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Abstract- A finite-element method is described for 
computing static and stationary electric and magnetic 
fields directly in terms of the electric or magnetic field 
strength. In this way the use of (vector) potentials is 
avoided and a much higher accuracy is achieved with 
the same computational effort. The curl equation is 
supplemented with the electromagnetic compatibility 
relations and a problem is defined which is known to 
have a unique solution. For satisfying the conditions at 
the interfaces between different media use is made of 
both edge and nodal elements. The validity of our ap- 
proach is illustrated by solving a simple sample prob- 
lem. 

INTRODUCTION 

The finite-element modeling of static and stationary 
electric and magnetic fields is traditionally carried out in 
terms of (combinations of) electric and magnetic scalar 
and vector potentials [l, 2, 31. These potentials have the 
advantage that they can be chosen to be continuous across 
interfaces between different media. In this way difficulties 
that might arise due to the discontinuity of certain com- 
ponents of the electric (magnetic) field strength (or flux 
density) across those surfaces are avoided and nodal el- 
ements can be used exclusively. The use of potentials, 
however, has a number of disadvantages, the most im- 
portant of them being their inefficiency when electric, or 
magnetic, field strengths or flux densities are required. 
When field strengths, or fluxes, must be computed, they 
can only be obtained by carrying out a numerical differen- 
tiation on the solution for the potential(s), which causes 
a large loss of accuracy. 

With the advent of edge and face elements it has be- 
come possible to solve the difficulties due to discontinu- 
ities in medium properties and, consequently, in certain 
components of the electric and/or magnetic field strength 
(or flux density), a t  the element level. Because of this 
it has become possible to formulate static and station- 
ary electric and magnetic field problems directly in terms 
of the electric (or magnetic) field strength by using edge 
elements which asre known to allow jumps in normal com- 
ponents of the field across an interface. Alternatively it is 
possible to formulate the problem in terms of the electric 
(or magnetic) flux density by using face elements which 

are known to allow jumps in the tangential components of 
the flux density across an interface. In the present paper 
we shall discuss the formulation of static and stationary 
field problems directly in terms of the electric (or mag- 
netic) field strength. A formulation of field problems in 
terms of the electric (or magnetic) flux density can be ob- 
tained in the same way by replacing edge elements by face 
elements. Face elements, however, are less efficient than 
edge elements (more expansion functions are required for 
the same domain of computation) and because of this the 
formulation using edge elements together with nodal ele- 
ments is preferable. 

In our paper we shall describe the method for the case 
of stationary magnetic fields, the method for computing 
static electric fields runs along the same lines. For obtain- 
ing optimal computational efficiency we use both edge and 
nodal elements [4, 51, using nodal elements in the homo- 
geneous subdomains of the configuration and using edge 
elements along the interfaces between those homogeneous 
subdomains and near singularities. 

FIELD EQUATIONS 

Let the domain V c R3 be a closed, connected domain 
of computation (see Fig. 1) with outer boundary dV = 
~ V E  U ~ ' D H  (with dZ& n ~ V H  = 8). The materials in 
the domain of computation may be inhomogeneous and 
anisotropic. Let Z denote the interfaces between adjacent 
subdomains of V with different medium parameters, and 
let U denote the unit vector along the normal to either an 
interface or the outer boundary dV. The volume source 
density of the imposed electric current Jimp is assumed 
to be known throughout V as a function of the position 
vector T .  The values of the boundary conditions U x EeXt 
and U x Elext are known as a function of T at ~ ' V E  and 
d V H ,  respectively. 

Assuming known medium parameters and a known ini- 
tial field distribution this defines in the time domain a 
problem with a unique solution [6]. 

In the stationary limit of the time-domain electromag- 
netic field equations, the equations that apply to the mag- 
netic field strength reduce to the well known curl equation 

V x H = Jimp. (1) 

This equation is supplemented with the condition 

U x H continuous across sourcefree interfaces (2) Manuscript received July 10, 1995 
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Fig. 1. The domain of computation V. 

and the boundary condition 

U x H = U x Hext on ~ D H .  (3)  

Note that the value U x EeXt which is prescribed on 
 DE can, because of the decoupling between the electric 
and the magnetic field, not be used as a boundary condi- 
tion. 

The stationary limit of the time-domain electromag- 
netic field equations, (1) to (3) does not define a problem 
with a unique solution. For obtaining a formulation with 
a unique solution these equations must be supplemented 
with the compatibility relations. 

COMPATIBILITY RELATIONS 

Compatibility relations are properties of the field that 
are direct consequences of the field equations and that 
must be satisfied to allow them to have a solution [7]. 

The local compatibility relations are obtained as the 
static versions of the electromagnetic compatibility rela- 
tions for transient fields [8, 91. 

For stationary magnetic fields the volume divergence 
relation reduces to  

V . B = 0 ,  (4) 
where B = p .  H .  

relation reduces to 
For stationary magnetic fields the surface divergence 

U .  B continuous across 1. (5) 

For stationary magnetic fields the continuity of the 
normal flux a t  the outer boundary yields 

v . B = v . Bext on  DE, ( 6 )  

where u.Bext denotes the normal component of the exter- 
nal, known, magnetic flux density. This relation is used 
to replace the boundary condition on ~ V ) E  for stationary 
magnetic fields. 

Equations (1) to (3),  together with the compatibility 
relations (4) to (6) define a problem which can be shown 
to have a unique solution. 

In case the surface ~’DH consists N disjoint, connected 
subsurfaces, (see Fig. 1) H has to satisfy N-1 additional 
global compatibility relations of the type 

H . T ds  = Uext m, k l  = 2, . . ‘ I  N, (7) 

where I’k are N-1 piecewise smooth curves that join one 
prefered subsurface with each of the other subsurfaces, T 

is the unit vector along the tangent to l?k and U G t k  are 
the impressed (known) values of the magnetic potential 
difference along r k .  

JT, 

IIvIPLEMENTATION ASPECTS 

Equations (1) to (6) are implemented in a finite- 
element code, replacing the continuous variables by their 
discretized counterparts, employing both linear edge and 
linear nodal elements. In homogeneous subdomains nodal 
elements are  used. Edge elements are used along inter- 
faces between different media, along (parts of) the outer 
bondary [4, 51 that are not parallel to  a Cartesian plane 
and near reentrant corners in the outer boundary. By 
using edge elements near these ”singularities” the large 
errors made by using nodal elements a t  those locations 
are  avoided and a simpler, direct, method for prescribing 
the tangential field components along the outer boundary 
is obtained. The resulting expansion can be written as 

I 

where W ;  denotes the edge (E) or nodal (N) expansion 
used [4]. Note that, because of employing consistently 
linear elements a local approximation error O ( h 2 ) ,  where 
h denotes the length of the longest edge of a tetrahedron 
used locally, is obtained in the representation of the mag- 
netic field strength H .  

A system of algebraic equations for the expansion co- 
efficients hi is obtained in a standard manner by using 
weighted residuals. The curl equation (1) is multiplied 
with the set of appropriate vectorial weighting functions 

T ,  = V x W:E’N), ‘dj. (9) 

The divergence equation (4) i s  multiplied with the set of 
scalar weights 

where the norm is taken such that reduces to p for 
isotropic media. Integrations are carried out over the sub- 
domains in which both the relevant weighting function 
and the relevant expansion function are nonzero 
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where D,,J = Dl n DJ is the cross-section of the span 
DJ of the weighting function T ,  and the span D, of the 
expansion function W , .  The set of Eqs. (11) and (12) 
satisfy the requirements for a consistent Galerkin method 
with both the weighting and the weighted functions being 
the curl and the divergence of the expansion functions. 
The choice for the weighting functions T ,  and t ,  yields 
Eqs. (1 1) and (12) to be dimensionally uniform. The two 
equations can be thus summed which method is commonly 
used for obtaining a square system of linear equations. 

0 Air ( p l r  =1) 

Fig. 2. The configuration The final form of the weighted residuals equations is 

Note that the condition on the curl and the divergence in 
each separate tetrahedron is accounted for in a number of 
different equations of the type (13). 

The boundary condition (3) and the local compatibil- 
ity relations (5) and (6) are subsequently imposed in a 
strong way by imposing the implied relations between the 
expansion coefficients. These relations replace some of the 
equations of the type (13), without causing the conditions 
on the curl and divergence on the relevant equation to be 
lost because they still appear in other equations. The 
actual equations to be replaced are chosen such that the 
relevant condition yields an  equation with the maximum 
absolute value of its coefficients located on the diagonal of 
the system of linear equations. In this way the condition 
of the system of equations is optimized. 

EXAMPLE 

For demonstrating the validity of our approach we 
shall give some results for a simple single slot problem. 
The configuration is depicted in Fig. 2. For discretising 
the domain of computation D (0 < x < 2, 0 < y < 
4, 0 < z < 0.3),  it was subdivided in a non-uniform mesh 
consisting of N ,  * NV * N ,  = 14 * 28 * 3 bricks, each brick 
being subdivided into six tetrahedra. 

The field is excited by an  imposed current distribution 
with a current density of Jimp = Joi,, Jo = 1A/m2 in the 
region 0 5 x <0.9, 1.1 5 y 52, --cx) 5 z 5 CO, and zero 
elsewhere. The iron is assumed to be isotropic, having a 
relative permeability pr = 1000, the relative permeability 
of the surrounding material was set to 1. The following 
boundary conditions were imposed: a t  the planes z=O, 
z=0.3 and x=2 the normal component of the magnetic 
flux density was set to zero (see (6)),  a t  the remaining 

parts of the outer boundary the tangential components of 
the magnetic field strength were set to zero (see (3)). With 
these choices the total number of unknowns amounted to 
N u n k  = 6236, Nbnd = 476 of them being specified explic- 
itly using (3). The system of equations was first solved 
by using a direct method of solution which choice was 
made to  prove that the matrix is non-singular. A sub- 
sequent solution of the same system of equations using 
an iterative solver with ICCG preconditioning yielded the 
same result, while using much less computation time and 
storage space. 

Although being unrealistic as an object one might find 
in engineering, this problem is, on the one hand, simple 
enough to allow the accuracy of its solution to be easily 
judged, even by inspection, and on the other hand, com- 
plicated enough for not being trivial. 

Observing the results for the x-component as depicted 
in Fig. 3, one notices the expected ”linear” behaviour of 
the field as a function of y in the region 1 5 y 5 2 and the 
singularity a t  the top edge of the iron region. As expected, 
the field in iron turns out to be almost equal to zero. A 
slight deviation from this is observed near the singularity 
mentioned earlier. The results for the y-component are 
depicted in Fig. 4, note the change in the angle of observa- 
tion. As regards the z-component of the computed mag- 
netic field strength, which should theoretically be iden- 
tical to zero, we note that it deviated from zero only in 
the immediate vicinity of the iron-air interface, having 
a maximum value of only a few % of the local x- or y- 
component. Note that this is not unexpected since the 
interface is the type of ”singularity” along which edge ele- 
ments are used and since edge elements use non-Cartesian 
bases for representing the field strength. 

As regards the contrast in the permeability between 
iron and air it was observed that, away from locations 
where the field has singularities, a contrast of a factor 
1000 was represented well in the results for the normal 
components of the magnetic field strength, which should 
reflect this contrast. In the immediate vicinity of a singu- 
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larity the continuity of the normal flux was satisfied less 
accurately. Higher contrasts were represented less accu- 
rately, possibly due to loss of accuracy in the solution of 
the system matrix. 

DISCUSSION 

The present finite-element formulation of stationary 
magnetic field problems yields highly accurate results with 
a minimum of computational effort. The formulation used 
requires that a number of different conditions (the curl 
equation, the compatibility relations and the boundary 
conditions) must be implemented, e.g. by "adding" them 
to the system matrix. For most of these conditions a 
wide range of options for implementing them is available. 
In the vicinity of locations where the field is expected 
to show singularities it is also necessary to choose the 
meshing carefully so as to obtain maximum benefits from 
the use of edge elements. Research into these aspects of 
our method is still in progress. 

It was already mentioned above that our opproach 
yield a local approximation error O(h2)  in the represen- 
tation of the magnetic field strength. Because of addi- 
tional errors along the interfaces and, in particular near 
the edges in the configuration where the field strength, 
or derivatives of it,  may be singular, it is not possible to 
estimate the global error theoretically. Experimentally, 
however, we have found promising results for convergence 
as a function of decreasing mesh size. Note that a method 
based on the use of (vector) potentials would yield a lo- 
cal approximation error O ( h )  in the representation of the 
magnetic field strength for the same computational effort. 

CONCLUSIONS 

We have presented a new formulation for the computa- 
tion of stationary magnetic fields by computing this field 
directly in terms of the magnetic field strength itself. In 
this way we obtain a highly efficient method that is supe- 
rior to existing formulations using potentials because of 
a much higher accuracy with the same computational ef- 
fort. Numerical examples demonstrating the validity, the 
accuracy and the efficiency of our method was presented. 
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