An axisymmetric

model for the meat
analog production

process in a

Couette Cell base
evice

by Wouter van den Hoed

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Monday March 21, 2022.

Student number: 4204964
Project duration: ~ September 1, 2020 — February 1, 2022

Thesis committee: Prof. dr. ir. B.P. Tighe, TU Delft, supervisor
Prof. dr. ir. M.J.B.M. Pourquie, TU Delft, co-supervisor
Prof. dr. ir. D.SW. Tam, TU Delft
Ir. D. van der Stoel, Rival Foods

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Preface

I would like to thank my supervisor Dr. B.P. Tighe for his guidance throughout this thesis and co-supervisor

Dr. M.J.B.M. Pourquie for the great effort he put into helping me understand how to handle the wild beast
called "OpenFOAM'".

Wouter van den Hoed
Delft, January 2022

Abstract

During the last years the demand for vegetarian products has increased. A subgroup of these vegetarian
products consists of meat analogs, which are products that resemble meat in its functionality and are
prepared in a similar fashion. One of the companies producing these meat analogs is Rival Foods. Rival
Foods has been working on a production process based on a Couette cell, in which the dough is sheared
in an annular region between two concentric cylinders. This allows them to create highly fibrous products
with a thickness of roughly 3cm. Other production processes such as extrusion cooking are unable to
achieve this combination of structure and thickness.

In upscaling the production process, preferably a larger gap width between the cylindrical surfaces of the
cell is preferred, because the thickness of the product is a unique selling point. Larger gap widths lead to
greater temperature inhomogeneity and gradients, which negatively impacts product quality. It is currently
not possible to accurately measure the temperature profile throughout the cell. Therefore, in this thesis a
model has been developed in OpenFOAM which calculates the temperature profile with a small number of
material parameters and process conditions as input. The model assumes the ingredient mixture behaves
as a temperature dependent power law fluid. Rheological measurements have been performed to quantify
these temperature dependent power law parameters.

To study the influence of the viscous dissipation, preheat temperature, mixture density, and product thick-
ness on the temperature field during processing, multiple simulations have been performed. The simulations
used a time step of 0.0001s, for which the temperature, velocity, viscosity, and viscous dissipation were not
yet fully converged. The principal flow in the Couette cell geometry was in the direction of rotation of the
inner cylinder as expected and had a velocity with order of magnitude e-01 m/s. Besides the principal flow
a secondary flow pattern has been found as well, consisting of vortices which had a velocity with order of
magnitude e-03 m/s. These secondary velocity components were responsible for additional advection of
heat in the simulation which resulted in a different temperature profile than expected. Since the Taylor
number was well below the critical Taylor number, the existence of Taylor vortices could be excluded. After
a further refinement of the time step the vortices disappeared. Running the full simulations with this time
step would take months per simulation and was therefore not an option. It was concluded OpenFOAM had
trouble simulating power law fluids with high viscosities.

Contents

Introduction 1
1.1 Backgroundo 1
1.2 Introduction to meat analog structuring techniques. 2
1.3 Meat analog structuring mechanics using Couette Cells 5
1.4 Research Motivation. L 6
15 Goaland scope 7
1.6 Timeline o L o 8
Literature Review 11
2.1 Meat analogue structuring mechanics and process conditions I
22 Rheology. 13
221 Solidsvsfluids oL 13
222 Viscoelasticity.o 13
223 Small amplitude oscillatory testing 14
2.3 Mixture properties. L 16
2.4 Couette flow and Taylor-Couette flow. oL 18
25 OpenFOAM solver. e 20
Temperature dependency of the Power-Law parameters 23
3.1 Planofapproach e 23
32 Data processingo e 25
321 Dataat25°C 25
322 Dataatb0°C 27
323 Dataat75°C e 28
324 Dataat100°C. 29
325 Dataat125°C. 31
3.3 Results for the temperature dependency of the Power-Law parameters 34
OpenFOAM Simulation Setup 37
41 nonNewtonianlcoFoam equationso 38
4.2 nonNewtonianlcoFoam customization.o 40
421 Adding the temperature equation L oo 40
422 Adding viscous dissipationo 43
43 Power-Law customizationo 44
4.4 Building the general case structure.o 50
45 Geometry 51
4.6 Boundary conditions. 55
4.6.1 Temperature boundary conditions. oL oo 56
4.6.2 Velocity boundary conditions Lo 61
46.3 Pressure boundary conditions.o 63
4.6.4 Viscosity boundary conditions. 65
4.7 Numerical schemes e 67
4.8 Simulations oL e 68
481 Basecase 68
4.8.2 \Variationsonthe basecase. Lo Lo 68
Model verification 71
51 Spatial convergence. L. 71
5.2 Temporal convergence Lo 74
5.3 Comparison between the analytical and numerical solution 77

Contents

6 Results

6.1 Thebasecase.
6.2 Case comparisons
6.2.1 Viscous dissipationo
6.22 Geometry
6.23 Preheat
6.24 Density

7 Conclusion

8 Recommendations and Future Work
Bibliography

A Appendix A: RPA Elite Measurement Data
B Appendix B: OpenFOAM code

B.1 my_viscousHeatingSolver.Co
B.2 interppowerLaw.Co L oo
B.3 interppowerlaw.Ho
B4 fvSchemes
B5 fSolutiono

79

Introduction

1.1. Background

In today’s world quite some people are reducing their meat consumption, which leads to an increasing
demand for vegetarian products. The main factors contributing to this shift towards vegetarian food con-
sumption are health awareness, natural resource depletion, animal suffering and disease, and reduction of
greenhouse gas emissions [1].

A subgroup of these vegetarian products consists of meat analogs. The definition of meat analog refers
to the replacement of the main ingredient with something other than meat [1]. Different names are also
used, such as meat substitute, meat alternative, fake or mock meat, and imitation meat.

Quoting Birgit Dekkers [2], one of the founders of Rival Foods:

“Meat analogs are products that resemble meat in its functionality, and are prepared by the consumer in
a similar fashion as meat. Products that approach the original meat product best are considered to be
the most promising to reduce meat consumption for the largest group of consumers [3]. Therefore, meat
analogs should resemble meat in terms of their sensory properties, unique texture and taste, since these
are key properties appreciated in meat by consumers [4]”

Rival Foods produces meat analogs that are highly structured. Structured meat analogs can already be
produced using extrusion processes, but the disadvantage of these processes is that the final product can
only reach a thickness of roughly 10 to 15mm. The unique selling point of Rival Foods’ products is that
their structured meat analogs can already reach a thickness of up to 32mm. This means that thick meat
products like steaks can be recreated with their production process, whereas extrusion processes are only
able to simulate the structure of smaller and thinner meat analogs. In order to obtain this structure across
the entire product a specific combination of heat, shear force, and process time has to be applied.

During the last years Rival Foods has created multiple prototypes that are able to create this structure
and extensive research has been done on the mechanics behind the process. Currently Rival Foods is
working on increasing the product thickness while maintaining the same structure quality across the entire
product. Due to the fact that heat does not distribute uniformly when applied from the outside this can
easily cause a non-uniform structure, which is not desirable.

The goal of this thesis is to produce a CFD model that helps to gain more insight into the thermal and
viscous behaviour of the meat analog during the production process. This model should be able to create
more insight on how the temperature profile across the product changes under the influence of varying
process conditions.

2 1. Introduction

1.2. Introduction to meat analog structuring techniques

In order to mimic the structure of meat, it is important to know which components the structure consists of.
Most of the meat that humans consume is skeletal muscle meat. The texture of these skeletal muscles is
the result of the hierarchical structural organization of the muscle, which can be seen in Figure 1.1. Inside
muscles, muscle fibers are organized into bundles, called fascicles. Inside these muscle fibers, myofibrils
are organized into bundles as well, and these myofibril bundles are all surrounded by a sarcolemma.
Together these fibrous bundles create the fibrous texture of the muscle.

Fascicle Sarcolemma

Perimysium Muscle fiber (cell)

Tendon Epimysium Myofibril

neuron

Deep fascia

Blood vessels Endomysium Blood capillary

Figure 1.1: Hierarchical structure of skeletal muscle tissue [5]

The sensory attributes of meat are often related to these structural elements [6] [7]. For example, the way
that the myofibrils and connective tissue are distributed have a big influence on the toughness of the meat,
while the water inside the meat has a great influence on the juiciness [2]. When one wants to reproduce
the sensory and textural properties of real meat in a meat analog, different structuring techniques can be
used.

Globally there are two different fundamental approaches to mimic the structure of muscle-meat. One of
these approaches is a top-down strategy and the other one a bottom-up strategy. The top-down strateqy
aims to create fibrous structure by structuring biopolymer blends using techniques like extrusion [8]. The
bottom-up strategy is based on mimicking the small structural elements of real muscle fibers which can
then be assembled into larger products. In general, top-down strategies are easier to upscale, but the
bottom-up strategies approach closer to the structure of meat. An overview of the different strategies and
techniques is depicted in Figure 1.2.

Structuring Techniques
for Meat Analogues

Top-down
Strategy

B oftom-up

Strategy
l Cultured l . l Wet l L
Meat Mycoprotein Spinning Electrospinning

Figure 1.2: Structuring techniques for meat analogs [8]

Mixing of
proteins and

hydrocolloids

Freeze

Extrusion Structuring

1.2. Introduction to meat analog structuring techniques 3

Currently, one of the most commercially applied technologies for the production of meat analogs is extru-
sion cooking, see Figure 1.3. A downside of the extrusion process is that the process conditions (time,
temperature, shear) are coupled, which does not allow for structure optimization by changing these process
conditions independently from each other.

Denaturated Protein + Water [Typical VCIOCity Profile]
(40-70% Moisture)
———4

[Texturization Zone J

Typical Temperature Range. Fiber Formation due to Spinodal Phase
- 130 -170 °C Separation

Figure 1.3: Basic setup of an extrusion process to develop meat analogs [8]

New methods of protein structuring have been introduced during the last 15 years. Shearing devices in
which intensive shear can be applied, based on the design of rheometers, called shear cells were first
developed using a cone-in-cone geometry at Wageningen University [9] [10]. Later the geometry of these
devices was changed by Krintiras [11] to improve the uniformity of the shear force distribution which led
to the development of the Couette cell geometry [11].

An important advantage of using the novel shear and Couette cell is that the process conditions (shear
force, temperature, and process time) can be decoupled. Also, the behavior of (bio)polymers under shearing
deformation is less complex as compared to the very complex and sometimes even chaotic flow patterns
that can be encountered during extrusion. This makes it easier to model the process.

The device geometries for these two new methods can be seen in Figure 1.4. In the cone-in-cone device,
the bottom cone is rotating while the top cone is stationary, and the material placed in between the cones
is sheared. In the concentric cylinder device the inner cylinder is rotating while the outer cylinder is
stationary [2].

Conical shear cell Couete shear cell

Rotation

p

Stationary cone

Moving plate
gy I -

Material | < |

—
— Simple
. —
Rotating cone |, shear flow
>

L.]

Stationairy plate

Rotation

Figure 1.4: Illustration of cone-in-cone and concentric cylinder device in which materials can be deformed with simple shear flow [2]

These two new technologies were developed based on the principle of applying simple shear and heat
to the protein mixture. First, the shear cell was developed, which is a device which has a cone-in-cone
design that is able to create structure in soy-based mixtures, to create a final product that is similar to

4 1. Introduction

meat (structure wise). However, the shear cell design does not allow for much upscaling due to the fact
that the thickness of the slab increases with the increasing radius of the cell. This leads to significant
differences in temperature and stress gradients over the shear cell, resulting in an inhomogeneous final
product. Therefore, the Couette cell concept was developed and presented by TU Delft student George
A. Krintiras in 2016 [12], see Figure 1.5. This Couette cell has a height of 332 mm, an inner radius of
95 mm, an outer radius of 125 mm, and can produce a slab with a total volume of 6.88L per batch. The
Couette Cell concept, which looks like two concentric cylinders with a gap in between for the ingredient
mixture has been studied previously by TU Delft students because it seems to be a promising design when
it comes to upscaling to industrially relevant production capacities.

Figure 1.5: “The big Couette Cell” design by Krintiras (Courtesy of Rival Foods)

Krintiras's research on the Couette Cell has been done in collaboration with Wageningen University and
Research (WUR). As a result of the extensive research in this area on WUR’s part, Rival Foods has been
created by Birgit Dekkers and Ernst Breel. This spin-off company from the Food Process Engineering lab
of Wageningen University and Research revolutionizes the plant-based meat analogs market with a unique
process and products. Their mission is stated as follows.

"Develop, produce and sell whole-cut plant-based meats that provide unparalleled structure, juiciness and
taste for anyone who loves the art of cooking.”

At the core of their company is the Couette cell-based production process, for which they have developed
several (prototype) machines so far. Currently they are developing the next generation of this machine
to allow for the production of larger quantities of plant-based meat products. This requires obtaining a
deeper understanding of the dynamics of the process, scalability of the process and to develop and realize
new, tailor-made technical solutions that improve efficiency and reduce complexity.

1.3. Meat analog structuring mechanics using Couette Cells 5

1.3. Meat analog structuring mechanics using Couette Cells

To get more insight into the mechanics behind the structure formation using Couette/shear cells, the
research by Dekkers [2] has been used. This research has shown that a concentrated two-phase biopolymer
blend is needed for fibrous structure formation. These two phases consist of mostly protein(s) and/or
polysaccharides in water.

. Deformation & Alignment

Phase 2

-,
Phase separated Deformation Solification
QO » =

blend

Break-up Coalescence

T O+0 O+0-rad>

Figure 1.6: Graphical illustration of a phase separated biopolymer blend, which forms a water-in-water emulsion, which shows
droplet coalescence, break-up and deformation [2]

The amount that each of the phases deforms is highly influenced by the interaction between the two phases,
which depends on the following process conditions:

e shear rate
e temperature
e time

In order to achieve the most fibrous structure, the shear should be able to deform the dispersed phase, but
should cause only limited break-up of this phase. The onset of break-up depends on several forces, namely
the external forces, the viscous forces, and the interfacial forces. The viscosity of both the continuous and
dispersed phase can be greatly influenced by the temperature during the process. It is also important
to note that the temperature can cause (chemical) changes in the material over time, which influence the
viscosity and deformability of the product as well.

6 1. Introduction

1.4. Research Motivation

Currently Rival Foods is working on up-scaling their production capacity. The production process can be
up-scaled using several approaches. The length of the Couette Cell can be increased, the width of the
gap inside the Couette Cell can be increased by changing the radii, thus resulting in a thicker slab, or the
amount of Couette Cells being used for production can simply be increased.

For Rival Foods up-scaling by increasing the thickness of the slab is the most interesting option. This
is due to the fact that the thickness of their product together with the structure are their unique selling
points which make it stand out from their competition. “The Big Couette Cell” from Krintiras's research
had a gap width of 30mm. Currently Rival Foods is optimizing a Couette Cell design which has a gap
width of 50mm. The problem with this larger gap width is that the heat does not distribute as uniformly
as desired and thus it is hard to obtain a product that has the same quality throughout the entire slab.

Larger gap widths lead to greater temperature inhomogeneity and gradients, which negatively impacts
product quality. It is currently not possible to accurately measure the temperature profile throughout the
cell. Therefore, the goal of this research is to develop a model that can predict the profile with a small
number of material parameters and process conditions as input. Different variations on the geometry of
the Couette Cell based device can then be tested.

1.5. Goal and scope 7

1.5. Goal and scope

The goal of this thesis is to model part of the production process that is currently used at Rival Foods
for producing structured meat analogs. In this process shear and heat are applied to a non-Newtonian
water-in-water emulsion in a complex geometry.

The original production unit was a conical shear cell, later the design was changed to a Couette Cell, and
currently a modified device, still based on the Couette Cell, is being used. This device has a more complex
geometry than the Couette cell, which makes it more challenging to model and therefore the geometry will
be assumed to be similar to the Couette cell.

Apart from the geometry, the behavior of the ingredient mixture will also be complex. Based on research by
van Dijk [13] a power law model is suitable to model the mixture. The varying temperatures that are applied
to the mixture during the process will likely have a significant effect on the viscosity of this water-in-water
emulsion, consisting of Soy Protein Isolate (SPI) and Wheat Gluten (WQ).

It is important to make a well-considered choice on which software should be used to model the process.
One option would be to create a model using Matlab, and the other option would be the use of a CFD
program such as OpenFOAM, Ansys Fluent, or Ansys Polyflow.

The advantage of using Matlab is that there is complete control over the governing equations and calcula-
tion methods used. The disadvantage is that the 3D geometry is likely too complex to model and therefore
it will be necessary to assume a more simple geometry so that the geometry can be modelled in 2D.

The advantage of using a CFD program is that more complex geometries are easier to use due to the
availability of specific meshing software that works well together with CFD programs. The disadvantage
is that the user can be more limited in choice regarding the possible models and governing equations,
depending on which CFD program is used of course. From the available CFD options, Ansys Fluent
seems to be the most robust and easiest to learn, but more exotic Newtonian laws (visco-elasticity) are
not available in this software package. Some versions of OpenFOAM do offer visco-elastic modelling,
but there are different versions with limited compatibility. Considering the requirements on the model,
Ansys Polyflow seems to be the best option, due to the fact that Polyflow is ideally suited for modelling
viscous/viscoelastic flows and rheologically complex fluids. This program is often used for applications
with polymers, glass, plastics, rubber, and paints. However, this program requires significant start-up costs
in the form of user training, which were considered prohibitive for this project. Therefore OpenFOAM
seems to be the best option due to its capabilities when it comes to visco-elastic modelling and due to
the availability of extensive documentation and an existing user base in the Process & Energy department
at TU Delft. Another important reason for choosing OpenFOAM is that it is free to use. As an engineer
being able to work with free open source software like OpenFOAM can be a useful tool to have, due to
its availability in nearly any work environment.

Apart from the modelling part there will also be a small experimental part where rheological measurements
will be made to obtain data that is needed for the model. Once the model is functional, validation tests
should be done to check whether the model behaves as expected and if the real process is in agreement
with the predictions made by the model. If this all works out the CFD model can be used to figure out
what the influence of varying the geometry of the device or certain process variables will be without having
to perform experiments or build new prototypes for every variation made on the production process.

8 1. Introduction

1.6. Timeline

The project started with a literature study to gather information regarding the shear and Couette cell
production process, the different prototypes used, and the used measurement equipment. The main sources
used for this purpose were the master and PhD theses by Gébel [14], van Dijk [13], Diaz [15], Krintiras [12],
and Dekkers [2]. The first four of these theses were mainly focused on the technical aspects of the
prototypes and modelling. The PhD thesis by Birgit Dekkers focused more on understanding the underlying
mechanisms for structure formation and finding ways to observe and measure the structure properties.

2020

Today
Sep 1l
Woutervan
den Hoed -
Start thesis

Sep 14
~ Birgit L. Dekkers- Creation of fibrous plant

protein foods
Mar 3

Georgios A. Krintiras - Intensified protein
structuring for more sustainable foods -
Development of the up-scaled Couette Cell
for more sustainable foods

May 20

J. Gadea Diaz - Structure formation and

parametric study in an up-scaled Couette

Cell
Jun 25

~ Niels van Dijk - CFD modeling of a couette
cell - The effect of heat transfer and viscous
dissipation on the product quality
Juls

Jesse Gobel - Intensified protein structuring
- Production of fibrous soy based meat
analogs using a Couette Cell

Figure 1.7: Timeline relevant research from previous TU Delft students

With the available information from the previous theses written on Couette cells, a plan was made on
how to model the process. Then a timeline for the thesis with a global overview of expected activities
was created roughly 1.5 months after starting the thesis. At the end of the thesis this timeline can be
re-evaluated to see what did and did not go according to planning. The timeline has been included in
Figure 1.8

1.6. Timeline

Research the current models by Krintiras & Rival-Foods Engineer
Sep 1-Sep 30
Research literature on non-Newtonian (food) mixtures modelling
Identify possible improvements on current models
Decide which improvementsare to be made in the model

N Oct 1- Nov 13

Decide on most suitable modelling software

B Nov 13- Nov29
Modelling (building/testing/re-evaluating/improving)
] N0': 30 - Apr 3
Validating model by comparing data with test results
Apr3-Apr30

Identify mismatches between model data & test
results and find the causes to make
recommendations for improvements in the next
model

O Viay 1 - May 31

Extra unforeseenwork

Jun1-Jun30
Write thesis.
Oct 1-Jul31

2020 2021
Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul 2021
‘ Today

Sep1 Nov 9

Start Thesis

Presentation (1/3) - Literature study

Figure 1.8: Timeline thesis

| iterature Review

Couette Cells as a production unit for structured meat analogues have been researched during the past 15
years. The literature reviewed for this project focused on finding relevant information such as the require-
ments for structure formation and the underlying processes, the optimal process conditions to maximise the
structure formation in the meat analogue, and the boundary conditions and assumptions that lead to the
governing equations used in the CFD model.

2.1. Meat analogue structuring mechanics and process conditions

More detailed information based on the conclusions from the research by Dekkers [2] is provided below to
better understand the mechanics behind structure formation using Couette Cells.

In order to understand what is meant when talking about a fibrous product it is important to have a clear
definition of it. The definition of a fibrous product that is used by Dekkers [2], and thus is used by Rival
Foods, is as follows:

"We describe a fibrous product as a protein matrix, which is disrupted by a dispersed, deformed, weak
phase: filaments that act as matrix breakers. When this dispersed phase is not or insufficiently deformed,
an isotropic product is obtained, whereas sufficient deformation of the dispersed phase results in anisotropic
properties. This dispersed, deformed phase may be weak, or the adhesion between the continuous and the
dispersed phase may be weak. Upon stretching the material, it will break upon the deformed, dispersed
phase, resulting in a fibrous appearance as shown in Figure 2.1. The dispersed phase is aligned in the
shear flow direction, while there is no orientation in the other directions."

Figure 2.1: Fibrous appearance of a product prepared from a soy protein isolate (SPI) - pectin blend at 140 °C in a conical shear
cell [2]

To create a fibrous structure, a mixture containing solids and liquids is normally required. The solids
consists of mostly protein and/or polysaccharides and the liquid is water. The mixture of solids can be
created from separate ingredients, such as soy protein isolate (SPI) and wheat gluten (WG) but there are
also naturally occurring ingredients which contain both of these solids, such as soy protein concentrate

1"

12 2. Literature Review

(SPCQ). In the products created up till now, almost no fat has been used. If sustainability is considered
most important in the production process then it is better to choose the SPC option. This is due to the
fact that quite a lot of energy is required in order to create SPI, because soy beans have to go through
extensive fractionation processes.

In order to create the most fibrous structure, many different ingredient mixtures have been tested [2], of
which the mixtures with SPl and SPC seemed most promising. There are 3 ingredient compositions which
have been the most successful for creating structure. These mixtures are as follows:

1. 23 wt% SPI, 7 wt% WG, 69 wt% demineralized water, and 1 wt% sodium chlorine
2. 35 wt% SPC and 65 wt% demi water
3. 45 wt% SPC and 55 wt% demi water

Since this research the ideal ingredient composition has been further optimized and currently a mixture of
15 wt% SPI, 15 wt% WG, 69.5 wt% demineralized water, and 0.5 wt% sodium chlorine is being used.

In previous research the water holding capacity (WHC) of the ingredient mixtures was measured and
experiments showed that the best structure was achieved when the dough was not completely hydrated.
Thus the mixtures were only hydrated to a certain level which was below the WHC, so that a crumbly
dough was created.

During the shearing process a certain amount of heat and shear are applied to the ingredient mixture over
a certain period of time. Diaz [15] has performed a parametric study for Krintiras' up-scaled Couette cell
design to find the optimal process temperature, time, and shear. This study showed that temperatures below
100 °C did not show the required structure. Decent structure could be created when the inner cylinder
had a rotation rate of 25-35 RPM, the process time had to be between 25-35 minutes and the temperature
at 120 °C. Using measurements of the Anisotropy Index (Al;) and visual inspection it was determined that
the best structure was obtained using 30 RPM, 30 minutes and 120 °C as process conditions.

2.2. Rheology 13

2.2. Rheology

Rheology is the branch of science that studies the way that a fluid flows and deforms in order to find
relations between force, deformation and time. The word rheology is a combination of the Greek words
‘rheo’ and ’logia’ which translate to 'flow’ and 'study of’, thus rheology means the study of flow. It is
important to know that rheology not only deals with the flow of fluids but also with the deformation of
solid-like materials. A part of rheology that is of special interest for this thesis is the behaviour of complex
viscoelastic materials which can exhibit behaviour of liquids as well as solids, depending on the forces that
are applied to it and the speed at which these forces are applied [16].

2.2.1. Solids vs fluids

In rheology a fundamental difference between solids and fluids can be found when looking at the mechanism
behind stress build up. The stress inside a solid material is determined by the amount of deformation the
material undergoes. As long as this deformation takes place in the linear elastic regime, this stress can
be calculated using equation 2.1.

=Gy (2.1
Where G is the shear modulus and y is the shear strain.

In rheology, fluids can be classified as either Newtonian or non-Newtonian. An overview with common
types of fluids is shown in Figure 2.2

Shear stress (T) [Pa]

Shear rate (y) [s]

Figure 2.2: Overview of the stress as a consequence of an applied steady state shear flow in common types of fluids in rheology [17]

In Newtonian fluids the shear stress and shear rate are linearly related, as shown by Equation 2.2.
Therefore the viscosity is only variable with temperature and pressure, where the viscosity generally
decreases at higher temperatures and increases at higher pressures.

T = _ 22
Hay (2.2)
Non-Newtonian fluids are those where the viscosity varies not only with temperature but also as a func-
tion of the applied shear rate or shear stress. The most common type of non-Newtonian behaviour is
pseudoplastic flow, or shear thinning flow, in which the fluid viscosity decreases with increasing shear.

2.2.2. Viscoelasticity
In materials science there is also a group of materials called viscoelastic materials. These materials
exhibit both the elastic behaviour found in solid materials and the viscous behaviour found in liquids while

14 2. Literature Review

being deformed. Depending on whether these materials behave more like a solid or fluid they are called
viscoelastic solids or viscoelastic fluids. A viscoelastic solid tends to go back to its original shape after
deformation, while a viscoelastic fluid does not resist changes in shape if it is given enough time to relax
all shear stresses.

Whether a material behaves more like a viscoelastic solid or liquid can be determined using dynamic
mechanical analysis (DMA). In such an analysis an oscillatory stress can be applied to the material and
the resulting strain can be measured. DMA can be performed in Small amplitude oscillatory shear (SAOS)
form or in Large amplitude oscillatory shear (LAOS) form. The two most used test modes used in DMA
are temperature sweeps and frequency sweeps.

2.2.3. Small amplitude oscillatory testing

SAOS tests are the most common method to measure the viscoelastic properties when using a rotational
rheometer [16]. In this test a sinusoidal oscillation is applied to the sample in a continuous manner. The
amplitude of the oscillation is the maximum strain or stress applied to the sample and the number of
oscillations per second is equal to the frequency of the test.

=

TOP PLATE OSCILLATES AT
A GIVEN STRESS OR S5TRAIN
AMPLITIDE

Figure 2.3: Illustration showing a sample loaded between parallel plates with an oscillatory (sinusoidal) shear profile applied [16]

A parallel plate setup is common for oscillatory testing. In this setup a sample is placed in the gap (h) that
exists between two plates. The upper plate can be oscillated at adjustable stress and strain amplitudes and
frequencies (Figure 2.3). The motion created by the oscillating plate can be represented as a sinusoidal
wave, where the strain or stress amplitude can be plotted on the y-axis and the time on the x-axis. In a
controlled strain test the anqular displacement is the controlled variable and the measured torque required
for that displacement is used to calculate the shear stress. In a controlled stress test the an oscillating
torque is applied to the upper plate and the amount of anqular displacement is measured, which is used
to calculate the strain.

The ratio of the applied stress (or strain) to the measured strain (or stress) gives the complex modulus (G*),
which is a quantitative measure of material stiffness or resistance to deformation.

G =G +iG" (2.3)

G = ? % c0s(0) (2.4)
0

G = ‘67—;’ + sin(6) (2.5)

Where 0¢ and ¢g are the amplitudes of the stress and strain respectively, and & is the phase shift between
them as shown in Figure 2.4.

2.2. Rheology 15

Max stress Max stress § Max stress
>

: » ‘
Max strain Max strain 5 Max strain

<

Elastic (6 =0) Viscoelastic (0 <& <90°) Viscous (& =90°)

Figure 2.4: Stress and strain wave relationships for a purely elastic (ideal solid), purely viscous (ideal liquid) and a viscoelastic
material [16]

For a material that is purely elastic, where the stress is proportionate with the strain, the maximum stress
will be at the maximum strain and therefore the stress and strain are in phase. For a material that is purely
viscous, where the stress is proportionate with strain rate, the maximum stress will be at the maximum
strain rate and therefore the stress and strain are out of phase by a quarter of a cycle (90° or 7/2 radians).
Since viscoelastic materials show a combination of elastic and viscous behaviour, the phase difference
between stress and strain will be somewhere between these two extremes.

If the elastic modulus is bigger the material is called a viscoelastic solid and if the viscous modulus is
bigger the material is called a viscoelastic liquid. The complex viscosity of a viscoelastic material can be
calculated using Equation 2.6.

In*|= (%)2+ (G—”)z (2.6)

w

The complex viscosity of viscoelastic materials is a useful property to know because of the Cox-Merz
relation. The Cox-Merz relation can be used in case it is not possible to perform steady state viscosity
measurements under the required process conditions, due to equipment restrictions or sample breakdown.
It was observed by Cox and Merz [18] that for many polymeric systems an empirical relation exists between
the steady state shear viscosity, 7, plotted against shear rate, y, and the magnitude of the complex viscosity,
In*|, plotted against angular frequency, w, see Equation 2.7

In* (@) =ny) (2.7)

16 2. Literature Review

2.3. Mixture properties

A short description of the rheological measurements performed on Rival Foods' ingredient mixture in
previous research by Krintiras [12] and van Dijk [13] will be given below, where the measurement methods
and data processing will be explained. As described in section 2.2.1, the viscosity of non-Newtonian fluids
can be dependent on shear rate (apart from the temperature dependency).

This type of behaviour has also been found in Rival Foods’ unprocessed ingredient mixture. Three dif-
ferent mixtures have been tested, one based on Soy Protein Isolate (SPI) and two based on Soy Protein
Concentrate (SPC). The composition of each of the mixtures was as follows. The first mixture contained
23% SPI, 69% demineralized water, 1% sodium chlorine, and 7% gluten. The second mixture contained 35%
SPC and 65% demi water. The third mixture contained 45% SPC and 55% demi water.

During these measurements a frequency sweep was performed at constant temperature to find the elastic
modulus G', also called the storage modulus, and the viscous modulus G”, also called the loss modulus,
at different frequencies. The results from these measurements on the SP| sample are shown in Figure 2.5.
The measurements were performed using a TA Instruments AR-G2 Rheometer at the Chemical Engineering
Faculty of the TU Delft.

100000 -
o m
© 1000 -
o
&
=
: s
= 100 A —G"
10 A
1 1 T I
0.1 1 10 100
Frequency (rad/s)

Figure 2.5: Results oscillatory test with SPI and wheat gluten mixture [13]

The moduli were then used to calculate the complex viscosity using equation 2.6. The complex viscosity is
plotted against the angular frequency and the power-law model fitted to these data points. In Figure 2.6
it can be seen that the trend line has a perfect fit with R? =1 using the Equation y = 16603x 0878,

Using the Cox-Merz rule, the complex viscosity is taken equal to the dynamic viscosity. The relations
between the shear stress and shear rate, and between the viscosity and shear rate for a power-law fluid
are shown in Equation 2.8 and Equation 2.9. Equation 2.9 shows, that contrary to the Newtonian fluid
model which uses a viscosity y, the power-law model makes use of two different parameters, namely K
and n. K is the flow consistency index with Sl units [Pa = s"], and n is the flow behaviour index which is
dimensionless. By equating the trend line formula and Equation 2.9, the power-law indices were calculated
and the following values were found, K =16603 and n=0.13.

T:K(Z_;)" (2.8)

2.3. Mixture properties 17

“zk(ﬂ)"l (2.9)

1000000 -

100000

y = 16603x0-878
10000 - R2= 1
1000 -

=@==SP| + Water
100

Complex viscosity(Pa*s)

10 -

1 1] 1
0.1 1 10 100

Frequency(Rad/s)

Figure 2.6: Complex viscosity of the SPI mixture with a regression line [13]

The same tests were also performed for both of the SPC mixtures. For the 35% and 45% SPC mixture this
resulted in power-law indices of K=93097 and n=10.102, and K =171015 and n =0.123 respectively.

In van Dijk’s research several features were mentioned that may have impacted the accuracy of the mea-
surements. First, the measurements were not performed under optimal conditions, due to the sample not
being in a closed chamber. This means that water could evaporate out of the sample during testing, which
may have influenced the composition and therefore the results. Secondly, it was reported that the mea-
surements have all been performed at room temperature, even though the viscous properties of the SPC
mixtures were highly influenced by the temperature. This temperature dependence was therefore not taken
into account in the measurements.

18 2. Literature Review

2.4. Couette flow and Taylor-Couette flow

In fluid dynamics Couette flow is the flow between two parallel plates, where one of the plates has a
tangential velocity relative to the other. The velocity profile of the Newtonian fluid in between the plates
can be visualised as in Figure 2.7.

y dimension

boundary plate
(2D, movm)g) velocity, u

shear stress, 1

fluid ient, =—
Y

boundary plate (2D, stationary)

Figure 2.7: Simple Couette configuration using two infinite flat plates [19].

Couette flow between infinite parallel plates is often imitated by using a Couette cell, in which Taylor-
Couette flow can be found. A Couette cell consists of two concentric cylinders, both of which can rotate,
with a fluid in between.

A Couette cell can be characterized by the following parameters:

o the radius ratio, n = %
i =_L_
e the aspect ratio, I' = g
e the Reynolds number at the inner cylinder, Re; = —Ri(R”;R”Qi
e the Reynolds number at the outer cylinder, Re, = —R"(RO;R”QO

Where R;[m] and R,[m] are the inner and outer radius, L is the height of the Couette Cell, Q;[rad/s]
and Q,lrad/s] are the angular velocities at the inner and outer cylinder, and v[m?/s] is the kinematic
viscosity.

Couette cells with a radius ratio 11> 0.97 are described as "narrow-gap" cells [20]. The Couette cell used in
this study has a radius ratio n=0.83 and is called a "wide-gap" concentric-cell cylinder. If the radius ratio
is not close enough to the value 1, the flow in the Couette cell can no longer be used as an approximation
of the flow between two infinite plates because the velocity gradient will deviate too much from the linear
relationship shown in Figure 2.7.

This study, apart from using a wide-gap Couette cell, also uses a non-Newtonian fluid, for which the velocity
gradient across the cylinder gap by definition does not follow a linear relationship. The velocity profile
and the shear rate can be calculated for given boundary conditions and fluid properties. The following
boundary conditions are used: vg, = QR; at r = R;, and vy, =0 at r = R, where vy is the azimuthal velocity
of the rotating cylinder.

With only the inner cylinder rotating the shear stress can be defined as [21]

2.4. Couette flow and Taylor-Couette flow 19

T

T=—n— (2.10)
2an?H

where 7 [Pa] is the shear stress, T [Nm] is the torque applied at the inner cylinder, and H [m] is the height
of the Couette cell.

The shear stress for a power law fluid can be written as

(2.11)

n
= Ky" =K(rd(”9”))

where 7 [s7] is the shear rate, K [Pa-s"] is the consistency index and n is the flow behaviour index. Using
Equations 2.10 and 2.11 the shear rate can be calculated [22]

) T (1/n) 1
r= (ZnKH) rein (2.12)

After integrating Equation 2.12 and applying the boundary condition vy, =0 at r = R, Equation 2.13 is
found

o T \YP[1 1 i
"= \2nkH R2IW r@im (2.13)

Applying the boundary condition vy, = QR; at r = R; yields Equation 2.14

2.14
1 1 2nKH ()

R(()Z/n) R[{Z/n)

20 (T)(1/71)
" |

Substituting the left hand side of Equation 2.14 into Equation 2.12 results in Equation 2.15, which results
in the relation between the rotational speed of the inner cylinder and the shear rate profile across the
Couette cell gap

20 1
] Crem

7= (2.15)
1 1

nl|——-—
RE)Z/n) REZ/n)

Substituting the left hand side of Equation 2.14 into Equation 2.13 results in the relation between rotational
speed and the azimuthal velocity

(2.16)

Qr 1 1)
Vg =

1 1] R(()Z/n) r@/in)

R(ﬂZ/n) REZ/n)

20 2. Literature Review

2.5. OpenFOAM solver

In order to model the process in OpenFOAM it is important to use the right solver. OpenFOAM offers a
wide range of different solvers for many different purposes. Each of the solvers offers a unique combination
of problems that it is able to handle. For OpenFOAM's 2012 version, which contained 23 standard solvers,
a capability matrix has been produced which gives a clear overview of the capabilities for each of the
standard solvers that came with OpenFOAM, as can be seen in Figure 2.8. Alas such a capability matrix
is not available for the newest OpenFOAM version from June 2020, which already comes with 48 standard
solvers. Apart from the standard solvers there are also many more custom made variants. It is possible
to use the already existing customized solvers, but it is important to remember that OpenFOAM is open
source software and every 1 or 2 years a newer version is published. Over the years many customized
solvers have been created which very often are no longer fully functional with newer OpenFOAM versions.
So trying to use them can cause a lot of unnecessary complications. Therefore the choice has been made
to stick with the standard solvers which are supported in all OpenFOAM versions. To find out which
solver meets the requirements it is important to determine the assumptions for the model. For each of the
capabilities a short explanation will be given on its importance:

e Transient - The process to be modelled is a transient one, so this is a requirement.

e Compressible - The density of the ingredient mixture is roughly the same as that of water. In
fluid calculations the assumption is often made that water is incompressible and thus it is deemed
reasonable to make the same assumption for this system.

e Viscosity model - The SPl and WG mixture shows non-Newtonian behaviour and therefore the solver
should be able to handle non-Newtonian viscosity models. In this case the non-Newtonian behaviour
seems to follow a temperature dependent power-Law model, and therefore it would be ideal if the
solver is able to handle this.

o Turbulence - The maximum velocity inside the dough mixture occurs near the rotating inner cylinder.
If the inner cylinder rotates at 30 RPM and has a radius of 0.159m then the velocity at the surface
where the dough and cylinder contact each other will be 0.5 m/s. In a study by van Dijk [13] it
has been shown that the Reynolds number stays below 0.02 for the case where R; =0.095m and the
rotational speed is 30 RPM. In this thesis similar dimensions and process conditions apply and thus
the laminar flow can be safely assumed.

e Heat-transfer - The simulation of the temperature distribution inside the ingredient mixture during
processing is a requirement and thus this is necessary. It is important to note that it is possible to
add the temperature equations to solvers which do not take into account heat transfer. This would
require customizing the solver, for which tutorials are available.

e Buoyancy - Constant density will be assumed in this model and thus buoyancy effects can be
neglected.

e Combustion - No combustion will take place in this process.

e Multiphase - The mixture is assumed to be a homogeneous fluid and thus multiphase calculations
are not required.

o Particles - No particle calculations will be required in this process, because the dough mixture
will be treated as a homogeneous fluid, instead of looking at every single particle alone, which is
not possible yet due to several reasons. First of all because the mechanics behind the interaction
between the SPI and WG mixture are not yet fully understood and secondly because this would
require an enormous amount of computational power.

e Dynamic mesh - This is not required, since for this model the velocity can be implemented via a
‘rotatingWallVelocity" boundary condition, which will be explained later on.

e Multi-region - Can be useful if the cylinder walls and possibly the heat transfer medium outside of
the cylinder walls are to be simulated in the model as well.

e fvOptions - This offers a collection of run-time selectable finite volume options to manipulate systems
of equations by adding sources/sinks, imposing constraints and applying corrections. This could be
useful, but is not required.

2.5. OpenFOAM solver 21

Capability matrix

g o L] 8
boundaryFoam
buoyantPimpleFoam o o o o o o
buoyantSimpleFoam o o o o o
chemFoam S o o
chtMultiRegionFoam o o o o o o o
coldEngineFoam o o o o o o o
engineFoam o o o o o o o
fireFoam J o J o J o o J
icoFoam S
interFoam S S S S S
laplacianFoam o o
pimpleFoam o o o o
pisoFoam o o o

potential Foam

reactingFoam o o o o o o
reactingParcel Foam o o o o o o o o
rhoCentralFoam S o S o

rhoPimpleFoam o o o o o o
rhoSimpleFoam o o o o
scalarTransportFoam o

simpleFoam o o
sprayFoam o o o o o o o o
¥iFoam o o o o o o

Figure 2.8: Capability matrix from OpenFOAMs userguide v2012 [23]

Using the aforementioned required capabilities, a suitable solver can be selected. For this project non-
NewtonianlcoFoam was chosen to start with. This is a transient solver for incompressible, laminar flow of
non-Newtonian fluids. As implied by the name, this solver is the same as the regular icoFoam solver apart
from the fact that it can handle non-Newtonian fluids as well.

IcoFoam (or non-NewtonianlcoFoam to be precise) is a solver for which quite a lot of customization tutorials
exist, allowing for example the addition of the temperature equations. For solvers with more capabilities it
is often more complicated to customize the solver, because much more has to be altered, making it a more
tedious process.

Temperature dependency of the
Power-Law parameters

In previous research the power-law parameters have been determined for several of the mixture compositions
used by Rival-Foods. All the measurements on these mixtures were performed at room temperature, while
the real process takes place in the temperature range from roughly 20 degrees Celsius to 130 degrees
Celsius. In the study by Van Dijk it was stated that experience with the Couette cell suggested the viscous
properties of the mixture were highly influenced by the temperature, which was not taken into account in
that study. Therefore the model can be improved if the temperature dependency of the power-law model
can be added to the model. It is important to note that the research by Van Dijk has been carried out
in 2014. Since then the ingredient mixture and production process has been optimised, which results in
different product properties.

3.1. Plan of approach

The method to determine the values of K and n has been shown in Section 2.3. Using the same method
a new plan of approach can be made on how to determine the temperature dependency of the power-law
coefficients.

The temperature range of interest is determined by the temperatures that the mixture will go through during
processing, which is 20-130°C. In order to find the temperature dependency the measurements need to be
performed at several temperatures. In this case the choice was made to take measurements at the following
5 discrete intervals, 25/50/75/100/125°C.

The frequency range and the amount of measurement points that have been taken during testing need
to be determined as well. The frequency range used is 0.1-10 Hz instead of 0.1-100 Hz, because the
RPA Elite rheometer has a maximum frequency of 50 Hz. A total of 10 measurement points have been
used in the range from 0.1-10 Hz. During Van Dijk’s research it was necessary to have more detailed
data in order to determine how the fluid behaved. In the current case the material is already expected to
behave as a power-law fluid and the tests are performed to find out how the graph shifts (change in K)
and how it's angle changes (change in n) under the influence of temperature. Due to corona restrictions
no measurements could be performed at the TU Delft. Therefore the measurements were performed by a
member of the Rival Foods team, Matthijs van Alfen, who had to go to Wageningen University in order to
perform the measurements.

The strain percentage used in Van Dijk's experiments has not been reported and therefore cannot be
reproduced. In the new tests a small strain percentage of 0.977% has been used, which falls in the
linear viscoelastic region (LVR) as shown by Dekkers [2]. This means that the tests are Small Amplitude
Oscillatory Shear (SAOS).

In previous research by Dekkers [2] and Schreuders [24] time sweeps have been performed on the mixture
at different temperatures to find how the apparent (G’) or complex modulus (G*) changed over time. Their

23

24 3. Temperature dependency of the Power-Law parameters

measurements have been performed on a mixture consisting of 20 wt% SPI and 20 wt% WG instead of
the 15 wt% SPI and 15 wt% WG that is used in the mixture nowadays, but it should still give a decent
indication of the time dependency of similar mixtures. The measurements in Dekkers’ research showed
that at 95°C after the first 5 minutes the apparent modulus stayed roughly constant and similar results
have been obtained by Schreuders. In Figure 3.1 the solid green line shows the behaviour of a 40 wt.%
SPI-WG mixture (50-50). It can be seen that after 5 minutes this line stays roughly horizontal, indicating
that the apparent G’ has stabilized.

100 100
A E B
Z 10 < 10
@) - e © o’
= o] p
& 1 o 1
E ¥ g T
0.1 F 1 L 1 0.1 : : :
0 5 10 15 0 5 10 15
Time (min) Time (min)

Figure 3.1: From Dekkers’ thesis [2] "Apparent storage modulus (G’) measured during a time sweep at high strain (80%) and high
frequency (10 Hz) and the apparent storage modulus (G’) calculated based on the isostrain (gray solid line) and isostress (gray
dashed line) models: A) 40 wt.% SPI (blue line), 40 wt.% WG (orange line), and 40 wt.% SPI-WG (50-50) (green line), calculated 40
wt.% SPI-WG (50-50) based on mass fraction (50-50) with power law. B) 33 wt.% SPI (blue line), 50 wt.% WG (orange line), and 40
wt.% SPI-WG (50-50) (green line), calculated 40 wt.% SPI-WG (50-50) based on volume fraction (0.62-0.38) with power laws (gray
solid line is isostrain and gray dashed line is isostress), standard deviation is plotted every min."

This means the behaviour of the mixture is not only shear and temperature dependent, but also time
dependent. This makes the measurements on the mixture more complex, due to the fact that there is
intricate coupling of the process variables. With the machinery available it is impossible to completely
decouple all these process variables in order to measure them independently. Therefore it seems best to
first let the mixture sample settle for 5 minutes at the temperature at which the measurements are going
to be performed. The 5 minute waiting time at elevated temperature can be performed statically or under
oscillatory shear, where the latter option is expected to give the most similar results when compared to
the real steady shear process, where deformation of the dough also occurs during heating. Therefore the
choice was made to use this approach.

The measurements have been done using the RPA Elite rubber process analyzer. It is important to note
that these tests have been performed on a mixture which is not exactly the same as before. The ratio of
the components has changed from 23% to 15% SPI, from 7% WG to 15% and from 1% to 0.5% salt. The SPC
mixture mentioned in Van Dijk’s report is no longer in use by Rival Foods due to the fact that the SPI
mixture results in a more structured final product.

3.2. Data processing 25

3.2. Data processing

The data from the SAOS measurements consisted of five data sets, one set for each temperature interval.
At each temperature two measurements were performed. The data was then processed as described in
Section 2.3. During the processing some issues were encountered at 100°C and 125°C which will be
discussed later on. In the following 5 subsections the produced data will be shown per temperature
interval.

3.2.1. Data at 25°C

All the raw data from the measurements with the RPA Elite Rheometer can be found in Appendix A. This
data has been used to calculate the average, the standard deviation, and the standard error of the mean
for the elastic modulus G/, the viscous modulus G", and the complex viscosity n*. The average G' and G"
together with their standard error of the mean (SEM) error bars have been plotted against the frequency
in Figure 3.2. It can be seen that the elastic modulus is roughly 2 to 3 times higher than the viscous
modulus over the entire frequency range. It is important to note that the error bars might give a distorted
view of the actual errors because the vertical axis has a logarithmic scale. Therefore it is useful to use the
raw data in the appendices as well.

25 °C - WG/5SPI mixture (15/15 wt.%)

100,0

7 100) + —

= tp—— > v

= 2)

-

5 W =+—Average G’

£ 1.0 I == Average G
0,1
0,1 1,0 10,0

Frequency [Hz]

Figure 3.2: Graph of the elastic and viscous modulus vs frequency at 25°C

Using these values of G’ and G" the complex viscosity has been calculated according to Equation 2.6. In
Figure 3.3 the complex viscosity data is shown in green. The black line is a Power-Law fit to the data.
The Power-Law parameters can be found by setting the equation for the Power-Law fit in Figure 3.3 equal
to Equation 2.9, which results in K =999.50[Pa-s"] and n =0.180.

In Figure 3.3 the value R? is also shown. This is the squared Pearson correlation coefficient. The Pearson
coefficient is calculated according to Equation 3.1. A value of 1 indicates perfect alignment between the
two sets of data while a value of -1 would mean the opposite. On a log-log scale this coefficient can be
used to suggest that the data follows the Power-Law relationship, but only if a high value of R? is found.
A low value for R? would suggest the data follows a different relationship or contains random noise. In
this case the problem is that the log-log correlation is a necessary but not sufficient condition to actually
prove a Power-Law relationship. Based on the values found for R? in this section, the assumption that the
Power-Law relationship is valid does not have to be rejected.

26

3. Temperature dependency of the Power-Law parameters

Y X=Xy

i=1

Irl=
= 2 —2
Y (xi =% (yi-7)
i=1
100000,0
7 10000,0
£
£ 10000
w
g
E ¥ = 99955042 ——— Average n¥
i 1000 R*=0,5994
- —— Macht (Average n*)
£
3 10,0
1,0
0,1 1,0 10,0 100,0
Frequency [Hz]

Figure 3.3: Graph of the complex viscosity n* vs frequency at 25°C

(3.1)

3.2. Data processing

27

3.2.2. Data at 50°C
The Power-Law parameters calculated at 50°C are K =599.95[Pa-s"] and n=0.198.

50 °C - WG/SPI mixture (15/15 wt.%)

1000
- 10,0
£
=
E M
E 4 e Ayerage G'
g 1,0 & = Average G
01
01 1,0 10,0
Frequency [Hz]
Figure 3.4: Graph of the elastic and viscous modulus vs frequency at 50°C
100000,0
& 10000,0
£
£ 10000
w
g
£ = fyerage n*
Z 1000 y = 509,95 2502 g8 n
'E, R*=0,994 ——Macht |Average n*)
£
3 10,0
1,0
0,1 1,0 10,0 100,0
Frequency [Hz]

Figure 3.5: Graph of the complex viscosity n* vs frequency at 50°C

28 3. Temperature dependency of the Power-Law parameters

3.2.3. Data at 75°C
The Power-Law parameters calculated at 75°C are K =653.20[Pa-s"] and n =0.089.

75 °C - WG/SP| mixture (15/15 wt.%)
100,00
10,00
7 . ———————t
ﬂ = v
£ 100 |
E e Aversge G’
g el Aversge G
010 |
0,01
01 1.0 10,0
Frequency [Hz]
Figure 3.6: Graph of the elastic and viscous modulus vs frequency at 75°C
100000,0
7 100000 |
£
£ 10000
o
g8
'g s Byerage n*
= 1000 ¥ = 653,208
-E. R* = 0,9983 —— Macht (Average n*)
£
3 10,0
1.0
01 1,0 10,0 100,0
Frequency [Hz]

Figure 3.7: Graph of the complex viscosity n* vs frequency at 75°C

3.2. Data processing 29

3.2.4. Data at 100°C

The results at 100°C were anomalous and therefore require a more detailed description. Originally,
when only 2 measurements were performed, the Power-Law parameters calculated at 100°C were K =
1280.60[Pa - s"] and n = —-0.01. A value of n =0 would mean the flow is infinitely shear thinning and
therefore a negative value for n is physically impossible, meaning there has to be something wrong with
this result. As a first check an additional measurement was performed to find out if a similar result
would be produced. Combining the data from the 3 measurements the new Power-Law parameters were
K =1495.60[Pa-s"] and n = —0.005, thus the value of n was still non-physical. The Power-Law parameters
have also been calculated based on each measurement on itself. The first measurement would result in
K =1233.00[Pa- s"] and n =0.005, the second in K =1325.30[Pa-s"] and n =-0.024, and the third in
K =1924.20[Pa-s"] and n=0.003. The values for 2 out of 3 of these measurements could be physically
possible, but it is important to realise that such low shear thinning indices are still unlikely to be true.
A more detailed discussion on why these values could have been found will be provided in Section 3.3.
For the OpenFOAM model the values K =1495.60 and n = 0.005 were used. Here a small positive value
of n was used in order to keep the OpenFOAM simulation from crashing due to infinitely shear thinning
behaviour.

100 °C - WG/SPI mixture [15,"’15 wi. %)
100,00
10,00 $m— = T T
g
=
2 100
= = Average G’
-
g el Average G
0,10
0,01
01 1.0 10,0
Frequency [Hz]

Figure 3.8: Graph of the elastic and viscous modulus vs frequency at 100°C

30

3. Temperature dependency of the Power-Law parameters

= 1495 Gu 1003 ——— Ayerage n*
RZ=0,999
—— Macht (Average n*)

100000,0

& 100000

£

£ 10000

v

2

.;

% 1000

3

[}

£

3 10,0
1,0

0.1

1.0 10,0 1000
Fregquency [Hz]

Figure 3.9: Graph of the complex viscosity n* vs frequency at 100°C

3.2. Data processing 31

3.2.5. Data at 125°C

At 125°C the standard error of the mean (SEM) calculated for the complex viscosity was often as big
as 50% to 60% of the average value. Because the variation between the data sets was this big, an
additional measurement was performed. The complex viscosity calculated from the data at 125°C for the
three measurements is shown in Figure 3.10 to give the reader some idea of the variation. Apart from
the complex viscosity, the raw data for the elastic and viscous moduli, G’ and G", can also be studied to
gain more insight in these large variations. In Figure 3.11 the raw data is shown that is used to calculate
the average G’ and G" which are shown in Figure 3.12. In theory more measurements could be performed
to reduce the SEM, but this was no longer achievable in the current project. The average Power-Law
parameters calculated at 125°C are K =691.09[Pa- s"] and n=0.084.

Frequency [Hz] n* [Pa®*s] - Test #1 n* [Pa®s] - Test #2 n* [Pa*s] - Test #3
10,000 80,841 27,742 111,627
5,988 153,271 86,656 210,119
3,597 203,826 74,022 345 688
2,155 371,465 134,900 508,611
1,292 659 667 226,803 756,130
0,774 1077,978 324 747 1396,076
0,464 1797,186 564,869 1850,814
0,278 2759,006 999 096 3902787
0,167 4393197 978,233 5536,570
0,100 7267653 3285149 3904,066

Figure 3.10: Comparison of the complex viscosities calculated for the data from measurement #1, #2, and #3

32 3. Temperature dependency of the Power-Law parameters

Frequency [Hz] G" [kPa] - Test #1 G [kPa] - Test #2 G" [kPa] - Test #3
10,000 5,019 1,729 6,831
5,988 5,688 3,179 7,786
3,597 4 573 1,004 7,778
2,155 5,019 1,785 6,867
1,292 5,298 1,840 6,132
0,774 5,242 1,171 6,607
0,464 5,242 1,506 5,391
0,278 4,740 1,673 6,662
0,167 4 406 0,948 5411
0,100 4015 2,063 1,608
Frequency [Hz] G" [kPa] - Test #1 G" [kPa] - Test #2 G" [kPa] - Test #3
10,000 0,781 0,223 1,591
5,988 0,948 0,725 1,367
3,597 0,558 1,338 0,739
2,155 0,335 0,390 0,514
1,292 0,781 0,056 0,277
0,774 0,056 1,060 1,563
0,464 0,056 0,669 0,231
0,278 0,892 0,502 1,444
0,167 1,338 0,390 2,114
0,100 2175 0,056 1,853

Figure 3.11: Comparison of the elastic and viscous moduli for the data from measurement #1, #2, and #3

125 °C - WG/5PI mixture |',15,|"15 wit. %)

1000
g 10,0])
= - I P
2 - —t—T 11 =
E *_”/{’_ I e Average G’
g 1,0 el Average G"

01
01 10 10,0
Frequency [Hz]

Figure 3.12: Graph of the elastic and viscous modulus vs frequency at 125°C

3.2. Data processing

100000,0
F 100000
£ L
£ 10000
w
8
o — *
% 1000 ¥ = 691,009518 verese
_g. R =0,9955 ——Macht (Average n*)
E
] 10,0

1,0

01 1.0 10,0 1000
Fregquency [Hz]

Figure 3.13: Graph of the complex viscosity n* vs frequency at 125°C

34

3. Temperature dependency of the Power-Law parameters

3.3. Results for the temperature dependency of the Power-Law param-

eters

The values for K and n that have been calculated are plotted in Figure 3.14 and Figure 3.15 to give a
clear overview of how they vary with temperature. The error bars included show the SEM.

K [Pa*sn]

1800
1600

K

5

a0 a0 100 120 140
T[C]

Figure 3.14: Graph of the temperature dependency of K, where the error bars show the SEM.

0,25
0,2
0,15
0,1

¥

0,05

-0,05

i
_‘__|

a0 a0 100 120 140
T[C]

Figure 3.15: Graph of the temperature dependency of n, where the error bars show the SEM.

The large variations found in the data for the elastic and viscous moduli could be caused by a low precision
of the measurement equipment in the specific measurement range. The torque range for the RPA Elite
Rheometer is 0.0001 to 25 Nm. In the raw measurement data, the measured torque values sometimes
reach values of 0.0001 or 0.0000 Nm, which is at this limit. The RPA Elite uses the measured torque in
combination with shape factors to calculate the G’ and G', viscosities, and shear stresses etc. Therefore

3.3. Results for the temperature dependency of the Power-Law parameters 35

if the torque is being measured at the lowest end of its range it is possible that the resulting G' and G'
values change in a choppy manner due to the resolution of the equipment.

In the process of calculating the Power-Law parameters K and n for the SPI and WG mixture, the as-
sumption is made that the Cox-Merz rule holds. This means the complex viscosity calculated from the
oscillatory measurements can be set equal to the dynamic viscosity. This assumption has also been used
in the studies by Van Dijk and Krintiras. However, this assumption could be faulty, which can be tested
with the right equipment. This equipment should be able to perform steady shear torque measurements
on a sample at the specific constant temperatures. It is also important to note that at lower frequencies
the influence of the resolution for the measured torque values gets bigger. Revisiting the equation for
the complex viscosity, see Equation 3.2, it is clear that the smaller the value of w becomes, the larger
the influence of the resolution of the measured torque (used to calculate G’'and G') becomes. Since the
frequency varies from 0.1 to 10 Hz this means that the resolution errors in measuring the torque at the
lower frequencies get magnified up to a 100 times in comparison to the errors at the highest frequencies.

1= (%,)2+ (G—")Z (32)

w

The curve fitting of the Power-Law equation to the complex viscosity plotted on a log-log scale in Excel
uses the least squares method. This method minimises the sum of the squares of the offsets of the points
from the curve. It is important to note that the highest values of the complex viscosities on the log-log
scale are attained at the lowest frequencies. This means that the Power-Law curve fit in Excel prioritises
perfectly fitting the lower frequencies over the higher frequencies. Remember that the lowest frequencies
contained the biggest influence of resolution errors. Therefore the reliabability of this curve fit could be
compromised. This is expected to be partly responsible for the nonphysical negative value of the Power-
Law parameter n that was encountered after fitting the data at 100°C, and of course this also introduces
errors in the other curve fits.

Apart from the nonphysical value of n and the large variations between the measurement data, the way that
K and n vary with the temperature might seem strange. It is important to realise that multiple processes
and interactions take place at the microscopic scale under the influence of temperature and time which
have been researched by Dekkers and are still being researched at Wageningen University and Research.

In the SPI-WG mixture, the soy proteins are denatured before it enters the mixture, but the vital wheat
gluten go through a polymerisation and de-polymerisation process as shown by Emin [25]

In Figure 3.16 the change in complex modulus as a function of increasing temperature can be seen. All
three water contents show the same behaviour where the complex modulus initially shows a decrease, then
an increase, and then a final decrease. Emin’s study stated that the initial decrease can be directly related
to the higher molecular mobility due to increased temperature. The increase that follows is caused by the
polymerisation/aggregation reactions of glutenin and gliadin molecules, which results in a cross-linked
network structure. The final decrease is caused by the de-polymerisation.

36 3. Temperature dependency of the Power-Law parameters

10000

1 20% water =,
1000+ %
3 1000 E ~
] 8, _‘_*M‘-‘_‘-
(g 1 4 " T
= 1 30% water . _,_.-.1:' L B 1
arbe i
5 100+ "'—:a....&Ii‘h.lf "n
o E s a® L |
E 3 =
P] [} Z
2 n gy Cagp ¥ g
Q 40% water — W g
E 10- ol BT B water content (w/w):
8 E B 40%
3 ® 30%
: 20%
4 f1Hz, 1%
dT/dt: 3 K/min
1 ——— ; : .

| | I I 3
20 40 60 80 100 120 140 160 180

Temperatur T [°C]

Figure 3.16: Change in the complex modulus (G*) as a function of increasing temperature at various water contents of 20%, 30%, 40%.
The temperature was raised with the rate of 3 K/min. The frequency and strain were kept constant at THz and 1% respectively [25].

OpenFOAM Simulation Setup

The process of setting up the OpenFOAM case will be described in this chapter. Section 4.1 will describe
the equations used in the OpenFOAM model. Section 4.2 explains how the solver has been customized.
Section 4.3 describes the process of customizing the power-law viscosity model. Section 4.4 describes how
the directory structure is created and organized. Section 4.5 will describe the geometry used. Section 4.6
contains the boundary conditions. Section 4.7 will describe the numerical schemes used in the simulations,
and finally Section 4.8 will explain which different cases have been simulated.

This chapter will include many short bits of code accompanied by explanations, which together should
create a clear overview of how the OpenFOAM code has been customized. The actual code might not be
of interest to everyone, but the inclusion of the code with the explanations alongside it might be of help
for future students who consider working with OpenFOAM. Simply adding the code as an Appendix with
a small description of the functionalities will not be as useful.

37

38 4. OpenFOAM Simulation Setup

4.1. nonNewtonianlcoFoam equations

As previously mentioned nonNewtonianlcoFoam is a solver that is able to handle transient, incompressible,
laminar problems for non-Newtonian fluids. It is not able to handle problems that involve heat transfer,
buoyancy, combustion, multi-phase flow, particles, and multi-region geometries [23]. Since heat transfer is
an integral part of this simulation the nonNewtonianlcoFoam solver has been customized, as will be shown
in Section 4.2.

IcoFoam solves the incompressible continuity equation (Eq 4.1) and incompressible laminar Navier-Stokes
equations (Eq 4.2) for the case of constant viscosity.

NonNewtonianlcoFoam solves the same continuity equation, but an extra term has to be included in the
momentum equations which results in Eq 4.3. In equation 4.2 and 4.3 u is the velocity [£'] v is the
kinematic viscosity [mTZ] and p is the kinematic pressure ’;’—22 which is the pressure divided by the density.
The symbol ® denotes the tensorial product.

V(@) =0 (4.1)
ol -
E+V (eu)-V-(vWii)=-Vp (4.2)
ol - . . = = - = -
—+V-(U®u)-V-(Wu)-Vii-Vv=-Vp (4.3)

The equations above are given in vector form but all the components can also be fully written out, resulting
in Equation 4.4, 4.5, 4.6, and 4.7.

6u+6uu+6vu+6wu Ovau Gvau Ovau 0vou O0vov Ovow Odp
0t Ox oy 0z 0x 0x 0y 0y 0z 0z O0x0x O0ydx 0z dx 0x

v Ouv Ovv Owv 0 Ov 0 Ov 0 Ov Ovou Ovov Ovow op
—_——_—V———V— - —— - — — - — — = (4.6)

E-’-E-’_E*— 0z vaax 0y 0y 0z 0z O0xdy O0ydy 0z dy oy

ow , duw ovw oww 0 0w 0 ow 0 ow dvou_oviv_dvow_ op o

—+ + + v v
ot 0x oy 0z O0x O0x 0y 0y 0z 0z O0x0z O0ydz 0z Oz 0z

When using nonNewtonianlcoFoam, the continuity and momentum equations are solved using the PISO
algorithm, which stands for Pressure-Implicit with Splitting of Operators. This algorithm was first proposed
by Issa in 1986. Since the original publishment of the PISO algorithm, improvements have been made
and the notation and form of the PISO algorithm that is currently used in nonNewtonianlcoFoam is most
similar to the algorithm described in Jasak's [26] and Rusche’s [27] PhD theses.

In short the algorithm consists of the following steps [23]:
1. Set the boundary conditions.
Solve the discretized momentum equation to compute an intermediate velocity field.
. Compute the mass fluxes at the cells faces.
. Solve the pressure equation.
. Correct the mass fluxes at the cell faces.

. Correct the velocities on the basis of the new pressure field.

N o g s W N

. Update the boundary conditions.

4.1. nonNewtonianlcoFoam equations

39

8. Repeat from 3 for the prescribed number of times.

9. Increase the time step and repeat from 1.

40 4. OpenFOAM Simulation Setup

4.2. nonNewtonianlcoFoam customization

This section describes how the nonNewtonianlcoFoam solver has been customized. A new solver, called
"'my_viscousHeatingSolver" has been created, which is based on a copy of the old nonNewtonianlcoFoam
solver. The folder structure of the my_viscousHeatingSolver looks as follows:

my_viscousHeatingSolver

L] Make

1inux64GccDPInt320pt
files
options

& createFields.H

ﬁ my_viscousHeatingSolver.C

The contents of the folder linux64GccDPInt320pt are automatically generated and therefore not shown,
since they will not have to be created or modified.

4.2.1. Adding the temperature equation

The first improvement to the nonNewtonianlcoFoam solver is the addition of the temperature equation to the
my_viscousHeatingSolver.C file. Assuming the material properties p, cp, and k are constant, Equation 4.8
is found.

pcp%—i-pcpv'(uﬂ =kV2T (4.8)

Dividing both sides of Equation 4.8 by pc, and taking the diffusion term to the left side results in Equa-
tion 4.9, where a = %,

%+V~(UT)—0N2T=O (4.9)

The my_viscousHeatingSolver folder contains two files:
e createFields.H
e my_viscousHeatingSolver.C

The temperature equation is added to the solver via the nonNewtonianIcoFoam.C file. The customised
version of nonNewtonianIcoFoam.C has been renamed to my_viscousHeatingSolver.C and can be found
in Appendix B.1. Because the transport of the temperature depends on the velocity, the temperature
equation is inserted after the calculations for the momentum equations, so after the PISO loop, but before
the time step is written in the code. The temperature equation in C++ code looks as shown in Listing 4.1

fvScalarMatrix TEqn

(

fvm::ddt (T)

+ fvm::div(phi, T)

- fvm::laplacian (DT, T)
E

TEqn.solve () ;

Listing 4.1: The temperature equation code

4.2. nonNewtonianlcoFoam customization 41

Here the command "fvm::" is used, which will discretize the term into the matrix equation. The command
"ddt(T)" indicates the use of the partial differential of the temperature to time. The phi used in the
temperature equation is the velocity. The transport property DT used is called the thermal diffusivity. In
heat transfer literature the thermal diffusivity is often denoted as «, see Equation 4.9. For the thermal
diffusivity a dimensioned scalar is created in the createFields.H file, for which the value and dimensions
will be read in from the transportProperties file as follows, see Listing 4.2.

dimensionedScalar DT
(

transportProperties.lookup ("DT")
)

Listing 4.2: Creation of the thermal diffusivity in the createFields.H file

The value of DT can be calculated as follows.

K 0.44 m?

DT =— = — " —123%107"— (4.10)
pcp 1020 %3500 S

In the transportProperties file which can be found in the constant folder, the value of DT has been
defined together with its dimensions, see Listing 4.3.

DT DT [0 2 -1 0 O O 0] 1.23e-7;

Listing 4.3: The thermal diffusivity value

On itself the icoFoam/nonNewtonianlcoFoam solvers only solve for the pressure and velocity fields. If the
solver is required to calculate the temperature equation this means a temperature field has to be created.
This temperature field has been declared in the createFields.H file, see Listing 4.4

Info<< "Reading field T\n" <<endl;
volScalarField T

(
I0object
(
nTn s
runTime . timeName () ,
mesh,
I0object::MUST_READ,
I0object:: AUTO_WRITE
),
mesh
);

Listing 4.4: Declaration of the temperature field

With the temperature field in place the next step is to create a new initial and boundary condition file in
the O-directory. Subsection 4.6.1 will provide a detailed description of this file.

After adding the temperature equation to the solver it is also necessary to tell OpenFOAM which numerical
schemes should be applied to these equations. This is done in the fvSchemes file, which can be found
under the system-directory. A divergence and Laplacian term have been added to the thermal transport
equation and therefore a numerical scheme has to be defined for both of these. Listing 4.5 shows what the
code looked like at first.

divSchemes
{
default none ;
div (phi,U) Gauss linear;

42 4. OpenFOAM Simulation Setup

by
laplacianSchemes
{
default Gauss linear orthogonal;
by

Listing 4.5: The original fvSchemes code

The code was then modified to the code shown in Listing 4.6. This code includes a term for the temperature
under the divergence header in line 5. The lines under laplacianSchemes have also been modified to include
the thermal diffusivity in line 13. The entire fvSchemes file can be found in Appendix B.4. Section 4.7
describes the reasoning behind selecting specific schemes.

divSchemes

{
default none ;
div (phi,U) Gauss linear;
div (phi,T) Gauss vanLeer;
}
laplacianSchemes
{
default none;
laplacian(nu,U) Gauss linear corrected;
laplacian((1|A(U)),p) Gauss linear corrected;
laplacian(DT,T) Gauss linear corrected;
}

Listing 4.6: The new fvSchemes code

Last but not least some information has to be specified in the fvSolution file, which controls the equations
solvers, tolerances, and algorithms. For the temperature the following section is added, see Listing 4.7.

T

{
solver BICCG;
preconditioner DILU;
tolerance le-14;
relTol 0;

}s

Listing 4.7: The fvSolution temperature section

Initially a temperature tolerance value of 1e-7 was used in the fvSolution file. However, multiple
simulations seemed to suffer from a problem; after running for some time the calculations for the temperature
profile, which should be performed for every cell at every time step, would simply stop being executed.
After many attempts of figuring out why this happened the cause was found. The temperature tolerance
is the convergence criterion used by the solver to check if more iterations for the temperature equation
are necessary. If the change in temperature is so small that the tolerance criterion is met already with 0
iterations, no iterations will take place. During some simulations the change in temperature was so small
that no iterations on the temperature equation were performed and therefore the temperature profile simply
stopped developing in these cells. After discovering this the tolerance was set to 1e-14 which solved the
problem. The entire fvSolution file can be found in Appendix B.5.

4.2. nonNewtonianlcoFoam customization 43

4.2.2. Adding viscous dissipation
Viscous dissipation is the irreversible process where the shear forces in a fluid create heat. This process
can be taken into account in this model by adding a viscous dissipation term to the temperature equation.

The temperature equation with viscous dissipation included looks as shown in Equation 4.11, where the
last term on the RHS is the viscous dissipation term.

oT
pcp%+pcpv-(uT):KV2T+‘r:Vv (4.11)

Dividing both sides of Equation 4.11 by pc, and taking the diffusion term to the left side results in
Equation 4.12.

orT 1
L+V'(uT)—aV2T=—T:Vv (4.12)
ot pcp

This term can be added to the temperature equation by adding line 6 to the code shown in Listing 4.8.

fvScalarMatrix TEqn

(

fvm::ddt (T)

+ fvm::div(phi, T)

- fvm::laplacian (DT, T)

== (1/c)*(tau && gradU) // viscous heat dissipation term
)

Listing 4.8: The temperature equation with viscous dissipation

Here it is important to note that the p is missing in the denominator on the right half side of the equation
because it has been incorporated in the tau term during the customisation of the power-law, as will be
explained in Subsection 4.3.

44 4. OpenFOAM Simulation Setup

4.3. Power-Law customization

The standard power-law model that comes with OpenF OAMs viscosity models is not temperature dependent
and therefore the temperature dependency of the power-law parameters that is expected to exist and has
been quantified in Subsection 3.3 cannot be taken into account using this viscosity model. To fix this, the
existing power-law code has been customized and renamed to "interppowerLaw". The old and new code will
be compared in this subsection and the changes made will be described. The full code of the customised
power-law model files can be found in Appendices B.2 and B.3.

The folder structure of the interppowerLaw looks as follows:

interppowerLaw

{1l 1nInclude

E interppowerLaw.C
interppowerLaw.H

{1l Make

1inux64GccDPInt320pt
files
options

«E interppowerlaw.C

«E interppowerLaw.H

The interppowerLaw.C file contains all the calculations that are performed by the viscosity model and
therefore the modifications to make the power-law model into a temperature dependent power-law will
have to be applied here.

The interppowerLaw.C code is divided into 4 sections:
e static data members
e private member functions
e constructors
e member functions

The static data members section remained the same, apart from renaming "powerLaw" to "interppowerLaw".
The private member functions section is where the important changes to the calculations were made. The
code for the standard power-law model, which is included when a user downloads OpenFOAM, contains
the following, see Listing 4.9.

The way in which this piece of code implements the powerlaw is as follows: The value given to the viscosity
Nu is the value that is returned by the function "max’. This function compares the value of nuMin and min(...)
and gives the highest value as output. Here nuMin is the minimum viscosity, which has been declared in
the transportProperties file which will be discussed in Section 4.4. The function min(...) is similar to the
function max, except that it returns the lowest value as output. The three dots in min(...) replace the piece
of code given in lines 11 to 20 in Listing 4.9. Min(...) compares the value of nuMax and k_*pow(...) and
returns the lowest of the two. Where nuMax is the maximum viscosity, declared in the transportProperties.
Here "k_*pow(...)" represents the flow consistency index k_ times the function pow. The function pow, which
raises a base input to a power, has two inputs which are separated by the comma in line 18. The first
input is the base value. The second input is the exponent value. In this case the first input is another
max(...) function, which selects the highest value between "dimensionedScalar(dimTime, 1.0)"strainRate()",
which represents the calculated strainrate, and "dimensionedScalar(dimless, small)’, which represents a
very small strainrate value (1.0e-06) which will be used if the calculated strainrate is almost 0, to avoid

4.3. Power-Law customization 45

the possibility of an almost infinite viscosity. The second input is "n_.value() - 1", where n_.value() is the
shear thinning index. This structure of min and max functions calculates the kinematic viscosity for a power
law fluid while making sure that the viscosity cannot be lower than the nuMin or higher than the nuMax,
which are the minimum and maximum allowable viscosity as declared in the transportProperties file. The
equation used to calculate the kinematic viscosity therefore boils down to the one shown in Equation 4.13,
just with some extra constrictions to make sure the model functions properly.

au)n_l (4.13)

=k|—
vek(3
Normally the flow consistency index k has the dimensions Pa-s, but if the kinematic instead of dynamic
viscosity has to be calculated in OpenFOAM then the flow consistency index must be declared with units
m?/s, which is the result of dividing the flow consistency index k by the density p.

1 // % * % ¥ *x x x x x Private Member Functions * * * *x *x *x *x *x x//
2

3 Foam::tmp<Foam::volScalarField>

4+ Foam::viscosityModels::powerLaw::calcNu() const

s {

6 return max

7 (

8 nuMin_,

9 min

10 (

11 nuMax_ ,

12 k_*pow

13 (

14 max

15 (

16 dimensionedScalar (dimTime, 1.0)*strainRate (),
17 dimensionedScalar (dimless, small)

18) g

19 n_.value() - scalar (1)

Listing 4.9: The code for the standard power-law model

N}

w

46 4. OpenFOAM Simulation Setup

The customisation of the power-law begins with the creation of a scalar field for the new temperature
dependent viscosity via the createFields.H file, as shown in Listing 4.10.

Info<< "Reading field mynu\n" <<endl;
volScalarField mynu

(
I0object
(
"mynu",
runTime . timeName () ,
mesh,
I0object::MUST_READ,
I0object :: AUTO_WRITE
) ¢
mesh
);

Listing 4.10: The code required to create the mynu field

Then the temperature and viscosity scalar fields have to be included and a new mystrainrate scalar field
is created based on the pre-existing strainRate field, see Listing 4.11.

const volScalarField& T= U_.mesh().lookupObject<volScalarField>("T");
volScalarField mynu= U_.mesh().lookupObject<volScalarField>("mynu");
volScalarField mystrainrate = strainRate () ;

Listing 4.11: Declaration of the temperature, velocity, and strainrate fields

Then the dimensioned scalars are created for the power-law parameters k and n , and for the viscosity
nu_tmp as shown in Listing 4.12.

dimensionedScalar k_local=k_;
dimensionedScalar n_local=n_;
dimensionedScalar nu_tmp = nuMin_;

Listing 4.12: Declaration of K, n, and nu_tmp

A scalar is created for myeps, which is a very small value that will be used to avoid errors due to rounding
of small numbers in the interpolation steps, see Listing 4.13.

scalar myeps=1e-8;

Listing 4.13: Declaration of myeps

The final step before the code for the interpolated power law can be build consists of making a declaration
of the 5 values for the temperature and the power law parameters k and n, which will be used to interpolate
between. These values are declared in the transportProperties file under the section interppowerLawCoeffs
as shown in Listing 4.14.

interppowerLawCoeffs

{
Tt T1 [0 O O 0 O O O] 298;
T2 T2 [0 O 0 0 O O 0] 323;
T3 T3 [0 0 0O 0 O O O] 348;
T4 T4 [0 0 0 0 O O 0] 373;
T5 T5 [0 O O 0 O O O] 398;
ki k1 [0 2 -1 0 0 0 0] 0.9799;

k2 k2 [0 2 -1 0 0 O O] 0.58819;

4.3. Power-Law customization

47

k3 k3 [0 2 -1 0 0 O O] 0.64039;

k4 k4 [0 2 -1 0 O O 0] 1.46627;
k5 k5 [0 2 -1 0 0 O 0] 0.67754;
ni ni1 [0 00O OO O] 0.18;
n2 n2 [0 00 OO O 0] 0.198;
n3 n3 [0 0 OO OO 0] 0.089;
nd n4 [0 0O OO OO 0] 0.005;
n5 n5 [0 000 OO0 0] 0.084;

Listing 4.14: The declaration of the temperatures and power law parameters in the transportProperties files

The parameters which have just been declared in the transportProperties file are read in the interppow-
erLaw.C file using the following piece of code which can be found in the "Member Functions" section, see
Listing 4.15

1 // * % % * % % * * * * *x x Member Functions

* % % k% % *x *x *x x x//

3 bool Foam::viscosityModels::interppowerlLaw::read

4 (

o
~—

32 // k 3k 3k 3k 5k 5k 5k %k %k >k >k >k sk 3k 5k 5k 5k 5k %k %k >k >k 3k 3k 3k 5k 5k >k %k %k >k >k k 3k 5k 5k 5k 5k %k %k >k >k %k %k >k 5k 5k 5k %k %k %k %k %k %k %k %k %k %k %k % %k %k % //

const dictionary& viscosityProperties

viscosityModel::read(viscosityProperties) ;

interppowerLawCoeffs_ =
typeName + "Coeffs");

lookup ("T1")
lookup ("T2")

interppowerLawCoeffs_.
interppowerLawCoeffs_.
interppowerLawCoeffs_.lookup("T3")
interppowerLawCoeffs_.lookup("T4")
interppowerLawCoeffs_.lookup("T5")
interppowerLawCoeffs_.lookup("k1")
interppowerLawCoeffs_.lookup("k2")
interppowerLawCoeffs_.lookup("k3")
interppowerLawCoeffs_.lookup("k4")
interppowerLawCoeffs_.lookup("k5")
interppowerLawCoeffs_.lookup("nl")
interppowerLawCoeffs_.lookup("n2")
interppowerLawCoeffs_.lookup("n3")
interppowerLawCoeffs_.lookup("nd")
interppowerLawCoeffs_.lookup("n5")

return true;

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

T1

T2_
T3_
T4_

T5
k1

k2_
k3_
k4_
k5_

nil
n2
n3
n4
nb

viscosityProperties.optionalSubDict (

>

Listing 4.15: Reading the parameters from the transportProperties file into the interppowelLaw.C file

Now that the preparatory work is done, the equations for the interpolation can be included.
interpolation will be applied via an if / if else / else statement to calculate the values of k and n over the
sections between the five temperatures at which the values are known. The viscosity will be calculated
using these values. The value of the viscosity will be written to the mynu scalar field. The boundary

Linear

1 forAll(T.internalField (),

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

M

43

44

45

46

47

48

49

50

51

52

53

54

48

4. OpenFOAM Simulation Setup

conditions will be corrected, and finally the scalar field mynu will be returned as final output for the
calculated nu. This part forms the core of the viscosity model. In code it looks as shown in Listing 4.16.

{

celllI)

if (T[cellI]<298+myeps)

{
k_local.value () 0.97990;
n_local.value() = 0.18;

}

else if (T[cellI]>=298-myeps && T[cellI]<323+myeps)

{
k_local
n_local

}

= ki1_
nl_

+ ((k2_-k1_)/(T2_-T1_))*(T[cellI]l-T1_);
+ ((n2_-n1_)/(T2_-T1_))*(T[cellI]-T1_);

else if (T[cellI]>=323-myeps && T[celllI]<348+myeps)

{
k_local
n_local

}

= k2_ + ((k3_-k2_)/(T3_-T2_))*(T[cellI]l-T2_);

= n2_

+ ((n3_-n2_)/(T3_-T2_))*(T[celll]l-T2_);

else if (T[cellI]>=348-myeps && T[celllI]<373+myeps)

{
k_local
n_local

}

= k3_
= n3_

+ ((k4_-k3_)/(T4_-T3_))*(T[cellI]-T3_);
+ ((n4_-n3_)/(T4_-T3_))*(T[celll]-T3_);

else if (T[cellI]>=373-myeps && T[cellI]<=398+myeps)

{
k_local
n_local

}

else

k_local
n_local

nu_tmp

(
nuMin_ ,
min

(

= k4_ + ((k5_-k4_)/(T5_-T4_))*(T[cellI]l-T4_);

value ()
value ()

0.084;

max

nuMax_,
(k_local) *pow

(

max

(

0.67754;

mystrainrate [cellI],

small

),

n_local.value ()

scalar (1)

n4_ + ((n5_-n4_)/(T5_-T4_))*(T[cellI]l-T4_);

4.3. Power-Law customization 49

mynu[cellI] = nu_tmp.value()/1020;

mynu.correctBoundaryConditions () ;
return mynu;

Listing 4.16: The code from the interppowerLaw.C file which calculates the temperature dependent viscosity

It is important to note that the flow consistency index k, in the code labeled k_local, is read in from the
m2

transportProperties file as a dimensionedScalar with the dimensions “-. Since the dimensions of k are
normally given in rst this means the value of k in the transportProperties file has already been divided by

the density, which results in % which has units mTZ The value of nu that is calculated by the interppowerlaw
is then used by the my_viscousHeatingSolver.C file in line 120 as fluid.nu(), see Listing 4.17.

volTensorField tau = fluid.nu() * (gradU + gradU.T());

Listing 4.17: Line 120 from the my_viscousHeatingSolver

This is why in Subsection 4.2.2 it was mentioned that p was missing on the right half side of the equation
because it had been incorporated via the tau term already.

Now that the nonNewtonianlcoFoam solver and the interppowerlaw viscosity model are fully functioning,
the next step is to start building a folder structure that is required to run a simulation in OpenFOAM. This
process will be described in the next subsection.

50 4. OpenFOAM Simulation Setup

4.4. Building the general case structure

Now that the my_viscousHeatingSolver and the interppowerlaw viscosity model have been finalized, the
general case structure that is required to run a simulation in OpenFOAM has to be built.

A basic case in OpenFOAM should include 3 directories: 0, constant, and system. In the O directory, or some
other time directory, the initial values or boundary conditions are defined for all the relevant parameters.
The constant folder contains files specifying the physical properties, such as the file transportProperties.
All information regarding the case mesh is stored in the subdirectory polyMesh, under the constant folder.
Meshes can either be generated in OpenFOAM using for instance a blockMeshDict file, or can be imported
after being generated by other software. The system directory contains at least the following 3 files:
controlDict, fvSchemes, and fvSolution. In the controlDict file the settings are defined which specify how
the simulation should be run. This includes for example the start/end time, time step, and the parameters
for data output. The fvSchemes file contains information regarding which discretization schemes should
be used. The fvSolution file contains information that specifies the equation solvers, tolerances, and other
algorithm controls.

For a case using the my_viscousHeatingSolver in combination with the interppowerLaw viscosity model, a
general case directory contains the following files:

GeneralCase
Hio

L5 mynu
-5 P
ST
Ny

7] constant

LD polyMesh

" boundary
LY faces

" neighbour
Y owner

U™ points

% transportProperties

U system
L™ blockMeshDict
% controlDict

% fvSchemes

L™ fvSolution

4.5. Geometry 51

4.5. Geometry

The geometry used for this model is a simplified version of the true geometry of Rival Foods’ apparatus.
The reason for simplifying the geometry is that it is easier to recreate the geometry in OpenFOAM when
the geometry does not contain many small details such as valves and corrugations and secondly this also
makes sure the true geometry of Rival Foods' apparatus stays private. The geometry can be seen in
Figure 4.1. Here R1 is the outer radius of the outer cylinder, R2 is the inner radius of the outer cylinder,
R3 is the outer radius of the inner cylinder, R4 is the inner radius of the inner cylinder, and H is the height
of the cylinder.

For the OpenFOAM simulation only one cell will be used in the angular direction, which will form a wedge
of 5°. The reason for this is that the flow inside the geometry is axi-symmetric and therefore simulating
only part of the 360° allows for a greatly reduced computation time and load on the TU Delft cluster, while
producing the same results.

R1=0,196m

R2=0,191m

R3=0,159m

0,405m

H =

R4

0,152m

Figure 4.1: Geometry of the Couette-Cell based case modelled in OpenFOAM, where the radius and height are given in meters

52 4. OpenFOAM Simulation Setup

In OpenFOAM the geometry of the case is defined in the blockMeshDict file, which can be found under
the system directory. The blockMeshDict file contains the code that is shown in Listing 4.18.

convertToMeters 0.001;

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

M

42

43

44

45

46

47

48

49

50

51

52

53

54

vertices
(
(158.849 -6.935 0.000) //1
(190.818 -8.331 0.000) //2
(190.818 8.331 0.000) //3
(158.849 6.935 0.000) //4
(158.849 -6.935 405.000) //5
(190.818 -8.331 405.000) //6
(190.818 8.331 405.000) /17
(158.849 6.935 405.000) //8
)3
blocks
(
hex (0 1 2 3 45 6 7) (20 1 80) simpleGrading (1 1 1)
)3
edges
(
)
boundary
(
frontwedge
{
type wedge ;
faces (01 5 4));
}
backwedge
{
type wedge ;
faces (37 6 2));
}
bot
{
type wall;
faces (0 3 2 1));
}
top
{
type wall;
faces ((4 56 7));
}
outerwall
{
type wall;
faces ((1 2 6 5));

63

64

65

4.5. Geometry 53

innerwall
{
type wall;
faces (0 4 7 3));
}
)
mergePatchPairs
(
)

Listing 4.18: The blockMeshDict code

The code starts with a conversion converToMeters which indicates that the numbers will be given in mm.

In line 3 to 13 the 8 vertices of the wedge-shaped hexahedron are defined. Figure 4.2 shows these vertices
together with the coordinate system, to make the blockMeshDict file more clear. These vertices have to
be defined in Cartesian coordinates and therefore the radius Ry =0.191m and R3 = 0.159m are used in
combination with Equation 4.14 and 4.15 to calculate the coordinates of the vertices. Since the wedge has
an angle of 5° the vertices are calculated at 8 =2.5° and 0 = —-2.5°.

(158.849 6.935 405.000) _______ (190.818 8.331 405.000)

(158.849 -6.935 405.000) \/ (190.818 -8.331 405.000)

y

(158.849 6.935 0.000)

-4 (190.818 8.331 0.000)

(158.849 -6.935 0.000)
(190.818 -8.331 0.000)

Figure 4.2: Overview of vertices of the wedge, where at each vertex 3 numbers are given, indicating the x/y/z-coordinates

x=rx*cos@) (4.14)
y=r*sin(@) (4.15)

In line 15 to 18 the hexahedron block is defined by giving the 8 vertices "hex (0123 456 7)" together with
the amount of cells in each Cartesian direction "(20 1 80)" and the cell expansion ratios "simpleGrading
(1 11)", where the three numbers indicate the expansion ratios in each of the directions of the block. The
thickness of the slab is 191—-159 = 32mm and will be divided over 20 cells, which will therefore each have
a length of 32/20 = 1.6mm in x-direction. The height of the slab is 405mm and will be divided over 80
cells, which will each have a length of 405/80 =5.0625mm in z-direction. The cell expansion ratio allows
the mesh to be refined or graded in specified directions. The ratio is that of the width of the end cell §,
along one edge of a block to the width of the start cell 5 along that edge, as shown in Figure 4.3. For this
case the effects at the inner and outer cylinder are equally important and therefore a constant expansion
ratio with a value of 1 has been chosen, so that the cells are of constant size throughout the entire mesh.

54 4. OpenFOAM Simulation Setup

. . Oe
Expansion ratio = — ¢
0y Oe

Expansion direction =

Figure 4.3: Mesh grading along a block edge [23]

In line 24 to 61 the boundaries are defined. The boundary of the wedge consists of 6 patches and each
patch has its own name. For each patch the type and faces are defined. The patch type defines how the
patch should be treated, for this case only wedge and wall types are used. The wedge type can be applied
in pairs to 2-D rotationally periodic cases to represent planes in the swirl direction. The wall type, as the
name suggests, indicates that the patch should be treated as a solid wall. The faces are defined by giving
the four vertices of the face.

4.6. Boundary conditions 55

4.6.

Boundary conditions

When working with OpenFOAM the boundary conditions need to be specified in the 0 folder. This folder
contains the boundary conditions that will be applied at the start of the simulation. For the wedge geometry
the 6 boundaries (boundary patches) that have been defined in the previous section need to be specified.
A graphical overview of these patches can be seen in Figure 4.4:

frontwedge, the nearest plane where the wedge has been cut out from the cylinder
backwedge, the furthest plane where the wedge has been cut out from the cylinder
bot, part of the bottom side of the cylinder wedge

top, part of the top side of the cylinder

outerwall, part of outer cylinder

innerwall, part of the inner cylinder

Q4’rop

innerwall——

—outerwall

e
frontwedge \chkwedge

~./
‘bot

Figure 4.4: Overview of the wedge boundaries

56

4. OpenFOAM Simulation Setup

4.6.1. Temperature boundary conditions
On the frontwedge and backwedge a wedge boundary condition has been applied, which indicates that
these boundaries should be treated as if more exact copies of the wedge were adjacent to it and therefore
the geometry continues in the direction perpendicular to these faces. In other CFD packages this wedge

boundary condition is often named rotationally periodic.

The bot and top have a zeroGradient boundary condition, which indicates that the gradient of temperature
perpendicular to the face is equal to zero and therefore there is no heat flux through this face. Listing 4.19
shows how the temperature boundary conditions are applied in the OpenFOAM code of the T-file in the

O-directory

W/ ———————————c—c—o——————cc=—=== ii= (Qdbdh s ———cc——c——c——————c——c————=—=== *\
, ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 A\ / 0 peration | Website: https://openfoam.org

5 \\ / A nd | Version: 8

6 \\/ M anipulation |

N R */
s FoamFile

o {

10 version 2.0;

17 format ascii;

12 class volScalarField;

13 object T,

14 }

5 [/ * % *x %
16
17 dimensions

18

19 internalField

20

21 boundaryField

[0OO1O0 0 0];

uniform 298;

22 {

23 frontwedge

24 {

5 type wedge ;

26 }

27

28 backwedge

20 {

30 type wedge ;

31 +

32

33 bot

34 {

35 type zeroGradient;
36 }

37

38 top

39 {

40 type zeroGradient;
Rl }

2

43 outerwall

44 {

45 type groovyBC;
46 variables

% ok k k k k *x k %k x * *k *kx * * %k *x * % x * * *x * *x *x *x *x //

"htot=1340;Tinf=403;rho=1020.0;cp

61

62

4.6. Boundary conditions 57

=3506.8;k=DT*rho*cp;";

valueExpression "Tinf";

fractionExpression "1.0/(1.0 + k/(mag(delta())*htot))";
}
innerwall
{
type groovyBC;

variables "htot=800; Tinf=403;rho=1020.0;cp=3506.8;

k=DT*rho*cp;";

valueExpression "Tinf";

fractionExpression "1.0/(1.0 + k/(mag(delta())*htot))";
}

[/ kK KKKk K KKK KKK KKK KKK KKK K KKK KKK KKKKKKKKKKKKRKKKkKKkKKkkkkkkkkkkkkkkk*x //

Listing 4.19: The temperature boundary conditions as defined in the T-file in the 0 directory

The most difficult boundary condition is the one applied on the outerwall and innerwall of the cylinder.
In this case steam will be used to heat the cylinders of the machine. This steam will condensate on the
surface of the cylinders and the heat will be transferred through the stainless steel walls into the mixture.
The situation here is that we are dealing with a solid region that is adjacent to a fluid/gas and we wish
to describe the heat transfer between the two using Newton's law of cooling. The most suitable boundary
condition to apply here is the third or mixed kind as described in Chapter 3.2.3 of Basic Heat and Mass
Transfer by Mills [28], see Eq. 4.16. Here the position x=R1 indicates the boundary surface at the radius
R1 in Figure 4.1 if the heat transfer at the outer cylinder is considered.

oT

0x lx=r1
In OpenFOAM this boundary condition is not part of the standard boundary conditions that can be used.
In order to use this boundary condition a software package called "swak4Foam" has been installed. This
software package contains "groovyBC". An overall heat transfer coefficient can be calculated for the convec-
tive heat transfer by steam and the conduction through the stainless steel wall. This overall heat transfer
coefficient, together with several other values are used as input for the groovyBC as shown in line 46 and
54 in Listing 4.19, where the overall heat transfer coefficient is defined as "htot".

-k =he(Tlx=r1— Te) (41 6)

In order to determine the average heat transfer coefficient for condensation, a number of calculations have
been made based on Mills’ chapter 7.2 Film condensation. This average heat transfer coefficient is then
used to find the overall heat transfer coefficient. The calculations will be described below.

Calculation of the overall heat transfer coefficient

The temperature of the saturated steam used to heat the cylinders is 130°C. Of course the temperature of
the wall varies during the process. Initially the wall will be at 20°C. The dough mixture in between the
cylinders has a low thermal conductivity of 0.44mVrK while the stainless steel has a thermal conductivity
of 16% and thus the thermal resistance of the metal wall is much lower than the thermal resistance
of the dough. Therefore the cylinder wall temperature will be very close to 130°C during the entire
process. A simulation made by one of Rival Foods’ engineers confirmed this assumption, showing that after
several seconds the wall reached a temperature of 129.4°C. Therefore the assumption is made that the wall

temperature is 129.5°C for these calculations.

The average heat transfer coefficient for condensation on the outside of a vertical wall or tube is given
by Equation 4.17. Note that this equation ignores the liquid subcooling term, ¢, (Tsqr—T). This term
accounts for the sensible heat given up by the condensate as it cools below the saturation temperature
Tsar. Usually this term is small: for example, when steam condenses at a pressure of 1 atm and there is a

58 4. OpenFOAM Simulation Setup

temperature drop of 10 degrees across the film, the subcooling term is at most 2% of the enthalpy of phase
change hyg. Since the pressure of the saturated steam at 130°C is roughly 1.7 bar and the temperature
drop across the film is similar the subcooling term is assumed to be negligible. Additionally the effect of
tube curvature has been ignored since the surfaces on which the steam condenses have relatively large
radil of R1=0,196m and R2=0,152m.

3711/4

hreg(p1—pu)k;
L(Tsqr — Tw)v;

h=0.943 (4.17)

Where hyg is the difference in enthalpy between the gas and fluid states, g is the gravitational constant,
Py is the density of the steam, p; is the density of the liquid, k; is the thermal conductivity of the liquid,
L is the height of the wall or tube, Ty, is the temperature of the wall, and v; is the kinematic viscosity of
the liquid.

The values of hye and p, are taken at 403°K (130°C) from Mills" Table A.12a.
o hyy=21743%10°]/kg
o p,=1.4997kg/m?

The liquid phase properties have to be evaluated at the reference temperature, where @ = 0.5 has been
used.

Ty = Ty + a(Tsq: — Ty) = 402.5+ 0.5(403 — 402.5) = 402.75°K (4.18)
The thermal conductivity, density, and kinematic viscosity have been taken from Mills' Table A.8 at T, =
402.75°K.
o k;=0.685W/mxK
e p;=937.75kg/m3
e 1;=0.24%10"%m?/s

Inserting all of these values in Equation 4.19 results in

_ 2.1743 % 10%)(9.81)(937.75 — 1.4997)(0.685)3 1 /4 w
fi=0943 | * 107)09.81)(OB | _ 179631 (4.19)
(0.405) (403 — 402.5)(0.24 % 10-6) m2K

The total condensation rate, riz, can now be calculated, which will be done for both the outer and inner
cylinders.

The surface area of the outer cylinder is Agyr =7 * Doyr * h = 7 % 0.392 % 0.405 = 0.4988m?.
The surface area of the inner cylinder is A;, = 7 % Djj, % h = 7 % 0.304 % 0.405 = 0.3868m?.

Q _ hATA (17963)(0.5)(0.4988) kg

R =% = = =0.00208—2 4.20

Mout = ™ Thyg (2.154 * 106) s (4.20)
) hATA (17963)(0.5)(0.3868 k

itin = —% = _ 17963)(0.5)) ~0.00161%8 (4.21)
hfg hfg (2.154 % 108) s

The mass flow rate per unit width of film T is

; 0.00208 k
Mour _ 27000 _ 6.00169—28
nxD m1%0.392 mx=s

(4.22)

out =

Min 0.00161 kg
Tin= =——=0.00169
nxD 1w=x0.304 mx*s

(4.23)

4.6. Boundary conditions 59

Assuming p, <« p; the film thickness can be calculated at the bottom of the cylinder, where the thickness
is at its maximum

3 Tou \3 ((3)(0.24 % 1078)(0.00169) '/
o m) :(()(e 1) = 5.0994 41075 m (4.24)

out = =in (01%8 (934.75)(9.81)
The Reynolds number of a falling film is defined in terms of the bulk velocity u; and hydraulic diameter
Dy, of the film, where the value of y; =2.21 %107 is taken from Mills' Table A.8.

r 0.00169 m
Uy = Uy, = — 52— = — =0.03543— (4.25)
o % Oour (934.75)(5.0994 % 10-5) s

Dp,,, =Dp,, =4 %80y =4 (5.0994 107°) = 2.0398 x 10 *m (4.26)

Using these to calculate the Reynolds number
p1* Up,,, * Dp,,, (934.75)(0.05627)(2.5705+ 10™%)

Reour = Reip = =
out == i 0.000221

31 (4.27)

This film Reynolds number can be used to define which kind of flow is encountered in this problem.
Three different types of flow are possible [28]: laminar, wavy laminar, and turbulent. For water at roughly
300°K the flow starts to show wavy laminar behaviour at Re = 30. The transition to turbulent flow starts to
happen at the outer region of the film at Re = 1000 and the transition to turbulent flow becomes complete
at the inner region when Re =~1800. The value of Re =31 is right at the transition region to wavy laminar
flow and therefore the average heat transfer coefficient will also be calculated for the wavy laminar case
to check if the results differ much. To do so, it is necessary to calculate the Jakob number Ja;, for which
Mills’ Table A.8 has been used to find ¢, =4255]J/kgK.

_ ¢p(Tsar—Tw) _ 4255(403 — 402.5)

Ja hrg 2.1743 % 106

=0.00978 (4.28)

The average Nusselt number for wavy laminar film condensation can then be calculated, using Mills" Table
A.8 to find Pr =1.376.

/3 10.18
("_12)1 2441062173118
— Pr g 1.376 (9.81)
Nu=|—Ls"2 | = * =0.473 (4.29)
4]a; L 4 %0.00978 0.405
With this Nusselt number the average heat transfer coefficient can be calculated
- Nuxk; 0.473x0.685 w
h=—— = = =17968—;— (4.30)
v? ((0.24*10*6)2) m=K
ra 9.81
This results in an overall heat transfer coefficient on the outer cylinder of
1 1 w
UourAout = = =1340— 4.31
out‘lout : ln(%) 1 ln(g:}g?) K ()

2m+LeR * It + 2ax Lk, ps 2m%0.405%0.196%x17968 = 2m*0.405%16

Using an outer area of Agy; =27 * Ry * L =27 % 0.196 * 0.405 = 0.4988m? results in an overall heat transfer
coefficient for the outer cylinder of

60 4. OpenFOAM Simulation Setup

1340 w
Uput = ——— = 2686 —— 432
o4t 0.4988 m2K (4.32)

The same can be done for the inner cylinder resulting in an overall heat transfer coefficient of

1 1 W
UinAin = 7 = —= =800— (433)
1 In(z,) + In(5155) K
2m#L*Ry*h + 27 Lk ys 27%0.405%16

1
2m%0.405%0.152%17968

Using an inner area of Aj, =27 * Ry * L = 21 % 0.152 % 0.405 = 0.3868> results in an overall heat transfer
coefficient for the outer cylinder of

800 w
Uin = = 2068—— (4.34)
0.3868 m2K

These values for the overall heat transfer coefficients can now be used in the groovyBC applied on the
cylinder walls, as shown in the code at the beginning of this subsection. In the simulations the values Uy, =
1340W/m?K and U;, =800W/m?K were accidentally used instead of the values Uy, = 2686W/m?K and

in=2068W/m?K. This means the thermal resistance consisting of the heat transfer by condensation of
steam and conduction through the metal, will be even lower and therefore the wall will reach the assumed
wall temperature of 129.5°C even faster. However, this effect is minimal and therefore this small error has
been accepted without rerunning all the simulations.

4.6. Boundary conditions 61

4.6.2. Velocity boundary conditions
On the front- and backwedge the wedge boundary condition is applied once again to make sure these
boundaries are treated as if the geometry would continu on these planes.

The bot, top, and outerwall boundaries have a no-slip boundary condition applied to them to make sure
they are treated as stationary planes where the velocity is equal to zero where the fluid contacts the plane.

The innerwall is the only moving part in this geometry and therefore a rotatingWallVelocity boundary
condition is applied. For this boundary condition the wall has a rotational velocity around the z-axis of
30 RPM which converts to 3.14 rad/s.

The velocity boundary conditions as applied in the OpenFOAM code are shown in Listing 4.20.

[Bocccccoccooscccocoocccssssssao o P (01 RPN gy S gt *\
SoomoDoss |
A\ / F ield | OpenFOAM: The Open Source CFD Toolbox
A\ / 0 peration | Website: https://openfoam.org
\\ / A nd | Version: 8
\\/ M anipulation |
|\ Yy gy Eoy iy iy iy g g gy g g Sy g gy g g Uy Sy g Sy Sy g Sy *x/
FoamFile
{
version 2.0;
format ascii;
class volVectorField;
object U;
}

J/ k %k k k k * * *x kx *k *k *k *k *k * *k *k * *k * * * * * *x *x *x *x *x *x *x *x //
dimensions [0 1 -1 00 0 0];

internalField uniform (0 O 0);

boundaryField

{
frontwedge
{
type wedge ;
b

backwedge

{

type wedge ;
b

bot

type noSlip;

top

type noSlip;

outerwall

{

46

47

48

49

50

51

52

53

54

55

56

57

58

59

62

4. OpenFOAM Simulation Setup

}

type noSlip;
}
innerwall
{
type rotatingWallVelocity;
origin (0 0 0);
axis (0 0 1);
omega constant 3.1415927; // rad/s
}

60 // %k %k %k %k %k %k %k %k % %k %k %k % >k %k %k >k %k >k >k 5k >k >k >k >k %k >k %k >k %k >k %k >k %k >k %k >k %k %k %k >k % >k %k >k % >k % >k % %k > %k > %k > %k % %k % %k % *k % //

Listing 4.20: The velocity boundary conditions as defined in the T-file in the O directory

4.6. Boundary conditions 63

4.6.3. Pressure boundary conditions

On the front- and backwedge the wedge boundary condition is applied again. All the other boundaries
have a zeroGradient boundary condition applied to them because there is no pressure-gradient on these
boundaries. The pressure boundary conditions as defined in the OpenFOAM code are shown in Listing 4.21.

It is important to realise that the values of pressure will not be calculated in this simulation and only the
derivatives of the pressure, with respect to the spatial coordinates, are used to solve the equations in the
PISO-algorithm.

/i ——————c—ccc—cccc-—ccco=c—=c=== e Qdbdh cficco—cc-—ccc—co——o-——c—co—====== *\
.y |

4 A\ / F ield | OpenFOAM: The Open Source CFD Toolbox

5 A\ / 0 peration | Website: https://openfoam.org

6 \\ / A nd | Version: 8

7 \\/ M anipulation |

N e e e R */
9 FoamFile

10 {

1 version 2.0;

12 format ascii;

13 class volScalarField;

1 object P

5}

w6 // * * % % * %k %k % % % % X * % % % % % % % % % X X * % *x *x *x *x *x *x x //
17

18 dimensions [0 2 -2 0 0 0 0];

19

20 internalField uniform O;

21

» boundaryField

23 {

2 frontwedge

25 {

2 type wedge ;

27 }

28

29 backwedge

30 {

31 type wedge;

32 }

33

34 bot

35 {

36 type zeroGradient ;
37 }

38

39 top

40 {

41 type zeroGradient ;
42 }

43

44 outerwall

45 {

46 type zeroGradient;

47 T

49

50

51

52

53

54

55

64 4. OpenFOAM Simulation Setup

innerwall
{

type zeroGradient ;
}

3

Listing 4.21: The pressure boundary conditions as defined in the p-file in the 0 directory

4.6. Boundary conditions 65

4.6.4. Viscosity boundary conditions
Originally the nonNewtonianlcoFoam solver did not contain a viscosity boundary condition file, but while
making the power-law model temperature dependent it turned out to be necessary to add this file.

On the front- and backwedge the wedge boundary condition is applied again. All the other boundaries
have a zeroGradient boundary condition applied to them because there is no viscosity-gradient on these
boundaries.

The viscosity boundary conditions as defined in the OpenFOAM code are shown in Listing 4.22

Jlicosccccoocccco—c—c—————===== e (QdrdP Sfic———c————c——————c——————————==== *\
e |
A\ / F ield | OpenFOAM: The Open Source CFD Toolbox
A\ / 0 peration | Website: https://openfoam.org
\\ / A nd | Version: 8
\\/ M anipulation |
oo ——c————cc—o———c———o——c————————————————————————c————————c——=————c—==== */
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
object mynu;
by
J/ % % k% k *x *x *x *x x % *x % % % * * * * * * * *x *x *x *x *x % *x *x % *x *x *x //
dimensions [0 2 -1 0 0 O 0];
internalField uniform 1le-10;
boundaryField
{
frontwedge
{
type wedge ;
}
backwedge
{
type wedge ;
}
bot
{
type zeroGradient ;
}
top
{
type zeroGradient;
}
outerwall
{
type zeroGradient;

value uniform 1e-10;

49

50

51

52

53

54

55

56

57

58

59

66 4. OpenFOAM Simulation Setup

}
innerwall
{
type zeroGradient;
value uniform 1e-10;
}

/] k% Kk sk ok ok %k ok sk ok ok %k ok 5k %k ok 3k %k ok 3k ok ok 5 ok 5k %k 5k 3k %k 5k 3 K ok 5 ok 5k %k >k k %k >k k Kk ok k Kk kkkkkokkkkkkkkkkkkk [/

Listing 4.22: The viscosity boundary conditions as defined in the mynu-file in the O directory

4.7. Numerical schemes 67

4.7. Numerical schemes

In the file fvSchemes, which can be found in the system directory, the numerical schemes are specified.
Normally there are 6 sets of terms for which the numerical schemes have to be specified.

e timeSchemes: first and second order time derivatives, e.g. 8/9t,0%/0%¢

gradSchemes: gradient V

divSchemes: divergence V-

laplacianSchemes: Laplacian V2

e interpolationSchemes: cell to face interpolations of values.
e snGradSchemes: component of gradient normal to a cell face.
The schemes chosen will be discussed per term.

timeSchemes The time scheme was initially set to Euler (Euler implicit), which is a basic first order scheme.
After encountering some strange phenomena during simulations (faster temperature distribution near the
top and bottom ends of the cylinder, possibly due to numerical diffusion) this scheme was changed to the
backward scheme, which uses second order backward-differencing.

gradSchemes The gradient scheme is set to Gauss linear, since this is the default discretization scheme
that is primarily used for gradient terms, according to the OpenFOAM userquide. The Gauss entry specifies
the standard finite volume discretization of Gaussian integration, which requires the interpolation of values
from cell centres to face centres. The interpolation scheme is then given by the 'linear’ entry, meaning
linear interpolation or central differencing.

divSchemes The divergence schemes contain both advection terms, where the velocity U provides the
advective flux, and other terms, which are often diffusive, such as V-(vVii) and Vii-Vv. In this case the
Gauss linear scheme is used for the velocity term, since this is generally recommended in the userguide.
For the temperature initially the first order Gauss upwind scheme was used, but after testing the simulation
it was concluded that this resulted in large deviations from the expected temperature profile near the top
and bottom regions of the model. Therefore the divergence scheme was changed to the second order
vanLeer scheme, after which the large deviations were resolved.

laplacianSchemes For the Laplacian terms a Gauss linear corrected scheme has been used, which is
second order. The Gauss schemes are the only choice of discretization. 'Linear’ refers to the interpolation
scheme that has been used and 'corrected’ refers to the surface normal gradient scheme that has been
used.

interpolationSchemes For the interpolation of values, typically from cell centres to cell faces, OpenFOAM
uses linear interpolation for practically all cases. Therefore linear interpolation has been chosen for this
simulation as well. This interpolation is mostly used to calculate the velocity in order to calculate phi,
which is the mass flux through the cell face.

snGradSchemes For the surface normal gradient the orthogonal scheme is used. The surface normal
gradient is calculated at the cell face. The calculation is second order accurate for the gradient normal
to the face if the vector that connects the cell centres is orthogonal to the face. Normally the orthogonal
scheme is only recommended for meshes with very low non-orthogonality, e.g. maximum 5°. Since this
wedge only spans an angle of 5° this scheme suffices.

68 4. OpenFOAM Simulation Setup

4.8. Simulations
This section will describe the differences between the simulated cases.

4.8.1. Base case

The cases that have been simulated are all built from the same base case. The geometry, boundary
conditions, discretization schemes, solver, and viscosity model of this base case have already been discussed
in this chapter. Only the material properties that will be used in the simulations still need to be determined.

For the SPI & WG mixture the relevant properties are:

e thermal conductivity k =0.44 mVl/K
e specific heat ¢, :3507kg+K

e density p = 1020%

For the housing made of stainless steel 316 the relevant properties are:

w
mxK

e thermal conductivity k=16

J

o specific heat ¢, =490z %

e density p = 8070%

4.8.2. Variations on the base case

Multiple variations on the base case simulation have been made. Apart from the standard product thickness
of 32mm, a product with a thickness of 23mm and 41mm have been simulated as well. To allow for a fair
comparison between the 23mm, 32mm, and 41mm case, the number of cells in the direction of the slab’s
thickness has been adjusted accordingly. Otherwise the 23mm and 41mm case would have the same number
of cells, which would result in a much coarser grid for the 41Tmm case, making the results less accurate.
The 32mm case has 20 cells in the x-direction, which means that each cell is 32/20 = 1.6mm. Using this
same value for the 23mm case results in 23/1.6 = 14.375. Rounding upwards this means 15 cells will be
required. For the 41mm case this results in 41/1.6 =25.625, so 26 cells will be required.

Quantifying the influence that the starting temperature of the product mixture has on the final temperature
distribution is also of interest for Rival Foods and therefore two different preheat temperatures have been
simulated. The product mixture currently enters the production unit at roughly 25°C. Preheating the mixture
to 50°C is also an option and therefore a case with a starting temperature of 50°C has been simulated as
well. The product mixture is normally kept in a cooling unit at roughly 10°C. Therefore another case has
been created where the assumption is made that the product is moved directly from the cooling unit into
the production unit, which would give a preheat temperature of 10°C instead of 25°C.

Two different variations on the density of the mixture have been simulated for p = 880% and p = 1280%,
since composition and density might vary in future ingredient mixtures.

To quantify the influence of viscous dissipation on the heating process a case with and without viscous
dissipation have been been simulated.

The viscous dissipation depends on the shear rate and therefore the viscous dissipation will be higher in
regions where the shear rate changes rapidly. Looking at the geometry in this model it should be clear that
there are two borders where the shear rate changes very rapidly. These borders are where the rotating
inner cylinder and the stationary top and bottom plates meet. A refined grid has also been simulated,
where the number of points in the x-direction has been increased from 20 to 40 and in the z-direction from
80 to 160 to find out what the influence on the viscous dissipation in these vertices will be.

So to summarize the following simulations have been done, where all cases were copies of the base case
with just 1 modification:

e base case

e slab thickness of 23mm

4.8. Simulations

69

slab thickness of 41Tmm
preheat temperature of 10°C
preheat temperature of 50°C
mixture density of p =880%
mixture density of p = 1280%

no viscous dissipation

These simulations have been performed for two scenarios; using the constant power law parameters K =
1600Pa* s" and n=0.13, and using the interppowerLaw model which calculates the viscosity based on the
temperature.

Model verification

A model is only useful if the results give a trustworthy depiction of reality. In order to determine whether
or not the model is trustworthy, the model needs to be verified. This section will provide a verification of
the temperature dependent model by first studying the spatial convergence, then the temporal convergence,
and finally looking at a comparison between the analytical and numerical solution of the velocity profile.

5.1. Spatial convergence

Once the OpenFOAM model was made it could be tested. For multiple successive grid refinements the
temperature profile has been plotted as can be seen in Figure 5.1. Just by eyeballing it can be seen that
convergence seems to be reached for the 40 cells case, since almost no change takes place anymore.

1 Temperature at h=0.2025m for varying meshes

120 —

Temperature [C]

90— ~— =

85
0.155 0.16 0.165 017 0.175 0.18 0.185 0.19 0.195
Radius [m]

Figure 5.1: Grid qualities of 5, 10, 20, and 40 cells in the radial direction of the cylinder

To quantify the grid convergence, the method advocated by Roache [29] is used. This method makes use of
a grid-convergence index (GCl), which is based on the generalized theory of Richardson Extrapolation [30].

Richardson Extrapolation states that the discrete solutions f are assumed to have a series representation
based on the grid spacing h.

f=flexactl+ g h+goh* + g3h® + ... (5.1)

71

72 5. Model verification

Where the functions g1, g2, g3, etc. are defined in the continuum and do not depend on any discretisation.

Roaches method may be used in one of two ways; either a fine-grid Richardson error estimator can be used
to approximate the error in a fine-grid solution by comparing the solution of the fine grid to the coarse
grid, where the fine-grid Richardson error estimator is defined as

fine €

E" = —— 5.2
! 1—rP (5:2)
Or a coarse-grid Richardson error estimator can be used to approximate the error in a coarse-grid solution
by comparing the solution of the coarse grid to the fine grid, where the coarse-grid Richardson error
estimator is defined as

rPe

coarse __
E; =
1-rP

(5.3)

where
se=fa-h,
e f, = the coarse-grid numerical solution for the grid spacing hy,
e f1 = the fine-grid numerical solution for the grid spacing h;,
e 1 = the refinement factor between the coarse and fine grid (r = Z—f >1)
e p = formal order of accuracy of the algorithm (which can be calculated according to Equation 5.4)

For this case the fine-grid and coarse-grid Richardson error estimators will both be used to estimate the
numerical errors introduced in the temperature profile by the chosen grid. The estimator will be applied
on the temperature data. Apart from the standard grid used for the simulations which has 20 cells in
x-direction and 80 cells in y-direction as described in Section 4.5, two other grids will be created, for
which a refinement factor, r, of 2 will be used. The coarser grid, which has 10 cells in x-direction and 40
cells in y-direction, will be used to calculate E{me. The finer grid, which has 40 cells in x-direction and
160 cells in y-direction, will be used to calculate E5°4"¢. The temperature data for these three cases has
been produced using the same time step of 0.00001s. This was necessary for the finest grid simulation,
since larger time steps resulted in an erroneous velocity profile.

In Roache’s study it is stated that if the grid refinement is performed with constant r, then the order of
accuracy of the algorithm, p, can be calculated directly by using the three grid solutions in combination
with Equation 5.4.

p=ln(M)/ln(r) (5.4)

f2—h

where subscript 1 indicates the finest grid.

Knowing the Error Estimator, E{me, the GCI can now be calculated according to either Equation 5.5 or
Equation 5.6.

Gerl™ = F| B[(5.5)

GCIzcoarse — FS|E§‘OﬂI‘S€| (56)
where F is a safety factor.

A safety factor of 1.25 is recommended by Roache [31]. According to the study by Schwer [32] this safety
factor "should be thought of as representing a 95% confidence bound on the estimated relative error".

Using the calculated GCI the relative GCI (RGCI) can be calculated, for both fine and coarse grid, using
Equation 5.7.

5.1. Spatial convergence 73

I
RGCI = e
1

+100% (5.7)

where fi is the result of the grid that needs to be verified. The GCI gives a value for the error band, while
the RGCI gives an indication of how big this band is relatively.

The three different grids have 10 coinciding points. At 5 of these points the calculations for the RGCI will
be made. The x-coordinates of these 5 points are shown in Figure 5.2.

Temperature at h=0.2025
130

) 10 cells
/ 20 cells.
/ 40 cells
125 —
/
X 01876
Y 117.6

120 (— \

Temperature [C]

100 [—) X 01812
Y 97.39

N\ | x 01684
95—
\\ Y 93.45
N
N X 0.1748
90— < Y 88.89

| 1 | | 1 | | |
0.16 0.165 017 0.175 0.18 0.185 0.19 0.195
Radius [m]

Figure 5.2: Overview of the 5 x-coordinates at which the calculations for the RGCI were made

At these points the values of p, Elfme, E5049rse, GCI{me, GCI;o%¢, RGCI{”W, and RGCI;°%"*¢ have all
been calculated and the final results together with the average values can be found in Figure 5.3. The
RGCI values show that the calculated temperature differs on average only 0.45% from the result that would
have been found for an infinite amount of cells, where a 95% confidence bound is used. Note that the RGCI
fine and RGCI coarse in Figure 5.3 result in exactly the same value, so it does not matter which one of
the two is used.

x-coordinate [m] P (order or accuracy) | RGCl fine [%] | RGCI coarse [%]
0,1620 2,45943 0,532327 0,532327
0,1684 1,14684 0,678468 0,678468
0,1748 -0,48543 0,492736 0,492736
0,1812 3,36075 0,320253 0,320253
0,1876 3,45943 0,238302 0,238302
Average 1,98820 0,452417 0,452417

Figure 5.3: Results grid verification

Looking at Figure 5.3 the negative -p-value of x-coordinate 0,1748 might seem strange. At this coordinate
the 3 graphs are very close to each other with the distance between the 10 and 20 cell graphs being just
a fraction smaller than the distance between the 20 cell and 40 cell graphs. This causes Equation 5.4 to
result in a negative value for p, because the graphs seem to diverge instead of converge when the grid
is refined. Therefore it should be noted that this equation can be useful when the distances between the
graphs are relatively large and become smaller when the grid quality is increased, however, if the graphs
are already very close to each other and little change takes place between successive grid refinements,
the results from a grid convergence study like this become less useful. If the graphs stay the same while
the grid is further refined it can be concluded that convergence has already been reached.

74 5. Model verification

5.2. Temporal convergence
Just as the grid size can be refined to check for convergence, one can also refine the time step to check

for convergence. The temperature profile has been plotted for 4 different time steps: 0.001s, 0.0001s,
0.00001s, and 0.000001s.

The temperature data produced at t=900s using these different time steps has been plotted in Figure 5.4,
where the grid with 20 cells in the x-direction has been used. The figure seems to show only 2 graphs
instead of 4, but if one looks closer it can be seen that the graphs for 0.0001s, 0.00001s, and 0.000001s
are almost plotted on top of each other. This seems to indicate that convergence has been reached at time
step 0.0001s, since further time step refinements do not seem to result in further convergence. Performing
a grid convergence study will be of little added value since the differences between the 3 finest time steps
are practically nonexistent.

0 Temperature at h=0.2025m for varying timesteps

timestep = 0.001s
timestep = 0.0001s.
timestep =0.00001s
timestep = 0.000001s

120 — \ \ /-

Temperature [C]
-
~

85
0.155 0.16 0.165 017 0.175 0.18 0.185 0.19 0.195
Radius [m]

Figure 5.4: The temperature profiles for different time steps at h=0.2025

Apart from the temperature, other parameters can also be used to study the convergence. For this case
there are 3 other parameters which can be used: velocity, viscous dissipation, and viscosity. Figure 5.5
compares the velocity profiles for each time step. The graph for the coarsest time step of 0.001s, the blue
line, shows an almost linear velocity profile. This graph is in conflict with the expected velocity profile, as
described by Equation 2.16. The velocity profile is expected to show a large initial drop off in velocity near
the rotating inner cylinder, which should become steeper for smaller values of the shear thinning index n.
After the initial drop off in velocity, the drop off should become more and more gradual as the x-coordinate
approaches the outer cylinder. It can be seen that as the time steps are refined, the velocity profile keeps
developing towards the more pronounced power law form for which is expected for a low value of n.

5.2. Temporal convergence 75

Velocity at h=0.2025m for varying timesteps

timestep =0.000001s

Velocity [m/s]
]
T

o — ! S— J
0.155 0.16 0.165 0.17 0.175 0.18 0.185 0.19 0.195
Radius [m]

Figure 5.5: The velocity profiles for different time steps at h=0.2025

A convergence study has been performed on the velocity using the same approach as described before. For
this study the graphs of the 3 finest time steps have been used. Calculating the RGCI for the time step of
0.0001s is the most valuable, since this time step has been used in most of the simulations and therefore
an indication of the errors is very useful.

Figure 5.6 shows the velocity values that have been used in the RGCI calculation, which have been taken
at the same x-coordinates as in the previous convergence study in Section 5.1.

Velocity at h=0.2025m for varying timesteps

timestep = 0.0001s.
001s
timestep = 0.000001s

\ | xo0.162
Y 0.2474

Veloity [m/s]
&
T

~ X 0.1684
~ Y 0.1444
. X 0.1748
. _|voa1ss X 01812
X 0.162 T S Y 0.1008
01— Y 0.08615 e

X 0.1876

\ e Y 0.05936

. X 0.1684 .

005~ X 0.162 Y 0.03395
Y 0.06134 e

X 01748 X 0.1812
Y 0.02661 Y 0.02347

X 0.1876
Y 0.01748

P —
X 0.1684 J

, o . |
Ciss 016 0165 ¥ 001285 0, X 04748 018 | X 01812 0.185 X0.1876 | 0.195
Ragi Y 0006089 Y 0.004407 Y 0.003896

Figure 5.6: Overview of the x-coordinates and the velocities used in the calculations for the RGCI

The results for the temporal convergence can be found in Figure 5.7. Note that a refinement factor of
r =10 has been used. The p-values show an average order of accuracy of 0,65509. These low p-values
in combination with the large refinement factor result in a large RGCI of 119,49% on average. Based on
the RGCI results it should be clear that preferably a more refined time step is used in the simulations,
but due to the characteristics of the simulation this was impossible. The reason for not using a smaller
time step is that the simulation has a duration of 30 minutes, which equates to 1800s. This means a
total of 1800/0,0001 = 18.000.000 steps have to be calculated during a single run. Apart from the large

76 5. Model verification

amount of calculations there was another factor which influenced the calculation time for the simulations.
The customized solver performs iterations until the convergence criteria for the pressure, temperature, and
velocity are met. The convergence of the pressure term often required up to 100 or 200 iterations per time
step. Even with access to the computer cluster at the TU Delft the combination of this large amount of
time steps and iterations resulted in extremely long simulation times. Multiple test runs with a time step
of 0.00001s have been performed. Running the simulation for 24 hours on the cluster produced roughly
10 to 20 seconds of simulation time. Based on the fact that the entire simulation has a duration of 1800
seconds this would require roughly 1800/15 = 120 days to complete a single simulation. In contrast, the
simulations using a time step of 0.0001s would require "only" 7 days.

The velocity profiles produced in the simulations using a time step of 0.0001s are less accurate than one
would prefer, but it is currently the only way to proceed with the simulations.

x-coordinate [m] P (order or accuracy) | RGCI coarse [%]
0,1620 0,81287 96,287
0,1684 0,71295 118,57
0,1748 0,65249 124,78
0,1812 0,60816 127,27
0,1876 0,48898 130,53
Average 0,65509 119,49

Figure 5.7: Results time step verification

A visual comparison of the viscous dissipation graphs calculated using the different time steps is shown
in Figure 5.8. It can be seen that the graph for the biggest time step shows dissipation peaks throughout
the entire cross section, which are caused either by a high shear rate, a high viscosity, or a combination
of the two. As the time step is refined these peaks disappear, except for the one near the inner cylinder.
The graphs of the two most refined time steps are almost converged and only deviate slightly from each
other near the inner and outer cylinder. The graph clearly shows that in general the viscous dissipation
is of no importance, and that it only plays a minor role near the inner cylinder. It can be seen that the
viscous dissipation field converges slower than the temperature field as the time steps are refined. This is
due to the fact that the viscous dissipation term contains a derivative. If the grid is refined by a factor 2,
the error of the temperature field reduces by a factor 4. For a derivative of the temperature the error only
reduces by a factor 2 instead of 4, thus requiring a more refined time step to reach convergence.

Viscous dissipation at h=0.2025m for varying timesteps

timestep = 0.001s
timestep = 0.0001s.
timestep = 0.00001s
timestep = 0.000001s

Viscous dissipation [degree/s]

| — | I ————— —— | 1 |

0

0.155 0.16 0.165 017 0.175 0.18 0.185 0.19 0.195
Radius [m]

Figure 5.8: The viscous dissipation profiles for different time steps at h=0.2025

5.3. Comparison between the analytical and numerical solution 77

Finally, comparing the viscosity profiles for the different time steps it can be seen that as the time steps
get more refined, the viscosity profiles seem to increase more and more, which results in divergence instead
of convergence. The large increase in viscosity with the time step refinements is caused by the fact that
the velocity profile shown in Figure 5.5 becomes almost horizontal for the small time steps. This means
that a shear rate of 0 is approached, which according to the power law would result in an infinite viscosity.
For these simulations the maximum allowable viscosity is given a value of 17 m?/s, to keep the model from
crashing due to divergence. This specific value was used because it was the maximum value that came out
of the measurements in Chapter 3.

Viscosity at h=0.2025m for varying timesteps

timestep = 0.001s

. timestep =0.0001s

/N timestep = 0.00001s
timestep = 0.000001s

Kinematic viscosity [m?/s]

. §
0.155 0.16 0.165 017 0.175 0.18 0.185 0.19 0.195
Radius [m]

Figure 5.9: The viscosity profiles for different time steps at h=0.2025

5.3. Comparison between the analytical and numerical solution

Using Matlab the numerical solution of the azimuthal velocity for the case with constant power law
parameters, K =1600Pa * s and n=0.13, and a refined grid with 40 cells in x-direction combined with a
time step of 0.00001s has been plotted versus the analytical solution. The result can be found in Figure
5.10. The analytical solution for the velocity has been calculated using Equation 2.16 from Section 2.4.
The two solutions are close to each other, but it can be seen that there is some deviation. This deviation

is most likely caused by the the fact that the velocity profile is not yet fully converged for the time step
0.00001s, as shown in Section 5.2.

78

5. Model verification

Velocity in azimuthal direction [mis]

05—

04 -

°

25

02—

01—

Velocity at h = 0.2025m

‘Analytical solution
\ Numerical solution

Figure 5.10:

0.16 0.165 017 0.175 0.18 0.185 0.19 0.195
Radius [m]

Analytical vs numerical solution of the azimuthal velocity between the inner and outer cylinder

Results

The results will be discussed in this chapter. For each simulation data for the temperature, velocity,
viscosity, and viscous dissipation is available at every second of the 1800 seconds simulated per case.
The most relevant data will be presented in the following sections. The results for the base case will
first be discussed, for both constant and interpolated power law parameters. After this, the results for the
variations on the base case will be discussed.

6.1. The base case

Figure 6.1 shows the temperature profile after 1800s of simulation for the case with constant power law
parameters on the left, and interpolated parameters on the right.

Figure 6.1: Temperature profile after 1800s. The left image shows the case with constant K and n values and the right image
shows the case with interpolated values. The legends show temperature in degrees Kelvin.

When comparing the temperature profiles it is important to notice that at this moment all the temperatures
fall in the range 390-405°K, or 117-132°C, as shown in the legend. This relatively small range for the
legend makes sure that differences in temperature are easy to see. The main difference between the two
figures is that the one on the left shows a large vertically elongated cold spot halfway in the middle of
the slab in x-direction, while the one on the right shows 3 vertically separated cold spots. It might still

79

80 6. Results

be somewhat hard to see the 3 separated cold spots solely based on the color differences, therefore a
graph has been included in Figure 6.2 which shows the temperature along the z-axis in the middle of the
slab. Here a temperature fluctuation of roughly 1°K can be seen in between the cold spots. Even though
this temperature fluctuation seems minor, the mechanics behind it are of interest. This fluctuation in the
temperature profile could be caused by any of the terms in the temperature equation, so either the viscous
dissipation, diffusion, or advection term is responsible.

938
936
934
932
33
2928
3926
2924
3922
302
918
H16
14 ! ! . . , : . T \
005 01 015 02 025 03 03 04 0.45

Figure 6.2: The temperature along the z-axis halfway through the slab at time t=1800s in Kelvin.

Viscous dissipation

It can easily be shown that the viscous dissipation is not responsible for this effect by using the plot of the
viscous dissipation over the entire geometry, see Figure 6.3. The left wall represents the moving cylinder.
The viscous dissipation is highest on this side of the geometry, as expected. In the temperature profiles
from Figure 6.1 the areas in between the cold spots show slightly elevated temperatures. Looking at the
same areas in the viscous dissipation profiles no elevated dissipation is found and therefore no extra heat
is added to the system in these areas. Note that the maximum viscous dissipation values are found in the
high shear regions in the left upper and lower vertex. This is where the stationary upper and lower plates
are adjacent to the rotating inner cylinder, which causes a high shear rate.

6.1. The base case 81

Figure 6.3: Viscous dissipation profile after 1800s. The left image shows the case with constant K and n and the right image shows
the case with interpolated values. The values in the legends are given in degrees/s.

Diffusion

The driving force for most of the heat diffusion in the system is the heat that is supplied by the steam at
the inner and outer cylinders. This heat diffuses into the system at roughly the same rate along the entire
height of the cylinder. Only near left upper and lower vertex, where the viscous dissipation is highest, the
diffusion is somewhat higher. Based on the fact that the heat diffuses in an evenly distributed manner from
the inner and outer cylinder towards the middle of the slab, the diffusion cannot be the thermal transport
mechanism which is responsible for the slightly elevated temperatures in between the 3 cold spots.

Advection

The transport of heat by movement of bulk fluid is contained in the advection term of the temperature
equation. Since the diffusion and viscous dissipation terms do not seem to cause the elevated temperatures
between the cold spots, the advection term must be responsible. To verify this, the velocity profiles can be
used. The velocity profile in the y-direction (azimuthal direction) has already been reviewed during the
comparisons between the analytical and numerical solution for the case with constant K and n. For this
case with temperature dependent power law parameters the velocity profile has a steeper initial decline
in velocity than before due to the low value of the shear thinning index n, but other than that the system
behaves as expected, which can be seen in Figure 6.4 where the velocity over the entire geometry has
been plotted.

82 6. Results

Figure 6.4: The velocity in m/s in y-direction at time step t=1800s.

The velocity profiles of interest are the ones in the x- and z-direction, which are shown in Figure 6.5. In
the left image the red areas indicate a flow in positive x-axis direction and the blue areas indicate a flow
in negative x-axis direction. In the right image idem dito, but for the z-axis direction. If one would combine
the velocity components from both the left and the right picture this would result in circular flows, vortices,
around the locations where the 3 cold spots were found. It is important to pay attention to the magnitude
of the velocity components. Where the velocity in y-direction has a maximum value of 0.5 m/s, the velocity
components in the x- and z-direction have a maximum value of 6.6e-03 m/s and 9.8e-03 m/s respectively,
as can be seen in the legends.

0003118

[u

5905203

Figure 6.5: The velocity in m/s in x-direction (left) and z-direction (right) at time step t=1800s for the case with interpolated K and
n.

The low velocity vortex-like flow encountered in the velocity profiles for the x- and z-direction was not
expected and efforts have been made to explain where these vortices come from. When vortices are encoun-
tered in a Taylor-Couette cell, it seems logical to assume that these are Taylor vortices, see Figure 6.6.

6.1. The base case 83

Inner cylinder

rotating
I \ ‘;

Quter cylinder fixed —

Figure 6.6: Counter-rotating toroidal vortices, called Taylor vortices, observed in the annular space between two cylinders [33].

Taylor vortices are secondary flow patterns consisting of toroidal vortices which can develop in a Taylor-
Couette cell once a critical Taylor number, Ta, is reached. The Taylor number is the dimensionless number
which gives the relation between the inertial forces and the viscous forces. As long as the Taylor number is
below the critical value, the viscous forces are able to dampen out any instabilities and therefore the flow
remains steady. The Taylor number for Taylor-Couette flow with a rotating inner cylinder and a stationary
outer cylinder can be calculated using Equation 6.1 [34].

_Q’RI(R,—-R))®

Ta
V2

(6.1)

where Q is the anqular velocity in rad/s, R, is the inner radius, Ry is the outer radius, and v is the kinematic
viscosity in m?/s.

For Newtonian fluids the critical Taylor number is roughly 1700 [35]. For non-Newtonian fluids the critical
Taylor number is not as well known. In a study by Sinevic et al. [36] it was found that the critical Taylor
number of non-Newtonian fluids depends strongly on the gap width and the shear thinning index. For
most of the cases the critical Taylor number has been found to be greater than in the Newtonian cases,
but it approaches the Newtonian value as n tends to 1.

To verify if the existence of Taylor vortices in this model is theoretically possible, the Taylor number can be
calculated, for which the kinematic viscosity is required. The lowest value of the kinematic viscosity will be
used to check if the Taylor number has a value higher than the critical Taylor number of 1700, because this
should result in the highest possible Taylor number. Figure 6.7 shows that the lowest kinematic viscosity
at t=1800s is equal to 5,973e-03 m2/s.

The Taylor number can then be calculated as shown in Equation 6.2.

_ 72 %0,159(0,191 -0,159)°
- (5,973 % 1073)2

=1,44 (6.2)

The Taylor number 1,44 is nowhere near the critical value of 1700. This means the existence of the Taylor
vortices in the model seems unlikely and thus there should be a different explanation for the vortex-like
flow.

84 6. Results

Figure 6.7: The kinematic viscosity in m2/s at t=1800s.

To find out what causes the vortex like flow, different test runs have been performed. This included
experimenting with an iterative start-up phase of the simulation for the values of K and n and changing
the no-slip boundary conditions at the top and bottom wall to slip boundary conditions. None of these
tests resulted in a velocity profile without the vortices.

Since no physical cause for the vortices could be found, numerical artifacts were investigated. Additional
tests were performed, which included a 1 second long simulation using a time step of 0.000001s, which
did not show any of the vortex-like flow.

The set-up for this simulation which showed no vortex-like flow was as follows: First a basic simulation
was run for 1800 seconds using a time step of 0.0001s. The final time folder produced by this simulation,
"1800", which contains all information regarding the fields (velocity, temperature, etc.) was then used as
initial condition folder for a new simulation which used a time step of 0.000001s. After running this new
simulation for several time steps the vortices started decaying rapidly. After 0.005s the maximum velocity
in x- and z-direction was reduced by 3 to 4 orders of magnitude and therefore negligible as can be seen
in Figure 6.8. Thus a further refinement in the time step seems to resolve the unexplained vortex-like flow.
Ideally further research would be performed to find out why the simulation shows this vortex-like flow when
larger time-steps are used, but this does not fit in the time span of the current study.

The problem remains that it is currently practically impossible to perform the full duration simulations due
to this time step. Simulating a single second already requires 1.000.000 calculations, which took several
hours on the cluster. Therefore a choice had to be made between the accuracy and the time required to
run the simulation. For the simulations performed in this study a time step of 0.0001s was used because
this allowed a single simulation to be run in roughly a week time. If a finer time step of 0.00001s is used
the simulation would take roughly 120 days. In order to run the simulation without the vortex-like flow,
the time step would have to be 0.000001s, which would take much longer than 120 days to complete.

6.1. The base case

85

Figure 6.8: The velocity in m/s in x-direction (left) and z-direction (right).

86 6. Results

6.2. Case comparisons

In this section the comparisons between the base case and the variations will be discussed. As explained
in subsection 4.8.2 multiple variations have been made for the slab thickness, preheat temperature, and
density. Additionally a simulation without viscous dissipation has also been performed, which will be
discussed first.

6.2.1. Viscous dissipation

The effect of viscous dissipation on the temperature field can be quantified. To do so, the results of a
simulation where the viscous dissipation term is included in the temperature equation need to be compared
to the results of a simulation where the viscous dissipation term is not included in the temperature equation.
This comparison has been made for 2 scenarios. The first scenario uses the constant power law parameters
K =1600Pa * s" and n =0.13, while the second scenario uses the interpolated power law parameters.

The results for the comparison with constant power law parameters are shown in Figure 6.9. The dashed and
solid lines show the temperature profiles with and without viscous dissipation respectively. By subtracting
the temperature graphs for the case without viscous dissipation from the case with viscous dissipation, the
temperature difference caused by viscous dissipation can be better visualized, see Figure 6.10. At the start
of the process the difference between the two is of course very small, but as time goes on the influence of
the viscous dissipation increases. At the end of the simulation the maximum temperature difference is 9.8°C
at the radius 0.17m. The results for the comparison with interpolated power law parameters are shown in
Figure 6.11 and the temperature difference caused by viscous dissipation is shown in Figure 6.12. The
maximum temperature difference at the end of this simulation is located around the radius 0.165m and is
only 2.6°C.

By comparing the two scenarios it becomes clear that the viscous dissipation plays a much smaller role
in the scenario with interpolated values. It is important to keep in mind that these temperature profiles
were calculated using the time step 0.0001s. If the time step is further refined the viscous dissipation
field changes, as previously shown in Figure 5.8. Revisiting this figure it can be seen that for the time
step 0.0001s the viscous dissipation has a relatively high value near the inner cylinder and a lower value
throughout the rest of the geometry. This results in only a small amount of heat generation throughout
the entire geometry, resulting in the temperature difference of 2.6°C for the interpolated power law value
scenario. Looking at the time step 0.00001 it can be seen that the viscous dissipation has a higher value
near the inner cylinder, but throughout the rest of the geometry it is practically equal to zero and therefore
almost no heat is generated by viscous dissipation in those areas.

Since the simulations in this study have been performed with a time step of 0.0001s this means that the
temperature shown in the data will be slightly higher than it would be for the more refined time steps,
where the viscous dissipation profile is fully converged. However, this deviation has now been quantified
by showing that the temperature fields for simulations with interpolated power law values and a 0.0001s
time step show a temperature field that is at most 2.6°C higher than it would be for the more refined time
steps, which is a relatively small difference.

The viscous dissipation for the scenario with constant power law values is expected to diminish in a similar
manner as the viscous dissipation for the interpolated scenario did as the time steps got more refined.
Only in the area near the inner cylinder a slight elevation in viscous dissipation is expected. This means
the relatively large temperature difference between the graphs with and without viscous dissipation in
Figure 6.9 should disappear if a time step of 0.00001 would be used, leaving only a small temperature
difference near the inner cylinder. However, since no convergence study has been performed for the constant
power law parameter scenario, this can only be speculated based on the experience with the interpolated
scenario.

6.2. Case comparisons 87

Temperature between inner and outer cylinder.

140 —

100—

80—

Temperature [C]

60—

20— t

| | | | | | | |

0

0.155 0.16 0.165 047 0175 0.18 0.185 019 0.195
Radius [m]

Figure 6.9: A comparison between the temperature profiles with and without viscous dissipation for the case with constant power
law parameters. Solid lines are used for the case where viscous dissipation is included in the calculations and dashed lines for the
case where it is excluded. The temperature profiles are given at multiple moments in time. The graph for t=1s starts at the bottom

of the figure and the graphs shift upwards as the time increases.

Temp difference the sil ion with and without viscous dissipation between inner and outer cylinder.

—t=t
=50
=200
=600
1=1000
1=1400
=1800

Temperature [C]
o
T

0 —
0.155 0.16 0.165 017 0.175 0.18 0.185 0.19 0.195
Radius [m]

Figure 6.10: The temperature difference between the case with and without viscous dissipation. The temperature profiles are given
at multiple moments in time. The graph for t=1s starts at the bottom of the figure and the graphs shift upwards as the time
increases.

88 6. Results

Temperature between inner and outer cylinder.

140 —

120 —

100 —

80—

Temperature [C]

60—

20— t

| | | | | | | |

0

0.155 0.16 0.165 047 0175 0.18 0.185 0.19 0.195
Radius [m]

Figure 6.11: A comparison between the temperature profiles with and without viscous dissipation for the case with interpolated
power law parameters. Solid lines are used for the case where viscous dissipation is included in the calculations and dashed lines
for the case where it is excluded. The temperature profiles are given at multiple moments in time. The graph for t=1s starts at the

bottom of the figure and the graphs shift upwards as the time increases.

Te difference the si ion with and without viscous dissipation between inner and outer cylinder.

Temperature [C]
o
I

o =
0.155 0.16 0.165 047 0175 0.18 0.185 0.19 0.195
Radius [m]

Figure 6.12: The temperature difference between the case with and without viscous dissipation. The temperature profiles are given
at multiple moments in time. The graph for t=1s starts at the bottom of the figure and the graphs shift upwards as the time
increases.

6.2. Case comparisons 89

6.2.2. Geometry

The effect of the geometry on the temperature field has been quantified by performing simulations for 3
different cases. The results for the simulations with constant and interpolated power law values are shown
in Figure 6.13 and Figure 6.14 respectively. These figures contain graphs for the 23mm, 32mm, and 4Tmm
geometry. Solid lines are used for the 23mm case, dashed lines for the 32mm case, and dotted lines for
the 41mm case. For each case the temperature profiles are given at multiple moments in time as indicated
in the legend. The results for the constant power law value simulations will be discussed first. Figure 6.13
shows the highest temperatures are attained in the 23mm case. A strange effect that occurs in this case
is the fact that the temperature inside the dough reaches a value of 136°C after 1800s, which is higher
than the maximum value of 130°C imposed on the inner and outer cylinders as the temperature boundary
condition. This rise in temperature is caused by the viscous dissipation, which as shown in Figure 6.9
adds additional heat to the system. For the 32mm case the minimum temperature is 121°C at the end of
the simulation. For the 41mm case the minimum temperature is 100.5°C.

In Figure 6.14, which shows the results for the interpolated power law parameters, it can be seen that for
the 23mm case a maximum temperature of 131°C is reached , which again is higher than the temperature
at the boundaries. The 32mm case has a minimum of roughly 118.5°C and the 41Tmm case has a minimum
of roughly 99.5°C.

The viscous dissipation which is included in these simulations is expected to diminish once a smaller time
step is used in the simulations. For the constant and interpolated power law cases the final temperatures
are expected to give an overestimation of roughly 9.8°C and 2.6°C respectively.

Temperature between inner and outer cylinder.

140 —

=1
———t=1
Lett -t
wer =50

120 - =50

t=50
=200
— == =200
- =200
=600
600
600
t=1000
——— t=1000
< t=1000

=1400
— — — t=1400
- t=1400

80—

=1800
— —— t=1800
- t=1800

Temperature [C]

40 —

20 —

0
0.155 0.16 0.165 017 0.175 0.18 0.185 0.19 0.195 0.2 0.205
Radius [m]

Figure 6.13: A comparison between the temperature profiles for 3 different geometries for the case with constant power law
parameters. Solid lines are used for the 23mm case, dashed lines for the 32mm case, and dotted lines for the 41mm case. The
temperature profiles are given at multiple moments in time. The graph for t=1s starts at the bottom of the figure and the graphs
shift upwards as the time increases.

90

6. Results

120 —

80—

Temperature [C]

40 —

Temperature between inner and outer cylinder.

0
0.155

0.16

0.165

017

0175 0.18 0.185
Radius [m]

019

0.195

0.2

0.205

Figure 6.14: A comparison between the temperature profiles for 3 different geometries for the case with interpolated power law
parameters. Solid lines are used for the 23mm case, dashed lines for the 32mm case, and dotted lines for the 41mm case. The
temperature profiles are given at multiple moments in time. The graph for t=1s starts at the bottom of the figure and the graphs

shift upwards as the time increases.

6.2. Case comparisons 91

6.2.3. Preheat

The effect of the preheat temperature has been studied as well. Three different starting temperatures
have been used; 10°C, 25°C, and 50°C. The results for the case with constant and interpolated power
law parameters are shown in Figure 6.15 and Figure 6.16 respectively, where solid lines have been used
for the preheat temperature of 10°C, dashed lines for 25°C, and dotted lines for 50°C. At the start of the
process the maximum temperature difference between these graphs is 40°C, but as the process progresses
this difference becomes smaller and smaller. At the end of the process the maximum temperature difference
is roughly 7°C for the constant power law case and roughly 6°C for the interpolated power law case. Once
again take into account the fact that the viscous dissipation is included in these models for the 0.0001s
time step, which introduces the temperature deviation as discussed previously. For the constant power
law case this results in a slight elevation above the boundary condition temperature as can be seen in
Figure 6.15. Here the case with a preheat temperature of 50°C reaches a maximum temperature of roughly
131°C in the area close to the inner cylinder. Although the temperature difference at the end of the process
is only 6°C or 7°C, the preheating of the mixture could still have a beneficial effect, namely in reducing
the total processing time. In order to achieve the fibrous structure in the final product, shear has to be
applied to the ingredient mixture for a certain amount of time at a certain temperature. This temperature
lies in the range of 100°C to 130°C. Figure 6.16 shows that the 10°C preheat case reaches a temperature
of roughly 105°C after 1400 seconds, whereas the 50°C preheat case reaches this temperature after only
1000s. This means that preheating to 50°C allows the ingredient mixture to enter the temperature zone
where fibrous structure can be created roughly 400 seconds (or 6,7 minutes) earlier than the 10°C case.
This could possibly reduce the processing time for the 50°C preheat case by 6,7 minutes compared to the
10°C preheat case. So if processing time is a limiting factor for the production capacity, then preheating
the ingredient mixture might be interesting to consider.

Temperature between inner and outer cylinder.

140 —

120[—

Temperature [C]

40—

20—

0
0.155 0.16 0.165 017 0.175 0.18 0.185 0.19 0.135
Radius [m]

Figure 6.15: A comparison between the temperature profiles using 3 different preheat temperatures for the case with constant
power law parameters. Solid lines are used for the preheat temperature 10°C, dashed lines for 25°C, and dotted lines for 50°C. The
temperature profiles are given at multiple moments in time. The graph for t=1s starts at the bottom of the figure and the graphs
shift upwards as the time increases.

92 6. Results

Temperature between inner and outer cylinder.

80—

=1800
— — — -t=1800
+ t=1800

60—

Temperature [C]

40—

20—

0
0.155 0.16 0.165 017 0175 0.18 0.185 0.19 0.195
Radius [m]

Figure 6.16: A comparison between the temperature profiles using 3 different preheat temperatures for the case with interpolated
power law parameters. Solid lines are used for the preheat temperature 10°C, dashed lines for 25°C, and dotted lines for 50°C. The
temperature profiles are given at multiple moments in time. The graph for t=1s starts at the bottom of the figure and the graphs
shift upwards as the time increases.

6.2. Case comparisons 93

6.2.4. Density

The influence of the density on the temperature has been studied as well. Three densities have been used;
820 kg/m3, 1020 kg/m3, and 1220 kg/m3. The results for the case with constant and interpolated power
law parameters can be found in Figure 6.17 and Figure 6.18 respectively, where solid lines have been used
for the density 820 kg/m?3, dashed lines for 1020 kg/m3, and dotted lines for 1220 kg/m3>. Equation 4.12
shows that the diffusion term scales with the thermal diffusivity, a=x/pcp. As the density becomes lower,
this term becomes larger. The same is valid for the viscous dissipation term, which contains the factor
1/pcp. Therefore the case with the lowest density is expected to reach the highest final temperature. The
results confirm this expectation.

At time step t=1800s the constant power law parameter comparison shows a maximum temperature differ-
ence of roughly 12°C between the 820 kg/m® and 1220 kg/m® case, which is quite substantial. Note that
the viscous dissipation is once again responsible for raising the maximum temperature to 132°C, which is
a value slightly above the maximum temperature at the inner and outer cylinders. For the interpolated
power law parameter comparison the maximum temperature difference between the 820 kg/m? and 1220
kg/m3 case at t=1800s is roughly 10°C and the temperature does not rise above the 130°C because the
viscous dissipation has a smaller influence in this case.

As previously discussed, the viscous dissipation adds a maximum of 9.8°C and 2.6°C to the constant and
interpolated power law parameters cases respectively. However, for these density comparisons the density
has been increased and decreased by 200 kg/m? from the reqular value of 1000 kg/m3, which is roughly
20% and therefore the viscous dissipation is expected to increase by roughly 20% for the 820 kg/m?3 case
and decrease by roughly 20% for the 1220 kg/m® case. For the constant power law parameter case the
final temperature graphs for all 3 densities are expected to overestimate the final temperature by at most
9.8°C due to the viscous dissipation error for the time step t=0.0001s, as discussed in subsection 6.2.1.
For the lowest density of 820 kg/m? this error should be corrected with an increase of 20%, which results
in a total of 11.76°C overestimation. For the highest density of 1220 kg/m? this error should be corrected
with a decrease of 20%, which results in a total of 7.84°C overestimation. For the interpolated power law
parameter case the same corrections can be applied, which results in an overestimation of 3.12°C and
2.08°C for the lowest and highest density respectively.

Temperature between inner and outer cylinder.

=1
———t=1
-o=
=50
=50
=50
=200
—— — =200
© =200
=600
=600
=600
=1000
—— — t=1000
« t=1000
t=1400
— — —1=1400
+ t=1400
=1800
— — —-t=1800
- t=1800

Temperature [C]

o
g
T

20—

0
0.155 0.16 0.165 017 0175 0.18 0.185 0.19 0.195
Radius [m]

Figure 6.17: A comparison between the temperature profiles for 3 different densities for the case with constant power law
parameters. Solid lines are used for the density 820 kg/m3, dashed lines for the density 1020 kg/m3, and dotted lines for the
density 1220 kg/m3. The temperature profiles are given at multiple moments in time. The graph for t=1s starts at the bottom of
the figure and the graphs shift upwards as the time increases.

94

6. Results

140 —

120—

Temperature [C]

60—

40—

20—

Temperature between inner and outer cylinder.

0
0.155

0.16

0.165 017 0.175 0.18 0.185
Radius [m]

0.19

0.195

Figure 6.18: A comparison between the temperature profiles for 3 different densities for the case with interpolated power law
parameters. Solid lines are used for the density 820 kg/m?®, dashed lines for the density 1020 kg/m3, and dotted lines for the
density 1220 kg/m3. The temperature profiles are given at multiple moments in time. The graph for t=1s starts at the bottom of

the figure and the graphs shift upwards as the time increases.

Conclusion

The aim of this research paper was to create a model which can simulate the temperature profile in a
geometry similar to the Couette cell. First, experiments and data analysis were performed to identify the
appropriate constitutive relations which could then be implemented in the model. The model calculates the
temperature, velocity, viscosity, and viscous dissipation fields based on the given material parameters and
process conditions. Simulations have been run in OpenFOAM using constant power law parameters and
temperature dependent power law parameters. Overall the results from the simulations are in good agree-
ment with the expectations. Some improvements can of course still be made, for which recommendations
will be given in Chapter 8.

The temporal convergence study showed that for the time step 0.0001s the velocity, viscosity, and viscous
dissipation fields were not yet fully converged, which resulted in errors in the final temperature fields. The
temperature field for the constant power law parameter case showed one vertically elongated cold spot
which agreed with the expectations. However, the temperature field for the temperature dependent case
unexpectedly showed 3 vertically separated cold spots. This separation between the cold spots is caused
by small vortex-like velocity components in the x- and z- direction, which had maximum values of 6.6e-03
m/s and 9.8e-03 m/s respectively. In comparison, the velocity in y-direction had a maximum value of 0.5
m/s, which is 2 orders of magnitude higher. It has been found that by further refining the time steps from
0.0001s to 0.000001s the velocity components in x- and z-direction disappeared. The problem with using
a time step of 0.000001s for the simulations is that each simulation would take months to run, which was
not achievable within the time frame of this study and therefore the simulations have been performed using
a time step of 0.0001s. Ansys Fluent is able to run simulations for the same high viscosity power law
fluid using much larger time steps. It remains unclear why OpenFOAM requires such small time steps to
correctly calculate the velocity fields when simulating high viscosity power law fluids. Some users on CFD
fora have reported similar issues, but no reason for this has been found yet.

For the simulations with time step 0.0001s the error in the final temperature field caused by the viscous
dissipation has been quantified. For the case with constant and interpolated power law parameters the
viscous dissipation can increase the final temperature by up to 9.8°C and 2.6°C respectively when compared
to the same case without viscous dissipation. The convergence study has shown that as the time step is
refined to 0.000001s the viscous dissipation throughout the entire geometry diminishes, except in the area
near the inner cylinder. Therefore refined simulations using the time step 0.000001s are expected to shift
the temperature profiles down by an amount on the order of 10°C at most.

When upscaling to larger thicknesses such as the 41mm case it can be seen that the temperature near the
middle of the geometry barely reaches 100°C. Keeping in mind that the temperature profile likely shifts
down (by at most 9.8°C) when a refined time step is used, this means the temperature is probably too low to
create the required structure in the product. Combining the larger thickness option with a preheat process
could help reduce temperature inhomogeneity and gradients and allow the coldest part of the product to
reach the required temperature zone earlier on.

95

Recommendations and Future Work

The model which has been created for this thesis takes into account the temperature dependency of the
power law indices k and n. The number of measurements performed to determine these indices is rather
small and therefore it is recommended to perform more measurements if this model is to be used in the
future. These new indices can then simply be inserted into the model via the transportProperties file and
the interppowerLaw.C file.

Furthermore, to calculate the power law indices the assumption is made that the Cox-Merz relation holds,
as has been done in research by Krintiras [12] and van Dijk [13]. It is recommended to verify this assumption.
This can be done by performing additional rheological measurements, where the results for the steady state
shear viscosity and the complex viscosity (oscillatory shear) should be compared. In addition to testing
the validity of Cox-Merz, this would provide an additional check on the presumed form of the constitutive
relation. While the current measurements are compatible with a power law relationship between stress
and strain rate, it remains possible that there is a qualitatively different relationship at sufficiently low
strain rates, e.g. a yield stress plateau or a crossover to a high-viscosity Newtonian regime. Since the
highest viscosities occur at the lowest strain rates, this behavior has a strong influence on the convergence
properties of the model.

In this study only one parameter was varied per simulation. If more research will be performed using this
model it would be interesting to combine multiple parameter variations in a single case to find out if the
right conditions for structure formation are still achieved. Results from this thesis have shown that the
case with 41mm thickness currently barely reaches 100°C in the center and therefore this case would not
be interesting since the required structure would normally not be achieved at this temperature. However,
using the 4Tmm geometry in combination with a preheated ingredient mixture of 50°C could change this
and therefore similar combined parameter cases should be studied, since they could broaden the range of
scenarios where a properly structured product is created.

Lastly, to make this model more useful for long simulation times it is crucial to find out more about why
OpenFOAM has trouble simulating high viscosity fluids using time steps that can easily be handled by
similar CFD programs such as Ansys Fluent. Instead of fixing this issue one can also choose to work with
Ansys Fluent instead of OpenFOAM, avoiding the convergence issues, but this would mean abandoning
the current model. Going forward, working with this OpenFOAM model does not seem like a practical
solution for Rival Foods if simulation times of 1800s are used, unless an experienced OpenFOAM user is
available who is able to solve the time step issue.

97

Bibliography

[1] Ishamri Ismail, Young-Hwa Hwang, and Seon-Tea Joo. Meat analog as future food: a review. Journal
of animal science and technology, 62(2):111, 2020.

[2] Birgit L Dekkers. Creation of fibrous plant protein foods. PhD thesis, Wageningen University, 2018.

[3] EE Johanna, CH Annet, and AJS Martinus. B, pietemel al. 2011. consumer acceptance and appropri-
ateness of meat substitutes in a meal context. Food Qual. Pref, 22(3):233-240, 2011.

[4] Lone Bredahl, Karen Brunso, and KG Grunert. Consumer perception of meat quality and implications
for product development in the meat sector-a reviews. Meat Science, 66(2):259-272, 2004.

[5] Lindsay M. Biga, Sierra Dawson, Amy Harwell, Robin Hopkins, Joel Kaufmann, Mike LeMaster, Philip
Matern, Katie Morrison-Graham, Devon Quick, Jon Runyeon, and et al. 10.2 skeletal muscle, 2021.

[6] Jean-Louis Damez and Sylvie Clerjon. Meat quality assessment using biophysical methods related to
meat structure. Meat science, 80(1):132-149, 2008.

[7] Jean-Louis Damez and Sylvie Clerjon. Quantifying and predicting meat and meat products quality
attributes using electromagnetic waves: An overview. Meat science, 95(4):879-896, 2013.

[8] Navneet Singh Deora and Madhuresh Dwivedi. Structuring meat analogues using extrusion: An
insight. EC Gastroenterology and Digestive System 6.1, pages 29-31, 2018.

[9] Julita M Manski, Atze | van der Goot, and Remko M Boom. Advances in structure formation of
anisotropic protein-rich foods through novel processing concepts. Trends in Food Science & Technol-
ogy, 18(11):546-557, 2007.

[10] Julita M Manski, Atze | van der Goot, and Remko M Boom. Formation of fibrous materials from dense
calcium caseinate dispersions. Biomacromolecules, 8(4):1271-1279, 2007.

[11] Georgios A Krintiras, Jesse Gobel, Wim G Bouwman, Atze Jan Van Der Goot, and Georgios D Ste-
fanidis. On characterization of anisotropic plant protein structures. Food & function, 5(12):3233-3240,
2014.

[12] Georgios A. Krintiras. Intensified protein structuring for more sustainable foods. PhD thesis, Delft
University of Technology, 2016.

[13] Niels van Dijk. Cfd modeling of a couette cell. the effect of heat transfer and viscous dissipation on
the product quality, 2014.

[14] Jesse Gobel. Intensified protein structuring. production of fibrous soy based meat analogs using a
couette cell, 2013.

[15] J. Gadea Diaz. Structure formation and parametric study in an up-scaled couette cell, 2015.

[16] Malvern Instruments Limited. A basic introduction to rheology. https://cdn.technologynetworks.
com/TN/Resources/PDF/WP160620BasicIntroRheology . pdf.

[17] By g-sec - Own work, CC BY-SA 3.0 Wikipedia, the free encyclopedia. Non-newtonian fluid, 2021.
[Online; accessed May 11, 2021].

[18] WP Cox and EH Merz. Correlation of dynamic and steady flow viscosities. Journal of Polymer Science,
28(118):619-622, 1958.

[19] Wikimedia Commons. Laminar shear in a fluid., 2005-04-04, 2008-06-05.

99

https://cdn.technologynetworks.com/TN/Resources/PDF/WP160620BasicIntroRheology.pdf
https://cdn.technologynetworks.com/TN/Resources/PDF/WP160620BasicIntroRheology.pdf

100 Bibliography

[20] Raj P Chhabra and John Francis Richardson. Non-Newtonian flow in the process industries: funda-
mentals and engineering applications. Butterworth-Heinemann, 1999.

[21] CW Macosko. Rheology principles, measurements, and applications, vch publ. Inc, New York, 1994.

[22] MA Andy Rao. Rheology of fluid and semisolid foods: principles and applications. Springer Science
& Business Media, 2010.

[23] . Openfoam: User guide v2012, 2012. [Online; accessed June 7, 2021].

[24] Floor KG Schreuders, lIgor Bodnar, Philipp Erni, Remko M Boom, and Atze Jan van der Goot. Water
redistribution determined by time domain nmr explains rheological properties of dense fibrous protein
blends at high temperature. Food Hydrocolloids, 101:105562, 2020.

[25] MA Emin, M Quevedo, M Wilhelm, and HP Karbstein. Analysis of the reaction behavior of highly
concentrated plant proteins in extrusion-like conditions. /nnovative Food Science & Emerging Tech-
nologies, 44:15-20, 2017.

[26] Hrvoje Jasak. Error analysis and estimation for the finite volume method with applications to fluid
flows. 1996.

[27] Henrik Rusche. Computational fluid dynamics of dispersed two-phase flows at high phase fractions.
PhD thesis, Imperial College London (University of London), 2003.

[28] Anthony F Mills. Basic heat and mass transfer. Prentice hall, 1999.

[29] Patrick | Roache. Quantification of uncertainty in computational fluid dynamics. Annual review of
fluid Mechanics, 29(1):123-160, 1997.

[30] Lewis Fry Richardson and] Arthur Gaunt. Viii. the deferred approach to the limit. Philosophical

Transactions of the Royal Society of London. Series A, containing papers of a mathematical or physical
character, 226(636-646):299-361, 1927.

[31] Patrick J Roache. Perspective: a method for uniform reporting of grid refinement studies. 1994.

[32] Leonard E Schwer. Is your mesh refined enough? estimating discretization error using gci. 7th
LS-DYNA Anwenderforum, 1(1):45-54, 2008.

[33] R Byron Bird, Warren E Stewart, and Edwin N Lightfoot. Transport phenomena revised 2nd edition,
2006.

[34] Frank M White. Fluid mechanics, mcgraw-hill. New York, 1994.

[35] A Davey, RC Dt Prima, and JT Stuart. On the instability of taylor vortices. Journal of Fluid Mechanics,
31(1):17-52, 1968.

[36] V Sinevic, R Kuboi, and AW Nienow. Power numbers, taylor numbers and taylor vortices in viscous
newtonian and non-newtonian fluids. Chemical engineering science, 41(11):2915-2923, 1986.

Appendix A: RPA Elite Measurement Data

5
Frequency [Hz] G [kPg] - Test #1 G [kPg] - Test #2 GEMIDDELDE[G") STDEVS(G) SEM
10,000 2,145 i 2257 0157755523 011155
5588 8700 8030 365 0473195858 03345
3587 i 6315 7.501 0,E2 BOGT 51 058555
2,155 Likr 6,915 5043 QUORE3A5E 4R /02 785
1252 20 &.245 AR 0275863777 019515
0,774 5E11 5131 5521 0552108975 03204
0454 6,023 4 071 5,047 1380431016 0s7s8
0278 4,183 4563 4573 0552082 &4 035085
0,167 4525 3513 1071 07EREE153 055755
0,106 4015 4071 4,0u3 Q088455558 Qo
Frequency[Hz] 5™ [kFa] - Test #1 5™ [kFa] - Test#2 GEMIDDELDE[G™ ") STDEV.S[G™) SEM
10,000 2500 2855 1528 QUORS3ASAAR /02 785
k] 2358 2521 2510 01575848 12 01115
1587 2115 2342 2231 0157755523 011155
2,155 1,785 2063 1824 0157212061 013545
1282 2565 0548 1757 1143605757 0/B0GES
0,774 2358 562 1980 0551424577 041825
0454 1254 1283 1338 QOFEsI 17 Q0658
02TE 1506 1562 1534 Q088455558 Qo
0,167 2358 1617 2.008 0,557108575 03804
0, 1060 12594 2115 1757 0512581706 036245
Frequency [Hz] * [Pa*s] - Test #1 't [Pa*s] - Test #2 GEMIDDELDE(n™ STDEV.5[rf") SEM
10,000 182,701 156,363 154,537 1582353065 1826
k] 235,845 24,520 132,185 10E3ISTIBES 7.5545
1587 166,865 123,032 345,444 33, 108E6082 234115
2,155 531,332 537 512 532,147 1081873375 0755
1.252 BTG, 442 718,215 577,328 B8 ASEETTE 421135
0,774 1311725 1102761 1207 245 147, 7E2E800 106, 484
0,454 2115331 1453235 172,285 453, 87710723 328045
02TE 2542708 ZETG 6T 2750 438 306, 5017283 215, 7205
0,167 4573 815 1680 256 4332 (B8 o7, 6161014 41, 715
0,106 654,552 704413 54,533 384, BEREE33 255, 8R0S

Figure A.1: Data from the SAOS measurements at 25°C

101

102 A. Appendix A: RPA Elite Measurement Data

50C
Frequency[Hz] G [kFa] - Test # G [WFa] - Test # GEMIDDELDE[G™) STDEVS[G7) SEM
10,000 5E1Z 6,488 6051 0551424522 104 1EC
k] 51856 5013 3103 0O 11R2SReE] QOE3ES
1587 4127 4,756 4461 0473195858 03346
2,155 3681 3,681 3681 4] 2]
1.252 4127 4127 4127 [#] a
0,774 1565 LE12 3541 Q035456558 oo
{01464 z21158 pdiva 2370 0334886855 025085
0278 3513 2,585 389 Q&8I0 0474
0,167 Pl i) 2286 2426 0157212081 013515
0, 1060 2,358 2ETT 2,537 019714371 01354
Frequency[Hz] G” [kPa] - Test # G” [kPa] - Test#2 GEMIDDELDE[G™"} STDEV.S([G) SEM
10,000 1573 TR 2203 07 48250845 05228
5 S88 1673 22% 1880 04337353 03057
1587 B2 G673 1812 019714371 01354
2155 [iE s) 1,237 1060 0235557220 Q1673
1252 101,350 0,888 0530 0157141371 01351
0,774 1,060 1,2 1227 0236587222 Q1673
{01,464 0852 1817 13255 0512581706 036245
0278 1115 0112 0613 07087837 EF 0509
0,167 L] Ll 2] Q&7 QD3S5E558 Qo2
0,106 0,502 1,115 0505 04337333 03067
Frequency [Hz] " [Pa®s] - Test #H " [Fa®s] - Test #2 GEMIDDELDE(n® 5TDEV.5(r) SEM
10,000 2351 111,785 102, &40 12, S0R40656 %1255
gl 144 841 1446 580 145,716 123572576 QE745
3587 20,580 224737 213,355 15 DElEAe0R 11, 3785
2,155 278,877 285,507 283,082 4820530715 3415
1252 510,625 B4 Soh 512, 811 JOa0rEST a1 2 1855
0,774 786,589 T2 77138 5.2 SEBRSEEA 58385
0,464 783,252 55,821 203, 057 155, 100543 133, 7845
0278 2108453 468,726 1788, 580 452, 3552008 315 BEA5
0,167 2543473 T3 0E4 2408, 273 151, 153RDES 135, 1545
0,100 885,181 415,281 1257, 231 306 358166 358 05

Figure A.2: Data from the SAOS measurements at 50°C

103

75C

Frequency [Hz]
10,000
5,588
3,557
2,155
1.252
0,774
0,454
0278
0,167
0,100

Frequency [Hz]
10,000
5288
3,557
2,155
1252
0774
0,454
0,278
0,167
0,100

Frequency [Hz]
10,000
5588
3557
2158
iz
0774
0,454
0278
0,167
0100

G [kPa] - Test #

4,508
4 451
4573
4517
4,071
4338
1525
3,738
1087
4517

G [kPa] - Test#1

1,785
1562
1234
1517
1725
1227
0885
0.725
1283
0832

" [Fa®s] - Test #

G [WPa] -Test 2
4740
4408
4520
4451
3504
3,067
3,345
3,345
3,458
2 TER

G [kPa]-Test#?
1,354

" [Fa®s] - Test #2

83,108 18,837
126,820 123,745
211,521 206 524
354,213 3B 524
Sdd B30 B23178
o7, 28T 630 200
1263 fG4 147 234
21T 0T 55,500
372068 £ i)
7328101 4441315

GEMIDDELDE[G |
4824
1433
1,600
1488
3287
3653
3,485
354
3787

3653

GEMIDDELDE[G"")
1580
1534
1032
1338
170
pri-m
033
0558
QES?
050

GEM IDDELDE(n7
BOLET3
124 EBE
208,773
345,452
534004
788 0ad
1206 445
2051587
355 358
SEG 710

STDEV S (G}
0.11E2080E4
C0383A5R45
00383EE4E
033458558
011R75R0E
OE280807EL
0157141371
O27ECEMET
0273265777
172295208

STDEVS[G™)
0275283777
033458558
0512852415
O3SA2EI7 A
03856558
OE280807EL
04337353

0738557802
CEZA0EETS
0352108275

STDEV.S{r")
3161474415
1 332R0E2 RS
3.2 50REEET3
11 OE372820
15, 31027505
105 S06E3 25
B2 I2RA4253
175 BEs4RS2
o0 23181074
2041 253128

SEM
QUOESED
QOZTES
QOZ7ES
Qore
QUOESES
05555
01324
01852
019515
OEEM

SEM
015515
Qore
03625
02788
Qozre
05555
03067
01673
58555
03504

SEM
2.2355
0225
22585
7.B445
10 B26
13,2435
5§ 215
125064
B, 2085
1443 351

Figure A.3: Data from the SAOS measurements at 75°C

104 A. Appendix A: RPA Elite Measurement Data

100 C

Frequency [Hz] &' [kPa] - Test #1 G'[kPa]- Test#2 G [kPa]- Test#2 GEMIDDELDE[G) STDEV. 5[5 SEM

10,000 5T 5,055 12524 E 2E2IEIB1E2 1513551583
5388 7417 7,886 12,407 2173 2503343021 1,61885888
3587 535 7.8 11848 3358 2 163280533 1, 2524761
2,155 7,361 8,700 11,912 9324 2338591282 1,360 196308
1232 7082 5,142 11,553 5328 2338153254 1, 4E7TET33
0774 TAM 5,558 11,856 3213 2252507481 1,381545773
0,484 7782 5,308 10,224 8385 15TBTETEES 0,365053T4E
0278 7AiM 5,254 11733 2062 2 3TEITO0ST 1,373037123
0,187 7518 7,584 12,348 9284 2EEI1TEEED 1,E35278094
0,100 5,471 10,038 13,102 10,520 2377455234 1,37 2632502
Frequency [Hz] 5" [kPa] - Test#1 G” [kPa] -Test # G~ [kPa] -Test 43 GEMIDDELDE(G") STDEV.S[G") SEM

10,000 0330 0,781 1,311 0527 0461857431 0, BEREIE12
5588 052 0,380 1,315 0736 05045322342 0,28151705
3557 0112 0,773 1,101 0457 0525720845 0,305534472
2,155 0,445 0,187 1,145 0,586 0503TEB424 0,250850835
1232 028 0,582 0,78 0538 0382388152 0,20925755
0774 1,004 0,380 1,573 0383 0531206584 0,341352228
0,484 0613 0,112 0,334 0353 0251439083 0, 145203053
0278 0,751 1,283 0,780 0348 0250106132 0,187452276
0,187 0,05 0,058 0,888 0270 03TIB0T211 0214547523
0,100 075 1,080 1,52 1012 0268545584 0,153532474
Frequency[Hz] It [Pa%] - Test #1 n® [Pa%] - Test#2 7 [Pas] - Test#3 GEMIDDELDE(T) STDEV. 5{rf") SEM

10,000 133454 123234 206 754 158511 4208331405 24 I0FTEEE
5588 197 585 204508 331613 244 553 753821323 43 52188438
3557 370,143 345 122 528,410 414 537 57 20343513 55 12043005
2155 544507 B42 585 533772 830,315 174 5511668 100 7TTIE3
1232 72880 1008378 1426583 102,208 288 5207455 166, 5775201
0774 1453500 76T T72 2455238 1506570 45T B145 287 3007252
0,484 FEE 68 2845526 3738 551 084,258 573 BBETETZ 331 2408153
0278 4133053 4TTT5T4 6735546 5217438 1382, 5337 7811181776
0,187 TEEG 846 726801 11757054 8B5S E4T 2640,090875 1466 522151
0,100 13451 542 16084728 0B4TAB 1881, 65 3504,567108 2186567845

Figure A.4: Data from the SAOS measurements at 100°C

105

125 C

Frequency [Hz]
10,000
5,588
2.597
2,155
1252
0.774
0,434
0278
0,187
0.100

Frequency [Hz]
10,000
5588
3587
2,155
1252
0.774
0,434
0278
0,187
0.100

Frequency [Hz]
10,000
5588
3587
2155
1252
0.774
0.4584
0278
0,187
0.100

G' [kPa] - Test #1
5015

G" [kPa] - Test#1
0781
0548
0,558
0335
0,781
0,058
0,088
0.&52
1338
2175

7 [Pa*e] - Test #1
50,541
153,271
208,595
371 455
853,57
1077 578
1787185
2758 006
4351 157
TETER

G [kPa] - Test #2
1728
3173
1,004
1,785
1540
1471
1,508
1573
0548
2063

G [kPa] - Test#2
0223
0725
1338
0380
0,056
1,060
0568
0502
0380
0,056

T [Pa%s] - Test #2
27742
26,658
74022
134,300
226,502
324747
584,55
555,059
578,23
326,143

G' [kPa] -Test #3
8.231
7785
7778
8287
8,132
8807
5331
882
5411
1508

G" [kPa] - Test#2
1531
1387
0738
0514
02T
1583
0231
1444
2,114
1853

7 [Pa*e] - Test #3
111,827
210,118
345 555
508, E 1
756,130
1358078
1850814
3502 TET
SE3E 570
3304055

GEMIDOELDE[G')
458
5551
4 451
4557
447
4,240
4045
435
3588
2582

GEMIDDELDE(G")
10,885
1013
0578
0413
0T
0853
0318
0,945
1281
1,351

GEMIDDELDE[n7
73,403
150,015
207 545
33|25
547 533
o2 0934
1404250
2863630
3636000
4518358

STDEV.5(G")
2 EEB4EEENE
2306337181
3,35858T 164
2572731808
2 2TEE13158
2EZTITR4ED
2201421087
2 EIBE2E0E5
2341234283
1275550454

STDEV.5{G")
0,B85088758
032670855
0,408544333
0,022085047
0371445708
0767351263
0315888589
0473240427
0,852017445
1,141888087

STDEV.5(r7)
47 43431583
61, 79603061

1358775533
153048528

21318818
££0,1553354
T27 4538574
1452 535431

T FETHE
2143094148

SEM
14532508
12219108
1.2584017|

1, 48540
13137681

1,627y
12708911
14525154
1251122
0,7383551

SEM
0.237256T|
0,1280457)
0, 2358715
00521653
0,2 144555
04420535
01823724
02732255
0458054
0552 5ET)

SEM
24,455454
35, 67Ta5N
TE, 445547
108, 14612
162, TE4E1
317, 6654

419 5957
244 4B551
1255 26
1237 215

Figure A.5: Data from the SAOS measurements at 125°C

Appendix B: OpenFOAM code

B.1. my_viscousHeatingSolver.C

|
3 A\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 AR\ / 0 peration | Website: https://openfoam.org
|

5 \\/ A nd Copyright (C) 2011-2018 OpenF0AM
Foundation
6 \\/ M anipulation |

s License
9 This file is part of OpenFOAM.

1 OpenFO0AM is free software: you can redistribute it and/or modify it

12 under the terms of the GNU General Public License as published by

13 the Free Software Foundation, either version 3 of the License, or

14 (at your option) any later version.

15

16 OpenF0OAM is distributed in the hope that it will be useful, but
WITHOUT

17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or

18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License

19 for more details.

20

2 You should have received a copy of the GNU General Public License

2 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

23

2% Application

2 nonNewtonianIcoFoam

26

7 Description

28 Transient solver for incompressible, laminar flow of non-Newtonian
fluids.

2 #include "£fvCFD.H"

107

108 B. Appendix B: OpenFOAM code

;3 #include "singlePhaseTransportModel.H"

3 #include "pisoControl.H"

35

6 // * % % % % % % *x % % % % % % % % % % % % *x % % % % % *x *x *x *x x x//
37

33 int main(int argc, char x*argv[])

39 {

40 #include "postProcess.H"

a1

42 #include "setRootCaselLists.H"

43 #include "createTime.H"

44 #include "createMeshNoClear .H"

45 #include "createControl.H"

46 #include "createFields.H"

a7 #include "initContinuityErrs.H"

48

49 //******************************//
50

51 Info<< "\nStarting time loop\n" << endl;

52

53 while (runTime.loop())

54 {

55 Info<< "Time = " << runTime.timeName () << nl << endl;
56

57 #include "CourantNo.H"

58

59 fluid.correct () ;

60

61 // Momentum predictor

62

63 fvVectorMatrix UEqn

o4 (

65 fvm::ddt (U)

66 + fvm::div(phi, U)

67 - fvm::laplacian(fluid.nu(), U)

68 - (fvc::grad(U) & fvc::grad(fluid.nu()))
69)

70

7 if (piso.momentumPredictor ())

72 {

73 solve (UEqn == -fvc::grad(p));

74 }

75

7 // --- PISO loop

7 while (piso.correct())

78 {

79 volScalarField rAU(1.0/UEqn.A(Q));

5 volVectorField HbyA(constrainHbyA (rAU*xUEqn.H(O), U, p));
81 surfaceScalarField phiHbyA

82 (

8 "phiHbyA",

84 fvc::flux (HbyA)

8 + fvc::interpolate (rAU)*fvc::ddtCorr (U, phi)
86)

87

8 adjustPhi (phiHbyA, U, p);

89

90

92

93

94

95

98

99

100

101

102

103

104

105

106

107

108

109

110

m

112

13

114

115

116

17

118

119

120

21

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

1M

B.1. my_viscousHeatingSolver.C 109
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, U, phiHbyA, rAU);

// Non-orthogonal pressure corrector loop
while (piso.correctNonOrthogonal ())
{
// Pressure corrector
fvScalarMatrix pEqn
(
fvm::laplacian(rAU, p) == fvc::div(phiHbyA)
)
pEqn.setReference (pRefCell, pRefValue) ;
pEqn.solve () ;
if (piso.finalNonOrthogonalIter ())
{
phi = phiHbyA - pEqn.flux();
3
}
#include "continuityErrs.H"
U = HbyA - rAUxfvc::grad(p);
U.correctBoundaryConditions () ;
}
volTensorField gradU = fvc::grad(U);
volTensorField tau = fluid.nu() * (gradU + gradU.T());
viscdis = (1/c)*(tau && gradU); //viscous dissipation term
scalar viscdismax = max(viscdis) .value() ; //maximum
viscous dissipation wegschrijven
scalar viscdismin = max(viscdis).value() ; //minimum

viscous dissipation wegschrijven
Info << "viscdismax, viscdismin " << viscdismax << "nmokL
viscdismin << endl;

fvScalarMatrix TEqn

(

fvm::ddt (T)

+ fvm::div(phi, T)

- fvm::laplacian (DT, T)

== (1/c)*(tau && gradU) // viscous heat dissipation term
)

TEqn.solve () ;
runTime.write () ;
Info<< "ExecutionTime = " << runTime.elapsedCpuTime () << "

<< " ClockTime = " << runTime.elapsedClockTime () << "
<< nl << endl;

s n
n

110 B. Appendix B: OpenFOAM code

142 }

143

144 Info<< "End\n" << endl;
145

146 return 0;

147 }

148
149
150 // 3k 3k 3k sk sk 5k 5k 5k %k >k 3k 3k 3k sk sk 5k 5k 5k %k >k >k >k sk sk sk 5k 5k >k %k >k >k >k 3k 3k 5k 5k 5k 5k %k %k >k 3k 3k 3k 5k 5k 5k 5k >k %k %k >k >k %k %k 5k 5k 5k Xk *k %k)k %k //

B.2. interppowerLaw.C

3 \\ / F ield OpenFOAM: The Open Source CFD Toolbox

4 A\ / 0 peration Website: https://openfoam.org

5 \\ / A nd Copyright (C) 2011-2020 OpenFOAM
Foundation

6 \\/ M anipulation |

s License
9 This file is part of OpenFOAM.

1 OpenFOAM is free software: you can redistribute it and/or modify it

12 under the terms of the GNU General Public License as published by

13 the Free Software Foundation, either version 3 of the License, or

14 (at your option) any later version.

15

16 OpenFOAM is distributed in the hope that it will be useful, but
WITHOUT

17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or

18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License

19 for more details.

20

21 You should have received a copy of the GNU General Public License

2 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

23

24 | T g g g g 5 S S */

25

% #include "interppowerLaw.H"

7 #include "addToRunTimeSelectionTable.H"

% #include "surfaceFields.H"

29

0 // % * % % % % * x *x *x x *x Static Data Members * * *x * x *x *x x x//
31

2 namespace Foam

33 {

% namespace viscosityModels

s {

3 defineTypeNameAndDebug (interppowerLaw, O0);
37

38 addToRunTimeSelectionTable

39 (

1 viscosityModel,

B.2. interppowerLaw.C 111

interppowerlLaw,
dictionary

)

// * % * * * *x * % *x *x Private Member Functions * * *x * *x * % x//

Foam::volScalarField Foam::viscosityModels::interppowerLaw::calcNu()
const

{

const volScalarField& T= U_.mesh().lookupObject<volScalarField>("T");

volScalarField mynu= U_.mesh().lookupObject<volScalarField>("mynu") ;

volScalarField nu0O = mynu;

dimensionedScalar k_local=k_;
dimensionedScalar n_local=n_;
volScalarField mystrainrate = strainRate ();
dimensionedScalar nu_tmp = nuMin_;

scalar myeps=1e-8;

forAll(T.internalField (), cellI)
{

if (T[cellI]<298+myeps)
{
k_local.value() = 0.97990;

n_local.value() = 0.18;
}

else if (T[cellI]>=298-myeps && T[celllI]<323+myeps)
{

k_local = ki1_ + ((k2_-k1_)/(T2_-T1_))*(T[cellI]-T1_); //
interpolate to find k value

n_local = nl_ + ((n2_-n1_)/(T2_-T1_))*(T[cellI]l-T1_); //
interpolate to find n value

3

else if (T[cellI]>=323-myeps && T[cellI]<348+myeps)
{
k_local = k2_ + ((k3_-k2_)/(T3_-T2_))*(T[celllI]-T2_); //
interpolate to find k value
n_local = n2_ + ((n3_-n2_)/(T3_-T2_))*(T[celll]l-T2_); //
interpolate to find n value

}

else if (T[cellI]>=348-myeps && T[celll]<373+myeps)
{
k_local = k3_ + ((k4_-k3_)/(T4_-T3_))*(T[cellI]-T3_); //
interpolate to find k value
n_local = n3_ + ((n4_-n3_)/(T4_-T3_))*(T[cellI]l-T3_); //
interpolate to find n value

3

else if (T[cellI]>=373-myeps && T[cellI]<=398+myeps)

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

m

112

113

114

115

116

17

118

119

120

21

122

123

124

125

126

127

128

129

130

131

132

133

135

136

137

138

139

140

1M

142

143

112 B. Appendix B: OpenFOAM code
{
k_local = k4_ + ((k5_-k4_)/(T5_-T4_))*(T[cellIl-T4_); //
interpolate to find k value
n_local = n4_ + ((nb_-n4_)/(T5_-T4_))*(T[cellI]l-T4_); //
interpolate to find n value
¥
else
{
k_local.value() = 0.67754;
n_local.value() = 0.084;
3
nu_tmp = max
(
nuMin_,
min
(
nuMax_ ,
(k_) *pow
(
max
(
mystrainrate [cellI],
small
),
n_.value() - scalar (1)
)
)
)3
mynu[cellI] = nu_tmp.value();
}
mynu.correctBoundaryConditions () ;
return mynu;
¥

// * k% % *x % * *x *x x

// * % % % %k % % *x %

Foam::viscosityModels::

(

const

const dictionary& viscosityProperties,

const

word& mname,

volVectorField& U,

* % x *x * Constructors

* % x *x * Constructors

* % % %k % *x *x % x x//

¥ % %X %k %x x *x x x x//

interppowerlLaw::interppowerLaw

144

145

146

147

148

149

150

151

152

153

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

B.2. interppowerLaw.C

113

{3

const surfaceScalarField& phi

viscosityModel (name,

viscosityProperties, U, phi),

interppowerLawCoeffs_(viscosityProperties.optionalSubDict (typeName
+ "Coeffs")),

k_(llkll s

dimViscosity,

interppowerLawCoeffs_),

dimless, interppowerLawCoeffs_),

nuMin", dimViscosity, interppowerLawCoeffs_),
nuMax", dimViscosity, interppowerLawCoeffs_),
, dimless, interppowerLawCoeffs_),

, dimless, interppowerLawCoeffs_),

, dimless, interppowerLawCoeffs_),

, dimless, interppowerLawCoeffs_),

, dimless, interppowerLawCoeffs_),

B

B

B

H

>

interppowerLawCoeffs_),
interppowerLawCoeffs_),
interppowerLawCoeffs_),
interppowerLawCoeffs_),
interppowerLawCoeffs_),

, dimless, interppowerLawCoeffs_),
, dimless, interppowerLawCoeffs_),
, dimless, interppowerLawCoeffs_),
, dimless, interppowerLawCoeffs_),
, dimless, interppowerLawCoeffs_),

n_("n"
nuMin_ ("
nuMax_ ("
T1_("T1"
T2_("T2"
T3_("T3"
T4_("T4"
T5_("T5"
ki_("k1", dimViscosity
k2_("k2", dimViscosity
k3_("k3", dimViscosity
k4_("k4", dimViscosity
k6_("k5", dimViscosity
nl_("ni"
n2_("n2"
n3_("n3"
n4_("n4"
n5_("n5"
nu_
(
I0object
(
name ,
U_.time () .timeName (),
U_.db(),
I0object:: NO_READ,
I0object:: AUTO_WRITE
)
calcNu ()
)

// * % % % % % *x *x % x *x *x Member Functions * % % k% % *x *x *x x x//

bool Foam::viscosityModels::interppowerLaw::read

(

~—

const dictionary& viscosityProperties

viscosityModel::read(viscosityProperties) ;

interppowerLawCoeffs_
typeName + "Coeffs"

)

viscosityProperties.optionalSubDict (

interppowerLawCoeffs_.lookup("k") >> k_;
interppowerLawCoeffs_.lookup("n") >> n_;
interppowerLawCoeffs_.lookup("nuMin") >> nuMin_;

198

199

200

201

202

203

204

205

206

207

208

209

210

21

212

213

214

215

216

217

218

219

20

21

22

23

24

25

26

114 B. Appendix B: OpenFOAM code
interppowerLawCoeffs_.lookup("nuMax") >> nuMax_;
interppowerLawCoeffs_.lookup("T1") >> T1_;
interppowerLawCoeffs_.lookup("T2") >> T2_;
interppowerLawCoeffs_.lookup("T3") >> T3_;
interppowerLawCoeffs_.lookup("T4") >> T4_;
interppowerLawCoeffs_.lookup("T5") >> T5_;
interppowerLawCoeffs_.lookup("k1") >> ki_;
interppowerLawCoeffs_.lookup("k2") >> k2_;
interppowerLawCoeffs_.lookup("k3") >> k3_;
interppowerLawCoeffs_.lookup("k4") >> ké4d_;
interppowerLawCoeffs_.lookup("k5") >> kb5_;
interppowerLawCoeffs_.lookup("nl") >> nil_;
interppowerLawCoeffs_.lookup("n2") >> n2_;
interppowerLawCoeffs_.lookup("n3") >> n3_;
interppowerLawCoeffs_.lookup("n4") >> néd_;
interppowerLawCoeffs_.lookup("n5") >> nb_;
return true;

}

[/ KKk ok ok ok ok ok ok ok ok ok oK ok ok oK oK ok oK ok K oK oK K oK oK K oK ok K ok ok K ok ok K ok ok K K ok K Kk R Kk KKk KKk Kk kR kR kkk [/ /

B.3. interppowerLaw.H

T N *\
e |
A\ / F ield | OpenFOAM: The Open Source CFD Toolbox
A\ / 0 peration | Website: https://openfoam.org
\\/ A nd | Copyright (C) 2011-2020 OpenFOAM
Foundation
\\/ M anipulation |
License
This file is part of OpenFOAM.
OpenFO0AM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenF0OAM is distributed in the hope that it will be useful, but
WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class

Foam::viscosityModels::interppowerLaw

27

28

60

61

62

63

64

65

66

67

68

69

79

80

81

B.3. interppowerLaw.H 115

Description
Customized temperature dependent power-law non-Newtonian viscosity
model .

SourceFiles
interppowerLaw.C

#ifndef interppowerLaw_H
#define interppowerLaw_H

#include "viscosityModel.H"
#include "dimensionedScalar.H"

#include "volFields.H"

// * % % % %k % % %k % *x % * % % % % %X %k *x %k %k * X % * X %X * x *x *x x//

namespace Foam

{

namespace viscosityModels

{

[oo — e — oo —— o —— - o——— oo ——co——————————— o= *\
Class interppowerLaw Declaration

i c—o——cc——c—ccc——c—c—o——c———o——c————c—————c———————————————=—————==== */

class interppowerlLaw
public viscosityModel
// Private Data
dictionary interppowerLawCoeffs_;

dimensionedScalar k_;
dimensionedScalar n_;
dimensionedScalar nuMin_;

dimensionedScalar nuMax_;

dimensionedScalar T1_;
dimensionedScalar T2_;
dimensionedScalar T3_;
dimensionedScalar T4_;
dimensionedScalar T5_;
dimensionedScalar ki1_;
dimensionedScalar k2_;
dimensionedScalar k3_;
dimensionedScalar k4_;
dimensionedScalar kb5_;
dimensionedScalar nl_;
dimensionedScalar n2_;
dimensionedScalar n3_;
dimensionedScalar n4_;
dimensionedScalar nb_;

82

83

84

86

87

88

89

90

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

m

112

113

114

115

116

17

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

116 B. Appendix B: OpenFOAM code
volScalarField nu_;
// Private Member Functions
//- Calculate and return the laminar viscosity
Foam::volScalarField calcNu() const ;
public:

//- Runtime type information
TypeName ("interppowerLaw") ;

// Constructors

//- Construct from components
interppowerLaw
(
const word& name,
const dictionary& viscosityProperties,
const volVectorField& U,
const surfaceScalarField& phi

)

//- Destructor
virtual ~interppowerLaw ()

{3

// Member Functions

//- Return the laminar viscosity
virtual tmp<volScalarField> nu() const

{

return nu_;

3

//- Return the laminar viscosity for patch
virtual tmp<scalarField> nu(const label patchi) const
{
return nu_.boundaryField () [patchil;
}

//- Correct the laminar viscosity
virtual void correct ()

{

nu_ = calcNu() ;

}

//- Read transportProperties dictionary
virtual bool read(const dictionary& viscosityProperties);

138

139

140

m

142

143

144

145

146

147

148

B.4. fvSchemes 117

J/ * % % % % % % % % % % * % % % % % % % X % * *x %k * X *x *x x x x//

} // End namespace viscosityModels
} // End namespace Foam

J/ * % % % %k % % % % *x %k * % % %k % % % % X % * *x %k * X *x * x x x//
#endif

B.4. tvSchemes

[iicocccccoooccoooocooocoooooa fie Qdbdr cficccccoocccccccoccoooococoooooooo *\
cesscssas |
A\ / F ield | OpenFOAM: The Open Source CFD Toolbox
AN\ / 0 peration | Website: https://openfoam.org
\\ / A nd | Version: 8
\\/ M anipulation |
|\Gic P Rpu g g gy g g g g g g g g g g g g g */
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "system";
object fvSchemes;
}
J/ * % % % %k % % % % *x %k * % % * % X% % % X %k % *x % * X %k * x *x *x x [/
ddtSchemes
{
default backward;
}
gradSchemes
{
default Gauss linear;
grad (p) Gauss linear;
}
divSchemes
{
default none ;
div (phi,U) Gauss linear;
div (phi,T) Gauss vanlLeer;
¥

laplacianSchemes

{
default none ;
laplacian(nu,U) Gauss linear corrected;
laplacian ((1|A(U)),p) Gauss linear corrected;
laplacian(DT,T) Gauss linear corrected;

43

44

45

46

47

48

49

50

51

52

53

54

55

56

20

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

39

118 B. Appendix B: OpenFOAM code

}
interpolationSchemes
{
default linear;
}
snGradSchemes
{
default orthogonal ;
}

B.5. fvSolution

[Boccccocooccoooooooooocooooocooo R @i oficcocccooocoonoocococoocococooooocoos *\
========= |
A\ / F ield | OpenFOAM: The Open Source CFD Toolbox
A\ / 0 peration | Website: https://openfoam.org
\\ / A nd | Version: 8
\\/ M anipulation |
|\Gic P ERpepUup Sy iy gy g gy 0y gy gy g gy g gy g g g gy g g g g g */
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "system" ;
object fvSolution;
}
J/ * % % * % % * *x % * *x % * *x % % % % % * % % * *x * * x *x *x x *x x //
solvers
{
p
{
solver PCG;
preconditioner DIC;
tolerance 1e-06;
relTol 0;
}
pFinal
{
$p;
relTol 0;
}
T
{
solver PBiCG;
preconditioner DILU;

tolerance le-14;

B.5. fvSolution

119

smoothSolver;
symGaussSeidel;
le-8;

0;

nNonOrthogonalCorrectors O;

relTol
};
0)
{
solver
smoother
tolerance
relTol
}
}
PISO
{
nCorrectors
pRefCell
pRefValue
}

	Introduction
	Background
	Introduction to meat analog structuring techniques
	Meat analog structuring mechanics using Couette Cells
	Research Motivation
	Goal and scope
	Timeline

	Literature Review
	Meat analogue structuring mechanics and process conditions
	Rheology
	Solids vs fluids
	Viscoelasticity
	Small amplitude oscillatory testing

	Mixture properties
	Couette flow and Taylor-Couette flow
	OpenFOAM solver

	Temperature dependency of the Power-Law parameters
	Plan of approach
	Data processing
	Data at 25°C
	Data at 50°C
	Data at 75°C
	Data at 100°C
	Data at 125°C

	Results for the temperature dependency of the Power-Law parameters

	OpenFOAM Simulation Setup
	nonNewtonianIcoFoam equations
	nonNewtonianIcoFoam customization
	Adding the temperature equation
	Adding viscous dissipation

	Power-Law customization
	Building the general case structure
	Geometry
	Boundary conditions
	Temperature boundary conditions
	Velocity boundary conditions
	Pressure boundary conditions
	Viscosity boundary conditions

	Numerical schemes
	Simulations
	Base case
	Variations on the base case

	Model verification
	Spatial convergence
	Temporal convergence
	Comparison between the analytical and numerical solution

	Results
	The base case
	Case comparisons
	Viscous dissipation
	Geometry
	Preheat
	Density

	Conclusion
	Recommendations and Future Work
	Bibliography
	Appendix A: RPA Elite Measurement Data
	Appendix B: OpenFOAM code
	my_viscousHeatingSolver.C
	interppowerLaw.C
	interppowerLaw.H
	fvSchemes
	fvSolution

