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Communication
Dissipation Losses in Artificial Dielectric Layers

Daniele Cavallo

Abstract— Closed-form expressions to describe artificial dielec-
tric layers (ADLs) with finite conductivity are presented. The
propagation of a generic plane wave within the artificial material
is described by means of transmission line models, where each
layer is represented as an equivalent shunt impedance. The given
analytical formulas for the shunt impedance are derived assuming
finite conductivity of the metal, thus also an accurate estimation
of the losses within the artificial dielectric is obtained from
the equivalent circuit. The expressions account for the reactive
coupling between the layers due to higher order Floquet modes,
thus remain valid even for extremely small electrical distance
between layers.

Index Terms—Artificial dielectric layers, closed-form solutions,
equivalent circuit.

I. INTRODUCTION

Several of today’s radar and wireless communication appli-
cations are shifting their operation to higher frequency to fulfill
more demanding requirements on resolution, compactness and
data rates. When the operating frequency of these systems
increases, reaching the millimeter and sub-millimeter waves,
the separation of antenna and electronic circuits is no longer
possible. Thus, the recent trend is to place the antennas as
close as possible to the electronic components, to facilitate
the interconnection and to realize highly integrated front-ends.
Despite this need, integrated antennas have never showed good
performance because of their intrinsic low efficiency: they are
limited by problems such as high surface-wave loss, narrow
bandwidth, low front-to-back radiation ratio [1]–[3].

Recently, an approach to greatly improve the efficiency of
integrated antennas was proposed in [4]: it entails adding
artificial dielectric layers (ADLs) above the antennas in order
to increase the front-to-back ratio. The artificial dielectric
consists of a dielectric slab hosting multiple layers of periodic
metal patches, as shown in Fig. 1, where both the patch size
and the period are sub-wavelength. This structure is equivalent
to an anisotropic slab with an effective refractive index which
is higher than that of the dielectric hosting the patches. ADLs
realize high effective refractive indexes for propagation normal
to stratification and low refractive indexes for grazing inci-
dence. This anisotropic behavior can be exploited to enhance
the front-to-back ratio of a near source without exciting surface
waves, thus resulting in very high radiation efficiency.
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Fig. 1. Two-dimensional side view of artificial dielectric slabs with (a)
aligned and (b) shifted layers.

Regarding the analysis, efficient numerical solutions for
generic multilayer metasurfaces have been proposed in the
past, for example in [5]–[7], and can be used for modeling
ADLs. A simplified closed-form analysis of ADLs was pre-
sented in [8], [9], valid for aligned layers (Fig. 1(a)), and
subsequently generalized in [10] to include the shift between
even and odd layers (Fig. 1(b)). Although Fig. 1(b) depicts
the case of maximum shift (layers are shifted by half of the
period), the shift can be an arbitrary percentage of the unit cell
size, realizing an example of glide symmetric structure [11]. It
was shown in [10] that the shift greatly increases the effective
refractive index of the ADLs with respect to the aligned case,
thus it constitutes a key parameter for more flexible designs.

The mentioned previous works [8]–[10] considered only
patches made of perfect electric conductor. Losses in ADLs are
typically very small because of the sub-wavelength dimensions
of the patches, that yield very low current intensity on each
patch. However, these losses can vary depending on the illu-
mination, e.g. by a near source or under plane-wave incidence,
and they also depend on the polarization and direction of
the incident field [12], [13]. For these reasons, it is useful to
derive more general analytical formulas that include the finite
conductivity of the metal, to accurately quantify the losses and
give more physical insight on the nature of Ohmic dissipation
in ADLs. In this work, the losses introduced by the finite
conductivity of the metal patches in ADLs are analytically
characterized and used to derive an effective dissipation factor
(tan δ) for these structures.

II. SINGLE LAYER WITH FINITE CONDUCTIVITY

To clarify the steps of the derivation, it is useful to first
consider the problem of a single layer of sub-wavelength lossy
patches. This solution will be subsequently generalized to the
periodic cascade of layers.

A. Equivalence Theorem and Integral Equation

The initial problem under consideration is a layer of periodic
square patches in the x-y plane, infinitely thin in z and
illuminated by a generic plane wave with electric and magnetic
fields ei and hi. The unit cell of the patch array is shown in
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Fig. 2. Unit cell of a single layer of periodic square patches illuminated
by a plane wave: (a) Original problem with plane wave incidence; (b)
Equivalent problem with magnetic and electric surface currents on the gaps;
(c) Equivalent effective magnetic current when the gap is filled with the same
metal as the patches; (d) Final equivalent problem with only magnetic currents
m0 with opposite signs above and below.

Fig. 2(a) and it is characterized by period d along both x and
y and width of the slots w. Due to the finite conductivity σ,
the metal can be described by the surface impedance

Zs = (1 + j)

√
k0ζ0
2σ

(1)

where k0 and ζ0 are the free-space wavenumber and
impedance, respectively.

The metal surface is modeled using the Leontovich bound-
ary conditions: e× n̂ = Zsn̂× [h× n̂], where n̂ is the outward
normal unit vector of the surface, and the fields e and h denote
the total fields, equal to the sum of incident and scattered. By
applying the equivalence theorem, the gaps between patches
are enclosed with an infinitely thin closed surfaces, on which
equivalent electric and magnetic surface current densities j0
and m0 are distributed, both above and below (see Fig. 2(b)).
The equivalent currents are related to the fields by j0 = n̂×h
and m0 = e× n̂.

Proceeding as in [14], the volume enclosed by the surface
can be filled with a material having the same conductivity
as the metal patches, to obtain a homogeneous layer that is
convenient to represent using spectral Green’s functions of
stratified media. An effective magnetic current density me,
that account for both j0 and m0, can be defined as

me = m0 + mj = m0 + Zsn̂× j0 (2)

as shown in Fig. 2(c). The continuity of both electric and
magnetic fields in the gap implies that the currents above and
below the layer are equal and with opposite signs for m0, but
with same sign for mj:

m+
0 = e+ × ẑ = e− × (−ẑ) = −m+

0 (3)
m+

j = Zs ẑ× (ẑ× h+) = Zs(−ẑ)× (−ẑ× h−) = m−j (4)

where the superscripts ‘+’ and ‘−’ are used to indicate the
current or the field above and below the layer plane. Thus, by
imposing the continuity of the tangential magnetic field in the
gaps, the following integral equation can be defined:

∞∫
−∞

∞∫
−∞

2m0(ρ′)gZs(ρ−ρ′)dρ′ = −(1 + Γ)hi (5)

where Γ is the reflection coefficient of the magnetic field at
the metal, ρ = xx̂+yŷ and ρ′ = x′x̂+y′ŷ are the observation
and source points respectively, and gZs

is the Green’s dyadic
for magnetic field due to a magnetic source located on the
infinite lossy plane. One can note that the magnetic current
mj does not contribute to the magnetic field integral equation,
since the difference between the field scattered above and
below by mj vanishes. Therefore, the integral equation can
be written only in terms of magnetic current density m0 (Fig.
2(d)). This is because, unlike [14], here the Green’s functions
for the currents above and below the layer are the same.

Equation (5) is solved by expanding of the magnetic current
in four domain basis functions, defined on the entire unit cell

m0(ρ) =

4∑
n=1

vnbn(ρ) (6)

where vn are unknown coefficients, and the basis functions
are defined as in [10]: the functions b1 and b2 consist of linear
phase terms longitudinally along the x- and y-oriented slots,
respectively, to account for the oblique incidence of the plane
wave; b3 and b4 represent anti-symmetric functions, defined
in [8](Eq. (13)), describing the magnetic current distribution
at the junction between orthogonal slots. The transverse dis-
tribution on the slots is assumed to be constant for all basis
functions.

By substituting (6) in (5) and by applying Galerkin pro-
jection, we can define a system of equations in matrix form
Yv = i, where v = (v1, v2, v3, v4)T is the vector of unknown
coefficients, i = (i1, i2, i3, i4)T is the vector of forcing terms
obtained projecting the right hand side of (5) onto the testing
functions, and Y is a 4 × 4 matrix whose elements Ymn
represent the projection of the field scattered by the n-th basis
function onto the m-th testing function. It is convenient to
calculate the mutual admittances in the spectral domain as

Ymn = − 1

d2

∞∑
mx=−∞

∞∑
my=−∞

B∗m(−kxm,−kym)·

GZs(kxm, kym)Bn(kxm, kym) (7)

where mx and my are the indexes of the Floquet modes,
kxm = kx0 − 2πmx/d and kym = ky0 − 2πmy/d are the
Floquet wavenumbers, which determine kzm = (k20 − k2xm −
k2ym)1/2; kx0 = k0sinθcosφ and ky0 = k0sinθsinφ are the
propagation constants of the incident plane wave along x and
y, respectively, and θ and φ are related to the direction of
incidence as shown in Fig. 2(a).

In (7), the Fourier transforms of the basis functions Bn

are known in closed form, while the spectral Green’s function
has to be derived, by solving for the currents iTE and iTM
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Fig. 3. Equivalent z-transmission lines for the spectral Green’s function of
the problem: (a) TE and (b) TM modes.

on transmission lines shown in Fig. 3, for transverse electric
(TE) and transverse magnetic (TM) modes. The elementary
magnetic current sources are represented by unit voltage
generators above and below the surface impedance layer. The
characteristic impedance of the transmission lines are Z0TE =
ζ0k0/kz and Z0TM = ζ0kz/k0, where kz is (k20 − k2x− k2y)1/2

and the variables kx and ky indicate the spectral counterparts
of the spatial variables x and y.

The spectral Green’s dyadic can be defined as

GZs
(kx, ky) =

− iTEk
2
x+iTMk

2
y

k2x+k
2
y

(iTM−iTE)kxky
k2x+k

2
y

(iTM−iTE)kxky
k2x+k

2
y

− iTEk
2
x+iTMk

2
y

k2x+k
2
y

 (8)

where iTE and iTM are the solution for the currents in the
transmission lines in Fig. 3. Solving for the current at z = 0 by
applyng the Kirchhoff’s laws for voltages and currents, leads
to

iTE(z=0)=
2

Z0TE+2Zs
, iTM(z=0)=

2

Z0TM+2Zs
. (9)

B. Equivalent Layer Impedance

Once the Green’s function for the lossy metal is obtained,
the rest of the steps are very similar to the lossless case
[8]. The procedure entails simplifying the admittance matrix
Y with a few algebraic steps and reducing it to a 2 × 2
matrix. By projecting the system of two equations on the
TE and TM components, the closed-form expressions of the
admittance matrix terms leads to the following expression for
the equivalent layer impedance:

Zlayer,TE =
1

YTE
+ Zs, Zlayer,TM =

1

YTM
+ Zs (10)

where YTE and YTM are no longer pure susceptances as in the
lossless case, but they are given by

YTE ≈ 2
∑
my 6=0

|sinc(kymw/2)|2·(
k2x0

2k2ym

(
ζ0k0
kzm

+ 2Zs

)−1
+

(
ζ0kzm
k0

+ 2Zs

)−1) (11)

YTM ≈ 2
∑
mx 6=0

|sinc(kxmw/2)|2·(
k2y0
k2xm

(
ζ0k0
kzm

+ 2Zs

)−1
+

(
ζ0kzm
k0

+ 2Zs

)−1)
.

(12)

Fig. 4. Equivalent circuit representation of the single layer of patches with
finite conductivity for (a) TM and (b) TE incidence.

Fig. 5. Comparison of losses calculated with the analytical solution and
HFSS simulation, for a single layer of patches with conductivity σ = 1000
S/m and two angles of incidence: (a) θ = 40◦, φ = 0◦; (b) θ = 60◦,
φ = 0◦. The geometrical parameters are d = 0.095λ0 and w = 0.01λ0,
with λ0 being the wavelength at 300 GHz.

Equations (10), (11) and (12) are also valid for the lossless
case, by simply imposing Zs = 0. Figure 4 shows the circuit
representation of the equivalent layer impedance. The finite
conductivity introduces an impedance term Zs that is in series
with the layer impedance. However, the term Zs is not the only
contribution to the resistance, as also the impedances 1/YTE
and 1/YTM have a comparable resistive component.

To quantify the effect of the finite conductivity, the losses
are defined as Loss(dB) = −10 log10(|S11|2 + |S12|2), where
S11 and S12 are the reflection and transmission coefficients of
the incident plane wave, respectively. To validate the derived
expressions, Fig. 5 compares the losses obtained with the
analytical solutions and HFSS simulations. Since the losses of
the structure with realistic conductivity values are negligible,
an unrealistically low conductivity of σ = 1000 S/m is
taken for the validation. The geometrical parameters are d =
0.095λ0 and w = 0.01λ0, with λ0 being the wavelength at 300
GHz. The incident plane wave is impinging at oblique angles
(θ = 40◦, φ = 0◦ and θ = 60◦, φ = 0◦). The comparison
between the analytical circuit model and HFSS simulations
shows good agreement for all the considered examples.

It can be noted from Fig. 5 that the loss calculated for
TE incidence is generally larger than the value observed for
TM incidence. This phenomenon likely happens due to the
occurrence of electric current loops that are supported by the
patches under TE incidence. Figure 6(a) shows the electric



4

Fig. 6. Illustration of the electric field and electric current distribution on a
single layer of periodic patches for (a) TE and (b) TM incidence. The electric
field propagating in the slots is consistent with electric current loops in the
patches only in the TE case.

field distribution on the single layer for TE incidence, and
the correspondent electric currents on the patches forming
loops. On the contrary, the TM incidence does not support
such current loops, but only excites singly polarized currents
on the patches, as shown in Fig. 6(b). The current loops
are associated with a longer electrical length (closer to the
resonance), which yields higher current intensity and thus
increased Ohmic losses.

III. MULTIPLE LAYER WITH FINITE CONDUCTIVITY

Following the same procedure used in [9], [10], the analysis
can be expanded to account for a finite cascade of layers. This
allows to quantify analytically the losses in ADLs already in
the early phase of the design process. The steps are omitted,
as they are similar to the ones described in the previous
publications. However, they lead to different expressions that
include the finite conductivity of the metal.

We consider a plane wave incident on a finite cascade
of layers at distance dz , with arbitrary shift between even
and odd layers (indicated by s, equal along x and y), as
shown in Fig. 7(a). The equivalent circuit representation in
Fig. 7(b) can be used, where the admittances of the layers
are separated into infinite-cascade and semi-infinite-cascade
solutions, to describe the middle layers and the layers at
the edges, respectively. To account for the reactive coupling
between layers, the admittances terms in (11) and (12) are now
generalized as follows:

Y∞TE ≈ 2
∑
my 6=0

|sinc(kymw/2)|2S∞·(
k2x0

2k2ym

(
ζ0k0
kzm

+ 2ZsS∞

)−1
+

(
ζ0kzm
k0

+ 2ZsS∞

)−1)
(13)

Y∞TM ≈ 2
∑
mx 6=0

|sinc(kxmw/2)|2S∞·(
k2y0
k2xm

(
ζ0k0
kzm

+ 2ZsS∞

)−1
+

(
ζ0kzm
k0

+ 2ZsS∞

)−1)
(14)

where we introduced the term S∞ given by

S∞ = −j cot(−j2π|m|dzd ) + jej2πm
s
d csc(−j2π|m|dzd ) (15)

Fig. 7. Plane wave incident on a ADL with finite number of layers: (a)
geometry of the problem and (b) equivalent circuit representation for TE and
TM components. The subscript ‘Ti’ can refer to either TE or TM.

Fig. 8. Comparison of losses calculated with the analytical solution and
HFSS simulation, for a three-layer ADL with conductivity σ = 1000 S/m
and angle of incidence θ = 60◦, φ = 0◦. The geometrical parameters are
d = 0.095λ0, w = 0.01λ0, dz = 0.02λ0, with λ0 being the wavelength at
300 GHz, and shift (a) s = 0 (aligned) and (b) s = d/2.

with the index m indicating either mx or my . The admittances
for the edge layers (first and last layers) have the same
expressions, but replacing S∞ with Ssemi∞:

Ssemi∞=
1

2
− j

2
cot(−j2π|m|dzd )+

j

2
ej2πm

s
d csc(−j2π|m|dzd ).

(16)
Full-wave HFSS simulations are made to validate the an-

alytical solutions, and the comparison is shown in Fig. 8. A
fair agreement can be seen for the cases shown. Figures 8(a)
and (b) refer to a cascade of three layers with σ = 1000 S/m,
aligned and shifted respectively. The geometrical parameters
are d = 0.095λ0, w = 0.01λ0 and dz = 0.02λ0, with λ0
being the wavelength at 300 GHz. The incident plane wave
is incoming at oblique angle (θ = 60◦, φ = 0◦). It can be
observed that the shift, while providing much higher equivalent
permittivity compared to the aligned case, does not introduce
a significant increase of losses. The losses for TE incidence
shown in Figs. 8(a) and (b) appear to increase with the
frequency at a slower rate than the TM case. This observation
can be explained with the fact that the transmission coefficient
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Fig. 9. Losses for TE incidence from the direction θ = 60◦, φ = 0◦ on
a 5-layer aligned ADL with conductivity σ = 106 S/m. The geometrical
parameters are d = 0.095λ0, w = 0.01λ0, dz = 0.15λ0, with λ0 being the
wavelength at 300 GHz.

for the TE case decreases significantly as the frequency grows.
The low transmission signifies that most of the incident wave
is reflected at the interface between the air and the ADL, thus
interacts less with the lossy metal patches.

To better clarify this aspect, Fig. 9 shows a case where
the total height of the ADL becomes resonant (half of the
effective wavelength) within the frequency of investigation.
The ADL comprises 5 layers with conductivity σ = 106S/m
and with the same geometrical parameters as in Fig. 8(a),
except for the inter-layer spacing which is dz = 0.15λ0. It
can be observed that the losses are maximum at around 250
GHz, which also corresponds to the maximum transmission
through the slabs. This effect can be interpreted by imagining
that, at the resonance frequency, the wave undergoes multiple
bounces within the material which add up in phase in the
transmitted wave, but resulting in higher losses.

IV. HOMOGENIZATION AND EFFECTIVE DISSIPATION

The analytical equivalent circuit in Fig. 7 can be used to
evaluate, with minimal computational resources, the reflection
and transmission coefficients of a plane wave impinging on the
ADL slab, for normal and oblique incidence. These solutions
can be then used to estimate the equivalent complex permit-
tivity and permeability tensors, using the method in [15].

For example, Fig. 10 shows the resulting effective param-
eters of a 4-layer ADL slab with dz = 15µm, d = 125µm,
w = 30µm, s = d/2 and σ = 107 S/m. It is evident that
the effective magnetic dissipation factor is much higher than
the electric one, because of the loss mechanism previously
explained in Fig. 6: the magnetic loss is mainly associated with
the current loops supported by the patches under TE incidence.

Although both the electric and magnetic dissipation factors
in Fig. 10(b) and (d) seem relatively high (in the order of 10−3

and 10−2, respectively), it is still to be determined how these
values affect the efficiency of an antenna located in the near
proximity of the ADL slab. In fact, the application of ADLs
proposed in [4] consists in placing ADLs above an integrated
antenna to improve the front-to-back ratio.

A. Losses in ADLs for Near Source Illumination

A geometry similar to the one presented in [4] is considered
in Fig. 11 and consists of a double slot antenna with an ADL
superstrate. The slots have length lslot = 0.75mm and width

Fig. 10. Effective parameters as a function of the frequency of a 4-layer ADL
with dz = 15µm, d = 125µm, w = 30µm, s = d/2 and metal conductivity
σ = 107S/m: (a) Real part of the x- and y-components of effective
permittivity tensor; (b) Correspondent electric dissipation factor; (c) Real
part of the z-component of effective permeability tensors; (d) Correspondent
magnetic dissipation factor.

Fig. 11. Double slot antenna loaded with the ADL superstrate: (a) real
ADLs and (b) homogenized equivalent material. The double slot parameters
are lslot = dslot = 0.75mm, wslot = 50µm, δslot = 0.1mm and h = 50µm.

wslot = 50µm and they are spaced by center-to-center distance
dslot = 0.75mm. The slots are excited with delta gap sources of
dimensions δslot = 0.1mm. A 4-layer ADL slab, with the same
geometrical and electrical parameters as in Fig. 10, is placed
at a distance h = 50µm above the slots. CST simulations
have been performed considering two structures: the real ADL
including the patches (Fig. 11(a)) and a simplified model
where the ADL is replaced by an equivalent lossy anisotropic
slab (Fig. 11(b)), with the homogenized effective parameters
found in Fig. 10.

The simulated radiation patterns of the antenna in the
presence of the ADLs are shown in Fig. 12, at 200 and 250
GHz. At these frequencies the ADL thickness becomes in
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Fig. 12. Radiation patterns of the antenna with the real ADL and the
equivalent homogenized slab, at (a) 200 GHz and (b) 250 GHz.

Fig. 13. (a) Input impedance and (b) radiation efficiency of the double slot
with real ADL and with equivalent lossy anisotropic material.

the order a quarter of the effective wavelength, providing an
enhancement of the front-to-back ratio. The simplified model
with equivalent homogenized material shows similar patterns
as the real ADL structure.

The active input impedance and the radiation efficiency of
the antenna are also calculated and shown in Fig. 13. The
comparison between the real ADL and the equivalent slab
shows some differences that quantify the accuracy of the
homogenization approximation. However, the approximated
homogenized model can be used to give an estimation of the
antenna performance, while decreasing to a great extent the
computation time required for the simulation.

Finally, it can be observed that, despite the high values of
the electric and magnetic tan δ of the slab (Fig. 10(b) and
(d)), the simulated radiation efficiency of the antenna in Fig.
13(b) is above 94% in the frequency range where the antenna
is matched (200 to 300 GHz). This very low loss can be
explained by noting that the total thickness is such that only
strongly radiative leaky modes propagate within the slab, while
TM surface waves are not supported and TE surface waves,
responsible for high magnetic losses, are below cutoff.

V. CONCLUSIONS

Analytical formulas to describe ADLs with finite conductiv-
ity were derived. Losses are taken into account rigorously in
the closed-form expressions of the equivalent layer impedance.
The dependence of the dissipation losses on the polarization
and direction of the incident field, as well as on the electrical
thickness of the ADL slab, was highlighted.

The given formulas are functional to the design of ADLs as
standalone material or in combination with antennas located
in the near field. They can also be used in combination to
a homogenization procedure to retrieve the effective electric
and magnetic dissipation factors. Replacing the complex ADL
structure with an equivalent material with homogeneous effec-
tive parameters allows to estimate the efficiency of an antenna
enhanced by the ADLs with reduced computational resources.
Very high radiation efficiencies (>94%) were calculated for a
planar double slot antenna antennas at 250 GHz. Higher losses
are expected when using ADLs for guiding waves, especially
when TE modes propagate within the material.
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