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In Europe, the energy performance of dwellings is measured using theoretical building energy models
based on the Energy Performance of Buildings Directive (EPBD), which estimates the energy consumption
of dwellings. However, literature shows large performance gaps between the theoretically predicted
energy consumption and the actual energy consumption of dwellings. The goal of this paper is to inves-
tigate the extent to which empirical models provide more accurate estimations of actual energy con-
sumption when compared to a theoretical building energy model, in order to estimate average actual
energy savings of renovations. We used the Dutch non-profit housing stock to demonstrate the results.
We examined three empirical models to predict the actual energy consumption of dwellings: a linear
regression model, a non-linear regression model, and a machine learning model (GBM). This paper shows
that these three models alleviate the performance gap by giving a good prediction of actual energy con-
sumption on sectoral cross-sections. However, these models still have shortcomings when predicting the
effects of specific renovation interventions, for example newly introduced heat pumps. The non-linear
and machine learning model (GBM) outperform the theoretical model in terms of estimating energy sav-
ings through renovation interventions.

� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Energy Performance of Buildings Directive (EPBD) [6] aims
to decrease the energy consumption and related carbon emissions
of buildings. This directive provides standards for the energy per-
formance of buildings. The NEN 7120 [19] is the Dutch translation
of the energy performance of buildings standards that was in force
between 2011 and 2020. The NEN 7120 describes a theoretical
building energy model of the energy consumption of dwellings
(henceforth: ‘the theoretical model’). This theoretical energy con-
sumption model provides the basis for the energy labels granted
to dwellings, ranging from A to G (with A being the best label).
In the Netherlands, objectives to decrease the energy consumption
of dwellings were prescribed in accordance with this theoretical
model in the so-called Energy Agreement 2008, which was an
Agreement between relevant stakeholders, such as government
agencies, NGOs and big companies [33], and they were updated
in 2013 [24]. For non-profit housing associations, it was agreed
that an average B-grade energy label would be achieved by 2020.
No agreements were made to achieve actual energy consumption
reduction or to achieve any analogous actual carbon emission
reductions. Several studies in the Netherlands and in Europe have
shown that the results of forecasting actual energy consumption,
using the theoretical model, can deviate strongly from reality and
lead to systematic overestimation of potential energy savings
[27,7]. This leads to a performance gap between the theoretical
energy consumption and the actual energy consumption of
dwellings.

2. The performance gap in a European context

This performance gap between theoretically-calculated energy
consumption in accordance with the EPBD and actual energy con-
sumption was already identified in the early stages of the concep-
tualisation of the legislation. Two reasons for the performance gap
are the ‘‘prebound effect” and ‘‘rebound effect”. The prebound
effect means a lower energy consumption than theoretically
assumed in buildings with a poor energy performance because
inhabitants do not heat the whole dwelling. The rebound effect
means that dwellings with a high energy performance use more
energy than theoretically assumed, because inhabitants think that
the dwelling is energy efficient. A study in 2012 on 3400 German
homes indicates the existence of these effects [27]. This study
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concluded that dwellings use 30% less actual heating energy
compared to the theoretical model, identified as the prebound
effect. Contrarily, the rebound effect was identified in buildings
with a high-energy performance standard. Saunders [22] reveals
the presence of very large energy efficiency rebound magnitudes,
calling into question the energy use forecasts relied upon by inter-
national bodies investigating climate change mitigation policies.
Laurent et al. [14] compared theoretical energy consumption from
national standard energy performance calculations to the actual
consumption of four European countries: The United Kingdom,
France, Germany, and The Netherlands. The reasons for the differ-
ence in theoretical and actual consumption are discussed in terms
of behaviour, technological performance and the application of the
theoretical models. They also point out the possible effect when
theoretical calculations are used in European and national energy
efficiency policies. The paper provides examples of the potential
impact of using calculations grounded on empirical data instead
of on calculation based on normative assumptions. In later
research, a connection was made to fuel poverty, where the inhab-
itants of dwellings do not have sufficient financial means to fully
heat their dwellings [8]. They conclude that low income, in combi-
nation with a high prebound effect, suggests fuel poverty. Aranda,
Zabalza, Llera-Sastresa, Scarpellini, and Alcalde [3] investigate the
performance gap for social housing and found that the gap is larger
in social housing. Considering the characteristics of social housing
and the different consumption patterns of households with a more
vulnerable economic status, they demonstrate that this type of
household usually lives in surroundings at a temperature below
the average thermal comfort level, and found that the prediction
by the theoretical simulation was 40% to 140% higher than the
actual energy consumption. A study conducted in the United King-
dom [25] modelled energy demand and energy ratings and com-
pared these with gas consumptions across the English residential
sector. They conclude that energy labelling and national theoretical
energy models are useful for energy policies, but limited empirical
validation of energy estimations are available in the housing sec-
tor. The study used a data sample of 2.5 million gas-heated dwell-
ings in the United Kingdom and compared the theoretical and
actual energy consumption. The data suggests savings from
upgrading dwellings to at least a C-grade energy label would be
substantially lower than expected. Cozza et al. [5] also found large
rebound and prebound effects in Switzerland. These findings raise
questions regarding assumptions used in models and EPC ratings,
including occupancy and space heating patterns, and have implica-
tions for the development of energy models and policy regarding
energy efficiency programmes.
3. The performance gap in Dutch social housing

In this study, we use the performance gap in Dutch dwellings
provided by non-profit housing associations as a case study. The
performance gap between theoretical and actual energy consump-
tion has been studied for the Dutch social housing sector as well
[21,18,11,17,31,7]. Santin [21] investigates the effect of building
factors and occupant behaviour on the actual energy consumption
of dwellings by using linear regression methods. Majcen, Itard, &
Visscher [18] extend this research by examining the difference
between theoretical and actual consumption, also using linear
regression methods. They conclude that large differences are pre-
sent. Itard & Majcen [11] implement this knowledge for housing
associations in Amsterdam and conclude that actual gas consump-
tion for the D to G-grade labels is considerably lower than the the-
oretical consumption. For G-grade labels, the theoretical
consumption is about 2.5 times higher than actual consumption.
They also conclude that the actual gas consumption for D, E, F
2

and G-grade labels is virtually identical. Hereafter, [17] took a clo-
ser look at dwellings that were renovated between 2010 and 2013,
available in the SHAERE database of the Dutch non-profit housing
stock, which contains 300,000 dwellings in this period. Their
results showed large performance gaps for dwellings with poor
insulation, local heating systems, changes to condensing boiler sys-
tems and natural ventilation systems. Majcen et al., [17] showed
once more that the theoretical calculation method cannot be con-
sidered accurate compared to actual consumption. Filippidou et al.
[7] reassessed the effectiveness of energy measures based on
actual consumption data with a dataset of up to 1.2 million dwell-
ings belonging to Dutch non-profit housing associations from 2010
to 2014. Their results reveal actual energy savings through several
efficiency measures and they address the importance of an accu-
rate estimation when renovations are planned or realized. They
also found that a greater number of renovations to a single dwell-
ing lowers the effectiveness of the measures. The actual energy
savings are lower than expected, which in turn results in fewer car-
bon emissions being saved.

Visscher et al. [32] state that the current policy, using theoret-
ical models which estimate the energy performance, is not suffi-
ciently contributing to the improvement of the energy
performance of the sector and that more attention should be paid
to the actual performance. In 2015 an improved theoretical calcu-
lation method for the energy performance of dwellings was
enforced: the so-called, ‘‘Nader Voorschrift” (in English: the Speci-
fied Regulation) [19]. This updated calculation method has not
been analysed to the same extent as the above-mentioned research
between 2010 and 2015. In the cited studies, linear regression
methods have been used, but more advanced forms of the mod-
elling of actual energy consumption have not been examined.
4. Advanced modelling of actual energy consumption

The modelling of the actual energy consumption of dwellings is
a subject of research in several studies. [16,26,28,15] all provide
frameworks to classify these models. Models are classified as
white-box, grey-box and black-box models. White-box models
use a theoretical structure to calculate an outcome, e.g. given the
theoretical calculation according to the EPBD. These models are
transparent and have an understandable behaviour. Grey-box
models use both a theoretical structure and empirical data to esti-
mate an outcome. Black-box models use only empirical data to
build a model. A basic linear model is an example [5], but also sev-
eral advanced machine learning techniques are available to model
the energy consumption of dwellings [28]. These advanced models
are promising, because, as opposed to linear models, they can
model interactions between building characteristics to estimate
the average actual energy consumption. This improves the accu-
racy of the estimation. However, these models lack transparency
and understandable behaviour, as opposed to white-box models.
Grey-box methods aim to combine a theoretical building model
with empirical actual consumption data to build up a model to
estimate the actual energy consumption of dwellings [2]. Promis-
ing examples are given by Hörner and Lichtmeß [10], calibrating
theoretical estimations with six empirically derived parameters,
and by van den Brom [30] calibrating theoretical estimations with
fourteen empirically derived parameters.

Several studies explored and created actual energy consump-
tion models. These models vary in purpose, method, number of
dwellings and number of features. Some of these studies have a
localised and more case-specific purpose to estimate the actual
energy consumption of a group of dwellings e.g. [1,15]. These stud-
ies usually have a smaller number of dwellings, but can have a
higher number of building features. Other studies have a more
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general purpose and try to create a model to estimate actual
energy consumption for a broader part of the building stock
[13,20]. These studies have a higher number of dwellings, but usu-
ally have a smaller number of building features, because detailed
information is not available for all dwellings. In both localized,
case-specific modelling, and in general modelling, different forms
of white, grey and black-box models are applied. Linear regression
models are often used as a baseline in research. Non-linear models
could be used to combine empirical data with a theoretical struc-
ture and several black-box machine learning techniques are avail-
able to estimate the actual consumption of dwellings. Amasyali
and El-Gohary [2] show in their research that black box modelling
is becoming increasingly popular, amongst others due to the rapid
increase of data availability. Amasyali and El-Gohary [2] also men-
tion that black box models can be used for different purposes.
Black box models focussing on the residential sector require more
attention since the research efforts on this area are (compared to
other areas) still limited. There are different modelling techniques
that can be applied for data-driven modelling. Bourdeau et al. [4]
identified six single techniques: autoregressive models, statistical
regressions, k nearest neighbours, decision trees, support vector
machines and neural networks, or combinations of these methods.
The most suitable method for a data-driven model is depending on
the types of buildings, available data, modelling purpose, required
accuracy and foresting horizon. A universal protocol to select the
most optimal method is still lacking [4].
5. Purpose of this research

The goal of this paper is to investigate the extent to which
empirical models provide more accurate estimations of actual
energy consumption when compared to a theoretical building
energy model, in order to estimate average actual energy savings
of renovations. We define more accurate estimations as (A) average
estimations on cross-sections of the non-profit housing sector clo-
ser to average actual energy consumption, (B) a higher correlation
between estimated and actual consumption, and (C) a positive
qualitative interpretation of estimated energy savings of renova-
tions from a reference dwelling. We use dwellings of Dutch non-
profit housing associations as a case study. We examined three
empirical models to predict the actual energy consumption of
dwellings: a linear regression model, a non-linear regression
model, and a machine learning model (Gradient Boosting Model
or GBM), compared them to the theoretical building energy model
and the actual energy consumption.

Research questions:

1. To what extent do a linear regression model, a non-linear
regression model, a machine learning model (GBM) and a theo-
retical building energy model differ in terms of their predictions
of the actual energy consumption of dwellings?

2. To what extent do a linear regression model, a non-linear
regression model, a machine learning model (GBM) and a theo-
retical building energy model predict the energy consumption
of dwellings when individual renovation measures are
analysed?

In this research, we use data from Dutch non-profit housing
associations to demonstrate the potential of empirical models to
reduce the performance gap. We show the results on cross-
sections of the Dutch non-profit housing sector and we show a case
study of a single dwelling. Reducing the performance gap will help
housing associations to choose renovations based on actual energy
savings. This is also helpful for policymakers to estimate the actual
3

effects of renovations on the energy savings and corresponding
saved carbon emissions.
6. Materials and methods

6.1. Data collection

To demonstrate the potential of empirical data, the SHAERE
database is used. The process of data collection and handling is
schematized in Fig. 1. Dutch non-profit housing associations volun-
tarily delivered a standardised dataset of their dwellings with
building features derived from the theoretical energy performance
calculation. The collection of the Data was performed in coopera-
tion with Aedes, the Dutch umbrella organization of non-profit
housing associations. Data was delivered by 254 housing associa-
tions in 2017, which cover 2,006,475 dwellings. These databases
are rare but not unique; for example, the UK and Denmark also
have large databases which include data on building characteris-
tics and actual annual energy consumption. Table 1 provides over-
sight of the building features per dwelling in the SHAERE database,
consisting of building-related features. The Dutch Central Bureau
of Statistics (CBS) collects actual energy consumption values for
gas and electricity from Dutch network operators on an address
level. The available data is specified in Table 2. The actual energy
consumption data on an address level was provided by the CBS
in an anonymized analysis environment, where the addresses are
anonymized with an identification code. The CBS converted avail-
able addresses in the SHAERE database to the same identification
codes, where after the anonymized identification codes were cou-
pled. Data on the energy consumption of dwellings with district
heating systems are not available at the CBS, hence these dwellings
are not included in the analysis. The dataset was cleaned of dwell-
ings that were missing actual energy consumption and with clear
deviant building features. This delivers a dataset with 1,669,523
million dwellings, which is the main dataset for this analysis.

Estimations of theoretical energy consumption from the theo-
retical building model were consciously not included as parame-
ters in the empirical models. Although this is possible, we think
estimating actual energy consumption (and savings) should be
based on the physical building parameters. Also characteristics of
inhabitants, for example number of people, economic status, time
at home, average indoor temperature and behavioural aspects,
were consciously not included in the modelling, because when
non-profit housing associations renovate dwellings, they want to
know the average energy savings related to the building features,
regardless of the characteristics of the inhabitants.
7. Method

The main dataset available in the anonymised analysis environ-
ment of the CBS was used to build up three models: a linear regres-
sion model, a non-linear regression model, and a Gradient Boosting
model, which predict the actual energy consumption of dwellings
for gas and electricity.
7.1. Linear regression model

A linear regression model was made, to give a basic understand-
ing of the relationship between the building features and the actual
energy consumption. However, a linear regression model is not
equipped to deal with interactions between features, and therefore
will not be able to detect underlying relations between building
features, for example between the level of insulation and the per-
formance of the source of heat generation. A linear regression



Fig. 1. Schematization of the data collection.
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model, as schematized in Fig. 2, was used to estimate gas con-
sumption and electricity consumption.

7.2. Non-linear regression model

Secondly, a non-linear regression model was made. This pro-
vides a more accurate reflection of how building features relate
to the actual energy consumption. The model structure follows a
breakdown of gas consumption in heating and hot tap water, and
the electricity consumption follows a breakdown in electricity
used for heating (if applicable) and electric consumption for instal-
lations and household consumption. This is fairly similar to the
EPBD’s theoretical energy performance calculation. The non-
linear model is capable to cover the prescribed interactions
between building features: for example, between the level of insu-
lation and the performance of the source of heat generation.
Because of its prescribed structure, it can be considered a grey-
box model. The Levenberg-Marquardt method was used to perform
the non-linear regression. The Levenberg-Marquardt method is a
technique to iteratively solve nonlinear least-squares problems
between a nonlinear function and measured data. The Levenberg-
Marquardt method is a combination of two minimization meth-
ods: the gradient descent method (updating parameters in
steepest-descent direction) and the Gauss-Newton method, (as-
suming the least-squares function is locally quadratic, and finding
the minimum of the quadratic) [9]. The non-linear equation is
schematized in Fig. 3.

7.3. Gradient boosting model (GBM)

Thirdly, a gradient boosting model was used to estimate the
energy consumption of dwellings. The gradient boosting model is
based on decision trees. It is an intuitive technique with high fore-
casting accuracy (if a comprehensive input dataset is available) [4].
GBM uses boosting techniques: in the process, multiple simple
decision trees are developed, with each successive tree modelling
the residuals of the precedent one [4]. There are many alternative
machine learning methods available, however, gradient boosting is
a frequently-used machine-learning method in practice if, for
example, we look at popular machine-learning websites like Kag-
gle.com [12]. Support vector machines and artificial neural net-
works are also often applied, however, they are harder to tune
than the gradient boosting machine learning algorithm [29].
Although we are aware that the gradient boosting method is not
the optimal machine-learning method, we believe it is suitable to
test the power of a purely data-driven model, fed with empirical
data. The gradient boosting model consists of three parts: 1. A loss
function to be optimized; 2. A weak learner to make predictions; 3
an additive model to add weak learners to minimize the loss func-
tion. Simply stated, the gradient boosting model combines the
power of weak learners to generate a strong model. To tune
4

hyperparameters, a confusion matrix was created. The values
tested for the GBM model are: Interaction Depth: 3, 5, 10. Number
of trees: up to 1000. Shrinkage 0.1, 0.01. Bag fraction: 0.65, 0.80.
Minimum observations in node: 5, 10 [23]. The confusion matrix
compares the model’s actual values with the predicted values,
the model with the best prediction on the training set has been
chosen to test on the test set. The model learns from a training
set (70%) how to predict actual consumption for gas and electricity
and verifies its prediction capability on a test set (30%). The test set
delivered an r2 of 0.36, compared to an r2 of 0.37 on the training set
which indicates there is no overfitting. An r2 of 0.36 indicates that
only a part of the actual consumption on a dwelling level can be
explained through its building characteristics, which is expected
because occupant behaviour was not included in the model.
8. Results

The three models all give an estimation of both gas and electric-
ity consumption for the dwellings of Dutch non-profit housing
associations. The results of these estimations are compared to
actual and theoretical consumption on several cross-sections of
the Dutch non-profit housing sector.
8.1. Modelled estimations of gas and electricity consumption
compared to actual consumption

To assess the modelled estimations of gas and electricity con-
sumption, we compare several cross-sections of the Dutch non-
profit housing sector. In Fig. 4, a comparison is made for the gas
and electricity consumption of dwellings of non-profit housing
associations, grouped by energy label. The graph of gas consump-
tion by energy label clearly shows the performance gap between
actual consumption and theoretical consumption. Both the linear
model, non-linear model and machine learning model (GBM) are
well equipped to estimate the average gas consumptions of these
dwellings grouped by energy label. None of these models has the
energy label as one of its independent variables, but still, the esti-
mations have the same order of magnitude for actual consumption
for all groups of energy labels. The estimation of actual electricity
consumption shows a different picture. The theoretical model esti-
mates the building-related energy consumption, which with
improved energy labels is declining. The actual consumption also
includes electricity used for appliances and therefore is not directly
comparable with the theoretical building-related estimation. How-
ever, the actual consumption of electricity is more or less equal
between all groups and not declining as estimated by the theoret-
ical building energy model. It is expected that there is also a gap
between the theoretical building-related electricity estimations
and the actual building-related electricity consumption because
it cannot be expected that the household appliances alone are



Table 1
Dataset: building features.

Features of dwellings Description Independent
variables in models?

Address Anonymized address identification code No
Energy index NV Classified into energy label, A++ to G No
Theoretical energy

consumption
Gas in m3, electricity in kWh, district heating in GJ. No

Building year 1600–2017 Linear and GBM
Building subtype Apartments 1 level or 2 levels, with an outer shell to floor or/and roof, located in the corner or in-between, or

terraced house corner or in-between, or Semi-detached, or detached.
Linear and GBM

Living area Living are in m2 Yes
Heat loss area: floor Calculated by 1/insulation level floor (Rc) � floor area (m2) Yes
Heat loss area: roof Calculated by 1/insulation level roof (Rc) � roof area (m2) Yes
Heat loss area: facade Calculated by 1/insulation level facade (Rc) � area façade (m2) Yes
Heat loss area: facade to

unheated spaces
Calculated by 1/insulation level facade (Rc) � area facade to unheated spaces (m2) Yes

Heat loss area: windows Calculated by insulation level doors (U) � area doors (m2) Yes
Heat loss area: doors Calculated by insulation level windows (U) � area windows (m2) Yes
Airtightness of outer shell Calculated by QV10 (dm3/m2/s) � area of floor, roof, facade, facade to unheated spaces, windows and doors. Yes
Ventilation system Natural ventilation: Standard (A1), pressure control (A2). Natural in/mechanical out: (C1), time control (C3)

pressure control (C4).
Mechanical in/out: Standard (D1), (D1/D2), central heat recovery system (D2), time control (D4b), CO2 control
(D5b).
Combined system (E1). Unknown.

Yes

Heating system Communal, individual, district heating, unknown. Yes
Heating generator CR boiler, CHP, HR100 boiler, HR104 boiler, HR107 boiler, electric heating, local gas/wood/oil, micro-CHP, VR,

heat pump, unknown.
Yes

Heating system
temperature

High, low, very low, air, unknown. Yes

Tap water system Empty, communal, individual, district heating Yes
Tap water generator Empty, CR boiler, electric flow though, electric boiler, heat pump other source, heat pump source ventilation air,

combi boiler with micro-CHP, combi boiler, boiler <70 kW, tap water boiler, geyser, HR100/HR104 boiler, HR107
boiler, VR, CHP.

Yes

Cooling system Not present or present Yes
Heat recovery system

shower
Not present or present Yes

PV panels area Present in area m2 Yes
Solar heating panels area Present in area m2 Yes

Table 2
Data set: actual energy consumption.

Features actual
consumption

Description Independent variables
in models?

Address Anonymized address
identification code

No

Actual gas
consumption

Gas consumption in m3/y Dependent

Actual electricity
consumption

Electricity consumption in
kWh/y

Dependent

District heating Not present or present No
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responsible for this deviation. The linear model, non-linear model
and machine learning model (GBM) are well equipped to estimate
the average electricity consumptions of these dwellings grouped
by energy label.

We can extend the comparison of the actual consumption, the
theoretical consumption, and the estimates of the linear model,
non-linear model and machine learning model (GBM) by looking
at other cross-sections of the Dutch non-profit housing stock by
archetype, type of heating system, and building year. These are
shown in Fig. 5. In all cross-sections, the theoretical energy con-
sumption gives a very high overestimation for actual gas consump-
tion and an underestimation of actual electricity consumption. The
comparison of the theoretical electricity consumption with the
empirical models and actual electricity consumption have to be
interpreted with care since the theoretical energy consumption
does not take electricity use from appliances into account and
the other models and actual electricity consumption do take this
into account. All three regression models are able to estimate mean
actual gas and electricity consumption very well.
5

Apart from these sectoral cross-sections, we can also look at the
correlations of modelled predictions and actual energy consump-
tion. We want to point out that the models do not aim to estimate
the actual consumption of one single dwelling (because of the
great variance due to the influence of the occupants), but aim to
estimate the average energy consumption given its building char-
acteristics. In Table 3, we present the correlation of the modelled
energy consumption and actual consumption for individual dwell-
ings, and two groups of dwellings (grouped per postcode zone and
per housing association) where the influence of occupant beha-
viour becomes more averaged out.

Given the correlations in Table 3, we see that on an individual
dwelling level, the correlation of the three models is low, but this
is also expected, due to great variance of occupant behaviour. How-
ever, the numbers show that all three empirical models outper-
form the theoretical model. This is also the case for the average
energy consumption of dwellings grouped by postcode zone and
per housing association. The poor correlations between the esti-
mated and actual energy consumption of the theoretical model
are once more an indication that the theoretical model is a poor
estimator of actual energy consumption. The Gradient Boosting
Model gives the best estimation between estimated and actual
energy consumption.
8.2. Estimating actual energy savings through renovation measures

We examined the predictive capacity of the empirical models in
greater detail. To do this, we applied the linear regression model,
the non-linear regression model and the machine learning model
(GBM) to a reference dwelling, with 23 different renovation mea-
sures. This gives an insight into the differences of the estimations



Fig. 2. Schematization of linear regression.

Fig. 3. Schematization non-linear regression.

Fig. 4. Actual, modelled and theoretical consumption of gas and electricity by energy label.
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of energy savings by the three models. We compared the results
with the theoretical estimation.

A semi-detached corner dwelling built with a traditional brick
construction with average dimensions is used as a reference dwell-
6

ing. This reference dwelling is used to give an example, but any
other dwelling could have been used as well. The parameters of
this dwelling are listed in Table 4. The renovation measures
applied are listed in Table 5. The renovation measures are both



Fig. 5. Actual, modelled and theoretical consumption of gas and electricity by archetype, heating system, building year.

Table 3
Correlation (R) of actual gas and electricity consumption by modelled gas and electricity consumption.

Gas consumption Electricity consumption

Categorization Linear model Non-linear model GBM model Theoretical model Linear model Non-linear model GBM model Theoretical model

Individual dwelling 0.53 0.48 0.56 0.40 0.39 0.39 0.41 0.14
Postcode zone 0.82 0.76 0.75 0.28 0.72 0.70 0.61 0.05
Housing association 0.79 0.74 0.86 0.43 0.70 0.69 0.74 0.11
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single measures as well as combined renovation measures. These
renovations describe a range of renovations applied to dwellings
owned by Dutch non-profit housing associations.

The results of the calculated gas and electricity consumption by
the three different models are listed in Fig. 6.

Through this reference dwelling, we can see the differences in
the effectiveness of different renovation measures. We also see dif-
ferences between the three empirical models and the theoretical
model. Some differences originate from the structure of the mod-
7

els, some in the model settings and some differences are not
understood. Hereunder, we describe the most relevant results for
these renovation measures.

1. The basic dwelling: Theoretically, the gas consumption is
2400 m3/y, but all three empirical models show it is around
1450 m3y/, which means there is a lot less saving potential than
theoretically calculated. This once more illustrates the perfor-
mance gap between theoretically calculated and actual energy



Table 4
Building parameters of the reference dwelling.

Building element Start parameter

Dwelling type Corner dwelling
Construction type Concrete/brick
Living area (m2) 92.7
Floor area (m2) 46.1
Roof area (m2) 52.7
Facade area (m2) 82.9
Façade area to unheated space (m2) 1.3
Window area (m2) 19.0
Door area (m2) 4.3
QV10 (dm3/m2) 3.2
Insulation level floor area (Rc) 0.7
Insulation level roof area (Rc) 0.7
Insulation level facade area (Rc) 0.7
Insulation level window area (U) 5.1
Insulation level door area (U) 3.4
Heating system Individual system
Heat generator HR107 boiler
Distribution temperature heat High temperature
Tap water system Individual system
Generator hot tap water Gas combi boiler
Shower water heat recovery system No
Ventilation system A1
PV-panels (m2) 0
Solar collector (m2) 0

Table 5
Renovation measures.

Nr. Renovation parameter

1 Insulation level floor (Rc = 2)
2 Insulation level floor (Rc = 5)
3 Insulation level roof (Rc = 2)
4 Insulation level roof (Rc = 5)
5 Insulation level facade (Rc = 2)
6 Insulation level facade (Rc = 5)
7 Insulation level windows double glazing (U = 2.9)
8 Insulation level windows HR++ glass (U = 1.8)
9 Insulation level doors (U = 2)
10 Shower water heat recovery system
11 Low temperature heating (LT)
12 Ventilation system with heat recovery (D1)
13 Solar collector (3 m2)
14 PV-panel (8 m2)
15 Deep basic shell (1 + 3 + 5 + 7 + 9)
16 Deep high shell (2 + 4 + 6 + 8 + 9)
17 Deep basic + installations (10 + 11 + 12 + 13 + 14 + 18)
18 Deep high + installations (10 + 11 + 12 + 13 + 14 + 19)
19 Heat pump heating system
20 Heat pump tap water system
21 Heat pump, both heating as hot tap water (19 + 20)
22 Deep basic + installations + heat pump (17 + 21)
23 Deep high + installations + heat pump (18 + 21)
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consumption. The building-related electricity consumption is
theoretically around 800 kWh/y. All three empirical models
show this is about 2500 kWh/y (including consumer-related
electricity consumption).

2. Insulation (no. 1–9): Improving insulation components delivers
theoretically high gas savings, depicted by the declining theoret-
ical gas consumption. These savings are much lower in all three
empirical models, also because the gas consumption of the basic
dwelling is alreadymuch lower. This means energy savings from
insulation are theoretically overestimated. If we look at the dif-
ferent insulation measures, we see that gas savings through
improving the insulation level of the façade (5, 6) and windows
8

(7, 8) are more efficient than improvements of the insulation
level of the floor or the roof. Improving the insulation level of
doors (9) is a small renovation, but still effective.

3. Installations (no. 10–14): When we look at changing installa-
tions, we see that shower water heat recovery systems (10)
have a low impact on gas savings. Adding heat recovery systems
in ventilation (12) has an average impact but is not clearly
picked up by the GBM model. Adding a solar collector system
of 3 m2 (13) has a moderate impact on gas savings. Adding PV
panels of 8 m2 (14) has a high impact on electricity savings,
which is detected by all three models and in accordance with
the theoretical model.

4. Combined renovation measures (no. 15–18): Improving insula-
tion levels to a basic level (15) is already effective, compared to
raising insulation levels to high levels (16). Combined improve-
ments on the insulation of the shell lead to high savings, around
40 to 50% on gas savings. However, this effect is empirically
much lower than theoretically assumed. Combined improve-
ments on the insulation of the shell combined with improved
installations (18, 19) lead to high savings, around 50 to 60%.
This is much less than theoretically assumed.

5. Heat pumps: We see differences between the empirical models
in renovation measures with a heat pump (19, 20, 21, 22, 23),
both on gas savings and on an increase in electricity consump-
tion. The differences between the models are significant and not
completely understood. One reason could be the unclear dis-
tinction between electric, hybrid and gas-fired heat pumps in
the data. Secondly, we believe, since this is a new type of reno-
vation, that introduction effects may invalidate some of the
empirical data. These differences in the predictions are prob-
lematic because it is therefore not possible to give a good pre-
diction of the actual energy savings by installing heat pumps.

9. Conclusion and discussion

The goal of this paper is to investigate the extent to which
empirical models provide more accurate estimations of actual
energy consumption when compared to a theoretical building
energy model, in order to estimate average actual energy savings
of renovations. We defined more accurate estimations as (A) aver-
age estimations on cross-sections of the non-profit housing sector
closer to average actual energy consumption, (B) a higher correla-
tion between estimated and actual consumption, and (C) a positive
qualitative interpretation of estimated energy savings of renova-
tions from a reference dwelling. We used the dwellings owned
by Dutch non-profit housing associations to demonstrate the
potential of empirical models. We found a large performance gap
between the theoretical building energy estimations and actual
energy consumption for the dwellings owned by Dutch non-
profit housing associations. This is in accordance with previous
studies [5,7,18,25]. Opposed to these other studies we examined
three empirical models to predict the actual energy consumption
of dwellings: a linear regression model, a non-linear regression
model and a machine learning model (Gradient Boosting Model
or GBM), and compared them to the actual energy consumption.
Following our definition of more accurate estimations, we found
that on cross-sectoral levels, all three empirical models have signif-
icantly higher accuracy than the theoretical building energy model.
The empirical models also have higher correlations between esti-
mated and actual consumption. A case study of the three different
empirical models revealed that the order of magnitude of the esti-
mations of gas and electricity consumption is significantly more
accurate than the theoretical building energy model, but differ-
ences in the estimations for several renovation measures questions
the accuracy of these empirical models on a detailed level, espe-
cially for newly-introduced systems like heat pumps.



Fig. 6. Estimated energy consumption after renovation measure.
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Looking at the three different empirical models we conclude
that they have their own pros and cons. Linear regression models
are simple and fast and estimate sectoral cross-sections very well
but are not useful in analysing the effects of detailed renovation
measures. A non-linear model can estimate sectoral cross-
sections and detailed renovations and uses the structure of actual
consumption physics but is only able to use given relations
between building features and will therefore not pick up on other
relations which could improve the estimations of the effects of ren-
ovations. The non-linear model is easier to interpret, which could
be a reason to prefer such a model above the other models. A Gra-
dient Boosting Model is able to detect all kinds of relations
between building features. It can find correlations and interactions
which even specialists in the field are not aware of. However, the
model does not use the structure of actual energy consumption
physics to its advantage. Therefore, it is more difficult to interpret
the results and if some renovation measures (e.g. electrical heat
pumps) occur less frequently in the dataset this can result in out-
comes that we know from practice are unrealistic. This could cause
doubt by the engineers/specialists using the model and they will
interpret the results as less reliable.

There are limitations to this research. The first limitation is the
availability and quality of data. Energy consumption data about
dwellings with district heating systems were not available and
therefore excluded in the research. The quality of the data for
newly introduced systems, like heat pumps, is limited and there-
fore questions the estimations at a detailed building level. And
finally, when building an empirical energy building model, enough
cases should be available to average out occupant behaviour. We
believe the SHAERE data set of 1.6 million dwellings is sufficient,
but for specific renovations, the availability of data is limited.
9

The second limitation is the use of different modelling techniques.
We analysed a linear, non-linear and gradient boosting model.
However, other modelling techniques [2,15] are available and also
different choices can be made within the linear, non-linear and
gradient boosting model method to improve the quality of the esti-
mations. The modelling of confidence intervals is challenging and
was not included in this research. The third limitation is the appli-
cability of the estimations generated by the models. The detailed
case study revealed that the estimations of the different empirical
models lack accuracy for certain renovation measures and there-
fore the estimations are not mature enough to be used over the
theoretical building energy model, although the theoretical build-
ing model shows a large performance gap and therefore also has
its limitations.

We make the following recommendations for further research.
Firstly, since the quality of the data is decisive for the quality of
the model, we recommend a more detailed collection of data on
dwellings with heat pumps to improve the predictions of the
actual energy consumption of these dwellings. We argue the same
for dwellings using district heating systems because these could
not be included in this research. If other researchers would like
to build empirical energy consumption models, they should use
large datasets to average out the influence of occupant behaviour.
Secondly, we recommend further examining the possibilities of
both the non-linear and Gradient Boosting Model, or a combination
of these two. These models perform more accurate than the linear
regression model because they are able to model relations between
building characteristics when they estimate the actual energy con-
sumption. The structure from the non-linear model and the flexi-
bility of the GBM model both have their advantages and a
combination could take advantage of them both. Adding confi-
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dence intervals to estimations is challenging, but would help to
interpret the quality of the estimations, and is therefore recom-
mended. Thirdly, combining theoretical models with empirical cal-
ibrations (grey box models) could also be used to enhance the
accuracy of the theoretical building energy models. Promising
examples are given by Hörner and Lichtmeß [10] and van den
Brom [30]. Including behavioural parameters in the empirical
models could be useful in order to understand the origin of the per-
formance gap in greater detail. It would also increase the accuracy
of estimations of specific dwellings where these parameters are
known, for example for privately owned dwellings.

We recommend that policymakers increase research efforts to
build empirical building energy models. The theoretical energy
building model which is currently enforced has a high performance
gap between the modelled and actual energy consumption, which
leads to the ineffective renovation of dwellings, where energy sav-
ings are not actually realised. We recommend that policymakers
Building Characteristic
Unst. B Std. Error Sig. Unst. B Std. Error S

Constant 4213.3 44.07 ** 1568.5 100.5
Floorarea 3.5 0.02 ** 13.8 0.1
Building Envelope
Heat loss area floor 0.3 0.00 ** 0.0 0.0
Heat loss area roof 0.3 0.01 ** -0.4 0.0
Heat loss area envelope 0.7 0.01 ** 0.3 0.0
Heat loss area envelope to unh. 0.3 0.02 ** 0.1 0.1
Heat loss area windows 2.6 0.02 ** 1.7 0.0
Heat loss area doors 2.7 0.05 ** 1.1 0.1
Airthightness QV10 area 0.1 0.00 ** 0.1 0.0
Building characteristic
Building year -1.6 0.02 ** -0.5 0.0
Mixed light construction -65.0 8.32 ** -183.0 20.8
Stone/concrete construction -4.9 2.31  * 6.6 5.9
Wood skeleton construction 25.3 17.25 389.0 78.6
Appartment 1 level, corner-roof 39.6 1.87 ** -44.1 4.8
Appartment 1 level, corner-roof-floor 182.5 19.18 ** 220.4 50.3
Appartment 1 level, corner-middle -2.7 1.53  * -35.9 3.9
Appartment 1 level, corner-floor 142.7 1.92 ** 86.4 4.9
Appartment 1 level, inbetween-roof -17.2 1.45 ** -53.5 3.7
Appartment 1 level, inbetween-roof-floor 115.0 14.98 ** 144.1 39.4
Appartment 1 level, inbetween-floor 84.7 1.51 ** 52.6 3.9
Appartment 1+ level, corner-roof 49.8 4.18 ** -113.1 10.7
Appartment 1+ level, corner-roof-floor 185.3 21.82 ** 39.9 56.2
Appartment 1+ level, corner-middle 54.3 10.89 ** -1.4 27.6
Appartment 1+ level, corner-floor 208.7 7.50 ** 151.3 19.2
Appartment 1+ level, inbetween-roof -27.5 2.72 ** -75.6 6.9
Appartment 1+ level, inbetween-roof-floor 42.8 15.26 ** -69.1 39.4
Appartment 1+ level, inbetween-middle -0.8 5.85 5.1 14.8
Appartment 1+ level, inbetween-floor 102.1 4.39 ** 217.4 11.1
Terraced house corner 210.5 1.43 ** 342.3 3.7
Terraced house not corner 106.9 1.13 ** 326.6 2.9
Semi-detached 244.9 2.46 ** 399.5 6.3
Detached 340.1 8.16 ** 575.4 21.0
Ventilation system
Unknown -110.8 13.18 ** 58.9 37.7
Natural ventilation: Standard (A1) 13.2 0.78 ** -62.4 2.0
Natural ventilation: pressure control (A2) -93.2 7.82 ** -80.5 20.1
Natural in/mechanical out: time control 46.9 2.48 ** -32.9 6.2
Natural in/mechanical out: pressure -45.9 1.79 ** -15.1 4.6
Mechanical in/out: Standard (D1) -120.2 2.00 ** 136.2 5.1
Mechanical in/out: (D1/D2) -122.3 20.85 ** -22.4 54.7
Mechanical in/out: central heat recovery -150.4 3.61 ** 111.0 9.1
Mechanical in/out: time control (D4b) -124.7 5.65 ** 116.1 15.1
Mechanical in/out: CO2 control (D5b) -89.8 10.13 ** 71.5 24.8
Combined system (E1) -22.3 8.07 ** -123.3 19.8
Sig: *<0.05, **<0.01

Gas Elektra
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should start/maintain a representative monitoring system, like
the SHAERE database, as a basis for empirical building energy mod-
els. Modelling energy consumption using actual energy consump-
tion data is the key solution to reduce the energy performance
gap and therewith to accurately predict the actual energy savings
from different types of renovations.
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Appendix A. Model parameters linear regression
 

Building Characteristic
ig. Unst. B Std. Error Sig. Unst. B Std. Error Sig.
** Heating system
** Empty -150.8 21.11 ** -97.9 38.23 **

Collective 15.9 19.10 108.0 28.86 **
* Individual -107.1 19.25 ** 41.8 29.35
** Heating generator
** Empty -5.9 17.68 104.2 28.99 **
* CR boiler 90.9 19.77 ** -125.2 30.78 **
** CHP -192.3 21.98 ** -290.4 34.54 **
** HR100 boiler 81.4 19.55 ** -155.7 29.73 **
** HR104 boiler 72.4 19.68 ** -140.7 30.27 **

HR107 boiler 53.7 19.46 ** -129.2 29.36 **
** Electric heating -512.0 23.25 ** 1570.4 51.18 **
** Local gas/wood/oil -13.8 19.82 -199.7 30.44 **

micro-CHP 57.9 29.88 -467.5 64.77 **
** VR boiler 117.2 19.47 ** -84.8 29.38 **
** Heatpump -347.7 19.95 ** 58.6 31.46
** Heating system temperature
** High temperature -38.5 6.51 ** -33.1 15.35 *
** Low temperature -54.4 6.91 ** -16.2 16.36
** Air -72.9 15.48 ** 233.6 39.33 **
** Very low temperature -232.5 8.81 ** 205.2 22.35 **
** Tapwater system
** Empty -170.7 78.41  * -246.3 200.23

Collective -20.4 6.44 ** -73.0 13.46 **
Individual 34.6 15.29  * 540.6 38.86 **

** Tapwater generator
** Empty -456.0 26.16 ** 256.0 46.02 **

CR boiler -501.6 26.98 ** 252.8 48.58 **
Electric flow though -398.0 38.70 ** 255.4 96.13 **

** Electric boiler -720.2 29.51 ** 591.9 58.50 **
** Heatpump, other source -741.1 29.80 ** 1153.4 60.15 **
** Heatpump, source ventilation air -749.7 29.82 ** 705.6 59.84 **
** Combiboiler with micro-CHP -531.2 41.69 ** -189.1 94.91 *
** Combibolier -611.1 29.36 ** -202.7 58.03 **

Boiler< 70kW -561.8 30.23 ** -191.7 60.92 **
Tap water boiler -611.8 29.48 ** -217.6 58.47 **

** Geyser -630.1 29.48 ** -192.2 58.33 **
** HR100/HR104 boiler -437.8 28.76 ** 227.4 53.66 **
** HR107 boiler -423.4 26.08 ** 203.6 45.81 **
** VR boiler -185.0 26.82 ** 266.1 48.42 **
** CHP -570.7 33.86 ** 40.9 78.52

Cooling system
** Cooling system -78.3 5.78 ** 70.0 15.27 **
** Solar systems
** PV panels area -1.8 0.15 ** -46.3 0.39 **
** Solar heating panels area -32.6 0.85 ** 28.5 2.18 **

Gas Elektra
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Appendix B. Model parameters non-linear regression
 

Actual gas consump�on (AGS) in (m3/y) = ((βhlf*haf + βhlr*har + βhle*hae + βhleu*haeu + βhlw*haw + βhld*had + βqv10*QV10 + FA*(βVU*VU+βA1*A1+ βA2*A2+
βC1*C1+ βC3*C3+ βC4*C4+ βd1*D1+ βD1/D2*D1/D2+ βD2*D2+ βD4b*D4b+ βD5b*D5b+ βE1*e1))*( βHSE*HSE+ βHSC*HSC+ βHSI*HSI+ βHSEH*HSEH)*(βHGCR*HGCR+
βHGCHP*HGCHP+ βHGHR100*HGHR100+ βHGHR104*HGHR104+ βHGHR107*HGHR107+ βHGLGWO*HGLGWO+ βHGMCHP*HGMCHP+ βHGVR*HGVR+ βHGHP*HGHP)*(
βTE*TE+ βHT*HT+ βLT*LT+ βAIR*AIR+ βVLT*VLT+ βVLT*VLT)*(βMLC*MLC+βSCC*SCC+βWSC*WSC+ βESC*ESC)+(( βFA* FA+βSHPA*SHPA+ βHRS*HRS)*(β TSE*TSE+ 
βTSC*TSC+ β TSI*TSI+)* ( β TGE*TGE+β TGCR*TGCR+β TGEF*TGEF+β TGEB*TGEB+β TGHPO*TGHPO+β TGHPV*TGHPV+ βTGMCHP*TGMCHP+β TGCB*TGCB+
βTGB<70*TGB<70+β TGTWB*TGTWB+β TGG*TGG+β TGHR100*TGHR100+β TGHR107*TG107+β TGVR*TGVR+β TGCHP*TGCHP)) 

Actual electricity consump�on (AEC) in (kWh/y) = AGSheat(HS=HSI, HG=HGHR107)*(βTE*TE+ βHT*HT+ βLT*LT+ βAIR*AIR+ βVLT*VLT+ βVLT*VLT)*(βHGHP*HGHP+
βHGEH*HGEH)+AGStap(TS=TSI, TGTG=TGHR107) *(βTSE*TSE+ βTSC*TSC+ βTSI)*(βTGEF*TGEF+βTGEB*TGEB+βTGHPO*TGHPO+ βTGHPV*TGHPV)+FA*(βA1*A1+ βA2*A2+
βC1*C1+ βC3*C3+ βC4*C4+ βd1*D1+ βD1/D2*D1/D2+ βD2*D2+ βD4b*D4b+ βD5b*D5b+ βE1*e1)+FA(βHGCR*HGCR+ βHGCHP*HGCHP+ βHGHR100*HGHR100+
βHGHR104*HGHR104+ βHGHR107*HGHR107+ βHGLGWO*HGLGWO+ βHGMCHP*HGMCHP+ βHGVR*HGVR)+FA*( βTGE*TGE+βTGCR*TGCR+βTGMCHP*TGMCHP+
βTGCB*TGCB+βTGB<70*TGB<70+βTGTWB*TGTWB+βTGG*TGG+βTGHR100*TGHR100+βTGHR107*TG107+βTGVR*TGVR+βTGCHP*TGCHP)+ βshpa*SHPA+
βpva*PVA+ βcs*CS+FA(βA1CR*A1CR+βA1CRF*A1CRF+βA1CM*A1CM +βA1CF*A1CF+βA1IR*A1IR+ βA1RF*A1RF+ βA1IM*A1IM+ βA1IF*A1IF+βA2CR*A2CR
+βA2CRF*A2CRF+βA2CM*A2CM +βA2CF*A2CF+βA2IR*A2IR+ βA2RF*A2RF+ βA2IM*A2IM+ βA2IF*A2IF +βTSC*TSC+βTSNC*TSNC+βSD*SD+βDH*DH) 
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