




Abstract

This thesis investigates the optimization of Same-Day Delivery (SDD) in the
context of a Dynamic and Stochastic Vehicle Routing Problem with Time-Windows
(DSVRPTW). A central focus is the concept of pre-releasing; the process of assign-
ing an order to a specific route and preparing it for delivery, effectively fixing the
order to the route. This happens before all orders are known, restricting the possible
routes and thus increasing the costs.

By conducting computational experiments using real-life data from a European
e-grocery, the study evaluates various pre-releasing heuristics. The most effective
heuristic, which delays pre-releasing until the last possible moment before the route
departs, results in a reduction of optimization costs of 20% compared to current
operations. When allowing more than 2 time-windows per truck, the reduction
increases to 32%.

The research also addresses the critical practical constraint of pre-releasing
capacity, which represents the maximum number of orders that can be pre-released
within an hour. Simulation analysis reveals that using the last-minute heuristic
only slightly increases the pre-releasing rate compared to the current operations of
companies. To address this constraint efficiently, the most cost-effective solution
is to invest in additional warehouse workforce. Alternatively, pre-releasing orders
one hour early incurs a 1% increase in costs, while pre-releasing two hours early
results in a 4% cost increase. Furthermore, initiating pre-releasing activities in the
morning rather than the previous night can lead to savings of up to 2%.

The e-grocery expresses a preference for a constant pre-releasing rate equal
to the pre-releasing capacity. This thesis proposes eight additional heuristics that
determine which orders should be pre-released in addition to those identified by
the last-minute heuristic. While the results from limited data were inconclusive, on
average, the best heuristics incur an 8% higher cost compared to only pre-releasing
at the last moment by pre-releasing orders based on proximity to or distance from
the warehouse. Notably, pre-releasing orders with closer time-windows appeared to
be preferable. Implementing this strategy would allow the pre-release capacity to
be reduced from 200 to 150, resulting in a savings of five full-time pickers in the
warehouse.

Future research opportunities include testing the methods on different cases
and datasets and estimating the probability of exceeding the pre-releasing capacity,
which could be used for deciding whether or not it is necessary to pre-release extra
orders.
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CHAPTER 1

Introduction

“If you want to deliver fast, go alone.
If you want to deliver efficiently, go together.
If you want to deliver fast and efficiently, use mathematics”
∼ variation on African Proverb

1. Problem Motivation

1.1. Home Delivery. In the grocery shopping industry, the need for conve-
nience has led to a growing trend of home delivery options. This shift is demon-
strated by the success of Albert Heijn, the biggest online supermarket in the Nether-
lands, which witnessed a 35% surge in e-commerce sales in 2021, currently managing
over 100,000 orders weekly with a fleet of more than 800 vehicles. This impressive
feat is made possible by efficiently solving the complex Vehicle Routing Problem
(VRP), which seeks to find the optimal routes in order to minimize factors such as
total distance and costs.

The challenges posed by the VRP are compounded by pressure from competi-
tors to reduce the costs, distance, time, and CO2 emissions of their deliveries.
This pressure is further driven by consumer preferences, with 55% of shoppers in
the Netherlands indicating that they would switch to another retailer if they offer
faster delivery. In addition, customers expect to be able to select a delivery time
that suits their schedule; 27% of shoppers have abandoned a purchase due to a lack
of fast delivery options [15].

1.2. Same-Day Delivery. Same-day delivery (SDD) is a service offered by
online retailers that allows customers to receive their orders within a few hours of
placing them. This is in contrast to next-day delivery, which is the current industry
standard. The rapid growth of the online grocery market, especially during the
recent pandemic, has led to increased demand for ultra-convenient delivery options
like SDD. In fact, 99% of retailers are expected to offer same-day options within
the next three years, with 35% already offering the service [15]. While same-day
delivery may provide greater convenience for customers, it also poses challenges
in terms of efficiency, cost, and environmental impact. For example, the last mile
of the supply chain, which is the final leg of the journey from a fulfillment center
to the customer’s doorstep, is already a major challenge for next-day delivery and
accounts for roughly half of total delivery costs. The added complications of same-
day delivery may lead to increased vehicle miles traveled, delivery costs, emissions,
and congestion.
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2. PROBLEM DESCRIPTION 2

1.3. Challenges in Optimizing SDD. The optimization of SDD poses unique
challenges due to the continuous influx of new orders throughout the day, intro-
ducing stochastic and dynamic elements to the traditional VRP problem. In the
context of this problem, “stochastic” refers to the inherent uncertainty regarding
the volume and location of orders to be delivered, while “dynamic” describes the
need for iterative or continuous solution methods to accommodate changes in the
problem as new orders are received (or not received).

In addition to the stochastic and dynamic aspects, the SDD problem requires
the consideration of practical constraints or “business rules”. Examples of such
rules include driving time restrictions, cut-off times for placing the orders, and the
use of different types of vehicles. These rules can significantly further complicate
the problem. The business rule that is central in this research is the pre-releasing
capacity in the warehouse.

1.4. Pre-Releasing. A crucial aspect of the SDD problem is the limited pre-
releasing capacity at a warehouse, which restricts the number of orders that can be
picked simultaneously. Pre-releasing is the act of assigning an order to a specific
route, which involves fixing the order to the route. In the warehouse, a pre-released
order is placed on the loading dock assigned to a particular truck. Importantly, an
order cannot be removed from or changed to another loading dock. This means that
pre-releasing might create regret later, when new orders have come in. However, all
orders need to be pre-released in time, ideally with efficient routes. In Figure 1.1,
a visual representation of the pre-releasing process is shown; the map of orders on
the left, pre-releasing into loading docks in the middle, and the incoming trucks on
the right.

In general, the ideal scenario is to pre-release orders as late as possible, when
the maximum amount of information about incoming orders is available. In prac-
tice however, the pre-releasing capacity is limited. To ensure that orders can be
picked and prepared on time, they are often pre-released a few hours in advance as
a precautionary measure, minimizing the risk of not being able to process all orders
in time. This scenario presents a critical trade-off between waiting for more infor-
mation to make better-informed decisions and minimizing the risk of pre-releasing
orders too late, which could detrimentally impact the efficiency of SDD. This trade-
off is essential in addressing the challenges of optimizing SDD and will be the topic
of this research.

2. Problem Description

The pre-releasing problem examined in this research is complex and specific,
with only a few articles in the literature tackling similar topics. Therefore, it is
essential to provide a detailed definition and understanding of the problem. This
thesis focuses on a real-life customer case from a European e-grocery company,
hereafter referred to as “BosMart” to preserve anonymity. BosMart is interested in
improving their Same Day Delivery (SDD) service, as their current operations lack
efficiency and are reliant on manual planning. This section provides a conceptual
overview of the pre-releasing problem at BosMart, followed by a detailed formula-
tion of the input, objective function and decision variables. Additionally, a specific
example is presented to enhance understanding and visualize the intricacies of the
problem.
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Figure 1.1. A visual representation of the pre-releasing problem,
with the map of orders on the left, the orders being pre-released
to a loading dock in the middle, and the incoming trucks on the
right (blue dots represent the time left until departure). Order Y
is being pre-released into loading dock 2.

2.1. Conceptual Explanation. BosMart operates as an online e-grocery re-
tailer, offering customers the flexibility to choose a convenient 2-hour time-window
for their orders to be delivered to their homes. Ensuring timely delivery while
optimizing operational costs poses a significant challenge for BosMart.

In the warehouse, a team of pickers will collect the various products of the
order and prepare them for delivery by placing them in a crate. This crate will
then be moved to a loading dock, from which it will be loaded into a truck in the
future. This process of assigning an order to a future truck is called pre-releasing.
Crucially, once an order is pre-released to a particular truck, it cannot be reassigned
to another truck in the future.

What complicates this process is that roughly half of the orders are placed
less than 4 hours before their time-window starts. These orders cannot all be pre-
released at the very last moment, as the pre-releasing capacity in the warehouse
is limited. This means that parts of the routes need to be fixed (by means of
pre-releasing) before all orders are known. This is the pre-releasing problem: de-
termining which orders should be pre-released to minimize the expected total costs
for the entire day.

2.2. The Input. Decisions are made based on three types of input data:
• Order data. For all orders that are placed before the optimization starts,
the location (latitude and longitude), amounts (number of chilled, frozen
and ambient boxes) and time-window (2-hour time-window) are known.
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• Route data. A route is the path that a truck follows in a day. For all
routes, the capacity, start and finish times, and costs (per kilometer, per
hour and per route) are given.

• VRP planning. A commercial VRP solver (OHD) planned all orders
and routes that were known in the previous optimization round earlier
in the day. This planning also contains information on which orders are
pre-released already.

2.3. The Objective Function. Pre-releasing decisions must be made through-
out the day. The primary objective is to plan as many orders as possible, often
aiming for full order fulfillment. The secondary objective is to minimize the costs,
which is a weighted sum of the number of trucks used, the working time and the
driving distance. To be precise, not the monetary costs need to be optimized,
but the optimization costs, which can include various other factors, such as CO2
emissions, driver happiness, and so on. The precise formula for optimization costs
cannot be disclosed, but also is not relevant since the VRP is considered as a black
box.

It is important to note that there is no clearly defined objective function for a
single pre-releasing decision. Instead, the objective is to maximize order fulfillment
and minimize costs over the entire day, in which multiple pre-releasing decisions
are made. An attempt at an objective function for the individual pre-releasing
problem could be the expected costs of future planning. However, due to the
stochastic nature of future orders, this cannot be precisely defined. Hence, linear
programming (LP) formulations of the pre-releasing problem are not useful, and
therefore heuristic methods are required.

2.4. The Decision Variables. Two types of decisions need to be made at
each decision moment:

• Determining which orders to pre-release to which routes. Pre-releasing
an order to a route implies that the order will remain on that route in
all future planning scenarios. The process of pre-releasing an order in the
warehouse only takes a few minutes, but the number of orders that can be
pre-released within an hour is constrained by the pre-releasing capacity.

• Deciding which routes to finish. Finalizing a route means that the route
cannot be altered in the future, and thus will be part of the day’s plan-
ning. A route can only be finalized when all orders on that route are
pre-released. A route needs to be finish 20 minutes before it can depart
from the warehouse.

2.5. The Timeline of the Day. At any point throughout the day, orders can
be placed by a customer. This customer can select a 2-hour time-window, starting
on the hour, from 06:00 to 22:00 (e.g. 06:00-08:00, 07:00-09:00 up to 22:00-00:00).
In reality, time-windows start and end 10 minutes before the hour to ensure timely
delivery and some time-windows are 1 hour, but these nuances are neglected in this
research. Customers can only select a time-window starting in at least 2 hours in
the future. For instance, at 05:59, the earliest available delivery window would be
08:00-10:00, while at 06:01, the earliest would be 09:00-11:00.

Pre-releasing decisions are made at predetermined moments throughout the
day, such as every hour from 06:00 to 20:00. Trucks can depart ten minutes past
every hour, from 07:10 until 21:10. Before departure, trucks need to be loaded,
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which takes 20 minutes. All orders must be pre-released before they are loaded.
Given that pre-releasing takes 50 minutes, 06:00 is the latest moment orders can
be pre-released for routes departing at 07:10.

A timeline for a possible route is shown below in Figure 1.2. This route contains
orders from 2 different time-windows: 12:00-14:00 and 13:00-15:00. This route is
scheduled to depart at 11:10, so it needs to be loaded at 10:50. Therefore, the
latest moment for pre-releasing its orders is at 10:00. At this point, no new orders
for the time-window 12:00-14:00 can come in, but there is one more hour in which
orders for time-window 13:00-15:00 can come in. After 15:00 the route returns to
the warehouse. In principle, this route can be loaded again at 15:50, although it
would be considered a new route in the optimization process. (In practice, planning
routes with multiple “trips” would be desirable, but it is outside the scope of this
thesis.)

Figure 1.2. An example of a route containing orders with time-
windows 12:00-14:00 and 13:00-15:00. All orders from this route
need to be pre-released at (or before) 10:00.

3. Example of a Pre-Releasing Problem Instance

To improve the reader’s understanding of the (complicated) pre-releasing prob-
lem, an example of a pre-releasing problem instance is shown in Figure 1.3. The
question is which of the 11 known orders should be pre-released. Given that
the pre-release capacity is 6, this can be done in ∑6

𝑖=0 (11
𝑖 ) = 1486 ways. For

the real-life instances from BosMart considered in this thesis, up to 200 orders
out of 2000 known orders can be pre-released, which can be done in many ways:
∑200

𝑖=0 (2000
𝑖 ) = 7.7 × 10280.

Looking at the example, it can be observed that the green route is planned
to depart at 11:10, which means that loading should start at 10:50, which means
that the latest moment to pre-release the orders for this route is 10:00. Therefore,
a “Last-Minute” heuristic might suggest to at least pre-release these 3 orders, and
finish the green route.

Then the question is if more orders should be pre-released or not. In general,
pre-releasing more than necessary is bad for the VRP plannings, as the optimal
routes might change when new orders come in. Therefore, the ideal scenario would
be to only pre-release according to the “Last-Minute” heuristic.
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Figure 1.3. An example of a pre-releasing problem instance, with
the warehouse in the middle and the orders are represented as
houses, with their time-window above. OHD has planned the or-
ders on 3 routes, indicated by the colors blue, purple and green.
The grey orders (on C1 and C5) are not planned, because they
have been placed after the previous optimization. Because they
are not planned on a route, they can also not be pre-released. The
scheduled arrival times are indicated below the houses, and the
scheduled departure time is given at the start of the route. Driv-
ing time is assumed to be 20 minutes per square. None of the
orders are pre-released already. The question is which 6 orders to
pre-release at 10:00.

However, this strategy is not always possible, because the number of pre-releases
is restricted by the pre-releasing capacity. In the example, the blue and purple
routes are scheduled to depart at 12:10, which would mean that at 11:00 all of their
8 orders should be pre-released, which would exceed the pre-releasing capacity of 6.
Therefore, it might be smart to use a heuristic to pre-release “Extra” orders, next
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to the “Last-Minute” heuristic. If the pre-releasing capacity would be used fully in
the example, 3 more orders should be pre-released.

An “Extra” pre-releasing heuristic should pre-release orders that are likely to
stay on their current route, even when new orders come in and all routes are
reoptimized. In the example, it seems logical to pre-release the orders at A7 and
B7, as they are close to each other and have the same time-window. It is very
unlikely that new orders come in which would result in a planning in which these
orders are not on the same (blue) route. But which order should be the third to be
pre-released?

The reader is encouraged to think about possible heuristics for themselves, and
compare them to the heuristics suggested in Chapter 3.

4. Research Description

The goal of this research is to compare the effectiveness of various pre-releasing
strategies in the case of BosMart specifically. The primary research question and
three sub-questions are as follows:

• Research Question: How should BosMart pre-release their orders and
which procedural improvements are cost-effective?

• SQ1: What is the best pre-releasing heuristic?
• SQ2: What is the effect of the problem parameters on the optimization

costs?
• SQ3: Which procedural improvements would be cost-effective?

To answer these questions, a PRE-releasing Simulation TOol (PRESTO) was
developed. PRESTO simulates the events of a day and at various points throughout
the day applies a chosen heuristic to decide which orders will be pre-released and
which routes will be finished. This approach enables the comparison of multiple
heuristics under different problem parameter sets. The key problem parameters
investigated are the pre-releasing capacity, the minimum time between pre-releasing
and departure, the number of time windows per truck, and the optimization start
times. In making these decisions, PRESTO utilizes the commercial Vehicle Routing
Problem solver from ORTEC (OHD), which provides solutions for the VRP given
the available orders and routes.

Several simplifying assumptions were made to model this pre-releasing problem.
The following aspects are not within the scope of this thesis:

• Solving the VRP. The VRP solver OHD, which is a subroutine of
PRESTO, is treated as a black box. While ORTEC has various sophis-
ticated heuristics for solving a VRP, this research only employs the one
used by BosMart in practice.

• Stochastic simulation. Due to limited data availability, this research
was not able to make use of probability distributions to simulate potential
future orders. This constraint precludes the use of forecasting models or
data generation.

• Determining the number of orders to pre-release. As a conse-
quence of not using stochastic simulation, it’s not possible to estimate the
probability of exceeding the pre-releasing capacity due to an unexpected
surge in orders.

• Planning with multiple trips per route. All routes have a fixed
earliest start time and a latest finish time. If a vehicle returns to the
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warehouse well before the latest finish time, it must wait until the earliest
start time of its next route. In practice, a route and its planning could
encompass multiple “trips”. A pre-releasing heuristic could, for example,
plan a few short routes that return to the warehouse quickly, thereby
increasing planning flexibility. All plannings in this thesis assume a “single
trip” per route.

5. Contributions of this Research

This research makes several contributions to the existing literature on the Vehi-
cle Routing Problem and online problems in general, and addresses novel challenges
associated with pre-releasing in an online setting. The key contributions of this the-
sis are as follows:

(1) Defining and Formulating Pre-Releasing in an Online Setting:
This study introduces and defines the concept of pre-releasing in the con-
text of dynamic VRP with time-windows and stochastic customers, and
considers the pre-releasing decision as a distinct problem seperate from
the VRP.

(2) Identification of Relevant Parameters: The thesis identifies and ex-
amines the crucial parameters that impact the pre-releasing strategy’s
effectiveness and overall performance. This includes factors such as pre-
releasing capacity, pre-releasing time, pre-releasing moments and the uti-
lization of a time horizon.

(3) Simulation Methodology and Benchmarks: This research presents
a comprehensive simulation method that enables the evaluation and com-
parison of various pre-releasing heuristics. Moreover, the thesis applies
techniques from the literature on online problems to find benchmarks
for comparing the performance of the heuristics, such as the OHD-In-
Hindsight approach and random-based benchmarks. These benchmarks
serve as crucial benchmarks for assessing the performance of the proposed
heuristics.

(4) Proposed Pre-Releasing Heuristics and Classification: The thesis
introduces 10 heuristics specifically designed for pre-releasing decisions.
These heuristics are categorized into two main groups: “Last-Minute”
heuristics, which determine routes to finish and pre-release associated or-
ders, and “Extra” heuristics, which allow for additional pre-releasing be-
yond the last-minute decisions. The classification and analysis of these
heuristics provide practical insights into their respective advantages and
performance characteristics.

(5) Performance Analysis and Parameter Sensitivity: Through ex-
tensive experimentation and analysis, this research evaluates the perfor-
mance of the proposed heuristics in different scenarios. Additionally, the
study investigates the sensitivity of the pre-releasing strategy to parame-
ter changes, offering insights into the robustness and adaptability of the
proposed methods.

(6) Recommendations for Practical Implementation: Drawing on the
research findings, this thesis provides practical recommendations for the
application of pre-releasing heuristics in real-world logistics operations.
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These recommendations guide practitioners in selecting appropriate heuris-
tics, configuring relevant parameters, and integrating pre-releasing strate-
gies into their existing delivery systems.

(7) Applicability beyond VRP: While the focus of this research is on pre-
releasing in the VRP domain, the methods and insights presented in this
study have broader applicability to other online problems. Problems that
involve making decisions with partial information or fixed solutions before
complete data is available, such as scheduling and resource allocation, may
benefit from the methodologies and principles established in this research.

6. Thesis Outline and Reader’s Guide

This thesis is organized into the following chapters:
(1) Introduction: This chapter briefly introduced the problem and its rele-

vance and described the objectives and scope of the study.
(2) Literature Review: A review of relevant literature on VRP variations,

Dynamic VRP, and Online Algorithms is presented, laying the foundation
for the proposed methods and heuristics.

(3) Proposed Heuristics: A set of heuristics to be tested in this study are
introduced, along with the rationale behind them.

(4) Simulation Setup: The simulation tool used to test the heuristics is
described, along with a description of the data, performance metrics, and
an overview of the different scenarios and parameter settings considered
in the computational experiments.

(5) Results and Analysis: The results of the computational experiments
are presented and analyzed, evaluating the performance of the heuristics
and the effect of the problem parameters.

(6) Conclusion and Recommendations: The main findings of the study
are summarized, practical implications are discussed, and directions for fu-
ture research and potential improvements to the heuristics are suggested.



CHAPTER 2

Literature Review: Dynamic VRPs and
Pre-Releasing

“It is impossible for a man to learn what he thinks he already knows.”
∼ Epictetus

The rapid development of the logistics industry, combined with technologi-
cal advancements, has spurred significant research interest in the Vehicle Routing
Problem (VRP) and its numerous variations. Despite the wealth of literature, the
sheer number of VRP variants and differing terminologies can make it challenging
to obtain a clear overview of the field. Instead of describing the VRP landscape as
a whole, this chapter aims to contextualize the Dynamic Stochastic Vehicle Rout-
ing Problem with Time-Windows (DSVRPTW) problem by providing a structured
overview of the following topics:

• the standard VRP (Section 1)
• related VRP variations: the Capacitated VRP (Section 2) and the VRP
with Time-Windows (Section 3))

• Dynamical VRPs (Section 4)
• Heuristics for Dynamic VRPs in Literature (Section 5)
• Online algorithms (Section 6)
• Literature on pre-releasing (Section 7)

Although pre-releasing itself is a little-studied topic, the existing literature
discussed in this chapter has served as inspiration for developing and evaluating
the pre-releasing heuristics that will be detailed in Chapter 3.

1. Standard Vehicle Routing Problem Formulation

The Vehicle Routing Problem (VRP), a combinatorial optimization problem,
was first introduced by Dantzig and Ramser in 1959 [5]. The primary objective of
the VRP is to determine the most efficient routes for a fleet of vehicles to deliver
goods to a group of customers while minimizing the overall travel distance or cost.
With a wide array of practical applications in transportation, logistics, and supply
chain management, the VRP is a critical factor in enhancing the efficiency of these
industries [20, 12].

The standard VRP can be represented by a complete, bidirected graph 𝐺 =
(𝑉 , 𝐸), where 𝑉 = {0, 1, … , 𝑛} is the set of nodes, with node 0 representing the
depot and nodes 1, … , 𝑛 representing the customers. The set of arcs 𝐸 corresponds
to the connections between the nodes, and each arc (𝑖, 𝑗) ∈ 𝐸 is associated with a
non-negative cost 𝑐𝑖𝑗, symbolizing the distance or travel time between nodes 𝑖 and
𝑗. The VRP’s objective is to identify a collection of vehicle routes that begin and

10
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end at the depot, visit each customer exactly once, and minimize the total route
cost.

The problem can be modeled as an ILP, where binary variable 𝑥𝑖𝑗𝑘 is 1 if the
arc from node 𝑖 to node 𝑗 is in the route driven by vehicle 𝑘, and 0 otherwise. The
number of vehicles available for routing is 𝐾.

minimize
𝐾

∑
𝑘=1

𝑛
∑
𝑖=0

𝑛
∑
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗𝑘 (1)

subject to
𝑛

∑
𝑖=1

𝑥𝑖𝑗𝑘 =
𝑛

∑
𝑖=1

𝑥𝑗𝑖𝑘, ∀𝑗 ∈ {1, … , 𝑛}, 𝑘 ∈ {1, … , 𝐾} (2)

𝐾
∑
𝑘=1

𝑛
∑
𝑖=0

𝑥𝑖𝑗𝑘 = 1, 𝑗 ∈ {1, … , 𝑛} (3)

𝑛
∑
𝑗=0

𝑥0𝑗𝑘 = 1, 𝑘 ∈ {1, … , 𝐾} (4)

∑
𝑖∈𝑆

∑
𝑗∈𝑆

𝑥𝑖𝑗𝑘 ≤ |𝑆| − 1, ∀𝑆 ⊂ {1, … , 𝑛}, 𝑆 ≠ ∅, 𝑘 ∈ {1, … , 𝐾} (5)

𝑥𝑖𝑗𝑘 ∈ {0, 1}, 𝑖, 𝑗 ∈ {0, … , 𝑛}, 𝑘 ∈ {1, … , 𝐾} (6)

This formulation can be explained as follows:
(1) The objective function (1): aims to minimize the total cost of all routes.

In this formulation, the costs of a route equals the sum of the cost of the
arcs that are used.

(2) Vehicle leaves node that it enters (Eq. 2): This constraint ensures that the
number of times a vehicle enters a node is equal to the number of times it
leaves that node. This guarantees that if a vehicle visits a customer node,
it will also depart from it.

(3) Ensure that every node is entered once (Eq. 3): Combined with the first
constraint, this constraint ensures that every node is entered only once,
and it is left by the same vehicle. In other words, each customer is visited
exactly once by a single vehicle.

(4) Every vehicle leaves the depot (Eq. 4): This constraint guarantees that
each vehicle leaves the depot exactly once. Together with constraints 1
and 2, this ensures that every vehicle departs from and returns to the
depot, forming a complete route. Note that if a route 𝑘 is not used,
𝑥00𝑘 = 1.

(5) Subtour elimination constraints (Eq. 5): In order to eliminate subtours
in the VRP solution, the Dantzig-Fulkerson-Johnson (DFJ) subtour elim-
ination constraint can be included in the problem formulation. This con-
straint guarantees that the total number of arcs entering and leaving nodes
in any subset 𝑆 of customer nodes by any vehicle is less than or equal to
the number of nodes in 𝑆 minus one. As a result, the solution cannot
form a complete loop within the subset 𝑆, preventing the formation of
subtours and ensuring feasible solutions.

(6) Binary decision variables (Eq. 6): This constraint defines the binary
nature of the decision variables 𝑥𝑖𝑗𝑘, meaning that the variable takes the
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value 1 if the arc from node 𝑖 to node 𝑗 is included in the route for vehicle
𝑘, and 0 otherwise.

2. Capacitated Vehicle Routing Problem (CVRP)

In a variant of the VRP, known as the Capacitated Vehicle Routing Prob-
lem (CVRP), vehicles have a limited capacity, and the demands of the customers
they serve should not exceed their capacity. To include capacity constraints in the
formulation, the following additional notation is introduced:

• 𝑞𝑗 is the demand of each customer.
• 𝑄𝑘 is the capacity of vehicle 𝑘.

The capacity constraint can be added to the problem formulation as follows:

𝑛
∑
𝑗=1

𝑞𝑗𝑥0𝑗𝑘 ≤ 𝑄𝑘, 𝑘 = 1, … , 𝐾 (7)

This constraint ensures that the total demand of all customers served by vehicle
𝑘 does not exceed its capacity, 𝑄𝑘. This makes the problem more realistic, as it
considers the limited capacity of vehicles and the need to distribute the demand
among multiple vehicles when necessary. Some problems also incorporate the load-
ing, for example when considering the dimensions of the box, but this is not the
case in this thesis.

3. Vehicle Routing Problem with Time Windows (VRPTW)

The Vehicle Routing Problem with Time Windows (VRPTW) is an extension
of the Capacitated Vehicle Routing Problem (CVRP) where each customer has a
specific time window within which the goods must be delivered. In this problem,
the constraints automatically eliminate subtours, so there is no need to formulate
any subtour elimination constraints. In this section, we will discuss the additional
constraints required for the VRPTW formulation and explain them conceptually.

3.1. Time Window Constraints. To formulate a VRPTW, some extra pa-
rameters and variables are needed:

• [𝑎𝑖, 𝑏𝑖] is the time window of customer 𝑖. A vehicle must arrive at customer
𝑖 at least at 𝑎𝑖 and at most at 𝑏𝑖.

• 𝑡𝑖𝑗 denotes the time it takes to get from customer 𝑖 to customer 𝑗. Any
service time at customer 𝑖 is included.

• variable 𝑠𝑖 denotes the time that a vehicle starts serving customer 𝑖 (which
must be between 𝑎𝑖 and 𝑏𝑖).

These constraints can be formulated as follows:

𝑠𝑖 + 𝑡𝑖𝑗 − 𝑀 ⋅ (1 − 𝑥𝑖𝑗𝑘) ≤ 𝑠𝑗, ∀𝑖 ∈ 𝑉 , 𝑗 ∈ 𝑉 � 1, 𝑘 ∈ 1, … , 𝑝 (8)
𝑎𝑖 ≤ 𝑠𝑖 ≤ 𝑏𝑖, ∀𝑖 ∈ 𝑉 (9)

where 𝑀 = max 𝑏𝑖 + 𝑡𝑖𝑗 − 𝑎𝑖 for all 𝑖, 𝑗 ∈ 1, … , 𝑛.
Constraint (8) ensures that the vehicle’s service start time at customer 𝑗 is at

least 𝑡𝑖𝑗 later than the start of the service time at customer 𝑖. If the arc (𝑖, 𝑗) is in
the route, the constraint can be rewritten to 𝑠𝑖 + 𝑡𝑖𝑗 ≤ 𝑠𝑗. If the arc (𝑖, 𝑗) is not
in the route, the constraint is still valid, and it can be rewritten to 𝑠𝑖 + 𝑀 ≥ 𝑠𝑗.
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The value of 𝑀 is the maximum value of 𝑏𝑖 + 𝑡𝑖𝑗 − 𝑎𝑖, representing the maximum
possible time between 𝑎𝑖 and 𝑏𝑖.

Constraint (9) ensures that a vehicle can start serving a customer within the
customer’s time window.

The VRPTW formulation ensures that it is not possible to return to a pre-
viously served customer. This is because the time a customer is being served is
always later than the previously served customers. As a result, the time window
constraints automatically eliminate subtours, making it unnecessary to formulate
separate subtour elimination constraints, such as the DFJ constraints.

3.2. Stochastic VRP. In real-world applications, many factors related to
the Capacitated Vehicle Routing Problem (CVRP) are uncertain. To capture this
variability, certain parameters in the CVRP can be modeled as stochastic vari-
ables, leading to the Stochastic (Capacitated) Vehicle Routing Problem (SVRP or
SCVRP).

In SVRP, elements such as demand, customer presence, travel times, and service
times can be uncertain. The most common version of SVRP is the Capacitated
Vehicle Routing Problem with Stochastic Demand (CVRPSD), which is highly
relevant to the real-world scenarios and aligns with the focus of this research on
pre-releasing, as it also deals with uncertainty in customer demand.

Unlike deterministic VRP formulations, in SVRP, the decision-maker (DM)
must make decisions before knowing the exact values of all parameters. As a result,
once the actual parameter values are known, certain constraints may be violated,
potentially leading to a solution “failing.”

Stochastic problems are often modeled as either a Chance Constrained Program
(CCP) or a Stochastic Program with Recourse (SPR). In CCP, the problem is solved
to ensure the probability of route failure remains below a specified level. In SPR,
the DM is allowed to make corrective decisions after observing the realization of the
stochastic parameters, aiming to minimize the expected cost of decisions, including
the initial decisions and any subsequent actions taken upon observing the actual
parameter values.

4. Dynamical Vehicle Routing Problems

In practical situations, delivery problems are predominantly dynamic vehicle
routing problems (DVRPs) as opposed to static ones. The key difference between
these two types lies in the availability of order information. In static VRPs, all
orders are known beforehand, whereas in DVRPs, only a portion of the orders are
initially available for generating a preliminary schedule. As the vehicles proceed
on their routes, new orders are dynamically introduced, necessitating adjustments
to the existing route to accommodate these additions. This characteristic makes
DVRPs more applicable and realistic for various practical situations, including de-
livery services, emergency response, and transportation networks.

To address a dynamic problem, it is essential to simulate dynamicity. A widely
used method, as described by Kilby [13] and Montemanni [14], involves dividing the
working day into time slices and incrementally solving the problems. This method
introduces the concept of a working day lasting 𝑇𝑤𝑑 seconds, which the algorithm
simulates. Initially, not all nodes are available; a subset is assigned an availability
time when they can be accessed. The degree of dynamicity in the problem is
determined by this percentage. At the beginning of the day, a preliminary tour is



4. DYNAMICAL VEHICLE ROUTING PROBLEMS 14

established using the available nodes. The working day is then partitioned into 𝑛𝑡𝑠
time slices of duration 𝑡𝑡𝑠, with 𝑡𝑡𝑠 being equal to 𝑇𝑤𝑑/𝑛𝑡𝑠. The solution is updated
at each time slice, effectively converting the dynamic problem into 𝑛𝑡𝑠 consecutive
static problems to be solved. In DVRPTW, the objective is akin to that of static
VRPs; however, some customers and their time windows are initially unknown, and
portions of the solutions may already be committed.

In the remainder of this section, we will provide a comprehensive overview of
different DVRP types, discuss recent advancements in the field, and concentrate
specifically on the Dynamic VRP with Stochastic Customers and Time Windows
(DSVRPTW).

4.1. Overview of Dynamic VRPs. DVRPs can be broadly classified ac-
cording to the dynamic elements they involve, such as customer demands, travel
times, and service times, among others. Recent research on DVRPs has centered
on devising efficient algorithms and heuristic methods for solving various types of
DVRPs, as well as evaluating the effects of dynamic elements on routing strategy
performance. A taxonomy of Dynamical VRPs was recently given by Psaraftis [16].

Some dynamic variations of the VRP that are relevant to this work are:
(1) Dynamic VRP with Stochastic Customers and TimeWindows (DSVRPTW):

In this variant, customer requests (orders) are disclosed in real-time or dy-
namically during the operation. Each customer has a time window during
which service must be provided. The DVRPTW is relevant to delivery or
pick-up services that need to accommodate last-minute requests [2]. This
is the type of dynamicity that is relevant for this research, and it will be
further explained in the next section.

(2) Dynamic VRP with Stochastic Demands (DVRPSD): This problem deals
with customer demands that are unknown in advance and are disclosed
dynamically as vehicles visit customers. This variant is applicable to sit-
uations where customer orders are uncertain until the time of delivery
[3].

(3) Dynamic VRP with Stochastic Travel Times (DVRPSTT): In this prob-
lem, travel times between locations are uncertain and are disclosed dy-
namically during the operation. The DVRPSTT accounts for factors such
as traffic congestion and road conditions, which can impact the efficiency
of routing decisions [11].

(4) Dynamic VRP with Stochastic Service Times (DVRPSST): This problem
involves uncertain service times for customers that are disclosed dynam-
ically during the operation. The DVRPSST is applicable to situations
where the time required to service a customer is not known in advance,
such as vehicle breakdowns, repair services, or uncertain processing times
[7].

4.2. Dynamic VRP with Stochastic Customers and Time Windows
(DSVRPTW). The Dynamic VRP with Stochastic Customers and Time Win-
dows (DSVRPTW) is an extension of the VRPTW, where the presence of cus-
tomers is uncertain. In this problem, each customer has a specific time window
within which the goods must be delivered, as well as a probability of requiring ser-
vice. The goal is to minimize the total travel cost while considering the constraints
imposed by the time windows and the stochastic nature of the customers.
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The DSVRPTW combines the challenges of both the VRPTW and the SVRP,
requiring consideration of time windows and the stochastic presence of customers.
Due to the increased complexity of this problem, finding optimal solutions can be
computationally challenging, particularly for large instances. However, as with the
SVRP, a range of solution methodologies, such as metaheuristics or exact methods,
can be employed to tackle this problem.

Recent work on the DSVRPTW has focused on developing efficient algorithms
and heuristics to handle the combined uncertainties in customer requests, demands,
and time windows. Christiansen et al. [19] proposed a two-stage stochastic pro-
gramming model for the DSVRPTW and developed a sample average approxima-
tion algorithm to solve the problem. Their approach showed promising results in
terms of computational efficiency and solution quality.

5. Heuristics for Dynamic VRPs in Literature

Vehicle Routing Problems (VRP) and Vehicle Routing Problems with Time
Windows (VRPTW) are both classified as NP-hard, as they generalize the NP-hard
traveling salesman problem. Consequently, heuristic algorithms are extensively
employed to address these problems. Classical examples encompass the nearest
neighbor heuristic proposed by Flood [9] and the savings algorithm developed by
Clarke and Wright [4], which is grounded on the savings concept and persistently
combines two customers on an identical route.

In recent years, meta-heuristics have gained prominence in the field. Semet and
Taillard [18] introduced a tabu search for discovering effective solutions to the VRP,
whereas Baker and Ayechew [1] combined genetic algorithms and neighborhood
search methods to yield satisfactory results. Dorigo and Gambardella [6] presented
ant colony optimization, which leverages artificial ant colonies to construct the
shortest route.

Despite the multitude of static VRP solvers available, only a limited number
of algorithms are capable of tackling dynamic VRPs. Fundamentally, most algo-
rithms previously described can be adapted to solve dynamic VRPs. Nonetheless, to
effectively manage the dynamic aspects of the problem, the algorithm should incor-
porate mechanisms that facilitate the reuse of learned features of the problem from
previous solutions. As indicated in Eyckelhof and Snoek [8], certain bio-mimetic
ant-colony optimization algorithms seem to support dynamic adaptations of deliv-
ery routes effectively. For instance, in ant colony optimization, virtual pheromone
trails are created to indicate advantageous directions if solutions only need partial
modifications.

Yang et al.’s work on “Dynamic vehicle routing with time windows in theory
and practice” [21] presents a heuristic approach for handling the dynamic aspects
of vehicle routing with time windows, employing ant colony optimization (ACO)
as their primary solution technique. Their heuristic is designed around the concept
of committing to specific routes and customer assignments at the latest possible
moment, with the goal of maximizing the flexibility of the solution in response to
the dynamic nature of the problem.

The key idea behind their approach is to maintain as many available options
as possible for as long as possible. By doing so, the algorithm is better equipped
to accommodate new orders or changes that may arise during the execution of
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the solution. In their ACO-based heuristic, artificial ants construct solutions in-
crementally by traversing a graph representation of the problem. The ants utilize
pheromone trails to indicate favorable routes and customer assignments, which are
updated dynamically to reflect the evolving problem landscape.

Yang et al.’s commitment strategy involves deferring the decision to commit to a
particular customer assignment or route until it is absolutely necessary. This allows
the ants to explore a wider range of potential solutions, increasing the likelihood of
finding high-quality routes that can adapt to the dynamic nature of the problem.
By focusing on maintaining flexibility, their heuristic can effectively navigate the
challenges presented by dynamic vehicle routing problems with time windows. This
concept inspired the idea of “Last-Minute” heuristics for the pre-releasing problem,
as described in Chapter 3.

5.1. Two-stage planning. Two-stage stochastic programming is a technique
employed to address optimization problems with uncertainty. The objective is to
iteratively select the best value for a decision variable, 𝑥, while accounting for both
the current cost of choosing 𝑥 (first stage, denoted by 𝑓(𝑥)) and the expected future
costs of this choice (second stage, denoted by 𝐸[𝑄(𝑥, 𝜉)]).

In this approach, it is assumed that the uncertain data, 𝜉, in the second stage
has a probability distribution(which is not the case in this thesis). The expected
future costs can be formulated as the summation of costs for all possible scenarios
in 𝜉, with each scenario having an associated probability 𝑝𝑘:

𝐸[𝑄(𝑥, 𝜉)] =
𝐾

∑
𝑘=1

𝑝𝑘 ⋅ 𝑄(𝑥, 𝜉𝑘) (10)

Considering the application of the two-stage stochastic programming approach
to the Stochastic Vehicle Routing Problem (SVRP), several variables need to be
taken into account: 𝑋pre-released represents the ordered set of previous choices of 𝑥,
𝑋available denotes the set of available nodes to select as the new choice of 𝑥, and
𝑋future accounts for the uncertainty of nodes that might become available in the
future.

To determine the score for both stages, one first needs a simple score for the first
stage: the total costs if node 𝑥 is added to the current tour. For the second stage, a
set of scenarios 𝜉𝑘 with associated probabilities 𝑝𝑘 is required. Each scenario consists
of a set of nodes, 𝑋future. Assuming a simulator that generates the set 𝑋future and
assigns appropriate probabilities, a method is needed to create a tour starting at
node 𝑥 and incorporating all nodes in 𝑋future. This can be achieved using any
algorithm capable of solving the static VRP, such as ORTEC’s commercial solver
OHD. The algorithm should run for a limited time and return the best solution
found. The score of this solution, 𝑄(𝑥, 𝜉𝑘), corresponds to the 𝑘-th scenario.

In order to compute the expected score of choosing 𝑥, a sufficiently large set of 𝑘
scenarios must be generated. A larger 𝑘 value improves the accuracy of the expected
score but increases computational costs. Thus, it is crucial to choose an appropriate
𝑘 value and employ a VRP-solving algorithm with low time requirements.

The fact that no probability distribution on the future orders is given prevents
the use of two-stage planning in this thesis. However, the multi-simulation heuristic
suggested in Chapter 3 is inspired by two-stage planning.
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6. Online Algorithms

Online algorithms are a class of algorithms designed to make decisions and
produce outputs based on partial input data, without complete knowledge of the
entire input sequence. These algorithms are especially relevant for dynamic and
real-time problems, including vehicle routing problems, where input data (such
as customer orders, travel times, or demands) might change or become available
incrementally over time. This section provides an overview of online algorithms,
discusses the relationship between dynamic vehicle routing problems and online
algorithms, and reviews some recent work on this topic. Performance analysis of
online algorithms will also be investigated, as this will inspire the development of
the OHD-In-Hindsight benchmark for pre-releasing.

6.1. Introduction to Online Algorithms. Online algorithms process input
data elements sequentially, making decisions at each step based on the available
information at that point in time. This is in contrast to offline algorithms, which
have access to the complete input data set before processing and can make decisions
based on full knowledge of the problem instance. Online algorithms are well-suited
to address dynamic and real-time problems, as they can adapt to changes in input
data or problem parameters on-the-fly.

Formally, an online algorithm can be described as follows. Let 𝐼 = 𝐼1, 𝐼2, … , 𝐼𝑛
be the input sequence. An online algorithm 𝒜 processes each input element 𝐼𝑖 and
produces an output 𝑂𝑖 based on the current knowledge. The algorithm cannot
change any output 𝑂𝑗 with 𝑗 < 𝑖 once it has been produced. The performance of
online algorithms is typically evaluated by comparing their output to the output of
an optimal offline algorithm.

In the context of the pre-releasing problem, an online algorithm 𝒜 must decide,
at each time step, whether to pre-release an order based on the available information
(e.g., current orders, loading docks, and time windows). The objective is to deliver
all orders within their specified time windows while minimizing the overall cost,
which may include travel time, waiting time, and other relevant operational costs.
As the algorithm processes orders sequentially, it must adapt its decisions to account
for changes in customer demand, time windows, and other dynamic elements.

6.2. Competitive Analysis of Online Algorithms. Competitive analysis
is a widely used method for evaluating the performance of online algorithms. The
idea of competitiveness is to compare the output generated by an online algorithm
to the output produced by an optimal offline algorithm, which is an omniscient
algorithm that knows the entire input data in advance and can compute an optimal
output. The better an online algorithm approximates the optimal solution, the more
competitive it is.

The performance of an online algorithm 𝒜 on an input sequence 𝐼 can be
quantified by its competitive ratio, which is defined as the ratio of the cost of the
solution produced by 𝒜 to the cost of the optimal offline solution:

𝜌(𝒜, 𝐼) = cost(𝒜(𝐼))
cost(OPT(𝐼)) (11)

where cost(𝒜(𝐼)) is the cost of the solution produced by the online algorithm
𝒜 on input sequence 𝐼 , and cost(OPT(𝐼)) is the cost of the optimal offline solution.
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The competitive ratio measures the worst-case performance of the online algorithm
over all possible input sequences:

𝜌(𝒜) = sup
𝐼

𝜌(𝒜, 𝐼) (12)

An online algorithm is said to be 𝑐-competitive if its competitive ratio is at
most 𝑐. The goal in designing online algorithms is to achieve the smallest possible
competitive ratio, indicating that the online algorithm performs well compared to
the optimal offline algorithm, even in the worst-case scenario.

6.3. Recent Work on Online Algorithms. The study of online algorithms
has been an active area of research in recent years, with various approaches proposed
to tackle different classes of problems. In the context of vehicle routing problems,
researchers have focused on designing online algorithms that adapt to dynamic
changes in customer orders, time windows, and other problem parameters.

For example, Gendreau [10] provided a comprehensive review of online algo-
rithms for dynamic vehicle routing problems, including algorithms for the Dy-
namic Traveling Salesman Problem (DTSP), the Dynamic Vehicle Routing Problem
(DVRP), and the Dynamic Pickup and Delivery Problem (DPDP). They discussed
various strategies, such as insertion heuristics, local search, metaheuristics, and
exact algorithms, for solving these problems in an online setting.

Bertsimas [3] proposed an online algorithm for the Dynamic Vehicle Routing
Problem with TimeWindows (DVRPTW) based on an adaptive large neighborhood
search (ALNS) heuristic. The algorithm dynamically updates the search neighbor-
hood based on the current solution and explores different routes in an online manner
to adapt to changes in customer orders and time windows. They showed that their
algorithm performs well in practice, achieving near-optimal solutions for various
benchmark instances.

6.4. Dynamical VRP with Stochastic Customers and Time Windows.
In an online setting, the DVRPSTW requires the algorithm to make decisions about
the routes without full knowledge of future customer orders, demands, and time
windows. As new information becomes available, the online algorithm must adapt
its routes to ensure that all customer demands are met within their respective
time windows while minimizing the expected total cost. This problem combines
the challenges of both dynamic and stochastic aspects, making it a complex and
interesting problem to study within the context of online algorithms.

6.5. Pre-Releasing and Online Algorithms. The concept of pre-releasing,
as described earlier, involves placing an order in a loading dock, where it will be
picked up by a truck. Once an order is pre-released, a part of the solution is fixed,
and it cannot be changed or removed from the loading dock. This problem can
be viewed as an online algorithm, as decisions about pre-releasing orders must be
made without full knowledge of future orders that may arrive within the planning
horizon.

7. Literature on Pre-Releasing

Although there is extensive research on the dynamic VRP, little attention has
been given to practical warehouse problems like pre-releasing. In fact, the first paper
addressing both dynamicity and time-windows simultaneously was only recently



7. LITERATURE ON PRE-RELEASING 19

published [21]. This paper serves as a major source of inspiration for the current
research and is summarized below.

Yang et al.’s work is concerned with service delivery rather than goods trans-
portation. They propose a heuristic method that commits to decisions at the latest
feasible moment, maximizing adaptability to the dynamic aspects of the problem.
By maintaining numerous options, the algorithm can efficiently address emerging
orders or modifications. The authors employ ant colony optimization to tackle the
dynamic aspects of the problem and design a robust solution strategy suitable for
complex service delivery scenarios.

The concept of “committing” an order to a route is similar to the concept of
“pre-releasing” discussed in this research. However, there are two major differences:

• “Committing” can be performed on-the-fly, whereas pre-releasing must be
executed (far) before the start of the time-window. This difference arises
because routes can only be finished and loaded at the depot (a few hours
before delivery) whereas service-delivery vehicles need not return to the
depot.

• Yang et al.’s heuristic primarily focuses on the routing aspect and em-
ploys a simple last-minute “strategy” for pre-releasing. In contrast, this
thesis uses a black-box algorithm for the routing part and emphasizes
the development of pre-releasing heuristics. In particular, orders will be
pre-released before the last-minute to manage the pre-releasing capacity.



CHAPTER 3

Proposed Heuristics

“Think of many things - do only one.” ∼ Portuguese Proverb

After having gained an understanding of the existing literature on VRPs and
online algorithms, this chapter presents the heuristics for the pre-releasing prob-
lem suggested in this thesis, which will also be evaluated in the simulation tool
PRESTO.

A pre-releasing heuristic should output which orders to pre-release and which
routes to finish, based on the available information, including all known orders and
routes at that moment, as well as an optimized VRP planning.

The pre-releasing heuristics are categorized into two types: “Last-Minute”
heuristics and “Extra-Pre-Release” heuristics. The “Last-Minute” heuristics fo-
cus on determining the routes to finish and subsequently pre-releasing all orders
within those routes. Failure to apply the “Last-Minute” heuristic may result in un-
timely pre-releases, leading to potential delivery delays. This chapter presents two
“Last-Minute” heuristics: “upcoming orders,” which identifies routes containing
orders with time-windows starting within 2 hours, and “upcoming routes,” which
identifies routes scheduled to depart before the next optimization time.

On top of the pre-releases determined by the “Last-Minute” heuristic, it may
be necessary to consider pre-releasing additional orders, up to the pre-releasing
capacity, using an “Extra-Pre-Release” heuristic. This allows for the creation of a
buffer to account for contingencies, such as warehouse issues or unexpected surges
in orders that may exceed the finite pre-releasing capacity. In Section 2, eight
different “Extra-Pre-Release” heuristics are suggested:

(1) Random: Pre-release randomly chosen orders. This is expected to be
suboptimal, but provides a useful point of reference for the other heuris-
tics.

(2) Closest: Pre-release the orders that are the closest to the warehouse, i.e.
have the smallest distance to the warehouse.

(3) Furthest: Pre-release the orders that are furthest from the warehouse,
i.e. have the largest distance to the warehouse.

(4) Minimum Driving Time: Pre-release the two orders in the VRP plan-
ning with the shortest driving time between them, if they are not already
pre-released.

(5) Maximum Distance: Pre-release the order that has the highest distance
to any other pre-released order (or the warehouse).

(6) Furthest Seeding: Pre-release the furthest 𝑠 orders in each route, and
then apply the Minimum Driving Time heuristic.

(7) Closest Seeding: Pre-release the closest 𝑠 orders in each route, and then
apply the Minimum Driving Time heuristic.

20
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(8) Next Time-Window: Pre-release orders in a lexicographical order, pri-
oritizing those with the closest time-window start, and then applying the
Minimum Driving Time heuristic to determine which order to pre-release
within each time-window.

It is important to note that when an order is chosen to be pre-released, it is
assigned to the route it is planned on in the most recent optimized VRP planning.

To prevent pre-releasing orders from routes departing later in the day, these
heuristics are applied within a predetermined pre-release horizon ℎ, denoted as
PR_Horizon. This limits the pre-releasing options to only the orders that are part
of the next ℎ + 1 time-windows.

At the end of this chapter, several additional ideas for more advanced pre-
releasing strategies are proposed, providing potential avenues for further explo-
ration.

1. Last-Minute Heuristics

The Last-Minute heuristics decide which routes needs to be finished, and conse-
quently pre-releases all orders from that route. The idea behind these heuristics is
that pre-releasing at the last moment maximizes the information available, so that
the best decisions can be made, similar to the “committing” strategy suggested by
Yang [21] discussed in the previous chapter. When the pre-releasing capacity is
of no concern, the Last-Minute heuristic is sufficient, and no “Extra” Pre-Release
heuristic is needed.

One way to finish routes at the last-minute is to finish a route if it contains
an order with a time-window starting in 2 hours. For example at 10:00, all routes
with an order with time-window 12:00-14:00 would be pre-released. The idea is
that the truck needs to be loaded at 10:50 and pre-releasing takes 50 minutes, so
10:00 is the last moment to pre-release this order. This is called the “upcoming
orders” heuristic. This idea stems from BosMart’s current operations, where all
orders have a label that suggest when the order needs to be loaded in order to be
delivered at the start of the time-window.

However, a smarter heuristic exists; the “upcoming routes” heuristic. The flaw
in the reasoning above is that an order with time-window 12:00-14:00 might only
be planned to be delivered after 13:00, in which case it could have been pre-released
an hour later. Therefore, the upcoming routes heuristic considers which routes to
finish before the next optimization start time. To be precise, the upcoming route
heuristic finishes a route if the scheduled loading time plus the time it takes to
pre-release is larger than next optimization start time.

Consider the route depicted in Figure 3.1 below. The upcoming orders heuristic
would finish this route at 10:00, but the upcoming routes heuristic would finish it
at 11:00. Finishing the route at 11:00 would mean loading could start at 11:50 and
the route departs at 12:10. This example shows why the upcoming route heuristic
is preferred over the upcoming orders heuristic, as the simulations will confirm in
Chapter 5. In the rest of this thesis, when referring to the “Last-Minute” heuristic,
it is understood that this is the “upcoming routes” heuristic.

2. Extra-Pre-Release Heuristics

As discussed previously, it might be desirable to pre-release extra orders after
applying the Last-Minute heuristic, in order to mitigate the risks of exceeding the
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Figure 3.1. A route from the optimized VRP planning, contain-
ing 4 orders and the Warehouse (W). The time-windows are in-
dicated above, and the scheduled arriving time is indicated below
the houses. The upcoming orders heuristic would finish this route
at 10:00, but the upcoming routes heuristic would finish it at 11:00.

pre-releasing capacity in the future. When deciding which orders to pre-release, one
should pick orders that are likely to end up on the route they are currently planned
on, even if new orders come in in the future. Eight of such heuristics are suggested
below, alongside a brief motivation. Later, an example is given to demonstrate the
heuristics.

The question of how many extra orders to pre-release is not in the scope of this
thesis. Instead, it is assumed that the pre-releasing capacity is always fully used.
This makes sense from a business perspective, as the pickers in the warehouse are
already there and expect to be working. However, this is not an ideal strategy, as it
would mean that after a few hours almost all orders will be pre-released, especially if
the pre-releasing capacity is high. Since all heuristics have to pre-release the same
amount of orders, their performance can be compared with each other. As the
performance of the heuristics might depend on the (fixed) number of pre-releases,
the heuristics will be compared for various pre-releasing capacities.

2.1. Random. This heuristic randomly pre-releases an order from the planned,
but un-pre-released orders, until the pre-releasing capacity is reached. This heuris-
tic does not use any additional information, and is therefore expected to not work
very well. However, it does act as a useful reference point for later heuristics and
the cost of pre-releasing in general.

2.2. Closest. This heuristic pre-releases the orders with the lowest distance
to the warehouse. Ideally the driving time to the order would be used for this, but
instead this thesis estimates the distance based on the Manhattan distance between
the coordinates of the order and the warehouse.

The idea behind this heuristic is that pre-releasing the closest orders has the
lowest risk; even if an order that is just North of the warehouse ends up on a route
going to the South, at most two times the (small) distance between the order and
the warehouse is wasted.
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2.3. Furthest. This heuristic pre-releases the orders with the highest distance
to the warehouse. The idea behind this heuristic is that orders that are far away are
less likely to be changed to another route, whereas closer orders are more flexible
to change to other routes, as all routes go through the area around the warehouse.

2.4. Minimum Driving Time. Orders that are close together will likely end
up on the same route. For example, if two neighbours both make an order (for the
same time-window), it is unlikely that the ideal planning does not combine them
on one route. Therefore, a logical heuristic would be to pre-release the orders
that are closest together, or rather have the smallest driving time between them.
This information is directly contained in the optimized VRP planning. Note that
this might result in either pre-releasing 2 orders (when both were not pre-released
before), or in only pre-releasing 1 extra order (when 1 has been pre-released previ-
ously). If only 1 order needs to be pre-released but the minimum driving time is
between 2 un-pre-released orders, a tie-break rule is applied that pre-releases the
order furthest from the warehouse (see the example below).

This heuristic seems to be the most intuitive heuristic, as it “greedily” pre-
releases the orders that will most likely end up together.

2.5. Maximum Distance. Instead of pre-releasing orders that will likely end
up together (on the same route), another strategy is to pre-release orders that will
likely not end up together (on different routes). By pre-releasing the order which
is furthest from any other pre-released order (or the warehouse), it is unlikely that
these orders would end up on the same route in the future, when new orders come
in.

For this heuristic, one considers all orders that are planned in the latest plan-
ning, except those that are finished already. For each of the non-pre-released orders,
the distance to the closest pre-released order (or the warehouse) is computed. The
order that is furthest away from any pre-released order (or the warehouse) will
be pre-released next. This process is repeated until the pre-releasing capacity is
reached.

2.6. Furthest and Closest Seeding. The Furthest and Closest heuristics
may appear intuitive when the number of pre-released orders is small, but their
intuitiveness may diminish when a significant number of orders have already been
pre-released. Also, simulations have suggested that pre-releasing orders to a route
that already has many pre-releases is undesirable.

Therefore, the Furthest (or Closest) Seeding heuristic starts by pre-releasing
the 𝑠 orders from every route that are furthest from (or closest to) the warehouse,
and then pre-releases additional orders via the Minimum Driving Time heuristic.
This method is similar to some VRP construction algorithms, such as the Farthest
Insertion Heuristic [17].

These Seedings heuristics are generalizations of the Furthest, Closest and Min-
imum Driving Time heuristics. When 𝑠 = 0, the heuristics are the same as the
Minimum Driving Time heuristic, whereas for large 𝑠 (larger than the maximum
number of orders in a route) the Seedings heuristic is equal to the Furthest (or
Closest) heuristic.

2.7. Next Time-Window. Orders that need to be delivered far into the fu-
ture are more likely to change routes than orders that need to be delivered sooner.
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Therefore, the Next Time-Window heuristic pre-releases the orders based on a lexi-
cographical ordering of their time-window start and driving time. First, it considers
the orders with the closest time-window start. This means that orders with ear-
lier time-window starts will be pre-released before orders with later time-window
starts. Within each time-window, the Minimum Driving Time heuristic is applied
to determine the order of pre-releasing based on driving time.

2.8. Example of a Pre-Releasing Problem Instance. To exemplify the 8
”Extra” pre-releasing heuristics suggested in this chapter, the example stated in the
Introduction will be revisited in Figure 3.2 to showcase the workings of the heuris-
tics. As explained in the Introduction, the green route will be finished according to
the ”Last-Minute” heuristic, so three more orders need to be pre-released. Below,
the outcome of the heuristics are given alongside a brief explanation.

Figure 3.2. Example of a pre-releasing problem, with 3 optimized
routes and order time-window and estimated arrival shown (see
Section 3 for more details).

• Random: B4, D7, F6.
• Closest: B4, E5, F4. These orders have a Manhattan distance of 3 to
the warehouse.

• Furthest: A7, G7, B7. Orders A7 and B7 have a Manhattan distance
of 6, and B7 a distance of 5.

• Minimum Driving Time: A7, B7, G7. The shortest driving time is
between A7 and B7. There are several driving times of 40 minutes, so the
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tie-break rule decides that the furthest of these orders will be pre-released,
so G7.

• Maximum Distance: A7, G7, D7. The order furthest from the ware-
house is A7 (or G7). The order furthest from either the warehouse or A7
is G7. The order furthest from the warehouse, A7 and G7 is D7.

• Furthest Seeding (𝑠=1): A7, G7, B7. The furthest order from each
route is pre-released, so A7 and G7. Next, the Minimum Driving Time
heuristic is applied. The minimum driving time is between A7 and B7
and A7 is already pre-released, so B7 will be pre-released.

• Closest Seeding (𝑠 = 1): B4, F4, A7. The closest order from each
route is pre-released, so B4 and F4 (or E5). Next, the Minimum Driving
Time heuristic is applied, so A7 is pre-released.

• Next Time-Window: D7, F4, F6. The first time-window in the re-
maining orders is 12:00 - 14:00, so the three orders with that time-window
will be pre-released.

3. Suggestions for more Complex Heuristics

When a planner manually decides which orders to pre-release, they might intu-
itively use various other criteria in their decision-making process. After discussing
the problem with several experts, the following criteria have been identified. These
could potentially be incorporated into a heuristic through a penalty function, which
would discourage pre-releasing certain orders. In general, pre-releasing should be
discouraged for orders with...

• Later time-windows. The later the time-window for an order, the more
new orders are likely to come in that could change the optimal route for
the order. Therefore, pre-releasing such orders might not be advantageous.

• Routes with few orders. Routes that contain only a few orders are
more susceptible to be disrupted or divided among other routes in the
future. Hence, pre-releasing orders from these routes might not be the
most efficient strategy.

• Routes with many pre-releases already. To maintain flexibility and
accommodate future orders, it is desirable to leave some space on all
routes, which means not pre-releasing all orders from a route. This ensures
that there is room to adjust the route based on future demands.

These additional criteria provide more depth and complexity to the decision-
making process, enabling a planner to make more informed and strategic decisions
when pre-releasing orders. These recommendations have inspired the “Seeding”
and “Next Time-Window” heuristics. Future research might try to implement these
criteria in other ways, for example by means of a penalty function for orders with
a late time-window.

3.1. Multi-Simulation heuristic. Inspired by the two-stage planning heuris-
tic discussed in the previous chapter, this heuristic randomly generates 𝑟 fictional
sets of future orders. Each set is then optimized separately, resulting in 𝑟 different
VRP plannings. If an order consistently ends up on the same route across all 𝑟
sets, it can be safely pre-released to that route. The Multi-Simulation heuristic
pre-releases the orders that are most frequently assigned to their respective routes
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across the 𝑟 sets. As 𝑟 increases, this heuristic intuitively approaches the “optimal”
pre-releasing decision.

However, since no probability distribution of future orders is provided and
randomly generating orders falls outside the scope of this thesis, this method will
not be implemented in the PRESTO simulations.



CHAPTER 4

Simulation Setup

In this chapter, the simulation setup used to evaluate the performance of the
proposed pre-releasing heuristics will be detailed. The simulation emulates the
course of a day, during which new orders continuously arrive and the heuristic
decides, at multiple optimization moments, which orders to pre-release and which
routes to finish. This process involves significant administration and presents var-
ious practical challenges. The goal of this chapter is to clarify the workings of the
simulation tool and discuss solutions to the encountered practical problems.

After a discussion of the dataset used for the simulation, the chapter will outline
the steps taken in each optimization round (as illustrated in Figure 4.1): a Request
with up-to-date problem data is sent to the black-box VRP solver OHD, which
responds with a near-optimal VRP solution. Subsequently, the PRE-release Sim-
ulation TOol (PRESTO) converts this Response into a new Request by selecting
which orders to pre-release and which routes to finish (based on one of the heuris-
tics). Additionally, PRESTO handles necessary administration, such as tracking
pre-released orders, updating routes in the new Request, and logging all finished
routes for later analysis.

Figure 4.1. A visual representation of the simulation tool
PRESTO: every optimization round, a Request with up-to-date
problem data is sent to black-box VRP solver OHD, which re-
turns a near-optimal VRP solution which is communicated in a
Response. Next, PRESTO will convert this Response into a new
Request by selecting which orders to pre-release and which routes
to finish, as well as updating the set of available orders and routes.

Developing this simulation tool from scratch was by far the most complex step
in this research. Although this chapter only outlines the high-level workings of
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PRESTO, the intricacies and complexities of implementing it in practice should
not be underestimated.

1. Data

The data used in this research originates from a real-life e-grocery chain in
Europe that offers Same-Day Delivery, starting from 2 hours after order placement.
The dataset encompasses seven consecutive days and includes information on shifts,
orders, and planning. This data is stored in an Excel file that can be uploaded to
OHD and subsequently converted into a Request.

1.1. Shift-data. The most relevant columns in the shift-data for each shift
are summarized below. Note that this data is relevant for the VRP solver, but not
necessarily for the pre-releasing problem.

• start_from: the earliest moment the vehicle can depart from the depot
• finish_till: the latest moment the vehicle must be back at the depot
• start_depot_id: the id of the depot from which the shift departs; cru-
cially, in the problem under investigation, every shift departs from the
same depot

• vehicle_type: the type of delivery vehicle used, e.g. a Peugeot Boxer
• capacities_unit and capacities_value: the capacity of the shift for the
number of total boxes, ambient boxes, chilled boxes, and frozen boxes

• deliver_duration_factor and travel_duration_factor: factors adjust-
ing for delivery speed or travel times, considered during optimization

• optimization_costs_per shift, per_kilometer, and per_hour: dif-
ferent shifts have varying costs

• tags: labels related to various aspects of the shift, primarily used for
indicating the active zone of the truck or for logging purposes

1.2. Order-data. The most relevant columns in the order-data for each order
are as follows:

• amounts_unit and amounts_value: the number of ambient, frozen, and
total boxes required for this order

• location_latitude and location_longitude: the precise coordinates
of the order, which are associated with an address by the map service in
OHD

• timeWindow_from and timeWindow_till: the delivery time-window for
the order; most time-windows are 2 hours long and start at every whole
hour, with a 10-minute buffer before each hour to ensure timely delivery
(the customer sees time-windows in whole hours)

• required_shift_tags: orders can only be scheduled on routes with all
required shift tags. PRESTO also uses order tags to store the time when
an order is received

To facilitate a comprehensive understanding of the simulation results, it is
essential to grasp the nature of the data itself. While an in-depth data analysis can
be found in the Appendix A, some key characteristics are highlighted here.

Each day encompasses approximately 1500 to 2500 orders, with nearly half of
them known at the beginning of the day and the rest arriving throughout the day.
As illustrated in Figure 4.2, almost half of orders must be delivered within 2 to
4 hours after placement, emphasizing the highly dynamic nature of the problem.
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Figure 4.2. The figure shows the distribution of time differences
(in hours) between the placement of orders and the start of their
respective time windows. The histogram summarizes the number
of orders within each time difference bin, with bins of 10-minute
intervals. The cumulative percentage line indicates the cumulative
percentage of orders placed within or before each time difference
bin. Note that the 40% of orders that are placed over 10 hours
before the start of the time-window are not displayed.

Figure 4.3 portrays the distribution of time-windows, revealing that the start of
the day is the busiest period. Consequently, this research will investigate the com-
parison between commencing pre-releasing earlier in the morning and initiating it
during the night before.

2. Request

Every optimization round starts with a Request being sent to OHD. This Re-
quest encompasses up-to-date information on routes and orders, as well as miscel-
laneous data required for optimization (e.g., the optimization script OHD should
employ, whether OHD should utilize congestion data or not, and the depot’s lo-
cation). This information is conveyed in a JSON format, which shares the same
structure as a Python dictionary. The types of information in the routes and orders
resemble those described in the Data section.

The routes within the Request are copied from the previous Response, serving
as a starting point for optimization. Notably, during optimization, the non-pre-
released orders can be rearranged or even relocated to another route. The Request
also encompasses pre-release information, denoting which orders cannot be removed
from a route (although the order of orders within a route may be altered).

A proper Request should include orders that are known, but not finished. That
is, the time_received (which is a tag of every order) should be before the current
time, and the order should not be in any of the routes that is finished already.
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Figure 4.3. The number of orders per time-window start-time.

A request from the morning might include orders that only have to be delivered
at the end of the day. This means that optimization in the morning takes longer
because it also needs to plan these later orders. One attempt to improve simulation
speed is by applying a Time-Horizon on the Requests, which only considers orders
that need to be delivered in the next ℎ hours, resulting in “shorter” requests with
less orders. As will be demonstrated in the Results chapter, using a Time-Horizon
larger than 3 had no effect on the optimization costs, but did make the simulation
a few minutes faster.

3. OHD

OHD (ORTEC Home-Delivery) is a VRP planner that takes a Request as input,
and returns a Response containing a near-optimal planning. To be precise, OHD
is an online dashboard (depicted in Figure 4.4) visualizing the data and providing
user-friendly ways to manipulate and inspect the data. For example, users can
easily manually pre-release orders, finish routes or optimize a set of orders. The
optimization itself is performed by CVRS (COMTEC Vehicle Routing Service).
CVRS is considered as a black box in this thesis. This thesis uses the same version
and settings of CVRS as BosMart used in their baseline.

OHD uses a third-party map service to find the driving time between two ad-
dresses, which includes an estimate for the congestion time. This lookup costs
time and money, which is why most heuristics suggested in this thesis use a dis-
tance metric instead of a driving time metric. Furthermore, the planning in OHD
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Figure 4.4. A screenshot of the OHD user-interface, displaying
shifts with planned orders in them.

translates the location (longitude, latitude) into addresses. This makes generating
random orders difficult, as a random location might not be associated with a correct
address.

One nice feature of CVRS is that it is deterministic, in a sense that the same
input will always result in the same output. The methods in CVRS itself are sto-
chastic, but always use the same random seed. Because all pre-releasing heuristics
suggested in this research are also deterministic, it follows that all experiments are
deterministic, and can thus be reproduced (which has been done for several unex-
pected results). However, a small change in input, such as rearranging the order of
the routes, will result in a different output.

4. Response

After receiving a Request and computing a near-optimal planning, OHD com-
municates the planning back in the form of a Response. This Response is a JSON
file containing Key Performance Indicators (KPIs), routes, and orders that have not
been planned. The KPIs provide a quantitative evaluation of the solution generated
by OHD.

The KPIs included in the Response are:
• additionalCosts
• breakDurationInSeconds
• capacityPenalty
• costs
• distanceInMeters



5. PRESTO 32

• drivingDurationInSeconds
• maxDistancePerTripPenalty
• numberOfPlannedOrders
• numberOfUsedRoutes
• numberOfUsedTrips
• overTimeInSeconds
• routeDurationInSeconds
• routeFinishTimePenalty
• timeWindowPenalty
• waitDurationInSeconds
• workTimePenalty

Not all of these KPI’s are of equal interest. The primary objective of the
optimization process is to plan as many orders as possible, and only after that,
minimize optimization costs. The optimization cost is a weighted sum of distance,
numberOfUsedTrips, and routeDuration.

5. PRESTO

After the Request has been processed by OHD and a Response is received, the
PRE-release Simulation TOol (PRESTO) will create a new Request for the follow-
ing optimization round. Next to some important administration, such as adding
and removing routes and orders, PRESTO will also apply one of the heuristics
to determine which orders will be pre-released, and which routes will be finished.
After a new Request has been created, PRESTO will send it to OHD, which will
answer with a new Response, from which PRESTO builds a new Response, and
so on. Throughout the simulation, PRESTO also takes care of the logging of the
finished routes, as well as the pre-release history.

In the following subsections, these main functionalities of PRESTO will be
explained further, as well as some of the complications that this brings about.

5.1. Input and Output of PRESTO. To use PRESTO, it suffices to create
a folder with Request files, containing all information of the orders and routes of
that day. In particular, the time that an order is received is stored in the “tag” key
of every order.

Next, some settings are required, for example the working directory (which
should point to the folder with the Requests) and some authentication keys for
communicating with OHD (unfortunately, this part means that non-ORTEC users
cannot use PRESTO).

Finally, the parameters that should be tested need to be given, by providing a
list of parameter values per parameter. The parameters that can be incorporated
in the simulation are:

• use_capabilities (boolean): True means that shifts can only contain
2 different time-windows, which is how BosMart currently operates and
what is also used in the baseline. False means that a shift can contain any
number of different time-windows.

• Time_Horizon (integer): A time_horizon ℎ means that only the next ℎ+1
time-windows are considered. As an example, if an optimization is started
at 6 with a time_horizon of 3, the next relevant time-window is 08:00 -
10:00 (as pre-releasing takes 50 minutes and the 08:00 - 10:00 orders will
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be loaded at 06:50), so the Request will contain time-windows up to 11:00
- 13:00.

• PR_Horizon (integer): Similar to the Time_Horizon, but a PR_Horizon
ℎ means that only the orders from the next ℎ + 1 time-windows can be
pre-released. As an order can only be pre-released if it is in the Request,
we have PR_Horizon ≤ Time_Horizon.

• Optimization_Start_Times (list of floats): This indicates at what times
optimization should start. Note that it might be interesting to change the
optimization period (ever hour, every half hour, etc.), as well as when the
first optimization starts (this research compares starting at 21 vs 4 vs 6).

• PR_time_dt (datetime object): The time it takes to pre-release an order.
In practice, this takes 50 minutes, so orders on a route departing at 10:10
(which means loading starts at 09:50) can be pre-released up to 09:00.
However, it might be interesting to increase the pre-releasing time, for
example to smoothen the pre-release rate.

• Upcoming_Routes_Bool (Boolean): True means that the upcoming route
heuristic will be used as the last-minute heuristic, False means that the
upcoming orders heuristic will be used.

• pre-releasing_Capacity (integer): A hard constraint on how many or-
ders can be pre-released per hour.

• heuristic_name (string): The name of one of the 10 heuristics PRESTO
can simulate. For the seeding heuristics, the parameter 𝑠 is required as
well.

5.2. PRESTO task 1: Creating a new Request based on the previ-
ous Response. Creating a new Request is a complicated process, involving the
following steps:

(1) Initialize the process by using the previous Request as a starting point.
Import the routes from the previous Response into the Request.

(2) Include any new orders that have been placed since the previous optimiza-
tion up until the current time. Add these new orders to the Request to
incorporate them into the planning process.

(3) Apply a heuristic to determine which orders to pre-release and which
routes to finish. At the very least, a last-minute heuristic should be im-
plemented to finish all routes that are scheduled to depart between the
current time and the next optimization period.

(4) Remove the finished routes and their corresponding orders from the Re-
quest. This ensures that only the remaining active routes are considered
for further optimization.

(5) Adjust the earliest_start_times for the routes that are scheduled to de-
part between the current time and the next optimization time, accounting
for the time required to pre-release orders. By incrementing the ear-
liest_start_times by 1, routes can be planned with sufficient time for
pre-releasing their orders before departure. Omitting this step not only
caused problems in the simulations for this thesis, but also in BosMart’s
actual planning.

(6) Eliminate any empty routes from the Request where the updated earli-
est_start_time exceeds the latest_finish_time, as those cannot be used
anymore.
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(7) Add the pre-release information to the pre-released orders. Each order
that is pre-released will have the “fixedInRoute” key set to True. Note
that pre-release information is not retained in the Response, so all orders
need to be pre-released again in each optimization round. To track the
pre-release decisions, the information is logged in a separate PR_Dict file.

By following these steps, a new Request is created, incorporating any updates,
pre-releases, and route removals necessary for the subsequent optimization round.

5.3. PRESTO task 2: Run the simulation throughout the day. PRESTO
takes care of the simulation from start to finish. At the start, communication with
OHD is established, which may require obtaining an authentication key from the
ORTEC servers. After that, a file “Request_with_time_received.JSON” is created
from the given Request, which cleans the Request by adjusting some formatting,
and also takes out invalid routes and orders (for example, there are some fake orders
which need to be delivered at the depot).

Every optimization round starts with a Request, which is first transformed to a
“Shorter_Request”, taking out all orders that fall outside of the given Time_Horizon.
This shorter request is sent to OHD via an API call, and PRESTO periodically
checks for a Response. This Response is then saved, after which PRESTO decides
which orders to pre-release and which routes to finish. These decisions lead to 2 new
files: the PR_Dict saves which orders have been pre-released to which routes, and
the file SavedRoutes contains a list of the routes that have been finished thus far.
After converting the Response to a new Request (as is explained in the previous
subsection), PRESTO will save this new Request before sending it to OHD.

At the end of the day, PRESTO’s final action is to compute the KPI’s of the
finished routes from that day.

Next to obtaining the KPI’s PRESTO also performs several checks to validate
the feasibility of the results. Some of the checks include:

• Check if all orders are pre-released before they are finished.
• Check if orders that are supposed to be pre-released are actually pre-
released in the following Requests.

• Check if no orders are pre-released more than once.
• Check if the number of planned orders is equal to the number of pre-
releases.

• Check if the pre-releasing capacity is never exceeded



CHAPTER 5

Results and Analysis

“The only real mistake is the one from which we learn nothing.” ∼ Henry Ford

In this chapter, the main results from the simulations with PRESTO are pre-
sented. Given the wide variety of problem parameters and heuristics, it is helpful
to outline the structure of this chapter:

• Section 1 contains an analysis of the baseline performance of BosMart.
Additionally, the method “OHD-IH” (OHD In-Hindsight) is introduced
and analyzed, serving as a offline benchmark for comparing the perfor-
mance of the heuristics.

• Section 2 presents the results of all problems in which the pre-releasing
capacity does not play a role. This means that only applying the “Last-
Minute” heuristic suffices. After comparing the performance of the last-
minute heuristics, the effects of several parameters (2 or more time-windows,
time_before_PR, time_horizon) are studied.

• Section 3 summarizes the simulations where there is a fixed pre-releasing
capacity that cannot be exceeded. For this, the 8 suggested “Extra” pre-
releasing heuristics will be compared for various pre-releasing capacities
and PR_Horizons.

Throughout the chapter, some parameters will be fixed after analysis indicates
that there is a clearly best-performing value. The most important parameters, as
well as their default value, are given below in Table 5.1. Except stated otherwise,
these parameters are used in the simulations in this chapter.

As was discussed in the previous chapter, all simulations in PRESTO are de-
terministic, in the sense that repeating an experiment with the same input will give
the exact same results. Only the simulation time might vary due to variable cloud
computing performance.

1. Baselines: BosMart versus OHD In-Hindsight

A useful first step in analyzing this (dynamical) problem is to compare the
current performance with the “optimal” performance to get an idea of the potential
savings. In most interesting practical optimization problems, the optimal solution
or objective value is not known (otherwise the problem would be solved already),
and therefore the optimality gap between a solution and the best solution is not
known. However, dynamical problems have the nice feature that there exists an
offline version of the problem, in which all problem data is known beforehand. For
this pre-releasing problem, the offline version is a VRP with time-windows where
all orders are known in advance. This can also be seen as solving the problem
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Table 5.1. Optimal parameter values

Parameters Optimal Value Explanation
Time-Horizon 6 A time_horizon ℎ means that only the

next ℎ time-windows are considered.
There is no significant difference in op-
timization costs for Time_Horizons be-
tween 3 and 14.

Use-capabilities FALSE Using capabilities means that trucks
can only have 2 different time-windows,
which is what BosMart used in their
baseline operations. Not using capabil-
ities leads to better performance.

Optimization start
times

[6,7,...,19,20] This list contains the time at which a
Request will be sent to OHD. Start-
ing at 6 is optimal (if the pre-releasing
capacity allows), else starting in the
morning is preferred over starting in the
evening.

PR_time 50 minutes The time it takes to pre-release an
order. In particular, the last-minute
heuristic will trigger if the current time
- PR time < next optimization time.

Upcoming routes vs
upcoming orders

Upcoming routes Parameter for setting the used last-
minute heuristic. Upcoming routes per-
forms strictly better than upcoming or-
ders.

“In-Hindsight”, to find what the optimal planning and pre-releasing strategy would
have been.

This planning serves as a offline benchmark for the costs, as it solves the dy-
namical problem with perfect information. In practice, this offline solution is found
by sending a Request with all problem data to OHD, which computes a near-perfect
planning. However, this OHD-IH solution is not always a feasible solution, as is
illustrated by the following example. Suppose a planning contains a route with
different time-windows (e.g. 12-14 up to 16-18), so the orders in this route must
be pre-released at 10:00 the latest. However, it may be the case that some of the
orders in that truck are not known at the moment the route is planned to depart
from the depot; customers can place an order for 16-18 until 14:00 (in fact, cus-
tomers frequently place such last-minute orders, as can be seen in Appendix A). Of
course, orders that have not yet been placed cannot be pre-released, so the OHD-IH
method might produce solutions that are not possible in practice. However, the
effect of this infeasibility is small (as can be seen in Table 5.2), so the OHD-IH
benchmark is close to the optimal solution of the dynamical problem.

In Table 5.2, the optimization costs per day are presented for BosMarts base-
line performance, the best-performing last-minute heuristic (upcoming routes) and
OHD-IH. For these simulations, the parameters are set to their default values, ex-
cept “use_capabilities” which is shown for both True (2TW) and False (>2TW).
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One important remark is that the simulations with 2 time-windows failed to plan
up to 1% of orders compared to BosMart (who always plans everything). This effect
is caused by the fact that PRESTO never plans with violations, whereas BosMart
uses up to 100 violations per day.

Table 5.2. Optimization costs for BosMarts baseline, the best-
performing last-minute heuristic in PRESTO and OHD-IH. Results
are shown for use_capabilities=True (2TW) and False (>2TW).
Percentages are with respect to BosMart’s baseline. The bottom
row gives the average optimization costs over the 7 days.
* Simulations with 2TW fail to plan up to 1% of orders. Inter-
estingly, PRESTO sometimes manages to plan more orders than
OHD-IH.

Day BosMart
(2TW)

PRESTO
(2TW*)

OHD-IH
(2TW*)

PRESTO
(>2TW)

OHD-IH
(>2TW)

1 74363
(100%)

59067
(-21%)

58016
(-22%)

50103
(-33%)

49114
(-34%)

2 79985
(100%)

65958
(-18%)

65700
(-18%)

58347
(-27%)

56432
(-29%)

3 76653
(100%)

62213
(-19%)

61236
(-20%)

54318
(-29%)

52633
(-31%)

4 63307
(100%)

51338
(-19%)

50796
(-20%)

42721
(-33%)

41864
(-34%)

5 65653
(100%)

54209
(-17%)

53948
(-18%)

47462
(-28%)

46129
(-30%)

6 69321
(100%)

52072
(-25%)

51081
(-26%)

43572
(-37%)

43922
(-37%)

7 76988
(100%)

59646
(-23%)

58516
(-24%)

51096
(-34%)

49621
(-36%)

Avg 72324
(100%)

57786
(-20%)

57042
(-21%)

49660
(-32%)

48531
(-33%)

The performance of BosMart’s operations can be significantly improved by
implementing a more effective pre-release strategy. Even when adhering to the 2
time-window policy, the use of a better pre-release strategy leads to an average cost
reduction of 20%, which is an enormous margin in the e-grocery sector. Allowing
more than two time-windows results in cost savings of 32%.

Furthermore, the best-performing pre-releasing heuristic performs very well and
is often within 1% of the OHD offline benchmark. Interestingly, the heuristic even
outperforms OHD in Day 6. Also, for the case of 2 time-windows per truck, the
heuristic sometimes manages to plan more orders than OHD-In-Hindsight (this is
not shown in the Table). These findings highlight that OHD-In-Hindsight does not
consistently provide the optimal solution. One potential explanation for the supe-
rior performance of the heuristics could be attributed to the repeated optimizations,
which allows for more refined and localized search.

1.1. Comparing BosMart versus PRESTO with other KPIs. The op-
timization cost is the KPI showed in most tables in this thesis, but from a business



2. INFINITE PRE-RELEASING CAPACITY (USING ONLY “LAST-MINUTE” HEURISTIC) 38

point of view it’s interesting to look at other KPIs as well. The average KPIs are
displayed in Table 5.3 below, comparing BosMart’s baseline operations with the
best-performing heuristic in PRESTO with 2TW or >2TW.

Table 5.3. Average of KPIs over the 7 days for BosMart (2TW)
and the best-performing heuristic in PRESTO (2TW and >2TW).

BosMart
(2TW)

PRESTO
(2TW)

PRESTO
(>2TW)

Cost per order (fuel + driver’s payroll) Secret -17% -30%
#Planned orders 1612

(100%)
1597
(-1%)

1612
(100%)

Optimization costs per order 44.9
(100%)

36.2
(-20%)

30.8
(-32%)

Distance per order (km) 6.43
(100%)

5.65
(-12%)

4.91
(-24%)

Route duration per order (min.) 27.4
(100%)

23.3
(-15%)

21.8
(-21%)

#Routes 260
(100%)

211
(-19%)

178
(-32%)

Average #orders per route 6.2
(100%)

7.6
(+23%)

9.1
(+47%)

It is clear that the suggested heuristic performs better in all areas, even when
only using 2 time-windows like BosMart. The largest savings are achieved for the
number of routes used. This could bring down the costs per order even more, as
less cars are required for BosMart’s fleet. The current cost per order estimation
disregards fixed costs like car rent.

The fact that PRESTO plans routes with more orders is also visualized in
Figure 5.1, where the number of orders per route for BosMart and PRESTO are
compared.

The results shown so far do not tell the whole story; the pre-releasing rate
is a crucial part of the equation. Maintaining a constant pre-releasing rate, or
at least not exceeding the pre-releasing capacity, is the main reason BosMart is
pre-releasing suboptimally. The fear is that pre-releasing at the last minute might
exceed the pre-releasing capacity, which would cause some orders to be delivered
too late. For an e-grocery, that would be unacceptable. However, as will be shown
in the next section, pre-releasing at the last-minute does not seem to cause any
problems with the pre-releasing capacity. Also, smarter strategies of equalizing
the pre-releasing rate will be suggested, such as pre-releasing a few hours early, or
starting pre-releasing in the morning instead of in the evening.

2. Infinite Pre-Releasing Capacity (using only “Last-Minute” heuristic)

2.1. Comparing Last-Minute Heuristics. If the pre-releasing capacity is
of no concern, there is no reason to pre-release earlier than is necessary. In general,
pre-releasing orders is undesirable, as it adds an extra constraint to the problem,
namely that that order needs to go on that route. Therefore, using a last-minute
heuristic is a logical strategy. The performance of the 2 last-minute heuristics



2. INFINITE PRE-RELEASING CAPACITY (USING ONLY “LAST-MINUTE” HEURISTIC) 39

Figure 5.1. A bar chart showing how many routes have how many
different time-windows. These routes are taken from the best-
performing heuristic for day 1, with use_capabilities=False.

discussed in Section 1 are compared in Table 5.4 below. The default parameters
are used, except “use_capabilities” which is shown for both True (2TW) and False
(>2TW).

The results clearly show that the upcoming routes heuristic performs better in
all circumstances. This was to be expected, as the upcoming orders heuristic might
finish a route before the upcoming routes heuristic would, whereas the converse is
never true. For example, a route containing time-windows 10:00-12:00 and 11:00-
13:00 would always be finished at 8:00 according to the upcoming order heuristic,
whereas the upcoming routes heuristic might only finish the route at 9:00, which
occurs if all 10:00-12:00 orders will be delivered after 11:00.

During these simulations, solutions were found that deliver more orders than
the OHD-IH solution did. This is a very curious result, as the OHD-IH solution is
able to use all orders in its optimization, even those that have not yet been placed.
This goes to show that the OHD-IH solution is indeed not perfect. One explanation
for this phenomenon is that PRESTO repeatedly optimizes its routes, and starts
its search with the routes from the previous Response. Therefore, PRESTO is able
to do more local search than OHD-IH can.

One might propose that the upcoming routes heuristic is the optimal solution
for the case with infinite pre-releasing capacity. This is not true however. There
might be cases where you “regret” finishing an order, especially when the order is
on a shift with 5 time-windows, for example with time-windows from 10:00-12:00 up
to 14:00-16:00 (which does occur). This means that the orders with time-window
14:00-16:00 will be pre-released at 8:00 already, while it might very well be that
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Table 5.4. Optimization costs for BosMarts baseline, the best-
performing last-minute heuristic in PRESTO and OHD-IH. Results
are shown for use_capabilities=True (2TW) and False (>2TW).
Percentages indicate how much the upcoming route is cheaper than
the upcoming orders heuristic. The average of these percentage is
given in the final column.
* Simulations with 2TW fail to plan up to 1% of orders, upcoming
routes plans 2-4 orders more than upcoming orders.

Day Upcoming
orders
(2TW*)

Upcoming
routes
(2TW*)

Upcoming
orders
(>2TW)

Upcoming
routes
(>2TW)

1 60382
(100%)

59067
(-2%)

52488
(100%)

50103
(-5%)

2 67918
(100%)

65958
(-3%)

59763
(100%)

58347
(-2%)

3 63851
(100%)

62213
(-3%)

55801
(100%)

54318
(-3%)

4 52641
(100%)

51338
(-2%)

45475
(100%)

42721
(-6%)

5 55485
(100%)

54209
(-2%)

49085
(100%)

47462
(-3%)

6 52904
(100%)

52072
(-2%)

45884
(100%)

43572
(-5%)

7 60337
(100%)

59646
(-1%)

52270
(100%)

51096
(-2%)

Avg % 100% -2% 100% -4%

between 08:00 and 12:00 new orders come in that would have fitted nicely with this
order.

From now on, all simulations will assume that more than 2 time-windows per
route are allowed (i.e., use_capabilities=False). This way, more possible VRP
solutions are available, and the difference between heuristics will become more pro-
nounced. The downside of allowing more than 2 time-windows is that comparisons
with BosMart become unfair, as they used 2 time-windows per truck. However,
at this point it is evident that BosMart’s performance is inferior to all proposed
heuristics. Also, BosMart plans to allow more than 2 time-windows themselves in
the near future.

2.2. Pre-releasing Rate in the Last-Minute Heuristic. The savings pre-
sented in the previous section are based on the assumption that the pre-releasing
capacity is sufficiently high throughout the day. A pre-releasing rate higher than
the pre-releasing capacity would mean that the planning cannot be executed (in
time), which would result in undelivered orders. This constraint of pre-releasing
capacity is why BosMart is currently pre-releasing so far in advance. Also, it is
part of the reason why BosMart is limiting the number of different time-windows
per truck to 2.
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Figure 5.2. The pre-release rate per hour for the 7 days, with
last-minute heuristic Upcoming Routes, Use_capabilities=False
(so �2 TW) and PR_time = 50

Figure 5.3. The pre-release rate per hour for the 7 days, with
last-minute heuristic Upcoming Routes, Use_capabilities=False
(so >2 TW) and PR_time = 50

The expectation is that pre-releasing all orders at the last-minute would result
in “peaks” in the pre-releasing rate, and therefore it would be necessary to pre-
release in advance. The pre-releasing rate when using the last-minute heuristic is
shown, first with 2 time-windows per route in Figure 5.2, and also for >2 time-
windows per route in Figure 5.3.

The maximum pre-releasing rate is much less than expected; only a few peaks
are present that exceed 200 pre-released orders per hour. To put this in perspective;
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BosMart currently sometimes pre-releases more than 200 orders per hour, and the
average pre-releasing rate to deliver 2500 orders in 15 hours would be 167. If the
number of time-windows per truck is limited to 2, the peaks in pre-releasing rate
are even lower.

This unexpected lack of peaks in pre-releasing rate can be explained by the way
time-windows are offered to customers. For this, a separate optimization problem is
solved, which uses a cheapest insertion heuristic to find which time-windows would
be the cheapest for the order. This method often results in an insertion into a less
busy route (and time-window), as those routes have more flexibility. Therefore,
this time-window heuristic places more orders on the less busy routes, resulting in
a more evenly distributed pre-releasing rate.

An important conclusion can be drawn at this point: BosMart could have
pre-released all orders at the last-minute (with the upcoming route heuristic) with
their current picking capacity of 200, and would have saved over 21%. Also, the
restriction of 2 time-windows per route was not necessary.

Although pre-releasing at the last-minute is desirable from an optimization
point of view, it is a risky strategy in real-life operations. Practical problems at the
warehouse or unexpectedly high demand might result in orders being pre-released
and delivered too late. There are 3 ways to reduce the probability that the pre-
releasing capacity is exceeded:

(1) Increasing the pre-releasing capacity. This way, the last-minute pre-
releasing strategy can always be used without exceeding the pre-releasing
capacity. This would require an investment, for example in hiring extra
workforce in the warehouse, where one extra picker would increase the
pre-release capacity by 10. A smarter way would be to only increase
pre-releasing capacity in the morning and evening, as that is when peaks
are most likely to occur. However, BosMart prefers to have a constant
pre-releasing rate, to prevent workers from doing nothing. This is not
an ideal strategy from an optimization point of view, as it will result in
pre-releasing more than is necessary.

(2) Applying the last-minute heuristic a few hours in advance. Cur-
rently, the last-minute heuristic pre-releases orders and finishes routes if
the start time of that route minus the PR_time is before the next opti-
mization time. A buffer can be created here, if the PR_time is increased,
resulting in finishing routes a few hours before one has to. This method
is analyzed in Subsection (2.3).

(3) Pre-releasing extra orders from further in the future. These
heuristics will be discussed in Section 3.

2.3. Finishing Routes more than 1 hour before departure. Pre-releasing
not at the very last minute, but a fixed time before the last minute creates an extra
buffer to pre-release orders from earlier “peaks”. Suppose for example that there
are 200 orders on routes that should be loaded at 07:50. According to the upcom-
ing routes heuristic, these orders should be pre-released at 07:00. Instead, a safer
strategy would be to pre-release these orders before 07:00, for example at 06:00.
This way, any orders that are failed to be pre-released at 06:00 (due to limited
pre-releasing capacity or problems at the warehouse), could still be pre-released at
07:00, as the act of pre-releasing one order still takes only a few minutes.
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The effect of this strategy is presented in Table 5.5 for various PR_times (re-
member that the default is PR_time=50 minutes).

Table 5.5. Optimization costs for various values of
PR_time. Results are shown for use_capabilities=False
(>2TW),Time_Horizon=100 and using the upcoming routes
heuristic. Percentages are taken with respect to the costs of the
PR_time=50 simulation from that day.

Day PR_time
=50

PR_time
=110

PR_time
=170

PR_time
=230

PR_time
=290

1 50103
(100%)

50684
(101%)

51254
(102%)

54543
(109%)

64252
(128%)

2 58347
(100%)

58342
(99.99%)

59688
(102%)

62966
(108%)

71098
(122%)

3 54318
(100%)

54065
(99.5%)

55804
(103%)

61557
(113%)

70881
(130%)

4 42721
(100%)

44366
(104%)

47712
(112%)

51704
(121%)

59417
(139%)

5 47462
(100%)

47520
(100%)

49147
(104%)

53275
(112%)

61037
(129%)

6 43572
(100%)

44307
(102%)

46338
(106%)

49392
(113%)

58794
(135%)

7 51096
(100%)

51136
(100%)

51406
(101%)

54461
(107%)

64129
(126%)

Avg % 100 % 101% 104% 112% 130%

As expected, pre-releasing earlier generally results in higher costs. Surprisingly,
this effect is relatively small when pre-releasing 1 or 2 hours before the last minute.
Therefore, this strategy might be interesting for practical use, as it provides extra
safety margins while keeping the optimization costs low. The dramatic increase in
optimization costs when pre-releasing 3 or 4 hours in advance might be explained by
the fact that approximately 40% of all orders have less than 4 hours between order
placement and the start of the time-window (see Figure A.2 in the Data Analysis
Appendix). If pre-releasing occurs 3 or 4 hours early, these orders are not included
in the optimization, resulting in bad pre-releasing decisions.

Another unexpected result occurs in Day 2 and 3, when pre-releasing 110 min-
utes before loading results in lower costs than pre-releasing 50 minutes before load-
ing. At first, this was thought to be a mistake in simulation; how can an opti-
mization with less information result in a better solution? However, repeating the
experiment gives the same results.

When pre-releasing orders (and finishing routes) early, it becomes possible that
new orders with the same time-window come in thereafter. For example, orders with
time-window 10:00-12:00 can be placed until 08:00. So if an order is planned on a
route that should be loaded at 08:50, it should be pre-released at 08:00 the latest.
At that point, no new orders for the next time-window (10:00-12:00) can come
in, but later time-windows (which might also be in the route) could still come in.
In fact, roughly half of the orders come in only 4 hours before the time-window
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starts, as can be seen in Appendix A. These new orders cannot be planned with
the previously pre-released orders, as the last-minute heuristic has already finished
these routes. Therefore, these new orders must be planned together or with later
time-windows. This restricts the solution space, which is generally undesirable but
could in theory focus the local search of CVRS into a better solution. Also, it might
be that the little information you have when pre-releasing early actually points the
optimization towards the “optimal” planning, and the extra information available
when pre-releasing later is misleading.

There is one major caveat to the results in Table 5.5: the pre-releasing rate
at 06:00 increases tremendously. For Day 1 for example, the pre-releasing rate
for PR_time= 50 is 163, for PR_time= 110 is 321, PR_time= 170 is 163, for
PR_time= 230 is 598 and for PR_time= 290 is 607.

In general, pre-releasing 2 hours earlier will shift the entire pre-releasing rate 2
hours to the left, except for the orders that come in after pre-releasing. However,
as 06:00 is the earliest optimization start time, all orders on routes that should be
loaded at 06:50, 07:50 and 08:50 need to be pre-released. For infinite pre-releasing
capacity this is no problem, but for practical applications it will become necessary to
start pre-releasing earlier. In the next subsection, we compare starting pre-releasing
earlier in the morning against starting the night before.

2.4. Starting Optimization in the Morning or in the Night before.
Currently, BosMart uses the time from 21:00-23:00 to pre-release orders for the
next morning, to prevent the workers from doing nothing. It should be clear by
now that this strategy is far from optimal, as pre-releasing too far in advance results
in bad performance. Even between 22:00 and 06:00, over 100 new orders are placed,
most of which need to be delivered in the first time-windows of the next morning
(see Appendix 1.1 for a detailed analysis).

Pre-releasing earlier in the morning is therefore expected to have better perfor-
mance than pre-releasing the night before. Table 5.6 below compares starting opti-
mizing at 21:00 and 22:00 versus 04:00 and 05:00, for the case where PR_time=170,
so 2 hours before the last-minute.

Starting optimization in the morning performs better than starting in the
evening before, except for days 2 and 3. As before, this is likely due to randomness
of the VRP solver, or perhaps the 100 orders that come in overnight (and thus were
not considered in the pre-releasing decision in the evening) were very favorable in
day 2 and 3, for example if they would fit nicely together on a route, which might
not have been found if they were considered with all other orders.

The maximum pre-releasing rate required does not seem to depend on whether
the optimizations start in the morning or evening, but it is informative to compare
the pre-releasing rates for the various starting times, as is shown in Figure 5.4.

In Figure 5.4, the peak at 06:00 for PR_time=50 is expected, but undesirable.
Starting in the morning or the evening distributes the peak more evenly. The lines
for starting in the evening or morning with PR_time=170 have the same maximum
pre-releasing rate as those starting at 06:00 with PR_time=50, but are shifted to
the left by 2 hours. As a result, the pre-releasing in those cases also ends 2 hours
earlier.

2.5. Time-Horizon. Simulating a day in PRESTO can take up to 45 minutes,
most of which is spent waiting for a Response from OHD. For practical use, this
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Table 5.6. Optimization costs and maximum pre-releasing rate
for simulations starting at 21:00 or 4:00 with PR_time = 170, com-
pared to starting at 06:00 with PR_time = 50. Results are shown
for use_capabilities=False (>2TW), Time_Horizon=100 and us-
ing the upcoming routes heuristic.

PR at 6,7,8 … PR at 4,5,6 … PR at 21,22,6 …
Day costs max

PR_rate
costs max

PR_rate
costs max

PR_rate
1 50103

(100%)
177 51672

(103%)
170 52095

(104%)
176

2 58347
(100%)

176 60139
(103%)

205 59717
(102%)

180

3 54318
(100%)

221 57064
(105%)

198 56664
(104%)

184

4 42721
(100%)

156 47504
(111%)

161 49121
(115%)

172

5 47462
(100%)

161 49904
(105%)

162 50257
(106%)

163

6 43572
(100%)

207 46669
(107%)

182 47494
(109%)

205

7 51096
(100%)

204 52631
(103%)

228 54255
(106%)

207

Avg 100% 186 105% 187 107% 184

is no problem, as one optimization round only takes a few minutes. However,
attempts have been made to decrease the simulation time, mainly by implementing
a Time_Horizon.

The main reason that OHD takes so long to optimize, is because of the number
of orders in every Request. In the first optimization of the day, all orders (that
are known at that point) need to be planned, even those that should only be
delivered at the end of the day. One attempt to decrease simulation time is by only
considering the next time-windows (up to a Time_Horizon), and leaving all later
orders out of the Request. In PRESTO, this can be done by using the parameter
Time_Horizon, which includes the ℎ time-windows after the upcoming time-window
in the Request. For example, an optimization starting at 6 always includes the time-
window 8-10, but a Time_Horizon of 3 would also include the time-windows 9-11,
10-12 and 11-13. A Time_Horizon of 0 only includes the next time-window, while a
Time_Horizon of 100 includes also the 100 time-windows after that (so all orders in
the day). The optimization costs and simulation time for various Time_Horizons
are presented below in Table 5.7.

Generally, a larger Time_Horizon tends to yield lower costs, although it does
increase the simulation time. However, this isn’t always the case. For instance, on
days 1, 2, 3, 5, and 7, a Time_Horizon of 100 doesn’t necessarily result in the lowest
optimization cost. This suggests that having more information doesn’t always lead
to an improved solution.

One possible explanation for this could be that the VRP solver (OHD) becomes
“distracted” by later time-windows, which are less pertinent to the pre-releasing
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Figure 5.4. The pre-release rate per hour for Day 1, comparing
starting pre-releasing at 04:00 or 06:00 in the morning, or at 21:00
the night before. The PR_time is 170, except for the blue line.

Table 5.7. Optimization costs for various values of PR_time.
Results are shown for use_capabilities=False (>2TW) and using
the upcoming routes heuristic.

Day TH=0 TH=1 TH=2 TH=3 TH=5 TH=8 TH=100
1 61692

(370s)
52843
(508s)

50547
(996s)

50194
(1206s)

49700
(1601s)

50176
(1852s)

50103
(1841s)

2 68642
(443s)

60040
(602s)

58043
(1163s)

58695
(1507s)

58655
(1782s)

58148
(2157s)

58347
(2286s)

3 66082
(372s)

57565
(621s)

54250
(907s)

53881
(1373s)

53136
(1464s)

53009
(1689s)

54318
(1765s)

4 54242
(319s)

47046
(467s)

43435
(708s)

43104
(871s)

43909
(982s)

43737
(1098s)

42721
(1131s)

5 57829
(290s)

49787
(481s)

46888
(773s)

46555
(981s)

45854
(1153s)

46525
(1288s)

47462
(1370s)

6 55384
(379s)

47508
(488s)

43949
(810s)

43966
(1028s)

44050
(1175s)

43788
(1359s)

43572
(1417s)

7 62493
(433s)

54530
(630s)

51330
(996s)

51439
(1462s)

51409
(1783s))

50857
(2000s)

51096
(2202s)

Avg 60909
(372s)

52760
(542s)

49777
(908s)

49690
(1204s)

49530
(1420s)

49463
(1635s)

49660
(1716s)

problem being addressed. In the majority of simulations, the number of distinct
time-windows per truck rarely exceeds five, which is also consistent with the In-
Hindsight solutions. As a result, one might reasonably expect at least the next
five windows to be relevant. While time-windows beyond that might indirectly
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Figure 5.5. For each Time Horizon, a boxplot is made of the
optimization costs of the 7 days. The lines represent averages for
the optimization costs (blue, left axis) and simulation time (red,
right axis).

offer useful information, the orders associated with these windows cannot be pre-
released.

Considering the significant impact of the Time_Horizon parameter, simulations
were conducted for all 7 days using all 16 possible Time_Horizons (ranging from 0
to 15). Figure 5.5 below displays boxplots of the optimization costs from these 112
simulations, along with the average simulation time.

From the figure, it becomes clear that there is no significant difference in opti-
mization costs for Time_Horizons between 3 and 15; their averages are all between
49450 and 49700. The lowest average (49421) occurs at Time_Horizon=6, but this
should be taken with a grain of salt given the small sample size.

The extra simulation time diminishes, which is logical as a larger time-window
only adds more orders in the evening; at 15:00, there is no difference between
Time_Horizon=5 and Time_Horizon = 100. In fact, simulations for Time_Horizon
= 14 and Time_Horizon=15 gave the exact same results, which was to be expected
as the Time_Horizon = 14 already includes all orders from the 15 different time-
windows (08:00 - 10:00 up to 22:00 - 00:00) in every Request.
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3. Finite Pre-releasing Capacity (using “Extra” heuristics)

In this section, pre-releasing strategies are compared that always pre-release
orders up to the pre-releasing capacity. This means that next to the “Last-Minute”
heuristic, one of the “Extra” heuristics described in Chapter 3 is required.

First, Table 5.8 shows the optimization costs of 5 heuristics for 4 different pre-
releasing capacities and 2 different PR_Horizons, averaged over the 7 days. To put
these numbers in perspective; only applying the Last-Minute heuristic resulted in
an average cost of 49660, which required a pre-releasing capacity of just over 200.

The optimizations for capacities 200 and 220 start at 06:00, whereas the opti-
mizations for capacities 150 and 170 start at 05:00, in order to be able to pre-release
all ( 180) orders according to the upcoming route heuristic at 06:00. Simulations
with capacity 140 starting at 05:00 and with capacity 180 starting at 06:00 resulted
in violations of the pre-releasing capacities, due to the high number of pre-releases
from the upcoming route heuristic in the morning.

Table 5.8. Optimization costs for various heuristics under dif-
ferent PR_capacities, averaged over 7 days. The costs for the
Random heuristic are averaged over 10 simulations.
PR_Horizon = Time_Window = 5 and 2.

PR_Horizon = Time_Window = 5
PR
capacity

Random Closest Furthest Minimum
Driving
Time

Maximum
Distance

220 55682 53995 53723 54700 55265
200 55835 53951 53742 53967 55752
170 57316 54188 54962 56235 57926
150 59312 54609 54354 55142 58351

PR_Horizon = Time_Window = 2
220 53241 53955 53712 53640 54447
200 53483 53697 53874 54119 53922
170 54022 54309 54472 53763 55821
150 54127 53566 54088 53763 54751

It should be noted that these results are all very close to each other, and
given the restricted dataset no definite conclusions can be drawn. However, some
hypotheses can be formulated:

• Pre-releasing from earlier time-windows might be more desir-
able. The Random heuristic performs not much worse as the other heuris-
tics, except for when PR_Horizon = 5. This might indicate that pre-
releasing an order from a close time-window is (on average) better than
pre-releasing an order from a later time-window. This result motivated
the “Next-Timewindow” heuristic that will be tested later.

• No one heuristic clearly outperforms the others, but Closest and
Furthest seem to be the best. The Closest and Furthest heuristic
always have a cost below 55000 and have a lower cost on average. This
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Figure 5.6. Two stacked bar charts that illustrate the distribu-
tion of pre-releases, showcasing the upcoming route pre-releases at
the bottom and the extra pre-releases stacked on top. The dashed
red line represents the pre-release capacity. This figure is from the
simulation of day 1, using the Minimum Driving Time heuristic

motivated the “Furthest Seeding” and “Closest Seeding” heuristics that
will be tested later.

• Higher PR_capacities seem to lead to lower optimization costs.
Especially for the PR_Horizon = 5 simulations, the lower capacities
(which start at 05:00) have a much higher cost than the higher PR_capacities.

To better understand the effects of always pre-releasing to the pre-releasing
capacity, it’s interesting to observe the actual pre-release rate throughout the day,
as shown in Figure 5.6. In particular, the number of “Last-Minute” pre-releases
versus the number of “Extra” pre-releases is of interest.

At the start of the day, most of the pre-releasing capacity is used to pre-release
according to the “Last-Minute” heuristic. However, as the day progresses, more and
more orders are pre-released in advance due to the “Extra” Minimum Driving Time
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heuristic. At 11:00 all known orders are pre-released, so the pre-releasing capacity
cannot be used fully. After that point, only the orders that just came in can be
pre-released with the upcoming route heuristic if they are planned to depart in the
next hour. Note that without the PR_Horizon, more “Extra” pre-releases would
have taken place at 11:00, but these orders were not allowed to be pre-released yet.

This figure indicates the problem with always pre-releasing to the capacity; at
some point you pre-release orders while you could have afforded to wait a bit longer,
as no future peaks are expected.

All “Extra” heuristics face this effect, though not necessarily to the same extent,
as some heuristics might prefer to pre-release “later” orders, resulting in more “Last-
Minute” pre-releases. However, this effect is assumed to be small, as there is no
indication in the data for this; the number of “Extra” pre-releases is similar for all
heuristics.

3.1. Next Time-Window heuristic. The hypothesis that pre-releasing from
earlier time-windows might be more desirable led to the development of the Next
Time-Window heuristic, which first pre-releases all orders of the next time-window.
The results of these simulations is shown below in Table 5.9 for PR_Horizon =
Time_Window = 2 and 5.

Table 5.9. Optimization costs for the Next Time-Window heuris-
tic under different PR_capacities, averaged over 7 days.

PR capacity PR_Horizon = 5 PR_Horizon = 2
220 54498 53535
200 54327 53579
170 54815 54723
150 54145 53907

Again the results are inconclusive, but the Next Time-Window heuristic seems
to have similar performance to the Minimum Driving Time heuristic. Also, the
Next-Time Window heuristic seems to perform better for shorter PR_Horizons.

3.2. Seed heuristics. The hypothesis that the heuristics perform worse when
the number of pre-releases per route is large inspired the development of the Fur-
thest and Closest Seeding heuristics, which first pre-releases 𝑠 orders from each
route according to the Furthest or Closest heuristic, and applies the Minimum
Driving Time heuristics for the remaining pre-releases. The performance of these
heuristics is shown in Figure 5.7, where the average optimization cost over 7 days is
shown for 𝑠 = 0 up to 𝑠 = 10, for a pre-releasing capacity of 170 and a PR_Horizon
of 5.

As expected, both heuristics have the same performance as the Minimum Driv-
ing Time heuristic for 𝑠 = 0. For higher values of 𝑠, the optimization cost seems to
go down, approaching the optimization costs of the Furthest and Closest heuristic.
This suggests that the Seeding heuristic performs worse than the heuristics without
seeding, for all values of 𝑠.
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Figure 5.7. The average optimization costs over 7 days for var-
ious values of 𝑠, for both the Furthest Seed and the Closest
Seed heuristic. Picking capacity is 170 and Time_Horizon =
PR_Horizon = 5.



CHAPTER 6

Conclusion and Recommendations

“A bird does not sing because it has an answer.
It sings because it has a song.“
∼ Chinese Proverb

This final chapter will summarize the main conclusions from this research,
aiming to answer the research questions. First, the sub-questions are answered
one by one. Together, these answers resolve the main research question: How
should BosMart pre-release their orders and which procedural improvements are
cost-effective?

Next to the practical advise for e-grocery businesses, more details on the effect
of various heuristics and parameters on the problem are described. Finally, the
limitations of this research are discussed, and suggestions for future research on
pre-releasing are provided.

1. Answers to Research Questions

1.1. Sub-Question 1: What is the best pre-releasing heuristic? The
best-performing heuristic (the one with the lowest average optimization cost) for the
pre-releasing problem is the last-minute heuristic “upcoming routes”. This heuristic
pre-releases all orders and finishes all routes scheduled to depart before the next
optimization period, plus the PR_Time. This heuristic significantly outperforms
the baseline, obtaining on average 21% cost reductions when 2 time-windows per
truck are allowed, and 32% savings when more than 2 time-windows per truck are
allowed. This is within 1% of the offline benchmark of OHD-IH.

Importantly, the pre-releasing rate in these simulations seldom exceeded 200
orders per hour, which aligns with BosMart’s current capacity. This implies that
the suggested plannings would be feasible to execute. However, this last-minute
strategy does pose an increased risk of late deliveries, especially in the face of
warehouse issues or unexpected order surges. Therefore, a pre-releasing buffer
might be desirable from a business perspective.

The optimal way to establish this buffer is by applying the last-minute heuristic
1 or 2 hours earlier. For instance, a route scheduled to depart at 11:10, needing
to be pre-released by 10:00 at the latest, could be pre-released at 09:00 or 08:00
instead. Simulations have shown that this strategy increases the optimization costs
by a few percent; on average only 1% when pre-releasing 1 hour early, and 4%
when pre-releasing 2 hours early. This doesn’t affect the pre-releasing capacity
required, but it does necessitate that pre-releasing starts before 06:00 to avoid an
unmanageable pre-releasing rate at 06:00. Simulations have shown that starting
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pre-releasing 2 hours early from 04:00 results in 5% higher costs compared to last-
minute pre-releasing beginning at 06:00. Starting the night before at 21:00 results
in 7% higher costs.

In the case where the pre-releasing capacity is always used fully, ”Extra”
heuristics are required to pre-release orders on top of the pre-releases from the
“Last-minute” heuristic. Eight of such heuristics have been tested for various pre-
releasing capacities and PR_Horizons. On average the best heuristic costs 8% more
compared to only pre-releasing with only the “Last-Minute” heuristic. Also, pre-
releasing orders with a close time-window appeared to be preferable. This strategy
would allow the pre-release capacity to be lowered from 200 to 150, which would
save 5 full-time pickers in the warehouse.

1.2. Sub-Question 2: What is the effect of the problem parameters
on the optimization costs? Based on applying the heuristics under different sets
of parameters, the following results are found:

• Use_Capabilities: Allowing more than 2 time-windows per truck im-
proves the potential cost savings from 20% to 32%

• PR_Time: Pre-releasing not at the last minute but 1 hour earlier costs 1%
more, 2 hours earlier 4%, 3 hours earlier 12% and 4 hours earlier 40%,
although the pre-releasing rate at 06:00 would be very high.

• Optimization_Start_Times: Pre-releasing 2 hours earlier starting at
04:00 instead of 06:00 costs 5% more, whereas starting at 21:00 costs
7% more.

• Time_Horizon: There is no significant difference in optimization costs for
Time_Horizons between 3 and 14, but the simulation time is lower for
lower Time_Horizons.

1.3. Sub-Question 3: Which procedural improvements would be cost-
effective? One obvious improvement would be to allow more than 2 time-windows
per truck. When using the upcoming route heuristic, this increases the cost sav-
ings from 21% to 33%. The extra peaks in the pre-releasing rate are not severe;
increasing the capacity by 30 would be sufficient. This could be done by hiring 3
extra pickers, but relocating the pre-releasing capacity from the afternoon to the
morning (06:00 - 08:00) and evening (17:00 - 19:00) is also possible.

Next, pre-releasing should be done at most 2 hours before the last-minute. Pre-
releasing 2 hours early is still within 4% of the best-performing heuristic, whereas
pre-releasing 4 hours early (as BosMart currently does) incurs over 30% extra costs.

Pre-releasing orders in the morning (starting at 04:00) instead of the previous
evening (starting at 21:00) saves 1-2% in optimization costs. However, starting that
early might not be preferable for warehouse staff.

Various ”Extra” heuristics have been tested for when the pre-releasing capac-
ity is limited and the pre-releasing rate is fixed, but with inconclusive results. The
simulations suggest that the Closest and Furthest heuristic perform best, with an
average optimization cost of approximately 54000, which is 8% higher than pre-
releasing with infinite pre-releasing capacities. However, using these Extra heuris-
tics allows to decrease the pre-releasing capacity to 150, compared to the 200 that
would be necessary for applying only the “Last-Minute” heuristic. This would save
BosMart 5 full-time pickers in the warehouse, which might be worth the 8% extra
costs.
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1.4. Main Question: How should BosMart pre-release their SDD-
orders and which procedural improvements are cost-effective? Based on
the simulation results and analysis, the most effective strategy for BosMart to pre-
release their orders is by employing the last-minute “upcoming routes” heuristic.
This approach pre-releases all orders and finalizes all routes that are planned to
depart before the next optimization starts, plus the PR_Time. This strategy has
consistently shown to be the most cost-effective compared to others.

However, a purely last-minute strategy comes with an inherent risk of delivering
orders too late in cases of unexpected warehouse issues or sudden peaks of orders.
To mitigate this, a pre-releasing buffer could be established by applying the last-
minute heuristic 1 or 2 hours earlier. Simulation results have shown that this only
increases the optimization costs by 1-4%, thus making it a feasible and cost-effective
adjustment.

Beyond these, several procedural improvements could be considered to further
enhance cost-effectiveness:

• Allowing more than 2 time-windows per truck could increase cost savings
from 21% to 33%.

• Pre-releasing orders 2 hours early can maintain optimization costs within
4% of the best-performing heuristic.

• Starting pre-releasing in the early morning rather than the previous evening
could result in 1-2% savings in optimization costs.

BosMart’s wish to have a constant pre-releasing rate would cost 8% more than
only using the “Last-Minute” heuristic, but would allow the pre-releasing capacity
to be decreased from 200 to 150, which would require 5 fewer full-time pickers.

2. Surprising Results

Having answered the research questions, it might be instructive to investigate
and learn from the most unexpected results from the simulations. As Isaac Asimov
once said: “The most exciting phrase to hear in science, the one that heralds new
discoveries, is not ‘Eureka!’ but ‘That’s funny...’”.

First, the fact that using a Time_Horizon larger than 3 performed as good as
optimizing over all orders was unexpected (which is why many simulations have
used the suboptimal Time_Horizon of 100). It was assumed that more information
would yield a better result. One possible explanation might be that the extra
information “distracted“ OHD from the immediate pre-releasing problem. As only
the orders from the first 5 time-windows can be pre-released, all orders after that
only impact the solution indirectly. Their inclusion might, for instance, decrease the
time spent on local search for upcoming routes. These reasons might also explain
the fact that pre-releasing 1 hour before the last-minute sometimes outperformed
pre-releasing at the last-minute.

The second surprise was the lack of peaks in the pre-releasing rate, even when
using the last-minute heuristic. It was expected that most orders would need to
be delivered in the morning or evening, and this would result in high peaks in the
pre-releasing capacity, which is also the reason BosMart was pre-releasing subopti-
mally in the first place. One explanation for this relates to the way time-windows
are offered to customers. Using a cheapest insertion method, the less busy time-
windows are recommended more frequently (or at a lower price) than the busier
time-windows, resulting in a more evenly distributed pre-releasing.
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The third surprising result emerged when comparing the performance of the
(infeasible) offline benchmark solution obtained by OHD-In-Hindsight, which could
optimize the VRP with complete information, against the heuristics that had to
make pre-releasing decisions without having knowledge of all the orders. In some
cases, the heuristics outperformed OHD-In-Hindsight, even though they had to
operate with limited information. For instance, when only two time-windows per
truck were allowed, the heuristics were able to plan more orders compared to OHD-
In-Hindsight. Additionally, in scenarios where more than two time-windows were
permitted, the heuristics achieved lower optimization costs than OHD-In-Hindsight
(as observed on day 6 in Table 5.2). These results demonstrate that OHD-In-
Hindsight did not always yield the optimal solution.

One potential explanation for the superior performance of the heuristics could
be attributed to the hourly optimization process, allowing for more refined and
localized search. However, the fact that the use of a Time_Horizon had minimal
effect weakens this argument.

3. Limitations of this Research

While this research provides valuable insights into the optimization of pre-
releasing SDD-orders, it is important to acknowledge its limitations. One of the
primary limitations stems from the narrow scope of the data used. The fact that
only seven days’ worth of data from one company were used limits the generaliz-
ability of these findings to other instances.

Another limitation is the research’s assumption that routes can only be planned
with a single trip, as opposed to multi-trip plannings. This restricts the flexibility
in the plannings because routes always have to wait until the start time of the next
trip instead of being available for loading immediately after they have returned
to the depot. This restricts not only the “black box” VRP solver, but also the
pre-releasing options. For instance, a multi-trip pre-releasing strategy might use a
combination of long and short routes, where the long routes improve efficiency and
the short routes create flexibility to handle last-minute orders.

The question of how many extra orders to pre-release is not in the scope of
this thesis. Instead, it is assumed that the pre-releasing capacity is always fully
used. This is not an ideal strategy, as it would mean that after a few hours almost
all orders will be pre-released, especially if the pre-releasing capacity is high. Even
though this does offer the same conditions to each of the heuristics, the performance
of the heuristics might be different when pre-releasing only a few extra orders.

4. Future Research

The pre-releasing problem, although not widely studied until now, is set to
become a prevalent issue in many businesses in the coming years. This research has
underscored the importance of optimizing pre-releasing, as potential cost savings
of up to 33% are substantial.

Future research could address the limitations of this study by testing on a
wider variety of datasets and using multi-trip planning. However, there are also
other interesting areas for exploration:

• Estimating the risk of peaks. This study used a fixed set of orders
arriving at fixed times. However, it would be useful to estimate the prob-
ability of exceeding pre-releasing capacity, for instance, a 10% probability
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when the capacity is 200, 1% if the capacity is 250, etc. This would re-
quire simulating orders stochastically, which was beyond the scope of this
thesis.

• Heuristics for the quantity of orders to pre-release. This research
primarily focused on which orders to pre-release. But to strike the right
balance between preparing for pre-releasing peaks and keeping optimiza-
tion costs low, it might be interesting to experiment with the number of
orders that are pre-released in addition to those determined by the last-
minute heuristic. For example, if the number of orders for the evening
is higher than normal around noon, it might be necessary to start pre-
releasing extra.

• Studying the effects of the order placement cut-off time. This
study allowed customers to place orders starting more than 2 hours in ad-
vance. Investigating the effects of increasing this time between placement
and delivery could be beneficial, as this would likely enable strategies with
lower optimization costs. The impact of decreasing this time could also
be researched, although this would first require logistical improvements in
the warehouse, such as reducing the time it takes to pre-release or load
orders.

• Testing the more complicated heuristics with penalties and multi-
simulation. In Chapter 3 various more complicated heuristics are sug-
gested, which have not been tested in this thesis. Especially the multi-
simulation heuristic is expected to perform well, especially when the num-
ber of simulations is large.

• Residue Allow upcoming routes to exceed PR capacity sometimes, pro-
vided that these orders can be delivered on time in later routes.
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APPENDIX A

Data Analysis

This data analysis aims to provide a more detailed description of the data used
for the simulations in this thesis, so that the results can be interpreted with more
nuance. This is done by inspecting the orders of Day 1 in Section 1, and the routes
of some of the simulations in Section 2. The distribution of the data is similar for
most other days, although differences do exist. For example, the number of orders
for Sunday morning might be different compared to Monday morning. Table A.1
below shows the total amount of orders for each day.

Table A.1. Total order amounts for the 7 days.

Day 1 2 3 4 5 6 7
Orders 1633 1855 1702 1359 1469 1484 1780

To secure anonymity of the “real” client, some details of the data that are not
crucial for understanding the experiments are omitted. For example, a scatter plot
showing the locations of the orders and the warehouse was not allowed to be shared.
However, as the warehouse and all delivery addresses are in a densely populated
European city, one might be able to imagine what it would roughly look like.

1. Order Analysis

1.1. Time Received. Orders can come in at any moment throughout the
day. It is relevant to know how many orders come in at which moment, as this says
something about the degree of dynamicity of the problem. Figure A.1 shows when
the orders are received.

At the start of the day, roughly half of the orders are known. The other half of
the orders come in throughout the day. Also, some orders come in between 22:00
and 06:00. These orders can be taken into account when pre-releasing starts in the
morning instead of in the evening, as is discussed in Section 2.4.

As several pre-releasing strategies have been studied that pre-release a few hours
early, it is also crucial to know how much time is between the order placement and
the start of the time-window. This information is summarized in Figure A.2 below.

The graph clearly indicates that many orders are placed in a time-window
starting in less than 4 hours. This explains why pre-releasing 3 or 4 hours early
had such a detrimental effect (see Table 5.5). This behavior is caused by the fact
that by default the next available time-window is suggested to the customer.

1.2. Demand for the time-windows. Some time-windows are more popular
than others. This might result in the earlier described peaks, in which the required
pre-releasing rate exceeds the pre-releasing capacity. Figure A.3 below shows the
distribution of orders over the time-windows.
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Figure A.1. The figure illustrates the distribution of order place-
ment times over a three-day period. Each bar represents the num-
ber of orders received within a specific hour. The x-axis displays
the hours of the day, while the y-axis represents the number of
orders. The cumulative percentage line shows the cumulative per-
centage of total orders received up to each hour.

The most popular time-windows are early in the morning, and later around
18:00. The fact that the first three time-windows are capped is the result of the
time-window heuristic, which limits the number of orders per time-window.

2. Route Analysis

This thesis suggests to allow more than 2 different Time-Windows per truck.
The optimal planning indeed often uses more than 2 time-windows per truck, as
can be seen in Figure A.4.

The number of orders per route is shown in Figure A.5 for the best-performing
heuristic and BosMart’s baseline on day 1.
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Figure A.2. The figure shows the distribution of time differences
(in minutes) between the placement of orders and the start of their
respective time windows. The histogram summarizes the number
of orders within each time difference bin, with bins of 10-minute
intervals. The cumulative percentage line indicates the cumulative
percentage of orders placed within or before each time difference
bin. Note that the 40% of orders that are placed over 10 hours
before the start of the time-window are not displayed.
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Figure A.3. The number of orders per time-window start-time.

Figure A.4. A bar chart showing how many routes have
how many different time-windows. These routes are taken
from the best-performing heuristic for day 1 (upcoming routes,
Time_Horizon=6), with use_capabilities=False.
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Figure A.5. A bar chart showing how many routes have how
many different time-windows. These routes are taken from the
best-performing heuristic for day 1, with use_capabilities=False.



APPENDIX B

ORTEC

This research has been performed under the supervision of ORTEC, a leading
provider of planning and optimization software with over 40 years of experience
and over 1000 employees. ORTEC has helped many companies improve their op-
erations, such as Coca Cola, Albert Heijn, and PostNL. The company specializes
in developing extensive software solutions to solve various variants of the Vehicle
Routing Problem (VRP) and optimize complex logistics and supply chain opera-
tions. ORTEC describes their mission statement as follows:

• Vision: “We consider it our responsibility to make applied mathematics
available in a transparent, safe and sustainable way, so organizations can
improve their impact on the world.”

• Purpose: “We want to improve the world using our passion for mathe-
matics.”

As part of their comprehensive suite of solutions, ORTEC offers Home Delivery
Optimization, a cloud product that helps planners to improve their plannings on a
strategic, tactical, and operational level. By optimizing home delivery operations,
retailers can achieve several benefits. ORTEC’s Home Delivery Optimization solu-
tion can improve customer service levels, enhances route efficiency, improve driver
happiness and reduce transportation costs by up to 10%. It incorporates dynamic
pricing, time slotting, and routing to balance workload and minimize “no shows”.
This results in improved customer satisfaction, smoother demand management, and
decreased CO2 emissions.
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