test if problemswithmore tasks result in a better dataset in which themore difficult choices
could be learned, we have also learned classifiers based on datasets that are generated based on the
j60 PSPLIB dataset, which has 60 instead of 30 tasks per problem. The results were similar to the
experiment with the j30 test set. The solver performed better than most combinations of heuristics, but
there were still combinations of heuristics that performed better than the classifiers in general.

Secondly, we have learned the classifiers based on alternative datasets, in which we tried to obtain
optimal schedules with dynamic heuristic selection per step. We have done this in order to overcome
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the problem of difference in approach in generating the datasets and using the classifiers for solving
the problems. We expected the solver with the alternative dataset to perform better, since the classifier
is trained for selecting the optimal conflict and constraint per step, instead of a fixed combination of
heuristics. However, the average makespan was even higher than when using the first datasets. This
was the case because not all optimal sequences of heuristics could be retrieved, because brute forcing
all sequences was not feasible. It is hard to find the rules for the best case decisions that the heuristics
make for all problems when not all optimal solutions are known.

Furthermore, we have used Monte Carlo simulation to further improve the solutions of the Solve and
Robustify algorithm. The classifiers for both conflict selection and conflict resolution are able to return
probabilities of the likeliness of belonging to a certain class, so we have used these probabilities for
Monte Carlo simulation.

The idea behind the Monte Carlo solver is to simulate the behaviour of the solver and select and
resolve conflicts based on the results of that simulation. In our experiment, we have chosen to take 100
samples per choice, with a simulation depth of 5 steps. We have run the solver with choosing a random
heuristic where every heuristic has an equal probability of being selected in each step. Furthermore,
we have run the solver with choosing a conflict or constraint based on the probabilities that are returned
by the classifiers in each step.

The average makespan after solving the 480 PSPLIB benchmark test set problems was 68.991
when using the random heuristics and 68.818 when using the machine learning classifiers. We have
also showed that there was a statistically significant decrease in makespan when using the machine
learning classifiers in the Monte Carlo solver opposed to the random heuristics. This means that the
machine learning classifiers are better in selecting the probability of best conflicts and constraints. The
conflicts and constraints are chosenmore often by theMonte Carlo solver in each step, which eventually
leads to better results for the Monte Carlo solver with the machine learning classifiers.

5.2. Future work
We have eventually only improved the results of RCPSP instances slightly, after using Monte Carlo
simulation. In this section, we highlight some possibilities to further improve the quality of the solutions.

We only looked at using the features that are used by the heuristics for the generation of our dataset
and training of the classifiers. Extra features could be used in order to add more context of the problem.
More information about the state of the problem at the moment of choosing conflict and constraint could
result in an improvement of the choices that are made. However, choosing the right features can be
just as hard as solving the problem itself. Feature selection requires a deep knowledge of the problem
domain.

Examples of features that can be used in order to give more context to the machine learning model
are for example the release time, the deadline and the duration of tasks. However, these features
need to be preprocessed in order to use them for classifying. Many machine learning methods need
features to have the same scale in order to process them. For example, in order to be able to compare
duration times of tasks, these durations need to be scaled based on the average duration of all tasks.
The release time and deadline need to be converted to a specific interval in order to only look at the
relative release time and deadline between tasks, instead of the real value of the features.

Furthermore, at this moment, we do not know the optimal choices the Precedence Constraint post-
ing algorithm needs to make in order to result in the optimal makespan. The optimal makespan of each
problem in the j30 PSPLIB test set is available, but the choices that need to be made in the PCP solver
that result in these makespans are not available. We approximate the optimal choices by using the
best performing combination of heuristics per problem, but this does not always result in the optimal
makespan. Since the optimal choices are not known, it is hard for the machine learning algorithm to
learn the optimal choices, since some samples in the dataset are not optimal. If it is possible to obtain
these optimal choices, the classifier would perform better, since all samples would be based on optimal
choices.

In Chapter 4, we briefly discussed a dynamic heuristic switching approach[9]. This approach also
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looks at the encountered subproblem at each subproblem for making decisions. However, this ap-
proach selects the heuristic that is associated with the nearest cluster of the subproblem, and that spe-
cific heuristic makes the selection for that step. This is contrary to our approach, where the machine
learning model makes the selection instead the model selecting a heuristic that makes the selection.
In future work, it is possible to combine these two approaches for a more effective and robust solver.

Our last suggestion is to use a regression algorithm instead of a classification algorithm. In classifica-
tion, the labels of samples are categorial and unordered, while in regression the labels are continuous
or ordered values. In our current solution, we take the probability of a sample for belonging to a certain
class and the sample with the highest probability is chosen. This could be converted to a regression
problem, in which the sample with the highest label value is chosen. This could result in a better per-
forming machine learning model. However, in order to convert the current solution to a regression
model, many changes need to be made. The process of generating the dataset needs to be changed
completely, since a score needs to be calculated for each sample in the dataset. The better the conflict
or constraint is, the higher the score of the associated sample in the dataset has to be. Therefor, a
method for scoring each conflict and constraint has to be developed, that can be used as value of the
label of the sample.
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