
Delft Center for Systems and Control

Optimal Swing-Up Control of an
Inverted Pendulum

Yuzhang Wang

M
as

te
ro

fS
cie

nc
e

Th
es

is

Optimal Swing-Up Control of an
Inverted Pendulum

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Yuzhang Wang

June 10, 2016

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

Inverted pendulums have been classic setups in the control laboratories since the 1950s. They
were originally used to illustrate ideas in linear control such as stabilization of unstable sys-
tems. Because of their nonlinear nature, pendulums have maintained their usefulness and
they are now used to illustrate many of the ideas emerging in the field of nonlinear control.
Typical examples are feedback stabilization, variable structure control, passivity based con-
trol, back-stepping and forwarding, nonlinear observers, friction compensation, and nonlinear
model reduction. Pendulums have also been used to illustrate task oriented control such as
swinging up and excellently suited to illustrate hybrid systems and control of chaotic systems.

The purpose of this project is to apply, compare and extend some recently developed method-
ologies for optimal control with input saturation constraints to the problem of control of an
inverted pendulum. In particular we will focus on two strategies: a model based actor-critic
strategy, and a sum-of-squares based control strategy. All these strategies aim, from differ-
ent perspectives, at optimal control of nonlinear systems. For this reason, to evaluate and
compare the performance of the algorithms, I will apply them to the task of swinging up an
inverted pendulum. The swing-up task is chosen because of its low-dimensional, but chal-
lenging, highly nonlinear nature. As the process has two states and one action, it allows for
easy visualization of the functions of interest (value function, control policy, phase plane).

The numerical simulations show that in model learning methods for actor-critic control, al-
though ideally the neural network (NN) approximation can approximate any smooth function
to arbitrary precision, it looks like model based actor-critic (MBAC) algorithm is not always
able to reach the optimum. In contrast to the MBAC approach, the nonlinear policy it-
eration approach guarantees that every new control policy will be stabilizing and generally
lead to a monotonically decreasing cost, whereas in the MBAC approach neither stabilization
nor monotonic convergence can be guaranteed. In particular, in the MBAC approach, it is
observed that the best value function is not always corresponding to the last one.

Master of Science Thesis Yuzhang Wang

ii

Yuzhang Wang Master of Science Thesis

Table of Contents

Acknowledgements vii

1 Introduction 1
1-1 Research Motivation . 2
1-2 Goals of Master Thesis . 2
1-3 Research Approach and Process . 2

2 Model Based Method for Actor-Critic Control 5
2-1 Reinforcement Learning . 5
2-2 Actor-Critic RL . 7
2-3 Function Approximation . 9
2-4 Model Based Actor-Critic Method . 11
2-5 Partial Conclusions . 14

3 Piecewise Policy Iterations in Linear Systems with Input-Saturation 15
3-1 Problem Formulation . 15
3-2 Policy Iterations under Saturation Constraints 17

3-2-1 Piecewise policy evaluation . 18
3-2-2 Piecewise policy improvement . 19
3-2-3 Modified policy iteration . 20

3-3 Numerical Formulation . 22
3-4 Partial Conclusions . 24

4 Handling Nonlinear Systems with Sum of Squares Decomposition 25
4-1 Lyapunov Stability for Nonlinear Systems . 26
4-2 Recasting and Analysis of Recasted Systems . 27
4-3 Example with Trigonometric Function . 31
4-4 Partial Conclusions . 33

Master of Science Thesis Yuzhang Wang

iv Table of Contents

5 Numerical Example 35
5-1 Test Case . 35
5-2 Simulation Results with Input-Saturation [-20,20] 39

5-2-1 Model based actor-critic algorithm . 39
5-2-2 Nonlinear policy iteration algorithm . 42

5-3 Simulation Results with Input-Saturation [-10,10] 45
5-3-1 Model based actor-critic algorithm . 45
5-3-2 Nonlinear policy iteration algorithm . 48

5-4 Simulation Results with Input-Saturation [-5,5] 51
5-4-1 Model based actor-critic algorithm . 51
5-4-2 Nonlinear policy iteration algorithm . 54

5-5 Comments on Simulation Results . 57

6 Conclusions and Suggestions for Future Work 59
6-1 Conclusions . 59
6-2 Suggestions for Future Work . 60

A Sum of Squares Decomposition 61

B Three examples of converting a non-polynomial system into a polynomial system 63

Bibliography 69

Glossary 73
List of Acronyms . 73

Yuzhang Wang Master of Science Thesis

List of Figures

2-1 Block diagram of the S-AC algorithm . 8
2-2 S-AC algorithm as present in [1] . 9
2-3 Block diagram of the MBAC algorithm . 12
2-4 MBAC algorithm . 13

3-1 Algorithm of policy iterations under unsaturation constraints 18
3-2 Algorithm of modified policy iterations under saturation constraints 21

4-1 Whirling pendulum . 31

5-1 Inverted pendulum setup . 35
5-2 Value function with input-saturation [-20,20]. 39
5-3 Control policy with input-saturation [-20,20]. 39
5-4 Phase phane with input-saturation [-20,20]. 40
5-5 Final trajectory with input-saturation [-20,20]. 40
5-6 Cost with input-saturation [-20,20]. 41
5-7 Cost (Zoom) with input-saturation [-20,20]. 41
5-8 Value function with input-saturation [-20,20]. 42
5-9 Control policy with input-saturation [-20,20]. 42
5-10 Phase phane with input-saturation [-20,20]. 43
5-11 Final trajectory with input-saturation [-20,20]. 43
5-12 Cost with input-saturation [-20,20]. 44
5-13 Value function with input-saturation [-10,10]. 45
5-14 Control policy with input-saturation [-10,10]. 45
5-15 Phase phane with input-saturation [-10,10]. 46

Master of Science Thesis Yuzhang Wang

vi List of Figures

5-16 Final trajectory with input-saturation [-10,10]. 46
5-17 Cost with input-saturation [-10,10]. 47
5-18 Cost (Zoom) with input-saturation [-10,10]. 47
5-19 Value function with input-saturation [-10,10]. 48
5-20 Control policy with input-saturation [-10,10]. 48
5-21 Phase phane with input-saturation [-10,10]. 49
5-22 Final trajectory with input-saturation [-10,10]. 49
5-23 Cost with input-saturation [-10,10]. 50
5-24 Value function with input-saturation [-5,5]. 51
5-25 Control policy with input-saturation [-5,5]. 51
5-26 Phase phane with input-saturation [-5,5]. 52
5-27 Final trajectory with input-saturation [-5,5]. 52
5-28 Cost with input-saturation [-5,5]. 53
5-29 Cost (Zoom) with input-saturation [-5,5]. 53
5-30 Value function with input-saturation [-5,5]. 54
5-31 Control policy with input-saturation [-5,5]. 54
5-32 Phase phane with input-saturation [-5,5]. 55
5-33 Final trajectory with input-saturation [-5,5]. 55
5-34 Cost with input-saturation [-5,5]. 56

B-1 Global Lyapunov function for the system with saturation nonlinearity present [3]. 65
B-2 Lyapunov function level curves for the system (B-7)-(B-8). 68

Yuzhang Wang Master of Science Thesis

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Dr. ir. S. Baldi for
the continuous support of my graduation project, for his patience, motivation, enthusiasm,
and immense knowledge. His guidance helped me in all the time of research and writing
this thesis. I could not have imagined having a better supervisor and mentor for my final
graduation research study and it was my honor to learn from him directly.

Besides my supervisor, I would like to thank the rest of my thesis committee members: Prof.
dr. ir. J. Hellendoorn, Dr. ir. W. Mugge and MSc. S. Yuan for their encouragement,
insightful comments, hard questions and positive feedback.

I need thank my friends at Delft University of Technology for their support during my master
study. In particular, I am grateful to my girlfriend for her patience and love.

Last but not the least, I would like to thank my family: my parents, for giving birth to me
at the first place and supporting me spiritually throughout my life.

Delft, University of Technology Yuzhang Wang
June 10, 2016

Master of Science Thesis Yuzhang Wang

viii Acknowledgements

Yuzhang Wang Master of Science Thesis

Chapter 1

Introduction

For several decades, inverted pendulum systems have served as excellent test beds for control
theory. Because they exhibit nonlinear, unstable, non-minimum phase dynamics, and control
objectives are always challenging [4]. They were originally used to illustrate ideas in linear
control such as stabilization of unstable systems [5] [6]. Because of their nonlinear nature
pendulums have maintained their usefulness and they are now used to illustrate many of the
ideas emerging in the field of nonlinear control. Typical examples are feedback stabilization,
variable structure control [7], passivity based control [8], back-stepping and forwarding [9],
nonlinear observers [10], friction compensation [11], and nonlinear model reduction. Pendu-
lums have also been used to illustrate task oriented control such as swinging up and catching
the pendulum [12] [13] [14] and excellently suited to illustrate hybrid systems [15] and control
of chaotic systems [16].

In this thesis, the swing-up controller, which swings the pendulum from the pointing-down
initial position to the unstable upright position "as quickly as possible" and stabilize it in this
position is studied. The term "as quickly as possible" is quantified in term of a cost function
to be minimized. The (fully measurable) state x consists of the angle φ of the pendulum and
the angular velocity φ̇ of the pendulum.

In this thesis, two strategies are studied: a Neural Network based strategy and a Sum-of-
Squares based strategy. The first strategy is based on Model Based Actor-Critic (MBAC)
method, which is such a learning method that the user sets a certain goal by specifying
a suitable reward function for the controller, and the controller then learns to maximize
the cumulative reward received over time (the value function) in order to reach that goal.
The optimal value function and the optimal control policy are approximated via two Neural
Networks (NNs), a critic NNs and an actor NNs respectively.

For the second strategy, this thesis revises a policy iteration procedure for the synthesis of
optimal and global stabilizing control policies for Linear Time Invariant (LTI) Asymptotically
Nullcontrollable with Bounded Inputs (ANCBI) systems. This class includes systems with
eigenvalues on the imaginary axis (possibly repeated) but no pole with positive real part.
An important aspect of the applied piecewise policy is that at each step of the iteration,

Master of Science Thesis Yuzhang Wang

2 Introduction

the computed policy is globally stabilizing and the existence of an improving value function
should be guaranteed as well. The solution to Lyapunov function which is required to hold
at each step of the policy iteration, is obtained by solving Sum-of-Squares Programs (SOSP)
that can be efficiently implemented with semidefinite programming (SDP) solvers.

1-1 Research Motivation

Many processes in industry can potentially benefit from control algorithms that learn to
optimize a certain cost function. However, due to limited research, the following problems
remain open.

A. Nonlinearity of the inverted pendulum system
The piecewise policy iteration of optimal control laws are defined for linear systems, but
the motion equation of the inverted pendulum system contains the term sin(φ), where
φ is the angle of the pendulum. This makes the system nonlinear.

B. Convergence of the value function
It is not clear whether a value function coming from a nonlinear policy iteration method
will converge (and how fast converge) to the optimal value function.

1-2 Goals of Master Thesis

This master thesis aims to apply and compare two methods of optimal control of nonlin-
ear systems, by using an inverted pendulum as an example. Furthermore, the two main
contributions of this work are the following.

A. Extend piecewise policy iteration from linear systems to nonlinear systems
The piecewise policy iteration for input-saturated systems have been defined for linear
systems. However, the inverted pendulum system is nonlinear. Therefore, in this work
we need extend piecewise policy iteration from linear systems with input-saturation to
nonlinear systems with input-saturation. Algorithmic solutions based on polynomial
tools have been recently proposed [17].

B. Evaluate nonlinear polynomial approximation of value function
In order to assess convergence to the optimal value function, in this work we will compare
neural network value function approximation with nonlinear polynomial approximation.
In addition, the stability and convergence results, which have been proposed in the linear
unsaturated case, will be checked in the nonlinear saturated case.

1-3 Research Approach and Process

The thesis is organized as follows,

Yuzhang Wang Master of Science Thesis

1-3 Research Approach and Process 3

• Chapter 2 presents the method of model based actor-critic control (MBAC). This
method is briefly explained for comparison purposes. Neural networks are used to
approximate the actor and critic.

• Chapter 3 presents the method of policy iterations for synthesis of optimal control laws
in linear systems with input-saturation.

• Chapter 4 exploits the results from analysis of non-polynomial systems using the sum
of squares decomposition. This results are used to construct polynomial Lyapunov
functions and extend policy iteration from linear systems to nonlinear systems with
input-saturation.

• Chapter 5 applies these two optimal control methods to the case study of swing-up
control of inverted pendulum. The performance of these two methods are evaluated
and compared in terms of convergence and the minimization of cost.

• Chapter 6 gives final conclusions and suggestions for future work.

Master of Science Thesis Yuzhang Wang

4 Introduction

Yuzhang Wang Master of Science Thesis

Chapter 2

Model Based Method for Actor-Critic
Control

In this chapter, the reinforcement learning approach to optimal control is briefly explained
for comparison purposes. The presentation of the model learning for actor-critic control
method follows the paper [1]. This chapter is organized as follows, Section 2.1 presents the
Reinforcement Learning (RL) principles. Section 2.2 presents "actor-critic" techniques, a class
of reinforcement learning methods which learn a critic function (value function) and a separate
actor function (policy function). The neural networks used to approximate the value function
and the policy are discussed in Section 2.3. In Section 2.4 we present the model based actor-
critic (MBAC) method, a modified version of model learning actor-critic (MLAC) algorithm
by assuming that the process model is known.

2-1 Reinforcement Learning

Reinforcement learning is an area of machine learning inspired by behaviorist psychology,
concerned with how software agents ought to take actions in an environment so as to maximize
some notion of cumulative reward. The problem, due to its generality, is studied in many
other disciplines, such as control theory. In the operations research and control literature,
the field where reinforcement learning methods are studied is called approximate dynamic
programming. The problem has been studied in the theory of optimal control, though most
studies are concerned with the existence of optimal solutions and their characterization, and
not with the learning or approximation aspects.

In machine learning, the environment is typically formulated as a Markov decision process
(MDP) as many reinforcement learning algorithms for this context utilize dynamic program-
ming techniques. The main difference between the classical techniques and reinforcement
learning algorithms is that the latter do not need knowledge about the MDP and they target
large MDPs where exact methods become infeasible. The basic reinforcement learning model
consists of:

Master of Science Thesis Yuzhang Wang

6 Model Based Method for Actor-Critic Control

• a set of environment states S

• a set of actions A

• rules of transitioning between states

• rules that determine the scalar immediate reward of a transition

• rules that describe what the agent observes

A reinforcement learning agent interacts with its environment in discrete time steps. At each
time t, the agent receives an observation ot, which typically includes the reward rt. Then
it chooses an action at from the set of actions available, which is subsequently sent to the
environment. The environment moves to a new state st+1 and the reward rt+1 associated
with the transition (st, at, st+1) is determined. The goal of a reinforcement learning agent is
to collect as much reward as possible. The agent can choose any action as a function of the
history and it can even randomize its action selection.

In this chapter, the RL problem can be described as a Markov decision process (MDP). We
use RL in a deterministic setting, and hence, we will present the deterministic description.
The MDP is defined by the tuple M (X,U, f, ρ), where X is the state space, U is the action
space, f : X × U 7→ X is the state transition function, and ρ : X × U 7→ R is the reward
function.

The process to be controlled can be described by the state transition function f : X×U 7→ X,
which returns the state xk where reaches from state xk−1 after applying action uk−1. Then
after each transition, the controller receives a scalar reward rk ∈ R ,given by the reward
function rk = ρ(xk−1, uk−1). The actions are chosen according to the policy π : X 7→ U . So
the goal in RL is to find a policy, such that make the sum of future rewards is maximized.
This sum is stored in a value function V π : X 7→ R , which is defined as

V π(x) =
∞∑
j=0

γjrk+j+1 with xk = x (2-1)

where γ ∈ [0, 1) is the so-called discount-factor. Since the undiscounted return is a special
case of the discounted return, from now on we will assume discounting. Although this looks
innocent enough, discounting is in fact problematic if one cares about online performance.
This is because discounting makes the initial time steps more important. Since a learning
agent is likely to make mistakes during the first few steps after its "life" starts, no uninformed
learning algorithm can achieve near-optimal performance under discounting even if the class
of environments is restricted to that of finite MDPs.

This function satisfies the Bellman equation [18]

V π(x) = ρ(x, π(x)) + γV π(x′) (2-2)

where x′ is given by the state transition function while using the policy π, i.e., x′ = f(x, π(x)).
The Bellman equation is the basis upon which RL can improve the policy π. In continuous
(or infinite discrete) state and action spaces, it is necessary to approximate the exact value
function V π and the exact policy π with function approximators.

Yuzhang Wang Master of Science Thesis

2-2 Actor-Critic RL 7

The problem then is to specify an algorithm that can be used to find a policy with maximum
expected return. From the theory of MDPs it is known that, without loss of generality, the
search can be restricted to the set of the so-called stationary policies. A policy is called sta-
tionary if the action-distribution returned by it depends only on the last state visited. In fact,
the search can be further restricted to deterministic stationary policies. A deterministic sta-
tionary policy is one which deterministically selects actions based on the current state. Since
any such policy can be identified with a mapping from the set of states to the set of actions,
these policies can be identified with such mappings with no loss of generality. Therefore, in
continuous (or infinite discrete) state and action spaces, it is necessary to approximate the
exact value function V π and the exact policy π with function approximators.

2-2 Actor-Critic RL

Actor-critic techniques which were introduced in [19] are characterized by learning separate
functions for the actor (the policy π) and the critic (the value function V π). Actor-critic
methods belong to the class of policy gradient methods. In these methods, the policy is
represented by a differentiable parameterization, and gradient updates are performed to find
the parameters that lead to (locally) maximal returns [20]. The critic takes the role of the
value function and evaluates the performance of the actor, hereby helping with the estimation
of the gradient to use for the actor’s updates. The use of gradient-based policy updates makes
actor-critic techniques suitable for continuous action spaces [21]. However, a few problems
with this procedure are as follows:

• The procedure may waste too much time on evaluating a suboptimal policy.

• It uses samples inefficiently in that a long trajectory is used to improve the estimate
only of the single state-action pair that started the trajectory.

• When the returns along the trajectories have high variance, convergence will be slow.

• It works in small, finite MDPs only.

The first issue is easily corrected by allowing the procedure to change the policy (at all, or
at some states) before the values settle. However good this sounds, this may be problematic
as this might prevent convergence. Still, most current algorithms implement this idea, giving
rise to the class of generalized policy iteration algorithm. We note in passing that actor-critic
methods belong to this category. The second issue can be corrected within the algorithm
by allowing trajectories to contribute to any state-action pair in them. This may also help
to some extent with the third problem, although a better solution when returns have high
variance is to use temporal difference (TD) methods which are based on the recursive Bellman
equation.

Thus, in this thesis, a temporal-difference-based actor-critic method serves as a baseline to
compare our new method to. We will refer to this baseline as the standard actor-critic (S-AC)
algorithm. As shown in Figure 2-1, it describes how different entities interact within the S-AC
algorithm.

Master of Science Thesis Yuzhang Wang

8 Model Based Method for Actor-Critic Control

Figure 2-1: Block diagram of the S-AC algorithm

Methods based on temporal differences also overcome the second but last issue. In order to
address the last issue mentioned before, function approximation methods are used. Denoting
the approximate value function parameterized by the vector θ with V (x, θ), the temporal
difference is defined as

δk = rk + γV (xk, θk−1)− V (xk−1, θk−1) (2-3)

This is the difference between the right-hand and left-hand sides of the Bellman equation
(2-2). The goal is to make the approximation of the critic satisfy the Bellman equation. By
using the temporal difference, the gradient-descent update rule for the critic parameter vector
θ is

θk = θk−1 + αcδk
∂V (x, θ)
∂θ

∣∣∣∣x=xk−1
θ=θk−1

(2-4)

where αc > 0 is the learning rate of the critic. This parameter update adapts the approximate
value function such that the error between the approximated and real values at the state
considered is minimized.
Using (2-4) to update the critic results in a one-step backup, whereas the reward received is
often the result of a series of steps. Eligibility traces offer a better way of assigning credit to
states visited several steps earlier. The eligibility trace for a certain state x at time instant k
is denoted with ek(x)

ek(x) =
{

1 if x = xk

λγek−1(x) otherwise.
It decays with time by a factor λγ, with λ ∈ [0, 1) being the trace decay rate. This makes
more recently visited states more eligible for receiving credit. All states along the trajectory
now influence the update of θ with the following equation:

θk = θk−1 + αcδk
∑

xυ∈Xυ

∂V (x, θ)
∂θ

∣∣∣∣ x=xυ
θ=θk−1

ek(xυ) (2-5)

where Xυ denotes the set of states visited during the current trial. The use of eligibility traces
speeds up the learning considerably.
The approximate policy is parameterized by ϑ with π(x, ϑ) and indicates the action to take
in a state x. However RL requires the use of exploration to keep trying new, possibly better,

Yuzhang Wang Master of Science Thesis

2-3 Function Approximation 9

actions in the states encountered. With exploration, the control action uk is different from
the action indicated by the policy. This can be achieved by perturbing the action with a
zero-mean random exploration term ∆uk,

uk = π(xk, ϑk−1) + ∆uk (2-6)

When the exploration ∆uk leads to a positive temporal difference (δk > 0), the policy is
adjusted toward this perturbed action. Conversely, when δk < 0 , the policy is adjusted away
from this perturbation. So this will lead to the following update rule for the actor:

ϑk = ϑk−1 + αaδk∆uk−1
∂π(x, ϑ)
∂ϑ

∣∣∣∣ x=xk−1
υ=ϑk−1

(2-7)

where αa > 0 is the learning rate of the actor. Then the temporal difference is interpreted as
a correction of the predicted performance; if δk > 0, the obtained performance is considered
better than the predicted one. Finally, the full implementation of the S-AC algorithm is
shown in the following Figure 2-2.

Figure 2-2: S-AC algorithm as present in [1]

2-3 Function Approximation

In actor-critic methods, both the policy and the value function are represented using function
approximation techniques. The algorithms use neural networks (NNs) as a function approx-
imator. NNs is a parametric memory-based method for approximating nonlinear functions.
Memory-based methods are also called case based, exemple based, lazy and instance based,
or experience based [22]. It has been shown that memory-based learning can work in RL and

Master of Science Thesis Yuzhang Wang

10 Model Based Method for Actor-Critic Control

can quickly approximate a function with only a few observations [23]. This is particularly
useful at the start of learning.

The main advantage of memory-based methods is that the user does not need to specify a
global structure or predefine features for the (approximate) model. Instead of trying to fit a
global structure to observations of the unknown function, NNs simply stores the observations
in a memory. A stored observation is called a sample si = [xTi |yTi]T with i = 1, ..., N. One
sample si is a column vector containing the input data xi ∈ Rn and output data yi ∈ Rm. The
samples are stored in a matrix called the memory M with size (n + m) ×N whose columns
each represent one sample.

When a query xq is made, NNs uses the stored samples to give a prediction ŷq of the true
output yq. The prediction is computed by finding a local neighborhood of xq in the samples
stored in memory. This neighborhood is found by applying a weighted distance metric di
(e.g., the 1-norm or 2-norm) to the query point xq and the input data xi of all samples in
M . The weighting W is used to scale the inputs x and has a large influence on the resulting
neighborhood and thus on the accuracy of the prediction. Note that, in this thesis, the input
samples xi are actually stored in the NNs memories as weighted samples Wxi. Searching
through the memory for nearest neighbor samples is computationally expensive. Here, a
simple sorting algorithm was used, but one can reduce the computational burden by using,
for instance, k − d trees [24].

Thus, there are three steps to get the prediction ŷq. In the first step, by selecting a limited
number ofK samples with the smallest distance d, we create a subset K(xq) with the indices of
nearest neighbor samples. Only these K nearest neighbors are then used to make a prediction
of ŷq. The prediction is computed by fitting a linear model to these nearest neighbors.
Applying the resulting linear model to the query point xq yields the predicted value ŷq. In
addition, the matrices X and Y need to be constructed using the K nearest neighbor samples

Y =
[
y1 y2 ... yK

]
X =

[
x1 x2 ... xK
1 1 ... 1

]

The X and Y matrices form an overdetermined set of equations for the model parameter
matrix β ∈ Rm×(n+1)

Y = βX

then in the second step, it can be solved by the least squares method using the right pseu-
doinverse of X,

β = Y XT (XXT)−1

Finally, the model parameter matrix β is used to compute the prediction for the query xq

ŷq = βxq

As a result, the globally nonlinear function is approximated locally by a linear function. At
the start of a trial, the matrices X and Y will not yet form a fully determined set of equations.
In this case, there are infinitely many solutions, and β will be chosen as the solution with the
smallest norm.

Yuzhang Wang Master of Science Thesis

2-4 Model Based Actor-Critic Method 11

In addition, the use of NNs comes with a few assumptions. The first and foremost one is that
the approximated function should be smooth enough so that it can be captured by locally
linear models. Any function with discontinuities or other nonsmooth behavior will be tough
to approximate. This also depends on the maximum possible number of samples in the NNs
memory. This number should be large enough so that the neighborhood in which a locally
linear model is calculated is small enough, i.e., the linear model is indeed local enough. More
specifically, when applying NNs in RL algorithms, the sampling time used should be small
enough so that a locally linear model calculated at one time step is still good enough at the
next time step. This is because we also use the model for predictions at the next time step.

2-4 Model Based Actor-Critic Method

In this section, a modified version of model learning actor-critic (MLAC) algorithm is intro-
duced. The MLAC algorithm was proposed in paper [1] to learn a process model in addition
to the actor and critic. The actor update is done using a policy gradient calculated from a
local gradient of the critic and a local gradient of the learned process model. In this thesis,
we slightly modify the algorithm by assuming that the process model is known. We refer to
this algorithm as model based actor-critic (MBAC). In the implementation of the algorithms,
we always use NNs to learn and approximate the functions involved.

The actor and critic are updated by inserting the last observed sample into the memory, as
the most up-to-date knowledge should be incorporated in any approximation calculated from
the memory as following,

• The critic memory MC holds samples of the form si = [xTi |Vi]T with i = 1, ..., NC ;

• The actor memory MA has samples si = [xTi |uTi]T with i = 1, ..., NA.

During the learning process, the actor, critic are updated by adjusting the output parts of
the nearest neighbor samples si that relate to the query point xq.

In addition to learning the actor and critic functions, the MBAC method uses the process
model x′ = f̂(x, u). The available process model simplifies the update of the actor, as it
allows us to predict what the next state x′ will be, given some input u. Together with the
approximate value function, this allows us to obtain information on the value V (x′) of the
next state x′. This means that we can choose the input u such that V (x′) is optimal.

In Figure 2-3, it shows the scheme of MBAC. The solid lines indicate actual signals. The
dashed lines indicate the use of a local linear model or gradient from a particular entity.

Master of Science Thesis Yuzhang Wang

12 Model Based Method for Actor-Critic Control

Figure 2-3: Block diagram of the MBAC algorithm

However, since we assume that our action space is continuous, we cannot enumerate over all
possible inputs u and therefore choose to put a policy gradient in place. Hence, by virtue of
neural networks (NNs), we can easily estimate the gradient of the value function with respect
to the state x and the gradient of the process model with respect to the input u. Then after
applying the chain rule, we have a gradient of the value function with respect to the input u
available and use this to update the actor.

As a result, the actor is updated by multiplying the local gradients of the value function and
of the process model to obtain a gradient of the value function with respect to chosen input
u. By adjusting the input u in the direction given by this gradient and saturating the result
element-wise such that the new input lies in the allowed input range [umin, umax], the actor
is trying to maximize V (x′)

ui ← sat
{
ui + αa

∂V

∂x

∣∣∣∣
x=x′

∂x′

∂u

}
∀i ∈ K(x) (2-8)

Recall that x′ is given by the state transition function x′ = f(x, u).

The value function is approximated by NNs which estimates a local linear model on the basis
of previous observations of V (x) . The local linear model is of the form

V (x) = βC ·
[
x
1

]
=
[
βCx βCb

]
·
[
x
1

]
(2-9)

where βCx which is the part of βC , that is the gradient ∂V
∂x relates the input x to the output

V . The gradient ∂x′

∂u can be found by NNs on previous observations of the process dynamics.

The process model is linearized in the form

x′ = f̂(x, u) = βP ·

xu
1

 =
[
βPx βPu βPb

]
·

xu
1

 (2-10)

Yuzhang Wang Master of Science Thesis

2-4 Model Based Actor-Critic Method 13

where βPu which is the part of βP , that is the gradient ∂x′

∂u relates u to x′. So we can now use
βCx , βPx and (2-8) to improve the actor by adapting the nearest neighbor samples with

ui ← sat{ui + αaβ
C
x β

P
u } ∀i ∈ K(x) (2-11)

The pseudocode is found in Algorithm 2. In the pseudocode, the set K+(xq) is K(xq), extended
with the index where the sample representing xq was inserted.

Figure 2-4: MBAC algorithm

Master of Science Thesis Yuzhang Wang

14 Model Based Method for Actor-Critic Control

2-5 Partial Conclusions

This chapter has explained the model based actor-critic method (MBAC), which uses NNs
as a parametric memory-based function approximator. The MBAC uses a process model
and employs it to update the actor. However, instead of using the process model to generate
simulated experiences as most model learning RL algorithms do [25] [26] [27], it uses the model
to directly calculate an accurate policy gradient, which accelerates learning compared to other
policy gradient methods. This novel algorithm uses neural networks (NNs) to approximate
the actor and critic. And memory-based learning methods have successfully been applied to
RL before, mostly as an approximator for the value function [23] [28] and in some cases, also
for the process model [29] [30]. Although it is not exploited in this thesis, one benefit of the
memory-based function approximators is that they can easily be initialized with samples of
prior knowledge.

Since the NN approximation allows to approximate any smooth function, the MBAC method
can be applied to any nonlinear process, eventually in the presence of input-saturation. For
this reason, the MBAC algorithm is a good candidate for the optimal swing up control of a
pendulum.

Yuzhang Wang Master of Science Thesis

Chapter 3

Piecewise Policy Iterations in Linear
Systems with Input-Saturation

As we know, the Hamilton-Jacobi-Bellman (HJB) equation is in general hard to solve and the
most celebrated method for solving it is Dynamic Programming (DP)[31]. However, the com-
putational burden associated to DP is prohibitive as the dimension of the problem increases,
which identified by Bellman himself with the term ’curse of dimensionality’. Hence, adaptive
dynamic programming (ADP) recalls different methods to solve the problem of ’curse of di-
mensionality’ by approximating the solution of the HJB equation [32] [33]. Among the several
ADP techniques, this chapter recalls a policy iteration procedure for the synthesis of opti-
mal and globally stabilizing control policies for Linear Time Invariant (LTI) Asymptotically
Null-controllable with Bounded Inputs (ANCBI) systems.

This chapter is organized as follows. Section 3.1 presents the control problem formulation for
the class of LTI-ANCBI systems in the presence of input saturation and some preliminary
results which are useful to the synthesis of optimal control laws. Section 3.2 presents the
policy iteration method under saturation constraints, which is composed respectively of policy
evaluation with piecewise value functions and of piecewise policy improvement. In Section 3.3,
numerical formulation of the proposed conditions are relaxed to Sum-of-Squares conditions
that can be implemented via Semi-Definite Programming.

3-1 Problem Formulation

We study the class of LTI Asymptotically Null-controllable with Bounded Inputs (ANCBI)
systems in the presence of input saturation, consisting of dynamic linear systems without ex-
ponentially unstable modes. It is worth mentioning that for linear systems with exponentially
unstable modes it is not possible to achieve global stabilization with bounded inputs [34].

Consider the input-saturated system

ẋ = Ax+Bsat (u(x)) , x(0) = x0, (3-1)

Master of Science Thesis Yuzhang Wang

16 Piecewise Policy Iterations in Linear Systems with Input-Saturation

with x ∈ Rn, u ∈ Rm, A ∈ Rn×n and B ∈ Rn×m, max(λ(A)) ≤ 0.

The function sat : Rm → U is a vector saturation function, with entries satisfying

(sat (u(x)))j =

uj , if uj � uj
uj , if uj � uj � uj
uj , if u � uj

(3-2)

and the set of inputs is defined as

U :=
{
u ∈ Rm|uj � u � uj , j = 1, . . . ,m

}
.

then we introduce the dead-zone function

dz (u(x)) := u(x)− sat (u(x))

and rewrite the system (3-1) as

ẋ = Ax+Bu(x)−Bdz (u(x)) , x(0) = x0. (3-3)

In order to have a well-posed problem we make the assumption: there exists a globally
stabilizing control policy ū.

We also introduce a discounted cost function for the system (3-3) of the form

J =
∫ ∞

0
e−λtL(x, u)dt =

∫ ∞
0

e−λt
[
x′Qx+ sat′ (u(x))Rsat (u(x))

]
dt. (3-4)

So the objective of the control problem can be stated as:

Problem 1: given the input-saturated system (3-3), the goal is to design the optimal control
policy uo(x), such that the origin of the system (3-3) is globally asymptotically stable, and
the cost function (3-4) with u(x) = uo(x) is minimized.

After defining the control problem, some results which are preliminary to the development of
a policy iteration mechanism are presented in the following.

Firstly, we introduce sector condition relate to the deadzone function q(x) = dz (u(x)),

q′(x) (u(x)− q(x)) ≥ 0, ∀ x ∈ Rn. (3-5)

Furthermore, define φ(x) := d dz(u(x))
dt satisfying

φ(x) =
{

0 if q(x) = 0
u̇(x) if q(x) 6= 0, (3-6)

which can be expressed by the two equalities

φ′(x) (u̇(x)− φ(x)) = 0 (3-7)
q′(x) (u̇(x)− φ(x)) = 0 (3-8)

Yuzhang Wang Master of Science Thesis

3-2 Policy Iterations under Saturation Constraints 17

In order to find optimal control policies with respect to the cost (3-4), we adopt the well-
known result from optimal control theory [35], that states that the optimal control policy
uo(x) that minimizes (3-4) satisfies

uo = arg min
u(·)∈U

{
−λV o + d V o

dx
(Ax+Bu) + L(x, u)

}
, (3-9)

where V o(x) is the value function that solves the Hamilton-Jacobi-Bellman equation

min
u(·)∈U

{
−λV o + d V o

dx
(Ax+Bu) + L(x, u)

}
= 0. (3-10)

As mentioned before, the Hamilton-Jacobi-Bellman (HJB) equation is in general hard to solve
and the most celebrated method for solving it is Dynamic Programming (DP). However it
also has some constraints, such as

• Analytical solutions only in special cases (e.g. linear systems).

• Numerical solutions require prohibitive numerical burden.

So we adopt Adaptive Dynamic Programming (ADP) in the next section. where we apply an
iterative strategy to solve Problem 1 based on approximate solutions to (3-10).

3-2 Policy Iterations under Saturation Constraints

Apart from some special cases, the HJB equation (3-10) is hard to solve, and even numerical
solutions obtained with DP may require prohibitive computational burden. The policy iter-
ation method is typically used as an iterative approach to compute approximate solutions to
the HJB equation [36] [37]. Here we first applies this method of the unsaturated condition and
then the main difficulties related to the extension to input-saturated plants will be discussed.

Given an LTI plant

ẋ = Ax+Bu, x(0) = x0, (3-11)

and a discounted cost function in the form

Jun =
∫ ∞

0
e−λt

[
x′Qx+ u′Ru

]
dt (3-12)

An approximate solution to (3-10) can be obtained with the iterative method sketched in the
following Algorithm 1.

Master of Science Thesis Yuzhang Wang

18 Piecewise Policy Iterations in Linear Systems with Input-Saturation

Figure 3-1: Algorithm of policy iterations under unsaturation constraints

We can see that the policy iteration technique consists of a 2-stage process: in the first step,
given a control policy uc, a value function V c is computed. In the second step, given the
value function V c, the updated policy uc+1 is computed. Note that the initial policy u0 must
be admissible, which requires it to be stabilizing. In the final step, the iterative process stops
upon convergence of the value function.

In the unsaturated case, it is possible to show that the presented policy iterations converge
to the optimal value function V o and the optimal globally stabilizing control policy uo. In
principle, although the fact that policy iteration techniques and Sum-of-Squares relaxations
can be extended to the saturated case, it is unclear how to address the non-differentiability
nature of the saturation function with polynomial value functions and whether we can guar-
antee similar convergence properties as the unsaturated case. In the following, we present
a piecewise value function that explicitly accounts for the non-differentiability of the vector
field introduced by the saturating inputs.

3-2-1 Piecewise policy evaluation

Consider a piecewise value function of the form W c(x, qc(x)) instead of V c(x)

V c(x) = W c(x, dz(uc(x))) = W c(x, qc(x)) (3-13)

Given the input-saturated system (3-1), a cost function (3-4) and the above structures for the
value function, the equation to be solved in policy evaluation is given by,

− λW c(x(t), qc(x(t))) + d W c(x(t), qc(x(t)))
dt

+ x′Qx+ (uc − qc)′R(uc − qc) = 0. (3-14)

Yuzhang Wang Master of Science Thesis

3-2 Policy Iterations under Saturation Constraints 19

Since q is non-differentiable, we consider it as an independent variable, which allow us to
describe its time-derivative in terms of a variable φ(x) as in (3-6), and (3-14) is modified
according to

− λW c + ∂W c

∂x
(Ax+B(uc − qc)) + ∂W c

∂qc
φc/c + x′Qx+ (uc − qc)′R(uc − qc) = 0 (3-15)

3-2-2 Piecewise policy improvement

The policy improvement step consists of solving the following problem

min
u∈U

[
d V c

dx
(Ax+B(uc − qc)) + x′Q(x)x+ (uc − qc)′R(uc − qc)

]
(3-16)

Using the Karush-Kuhn-Tucker conditions [38], the necessary conditions for the solution of
(3-16) are

u = −1
2R
−1
[
B′
[
∂W c

∂x
+ ∂W c

∂qc
∂dz(uc)
∂x

]′
+ µ1(x)− µ2(x)

]
(3-17)

where µ1, µ2 keep the input inside the saturation bounds.

µ1 = max
(

0 2R
(
−µ− 1

2R
−1B′

d V ′

dx

))
µ2 = max

(
0 2R

(
µ+ 1

2R
−1B′

d V ′

dx

))
The unsaturated control policy uc+1 at the next policy evaluation then becomes

uc+1(x) = −1
2R
−1B′

[
∂W c

∂x
+ ∂W c

∂qc
∂dz(uc)
∂x

]′
(3-18)

However, the policy (3-18) can not be implemented without introducing conservativeness since
the value function W c is defined in terms of the previous policy uc. This makes the policy
improvement in (3-18) to be defined also in terms of the previous policy uc−1. Therefore, the
implementation of (3-18) requires control policies from previous iterations.
As a result, in order to avoid storing the iteration history required to implement (3-18), we
consider the following approximate policy improvement,

uc+1
ap (x) = −1

2R
−1B′

∂W c

∂x

′
∣∣∣∣∣
qc=0

(3-19)

Note that (3-19) represents the policy that results from ignoring the contribution of term
∂W c

∂qc
∂dz(uc)
∂x in (3-18). As a consequence, uc+1

ap (x) = uc+1(x) in the set

Ωc(x) = {x : dz(uc(x)) = 0} (3-20)
The approximated policy improvement (3-19) is thus the optimal solution to (3-16) for the
unsaturated region of the previous policy uc(x). Furthermore, the policy uc+1

ap (x) in (3-19)
defines a different unsaturated region as

Ωc+1(x) =
{
x : dz(uc+1

ap (x)) = 0
}

(3-21)

Master of Science Thesis Yuzhang Wang

20 Piecewise Policy Iterations in Linear Systems with Input-Saturation

3-2-3 Modified policy iteration

We now discuss properties of the policy (3-19). Let us first define the following state-space
partition defined by sets Ωc and Ωc+1 in (3-20), (3-21)

Ξc1 := Ωc ∩ Ωc+1 (Region 1)
Ξc2 := Ωc\Ωc+1 (Region 2)
Ξc3 := Ωc+1\Ωc (Region 3)
Ξc4 := Rn\(Ωc ∪ Ωc+1) (Region 4)

(3-22)

satisfying ∪iΞci = Rn and Ξci ∩ Ξcj = ∅, i 6= j. Note that Ξc1 corresponds to the set in which
both control policies respect the saturation bounds; Ξc2 = ∅, whenever Ωc ⊂ Ωc+1; Ξc3 = ∅,
whenever Ωc+1 ⊂ Ωc; and Ξc4 is the set in which both control policies exceed the saturation
bounds.

In the following, we study the stability properties of the policy uc+1
ap , given a globally stabilizing

policy uc and a value function W c that certify global stability. To this purpose, define the
piecewise policy

sat
(
uc+1
pw

)
=
{
sat

(
uc+1
ap

)
in Ξc1 ∪ Ξc2 ∪ Ξc3

sat (uc) in Ξc4
(3-23)

and the value function

W c
pw :=

{
W c
un in Ξc1 ∪ Ξc2 ∪ Ξc3

W c in Ξc4
(3-24)

where W c
un is the unsaturated value function defined as

W c
un(x) := W c(x, 0) (3-25)

Then we obtain the following result,

Proposition 1: The piecewise value function (3-24) certifies the global stability of the piecewise
control policy (3-23).

Notice that in the process of proof, we define

L(W c, u) := d

dx
(W c(x, dz(uc(x))) (Ax+Bu) (3-26)

which represents the time-derivative ofW c along the trajectories of the system under a control
policy u. Next, under assumption L(W c

un, sat (uc)) < 0, we have

for x ∈ Ξc1
L(W c, uc+1

ap) = L(W c, uc)− (uc+1
ap − uc)′R(uc+1

ap − uc) < 0 (3-27)

for x ∈ Ξc2

L(W c, sat
(
uc+1
ap

)
) = L(W c, uc)− (sat

(
uc+1
ap

)
− uc)′R(sat

(
uc+1
ap

)
− uc) < 0 (3-28)

Yuzhang Wang Master of Science Thesis

3-2 Policy Iterations under Saturation Constraints 21

for x ∈ Ξc3

L(W c
un, u

c+1
ap) = L(W c

un, sat (uc))− (uc+1
ap − sat (uc))′R(uc+1

ap − sat (uc)) < 0 (3-29)

for x ∈ Ξc4

L(W c
un, sat

(
uc+1
ap

)
) = L(W c

un, u
c)− (uc+1

ap − sat (uc))′R(uc+1
ap − sat (uc)) + qc+1′Rqc+1 (3-30)

As shown in (3-27),(3-28),(3-29), we obtain in Ξc1, Ξc2 and Ξc3,

L(W c
un, sat

(
uc+1
ap

)
) < 0 (3-31)

which means that, in these three regions, W c
un is a feasible local Lyapunov function for the

approximate policy iteration uc+1
ap .

Figure 3-2 shows the algorithm of modified policy iteration with piecewise value function.

Figure 3-2: Algorithm of modified policy iterations under saturation constraints

As a result, we got the conclusion from the consequence of (3-27),(3-28),(3-29): in Ξc1, Ξc2
and Ξc3, it is possible to find a new value function W c+1 that improves with respect to the
unsaturated value function W c

un found at the previous policy evaluation. Furthermore, in Ξc4,

Master of Science Thesis Yuzhang Wang

22 Piecewise Policy Iterations in Linear Systems with Input-Saturation

no stability guarantees can be given for the policy sat
(
uc+1
ap

)
, the piecewise policy (3-23) and

piecewise value function (3-24) are defined.

The feasibility step is done in order to check if the control policy in Ξc4 can be updated. If
such step is feasible, the most recent policy uc(x) will be adopted in that region. Stopping
criteria is defined in terms of the improvement on the value function at each iteration, that
is, in terms of ∆W c(x(0)) := W c(x(0))−W (c−1)(x(0)).

3-3 Numerical Formulation

The inequalities in the policy evaluation steps are, in general, difficult to solve. However, for
the case of L and W c being polynomial functions, the resulting polynomial inequalities are
numerically tractable by restricting the search to the set of Sum-of-Squares (SOS) polynomi-
als. The cone of SOS polynomials is a subset of the set of positive polynomials and checking
if a polynomial is a SOS can be performed by solving a semi-definite program (SDP), thus
efficiently solved with software packages implementing interior point methods. The details
will be presented in next chapter.

The steps of the modified iteration procedure of Section (3-2) are then formulated as follows,

Step 1: SOS policy evaluation

We provide a sufficient condition for calculating a (piecewise) certificate W c(x, qc) for global
stability of the system (3-1) with a piecewise policy ucpw defined in a partition Ξ

ucpw =
{

hc(x) x ∈ ∪i∈{1,2,3}Ξ
(c−1)
i

h(c−1)(x) x ∈ Ξ(c−1)
4 ,

(3-32)

then, find W c(x, qc), Πpw
i (ξ) satisfying

p1(ξ) = −λW c − ∂W c

∂x
(Ax+B (upw − qpw))− ∂W c

∂qc
φc/sw

− x′Q(x)x− (upw − qpw)′R(x)(upw − qpw)
+ qsw

′Πpw
1 (ξ)(upw − qpw) + φc/sw

′Πpw
2 (ξ)(u̇c/sw − φc/sw)

+ qc
′Πpw

3 (ξ)(u̇c/sw − φc/sw) > 0 ∀x ∈ Rn (3-33)

Πpw
1 (ξ) ≥ 0 (3-34)

with
ξ =

[
x′ upw′ qpw′ φc/sw′

]′
(3-35)

where φc/sw denotes the time-derivative of qc along the trajectories corresponding to policy
ucpw and Πpw

1 (ξ). The expression for u̇c/sw

u̇c/sw = d hc(x)
dx

(Ax+B (upw − qpw)) . (3-36)

Yuzhang Wang Master of Science Thesis

3-3 Numerical Formulation 23

Notice that, since (3-32) is defined according to the partition, the variable upw in (3-33)
satisfies

(upw − hc) = 0 x ∈ ∪i∈{1,2,3}Ξ
(c−1)
i (3-37)

(upw − h(c−1)) = 0 x ∈ Ξ(c−1)
4 . (3-38)

Therefore, considering the representation of sets

∪i∈{1,2,3}Ξ
(c−1)
i = {x ∈ Rn|p0j(x, u, u) ≥ 0, j = 1, . . . , n0}

Ξ(c−1)
4 = {x ∈ Rn|p4j(x, u, u) ≥ 0, j = 1, . . . , n4}

(3-39)

and assuming polynomial dependence of multipliers Πi on variable x, we obtain the following
sufficient sum-of-squares condition for (3-33) to hold with control policy (3-32). According to
S-Procedure,

p1(ξ) + Π41(xi)(upw − hc) +
n0∑
j=1

m0(ξ)p0j(x, u, u) > 0 (3-40)

p1(ξ) + Π42(xi)(upw − h(c−1)) +
n4∑
j=1

m4(ξ)p4j(x, u, u) > 0 (3-41)

Π1 > 0 (3-42)

with m0(ξ) > 0,m4(ξ) > 0. Since W c(x, qc) is an upper bound of the value function (given
that the current policy may not be the optimal one), we solve

minimize W c(x(0), dz(uc(x(0)))) (3-43)
subject to (3− 40)− (3− 42) (3-44)

that minimizes the cost function with initial state x(0).

Step 2: Feasibility of W c

In this step, we check for the feasibility of W c as a certificate of global stability for uc to
provide a stable control policy in the entire state space by solving

p1(ξ) > 0, (3-45)

Π1 > 0. (3-46)

in which we substitute uc by hc(x).

Provided the above SOS constraints (3-45) (3-46) are satisfied, the control policy is updated
as uc(x) = hc(x); otherwise uc(x) = h(c−1)(x). The policy improvement step consists on
defining the new policy completing the policy update step.

uc+1
pw =

 hc+1 → −1
2R
−1B′ ∂W

c

∂x

′∣∣∣
qc=0

x ∈ ∪i∈{1,2,3}Ξ
(c−1)
i

hc → uc(x) x ∈ Ξc4
(3-47)

Master of Science Thesis Yuzhang Wang

24 Piecewise Policy Iterations in Linear Systems with Input-Saturation

3-4 Partial Conclusions

This chapter applies a policy iteration procedure for the synthesis of optimal and globally
stabilizing control policies for Linear Time Invariant (LTI) Asymptotically Null-controllable
with Bounded Inputs (ANCBI) systems. The first step of the policy iteration relies on finding
a class of piecewise quadratic value function (Lyapunov functions) which is non-differentiable,
but continuous, and polynomial in both the state and the deadzone functions of the input
signals associated to a control policy. The second step of the policy iteration is based on a
piecewise control policy improvement. An important aspect of the applied piecewise policy is
that at each step of the iteration, the computed policy is globally stabilizing and the existence
of an improving value function is guaranteed as well. The solution to the inequalities which
is required to hold at each step of the policy iteration, is obtained by solving Sum-of-Squares
Programs (SOSP) that can be efficiently implemented with semidefinite programming (SDP)
solvers.

This methodology has to be extended to nonlinear systems in order to the applicable to the
pendulum swing-up problem. And in the process of piecewise polynomial policy iterations for
optimal control laws in input-saturated systems, the extension of the applied methodology
to nonlinear system of swing-up inverted pendulum is achievable. Such an extension will
account for generalized sector condition which is instrumental to compute region of attraction
estimates. We will also generalize the obtained conditions to systems defined by polynomial
vector fields and polynomial input matrices.

Yuzhang Wang Master of Science Thesis

Chapter 4

Handling Nonlinear Systems with Sum
of Squares Decomposition

The analysis of nonlinear systems has always been a difficult task as the only direct, efficient
methodology requires the construction of what is called a Lyapunov function. The difficulty
lies not only in the "manual" construction of Lyapunov functions but also in the complexity
of testing the non-negativity of the two Lyapunov conditions. Indeed, even if someone was
to propose a high order Lyapunov function, it might not at all be possible to verify the two
conditions that it needs to satisfy: that it is positive definite in some region around the zero
equilibrium and that its derivative along the system’s trajectories is non-positive.

Recent advances in the areas of semidefinite programming along with use of the sum of
squares decomposition to efficiently check nonnegative have allowed an algorithmic procedure
for systems analysis. But this methodology is restricted to systems described by polynomial
vector fields whereas physical systems, the functionality of which is in the focus of many
research areas, seldom have polynomial vector fields. In this case, the stability analysis of
the closed loop system using the above methodology becomes difficult, as the same variable
appears both in polynomial and non-polynomial terms. However, it has been shown in [39]
that any system with non-polynomial nonlinearities can be transformed through a simple
series of steps to equivalent polynomial systems under equality and inequality constraints on
the state variables.

The aim of this chapter is to extend Lyapunov’s stability theorem to handle recasted systems
and then use the sum of squares decomposition to construct Lyapunov functions in the new
coordinates. When mapped back to the original variables, these Lyapunov functions will
contain the original non-polynomial terms. And this chapter is organized as follows, in Section
4.1, we review briefly the Lyapunov stability theory for nonlinear systems and how the sum
of squares (SOS) decomposition can be used to construct Lyapunov functions. In Section 4.2
we present the recasting algorithm and extend the standard Lyapunov theorem to handle the
recasted systems. In Section 4.3, we present the analysis of system which have non-polynomial
vector fields.

Master of Science Thesis Yuzhang Wang

26 Handling Nonlinear Systems with Sum of Squares Decomposition

4-1 Lyapunov Stability for Nonlinear Systems

Here we concentrate on the nonlinear systems of the form

ż = f(z) (4-1)

where z ∈ Rn and for which we assume without loss of generality that f(0) = 0, i.e. the
origin is an equilibrium of the system. One of the most important properties related to this
equilibrium is its stability, and assessing whether stability of the equilibrium holds has been
in the center of systems and control research for more than a century. It was not until just
before the turn of the 19th century that A. M. Lyapunov formulated sufficient conditions for
stability [40] that do not require knowledge of the solution, but are based on the construction
of an "energy-like" function, well known nowadays as a "Lyapunov function".
More precisely, the conditions are stated in the following theorem.
Theorem 1 (Lyapunov). For an open set D ⊂ Rn with 0 ∈ D, suppose there exists a continu-
ously differentiable function V : D → R such that

V (0) = 0, (4-2)
V (z) > 0 ∀z ∈ D \{0}, (4-3)
∂V (z)
∂z

f(z) ≤ 0 ∀z ∈ D. (4-4)

Then z = 0 is a stable equilibrium of (4-1).
It is unfortunate that even with such a powerful theorem, the problem of proving stability of
equilibrium of nonlinear systems is still difficult; the reason is that there has been no coherent
methodology for constructing the Lyapunov function V (z).
In order to simplify the problem at hand, let us assume that f(z) is a polynomial vector field,
and that we will be searching for V (z) that is also a polynomial in z. Then the two conditions
in Theorem 1 become polynomial nonnegative conditions. To get rid of the difficult task of
testing them, we can restrict our attention to cases in which the two conditions admit SOS
decompositions. For D = Rn, the conditions in Theorem 1 can then be formulated as SOS
program stated in the following proposition, and a Lyapunov function that satisfies these
conditions can be constructed using semidefinite programming.
Proposition 2. Suppose that for the system (4-1) there exists a polynomial function V (z) such
that

V (0) = 0, (4-5)
V (z)− φ(z) is SOS, (4-6)

−∂V (z)
∂z

f(z) is SOS. (4-7)

where φ(z) > 0 for z 6= 0. Then the zero equilibrium of (4-1) is stable.
Proof. Condition (4-6) enforces V (z) to be positive definite. Since condition (4-7) implies
that V̇ (z) is negative semidefinite, it follows that V (z) is a Lyapunov function that proves
stability of the origin.

Yuzhang Wang Master of Science Thesis

4-2 Recasting and Analysis of Recasted Systems 27

In the above proposition, the function φ(z) is used to enforce positive definiteness of V (z). If
V (z) is a polynomial of degree 2d, then φ(z) may be chosen as follows:

φ(z) =
n∑
i=1

d∑
j=1

εijz
2j
i

where ε satisfy
m∑
j=1

εij > γ ∀i = 1, ..., n

with γ a positive number, and εij ≥ 0 for all i and j. In fact, this choice of φ(z) will force V (z)
to be radially unbounded, and hence the stability property holds globally if the conditions in
Proposition 2 are met.

4-2 Recasting and Analysis of Recasted Systems

In this section we present an algorithm that can be used to convert a non-polynomial system
into a polynomial system. The algorithm is adapted from [39], and it is applicable to a very
large class of non-polynomial systems, namely those whose vector field is composed of sums
and products of elementary functions, or nested elementary functions of elementary functions.
What are meant by elementary functions here are functions with explicit symbolic derivatives
such as exponential (ex), logarithm (lnx), power (xa), trigonometric (sinx, cosx, etc.), and
hyperbolic functions (sinhx, coshx, etc.).

Suppose that the original system is given in the form

żi =
∑
j

aj
∏
k

Fijk(z) (4-8)

where i = 1, ..., n; aj ’s are real numbers; and z = (z1, ..., zn). In the above equation, Fijk(z) are
assumed to be elementary functions, or nested elementary functions of elementary functions.
For the above system, the recasting algorithm is stated below.

Algorithm (adapted from [39], with some modifications)

1. Let xi = zi, for i = 1, ..., n.

2. For each Fijk(z) that is not of the form zal , where a is some integer and 1 ≤ l ≤ n,
introduce a new variable xm. Define xm = Fijk(z).

3. Compute the differential equation describing the time evolution of xm using the chain
rule of differentiation.

4. Replace all appearances of such Fijk(z) in the system equations by xm.

5. Repeat steps 2-4, until we obtain system equations with polynomial forms.

Master of Science Thesis Yuzhang Wang

28 Handling Nonlinear Systems with Sum of Squares Decomposition

It is best to illustrate the application of the above algorithm by an example.

Example. Consider the differential equation

ż = sin(ez − 1) + 4ln(z2 + 1)

which we want to transform to a system with polynomial vector field. We start by defining
x1 = z, x2 = sin(ez − 1), and x3 = ln(z2 + 1). By the chain rule of differentiation and
replacing the appearances of z, sin(ez−1), and ln(z2 +1) in the resulting equations by x1, x2,
and x3, we obtain

ẋ1 = x2 + 4x3,

ẋ2 = cos(ez − 1) ez ż
= cos(ex1 − 1) ex1(x2 + 4x3),

ẋ3 = 2
z2 + 1zż

= x1(x2 + 4x3)
x2

1 + 1

Notice that the equations for ẋ1 and ẋ3 are in polynomial forms. However, the equation for ẋ2
is not in a polynomial form and thus we continue by defining x4 = cos(ex1 − 1) and x5 = ex1 .
Using the chain rule of differentiation again, we obtain

ẋ2 = x4x5(x2 + 4x3),
ẋ4 = −sin(ex1 − 1)ex1(x2 + 4x3)

= −x2x5(x2 + 4x3),
ẋ5 = ex1(x2 + 4x3)

= x5(x2 + 4x3)

At this point, we terminate the recasting process, since the differential equations describing
the evolutions of x1, ..., x5 are already in rational forms. More examples can be found in the
Appendix.

The recasting process described in the previous subsection generally produces a recasted
system whose dimension is higher than the dimension of the original system. To describe
the original system faithfully, constraints of the form xn+1 = F (x1, ..., xn) that are created
when new variables are introduced should be taken into account. These constraints define
an n-dimensional manifold on which the solutions to the original differential equations lie. In
general such constraints cannot be converted into polynomial forms, even though sometimes
there exist polynomial constraints that are induced by the recasting process. For example:

• Two variables introduced for trigonometric functions such as x2 = sinx1, x3 = cosx1
are constrained via x2

2 + x2
3 = 1.

• Introducing a variable to replace a power function such as x2 = √x1 introduces the
constraints x2

2 − x1 = 0, x2 ≥ 0.

Yuzhang Wang Master of Science Thesis

4-2 Recasting and Analysis of Recasted Systems 29

• Introducing a variable to replace an exponential function such as x2 = ex1 induces the
constraint x2 ≥ 0.

We will shortly discuss how both types of constraints described above can be taken into
account in the stability analysis using the sum of squares decomposition technique. For our
purpose, suppose that for a non-polynomial system

ż = f(z) (4-9)
which has an equilibrium at the origin, the recasted system obtained using the procedure of
the previous subsection is written as

˙̃x1 = f1(x̃1, x̃2), (4-10)
˙̃x2 = f2(x̃1, x̃2), (4-11)

where x̃1 = (x1, ..., xn = z) are the state variables of the original system, x2 = (xn+1, ..., xn+m)
are the new variables introduced in the recasting process, and f1(x̃1, x̃2), f2(x̃1, x̃2) have poly-
nomial forms.
We denote the constraints that arise directly from the recasting process by

x̃2 = F (x̃1) (4-12)

and those that arise indirectly by

G1(x̃1, x̃2) = 0, (4-13)
G2(x̃1, x̃2) ≥ 0 (4-14)

where F , G1 and G2 are column vectors of functions with appropriate dimensions, and
the equalities or inequalities hold entry-wise. Finally, denote the collective denominator of
f1(x̃1, x̃2), and f2(x̃1, x̃2) by g(x̃1, x̃2). That is, g(x̃1, x̃2) should be a polynomial function
such that g(x̃1, x̃2)f1(x̃1, x̃2) and g(x̃1, x̃2)f2(x̃1, x̃2) are polynomials. We also assume that
g(x̃1, x̃2) > 0 ∀(x̃1, x̃2) ∈ D1 ×D2, since otherwise the system is not well-posed.
Proving stability of the zero equilibrium of the original system (4-9) amounts to proving that
all trajectories starting close enough to z = 0 will remain close to this equilibrium point.
This can be accomplished by finding a Lyapunov function V (z) that satisfies the following
conditions of Lyapunov’s stability theorem, Theorem 1. In terms of the new variables x̃1 and
x̃2, sufficient conditions that guarantee the existence of a Lyapunov function for the original
system are stated in the following proposition.
Proposition 3. (Lyapunov Conditions) Let D1 ⊂ Rn and D2 ⊂ Rm be open sets such that
0 ∈ D1 and F (D1) ⊆ D2. Furthermore, define x̃2,0 = F (0). If there exists a function Ṽ :
D1×D2 → R and column vectors of functions λ1(x̃1, x̃2), λ2(x̃1, x̃2), σ1(x̃1, x̃2) and σ2(x̃1, x̃2)
with appropriate dimensions such that

Ṽ (0, x̃2,0) = 0, (4-15)

Ṽ (x̃1, x̃2)− λT1 G1(x̃1, x̃2)− σT1 (x̃1, x̃2)G2(x̃1, x̃2)
≥ φ(x̃1, x̃2) ∀(x̃1, x̃2) ∈ D1 ×D2, (4-16)

Master of Science Thesis Yuzhang Wang

30 Handling Nonlinear Systems with Sum of Squares Decomposition

− g(x̃1, x̃2)
(
∂Ṽ

∂x̃1
f1(x̃1, x̃2) + ∂Ṽ

∂x̃2
f2(x̃1, x̃2)

)
− λT2 (x̃1, x̃2)G1(x̃1, x̃2)− σT2 G2(x̃1, x̃2)

≥ 0 ∀(x̃1, x̃2) ∈ D1 ×D2, (4-17)

σ1(x̃1, x̃2) ≥ 0 ∀(x̃1, x̃2) ∈ Rn+m, (4-18)

σ2(x̃1, x̃2) ≥ 0 ∀(x̃1, x̃2) ∈ Rn+m, (4-19)

for some scalar function φ(x̃1, x̃2) with φ(x̃1, F (x̃1)) > 0 ∀x̃1 ∈ D1 \ {0}, then z = 0 is a
stable equilibrium of (4-9).

The above non-negativity conditions can be relaxed to appropriate sum of squares conditions
so that they can be algorithmically verified using semidefinite programming. This will also
lead the way to an algorithmic construction of the Lyapunov function V . Here we assume
that D1 ×D2 is a semialgebraic set described by the following inequalities:

D1 ×D2 = {(x̃1, x̃2) ∈ Rn × Rm : GD(x̃1, x̃2) ≥ 0},

where GD(x̃1, x̃2) is a column vector of polynomials and the inequality is satisfied entry-wise.
With all this notation, the sum of squares conditions can be stated as follows.

Proposition 4. (Sum-of-Square Relaxation) Let the system (4-10)-(4-11) and the functions
F (x̃2), G1(x̃1, x̃2), G2(x̃1, x̃2), GD(x̃1, x̃2) and g(x̃1, x̃2) be given. Define x̃2,0 = F (0). If there
exists a polynomial function Ṽ (x̃1, x̃2), column vectors of polynomial functions λ1(x̃1, x̃2), λ2(x̃1, x̃2),
and column vectors of sum of squares polynomials σ1(x̃1, x̃2), σ2(x̃1, x̃2), σ3(x̃1, x̃2), σ4(x̃1, x̃2)
with appropriate dimensions such that

Ṽ (0, x̃2,0) = 0, (4-20)

Ṽ (x̃1, x̃2)− λT1 G1(x̃1, x̃2)− σT1 (x̃1, x̃2)G2(x̃1, x̃2)− σT3 (x̃1, x̃2)GD(x̃1, x̃2)− φ(x̃1, x̃2)
is a sum of squares, (4-21)

−g(x̃1, x̃2)
(
∂Ṽ

∂x̃1
f1(x̃1, x̃2) + ∂Ṽ

∂x̃2
f2(x̃1, x̃2)

)
−λT2 (x̃1, x̃2)G1(x̃1, x̃2)−σT2 G2(x̃1, x̃2)−σT4 GD(x̃1, x̃2)

is a sum of squares. (4-22)

for some scalar polynomial function φ(x̃1, x̃2) with φ(x̃1, F (x̃1)) > 0 ∀x̃1 ∈ D1 \ {0}, then
z = 0 is a stable equilibrium of (4-9).

Yuzhang Wang Master of Science Thesis

4-3 Example with Trigonometric Function 31

4-3 Example with Trigonometric Function

Here we present one example relevant to the swing up problem of a pendulum. Other examples
can be found in the Appendix.

Example: Whirling Pendulum

Consider the whirling pendulum [41] shown in Figure 4-1. It is a pendulum of length lp whose
suspension end is attached to a rigid arm of length la, with a mass mb attached to its free end.
The arm rotates with angular velocity θ̇a. The pendulum can oscillate with angular velocity
θ̇b in a plane normal to the arm, making an angle θp with the vertical in the instantaneous
plane of motion. We will ignore frictional effects and assume that all links are slender so that
their moment of inertia can be neglected.

Figure 4-1: Whirling pendulum

Using x1 = θp, and x2 = θ̇p as state variables, we obtain the following state equations for the
system: ẋ1 = x2

ẋ2 = θ̇2
a sin x1 cosx1 − g

lp
sin x1

(4-23)

The number and stability properties of equilibrium in this system depend on the value of θ̇a.
When the condition

θ̇2
a <

g

lp
(4-24)

is satisfied, the only equilibrium in the system are (x1, x2) satisfying sinx1 = 0, x2 = 0.
One equilibrium corresponds to x1 = 0, i.e., the pendulum is hanging vertically downward
(stable), and the other equilibrium corresponds to x1 = π, the vertically upward position
(unstable). As θ̇a is increased beyond g

lp
, a supercritical pitchfork bifurcation of equilibrium

occurs [42]. The (x1, x2) = (0, 0) equilibrium becomes unstable, and two other equilibriums
appear. These equilibriums correspond to cosx1 = g

lpθ̇2
a
, x2 = 0.

We will now prove the stability of the equilibrium point at the origin for θ̇a satisfying (4-24)
by constructing a Lyapunov function. Obviously the energy of this mechanical system can
be used as a Lyapunov function, but since our purpose is to show that a Lyapunov function
can be found using the SOS decomposition, we will assume that our knowledge is limited to

Master of Science Thesis Yuzhang Wang

32 Handling Nonlinear Systems with Sum of Squares Decomposition

the state equations describing the system and that we know nothing about the underlying
energy.

Since the vector field (4-23) is not polynomial, a transformation to a polynomial vector field
must be performed before we are able to construct a Lyapunov function using the SOS
decomposition. For this purpose, introduce u1 = sinx1 and u2 = cosx1 to get recasted
system:

ẋ1 = x2

ẋ2 = θ̇2
au1u2 − g

lp
u1

u̇1 = x2u2

u̇2 = −x2u1

(4-25)

In addition, we have the algebraic constraint

u2
1 + u2

2 − 1 = 0 (4-26)

So the whirling pendulum system will now be described by (4-25) (4-26). Notice that all the
functions here are polynomial, so that Proposition 4 can be used to prove stability.

Then we will perform the analysis with the parameters of the system set at some fixed values.
Assume that θ̇a = 1, lp = 1, g = 10, for which condition (4-24) is satisfied. For a mechanical
system like this, we expect that some trigonometric terms will be needed in the Lyapunov
function. Thus, we will try to find a Lyapunov function of the following form:

V = a1x
2
2 + a2u

2
1 + a3u

2
2 + a4u2 + a5

= a1x
2
2 + a2 sin2 x1 + a3 cos2 x1 + a4 cosx1 + a5

where the ai are the unknown coefficients. And these coefficient must satisfy

a3 + a4 + a5 = 0

for V to be equal to zero at (x1, x2) = (0, 0). To guarantee that V is positive definite, by
using SOSTOOLS, we search for V that satisfy

(V −W) is a sum of squares

where W = ε1(1− u2) + ε2x
2
2 with ε1 and ε2 are positive constants.

In other words, we search for V satisfy

V −W = V − ε1(1− u2)− ε2x2
2 ≥ 0

Then V positive definiteness hold as

ε1(1− u2) + ε2x
2
2 = ε1(1− cosx1) + ε2x

2
2 ≥ 0

is a positive definite function in the space (x1, x2).

An example of Lyapunov function for this whirling pendulum system is given by,

V = 0.33445x2
2 + 1.4615u2

1 + 1, 7959u2
2 − 6.689u2 + 4.8931

Yuzhang Wang Master of Science Thesis

4-4 Partial Conclusions 33

4-4 Partial Conclusions

In this chapter we have presented a methodology to analyze systems described by non-
polynomial vector fields using the sum of squares decomposition and a recasting procedure.
Using this recasting procedure, a non-polynomial system can be converted into a polynomial
system with equality, inequality and integral constraints. In doing so, certain nonpolynomial
nonlinearities can be handled, as shown in the examples and Lyapunov functions that are
nonpolynomial in the state variables can be constructed.

Constructing Lyapunov functions has always been a challenging task and an important prob-
lem in dynamical systems and control theory. An algorithmic approach was developed recently
to construct Lyapunov functions for dynamical systems with polynomial vector fields. This
was based on a relaxation of the condition that a function is positive semidefinite to the
condition that it is a sum of squares (SOS). Then an extension of the Lyapunov theorem in
conjunction with the sum of squares decomposition and semidefinite programming can then
be used to investigate the stability of the recasted system, the result of which can be used to
infer the stability of the original system. Using the results of this chapter, the modified Pol-
icy Iteration Algorithm of Figure 3-2 can be straightforwardly extended to nonlinear systems
with input saturation.

Master of Science Thesis Yuzhang Wang

34 Handling Nonlinear Systems with Sum of Squares Decomposition

Yuzhang Wang Master of Science Thesis

Chapter 5

Numerical Example

5-1 Test Case

In the following, we present a numerical example to illustrate the results obtained via the
two optimal control methods. To evaluate and compare the performance of our algorithms,
we apply them to the task of swinging up an inverted pendulum. The swing-up task was
chosen because it is a low-dimensional, but challenging, highly nonlinear control problem. As
the process has two states (the angle φ of the pendulum and the angular velocity φ̇) and
one action (the torque u). It allows for easy visualization of the functions of interest (value
function, control policy, phase plane). A photograph of this system is shown in Figure 5-1.

Figure 5-1: Inverted pendulum setup

The task is to swing up the pendulum from the pointing-down position to the upright position
as quickly as possible and stabilize it in this position. The term "as quickly as possible" is
quantified in term of a cost function to be minimized. The actuation signal u is limited with
saturation [−20, 20], [−10, 10], [−5, 5] respectively, making it impossible to directly move the
pendulum to the upright position. For actor-critic algorithm, a continuous quadratic reward
function ρ is used to define the swing-up task. This reward function has its maximum in the

Master of Science Thesis Yuzhang Wang

36 Numerical Example

upright position [0 0]T and quadratically penalizes nonzero values of φ, φ̇ and u.

rk(xk−1, uk−1) = −xTk−1Qxk−1 −Ru2
k−1 (5-1)

In continuous time, we define the cost function

J =
∫ ∞

0
L(x, u)dt =

∫ ∞
0

x′Qx+ sat′(u(x))Rsat(u(x))dt (5-2)

And in discrete time, we obtain the cumulative cost

J =
∞∑
k=1

xTk−1Qxk−1 +Ru2
k−1 (5-3)

with Q =
[
5 0
0 0.1

]
, R = 1 in (5-1), (5-2), (5-3).

The motion equation of this system is

Jφ̈ = Mgl sin(φ)−
(
b+ K2

R

)
φ̇+ K

R
u (5-4)

where φ is the angle of the pendulum measured from the upright position. The (fully mea-
surable) state x consists of the angle φ of the pendulum and the angular velocity φ̇ of the
pendulum.

x =
[
φ

φ̇

]

The model parameters are given in Table 5-1.

Table 5-1: Inverted Pendulum Model Parameters

Model Parameter Symbol Value Units
Pendulum inertia J 1.91 · 10−4 kgm2

Pendulum mass M 5.50 · 10−2 kg
Gravity g 9.81 m/s2

Pendulum length l 4.20 · 10−2 m
Damping b 3 · 10−6 Nms

Torque constant K 5.36 · 10−2 Nm/A
Rotor resistance R 9.50 Ω

The MBAC and Nolinear Policy Iteration algorithms were applied in simulation using the
parameter settings in Table 5-2. Note that the discounted rate is chosen in such a way that
γ = e−λTs .

Yuzhang Wang Master of Science Thesis

5-1 Test Case 37

Table 5-2: The Parameter Settings for MBAC and Nonlinear Policy Iteration Methods

MBAC Nonlinear PI
sampling time(s) Ts 0.02 -
reward discount rate (discrete) γ 0.9980 -
discounted cost rate (continuous) λ - 0.1
control quantization ∆u 0.2 -
basis function type triangular -
number of basis function for x1 n1 30 -
number of basis function for x2 n2 30 -

Then the system is described as follows,

ẋ1 = x2 (5-5)

ẋ2 = Mgl

J
sin(x1)−

(
b+ K2

R

)
1
J
x2 + K

JR
u (5-6)

with x1 ∈ [−π, π], x2 ∈ [−20, 20]. However, we want to normalize the state x1 ∈ [−1, 1], x2 ∈
[−1, 1]. The advantage of the normalization is that all the monomials will be also between
[−1, 1] and the P matrix should be better conditioned. For this reason we define a new state
which is

x̄1 = x1
π

(5-7)

x̄2 = x2
2π2 (5-8)

Thus the system (5-5)-(5-6) becomes

˙̄x1 = 2πx̄2 (5-9)

˙̄x2 = Mgl

2Jπ2 sin(πx̄1)−
(
b+ K2

R

)
1
J
x̄2 + K

2JRπ2u (5-10)

But this system contains the non-polynomial term of sin(πx̄1), so we transform it to the
polynomial system by introducing x̄3 = sin(πx̄1) that is between [−1, 1], so there is no need
to normalize it; and x̄4 = cos(πx̄1)−1

2 that is in order to have equilibrium at 0. So the nonlinear
system with polynomial term is

˙̄x1 = 2πx̄2 (5-11)

˙̄x2 = Mgl

2Jπ2 x̄3 −
(
b+ K2

R

)
1
J
x̄2 + K

2JRπ2u (5-12)

˙̄x3 = 2π2x̄2(2x̄4 + 1) (5-13)
˙̄x4 = −π2x̄2x̄3 (5-14)

with equality constraint
x̄2

3 + (2x̄4 + 1)2 = 1 (5-15)

Master of Science Thesis Yuzhang Wang

38 Numerical Example

In addition, Q in (5-1), (5-2), (5-3) becomes

Q̄ =

5π2 0 0 0
0 0.1(2π2)2 0 0
0 0 0 0
0 0 0 0

and the initial state is

x̄0 =

0.75

0
sin(0.75π)

cos(0.75π − 1)/2

In the following, we will show the figures of simulation results with input saturation [−20, 20],
saturation [−10, 10] and saturation [−5, 5] by using model based actor-critic algorithm and
nonlinear policy iteration algorithm respectively. These figures will include

• Value function

• Control policy

• Phase plane with final controller

• Final trajectory

• Cost evolution

In addition, a table will show the cost improvement of nonlinear policy iteration algorithm
compared to the model based actor-critic algorithm.

Yuzhang Wang Master of Science Thesis

5-2 Simulation Results with Input-Saturation [-20,20] 39

5-2 Simulation Results with Input-Saturation [-20,20]

5-2-1 Model based actor-critic algorithm

Figure 5-2: Value function with input-saturation [-20,20].

Figure 5-3: Control policy with input-saturation [-20,20].

Master of Science Thesis Yuzhang Wang

40 Numerical Example

Figure 5-4: Phase phane with input-saturation [-20,20].

Figure 5-5: Final trajectory with input-saturation [-20,20].

Yuzhang Wang Master of Science Thesis

5-2 Simulation Results with Input-Saturation [-20,20] 41

Figure 5-6: Cost with input-saturation [-20,20].

Figure 5-7: Cost (Zoom) with input-saturation [-20,20].

Master of Science Thesis Yuzhang Wang

42 Numerical Example

5-2-2 Nonlinear policy iteration algorithm

Figure 5-8: Value function with input-saturation [-20,20].

Figure 5-9: Control policy with input-saturation [-20,20].

Yuzhang Wang Master of Science Thesis

5-2 Simulation Results with Input-Saturation [-20,20] 43

Figure 5-10: Phase phane with input-saturation [-20,20].

Figure 5-11: Final trajectory with input-saturation [-20,20].

Master of Science Thesis Yuzhang Wang

44 Numerical Example

Figure 5-12: Cost with input-saturation [-20,20].

Table 5-3: Cost Comparison with Input-Saturation [−20, 20]

Final discounted cost Improvement
MBAC 14.75

Nonlinear PI 11.25 23.7%

Yuzhang Wang Master of Science Thesis

5-3 Simulation Results with Input-Saturation [-10,10] 45

5-3 Simulation Results with Input-Saturation [-10,10]

5-3-1 Model based actor-critic algorithm

Figure 5-13: Value function with input-saturation [-10,10].

Figure 5-14: Control policy with input-saturation [-10,10].

Master of Science Thesis Yuzhang Wang

46 Numerical Example

Figure 5-15: Phase phane with input-saturation [-10,10].

Figure 5-16: Final trajectory with input-saturation [-10,10].

Yuzhang Wang Master of Science Thesis

5-3 Simulation Results with Input-Saturation [-10,10] 47

Figure 5-17: Cost with input-saturation [-10,10].

Figure 5-18: Cost (Zoom) with input-saturation [-10,10].

Master of Science Thesis Yuzhang Wang

48 Numerical Example

5-3-2 Nonlinear policy iteration algorithm

Figure 5-19: Value function with input-saturation [-10,10].

Figure 5-20: Control policy with input-saturation [-10,10].

Yuzhang Wang Master of Science Thesis

5-3 Simulation Results with Input-Saturation [-10,10] 49

Figure 5-21: Phase phane with input-saturation [-10,10].

Figure 5-22: Final trajectory with input-saturation [-10,10].

Master of Science Thesis Yuzhang Wang

50 Numerical Example

Figure 5-23: Cost with input-saturation [-10,10].

Table 5-4: Cost Comparison with Input-Saturation [−10, 10]

Final discounted cost Improvement
MBAC 11.82

Nonlinear PI 11.18 5.4%

Yuzhang Wang Master of Science Thesis

5-4 Simulation Results with Input-Saturation [-5,5] 51

5-4 Simulation Results with Input-Saturation [-5,5]

5-4-1 Model based actor-critic algorithm

Figure 5-24: Value function with input-saturation [-5,5].

Figure 5-25: Control policy with input-saturation [-5,5].

Master of Science Thesis Yuzhang Wang

52 Numerical Example

Figure 5-26: Phase phane with input-saturation [-5,5].

Figure 5-27: Final trajectory with input-saturation [-5,5].

Yuzhang Wang Master of Science Thesis

5-4 Simulation Results with Input-Saturation [-5,5] 53

Figure 5-28: Cost with input-saturation [-5,5].

Figure 5-29: Cost (Zoom) with input-saturation [-5,5].

Master of Science Thesis Yuzhang Wang

54 Numerical Example

5-4-2 Nonlinear policy iteration algorithm

Figure 5-30: Value function with input-saturation [-5,5].

Figure 5-31: Control policy with input-saturation [-5,5].

Yuzhang Wang Master of Science Thesis

5-4 Simulation Results with Input-Saturation [-5,5] 55

Figure 5-32: Phase phane with input-saturation [-5,5].

Figure 5-33: Final trajectory with input-saturation [-5,5].

Master of Science Thesis Yuzhang Wang

56 Numerical Example

Figure 5-34: Cost with input-saturation [-5,5].

Table 5-5: Cost Comparison with Input-Saturation [−5, 5]

Final discounted cost Improvement
MBAC 12.28

Nonlinear PI 12.21 0.6%

Yuzhang Wang Master of Science Thesis

5-5 Comments on Simulation Results 57

5-5 Comments on Simulation Results

Based on the results of Section 5.3, Section 5.4 and Section 5.5, the following comments can
be made:

For model based actor-critic method:

• Even if ideally the NN approximation can approximate any smooth function to arbitrary
precision, it looks like the MBAC algorithm is not always able to reach the optimum.
This is potentially evident with saturation[−20, 20], where the final result is at least
25% far from the optimal.

• The computational complexity of the MBAC approach depends on 2 factors: the dis-
cretization of the state and input; the number of NN used to approximate the value
function and policy function. For a discretization of 0.2 and adopting 30× 30 NNs (re-
spectively in the x1− x2 plane), the MBAC approach is computationally less expensive
than the Nonlinear Policy Iteration approach. However, adopting 40 × 40 NNs, the
approach was leading to OUT OF MEMORY problems.

For nonlinear policy iteration method:

• In contrast to the MBAC approach, where the value function is stored in a memory, in
the nonlinear policy iteration approach the value function is a parameterized function.
This leads to a control action which is in general smoother, while in the MBAC approach
the policy must be calculated according to the state stored in the memory which is close
to the current state. For this reason, the control action of the MBAC approach can result
"bumpy". Some improvement can be achieved in the MBAC case by mixing the control
action according to several neighbors to the current state.

• The nonlinear PI approach guarantees that every new control policy will be stabilizing
(provided that the initial one is stabilizing). Furthermore, the nonlinear PI approach will
generally lead to a monotonically decreasing cost (at least in the unsaturated region),
whereas in the MBAC approach neither stabilization nor monotonic convergence can
be guaranteed. In particular, in the MBAC approach, it is observed that the best value
function is not always corresponding to the last one.

• The improvement of the nonlinear PI approach is generally decreasing as the saturation
becomes tighter and tighter. This can be explained by that when the control authority
decreases, the freedom to improve the cost becomes smaller and smaller.

Master of Science Thesis Yuzhang Wang

58 Numerical Example

Yuzhang Wang Master of Science Thesis

Chapter 6

Conclusions and Suggestions for
Future Work

6-1 Conclusions

In this work, two methodologies for optimal control of nonlinear systems have been slightly
revised and applied to the optimal swing up control of a pendulum. Different saturation levels
have been assumed to derived the corresponding optimal value and policy functions.

The first strategy considered in this thesis used model learning methods for actor-critic con-
trol, which is a novel model-based update rule for the actor parameters. The second strategy
considered in this thesis applied a policy iteration procedure for the synthesis of optimal
and global stabilizing control policies for Linear Time Invariant (LTI) systems with input-
saturation. In this thesis, this strategy was extended to nonlinear polynomial systems via
appropriate transformations.

In particular, the first approach has been slightly revised so as to exploit the information of
the process model to update the policy. The second approach, which was originally formulated
for linear systems, has been extended to nonlinear system via Sum-of-Squares decomposition
(SOS). Since SOS methods are applicable to polynomial systems, appropriate transformations
have been adopted to recast the pendulum model as a polynomial system.

Simulation results show that although ideally the NN approximation can approximate any
smooth function to arbitrary precision, it looks like the MBAC algorithm is not always able
to reach the optimum. The computational complexity of the MBAC approach depends on
both the discretization of the state and input and the number of NN used to approximate
the value function and policy function. In contrast to the MBAC approach, the nonlinear
PI approach guarantees that every new control policy will be stabilizing and generally lead
to a monotonically decreasing cost, whereas in the MBAC approach neither stabilization
nor monotonic convergence can be guaranteed. In particular, in the MBAC approach, it is
observed that the best value function is not always corresponding to the last one. However, the

Master of Science Thesis Yuzhang Wang

60 Conclusions and Suggestions for Future Work

improvement of the nonlinear PI approach is generally decreasing as the saturation becomes
tighter and tighter.

It must be recognized that both methods are prone to computational complexity issues as
the desired precision increases. In particular, the MBAC approach can lead to OUT OF
MEMORY problems if the discretization of states and inputs is finer, or if the number of neural
networks increases. On the other hand, the nonlinear policy iteration method will exhibit
increased computational complexity as the degree of the introduced polynomial increase or
as the state will become of larger and larger dimension.

6-2 Suggestions for Future Work

Suggestions for future work will include,

• Extending the piecewise polynomial policy iteration methodology to linear system with
exponentially unstable modes or to nonlinear locally stabilization system. It is worth
mentioning that for linear systems with exponentially unstable modes, it is not possible
to achieve global stabilization with bounded-input. For this reason, an optimal value
function and control policy can be found only locally.

• Including a generalized sector condition which is instrumental to compute estimations
of the region of attraction.

• Further increase the level of saturation in such a way that a truly swing up action
is required (eg, saturation [−3, 3] or [−1, 1]). It has to be noticed that in such case a
piecewise nonlinear control can be adopted: a swing-up and stabilization controller of an
inverted pendulum system must be diverge the pendulum from the stable position, that
is the hung down position, while a stabilization controller must stand the pendulum in
the unstable position, that is the standing position. Therefore, the swing-up controller
and the stabilization controller have to be designed individually in the case of using a
control technique based on a linear model, for example, an optimal control theory.

Yuzhang Wang Master of Science Thesis

Appendix A

Sum of Squares Decomposition

We will give a brief introduction to sum of squares (SOS) polynomials and show how the
existence of an SOS decomposition can be verified using semidefinite programming [43]. A
more detailed description can be found in [44] [45] and the references therein.
Definition. For x ∈ Rn, a multivariate polynomial p(x) is an SOS if there exist some polyno-
mials fi(x), i = 1...M such that p(x) =

∑M
i=1 f

2
i (x).

An equivalent characterization of SOS polynomials is given in the following proposition.
Proposition. A polynomial p(x) of degree 2d is an SOS if and only if there exists a positive
semidefinite matrix Q and a vector of monomials Z(x) containing all monomials in x of
degree ≤ d such that p = Z(x)TQZ(x).
The proof of this proposition is based on the eigenvalue decomposition and can be found
in [44]. In general, the monomials in Z(x) are not algebraically independent. Expanding
Z(x)TQZ(x) and equating the coefficients of the resulting monomials to the ones in p(x),
we obtain a set of affine relations in the elements of Q. Since p(x) being SOS is equivalent
to Q ≥ 0, the problem of finding a Q which proves that p(x) is an SOS can be cast as a
semidefinite program (SDP). This was observed by Parrilo in [44].
Note that p(x) being an SOS implies that p(x) ≥ 0 for all x ∈ Rn. However, the converse is not
always true. Not all nonnegative polynomials can be written as SOS, apart from three special
cases: (i) when n = 2, (ii) when deg(p) = 2, and (iii) when n = 3 and deg(p) = 4. See [46]
for more details. Nevertheless, checking nonnegativity of p(x) is an NP-hard problem when
the degree of p(x) is at least 4 [47], whereas as argued in the previous paragraph, checking
whether p(x) can be written as an SOS is computationally tractable. It can be formulated as
an SDP, which has worst-case polynomial time complexity. We will not entail in a discussion
on how conservative the relaxation is, but there are several results suggesting that this is not
too conservative [46]. Note that as the degree of p(x) or its number of variables is increased,
the computational complexity for testing whether p(x) is an SOS increases. Nonetheless, the
complexity overload is still a polynomial function of these parameters.
There is a close connection between sum of squares and robust control theory through Pos-
itivstellensatz, a central theorem in Real Algebraic Geometry [48]. This theorem allows us

Master of Science Thesis Yuzhang Wang

62 Sum of Squares Decomposition

to formulate a hierarchy of polynomial-time computable stronger conditions [44] for the S-
procedure type of analysis [49]. To see how we will be using this result say we want to use
the S-procedure to check that the set:

{p(x) ≥ 0 when pi(x) ≥ 0 for i = 1, ..., n}

is non-empty. Instead of finding positive constant multipliers (the standard S-procedure), we
search for SOS multipliers hi(x) so that

p(x)−
∑
i

hi(x)pi(x) is a SOS. (A-1)

Since hi(x) and condition (A-1) is satisfied, for any x such that pi(x) we automatically have
p(x) ≥ 0, so sufficiency follows. This condition is at least as powerful as the standard S-
procedure, and many times it is strictly better; it is a special instance of positivstellensatz.
By putting an upper bound on the degree of hi, we can get a nested hierarchy of polynomial-
time checkable conditions.

Besides this, what is more interesting is the case in which the monomials in the polynomial
p(x) have unknown coefficients, and we want to search for some values of those coefficients
such that p(x) is a sum of squares. Since the unknown coefficients of p(x) are related to the
entries of Q via affine constraints, it is evident that the search for the coefficients that make
p(x) an SOS can also be formulated as an SDP (these coefficients are themselves decision
variables). This observation is crucial in the construction of Lyapunov functions and other
S-procedure type multipliers.

Construction of an equivalent SDP for computing SOS decomposition as in Proposition can
be quite involved when the degree of the polynomials is high. For this reason, conversion
of SOS conditions to the corresponding SDP has been automated in SOSTOOLS [50], a
software package developed for this purpose. This software calls SeDuMi [51], an SDP solver
to solve the resulting SDP, and converts the solutions back to the solutions of the original
SOS programs.

Yuzhang Wang Master of Science Thesis

Appendix B

Three examples of converting a
non-polynomial system into a

polynomial system

In the first example the vector field of the system includes a radical term. Such terms ap-
pear frequently when considering systems with saturation nonlinearities. The second example
shows how one can analyze non-polynomial vector fields with irrational powers, which for ex-
ample appear in models of biological systems. In the third example we analyze a system that
appears frequently in chemical engineering, that of a diabatic Continuous Stirred Tank Re-
actor (CSTR) with a single first-order exothermic rreversible reaction A→ B. Furthermore,
the sum of squares programs corresponding to these examples are converted into semidefinite
programs using SOSTOOLS, and are solved using SDP3 or SeDuMi, a semidefinite solver.

Example 1: System with saturation Nonlinearity

For a general system, finding a global Lyapunov function is difficult, as one of polynomial
form in the variables considered might not exist. However, if a term is expected to appear
in a Lyapunov function, the search can be directed to include that term in the Lyapunov
function expression sought, by changing variables and recasting the system in an equivalent
one in terms of that variable, making use of inequality and equality constraints.

Consider the system

ẋ1 = x2,

ẋ2 = −ϕ(x1 + x2)

where the function ϕ is a saturation function of the following form:

ϕ(σ) = σ√
1 + σ2

This function has only one equilibrium point, namely the origin. First rewrite the above
system in a polynomial form, as it has non-polynomial terms. For this purpose, introduce the

Master of Science Thesis Yuzhang Wang

64 Three examples of converting a non-polynomial system into a polynomial system

following auxiliary variables:

u1 =
√

1 + (x1 + x2)2,

u2 = 1/u1,

u3 =
√

1 + x2
1,

u4 = 1/u3.

Then the equations of motion for the above system become

ẋ1 = x2,

ẋ2 = −(x1 + x2)u2,

u̇1 = (x1 + x2)(x2 − x1u2 − x2u2)u2,

u̇2 = −(x1 + x2)(x2 − x1u2 − x2u2)u3
2,

u̇3 = x1x2u4,

u̇4 = −x1x2u
3
4.

In addition, we have a number of equality and inequality constraints

u2
1 = 1 + (x1 + x2)2,

u1u2 = 1,
u2

3 = 1 + x2
1,

u3u4 = 1,
ui ≥ 0, for i = 1, 2, 3, 4.

Now the system is in the form (4-10) (4-11) with x̃1 = (x1, x2) and x̃2 = (u1, u2, u3, u4).
The above constraints correspond to (4-12). The new representation allows us to use SOS
decomposition to compute a Lyapunov function for this problem, using Proposition 4. Thus,
for example, we may search for a Lyapunov function of the following form:

V = a1 + a2u3 + a3x
2
1 + a4x1x2 + a5x

2
2

where the a′is are the unknowns, with a1+a2 = 0, so that V is equal to zero at (x1, x2) = (0, 0).
To guarantee positive definiteness, we require V to satisfy

(V − ε1(u3 − 1)− ε2x2
1 − ε3x2

2) is sum of squares.

with ε1, ε2, ε3 being non-negative decision variables that satisfy, for example,

ε1 + ε2 ≥ 0.1,
ε3 ≥ 0.1

Using this method, a Lyapunov function has been constructed for the system:

V = −3.9364 + 3.9364u3 + 0.0063889x2
1 + 0.010088x1x2 + 2.0256x2

2

= −3.9364 + 3.9364
√

1 + x2
1 + 0.0063889x2

1 + 0.010088x1x2 + 2.0256x2
2

Yuzhang Wang Master of Science Thesis

65

The level curves of this Lyapunov function are shown in Figure B-1. Arrows show vector
field, solid lines show level curves of the Lyapunov function.

Figure B-1: Global Lyapunov function for the system with saturation nonlinearity present [3].

Example 2: System with an non-polynomial vector field

Consider a simple one dimensional system:

ẋ = xα − 1, x ∈ R+

where α is a parameter. The linearisation of this system about the equilibrium x = 1 is
ẋ = αx which implies that the system is locally stable for α < 0. Let us make a transformation
y = x− 1 to the above system to put its equilibrium at the origin:

ẏ = (y + 1)α − 1

Further to this transformation, we introduce the transformation z = (y+1)α−1 and embed the
system into a second order system with a polynomial vector field and an equality constraint

ẏ = z (B-1)

ż = α
(z + 1)z
y + 1 (B-2)

In addition, we have a constraint
z = (y + 1)α − 1 (B-3)

The non-polynomial equality constraint (B-3) cannot be imposed in the sum of squares pro-
gram in a similar manner as before. To proceed with the analysis, we will try to prove
stability of the two dimensional system without the equality constraint. We will attempt to
prove stability for

Master of Science Thesis Yuzhang Wang

66 Three examples of converting a non-polynomial system into a polynomial system

α− αh ≤ 0 (B-4)
−y + yl ≤ 0 (B-5)
−z + zl ≤ 0 (B-6)

We set αh = −0.1 and yl = −0.9. This dictates that z ≥ (yl + 1)αh − 1 , zl. We search
for a 4th order Lyapunov function in y, z, but we do not require V to be positive definite in
both y and z, by constructing φ(y, z) in (4-21) appropriately. In particular the two Lyapunov
conditions become:

V (y, z;α)− φ(y, z) ≥ 0,

− ∂V

∂y
ẏ − ∂V

∂z
ż ≤ 0

for α, y, z satisfying (B-4)-(B-6), and additionally where

φ(y, z) = ε1y
2 + ε2y

4 + ε3z
2 + ε4z

4,

4∑
i=1

εi ≥ 0.01, εi ≥ 0, ∀i = 1, ..., 4.

The inequality constraints (B-4)-(B-6) can be adjoined to the two conditions and a sum of
squares program can be written using SOSTOOLS as in the previous examples. Indeed, such
a Lyapunov function was constructed which allows for stability to be concluded.
Example 3. Diabatic Continuous Stirred Tank Reactor
Chemical reactors are the most important unit operation in a chemical process. In this
example, we consider the analysis of the dynamics of a perfectly mixed, diabatic, continuously
stirred tank reactor (CSTR) [52]. We also assume a constant volume-constant parameter
system for simplicity.
The reaction taking place in the CSTR is a first-order exothermic irreversible reaction A→ B.
After balancing mass and energy, the reactor temperature T and the concentration of species
A in the reactor CA evolve as follows:

ĊA = F

V
(CAf − CA)− k0e

−∆E
RT CA (B-7)

Ṫ = F

V
(Tf − T)− ∆H

ρcp
k0e
−∆E
RT CA −

UA

V ρcp
(T − Tj) (B-8)

where F is the volumetric flow rate, V is the reactor volume, CAf is the concentration of
A in the freestream, k0 is the pre-exponential factor of Arrhenius law, ∆E is the reaction
activation energy, R is the ideal gas constant, Tf is the feed temperature, −∆H is the heat of
reaction (exothermic), ρ is the density, cp is the heat capacity, U is the overall heat transfer
coefficient, A is the area for heat exchange, and Tj is the jacket temperature.
The equilibrium of the above system is given by (CA0 , T0) = (8.5636, 311.171). We employ
the following transformation:

x1 = CA
CA0

− 1

x2 = T

T0
− 1

Yuzhang Wang Master of Science Thesis

67

This serves two purposes: firstly it moves the equilibrium to the origin, and secondly it rescales
the state to avoid numerical ill-conditioning. Then the transformed system then becomes:

ẋ1 = F

V

(
CAf
CA0

− (x1 + 1)
)
− k0e

− ∆E
RT0(x2+1) (x1 + 1) (B-9)

ẋ2 = F

V

(
Tf
T0
− (x2 + 1)

)
− ∆HCA0

ρcpT0
k0e
− ∆E
RT0(x2+1) (x1 + 1)− UA

V ρcp

(
(x2 + 1)− Tj

t0

)
(B-10)

Note that the system has an exponential term; the recasting will yield an indirect constraint.
Define the state x3 = e

− ∆E
RT0(x2+1) − 1. Then an extra equation in the analysis would be

ẋ3 = ∆E
RT0(x2 + 1)2 (x3 + 1)ẋ2 (B-11)

under the constraints that x3 > −1. Then the full system, after we use the equilibrium
relationship simplifies to:

ẋ1 = −F
V
x1 − k0e

− ∆E
RT0 (x1x3 + x1 + x3) (B-12)

ẋ2 = −F
V
x2 −

∆HCA0

ρcpT0
k0e
− ∆E
RT0 (x1x3 + x1 + x3)− UA

V ρcp
x2 (B-13)

ẋ3 = ∆E
RT0(x2 + 1)2 (x3 + 1)ẋ2 (B-14)

This system is now of the form (4-10)-(4-11), with x̃1 = (x1, x2) and x̃2 = x3. To proceed,
we define the set D1 and D2 as:

D1 = {(x1, x2) ∈ R2 : |x1| ≤ γ1, |x2| ≤ γ2}

D2 = {x3 ∈ R : (x3 − e
−∆Eγ2

RT0(−γ2+1) − 1)(x3 − e
∆Eγ2

RT0(−γ2+1) − 1) ≤ 0}

Then the system is ready for analysis as Proposition 4. For γ1 = 0.12 and γ2 = 0.05 a
quartic Lyapunov function can be constructed for the system described by (B-12)-(B-14)
using Proposition 4. Here the following φ(x) is used:

φ(x) =
2∑
i=1

∑
j=2,4

εi,jx
j
i +

4∑
j=1

ε3,jx
j
3

with

ε1,2 + ε1,4 − 0.1 ≥ 0
ε2,2 + ε2,4 + ε3,1 + ε3,2 + ε3,3 + ε3,4 − 0.1 ≥ 0.

The level curves of the constructed Lyapunov function are shown in Figure B-2

Master of Science Thesis Yuzhang Wang

68 Three examples of converting a non-polynomial system into a polynomial system

Figure B-2: Lyapunov function level curves for the system (B-7)-(B-8).

Yuzhang Wang Master of Science Thesis

Bibliography

[1] Ivo Grondman, Maarten Vaandrager, Lucian Busoniu, Robert Babuska, and Erik
Schuitema. Efficient model learning methods for actor–critic control. Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 42(3):591–602, 2012.

[2] Simone Baldi, Giorgio Valmorbida, Antonis Papachristodoulou, and Elias B Kos-
matopoulos. Piecewise polynomial policy iterations for synthesis of optimal control laws
in input-saturated systems. In American Control Conference (ACC), 2015, pages 2850–
2855. IEEE, 2015.

[3] Antonis Papachristodoulou and Stephen Prajna. Analysis of non-polynomial systems
using the sum of squares decomposition. In Positive polynomials in control, pages 23–43.
Springer, 2005.

[4] Kazunobu Yoshida. Swing-up control of an inverted pendulum by energy-based methods.
In Proceedings of the American control conference, volume 6, pages 4045–4047, 1999.

[5] Shozo Mori, Hiroyoshi Nishihara, and Katsuhisa Furuta. Control of unstable mechanical
system control of pendulum. International Journal of Control, 23(5):673–692, 1976.

[6] Meier Farwig, H Zu, and H Unbehauen. Discrete computer control of a triple-inverted
pendulum. Optimal Control Applications and Methods, 11(2):157–171, 1990.

[7] Masaki Yamakita, Katsuhisa Furuta, Kazuteru Konohara, Junichi Hamada, and Hitoshi
Kusano. Vss adaptive control based on nonlinear model for titech pendulum. In Industrial
Electronics, Control, Instrumentation, and Automation, 1992. Power Electronics and
Motion Control., Proceedings of the 1992 International Conference on, pages 1488–1493.
IEEE, 1992.

[8] Alexander L Fradkov and Alexander Yu Pogromsky. Speed gradient control of chaotic
continuous-time systems. IEEE Transactions on Circuits and Systems I Fundamental
Theory and Applications, 43(11):907–913, 1996.

Master of Science Thesis Yuzhang Wang

70 Bibliography

[9] Miroslav Krstić, Ioannis Kanellakopoulos, and Petar V Kokotović. Passivity and para-
metric robustness of a new class of adaptive systems. Automatica, 30(11):1703–1716,
1994.

[10] Johan Eker and Karl Johan Åström. A nonlinear observer for the inverted pendulum.
In Control Applications, 1996., Proceedings of the 1996 IEEE International Conference
on, pages 332–337. IEEE, 1996.

[11] Carl Fredrik Abelson. The effect of friction on stabilization of an inverted pendulum.
MSc Theses, 1996.

[12] Katsuhisa Furuta, Masaki Yamakita, and Seiichi Kobayashi. Swing up control of inverted
pendulum. In Industrial Electronics, Control and Instrumentation, 1991. Proceedings.
IECON’91., 1991 International Conference on, pages 2193–2198. IEEE, 1991.

[13] R Lozano and I Fantoni. Passivity based control of the inverted pendulum. In Perspectives
in Control, pages 83–95. Springer, 1998.

[14] Qifeng Wei, Wijesuriya P Dayawansa, and WS Levine. Nonlinear controller for an in-
verted pendulum having restricted travel. Automatica, 31(6):841–850, 1995.

[15] John Guckenheimer. A robust hybrid stabilization strategy for equilibria. IEEE Trans-
actions on Automatic Control, 40(2):321–326, 1995.

[16] Troy Shinbrot, Celso Grebogi, Jack Wisdom, and James A Yorke. Chaos in a double
pendulum. Am. J. Phys, 60(6):491–499, 1992.

[17] Yu Jiang and Zhong-Ping Jiang. Global adaptive dynamic programming for continuous-
time nonlinear systems. Automatic Control, IEEE Transactions on, 60(11):2917–2929,
2015.

[18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 1998.

[19] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive ele-
ments that can solve difficult learning control problems. Systems, Man and Cybernetics,
IEEE Transactions on, (5):834–846, 1983.

[20] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Reinforcement
learning and dynamic programming using function approximators, volume 39. CRC press,
2010.

[21] Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour, et al. Policy
gradient methods for reinforcement learning with function approximation. In NIPS,
volume 99, pages 1057–1063, 1999.

[22] Dietrich Wettschereck, David W Aha, and Takao Mohri. A review and empirical eval-
uation of feature weighting methods for a class of lazy learning algorithms. Artificial
Intelligence Review, 11(1-5):273–314, 1997.

[23] Thomas Gabel and Martin Riedmiller. Cbr for state value function approximation in
reinforcement learning. In Case-Based Reasoning Research and Development, pages 206–
221. Springer, 2005.

Yuzhang Wang Master of Science Thesis

71

[24] Jon Louis Bentley and Jerome H Friedman. Data structures for range searching. ACM
Computing Surveys (CSUR), 11(4):397–409, 1979.

[25] Richard S Sutton. Reinforcement learning architectures. Proceedings ISKIT, 92, 1992.

[26] Andrew W Moore and Christopher G Atkeson. Prioritized sweeping: Reinforcement
learning with less data and less time. Machine Learning, 13(1):103–130, 1993.

[27] Leonid Kuvayev and Rich Sutton. Model-based reinforcement learning with an approx-
imate, learned model. In in Proceedings of the Ninth Yale Workshop on Adaptive and
Learning Systems. Citeseer, 1996.

[28] Gerhard Neumann and Jan R Peters. Fitted q-iteration by advantage weighted regression.
In Advances in neural information processing systems, pages 1177–1184, 2009.

[29] Andrew Y Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte, Ben Tse,
Eric Berger, and Eric Liang. Autonomous inverted helicopter flight via reinforcement
learning. In Experimental Robotics IX, pages 363–372. Springer, 2006.

[30] Jeffrey Forbes and David Andre. Representations for learning control policies. In Pro-
ceedings of the ICML-2002 Workshop on Development of Representations, pages 7–14,
2002.

[31] Richard E Bellman. Adaptive control processes: a guided tour. Princeton university
press, 2015.

[32] Warren B Powell. Approximate Dynamic Programming: Solving the curses of dimen-
sionality, volume 703. John Wiley & Sons, 2007.

[33] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming: an overview.
In Decision and Control, 1995., Proceedings of the 34th IEEE Conference on, volume 1,
pages 560–564. IEEE, 1995.

[34] Eduardo D Sontag. An algebraic approach to bounded controllability of linear systems.
International Journal of Control, 39(1):181–188, 1984.

[35] Kirk Donald. Optimal control theory: An introduction. Mineola, NY: Dover Publica-
tions, Inc, 1970.

[36] George N Saridis and Chun-Sing G Lee. An approximation theory of optimal control for
trainable manipulators. Systems, Man and Cybernetics, IEEE Transactions on, 9(3):152–
159, 1979.

[37] John J Murray, Chadwick J Cox, George G Lendaris, and Richard Saeks. Adaptive dy-
namic programming. Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 32(2):140–153, 2002.

[38] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[39] Michael A Savageau and Eberhard O Voit. Recasting nonlinear differential equations as
s-systems: a canonical nonlinear form. Mathematical biosciences, 87(1):83–115, 1987.

Master of Science Thesis Yuzhang Wang

72 Bibliography

[40] Vladimir Ivanovich Zubov and Leo F Boron. Methods of AM Lyapunov and their Appli-
cation. Noordhoff Groningen, 1964.

[41] Katsuhisa Furuta, M Yamakita, and S Kobayashi. Swing-up control of inverted pendulum
using pseudo-state feedback. Proceedings of the Institution of Mechanical Engineers, Part
I: Journal of Systems and Control Engineering, 206(4):263–269, 1992.

[42] Jerrold E Marsden and Tudor S Ratiu. Introduction to mechanics and symmetry. Physics
Today, 48(12):65, 1995.

[43] Lieven Vandenberghe and Stephen Boyd. Semidefinite programming. SIAM review,
38(1):49–95, 1996.

[44] Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods
in robustness and optimization. PhD thesis, Citeseer, 2000.

[45] Pablo A Parrilo and Bernd Sturmfels. Minimizing polynomial functions. Algorithmic
and quantitative real algebraic geometry, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 60:83–99, 2003.

[46] Bruce Reznick. Some concrete aspects of hilbert’s 17th problem. Contemporary Mathe-
matics, 253:251–272, 2000.

[47] Katta G Murty and Santosh N Kabadi. Some np-complete problems in quadratic and
nonlinear programming. Mathematical programming, 39(2):117–129, 1987.

[48] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real algebraic geometry, volume
36 of a series of modern surveys in mathematics, 1998.

[49] V Ao Yakubovich. S-procedure in nonlinear control theory. Vestnik Leningrad University,
1:62–77, 1971.

[50] Stephen Prajna, Antonis Papachristodoulou, and Pablo A Parrilo. Introducing sostools:
A general purpose sum of squares programming solver. In Decision and Control, 2002,
Proceedings of the 41st IEEE Conference on, volume 1, pages 741–746. IEEE, 2002.

[51] Jos F Sturm. Using sedumi 1.02, a matlab toolbox for optimization over symmetric
cones. Optimization methods and software, 11(1-4):625–653, 1999.

[52] B Wayne Bequette and Wayne B Bequette. Process dynamics: modeling, analysis, and
simulation. Prentice Hall PTR Upper Saddle River, NJ, 1998.

Yuzhang Wang Master of Science Thesis

Glossary

List of Acronyms

LTI Linear Time Invariant

ANCBI Asymptotically Nullcontrollable with Bounded Inputs

MBAC Model Based Actor-Critic

MLAC Model Learning Actor-Critic

NN Neural Network

PI Policy Iteration

MDP Markov decision process

HJB Hamilton-Jacobi-Bellman

SOS Sum-of-Squares

SDP Semidefinite Programming

Master of Science Thesis Yuzhang Wang

74 Glossary

Yuzhang Wang Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	Acknowledgements

	Main Matter
	Introduction
	Research Motivation
	Goals of Master Thesis
	Research Approach and Process

	Model Based Method for Actor-Critic Control
	Reinforcement Learning
	Actor-Critic RL
	Function Approximation
	Model Based Actor-Critic Method
	Partial Conclusions

	Piecewise Policy Iterations in Linear Systems with Input-Saturation
	Problem Formulation
	Policy Iterations under Saturation Constraints
	Piecewise policy evaluation
	Piecewise policy improvement
	Modified policy iteration

	Numerical Formulation
	Partial Conclusions

	Handling Nonlinear Systems with Sum of Squares Decomposition
	Lyapunov Stability for Nonlinear Systems
	Recasting and Analysis of Recasted Systems
	Example with Trigonometric Function
	Partial Conclusions

	Numerical Example
	Test Case
	Simulation Results with Input-Saturation [-20,20]
	Model based actor-critic algorithm
	Nonlinear policy iteration algorithm

	Simulation Results with Input-Saturation [-10,10]
	Model based actor-critic algorithm
	Nonlinear policy iteration algorithm

	Simulation Results with Input-Saturation [-5,5]
	Model based actor-critic algorithm
	Nonlinear policy iteration algorithm

	Comments on Simulation Results

	Conclusions and Suggestions for Future Work
	Conclusions
	Suggestions for Future Work

	Appendices
	Sum of Squares Decomposition
	Three examples of converting a non-polynomial system into a polynomial system

	Back Matter
	Bibliography
	Glossary
	List of Acronyms

