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Abstract— To design electron lens systems, applying a fully 
automated optimization routine has not yet been feasible, 
especially for the case where the optimization has many free 
variables of the lens system, such as all parameters that define 
the geometry of the lens electrodes and the voltage  of each 
electrode. Hence, the study of the implementation of different 
optimization procedures has not yet been possible either. In one 
of our previous studies, we have proposed to use the so-called 
Second Order Electrode Method  (SOEM) which performs the 
electrostatic field calculations in a very short time by the 
approximations of the field near the optical axis. There, using 
SOEM in field calculation, a Genetic Algorithm (GA) was 
successfully implemented to optimize the electron lens systems. 
One of the questions  that has not been studied and answered in 
the literature yet, is whether the GA is the most suitable option 
among different optimization techniques for the 
design/optimization of electron lens systems. In this paper, by 
implementing the SOEM technique as the field calculation 
method, different optimization procedures are implemented 
and their performances are compared. For this study, a typical 
six electrode lens system is employed. The implemented 
optimization techniques include calculus-based local 
optimization ('Fmin') and metaheuristic methods such as GA, 
Particle Swarm Optimization (PSO), and Simulated Annealing 
(SA). The results demonstrate that the population-based global 
optimization techniques like GA and PSO significantly 
outperform single-based local optimization methods such as 
'Fmin' and SA. Additionally, PSO shows slightly better 
performance than GA, although it cannot be concluded that 
PSO will always outperform GA for every electron lens design 
problem. Furthermore, in the comparison between the two 
single-based optimization techniques, the metaheuristic 
approach (SA) outperforms the calculus-based one ('Fmin'). 
Hence, we recommend implementing metaheuristic, global, 
population-based optimization techniques like GA and PSO for 
the optimization electron lens systems. 

Keywords—Electron Electrostatic Lens Design, Global 
Optimization, Local Optimization, Meta-heuristic based 
Optimization Algorithms, Genetic Algorithms, Particle Swarm 
Optimization , Simulated Annealing, SOEM (Second Order 
Electrode Method) 

I. INTRODUCTION

Design and optimization of electron lens systems are yet a 
laborious work for electron-optical designers. In such lens 
system optimization, the objective function is to obtain the 
correct focus position while to minimize of lens aberrations. 
To calculate these, the electric field of the lens system, which 
is generally calculated by accurate methods such as the Finite 
Element Method (FEM) [1] have to be derived. To perform 
the electron lens system optimization while voltages and all 
geometries of the electrodes are free parameters of the 

optimization, thousands of systems need to be evaluated [2, 
3]. Using the existing accurate field calculation methods such 
as FEM (60 seconds per system evaluation on a modern PC), 
a fully automated optimization becomes impractical in a 
feasible time [2, 3]. Due to the problem mentioned above, to 
our knowledge, there is not yet a fully automated optimization 
routine which performs the optimization of a multi electrode-
lens system, having all its geometric dimensions as free 
parameters. Therefore, studying the performance of different 
optimization techniques for electron lens system design has 
not been also studied either. Previously, the authors have 
presented an optimization technique [2, 3] based on a fast but 
approximate so-called Second Order Electrode Method 
(SOME) (proposed by Adrianse on 1988) [4, 5] to calculate 
the electric fields around the optical axis (0.4 second per 
system evaluation on the same PC) while implementing a 
Genetic Algorithms (GA) [6, 7].  Now, having such an 
automated and fast routine developed, we decided to use that 
to perform the above mentioned study on comparison of the 
performance of different optimization techniques for the 
electron lens design optimization. In our previous studies on 
electrostatic lens system design optimization, it was 
demonstrated that in optimization of electrostatic lens 
systems, a global optimization is needed [8]. Our case-study 
is a highly-nonlinear complex optimization problem [3, 8]. In 
many papers it has been shown that for such optimization 
problems the meta-heuristic optimization techniques can be 
the most suitable choice. However, which one of the meta-
heuristic technique provides the best result in our case-study? 
This question will be answered in this paper. In addition, a 
comparison with a calculus-based local optimization is 
presented here to show the difference between the 
performance of a local optimization compared to a global one. 

First, a brief recap of different types of the meta-heuristic 
optimizations and the reason why it is hard to predict in 
advance which type is the best choice for our case-study, is 
presented. In section II the optimization problem is defined. 
Section III presents a brief introduction of the most well-
known meta-heuristic optimization techniques that are going 
to be compared in our case-study. In IV the results of the 
implementation and comparison are provided and the 
conclusion is presented in V.  

More than 50 years have passed since the time when the 
mathematical foundations of Metaheuristic-based 
optimization algorithms (hereafter  called MA)  [9-11] were 
introduced by the pioneers of this work who include Holland 
[12], Schwefel [13], Foget et al. [14] and Rechenberg [15]. 
MA includes many different algorithms, the most common of 
which are from different categories of population-based and 
single–based are Genetic Algorithm (GA) [16], Particle 
Swarm Optimization (PSO) [17] and Simulated Annealing 
(SA) [18]. From the beginning,  the practitioners of this field 
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had questions on how to select the optimization algorithm 
type. “Is there any specific type of optimization algorithm 
which outperforms the others?”, and “Can we predict a 
specific optimization algorithm which can achieve the best 
performance out of the choice of algorithms for a defined 
optimization problem?” 

In all these years, despite considerable efforts performed 
by the researchers in this field, it has been discovered that 
finding the type of optimization algorithm which is best in 
different optimization problems, is neither a problem that can 
be generalized, nor one easy to predict before running the 
optimization [19]. It is represented as “No Free Lunch” (NLF) 
theory in optimization [20].  

In other words, a specific type of MA which outperforms 
the other types in one optimization problem may not do so in 
another problem with a different objective function landscape. 
Having the information from the objective function landscape 
will help to select the most appropriate type of MA. However, 
knowing the objective function landscape in advance, before 
running the optimization, is a challenge as it requires the 
optimization to be run first. Hence, it became a dilemma how 
to select the most appropriate algorithm among MAs for a 
specific optimization problem. One way to find this is to run 
the optimization for different problems, in a variety of MAs, 
to ascertain the situations at which the optimization achieves 
the best result. Here, our work is to perform such study in 
electron optics, for optimization of electrostatic lens systems, 
which to the best of our knowledge does not yet exist.  

II. OPTIMIZATION PARAMETERS

    For this case study we selected an example of an 
electrostatic lens with 6 lens electrodes to perform the 
comparison analysis of the above-mentioned different 
optimization techniques. A cross-section of the round lens is 
shown in Fig 1. 

Fig. 1.  A 2D illustration of a typical multi-electrode lens systems with 6 
electrodes.   

The free variables for the optimization are the thicknesses 
(𝑇𝑖), Radii (𝑅𝑖)and voltages (𝑉𝑖) of each electrode, and the
gaps between the electrodes (𝐺𝑖). There are 23 free variables
in total. The electrostatic lens system, as any imaging system, 
suffers from aberrations. The smaller the aberrations, the 
higher the resolution of the image and therefore the higher the 
quality of the lens system. The aberrations can be calculated 
by aberration integrals, using the electric field on axis and a 
first order (aberration-free) trajectory. These aberrations can 
be combined into a contribution to the spot size when the lens 
is used to image an electron source on a sample as is 
conducted in a scanning electron microscope. Hence, the 
objective function for the optimization problem is the spot size 
at the image side. 

It is presumed in our case study that the lens only suffers 
from spherical and chromatic aberrations. The spot size 

(presented by 𝐷𝑠 in equation 1) can be calculated using the
equation below [21]. 

𝐷𝑠
2 = (0.18 𝐶𝑠  𝛼3 )2 +  (0.6 𝐶𝑐  𝛼 

𝛥𝑈

𝑈
)2  (1)

Where 𝐶𝑐  and 𝐶𝑠  represent chromatic and spherical
aberration coefficients, respectively. 𝛼 (the half opening angle 
of the beam) is taken as 10 milliradian. 𝑈  and ∆𝑈  (the 
acceleration energy and the energy spread of the electron 
source) are chosen here to be 1 kV and 1 eV, respectively. This 
optimization problem’s constraint is to have the image at a 
fixed position 𝑋𝐶  (at 15mm from the surface of the first
electrode) and a maximum allowable electric field between 
sequential electrodes to prevent discharges. 𝑋𝐶  is also a
function of the electric field and can be calculated using ray-
tracing. Our case-study used MATLAB as the programing 
language. To calculate the objective function and image 
position (i.e. 𝐷𝑠 and 𝑋𝐶), the field calculation is performed by
SOEM and our ray-tracing codes use the paraxial 
approximation. A PC with an Intel (R) Xeon (R) W-2123 CPU 
@3.60 GHz and 32 GB of RAM was used to perform the 
computational work related to this study. 

III. OPTIMIZATION TECHNIQUES APPLIED IN OUR CASE-
STUDY 

The optimization procedures which are implemented here 
include four optimization techniques. The first one is taken 
from the category  “Calculus-Based” which is a local 
optimization (called “Fmin” in MATLAB). The others are 
from the category of “Metaheuristics”. One is taken from the 
“Single-solution Based”, i.e. Simulated Annealing (SA). The 
two others are the most well-known optimization techniques 
from the “Population-Based” category namely, Genetic 
Algorithm (GA) and Particle Swarm Optimization (PSO).  

A. Calculus-Based local optimization

The so-called “Fmin” in MATLAB, is a “Calculus-based 
optimization (CBO) technique. CBO uses the gradient 
(derivatives) of the objective function. This method is 
implemented on the objective function 𝑓(𝑋), starting from an 
initial point of 𝑋0, taking the steps of δ𝑁, moving towards the
direction of the negative gradient of the objective function to 
ultimately reach the local minimum of the function. If it is a 
maximization problem, the direction will be that of the 
positive gradient of the function to reach the maximum point. 
Note that in this method, the function 𝑓(𝑋)  should be 
differentiable in all neighboring points which are 
progressively taken under search. 

B. Simulated Annealing (SA)

     Simulated annealing (SA) [22] is a single-solution based, 
meta-heuristic algorithm. This algorithm simulates the 
physical process of annealing in a material. Annealing  means 
to heat up a substance to a specified level above  a phase 
transition temperature, and then to lower the temperature 
gradually, in a specific way, to reach the minimum energy 
level of the system until the material crystalizes. This 
crystalized substance, with all its lattice atoms perfectly 
aligned, is an example of nature finding a beautiful optimum 
structure of a substance. If, however, the cooling process is 
performed too fast, the crystalized state will not be reached 
and the substance becomes an amorphous solid rather than a 
crystal. The way to achieving the minimum energy level and 

Z [mm]

𝑇1 𝐺3𝑉2

Primary 
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𝑒−
𝑅4
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the crystalized state, is to carefully control the rate of 
temperature decrement.  

    In the mathematical optimization context, mimicking from 
the nature process, a trial point (electrostatic lens system 
parameters in our case-study optimization problem) is 
randomly generated based on a defined normal probability 
distribution within the specified ranges of the parameters. 
The distance between this trial point and the previous point is 
based on a probability distribution with a scale parameter 
depending on the current temperature. The temperature is a 
pre-defined value by the user. The algorithm then determines 
whether or not the new point is better than the previous point. 
If it is better, the previous point is replaced with the new 
point. If the new point is worse than the previous point, the 
algorithm may still select the new point based on a probability 
function. The algorithm lowers the temperature in every 
iteration. After a certain number of iterations the reannealing 
process is activated in which the temperature is increased 
again. The algorithm keeps exploring the landscape until a 
stopping criteria is reached. 

C. Genetic Algoritms (GA)

     Randomly created values of the parameters (elements,) 
called initial population, are the starting point for the GA , a 
population-solution based, meta-heuristic global optimization 
method, mimicking natural evolution. The parameter 
“population” defines the number of elements in each 
generation, denoted here by Npop. In nature, the elements are 
the chromosomes of the organism. In electron lens design, the 
set of electron lens systems from which the lens design 
variables are determined, represents the elements.  
     The GA uses a variety of genetic operators namely 
Crossover, Mutation and Elitism, to gradually improve a set 
of elements in a so-called “generation” towards the next 
generation, having a better set of elements, regarding their 
objective function values. The algorithm proceeds until it 
satisfies the stopping criteria, which could be set as, for 
instance, a maximum computational run time, a specified 
value of objective function, or a maximum number of 
generations. In our case-study, reaching a specified 
computational time is chosen to end the process. 

D. Particle Sawrm Optimization (PSO)

Particle swarm optimization (PSO) presented in 1995 [23], 
is another type of population-solution based, meta-heuristic 
global optimization method which mimics the intelligent 
collective behaviour of some animals in nature such as birds 
or flocks. 

The algorithm starts by generating a set of initial particles 
(electrostatic lens systems parameters), and assigns a velocity 
(randomly selected from a range given by the user) to each 
particle. It evaluates the objective function for each particle 
and defines the best location and lowest objective function. It 
choses new velocities based on particle current velocity, the 
particle’s individual best location and best location of all 
particles. It then updates the particle position (current position 
plus the velocity, while making sure the boundaries and 
constraints are fulfilled). The iteration continues until a 
stopping criteria is reached. When the defined stopping 
criteria is reached the algorithm will be ended.  The stopping 
criteria can be determined by the user using different schemas. 

In this case-study, reaching a certain computational time is set 
as the stopping criteria.   

IV. RESULTS AND ANALYSIS

To compare the performance of the above-mentioned 
different optimization techniques, the minimum value of the 
Objective Function (OF) reached by the optimization 
procedures should be evaluated. However, to achieve a fair 
comparison, the run time is set to a constant value as the 
stopping criteria of the optimizations. In a previous study it is 
illustrated that a reasonable computation time could be around 
T= 1500 sec [7]. This value therefore is set as the stopping 
criteria of the optimizations.   

It should be noted that for the local optimizations, such as 
“Fmin”, the optimization routine may stop before this fixed 
time, due to the fact that a calculus-based optimization would 
stop when it reaches the minimum point at each base of 
attractions.  

To perform the comparisons, as the first step, an analysis 
is performed among the four optimization routines running 10 
times to achieve statistically-reliable results. The GA and PSO 
are run without initial data. However, SA and Fmin need to be 
assigned an initial data set to start. A random initial system is 
taken and given as the starting point of SA and Fmin. For some 
of the initial data, these two optimizations could not find any 
system which satisfied the constraints (the constraints are 
considered as part of the objective function). As the first step 
for these algorithms, an initial system is taken which could 
lead the SA and Fmin to reach an optimum system which has 
satisfied the constraints (this initial system is found by  trial 
and error among different randomly created systems).  

Figure 2 shows the minimum objective function values, 
averaged over 10 runs, achieved by the four different 
optimization techniques. The green bars represent the 
averaged minimum objective function values. The black thin 
bars inside the green bars represent the standard deviation in 
the averaged values for 10 runs. 

Fig.2. The comparison of the performance for four different 
Optimization techniques namely Fmin, SA, GA and PSO. The presented 
values are averaged over 10 runs. 

Among the 10 runs, one example run (with the objective 
function value in the middle range) is depicted as the 
representative of all runs and illustrated in Figure 3. The y-
axis shows the objective function value in the course of the 
runs. The x-axis presents the system evaluations. The blue, 
pink, red and green starts are representatives of runs related 
to the PSO, GA, Fmin and SA, respectively [24-26].  
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Fig. 3.  Comparison of the progress in the four different Optimizations . The 
presented data is taken from one run among 10 runs as an example 
representative of different runs. 

From Figure 2 and 3, it can be seen that the two 
optimizations GA and PSO clearly outperform the two others 
Fmin and SA. Moreover, the standard deviations for the 
former optimizations (GA and PSO) are much lower 
compared to the two latter ones (Fmin and SA). This is due to 
the nature of being meta-heuristic and also to starting and 
proceeding with populations and not only a single system. 
This provides a much higher chance of finding the area in the 
parameter landscape with lower values of the objective 
function.  Due to this, in some literatures, SA is assumed as a 
local optimizer and not a global one.  

Since for Fmin and SA, the results depend on the initial 
data (X0) which the optimization started with, these two 
optimizations are run with different initial data to achieve a 
statistically more reliable analysis. Six different initial data 
sets are randomly selected by the user and given as the starting 
points. The correspondent runs are called Try1 to Try6, 
respectively. Each “Try” is executed 10 times to provide 
statistically reliable results. The OF averaged over 10 runs and 
the standard deviations are given in the table below. For the 
Fmin, because it is based on the derivative of the function, the 
root finding is always the same and there is no standard 
deviation. It should also be noted that there are some situations 
that these two optimizations could not find any systems which 
have satisfied the constraints.  

The data is visualized in figure 4. The blue (purple) bars 
represent the OF for 6 “Run”s related to the SA (Fmin). The 
black thin bars inside the blue bars are representative of the 
standard deviations for different runs.  

Fig. 4.  Comparison of the performance of Fmin and SA. The presented 
values are averaged over 10 runs. 

As can be seen, the OF related to the SA are in most cases 
lower than the ones of Fmin. There is only one case (Run1) in 
which Fmin could perform better than SA. In all other runs SA 
could outperform the Fmin. This can be due to the 
metaheuristic nature of  the SA which does not exist in the 
calculus-based optimization procedures such as Fmin. The 
metaheuristic nature causes the optimization to search more 
extensively the area which leads it not to trap in one local 
minimum related to that specific basin of attraction of the 
given starting point.  

V. CONCLUSION 
Different optimization techniques such as Fmin, SA, PSO 

and GA are implemented for electrostatic electron lens design 
on a typical lens system with six electrodes (23 free variables) 
to perform a study on the comparison of their performance. 
The extension of the electrodes to more complex designs is 
straightforward. In this study it is recognized that the GA and 
PSO outperform Fmin and SA. The reason can be that the 
former ones are population-based optimization techniques 
while the latter ones are single-based optimization ones. It is 
also seen that the PSO achieves better results than the GA. 
However, the difference between PSO and GA is not as much 
as the difference between population-based optimizations and 
single-based optimizations. It is hence advised to implement 
the meta-heuristic, global, population-based optimizations 
such as GA and PSO. It is not possible to conclude that PSO 
will outperform GA for every problem in electron lens design. 

Moreover, from the comparison between two single-based 
optimization techniques, it is illustrated that the metaheuristic 
one (SA) outperforms the calculus-based one (Fmin). These 
two optimization methods work as a sort of local optimization 
which might not even find any system within the constraints 
and thus has limited use in electron lens design.

REFERENCES 

[1] The Finite Element Method in Electromagnetics (IEEE Press) 3rd 
Edition, Jianming Jin, John Wiley & Sons. IEEE Press, 2014. 
[2] N. Hesam Mahmoudi Nezhad, M. Ghaffarian Niasar, A. Mohammadi 
Gheidari, C. W. Hagen, and P. Kruit, Int. J. Mod. Phys. A 34, 1942020 
(2019). 
[3] N. Hesam Mahmoudi Nezhad, M. Ghaffarian Niasar, A. Mohammadi 
Gheidari, P. Kruit and C. W. Hagen, J. Vacuum Science & Technology B 39, 
062605 (2021). 

Authorized licensed use limited to: TU Delft Library. Downloaded on November 16,2023 at 09:03:09 UTC from IEEE Xplore.  Restrictions apply. 



[4] M. A. J. van der Stam, J. E. Barth, and P. Kruit, Proc. SPIE 2014, 45
(1993). 
[5] J. Adriaanse, H. van der Steen and J. Barth, J. Vacuum Sci. Technol. B:
Microelectron. Process. Phenomena 7, 651 (1989). 
[6] Mitchell Melanie, An Introduction to Genetic Algorithms, The MIT
Press, Cambridge, Massachusetts, London, England, Fifth printing (1999) 
[7] N. H. M. Nezhad, M. G. Niasar, C. W. Hagen, and P. Kruit, GA Tuning

Parameters in the Genetic Algorithm Optimization of Electrostatic 
Electron Lenses, proceedings of 2023 IEEE MTT-S International 
Conference on Numerical Electromagnetic and Multiphysics Modeling 
and Optimization (NEMO'2023). 

[8] N. H. M. Nezhad, M. G. Niasar, C. W. Hagen, and P. Kruit, Proceedings
of 2020 IEEE 6th International Conference on Optimization and 
Applications (ICOA), Beni Mellal, Morocco, 20-21 April 2020 (IEEE, 
Piscataway, NJ, 2020), p. 9094475. 

[9] T. Jones. Evolutionary algorithms, fitness landscapes, and search. PhD
thesis, University of New Mexico, 1995. 

[10] Fernando G. Lobo, Cláudio F. Lima and Zbigniew Michalewicz (Eds.),
Parameter Setting in Evolutionary Algorithms, Studies in 
computational studies Vol. 54. Editor-in-chief Prof. Janusz Kacprzyk , 
Springer-Verlag Berlin Heidelberg (2007)  

[11] K. De Jong: Parameter Setting in EAs: a 30 Year Perspective, Studies
in Computational Intelligence (SCI) 54, 1–18, Springer-Verlag Berlin 
Heidelberg (2007).  

[12] J.H. Holland. Outline for a logical theory of adaptive systems. JACM,
9:297– 314, 1962. 

[13] H.-P. Schwefel. Evolutionsstrategie und numerishe Optimierung. PhD
thesis, Technical University of Berlin, Berlin, Germany, 1975. 

[18] Chien-Wei Chu, Min-Der Lin, Gee-Fon Liu, Yung-Hsing Sung, 
Application of immune algorithms on solving minimum-cost problem 
of water distribution network, Mathematical and Computer Modelling, 
Volume 48, Issues 11–12, Pages 1888-1900, ISSN 0895-7177,2008. 
(https://doi.org/10.1016/j.mcm.2008.02.008). 

[19] S. Rainer, P. Kenneth, Differential evolution-a simple and efficient
heuristic for global optimization over continuous spaces. J Global 
Optim 11(4):341–359, (1997). 

[20] Wolpert, D.H., Macready, W.G., "No Free Lunch Theorems for 
Optimization", IEEE Transactions on Evolutionary Computation 1, 67, 
(1997). 

[21] J.E. Barth, P. Kruit, “Addition of different contributions to the charged
particle probe size”, Optik101, pp. 101-109, (1996). 

[22] P. J. M. van. Laarhoven, Simulated annealing : theory and applications, 
E. H. L. Aarts, Dordrecht: D. Reidel. (ISBN 90-277-2513-6. OCLC 
15548651), (1987). 

[23] D. Wang, D. Tan and L. Liu, Particle swarm optimization algorithm: an
overview. Soft Comput., 22, 387–408 (2018).

[14] L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial Intelligence through 
Simulated Evolution. John Wiley & Sons, New York, 1966. 

[15] I. Rechenberg. Cybernatic solution path of an experimental problem. 
In Library Translation 1122. Royal Aircraft Establishment, 
Farnborough, (1965). 

[16] D.E. Goldberg, J.H. Holland, Genetic algorithms and machine learning. 
Mach Learn 3(2):95–99, (1988).  

Search Method: Theory and Applications", Computational Intelligence 
and Neuroscience, vol. 2015, Article ID 258491, 10 pages, 2015. 
(https://doi.org/10.1155/2015/258491). 

[17] X. Z. Gao, V. Govindasamy, H. Xu, X. Wang, K. Zenger, "Harmony 

C. El Mokhi and A. Addaim, "Optimal Design of the Cable Layout in 
Offshore Wind Farms using Firefly Algorithm and Minimum Spanning 
Tree," in 2021 International Conference on Optimization and 
Applications, ICOA 2021, 2021, doi: 10.1109/
ICOA51614.2021.9442631.

[24] 

C. El Mokhi, O. Choukai, H. Hachimi, and A. Ait Errouhi, "Assessment 
and optimization of photovoltaic systems at the University Ibn Tofail 
according to the new law on renewable energy in Morocco using 
HOMER Pro," Energy Harvesting and Systems, Article vol. 10, no. 1, 
pp. 55-69, 2023, doi: 10.1515/ehs-2022-0035.

[25] 

A. Ait Errouhi, O. Choukai, Z. Oumimoun, and C. El Mokhi, "Energy 
efficiency measures and technical-economic study of a photovoltaic 
self-consumption installation at ENSA Kenitra, Morocco," Energy 
Harvesting and Systems, Article vol. 9, no. 2, pp. 193-201, 2022, doi: 
10.1515/ehs-2021-0081.

[26] 

Authorized licensed use limited to: TU Delft Library. Downloaded on November 16,2023 at 09:03:09 UTC from IEEE Xplore.  Restrictions apply. 


