
Bias-mapped Computation-In-Memory
Neural Inference Engine using RRAMs

By

Varun Sudhakar
4547020

Department of Computer Engineering

Faculty of Engineering, Mathematics and Computer Science

Technische Universiteit Delft

A thesis submitted to the Delft University of Technology in
accordance with the requirements of the degree of

Master of Science in Computer Engineering to be
publicly defended on 13th May 2022.

13th May 2022

Chairperson:
Prof. Said Hamdioui (Computer Engineering Lab)
Thesis Supervisor:
Asst. Prof. Rajendra Bishnoi (Computer Engineering Lab)
Daily Supervisor:
Ir. Sumit Diware (Computer Engineering Lab)
External Member:
Asst. Prof. Nergis Tomen (Pattern Recognition and Bioinformatics)

An electronic version of this thesis is available at the TU Delft Repository

http://repository.tudelft.nl/.

Abstract

T he ever-increasing energy demands of traditional computing platforms (CPU, GPU)
for large-scale deployment of Artificial Intelligence (AI) has spawned an exploration

for better alternatives to existing von-Neumann compute architectures. Computation In-
Memory (CIM) using emerging memory technologies such as Resistive Random Access Memory
(RRAM) provide an energy-efficient and scalable alternative for Deep Neural Networks (DNN)
applications. However, the benefits of CIM frameworks come at the cost of low DNN accuracy
due to non-idealities in RRAM devices. In this thesis we address the conductance variation
non-ideality in RRAM devices at an architectural level. We present two mapping schemes to
improve the accuracy of CIM-based DNNs in the presence of RRAM conductance variation.
Experimentation conducted with five datasets show that all proposed schemes provide up
to 5.4x accuracy improvement over state-of-the-art implementations, while inducing a 1.5%
area cost and up to 10% energy overhead. Based on accuracy-energy trade-off, the thesis
concludes the proposed Complementary Conductance Matrix (CCM) is the best candidate to
improve inference accuracy of neural networks on CIM hardware using RRAM. It reports an
accuracy improvement up to 5x with 1.52% area overhead and 9% energy overhead.

i

Acknowledgements

I would like to thank Prof. Rajendra Bishnoi for his constant encouragement, support and
guidance throughout the research process. He steered my thesis in the right direction with
clarity and detailed inputs to help improve my research and build my knowledge in the field of
in-memory computing. With his deep expertise in this field, Prof. Said Hamdioui provided
invaluable advice in improving my thesis work, for which I would like to express my gratitude.
I would like to thank Sumit Diware for his advice, explaining concepts, resolving doubts and
help on innumerable occasions. I would also like to acknowledge the computer engineering
group for their feedback during my thesis work.

I am eternally grateful to my parents for their unconditional love, support and guidance
while giving me an opportunity to grow. I am fortunate to have shared incredible memories
with my friends and look forward to many more. Without these people, none of this would
have been possible.

Delft, May 2022
Varun Sudhakar

iii

Table of Contents

Page

Acronyms vii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Computing and AI . 1
1.2 Computation In-Memory (CIM) for AI workloads 3
1.3 Problem Statement . 4
1.4 Contributions . 5
1.5 Organization . 5

2 Background 7
2.1 Deep Neural Networks . 7

2.1.1 Fully Connected Networks (FCN) . 7
2.1.2 Training and Inference . 8

2.1.2.1 In-Situ (Online) and Ex-Situ (Offline) Training in CIM archi-
tectures . 9

2.2 Computation In-Memory . 10
2.2.1 Architecture . 10

2.3 Non-Volatile Memories for CIM . 11
2.3.1 RRAM Principles and Operation . 12
2.3.2 Conductance Variation . 16

2.4 Summary . 17

3 Related Works 19
3.1 Bit Slicing CIM architectures . 19
3.2 Differential weight representations for CIM . 20
3.3 Other relevant works . 22
3.4 Summary . 23

4 Proposed Schemes 25
4.1 Implementation Overview . 25
4.2 Dynamic Scaling Column . 26

v

TABLE OF CONTENTS

4.3 Complementary Conductance Matrix . 30
4.4 Summary . 31

5 Simulation Results 33
5.1 Datasets . 33
5.2 Simulation Setup . 34

5.2.1 Software Setup . 34
5.2.2 Hardware Setup . 35

5.3 Performance Metrics . 35
5.4 Simulation Results . 36

5.4.1 Classification accuracy evaluation . 36
5.4.1.1 Dynamic Scaling Column . 36
5.4.1.2 Complementary Conductance Matrix 37
5.4.1.3 Combined proposal - DSC & CCM 38

5.4.2 Performance Analysis with state-of-the-art 38

6 Conclusion 41

Bibliography 43

vi

Acronyms

ADC Analog-to-Digital Converter

AI Artificial Intelligence

BL BitLine

C2C Cycle-to-Cycle

CCM Complementary Conductance Matrix

CF Conductive Filament

CIM Computation In-Memory

CMOS Complementary Metal-Oxide Semiconductor

CNN Convolutional Neural Network

D2D Device-to-Device

DAC Digital-to-Analog Converter

DNN Deep Neural Networks

DRAM Dynamic Random Access Memory

DSC Dynamic Scaling Column

DSF Dynamic Scaling Factor

FCN Fully Connected Networks

FP Floating-Point

FXP Fixed-point

HCS High Conductance State

ICS Intermediate Conductance States

LCS Low Conductance State

LSTM Long Short-Term Memory

vii

ACRONYMS

MAC Multiply-Accumulate

MLC Multi-Level Cell/Operations

MLP Multi-Layer Perceptron

NVM Non-Volatile Memory

NVMs Non-Volatile Memories

PCM Phase Change Memory

RRAM Resistive Random Access Memory

RTN Random Telegraph Noise

SAF Stuck-At Faults

SRAM Static Random Access Memory

STT-RAM Spin-Transfer Torque Magnetic Random Access Memory

VMM Vector Matrix Multiplication

VMs Volatile-Memories

WL WordLine

viii

List of Figures

1.1 CPU and GPU based on traditional von-Nuemann architectures rely on data
communication between processing and memory units [1] 1

1.2 Increasing performance gap between memory and processor over the decades has
resulted in a Memory wall, also known as the von-Neumann bottleneck. 2

1.3 Traditional CMOS computing architectures have already surpassed their power
and cooling budget resulting in the Power wall. 2

1.4 Demonstration of energy-efficient CIM architectures across different networks
such as Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM) and
Convolutional Neural Network (CNN) [2] . 3

1.5 CIM-based architectures obtain reduced accuracy on classification tasks since
NVMs in the same crossbar array and programmed under identical conditions,
achieve different conductance states. 4

2.1 Example of a Fully Connected Networks (FCN) where the dataset is fed into the
input layer, processed by the hidden layer of neurons and produces a classification
distribution at the output layer. 8

2.2 Visualization of the mapping from a software implementation of the neural network
to a CIM based framework. 10

2.3 Schematic of the complete CIM architecture for VMM computation. Using Ohm’s
Law and Kirchoff’s Law, MAC operations are performed in the crossbar array and
the result is produced in the peripheral circuits . 11

2.4 The fourth missing fundamental circuit element —Memristor. It defines the
relationship between charge and magnetic flux linkage [3] 12

2.5 Fingerprint of RRAM Memristors: A pinched I-V hysteresis loop depicting bipolar
switching behaviour . 13

2.6 Multi-Level Cell/Operations (MLC) exhibited by RRAMs. By successively applying
voltage pulses, we can programs specific conductance values to the device [4, 5] 14

2.7 Observe the asymmetry in the conductance variation distribution over a 2 bit
RRAM device. High Conductance State (HCS) exhibit lower conductance variability
whereas LCS exhibit high variability in conductance [6] 17

3.1 Instance of CIM architecture depicting the balanced bit slicing scheme. Here the
8 bit weights are mapped to 4 RRAM devices across the BitLine (BL) [7] 20

3.2 Depiction of differential weight representation using 2 RRAMs to represent neural
weights using cumulative conductance . 21

ix

LIST OF FIGURES

3.3 Programming RRAMs only using SET operations [8] 22
3.4 Software retraining improves inference accuracy but heavily relies on off-chip

frameworks that have a large area and energy footprint [9] 23

4.1 Implementation overview to realize neural network computation on CIM architectures. 25
4.2 Introducing an extra column per weight (word) along with computing a dynamic

scaling factor to suppress error of partial digital outputs 26
4.3 Step 1 of proposed DSC: Tracking number of low mapped states (LMS) 27
4.4 Step 2 of proposed DSC: Compute Dynamic Scaling Factor (DSF) based on scaling 29
4.5 Step 3 of proposed DSC: Add an extra column of RRAMs and scale them by the

Dynamic Scaling Factor (DSF). 29
4.6 Overview of steps involved to realize Complementary Conductance Matrix (CCM)

proposed scheme . 30
4.7 Step 1 in proposed CCM: Extract the Complementary Conductance Matrix (CCM). 30
4.8 Step 2 in proposed CCM: Map matrix on a differential crossbar 31

5.1 Relative accuracy comparison across five datasets for bit-sliced [7, 10, 11], dif-
ferential [8, 12, 13] and the proposed Dynamic Scaling Column (DSC) mapping
implementation. 36

5.2 Relative accuracy comparison across five datasets for bit-sliced [7, 10, 11], differ-
ential [8, 12, 13] and the proposed CCM mapping implementation. 37

5.3 Relative accuracy comparison across five datasets for bit-sliced [7, 10, 11], dif-
ferential [8, 12, 13] and the combined methodology (proposed DSC + proposed
CCM) . 38

5.4 Holistic perspective of Bit-Sliced [7, 10, 11], differential [8, 12, 13], proposed
DSC, CCM and combined method. CCM uses 1.52% more area and 9% energy
compared to the standard bit-sliced representation 39

x

List of Tables

2.1 Differentiating between Low and High Conductance states based on variability in
conductance states . 17

5.1 The deep learning network and parameters adopted for this thesis. 34
5.2 Software inference accuracy across five datasets 34
5.3 The CIM setup inline with the implementation presented by Shaifee et. al. [7]. . 35
5.4 Energy and Area Consumption of an IMA CIM components derived from Shaifee et.

al. [7] . 35

xi

C
h

a
p

t
e

r

1
Introduction

This chapter introduces the thesis. Context and motivation for this research is first presented
from a computing and Artificial Intelligence (AI) perspective. This is followed by a detailed
discussion of the problem statement. Next, the thesis contributions are presented after which
the chapter concludes by outlining the organization of this thesis.

Conventional von-Neumann architectures suffer from the Memory Wall. Additionally,
limitations on Complementary Metal-Oxide Semiconductor (CMOS) transistor scaling and
high power leakage of CMOS charge-based memories and circuits has seen the emergence
of Computation In-Memory (CIM) architectures. CIM with Non-Volatile Memory (NVM)
technologies such as Resistive Random Access Memory (RRAM) present a scalable alternative
for Artificial Intelligence (AI) applications.

1.1 Computing and AI

The emergence of Artificial Intelligence (AI) and its reliance on large datasets as a critical
component across various sectors viz. genomics, robotics, medical predictions, self-driving,
financial analytics and recognition systems has exposed the limitations of von-Neumann
architectures.

(a) Traditional von-Nuemann Architecture (b) CPU vs GPU architecture

Figure 1.1: CPU and GPU based on traditional von-Nuemann architectures rely on data
communication between processing and memory units [1]

1

CHAPTER 1. INTRODUCTION

• Memory Wall [14]: The diverging performance gap between the processor and memory
unit has resulted in idle processor cycles waiting for the memory to provide data. This
limited data bandwidth has also been termed as the von-Neumann bottleneck.

Figure 1.2: Increasing performance gap between memory and processor over the decades has
resulted in a Memory wall, also known as the von-Neumann bottleneck.

• Power Wall: The increasing number of CMOS transistors on electronic chips (Moore’s
Law) is not sustainable with current compute architectures since we have already reached
our power and cooling budget. Dynamic power (Pdynamic =A ·C ·V 2

dd · f) has increased
due to stagnant Vdd (supply voltage) scaling and increased clock frequency (f). Static
power leakage (Pstatic = Ileakage ·Vdd) due to current leakage from sub-threshold and
gate oxide leakage is also a concern.

• CMOS scaling: CMOS scaling below 10nm has resulted in high static power loss, leakage
current, low yield and reliability [15]. Furthermore, this will not economically viable due
to the increasing cost of fabrication and testing

(a) More transistors on chip along with
increasing operational frequency has in-
creased the required power budget. [16]

(b) Dynamic power increases as Vdd

has stagnated with smaller technology
nodes. [17]

Figure 1.3: Traditional CMOS computing architectures have already surpassed their power
and cooling budget resulting in the Power wall.

2

1.2. COMPUTATION IN-MEMORY (CIM) FOR AI WORKLOADS

Unconventional memory-centric compute architectures look to overcome the Memory Wall,
CMOS scaling limitations using Non-Volatile Memory (NVM). Computation In-Memory (CIM)
has emerged as a promising candidate for large-scale, efficient AI workloads [18–20].

1.2 Computation In-Memory (CIM) for AI workloads

CIM overcomes the von-Neumann bottleneck (data transfer between processor and memory)
by integrating Non-Volatile Memories (NVMs) that enable data storage and computation both
within the memory itself. CIM architectures replace digital operations such as multiplication and
addition with analog computation using the principles of Ohm’s law and Kirchoff’s current law.
In-Situ computation using NVMs allows CIM architectures to achieve higher energy-efficiency
compared to traditional computing platforms based on von-Neumann architectures [18–22].

Figure 1.4: Demonstration of energy-efficient CIM architectures across different networks
such as Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM) and Convolutional
Neural Network (CNN) [2]

Significant research interest in hardware for AI has seen a shift in focus from conventional
CMOS charge-based memories viz. Static Random Access Memory (SRAM), Dynamic Random
Access Memory (DRAM) and Flash, also known as Volatile-Memories (VMs). Scaling these
CMOS-VMs below 10nm has resulted in high static power leakage, low wafer yield and
reliability issues [15, 23, 24]. Hence, emerging memory technologies such as Non-Volatile
Memories (NVMs) are seen as a suitable alternative for modern AI tasks [25, 26]. NVMs,
also known as memristors, such as Spin-Transfer Torque Magnetic Random Access Memory
(STT-RAM) [27–29], Phase Change Memory (PCM) [12, 30] and Resistive Random Access
Memory (RRAM) [6, 24, 31–37] provide significant advantages such as zero static power
leakage, high cell density and long retention. Furthermore, NVMs can be easily integrated into
current CMOS manufacturing processes and only needs a minimal redesign of the memory
cell [20]. However, STT-RAM and PCM face significant scalability and design challenges,

3

CHAPTER 1. INTRODUCTION

hence RRAM-based CIM architectures are seen as a better choice for large-scale crossbar
implementations for AI tasks.

(a) Devices on the crossbar hold different con-
ductance states under ideal conditions [38]

(b) Degradation of accuracy due to non-ideal
RRAMs due to variation [39]

Figure 1.5: CIM-based architectures obtain reduced accuracy on classification tasks since
NVMs in the same crossbar array and programmed under identical conditions, achieve different
conductance states.

RRAM-based CIM architectures suffer from accuracy degradation due to various non-
idealities in RRAM devices. One of the prominent RRAM non-idealities is conductance
variation. It refers to the variation of conductance states across different RRAMs under
identical programming conditions across a crossbar array. In this thesis, we implement a
bias-mapped CIM Neural engine using RRAMs that achieves high accuracy by minimizing the
impact of variability using conductance mapping techniques.

1.3 Problem Statement

• Traditional von-Neumann compute architectures (CPUs/GPUs) have been integral to
the development and large-scale adoption of AI across a wide range of applications.
However, the memory wall and CMOS scaling and leakage limitations require us to move
beyond the von-Neumann computing paradigm. Memory-centric compute architectures
that reduce data transfer are a promising alternative.

• Resistive Random Access Memory (RRAM)-based Computation In-Memory (CIM) hard-
ware architectures provide an energy-efficient, low-latency parallel computing paradigm
that can be easily integrated into CMOS fabrication and manufacturing processes.
However, CIM-based neural networks suffer from degradation of accuracy owing to
RRAM non-idealities such as conductance variation.

• Innovative non-ideality mitigation techniques are required to ensure high neural network
accuracy on CIM architectures for AI applications.

4

1.4. CONTRIBUTIONS

1.4 Contributions

This thesis presents novel techniques for mapping the trained neural network weights to
RRAM-based CIM architectures in order to improve the classification accuracy of neural
networks in the presence of conductance variations. The key contributions of this thesis are:

• Two Crossbar Conductance Mapping Schemes

We implement two conductance mapping schemes that leverage the asymmetry conduc-
tance variation profile of RRAM-based CIM frameworks.

1. Dynamic Scaling Column (DSC)

An extra column per weight is introduced into the crossbar array to dynamically
reduce the error during reconciliation of the partial outputs and consequently
minimizes the error in matrix operations.

2. Complementary Conductance Matrix (CCM)

To ensure low variability of RRAMs mapped onto a crossbar array, we use a
hardware-software co-optimization to extract a Gmax complement of the original
conductance matrix. This complementary matrix is mapped onto the crossbar
array through a differential weight representation to preserve and improve accuracy.

• Performance Evaluation of Mapping Schemes

A comprehensive evaluation of CCM and DSC compared to state-of-the-art mapping
techniques is performed. Across various datasets, we measure accuracy, energy and area
statistics to delineate the improvements achieved by the proposed schemes. Furthermore,
the analysis of the combined methodology (CCM + DSC) is compared to state-of-the-art
implementations.

Proposed Dynamic Scaling Column (DSC) presents an accuracy improvement up to 2.85x
by incurring a 1.53% area and 9.8% energy overhead whereas the proposed Complementary
Conductance Matrix (CCM) achieves an accuracy improvement up to 5x incurring 1.52% area
and 9% energy overhead. Based on trade-offs between accuracy and energy, CCM is the best
suited mapping technique for RRAM-based Neural Inference Engine on bias-mapped CIM
hardware.

1.5 Organization

The rest of the thesis is organized as follows:

• Chapter 2 provides a detailed background of concepts relevant to this thesis. We
discuss fundamentals of Neural Networks, CIM frameworks and NVMs. Further, we

5

CHAPTER 1. INTRODUCTION

compare different NVM technologies to understand the motivation behind investigating
RRAM-based CIM architectures

• Chapter 3 discusses state-of-the-art works that implement mapping schemes to improve
accuracy. Analysis of key contributions and drawbacks of these works are presented

• Chapter 4 begins by outlining the implementation to realize mapping onto a CIM
crossbar array. It further explains the salient aspects of the proposed mapping schemes,
i.e. Dynamic Scaling Column (DSC) and Complementary Conductance Matrix (CCM).

• Chapter 5 presents the simulation setup, followed by discussion of the results and
analysis based on design metrics (accuracy, energy, area) for the RRAM-based Neural
Engine CIM classifier.

• Chapter 6 concludes the thesis by highlighting the trade-offs and making suggestions
for future work.

6

C
h

a
p

t
e

r

2
Background

This chapter provides the background information required for this thesis. In Section 2.1, the
fundamental architecture and working of Deep Neural Networks (DNN) is explained. Further,
Section 2.2 outlines the Computation In-Memory (CIM) architecture. Section 2.3, an in-depth
analysis of Resistive Random Access Memory (RRAM) devices, concluding with a summary in
Section 2.4

2.1 Deep Neural Networks

This section provides a fundamental understanding of Deep Neural Networks (DNN). DNN
architectures viz. Fully Connected Networks (FCN), Long Short-Term Memory (LSTM) and
Convolutional Neural Network (CNN) consists of neurons that process digital information
(audio, video, text) to realize various large-scale real world implementations in AI tasks such
as genomics, recognition systems, self-driving, finance and robotics. However, for this thesis
we will consider Fully Connected Networks (FCN) architectures. Internal workings of Fully
Connected Networks (FCN) from a mathematical perspective are discussed and followed by
concepts of training and inference (with a CIM perspective).

2.1.1 Fully Connected Networks (FCN)

The Fully Connected Networks (FCN) learns to understand data by feeding it through multiple
layers of neurons. A schematic of a Fully Connected Networks (FCN) is presented in Figure 2.1.
In a FCN, all neurons have edges (weights) to all the activation outputs of the previous layer.

Input Layer —This layer receives the digital input. Data normalization and standard-
ization is performed before feeding the data (Matrix A = [A1,A2,A3, ...,AM]) to the
subsequent layer (Layer L+1).

Hidden Layer —Neurons in the hidden layer receive the data along with the weight
(Matrix W = [W1,W2,W3, ...,WM]) of the data. Weights signify the importance of

7

CHAPTER 2. BACKGROUND

the data being processed in the neuron. In the neuron, input data is multiplied with
the weight and a external bias is added to the result. The weighted sum of resulting
values are processed by an activation function f . These values are fed into the next
layer. The primary operation of multiplying inputs and weights is called Vector Matrix
Multiplication (VMM)

B = f (W T
A�BA+bias) (2.1)

Output Classification Layer —The number of neurons in this layer depends on
the number of output classes defined/required for a specific DNN task. The output
is computed similar to the hidden unit: C = f (W T

B�CB +bias). Various activation
functions, such as sigmoid, ReLU, tanh can be used for each layer. Finally, a softmax
used to ensure all outputs are normalized between (0, 1) to extract the probability
distribution of the prediction of the DNN.

Figure 2.1: Example of a Fully Connected Networks (FCN) where the dataset is fed into the
input layer, processed by the hidden layer of neurons and produces a classification distribution
at the output layer.

2.1.2 Training and Inference

Deep Neural Networks (DNN) operate in training and inference (validation, evaluation) mode.
Training of DNNs is an iterative optimization problem where tunable parameters (neuron
weight, learning rate) are used to assist neural networks to learn from data. Training of DNNs
can be performed in a supervised or unsupervised manner. In supervised training, the neural
network requires the expected number of output classes for a given input. On the other
hand, unsupervised training expects the neural network to understand the data without any
external stimulus to assist the network in learning. A pitfall of DNN training is to ensure the
network extracts the feature representation (latent vector space) of the data without simply

8

2.1. DEEP NEURAL NETWORKS

memorizing the dataset. This is known as overfitting and can be effectively mitigated through
data augmentation techniques (rotate, crop, blur). This thesis adopts a supervised training
method with data augmentation techniques.

Training involves three components:

Forward Pass → Data flows through the neurons till the output layer where the
prediction error is computed compared to the ground truth (Boolean value indicating
the ideal output).

Backward Propagation → This error is propagated backwards (backprop) through
the DNN to compute the gradients of weights and other parameters. This enables the
DNN to adjust the tunable parameters of the neuron to improve the next prediction.

Weight Update → Based on gradient values, learning rate, regularizer and other
parameters, the weight of the neuron is updated to improve the overall accuracy of the
DNN

During training, when the DNN completes a single cycle of these tasks, this is an epoch.
DNNs iteratively predict data through each epoch till it achieves a high classification accuracy
for a task. Next step is inference.

Inference on the DNN is performed on unseen data after the neural network is optimized
over the training data. The neurons are preset with the optimized weights extracted during
training and the DNN performs predictions on "in-the-wild" data. DNN prediction only
requires a forward pass to classify the data. Inference is less time and energy consuming
compared to training deep neural networks.

2.1.2.1 In-Situ (Online) and Ex-Situ (Offline) Training in CIM architectures

The iterative weight optimization method (Forward pass, backprop, weight update) of Deep
Neural Networks (DNN) implemented onto the crossbar array by mapping and updating
weights is known as In-Situ (Online training), i.e., the entire DNN training process runs
on-chip. However, CIM architectures are significantly limited in training DNNs. This is due to
their inefficiency in Floating-Point (FP) arithmetic computation, which is a critical aspect
during Back-Propagation to compute gradients to indicate adjustments required in the neuron.
As a consequence, inaccurate convergence for weights (and weight updates) in the DNN
reduce accuracy.

For Ex-Situ (offline training), the training is done off-chip on traditional von-Neumann
architecture to extract the optimized weights. These optimized weights of the DNN are
mapped onto the crossbar array to perform inference. CIM is fundamentally suited for Fixed-
point (FXP) arithmetic required in forward pass. Since no weight updates are required during

9

CHAPTER 2. BACKGROUND

inference, CIM architectures present a scalable and efficient computing platform for DNN
inference engines.

2.2 Computation In-Memory

This section begins by outlining the fundamental advantage of Computation In-Memory (CIM)
architectures for AI workloads. Next, its inner workings from a computation perspective are
presented. Finally, training and inference is discussed within the context of CIM architectures.

2.2.1 Architecture

Computation In-Memory (CIM) is a promising compute architecture to overcome the Memory
wall faced by existing von-Neumann architectures and CMOS scaling and leakage issues .
CIM integrates processing within the memory core itself. This reduces the transfer of data
to perform computations. Computation is performed within the memory core. However, to
realize logic and arithmetic operations, extra circuitry is required. The computation current
output is produced in the peripheral circuit [40].

Figure 2.2: Visualization of the mapping from a software implementation of the neural network
to a CIM based framework.

Vector Matrix Multiplication (VMM) for DNNs is realized on hardware through Multiply-
Accumulate (MAC) operations. The programmed conductance represent weights of the DNN.
At the intersection of each WordLine (WL) and BitLine (BL), RRAMs through Ohm’s Law,
produce the product of an input voltage and the conductance.

10

2.3. NON-VOLATILE MEMORIES FOR CIM

I =V ·G
At the end of each BitLine (BL), the additional of currents through Kirchoff’s current

law produce the partial current outputs. These currents are converted to digital data through
ADCs, shifted and summed to produce the result of the Vector Matrix Multiplication (VMM).

IN =
M∑
i=1

(Vi ×Gi ,N)

Using analog periphery such as Digital-to-Analog Converter (DAC) and Analog-to-Digital
Converter (ADC), CIM architectures can implement Vector Matrix Multiplication (VMM) [41].
Multiplication and addition operations are performed through Ohm’s law and Kirchhoff’s law
respectively. Additionally, CIM circuit designs require minimal resign of the memory array
since the design optimization focus is on CMOS based peripheral circuits [20].

Figure 2.3: Schematic of the complete CIM architecture for VMM computation. Using Ohm’s
Law and Kirchoff’s Law, MAC operations are performed in the crossbar array and the result is
produced in the peripheral circuits

2.3 Non-Volatile Memories for CIM

As a consequence of the memory wall and CMOS scaling limitations, the research community
has looked towards revising requirements on cell density and energy consumption. This will
significantly reduce the cost of manufacturing and fabricating high performance computing
machines. Hence, existing memory technologies such as Static Random Access Memory

11

CHAPTER 2. BACKGROUND

(SRAM), Dynamic Random Access Memory (DRAM) and Flash are getting out of favour for
data-centric applications. Conventional CMOS memories suffer from increased power leakage
and lithography scalability issues below 10nm. SRAMs provide fast random access but have
low density. DRAMs have higher density but slower than SRAMs. Flash memories suffer from
very high write cost to negate the high density compared to DRAMs.

This has seen a shift to Non-Volatile Memories (NVMs) that provide high cell density,
low power consumption and quick operation comparable to current processors. NVMs
are also referred to as memristors. Various memristors such as Resistive Random Access
Memory (RRAM), Spin-Transfer Torque Magnetic Random Access Memory (STT-RAM),
Phase Change Memory (PCM) etc. already exist [26, 42]. RRAMs are a scalable solution
for Deep Neural Networks (DNN) applications do not rely on thermal (PCM) or magnetic
(STT-RAM) programming of the memristor. This thesis deals with RRAMs.

2.3.1 RRAM Principles and Operation

RRAMs enable CIM architectures to perform DNN computation. It stores memory through a
non-linear conductive element. Leon Chua [43], in 1971, first hypothesized that there was a
missing non-linear circuit element to characterize the relationship between charge (q(t)) and
magnetic-flux-linkage (φ(t)): M = dφ(t)

dq(t)
which can also be represented as:

dφ(t)
dt

dq(t)
dt

= V (t)

I (t)

In 2008, Hewlett-Packard Labs demonstrated the memristor as a fundamental circuit
element.

Figure 2.4: The fourth missing fundamental circuit element —Memristor. It defines the
relationship between charge and magnetic flux linkage [3]

RRAMs have a distinct fingerprint that can be associated with their I-V hysteresis behav-
ior [44]. Figure 2.5 depicts the pinched I-V hysteresis loop characteristic to memristors. This

12

https://www.hpl.hp.com/news/2008/apr-jun/memristor.html

2.3. NON-VOLATILE MEMORIES FOR CIM

is also known as bipolar switching behaviour. This indicates that the switching direction [45].
This implies that the switching behaviour depends on the polarity of the voltage applied to
the RRAM device.

Figure 2.5: Fingerprint of RRAM Memristors: A pinched I-V hysteresis loop depicting bipolar
switching behaviour

−VRESET indicates the polarity and voltage needed to switch a memristor from High
Conductance State (HCS) to Low Conductance State (LCS). This is also known as the RESET
transition. VSET indicates the voltage required to switch a memristor from a Low Conductance
State (LCS) to a High Conductance State (HCS). This process is known as SET transition.

The stability of switching characteristics between conductance states depends on the
device physics and its stochastic behaviour. Ideally, memristors should store analog values at
a steady state but practically exhibit variable intermediate states (Multi-Level Cell/Operations
(MLC)). Programming the conductance states of a memristor is influenced by the magnitude
and duration (pulse) of the applied voltage. However, it is important to limit the current
(Compliance current: Icc) or apply small voltages since the switching endurance of the device
degrades with applied voltage stimulus.

Resistive Random Access Memory (RRAM)s work and store data by modulating the
conductance across a solid-state dielectric (switching medium) material [6, 24, 31–37]. The
switching mechanism from LCS to HCS is the SET process and switching from HCS to LCS
is the RESET process. The switching mechanism is based on the formation/breakdown of
the conductive filament when a voltage is applied. However, to avoid permanent dielectric
breakdown resulting in Stuck-At Faults (SAF), a SET compliance current (Icc) is enforced.

In the SET process, dielectric breakdown occurs triggering oxygen ios to drift to the
bottom electrode through the electric field and discharged as a neutral non-lattice oxygen

13

CHAPTER 2. BACKGROUND

ion. This results in an oxygen reservoir at the bottom electrode-oxide interface. When the
RRAM is in the HCS current flows in the bulk oxide through the Conductive Filament (CF).
In the RESET process, oxygen ions migrate to the bulk oxide to recombine with the oxygen
vacancies to return the RRAM to its original LCS state [4, 46].

Figure 2.6: Multi-Level Cell/Operations (MLC) exhibited by RRAMs. By successively applying
voltage pulses, we can programs specific conductance values to the device [4, 5]

The top electrode controls the diffusion of oxygen vacancies to form a conductive filament.
The conductivity is determined by the distance to the bottom electrode and distribution of
oxygen vacancies within the switching material. To read values from an RRAM, small bias
voltage is applied to the device to read out currents. Writing values to the RRAM device
involves a process called Closed-Loop programming [47–49]. This is an iterative process to
ensure the RRAM holds a steady conductance state of the desired programmed value. Hence in
order to program a value to an RRAM, successive voltage pulses are applied to the device and
read out to verify the state of the device. This method is also known as Program-Read-Verify.

However, this write mechanism enables programming to Intermediate Conductance States
(ICS). This is known as Multi-Level Cell/Operations (MLC) [33, 46]. This enables RRAMs
to store more than 1 bit of data. Figure 2.6 shows a 2 bit RRAM. By applying successive
voltage pulses, oxygen vacancy diffusion increases thereby increasing the current through the
Conductive Filament (CF). Researchers have demonstrated RRAMs up to 8 bit resolution.

RRAMs enable high cell density (4F 2), low operating voltage, zero power leakage and long
data retention and high switching endurance . Furthermore, RRAMs do not rely on thermal
(PCM) or magnetic (STT-RAM) programming of the memristor and hence is a scalable
solution for Deep Neural Networks (DNN) applications. This thesis adopts RRAM devices for
CIM.

14

2.3. NON-VOLATILE MEMORIES FOR CIM

However on a device and circuit level, RRAM-based CIM architectures present some
challenges:

• Device Level Non-Idealities

– Conductance Drift: When RRAM store data over long periods of time without
being refreshed. A migration of oxygen ions over time occurs leading to decay of the
Conductive Filament (CF). This can be mitigated through closed-loop-programming
methods to maintain a desired steady state conductance value.

– High write cost: Since, closed-loop-programming (Program-Read-Verify) is an iter-
ative process, it induces a high cost when writing values to the RRAM. Furthermore,
frequent writes to the RRAM reduces the switching endurance of the device and
is more prone to Stuck-At Faults (SAF)

– Read-Disturb: When applying a small bias voltage to the RRAM to read out
current values, the voltage application perturbs the value held in the RRAM. This
reduces the reliability of the current output in the ADC units due to a reduced
sensing margin [50]

• Circuit Level Non-Idealities

– Sneak paths: They are alternative, undesirable current paths that interfere with
the required current measurement path. This results in incorrect reading of current
outputs and synaptic states [51–54]. Furthermore, magnitude of the sneak currents
depend on memristive conductance state. Methods such as read-biasing reduce
the severity of sneak paths. but primarily focused towards detection schemes.

– Wire Non-idealities: They originate from resistances based on thickness and length
of the wire which cause a dynamic IR drop and also induces higher electronmigration.
Furthermore, the length of the interconnect wires and size of the crossbar array
affect the magnitude of the parasitic influence of wire non idealities.

– Noise is a consequence of thermal properties of the RRAM when actively performing
computations [18, 20, 55]. A higher operating temperature (and ambient temper-
ature) increases the rate of oxygen vacancy diffusion. Implementing conductance
margins (offset) can cancel out RTN and ensure reliable operation.

Although various non-idealities and mitigation schemes on a device and circuit level have
been previously explored, a prominent non-ideality that significantly degrades neural network
accuracy is conductance variation.

15

CHAPTER 2. BACKGROUND

2.3.2 Conductance Variation

This variability is when multiple RRAM devices hold different conductance states under
identical programming conditions on the same crossbar array. These variabilities reduce neural
network accuracy for classification tasks. Conductance variabilities are caused due to:

• Cycle-to-Cycle (C2C) Variations —This is due to the stochastic (non-deterministic)
nature of the formation and breakdown of oxygen vacancies in the Conductive Filament
(CF). Furthermore, C2C variability is inversely proportional to the SET compliance
current (Icc). However, increasing SET compliance current (Icc) results in a small
oxygen vacancy distribution at High Conductance State (HCS), since higher number of
defects in the Conductive Filament (CF) forms a well-defined conductive pathway. In
other words, due to random locations and defects in the conducting channel, defect
migration triggers at different activation energies.

• Device-to-Device (D2D) Variations—This variability originates from non-uniformities
in the fabrication and baking process resulting in varying thickness of switching material,
defects and surface roughness of metal electrodes. Inadequate control over defect
generation and Conductive Filament (CF) formation during SET processes, also known
as electroforming, enhances thee variabilities. Electroformation induced variations orig-
inate from current overshoot due to parasitic effects in the switching material. This
current overshoot can vary between devices and lead to undesirable defect generation.
Furthermore, when electrons are conducted through the metal, it interacts with Schot-
tky defects and fault-lines. This results in scattering. Since thermal energy produced
scattering since it imparts energy causing atoms to vibrate. Hence, higher working
temperatures also result in more scattering. Process variations also lead to varying
conductance range, retention and switching endurance. These aspects can reduce yield
as well as lead to Stuck-At Faults (SAF).

Researchers model the variations of RRAMs following a Gaussian distribution. GFinal is
the final programmed conductance state into the RRAM. GIdeal is the desired conductance
state for a specific application/task. ∆G is a random variable that follows a Gaussian normal
distribution.

GFinal =GIdeal +∆G ; where ∆G ≈N(µ,σ)

Prakash et. al. [6] characterized the variability for a fabricated 2 bit RRAM device.
Figure 2.7 depicts the conductance variations for each Intermediate Conductance States (ICS).
An asymmetry in the variation distribution is observed. Low Conductance States exhibit
a higher conductance variation (σ/µ) compared to High Conductance States. The lowest
conductance state has a conductance variation of 20% whereas the highest conductance state

16

2.4. SUMMARY

exhibits a variation of 2.4%. This asymmetric, non-linear distribution of variation across
conductance states implies that programming to HCS will reduce the impact of variabilities
on accuracy.

Digital Weight Conductance (Variability)
00, 01 Low Conductance States (High Variability)
10, 11 High Conductance States (Low Variability)

Table 2.1: Differentiating between Low and High Conductance states based on variability in
conductance states

Figure 2.7: Observe the asymmetry in the conductance variation distribution over a 2 bit
RRAM device. High Conductance State (HCS) exhibit lower conductance variability whereas
LCS exhibit high variability in conductance [6]

It is important to leverage this variability to ensure that majority of RRAMs are mapped
to High Conductance State (HCS). Hence, we outline the difference between Low and High
Conductance States. This asymmetry is exploited to improve neural network accuracy on CIM
inference engines.

2.4 Summary

• Fully Connected Networks (FCN) implement forward pass and backward propagation
to assist neurons to learn classification tasks. Vector Matrix Multiplication (VMM) is

17

CHAPTER 2. BACKGROUND

the fundamental software computational operation. However on hardware, these are
performed through Multiply-Accumulate (MAC) operations.

• Computation In-Memory (CIM) architectures facilitate energy and latency efficient VMM
computation using traditional CMOS periphery (DAC & ADC).

• Memristors (NVM) are the fundamental devices that enable in-memory computation.
Owing to their long retention, zero power leakage, multi-level capability, Resistive
Random Access Memory (RRAM) devices are a promising candidate for scalable CIM
frameworks.

• Conductance variability (C2C and D2D) reduces neural network accuracy. We recognized
the asymmetry in conductance variability across low and high conductance states is an
important factor to consider when looking to improve neural network accuracy.

18

C
h

a
p

t
e

r

3
Related Works

This chapter provides a detailed review of related works for conductance mapping implemen-
tations on CIM architectures. Section 3.1 discusses the emergence of bit-slicing methods to
map weights onto crossbar arrays. Next, Section 3.2 discusses works that look to extend
the dynamic range in crossbar arrays using differential weight implementations. Section 3.3
discusses other strategies to improve accuracy by mitigating non-idealities concluding with a
summary.

3.1 Bit Slicing CIM architectures

1-bit RRAM implementations require power-hungry periphery that would negate any energy
gains presented by CIM architectures. Hence, neural weight mapping techniques are needed
to reduce reliance on peripheral circuits. Considering the limited resolution of RRAMs to
represent neural network weights, Shaifee et. al. [7] proposed a bit-slicing technique to
decompose the weight bits into smaller bit slices. These bit sliced neural network weights can
then be mapped onto an RRAM.

The ISAAC architecture proposed by Shaifee et. al. uses a 2 bit resolution 1-RRAM
implementation to represent weights. It considers a 16 bit resolution for input voltages which
is fed through the DAC 1 bit per timestep and an 16 bit resolution for the network weights.
Additionally, they proposed a balanced bit slicing scheme and additional shift-add logic for
accumulation of scaled partial current outputs. In balanced bit slicing, the 16 bit weights are
mapped onto 8 RRAMs along the same WordLine (WL). This mapping mechanism can be
seen in Figure 3.1.

Furthermore, in order to ensure accurate computation of Vector Matrix Multiplication
(VMM) operations, they ensured to scale the currents based on the significance of the bit-slice.
This is done to ensure that the accumulated partial digital output accurately represents the
VMM computation.

Using Ohms Law and Kirchoff’s law, the current output at the end of each BitLine (BL)

19

CHAPTER 3. RELATED WORKS

Figure 3.1: Instance of CIM architecture depicting the balanced bit slicing scheme. Here the
8 bit weights are mapped to 4 RRAM devices across the BitLine (BL) [7]

represents a partial output. Hence, the final digital output is represented as:

Scaled Digital Output= 64 · (I1+∆I1)+16 · (I2+∆I2)+4 · (I3+∆I3)+1 · (I4+∆I4) (3.1)

However, Shaifee et. al. do not consider any RRAM non-idealities when performing
experiments for the ISAAC framework using balanced bit-slicing schemes. Furthermore, no
evaluation of neural network accuracy is presented and discussed to ascertain its reproducibility
across various datasets. However, this research was critical to investigating the optimal
parameters for the peripheral circuit to facilitate VMM computation. Extending this work,
researchers [10, 56–58] have devised various bit-sliced CIM frameworks capable of implementing
neural networks for recognition tasks.

3.2 Differential weight representations for CIM

The limited accuracy of bit-sliced implementations asked for a higher flexbility for programming
conductances to achieve equivalent neural weight representation. Addionally, Bichler et. al. [12]
recognized that 10x more energy was needed to transition from LCS to the HCS compared to
transitioning from HCS to LCS. Hence, they proposed a differential weight representation as

20

3.2. DIFFERENTIAL WEIGHT REPRESENTATIONS FOR CIM

seen in Figure 3.2. A two-bit fixed point neural weight Wm,n (m,n represents row and column
on crossbar array) is represented as a different in conductance between two RRAMs. G+ and
G− denote the positive and negative conductance contribution respectively.

A weight of ’2’ (bit 10) at row ’m’ and column ’n’ on the crossbar array is mapped as the
difference between the conductance bit value ’10’ (G+ RRAM contribution) and conductance
bit value ’00’ (G− RRAM contribution). Hence, the cumulative conductance is the difference
between conductance of an RRAM for the positive contribution and RRAM conductance
accounting for negative contributions to the neural weight. This provides the benefit of a
higher dynamic representation for weight values.

Wm,n =G+−G− (3.2)

Figure 3.2: Depiction of differential weight representation using 2 RRAMs to represent neural
weights using cumulative conductance

However, this method induces a high write cost associated with closed-loop programming.
The contribution of differential implementations was extended by Gonugondla et. al. [48]
who investigated different methods to reduce the write cost and improve accuracy of writing
values to the crossbar array. Although their proposed approach lowers write cost by 5x - 10x,
they report low accuracy in the presence of non-idealities.

To further investigate the capabilities of differential weight mapping representation on
RRAMs, Burr et. al. [13] focused on exploring the positive conductance contribution (G+)
and the negative RRAM component (G−). They proposed the Alternating Bidirectional and
Fully Bidirectional weight programming methods. In the alternating scheme, either G+ or G−
is programmed whereas in the fully bidirectional scheme, both G+ and G− are simultaneously
programmed to achieve the desired weight representation.

21

CHAPTER 3. RELATED WORKS

Burr et. al. [13] investigated the effective range of the differential RRAM configuration
for programming weights. In the alternating bidirectional method, large weights are ignored
since one/both RRAMs are in HCS or LCS.

On the other hand, the fully bidirectional programming method is effective in ensuring
small conductances simultaneous programmed to G+ and G−. This ensures a wider range for
weight representation. Joshi et. al. [59] implemented and validated the schemes, however
both Burr et. al. [13] and Joshi et. al. [59] did not account for variabilities.

Li et. al. [8] investigated weight representation while accounting for conductance variabili-
ties. They operated the CIM framework in Ex-Situ. During offline training, they downsampled
the datasets to 8x8 pixels to reduce the number of RRAMs mapped to low conductance
states. The main contribution by the researchers, was to tolerate conductance variability by
programming the RRAM devices using only SET operations. Since RESET operations are
expensive and more difficult control while performing conductance programming, only SET
operations are performed to achieve the desired conductance.

Figure 3.3: Programming RRAMs only using SET operations [8]

However, the researchers [8] observed that majority RRAMs still end up being programmed
to low conductance (high variation) states. Furthermore, they assumed a narrow (small)
variation profile.

These state-of-the-art conductance mapping techniques do not effectively address variability
which significantly impacts Deep Neural Networks (DNN) accuracy.

3.3 Other relevant works

At a circuit and system level abstraction, significant research has been conducted to improve
accuracy. Methods such as redundant arrays [36] have been proposed to overcome device
failures on the crossbar array, but lead to unused resources.

An approach proposed by Jain et. al. [9] implements software (offline) retraining of neural
networks to improve accuracy. This enables them to improve inference accuracy up to 26%

22

3.4. SUMMARY

with 150 retraining iterations for ImageNet. The recognition inference accuracy saturates at
≈ 65% . However, Jain et. al. [9] relies significantly on algorithmic compensations that induce
an area overhead and present CIM hardware design challenges.

Figure 3.4: Software retraining improves inference accuracy but heavily relies on off-chip
frameworks that have a large area and energy footprint [9]

Kim et. al. [60] proposed a HW-SW optimization to account for variabilities. The authors
perform offline training with randomly generated weight defects to account for conductance
variability with crossbar array redundancies. They observed that intentionally introducing
random defects improves the robustness and accuracy of inference. However, this study only
focuses on Device-to-Device (D2D) variabilities.

3.4 Summary

State-of-the-art implementations of Deep Neural Networks (DNN) on CIM architectures have
been discussed. It is important to revisit common challenges that need to be further addressed.

• Bit-Sliced implementations [7, 10, 11, 56, 57] and Differential weight implementations [8,
12, 13] suffer from significant accuracy degradation across datasets. These conductance
mapping techniques fail to effectively address impact of variability. Although some works
address variabilities, they present high energy overheads and additional design challenges.
Furthermore, these works do not leverage the asymmetry in variability exhibited by
RRAMs.

23

CHAPTER 3. RELATED WORKS

• Other mitigation schemes [9, 36, 60–62] primarily rely on software intervention to model
variabilities, retrain or prune networks to improve accuracy. However, they do not
effectively address conductance variability leading to inadequate inference accuracy.

In this thesis we address the low accuracy of DNN due to conductance variability through
mapping techniques that leverage the asymmetry in RRAM variability across conductance
states.

24

C
h

a
p

t
e

r

4
Proposed Schemes

This chapter presents the proposed mapping schemes. First, Section 4.1 outlines the overall
implementation scheme to realize mapping implementations on CIM architectures. Next,
Section 4.2 explains the proposed Dynamic Scaling Column (DSC) method. Finally, in
Section 4.3, the proposed Complementary Conductance Matrix (CCM) is detailed concluding
with a summary in Section 4.4

As discussed in previous chapters, RRAM-based CIM neural network architectures present
a promising and scalable candidate for modern AI workloads. However, state-of-the-art
conductance mapping schemes do not effectively mitigate variabilities, which significantly
degrades inference accuracy.

We present conductance mapping schemes that leverage the asymmetric conductance
variation distribution to ensure that majority of the RRAM devices are mapped to states with
low variation (HCS) to improve accuracy.

4.1 Implementation Overview

Figure 4.1: Implementation overview to realize neural network computation on CIM architec-
tures.

25

CHAPTER 4. PROPOSED SCHEMES

Figure 4.1 outlines the implementation to realize the computation of VMM on CIM architec-
tures. First, we preprocess and train the neural network off-chip to facilitate Floating-Point
(FP) arithmetic needed for accurate weight convergence. Next, these optimal weights are
extracted and converted to Fixed-point (FXP) representation. The input data is mapped
to voltages through the DAC and weights are mapped to conductances. The two mapping
proposals account for variability during inference. Finally, at the end of the forward-pass, the
inference task is complete and produces a confusion matrix that validates the accuracy of the
CIM neural network relative to the ground truth values.

4.2 Dynamic Scaling Column

The standard bit-slicing framework presented in ISAAC by Shaifee et. al. [7] is required for
practical implementations for weight representation owing to the limited RRAM resolution.
Furthermore, since partial current outputs need to be scaled according to bit-slice significance,
the error in current is also scaled during the accumulation of partial digital outputs. This
further reduces the accuracy of VMM operation performed in neural networks.

Figure 4.2: Introducing an extra column per weight (word) along with computing a dynamic
scaling factor to suppress error of partial digital outputs

26

4.2. DYNAMIC SCALING COLUMN

Previously, from the standard bit-sliced architecture presented by Shaifee et. al. [7],
we observed the scaling of the current outputs to convert them to partial digital outputs.
This scaling also amplified the errors across each BitLine (BL) as seen in Equation 3.1:
Scaled Digital Output= (64 · (I1+∆I1))+ (16 · (I2+∆I2))+ (4 · (I3+∆I3))+ (1 · (I4+∆I4))

In order to reduce this error we propose the Dynamic Scaling Column (DSC). This proposal
looks to suppress errors in the accumulation of partial current outputs by introducing an
extra column of RRAMs and computing the Dynamic Scaling Factor (DSF). The architectural
modification is shown in Figure 4.2. We introduce an extra column of RRAMs per neural
weight which is always programmed to bit ’11’ (least conductance variability). This reduces
the impact of ∆Icol . Next, we compute the optimal Dynamic Scaling Factor (DSF) to suppress
partial digital errors to ensure the output of the VMM is close to the expected output. The
effect of the Dynamic Scaling Column (DSC) can be represented mathematically as:

Suppressed Digital Output= Scaled Digital Output− (DSF · (Icol +∆Icol)

This method reduces the computation error when accumulating the partial digital outputs.
In order to find the optimal Dynamic Scaling Factor (DSF), we implement Algorithm 1.

The algorithm to compute the Dynamic Scaling Factor (DSF) involves three steps.
Step 1: First we retrieve the original conductance matrix and track the number of low

mapped states per scaling factor as seen in Figure 4.3. This provides an indication regarding
the potential impact of the variability due to low mapped states on the final MAC operation.

Figure 4.3: Step 1 of proposed DSC: Tracking number of low mapped states (LMS)

Step 2: This involves computing the Dynamic Scaling Factor (DSF) based on the number
of low mapped states (LMS) as well as the corresponding scaling factor. It is important to
recognize that errors in current outputs due to variability will be much higher for RRAMs
programmed to LCS. Hence, we develop a heuristic to compute the ideal DSF based on which
scaling factor contribution contains the most low mapped states across the BitLine (BL).

27

CHAPTER 4. PROPOSED SCHEMES

Algorithm 1 Computing Dynamic Scaling Factor (DSF)

Input: Gmatrix =GM,N and |Gmatrix | =M ·N . Original Conductance Matrix

Output: DSF and GDSF =GM,N+1 . Dynamic Scaling Factor

Step 1

for Gmatrix do∑N
n=1LMS ←|Gm,n == LCS| . Track low mapped states → LMS

end for

Step 2

if
∑N

n=1LMS < M ·N
2 then

DSF =−LSB . Condition 1

else if
∑N

n=1LMS >= M ·N
2 then

if
∑N

2
n=1LMS <∑N

n=N
2 +1

LMS then

DSF ← -2nd LSB . Condition 2A

else if
∑N

2
n=1LMS >=∑N

n=N
2 +1

LMS then

DSF ← - MSB . Condition 2B

end if

end if

Step 3

GDSF ←GM,N + ((GmaxM,1 ·DSF) . Extra column scaled with DSF

• Condition 1: When the number of low mapped states is less than half the total elements
(not a sparse matrix) in the conductance matrix, we set the Dynamic Scaling Factor
(DSF) to a negative scaling corresponding to the LSB, i.e. −20. This is mathematically
expressed below

N∑
n=1

LMS < M ·N
2

,DSF=−LSB

• Condition 2: When the number of low mapped states is greater than or equal to half
the number of elements in the conductance matrix (is a sparse matrix), we recognize
that majority RRAMs are mapped to LCS and hence will have a significant impact on
errors when accumulating current outputs.

N∑
n=1

LMS >= M ·N
2

28

4.2. DYNAMIC SCALING COLUMN

We analyze two situations to compute the DSF.

A: Based on the accumulation scaling factor, when the sum of the number of low
mapped states for MSB and 2nd MSB is less than the sum of the number of low
mapped states in 2nd LSB and LSB. For this condition, the DSF is set to the
negative scaling contribution corresponding to the 2nd LSB, i.e. −24. This is
expressed in mathematical notation as below.

N
2∑

n=1
LMS <

N∑
n=N

2 +1
LMS ;DSF=−2ndLSB

B: When the sum of the number of low mapped states for MSB and 2nd MSB is
greater than or equal to the sum of the number of low mapped states in 2nd LSB
and LSB, we expect partial output errors to be maximum. Hence, we set the DSF
to the negative scaling contribution corresponding to MSB, i.e. −26.

MSB and 2nd MSB is less than the sum of the number of low mapped states in
2nd LSB and LSB. This can be translated into a mathematical expression.

N
2∑

n=1
LMS >=

N∑
n=N

2 +1
LMS ;DSF=−MSB

Figure 4.4: Step 2 of proposed DSC: Compute Dynamic Scaling Factor (DSF) based on
scaling

Step 3: In this step, we introduce an extra column of ’11’ mapped RRAMs and scale the
bitline with the computed Dynamic Scaling Factor (DSF). Figure 4.5 shows how the Dynamic
Scaling Column (DSC) facilitates the suppression of errors during accumulation of partial
currents.

Figure 4.5: Step 3 of proposed DSC: Add an extra column of RRAMs and scale them by the
Dynamic Scaling Factor (DSF).

29

CHAPTER 4. PROPOSED SCHEMES

4.3 Complementary Conductance Matrix

The Complementary Conductance Matrix (CCM) proposal is a hardware-software co-optimization
that looks to preserve the original contents of the weight matrix, while also ensuring that
majority RRAMs are mapped to HCS. This will leverage the low variability in HCS and reduce
the errors produced in the Vector Matrix Multiplication (VMM) result. Figure 4.6 shows the
overview of realizing this proposed scheme.

Figure 4.6: Overview of steps involved to realize Complementary Conductance Matrix (CCM)
proposed scheme

Once the neural network has been trained offline, the optimal floating point weights are
converted to fixed point representation. Next, the neural weights are sliced using the standard
bit-slicing scheme. Since now there is prior knowledge of values that need to be programmed
to the RRAM, we analyze whether the majority of RRAMs will be mapped to low conductance
states. This implies that most neural weights are small. Based on this information, we extract
the Gmax -complement matrix to perform VMM using a differential weight representation. This
ensures that we preserve the original neural weight representation while ensuring majority of
the devices are mapped to high conductance states. This implementation can be realized in
the following manner.

Step 1: Once the optimal Floating-Point (FP) weights after Ex-Situ operation is converted
to Fixed-point (FXP) representation, the complementary matrix of the original conductance
matrix is extract. This is done by taking the bit slice complement of the Gmax , ’11’ state.

Figure 4.7: Step 1 in proposed CCM: Extract the Complementary Conductance Matrix (CCM).

Step 2: Using differential weight representation, we perform Vector Matrix Multiplication
(VMM) while preserving the weights represented in the original conductance matrix GMatrix .

I =V × [GMax −CGMatrix]

30

4.4. SUMMARY

Figure 4.8: Step 2 in proposed CCM: Map matrix on a differential crossbar

This ensures that majority RRAMs are mapped to HCS reducing the impact of variability
on VMM output.

4.4 Summary

This chapter introduces and discusses the proposed schemes to realize high accuracy Deep
Neural Networks (DNN) inference engines on CIM architectures.

• We propose two conductance mapping schemes that mitigate conductance variation
of RRAMs on CIM architectures for neural networks. We perform Ex-Situ training to
extract optimal neural weights. These weights are mapped onto the CIM framework to
perform DNN inference.

• Dynamic Scaling Column: We introduce an extra column of high ’11’ state RRAMs
to reduce the error when accumulation of partial current outputs at the end of each
BitLine (BL). The error due to the extra column is negligible since all RRAMs in the
extra column are programmed to High Conductance State (HCS), which exhibit low
variability.

• Complementary Conductance Matrix: The Gmax -complement of the original Fixed-
point (FXP) weight representation is extracted and mapped onto the crossbar array.
This minimizes the number of RRAMs mapped to Low Conductance State (LCS). Using
a differential mapping method, we preserve the original optimal Fixed-point (FXP)
weights, while reducing the Vector Matrix Multiplication (VMM) computation errors
due to variability.

31

C
h

a
p

t
e

r

5
Simulation Results

This chapter presents the results of the proposed mapping schemes. Section 5.1 begins by
detailing the datasets used and Section 5.2 outlines the software and hardware setup. We
go on to define the metrics that will be used to evaluate the performance of the proposed
methods in Section 5.3. Section 5.4 presents the accuracy for Dynamic Scaling Column (DSC),
Complementary Conductance Matrix (CCM) and the combined implementation compared to
state-of-the-art implementations. Further, we discuss the area and energy overheads induced
by the proposed methods and conclude by aggregating the observed results to evaluate
trade-offs in order to reach a design decision.

5.1 Datasets

All datasets are converted to 28x28 pixel gray-scale image, where each pixel value ranges from
0 to 255 indicating the brightness of the pixel. Furthermore, all datasets have 60,000 training
images and 10,000 test images.

MNIST [63]: The MNIST (Modified National Institue of Standards and Technology)
database contains hardwritten digits from 0 to 9.

Fashion MNIST (FMNIST) [64]: The Fashion-MNIST database is a catalogue created
by Zalando consisting of articles of clothing separated into 10 classes.

Kuzushiji MNIST (KMNIST) [65]: KMNIST is a drop in replacement for MNIST but
contains Japanese characters that require to be classified into 10 categories.

Rotated MNIST (MNIST-rotDIG): This flavor of the MNIST dataset involves imple-
menting small rotational perturbations to the original dataset.

33

CHAPTER 5. SIMULATION RESULTS

Extended MNIST (EMNIST) [66]: This dataset includes 10 balanced classes of digits,
uppercase and lowercase handwritten alphabets.This is a more challenging classification task
compared to MNIST.

5.2 Simulation Setup

5.2.1 Software Setup

Deep Neural Networks (DNN)s are implemented using an open-source Python library called
PyTorch [67]. This facilities rapid production of neural networks suited to prediction tasks.
PyTorch provides dataloader utilities to easily feed dataset to the DNN for training or inference.
This framework allows hyperparameters to be controlled to improve learning as well as helps
extract Floating-Point (FP) weights from a trained neural network as a tensor. Numpy is used
to perform the central VMM operation. The NumPy library in Python is used to perform bit
slicing and differential implementations. Finally, we implement element-wise multiplication
operations to produce the final result of the VMM.

Deep Learning Parameters
Network Fully Connected (FCN)

No. of hidden layers 2
Neurons 784 −→ 100 −→ 50 −→ 10

Learning Algorithm Stochastic Gradient Descent
Learning Rate 1e−3

Training Software: Floating Point

Table 5.1: The deep learning network and parameters adopted for this thesis.

This thesis implements a Fully Connected Networks (FCN) with 2 hidden layers. The input
layer contains 784 neurons, the first hidden layer has 100 neurons, the second hidden layer
has 50 neurons. Finally, the output classification has 10 neurons to generate the confusion
matrix indicating the probability distribution of the neural network predictions. We perform
the training in software to obtain Floating-Point (FP) neural weights. The training uses
stochastic gradient descent (SGD) as the learning algorithm and a learning rate of 1e−3.

The software inference accuracy for various datasets is shown in Table 5.2.

Dataset Software inference accuracy
MNIST [63] 97%

Fashion-MNIST [64] 88%
K-MNIST [65] 88%
Rotated MNIST 97%

Extended-MNIST [66] 82%

Table 5.2: Software inference accuracy across five datasets

34

5.3. PERFORMANCE METRICS

5.2.2 Hardware Setup

The CIM architecture implemented in this thesis follows the fundamental framework provided
by Shaifee et. al. [7] in the ISAAC architecture. The crossbar array size is 128x128. For
inference, the inputs are 16 bit fixed point representations whereas the weights are 16 bit fixed
point values. We model the conductance variation according to the device characteristics
presented by Prakash et. al. [6]. Furthermore, we assume a HCS/LCS ratio of 20.

RRAM Crossbar Hardware Parameters
Crossbar Size 128 x 128

Inference
Inputs: 16-bit fixed point
Weights: 16-bit fixed point

Max. Conductance Gmax 500 µS
Ideal Conductance Profile (µS) [0, 166.7, 333.3, 500]
Variation Profile (σ/µ) % [6] [20.5, 12.6, 3.2, 2.4]
Conductance On/Off Ratio 20

Table 5.3: The CIM setup inline with the implementation presented by Shaifee et. al. [7].

The energy and area footprint of the DNN inference engine is estimated based on the
ISAAC architecture [7].

Components Energy (pJ) Area (mm2)
Input Register 124 0.0021
Output Register 23 0.00078
RRAM (128x128) 240 0.0002

DAC 400 0.00017
ADC 1600 0.0096

Sample & Hold 0.00097 0.00004
Shift & Add 20 0.00024

Table 5.4: Energy and Area Consumption of an IMA CIM components derived from Shaifee et.
al. [7]

5.3 Performance Metrics

We use the following metrics to demonstrate the effectiveness of our contributions in this
thesis:

• Raw Accuracy (%): It is the accuracy achieved by traditional software implementa-
tions using CPUs and GPUs.

• Relative Accuracy (%): It is the ratio between the accuracy obtained on a fixed
point crossbar relative to the raw accuracy. It indicates the accuracy recovered by CIM

35

CHAPTER 5. SIMULATION RESULTS

hardware compared to software. Relative Accuracy:

Crossbar fixed point accuracy
Raw Accuracy

×100

• Energy (pJ): It is the estimated total on-chip IMA energy consumption of the CIM
inference engine while performing VMM computation.

• Area (mm2): This is the estimated IMA area consumption of the CIM inference engine
including peripheral circuits.

• Figure-Of-Merit (GOPs/W): Accuracy × Energy Efficiency, where energy efficiency
is expressed in giga operations per second per watt.

5.4 Simulation Results

5.4.1 Classification accuracy evaluation

5.4.1.1 Dynamic Scaling Column

Figure 5.1 shows the relative accuracy of the proposed Dynamic Scaling Column (DSC)
compared to bit-sliced and differential implementations across all datasets. An accuracy
improvement up to 2.85x is observed compared to bit-sliced implementations [7, 10, 11].
Additionally, across all datasets, an average of 30% accuracy improvement was obtained
compared to differential weight representations [8, 12, 13].

Figure 5.1: Relative accuracy comparison across five datasets for bit-sliced [7, 10, 11], differ-
ential [8, 12, 13] and the proposed Dynamic Scaling Column (DSC) mapping implementation.

36

5.4. SIMULATION RESULTS

The extra column of RRAMs mapped to bit ’11’ state along with the heuristic computation
of the Dynamic Scaling Factor (DSF) reduces the error in accumulation of partial current
outputs. The variability due to the extra RRAMs is negligible since all devices are mapped to
High Conductance State (HCS). Suppression of errors is dynamic over different conductances
mapped onto the crossbar

5.4.1.2 Complementary Conductance Matrix

In the proposed Complementary Conductance Matrix (CCM), the original mapped weights
are manipulated to ensure majority RRAMs are programmed to a HCS. By taking the Gmax

complement of the original conductance matrix, GMatrix , the complementary matrix is mapped
onto a differential crossbar array. Since HCS exhibit low conductance variability and majority
RRAMs are mapped to HCS, a significant improvement in accuracy is observed.

Figure 5.2: Relative accuracy comparison across five datasets for bit-sliced [7, 10, 11],
differential [8, 12, 13] and the proposed CCM mapping implementation.

The proposed Complementary Conductance Matrix (CCM) method reports up to 5x
accuracy improvement compared to bit-sliced implementations [7, 10, 11]. Across all datasets,
an average of 1.5x improvement in accuracy over differential implementations [8, 12, 13] is
obtained. Furthermore, this method does not induce any area or energy overhead compared
to differential implementations but uses 2x the number of RRAMs which can be attributed to
the differential weight representation of the proposed CCM on the crossbar array.

Complementary Conductance Matrix (CCM) obtains accuracy improvements since all
neural weights are biased towards High Conductance State (HCS). These states exhibit the
least conductance variation. This provides accurate weight representation while minimizing the

37

CHAPTER 5. SIMULATION RESULTS

impact of conductance variations. Furthermore, programming the positive contribution (G+)of
RRAMs only to HCS reduces the complexity of the write mechanism. Hence, implementing the
Complementary Conductance Matrix (CCM) provides significant benefits for neural networks.

5.4.1.3 Combined proposal - DSC & CCM

Combining the DSC and CCM proposals reports the best accuracy improvements. This
significantly outperforms all state-of-the-art techniques across all datasets. Comparing the
accuracy for E-MNIST (most difficult task), we observe an improvement of up to 5.43x
compared to bit-sliced [7, 10, 11] implementations. Furthermore, compared to differential
implementations [8, 12, 13], a 2.6x improvement in accuracy is recorded

Figure 5.3: Relative accuracy comparison across five datasets for bit-sliced [7, 10, 11],
differential [8, 12, 13] and the combined methodology (proposed DSC + proposed CCM)

This can be attributed to the fact that the Dynamic Scaling Column (DSC) method
suppresses variability in partial outputs by scaling the ’11’ mapped RRAM column with the
Dynamic Scaling Factor (DSF). Additionally, by extracting the Complementary Conductance
Matrix (CCM), we reduce the number of RRAMs mapped to LCS. Hence, we reduce the
conductance variation across the crossbar array.

5.4.2 Performance Analysis with state-of-the-art

The bit-sliced implementation consumes 2408pJ of energy and 0.01313mm2 of area per IMA.
This energy consumption is dominated by ADCs. The proposed methodologies induce a
minimal area overhead compared to the baseline bit-sliced implementation. The proposed
Dynamic Scaling Column (DSC) method induces a 1.53% overhead in area compared to

38

5.4. SIMULATION RESULTS

bit-sliced implementation due to the extra column and differential weight implementation.
This area overhead of the extra column is negligible and regarding the periphery since ADC
resources are shared, the ADC will require more energy to complete the Multiply-Accumulate
(MAC) operations. Furthermore, since DSC uses differential weight representation [8, 12, 13],
compared to bit-sliced implementations (baseline) [7, 10, 11], double the number of RRAMs
are used. However, RRAMs do not significantly contribute to the overall area consumption of
the chip.

The Complementary Conductance Matrix (CCM) method induces no area overhead relative
to differential implementations since only RRAM mapped values are manipulated but incurs a
1.52% area overhead compared to bit-sliced implementations (baseline). The combined pro-
posal increases the on-chip footprint by 2.02·10−4mm2 compared to bit-sliced implementations
due to the extra column of RRAMs and the differential weight representation [8, 12, 13].

In DSC, we observe a 9.8% increase in on-chip energy due to its differential implementation
and ADC sharing resources to facilitate the extra column compared to bit-sliced implementa-
tions. CCM uses same energy as differential representations and so incurs a 9% cost compared
to standard bit-sliced implementations. Finally, with respect to energy consumption of the
combined method, since architecture of RRAM and ADC elements are similar it consumes
on-chip energy equivalent to Dynamic Scaling Column (DSC) proposed implementation.

We collate all the results presented on accuracy, energy, area and figure-of-merit. The
proposed Dynamic Scaling Column (DSC), Complementary Conductance Matrix (CCM) and
combined method significantly outperform all state-of-the-art mapping implementations across
all datsets. The least improvement is seen across the simple MNIST dataset since state-
of-the-art bit-sliced and differential implementations are already capable of competing with
traditional software accuracy. However, towards the more difficult dataset, Extended-MNIST,
the largest accuracy gains compared to state-of-the-art is observed.

Figure 5.4: Holistic perspective of Bit-Sliced [7, 10, 11], differential [8, 12, 13], proposed
DSC, CCM and combined method. CCM uses 1.52% more area and 9% energy compared to
the standard bit-sliced representation

Although the DSC method improves accuracy up to 2.85x, the low accuracy in difficult
tasks reduce the viability of this solution. On the other hand, the CCM proposal improves
accuracy by 5x on the E-MNIST dataset compared to bit-sliced implementations but only incurs

39

CHAPTER 5. SIMULATION RESULTS

an area overhead of 1.52% and energy cost of 9% compared to bit-sliced implementations.
Moreover, it is important to note that CCM does not incur any cost compared to differential
implementations. Finally, the combined proposal reports an accuracy improvement of up to
5.4x but incurs a 9.8% energy overhead and 1.53% area overhead compared to bit-sliced
implementations 7% on the E-MNIST dataset.

Looking at the trade-offs presented by the implementations, the proposed Complementary
Conductance Matrix (CCM) mapping method is the most viable candidate for large scale CIM
architectures for DNN inference engines.

40

C
h

a
p

t
e

r

6
Conclusion

This chapter concludes this thesis. The work presented in this thesis is summarized. Lastly,
we make recommendations for future research.

Conclusion

In this thesis, two conductance mapping schemes leveraging RRAM variability are proposed
targeting a high accuracy bias-mapped CIM Deep Neural Networks (DNN) inference engine.
RRAMs suffer from Cycle-to-Cycle (C2C) and Device-to-Device (D2D) variations that sig-
nificantly degrade accuracy of neural networks. State-of-the-art bit-sliced and differential
weight representation, enabled neural weight mapping on CIM frameworks however they lack
focus on the impact of variabilities on accuracy. RRAM exhibit an asymmetric variability
profile. High Conductance State (HCS) exhibit low variability. To reduce the error in VMM
computation, it is important to leverage this low variability in order to minimize number of
RRAM devices mapped to Low Conductance State (LCS). These observations motivated the
proposed mapping schemes.

The Dynamic Scaling Column (DSC) suppresses accumulation errors during partial output
computation. Across all datasets, DSC obtains accuracy improvements of up to 2.85x incurring
a 1.54% area cost and a 9.8% energy overhead compared to (baseline) bit-sliced implemen-
tations. The Complementary Conductance Matrix (CCM) extract the Gmax complement to
ensure majority of the RRAMs are mapped to High Conductance State (HCS). CCM reports a
5x accuracy improvement incurring a 1.52% area cost and 9% energy overhead compared to
bit-sliced implementations. However, with respect to differential implementations, an accuracy
improvement of up to 2.36x is achieved at no area or energy cost.

Overall, the proposed schemes improved accuracy significantly across all datasets with
a negligible overhead. However, based on accuracy-energy trade-offs, CCM is the preferred
conductance mapping scheme to implement in RRAM-based CIM inference engine architectures
for Deep Neural Networks (DNN).

41

CHAPTER 6. CONCLUSION

Future Work

The thesis presents suggestions that can be adopted in future research:

• Non-idealities from a device, architecture and system level affect performance of
neural network applications. CIM frameworks should integrate these non-idealities and
define relationships across all levels. These frameworks will provide a more realistic
perspective of CIM architectures

• Binary Neural Network implementations on CIM crossbar array. This can enable
on-chip training and since neural weights are bounded, weight updates can be performed.
Accuracy on easy datasets such as MNIST have been demonstrated. However, more
complicate classification tasks are needed to investigate its true potential for real-world
implementations.

42

Bibliography

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition: A Quantitative
Approach.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 5th ed., 2011.
[2] S. Jain, A. Ankit, I. Chakraborty, T. Gokmen, M. Rasch, W. Haensch, K. Roy, and

A. Raghunathan, “Neural network accelerator design with resistive crossbars: Oppor-
tunities and challenges,” IBM Journal of Research and Development, vol. 63, no. 6,
pp. 10–1, 2019.

[3] ComputingCell, “Memristor technology getting closer,” 2019.
[4] H. Aziza, H. Ayari, S. Onkaraiah, M. Moreau, J. M. Portal, and M. Bocquet, “Multilevel

operation in oxide based resistive RAM with SET voltage modulation,” in 2016 Inter-
national Conference on Design and Technology of Integrated Systems in Nanoscale
Era (DTIS), pp. 1–5, IEEE, 2016.

[5] H. Aziza, A. Perez, and J.-M. Portal, “Resistive RAMs as analog trimming elements,”
Solid-State Electronics, vol. 142, pp. 52–55, 2018.

[6] A. Prakash and H. Hwang, “Multilevel cell storage and resistance variability in resistive
random access memory,” Physical Sciences Reviews, vol. 1, no. 6, 2016.

[7] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S.
Williams, and V. Srikumar, “ISAAC: A Convolutional Neural Network Accelerator with
in-Situ Analog Arithmetic in Crossbars,” SIGARCH Comput. Archit. News, vol. 44,
p. 14–26, June 2016.

[8] C. Li, D. Belkin, Y. Li, P. Yan, M. Hu, N. Ge, H. Jiang, E. Montgomery, P. Lin, Z. Wang,
et al., “Efficient and self-adaptive in-situ learning in multilayer memristor neural
networks,” Nature communications, vol. 9, no. 1, pp. 1–8, 2018.

[9] S. Jain, A. Sengupta, K. Roy, and A. Raghunathan, “RxNN: A framework for evaluating
deep neural networks on resistive crossbars,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2020.

[10] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S. Williams, P. Faraboschi,
W.-m. W. Hwu, J. P. Strachan, K. Roy, and D. S. Milojicic, “PUMA: A Programmable
Ultra-Efficient Memristor-Based Accelerator for Machine Learning Inference,” ASPLOS
’19, (New York, NY, USA), p. 715–731, Association for Computing Machinery, 2019.

[11] A. Ranjan, S. Jain, J. R. Stevens, D. Das, B. Kaul, and A. Raghunathan, “X-MANN: A
crossbar based architecture for memory augmented neural networks,” in Proceedings
of the 56th Annual Design Automation Conference 2019, pp. 1–6, 2019.

[12] O. Bichler, M. Suri, D. Querlioz, D. Vuillaume, B. DeSalvo, and C. Gamrat, “Visual
pattern extraction using energy-efficient “2-PCM synapse” neuromorphic architecture,”

43

BIBLIOGRAPHY

IEEE Transactions on Electron Devices, vol. 59, no. 8, pp. 2206–2214, 2012.
[13] G. W. Burr, R. M. Shelby, S. Sidler, C. di Nolfo, J. Jang, I. Boybat, R. S. Shenoy,

P. Narayanan, K. Virwani, E. U. Giacometti, B. N. Kurdi, and H. Hwang, “Experimental
demonstration and tolerancing of a large-scale neural network (165 000 synapses)
using phase-change memory as the synaptic weight element,” IEEE Transactions on
Electron Devices, vol. 62, no. 11, pp. 3498–3507, 2015.

[14] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas,
and K. Yelick, “A case for intelligent ram,” IEEE Micro, vol. 17, p. 34–44, mar 1997.

[15] R. Rizk, D. Rizk, A. Kumar, and M. Bayoumi, “Demystifying emerging nonvolatile memory
technologies: understanding advantages, challenges, trends, and novel applications,”
in 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5,
IEEE, 2019.

[16] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz, “Cpu db: Recording
microprocessor history,” Commun. ACM, vol. 55, p. 55–63, apr 2012.

[17] Z. Abbas and M. Olivieri, “Impact of technology scaling on leakage power in nano-scale
bulk cmos digital standard cells,” Microelectron. J., vol. 45, p. 179–195, feb 2014.

[18] S. Mittal, “A Survey of ReRAM-Based Architectures for Processing-In-Memory and Neural
Networks,” Machine Learning and Knowledge Extraction, vol. 1, no. 1, pp. 75–114,
2019.

[19] W. Haensch, T. Gokmen, and R. Puri, “The Next Generation of Deep Learning Hardware:
Analog Computing,” Proceedings of the IEEE, vol. 107, no. 1, pp. 108–122, 2019.

[20] A. Amirsoleimani, F. Alibart, V. Yon, J. Xu, M. R. Pazhouhandeh, S. Ecoffey, Y. Beilliard,
R. Genov, and D. Drouin, “In-Memory Vector-Matrix Multiplication in Monolithic
Complementary Metal–Oxide–Semiconductor-Memristor Integrated Circuits: Design
Choices, Challenges, and Perspectives,” Advanced Intelligent Systems, vol. 2, no. 11,
p. 2000115, 2020.

[21] T. Gokmen and Y. Vlasov, “Acceleration of deep neural network training with resistive
cross-point devices: Design considerations,” Frontiers in neuroscience, vol. 10, p. 333,
2016.

[22] T. Gokmen, M. Onen, and W. Haensch, “Training Deep Convolutional Neural Networks
with Resistive Cross-Point Devices,” Frontiers in Neuroscience, vol. 11, p. 538, 2017.

[23] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A Circuit-Level Performance, Energy,
and Area Model for Emerging Nonvolatile Memory,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 31, no. 7, pp. 994–1007,
2012.

[24] F. Zahoor, T. Z. Azni Zulkifli, and F. A. Khanday, “Resistive random access memory
(RRAM): an overview of materials, switching mechanism, performance, multilevel
cell (MLC) storage, modeling, and applications,” Nanoscale research letters, vol. 15,

44

BIBLIOGRAPHY

pp. 1–26, 2020.
[25] O. Krestinskaya, A. Irmanova, and A. P. James, “Memristive non-idealities: Is there any

practical implications for designing neural network chips?,” in 2019 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5, IEEE, 2019.

[26] H.-K. Liu, D. Chen, H. Jin, X.-F. Liao, B. He, K. Hu, and Y. Zhang, “A Survey of
Non-Volatile Main Memory Technologies: State-of-the-Arts, Practices, and Future
Directions,” Journal of Computer Science and Technology, vol. 36, no. 1, pp. 4–32,
2021.

[27] C. You and H. Kim, “Effect of finite tunneling magneto-resistance for the switching
dynamics in the spin transfer torque magnetic tunneling junctions,” in 2017 IEEE
International Magnetics Conference (INTERMAG), pp. 1–2, 2017.

[28] P. Chi, S. Li, Yuanqing Cheng, Yu Lu, S. H. Kang, and Y. Xie, “Architecture design
with STT-RAM: Opportunities and challenges,” in 2016 21st Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 109–114, 2016.

[29] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Evaluating STT-RAM as
an energy-efficient main memory alternative,” in 2013 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pp. 256–267, IEEE,
2013.

[30] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi,
and K. E. Goodson, “Phase change memory,” Proceedings of the IEEE, vol. 98,
no. 12, pp. 2201–2227, 2010.

[31] S. Yu, X. Guan, and H.-S. P. Wong, “On the stochastic nature of resistive switching in
metal oxide RRAM: Physical modeling, Monte Carlo simulation, and experimental
characterization,” in 2011 International Electron Devices Meeting, pp. 17–3, IEEE,
2011.

[32] S. Yu, Y. Wu, and H.-S. P. Wong, “Investigating the switching dynamics and multilevel
capability of bipolar metal oxide resistive switching memory,” Applied Physics Letters,
vol. 98, no. 10, p. 103514, 2011.

[33] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen,
and M.-J. Tsai, “Metal–oxide RRAM,” Proceedings of the IEEE, vol. 100, no. 6,
pp. 1951–1970, 2012.

[34] M. Zhang, S. Long, G. Wang, Y. Li, X. Xu, H. Liu, R. Liu, M. Wang, C. Li, P. Sun,
et al., “An overview of the switching parameter variation of RRAM,” Chinese science
bulletin, vol. 59, no. 36, pp. 5324–5337, 2014.

[35] C. Zambelli, A. Grossi, P. Olivo, C. Walczyk, and C. Wenger, “RRAM Reliability/Perfor-
mance Characterization through Array Architectures Investigations,” in 2015 IEEE
Computer Society Annual Symposium on VLSI, pp. 327–332, 2015.

[36] W. Chen, W. Lu, B. Long, Y. Li, D. Gilmer, G. Bersuker, S. Bhunia, and R. Jha,

45

BIBLIOGRAPHY

“Switching characteristics of W/Zr/HfO2/TiN ReRAM devices for multi-level cell
non-volatile memory applications,” Semiconductor Science and Technology, vol. 30,
no. 7, p. 075002, 2015.

[37] Z. Shen, C. Zhao, Y. Qi, W. Xu, Y. Liu, I. Z. Mitrovic, L. Yang, and C. Zhao, “Advances
of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic
Application,” Nanomaterials, vol. 10, no. 8, p. 1437, 2020.

[38] B. Liu, H. Li, Y. Chen, X. Li, Q. Wu, and T. Huang, “Vortex: Variation-aware training for
memristor x-bar,” in 2015 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), pp. 1–6, 2015.

[39] P.-Y. Chen, B. Lin, I.-T. Wang, T.-H. Hou, J. Ye, S. Vrudhula, J.-s. Seo, Y. Cao, and
S. Yu, “Mitigating effects of non-ideal synaptic device characteristics for on-chip
learning,” in 2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 194–199, IEEE, 2015.

[40] H. A. D. Nguyen, J. Yu, M. A. Lebdeh, M. Taouil, S. Hamdioui, and F. Catthoor, “A
classification of memory-centric computing,” ACM Journal on Emerging Technologies
in Computing Systems (JETC), vol. 16, no. 2, pp. 1–26, 2020.

[41] S. Hamdioui, S. Kvatinsky, G. Cauwenberghs, L. Xie, N. Wald, S. Joshi, H. M. Elsayed,
H. Corporaal, and K. Bertels, “Memristor for computing: Myth or reality?,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017, pp. 722–731,
IEEE, 2017.

[42] Q. Xia and J. Yang, “Memristive crossbar arrays for brain-inspired computing,” Nature
Materials, vol. 18, pp. 309–323, 2019.

[43] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on Circuit Theory,
vol. 18, no. 5, pp. 507–519, 1971.

[44] L. Chua, “If it’s pinched it’s a memristor,” Semiconductor Science and Technology,
vol. 29, p. 104001, sep 2014.

[45] J. Yu, H. A. Du Nguyen, L. Xie, M. Taouil, and S. Hamdioui, “Memristive devices for
computation-in-memory,” in 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 1646–1651, IEEE, 2018.

[46] A. Prakash, J.-S. Park, J. Song, S.-J. Lim, J.-H. Park, J. Woo, E. Cha, and H. Hwang,
“Multi-state resistance switching and variability analysis of HfOx based RRAM for ultra-
high density memory applications,” 2015 International Symposium on Next-Generation
Electronics (ISNE), pp. 1–2, 2015.

[47] Y. Huang, Z. Shen, Y. Wu, X. Wang, S. Zhang, X. Shi, and H. Zeng, “Amorphous ZnO
based resistive random access memory,” RSC Advances, vol. 6, pp. 17867–17872,
2016.

[48] S. K. Gonugondla, A. D. Patil, and N. R. Shanbhag, “SWIPE: Enhancing Robustness
of ReRAM Crossbars for In-memory Computing,” 2020 IEEE/ACM International

46

BIBLIOGRAPHY

Conference On Computer Aided Design (ICCAD), pp. 1–9, 2020.
[49] D. Kumar, R. Aluguri, U. Chand, and T.-Y. Tseng, “Metal oxide resistive switching

memory: materials, properties and switching mechanisms,” Ceramics International,
vol. 43, pp. S547–S556, 2017.

[50] W. Shim, Y. Luo, J.-S. Seo, and S. Yu, “Investigation of read disturb and bipolar read
scheme on multilevel RRAM-based deep learning inference engine,” IEEE Transactions
on Electron Devices, vol. 67, no. 6, pp. 2318–2323, 2020.

[51] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama, “Memristor-based
memory: The sneak paths problem and solutions,” Microelectronics Journal, vol. 44,
no. 2, pp. 176–183, 2013.

[52] Z. Chen, C. Schoeny, and L. Dolecek, “Coding assisted adaptive thresholding for sneak-
path mitigation in resistive memories,” in 2018 IEEE Information Theory Workshop
(ITW), pp. 1–5, IEEE, 2018.

[53] G. Song, K. Cai, C. Sun, X. Zhong, and J. Cheng, “Near-Optimal Detection for Both
Data and Sneak-Path Interference in Resistive Memories with Random Cell Selector
Failures,” arXiv preprint arXiv:2101.09680, 2021.

[54] Y. Ben-Hur and Y. Cassuto, “Detection and coding schemes for sneak-path interference
in resistive memory arrays,” IEEE Transactions on Communications, vol. 67, no. 6,
pp. 3821–3833, 2019.

[55] Z. He, J. Lin, R. Ewetz, J. Yuan, and D. Fan, “Noise Injection Adaption: End-to-End
ReRAM Crossbar Non-ideal Effect Adaption for Neural Network Mapping,” in 2019
56th ACM/IEEE Design Automation Conference (DAC), pp. 1–6, 2019.

[56] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “PRIME: A Novel
Processing-in-Memory Architecture for Neural Network Computation in ReRAM-
Based Main Memory,” SIGARCH Comput. Archit. News, vol. 44, p. 27–39, June
2016.

[57] P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim: A circuit-level macro model for benchmarking
neuro-inspired architectures in online learning,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 37, no. 12, pp. 3067–3080, 2018.

[58] S. Gupta, M. Imani, J. Sim, A. Huang, F. Wu, M. H. Najafi, and T. Simunic, “SCRIMP:
A General Stochastic Computing Architecture using ReRAM in-Memory Processing,”
2020 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1598–
1601, 2020.

[59] S. Joshi, C. Kim, S. Ha, and G. Cauwenberghs, “From algorithms to devices: Enabling
machine learning through ultra-low-power vlsi mixed-signal array processing,” in 2017
IEEE Custom Integrated Circuits Conference (CICC), pp. 1–9, 2017.

[60] Y. Kim, S. Kim, C.-C. Yeh, V. Narayanan, and J. Choi, “Hardware and Software Co-
optimization for the Initialization Failure of the ReRAM-based Cross-bar Array,” ACM

47

BIBLIOGRAPHY

Journal on Emerging Technologies in Computing Systems (JETC), vol. 16, no. 4,
pp. 1–19, 2020.

[61] C. Lammie, W. Xiang, B. Linares-Barranco, and M. R. Azghadi, “MemTorch: An
Open-source Simulation Framework for Memristive Deep Learning Systems,” 2020.

[62] S. Huang, A. Ankit, P. Silveira, R. Antunes, S. R. Chalamalasetti, I. El Hajj, D. E.
Kim, G. Aguiar, P. Bruel, S. Serebryakov, et al., “Mixed Precision Quantization for
ReRAM-based DNN Inference Accelerators,” in Proceedings of the 26th Asia and
South Pacific Design Automation Conference, pp. 372–377, 2021.

[63] L. Deng, “The mnist database of handwritten digit images for machine learning research,”
IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[64] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms,” 2017.

[65] T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto, and D. Ha, “Deep
learning for classical japanese literature,” 2018.

[66] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “Emnist: an extension of mnist to
handwritten letters,” 2017.

[67] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:
An imperative style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035, Curran Associates,
Inc., 2019.

48

	Acronyms
	List of Figures
	List of Tables
	Introduction
	Computing and AI
	Computation In-Memory (CIM) for AI workloads
	Problem Statement
	Contributions
	Organization

	Background
	Deep Neural Networks
	fcn
	Training and Inference
	In-Situ (Online) and Ex-Situ (Offline) Training in CIM architectures

	Computation In-Memory
	Architecture

	Non-Volatile Memories for CIM
	rram Principles and Operation
	Conductance Variation

	Summary

	Related Works
	Bit Slicing CIM architectures
	Differential weight representations for CIM
	Other relevant works
	Summary

	Proposed Schemes
	Implementation Overview
	Dynamic Scaling Column
	Complementary Conductance Matrix
	Summary

	Simulation Results
	Datasets
	Simulation Setup
	Software Setup
	Hardware Setup

	Performance Metrics
	Simulation Results
	Classification accuracy evaluation
	Dynamic Scaling Column
	Complementary Conductance Matrix
	Combined proposal - DSC & CCM

	Performance Analysis with state-of-the-art

	Conclusion
	Bibliography

