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Abstract
In this study, novel AlGaN/GaN Schottky barrier diodes (SBDs) are fabricated with thin-barrier
(5 nm) AlGaN/GaN heterostructures, featuring recess-free technology, eliminating
bombardment plasma damage, and leading to high device uniformity. Combining a gated-edge
termination (GET) design and assistance with high-quality low-pressure chemical vapor
deposition SiNx, a low reverse leakage current (∼10 nA mm−1@−600 V) and a high reverse
breakdown voltage of over 1.78 kV (@1 µA mm−1) are obtained. At the same time, we achieve
a low turn-on voltage of 0.57 V and a low differential on-state resistance Ron,sp of 1.49 mΩ cm2

for thin-barrier GET SBDs with an anode-to-cathode distance (LAC) of 15 µm, yielding a
Baliga’s figure of merit of 2120 MW cm−2. Moreover, this proposed diode process flow is
compatible with AlGaN/GaN high-electron-mobility transistors, which is promising for its
integration in the smart GaN platform.

Keywords: AlGaN/GaN, Schottky barrier diode, lateral, high breakdown voltage,
low turn-on voltage, gate-edge termination

(Some figures may appear in colour only in the online journal)

1. Introduction

AlGaN/GaN-based heterojunction Schottky barrier diodes
(SBDs) are promising for next-generation electrical power
systems due to their superior material properties, such as high
mobility, high electric breakdown strength and high-electron
saturation velocity [1, 2]. In particular, two-dimensional elec-
tron gas (2DEG) with high mobility and sheet charge dens-
ity at the AlGaN/GaN interface gives rise to more efficient

∗
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SBDs compared with conventional silicon power devices. In
addition, AlGaN/GaN-based SBDs are compatible with the
process flow of AlGaN/GaN high-electron-mobility transist-
ors (HEMTs), which is promising for GaN power integrated
circuits [3].

For a high-efficiency power system, a low turn-on voltage,
a high breakdown voltage and a low reverse leakage are pre-
ferred. Various SBD designs and processing techniques have
been discussed for the optimization of AlGaN/GaN SBDs,
including partially recessed SBDs [4, 5], over-etched with
sidewall contacted SBDs [6], hybrids [7–10], and 3D tri-anode
SBDs [11, 12]. However, the reverse leakage of SBDs is still
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relatively high (above 10−4 mA mm−1). A few termination
techniques have been proposed to suppress the leakage current
by reducing the electric field at the Schottky edge, such as the
p-GaN field plate [13] and gated-edge termination (GET) [5].
GET is preferred for its simplicity to fabricate, since it does not
require a large area of etching in the access region, unlike the
p-GaN field plate. Meanwhile, the electric field in the vicinity
of the Schottky edge can be effectively reduced by depletion of
the 2DEG channel under the metal–insulator–semiconductor
(MIS) field plate at low reverse bias, resulting in low leakage
when the reverse voltage increases. Two approaches have been
proposed to enhance the modulation capability of the MIS
field plate to the 2DEG channel beneath, including a partially
recessed barrier [5, 14] and a 3D tri-anode [15]. However, the
etch damage to the AlGaN barrier in the Schottky region or
field plate region for these two approaches might bring about
potential reliability issues [16].

Therefore, in this work, a recess-free thin-barrier GET
AlGaN/GaN SBD (TB-GET) with Ni/Au Schottky metal has
been proposed to address the above challenge, aiming to
reduce the plasma damage both in the Schottky region and
under the MIS field plate. Benefiting from the as-grown thin-
barrier epistructure, it allows us to obtain a low turn-on voltage
without recess of the barrier, as well as to performGET termin-
ation without recess of the barrier to lower the reverse leakage
without affecting the forward characteristics.

2. Device structure

The AlGaN/GaN heterostructure epitaxial wafer starts from a
low resistive 4 inch Si <111> substrate, followedwith a∼4µm
C-dopedGaN buffer stack, a 200 nmGaN channel, a 1 nmAlN
interface enhancement layer and a 5 nm Al0.25Ga0.75N barrier
(dislocation density is ∼1E9 cm−2).

A schematic cross-section of the recess-free TB-GET with
two different thicknesses of low-pressure chemical vapor
deposition (LPCVD) SiNx is shown in figure 1. The purpose of
fabricating these two different SiNx thicknesses is to investig-
ate the impact of SiNx thickness on reverse leakage. The fab-
rication flow starts with the deposition of an LPCVDSiNx pas-
sivation layer to restore the 2DEG for the as-grown thin-barrier
AlGaN/GaN heterostructure [17]. With both 24 nm and 10 nm
LPCVD SiNx passivation, the sheet resistance can be reduced
from 1780 Ω sq−1 to 450 Ω sq−1. Meanwhile, the LPCVD
SiNx plays an important role as part of the GET field plate
to suppress leakage current as well. Then, the cathode elec-
trode (C) of the SBD is made of Ti/Al/Ni/Au after LPCVD
SiNx removal in the cathode region and annealed at 850 ◦C
for 50 s. The ohmic contact resistance (Rc) was measured and
calculated as 0.65 Ω mm using the transfer length method.
After device isolation formed by N implantation, the anode
electrode (A) is formed by opening the LPCVD SiNx passiv-
ation with fluorine-based inductively-coupled-plasma (ICP)
etching and cleaning, followed by Ni/Au Schottky metal evap-
oration. Finally, the devices are passivated with 200 nm SiNx

by plasma-enhanced CVD.
On-wafer DC characterization is carried out on single-

finger diodes with an anode finger width (W) of 100 µm, an

Figure 1. (a) Schematic cross-section of the recess-free TB-GET
SBD and epistructure (Al0.25Ga0.75N barrier is 5 nm), where LSC and
LAC are the length of the Schottky contact region and the drift length
of the SBD, respectively. (b) Photograph image of the fabricated
device.

anode-to-cathode length (LAC) of 6 µm and a Schottky junc-
tion length (LSC) of 6 µm for TB-GET with 24 nm and 10 nm
LPCVD SiNx. The measured current–voltage (I–V) character-
istics of small diodes, as a function of the anode-to-cathode
voltage VAC, is shown in figure 2. The forward I–V character-
istics are shown in figure 2(a), where both of the samples show
similar forward characteristics, because the turn-on voltage
(VT) is determined by the thickness of the as-grown AlGaN
barrier layer [4] and the forward current is determined mostly
by the 2DEG sheet resistance andRc, regardless of the LPCVD
SiNx thickness [17]. The TB-GETwith 24 nmSiNx shows high
reverse leakage, while the reverse leakage current of TB-GET
with 10 nm SiNx is one order of magnitude lower (figure 2(b)).
This leakage reduction is ascribed to the electric field at the
Schottky barrier corner being drastically reduced and the peak
being shifted to the GET corner, leading to a reduction of
reverse leakage, which was revealed by the simulated electric
field distribution shown in the figures 2(c)–(e).

Typical forward and reverse leakage and breakdown char-
acteristics of recess-free TB-GET (100 µm width) with vary-
ing LAC are evaluated at room temperature, as shown in
figure 3. In figure 3(a), the differential on-state resistance
(RON) is calculated to be 4.3 Ω mm, 5 Ω mm, 6.2 Ω mm,
8.3 Ω mm and 13.6 Ω mm with an LAC of 6 µm, 8 µm,
10 µm, 15 µm and 20 µm, respectively. VT, which is defined
as the voltage when the forward current reaches 1 mA mm−1,
is 0.57 V with a negligible variation for different values of
LAC. This VT is similar to that of state-of-the-art AlGaN/GaN
SBDs with Ni/Au as the Schottky metal [11, 14, 18]. In
figure 3(b), the TB-GET SBDs with 10 nm SiNx can reach
a hard-breakdown voltage (@1 mA mm−1) of 1.1 kV, 1.5 kV,
1.6 kV, 1.87 kV and 2.0 kV with an LAC of 6 µm, 8 µm,
10 µm, 15 µm and 20 µm, respectively. On the other hand, the
SBDs with this effective termination technique can success-
fully reduce the leakage current, and the voltage at 1µAmm−1
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Figure 2. Typical (a) forward (b) and reverse I–V curves of the
TB-GET SBDs with 24 nm and 10 nm LPCVD SiNx, both with an
anode finger width of 100 µm, LSC = 6 µm and LAC = 6 µm. 2D
electric field simulation of the anode region at a reverse voltage of
−100 V for SBD with (c) 24 nm SiNx and (d) 10 nm SiNx.
(e) Electric field distribution in the AlGaN barrier (0.5 nm below the
anode contact) at a reverse voltage of −100 V for the SBD with two
different SiNx thickness.

Figure 3. Typical (a) forward and (b) reverse leakage and
breakdown characteristics of the TB-GET SBD (10 nm only) with a
variation of anode-to-cathode spacing LAC. The device dimensions
are LSC/W = 6/100 µm.

is 0.98 kV, 1.2 kV, 1.55 kV, 1.78 kV and 1.9 kV with an LAC
of 6 µm, 8 µm, 10 µm, 15 µm and 20 µm, respectively.

The temperature dependence of the forward and reverse
characteristics is shown in figure 4. A negative temperature
coefficient is observed in the forward current characteristics,
and the ‘thermal stable point’ of the forward current is at a
very low current level due to the current conduction being
dominated by the tunneling mechanism [19], leading to fewer
‘thermal runaway’ problems [20]. At the same time, a temper-
ature increase from 25 ◦C to 150 ◦C results in an increase in
leakage by less than one order of magnitude.

An important feature of the recess-free TB-GET is that
the turn-on voltage (VT) is mainly determined by the as-
grown AlGaN thickness, leading to high uniformity of the
forward characteristics. The VT statistics from 30 SBDs with

Figure 4. (a) Forward characteristics and (b) reverse leakage current
for the recess-free TB-GET SBD (only with 10 nm SiNx) at different
temperatures. The device dimensions are LAC/LSC/W = 6/6/100 µm.

Figure 5. (a) Distribution of forward I–V characteristics of 30
devices. (b) Distribution of reverse leakage curves of 30 devices
with Lsc = 6 µm, LAC = 6 µm. The proposed TB-GET shows good
uniformity over 4 inch wafer.

Figure 6. Benchmark of differential RON,SP vs. BV of GaN diode on
SiC/sapphire/Si substrates. The recess-free TB-GET SBD shows a
low differential on-state resistance Ron,sp of 1.49 mΩ cm2 and a BV
of 1780 V@1 µA mm−1 with LAC = 15 µm.

an identical device layout at room temperature are shown
in figure 5(a), exhibiting a tight distribution over the 4 inch
wafer. Moreover, the reverse leakage is uniformly distributed
between 20 and 40 nA mm−1 at −200 V as well, shown in
figure 5(b), due to the elimination of the AlGaN barrier recess,
leading to damage-free bombardment in the Schottky andGET
regions.
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The differential RON,SP is calculated as the product of the
normalized differential RON (Ω mm) and the total length of
current flow, which is the sum of LAC plus twice 1.5 µm, sup-
posing the anode and cathode both have a 1.5 µm transfer
length. Figure 6 shows the differential RON,SP vs. breakdown
voltage (BV) of the state-of-the-art GaN diode on different
substrates. The recess-free TB-GET with an LAC of 15 µm
delivers a BV of 1780 V@1 µA mm−1 with a corresponding
RON,SP of 1.49 mΩ cm2. This value is among the best results
reported for a GaN-on-Si diode at a reverse leakage as low as
1 µA mm−1.

3. Conclusion

High-performance recess-free TB-GET SBDs are fabricated
on thin-barrier AlGaN/GaN heterostructures. Combined with
effectively preserved 2DEG by LPCVD Si3N4 passivation
and formation of GET termination to lower the reverse leak-
age without Schottky barrier recess, the SBD achieves a low
turn-on voltage of 0.57 V with high uniformity, a low dif-
ferential specific on-resistance RON,SP of 1.49 mΩ cm2, and
a high reverse breakdown voltage of 1.78 kV@1 µA mm−1.
The proposed diode fabrication is compatible with the GaN
depletion/enhancement MIS-HEMT process flow, and shows
promise for integration in the smart GaN platform.
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