
Delft University of Technology
Software Engineering Research Group

Technical Report Series

WebWorkFlow: An Object-Oriented
Workflow Modeling Language for Web

Applications

Z. Hemel, R. Verhaaf, E. Visser

Report TUD-SERG-2008-029

SERG

TUD-SERG-2008-029

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

This paper is a pre-print of:

Z. Hemel, R. Verhaaf, and E. Visser. WebWorkFlow: An Object-Oriented Workflow Modeling Language
for Web Applications In K. Czarnecki (editor) International Conference on Model Driven Engineering
Languages and Systems (MODELS’08), Lecture Notes in Computer Science, Springer, October 2008.

@InProceedings{HVV08,
author = {Z. Hemel and R. Verhaaf and E. Visser},
title = {WebWorkFlow: An Object-Oriented Workflow Modeling

Language for Web Applications},
editor = {K. Czarnecki},
booktitle = {International Conference on Model Driven Engineering

Languages and Systems (MODELS’08)},
year = {2008},
series = {Lecture Notes in Computer Science},
month = {Oectober},
publisher = {Springer}

}

c© copyright 2008, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.

WebWorkFlow: An Object-Oriented Workflow
Modeling Language for Web Applications

Zef Hemel, Ruben Verhaaf, Eelco Visser

Software Engineering Research Group, Delft University of Technology,
The Netherlands, Z.Hemel@tudelft.nl, rverhaaf@gmail.com, visser@acm.org

Abstract. Workflow languages are designed for the high-level descrip-
tion of processes and are typically not suitable for the generation of com-
plete applications. In this paper, we present WebWorkFlow, an object-
oriented workflow modeling language for the high-level description of
workflows in web applications. Workflow descriptions define procedures
operating on domain objects. Procedures are composed using sequen-
tial and concurrent process combinators. WebWorkFlow is an embed-
ded language, extending WebDSL, a domain-specific language for web
application development, with workflow abstractions. The extension is
implemented by means of model-to-model transformations. Rather than
providing an exclusive workflow language, WebWorkFlow supports inter-
action with the underlying WebDSL language. WebWorkFlow supports
most of the basic workflow control patterns.

1 Introduction

Workflow is concernced with the coordination of activities performed by partic-
ipants involving artifacts [9, 19]. Workflow and business process modeling lan-
guages such as UML activity diagrams [5], BPEL [4], and YAWL [17], are de-
signed for the high-level description of a wide variety of workflows or business
processes ranging from the documentation of the operating procedures for a fac-
tory, the administrative processes involving (paper) documents of a business, or
the procedures carried out by medical staff with patients in a hospital. Thus,
participants in a workflow may be people, machines, or machines operated by
people, and artifacts may be electronic data or physical artifacts. A worklow
description may be just the documentation of a procedure to be carried out by
humans, or it may be the specification of an interactive automated process. If
automated, a workflow may be coordinated by a central machine (e.g. a web
server), or it may consist of a network of collaborating (web) services. To cover
this wide range of applications, workflow languages are restricted to modeling
processes and not complete applications. That is, using a workflow engine for
the execution of a process definition requires external applications or code to
implement individual activities.

Web applications are concerned with presenting information to, and obtain-
ing information from users interactively through a web browser. There are many
types of web applications that contain workflow elements, i.e. the coordination

SERG WebWorkFlow

TUD-SERG-2008-029 1

of activities performed by participants. Consider for instance the following three
examples. (1) An issue tracker coordinating the activities of the members of a
project through registration, assignment and monitoring progress on issues. (2) A
conference management system coordinating the activities of authors, program
chairs, program committee members, external reviewers, meeting planners, and
attendees to produce, review, select, and present a collection of scientific publi-
cations. (3) A user registration component, creating an account for a new user
by subsequently registering, checking of credentials and confirming by email,
involving a user and administrator. Thus, workflow concepts can be used as or-
ganizing principle for the engineering of many web applications, supporting the
high-level implementation of the administration and monitoring of a process.

DM = data model, UI = user interface,

AC = access control, PE = procedure

events, WF = workflow

Fig. 1. WebWorkFlow is imple-
mented as extension of WebDSL,
which is itself implemented by
means of model-to-model trans-
formations to a core subset,
which is transformed to code for
the Java/Seam web platform.

Rather than deriving an incomplete skele-
ton or boilerplate application from a pro-
cess definition, a customized application with
workflow requires integration of a workflow
description language with a web engineering
language.

In this paper, we present WebWork-
Flow, an object-oriented workflow model-
ing language for the high-level description
of workflows in web applications. WebWork-
Flow is an embedded language [3] extending
WebDSL [18], a domain-specific language for
web application development, with workflow
abstractions (Figure 1). From the definition
of procedures operating on objects, and a
control flow description to connect these pro-
cedures, complete custom web applications
can be generated.

The WebWorkFlow generator is designed
and built using a number of best practices
for domain-specific language engineering [18].
Rather than providing an exclusive work-
flow language, WebWorkFlow supports in-
teraction with the underlying WebDSL lan-
guage. This approach enables the use of work-
flow abstractions where possible, and the use
of the regular web modeling facilities where
needed. This practice is called language inte-
gration and separation of concerns [7].

The target language (WebDSL) is a sub-
set of the source language. The high-level lan-
guage is more expressive (more concise mod-
els), but may not have the same coverage. For
example, process expressions support only

WebWorkFlow SERG

2 TUD-SERG-2008-029

structured control-flow, while the underlying procedure event model supports
unstructured control-flow. Thus, this approach makes it possible to use high-
level abstractions where possible, but allows escaping to the next lower level
where needed, thus increasing coverage of the language. This approach is called
compilation by normalization [10] and is sketched in Figure 1. At the top level
is WebWorkFlow, a rich DSL with sub-languages for data, user interface, access
control and workflow modeling. WebWorkFlow is translated to lower-level proce-
dural WebWorkFlow where workflow process descriptions have been translated
to procedure events. Procedures are translated to a combination of data models,
user interface elements and access control rules. This chain of transformations
continues until all that is left is core WebDSL, a relatively low level model that
can be easily mapped to the target platform, in this case Java/SEAM.

The rest of this paper is structured as follows. In the next section we intro-
duce WebWorkFlow procedures by means of an example. In Section 3 we describe
our implementation approach, explaining the procedure event model underlying
the implementation of high-level process descriptions, the transformation of pro-
cess expressions to procedure events, and the transformation of procedures to
WebDSL, building on its high-level data model, user interface, and access control
abstractions. In Section 4 we evaluate the coverage of WebWorkflow by examing
the encoding of the control-flow patterns of Van der Aalst et al. [16]. In Section 5
we discuss the relation of WebWorkFlow to other process modeling approaches.

2 WebWorkFlow by Example

Workflows in WebWorkFlow are defined by means of workflow procedures that
operate on workflow objects. In this section we introduce the high-level language
constructs for defining objects and procedures, using as running example a sim-
ple workflow for organizing ‘progress meetings’ between managers and their em-
ployees. More precisely, rather than organizing the meeting itself, the workflow
organizes the organization surrounding the meeting. Prior to the meeting, the
manager and employee provide their own view on the progress of the employee.
After the meeting the manager writes a report about the meeting. The employee
may approve the report or may provide comments on the report, which may cause
the manager to revise the report. When the report is approved, the manager final-
izes it. The complete WebWorkFlow implementation of this ProgressMeeting
workflow is defined in Figures 2 and 3.

Workflow Objects WebWorkFlow is an object-oriented workflow language.
Central to the definition of a workflow is a workflow object that accumulates the
data produced in the process and documents its progress. Typically, a workflow
object is a domain object in the domain model of the application. For example,
in a conference management system natural workflow objects are Paper and
Review. If the only purpose of a workflow is to schedule a number of steps
without a natural domain object, a special entity can be created to represent
the instances of the workflow.

SERG WebWorkFlow

TUD-SERG-2008-029 3

entity User {
username :: String
password :: Secret
name :: String
manager -> User
employees -> Set<User>

}
entity ProgressMeeting {

employee -> User
employeeView :: Text
managerView :: Text
report :: Text
approved :: Bool
comment :: Text

}

Fig. 2. WebDSL data
model for progress
meeting workflow.

Workflow objects are instances of entities described
using WebDSL data models [18]. Figure 2 describes
the data model for the progress meeting workflow. A
data model consists of entity declarations such as User
and ProgressMeeting. An entity declaration has prop-
erties, which associate data with entity instances. A
property has a name and a type, which may be either a
value type indicated by :: (e.g. String, Text, Secret)
or a reference type, indicated by ->, referring to other
entities or collections of entities (e.g. Set<User>).

Workflow Procedures A workflow in WebWorkFlow
is formalized by means of a procedure, which describes
activities to be performed by one or more participants
in a particular order. A procedure may consist of a single step, or may be a
composition of procedures. A procedure may be automatic or may require a user
to provide input, which may require a simple button click or filling in a complete
form. Figure 3 defines the procedures for the progress meeting workflow. The
meeting procedure defines the overall process of the workflow by composing the
other procedures, which each define a single step. The screenshots on the right of
Figure 3 are snapshots from a workflow conducted by ‘Joe Manager’ and ‘Jane
User’. The name in the menubar indicates the logged in user.

procedure f(x : A) {
who { who }
when { when }
view { elem* }
do { stat* }
process { pexp }

}

Fig. 4. Procedures.

Figure 4 defines the syntax of high-level procedure def-
initions. Thus, a procedure definition has a name (f), ex-
actly one typed parameter (x:A) indicating the workflow
object to which the procedure applies, and a number of
optional clauses, who, when, view, do, and process, which
are discussed below. In the next section, the list of pro-
cedure clauses is extended to cater for the definition of
procedure events.

Actor The who clause determines which participants can apply the procedure
by means of an access control predicate, based on the declarative access control
model of WebDSL [7]. The expression is a constraint on the current session
and the workflow object, and any objects reachable from those via properties.
The session includes a pointer to the principal, i.e. the logged in user associated
with the session. For example, the writeReport procedure requires that the
principal corresponds to p.employee.manager, that is, the manager of the
employee for which the meeting is organized.

Activation The when clause provides additional constraints on the applicability
of a procedure. This is used for enforcing the ordering of procedures, as we will see
in the next sections. However, in the high-level language, ordering of procedures
is achieved by means of process expressions. Thus, further utility of the when
clause is to test for preconditions on the workflow object. For example, the

WebWorkFlow SERG

4 TUD-SERG-2008-029

procedure meeting(p : ProgressMeeting) {
process {

(writeEmployeeView(p)
|AND| writeManagerView(p));

repeat {
writeReport(p);
(approveReport(p) |XOR| commentReport(p))

} until finalizeReport(p)
}

}
procedure writeEmployeeView(p : ProgressMeeting) {

who { principal = p.employee }
view {

derive procedurePage from p
for (view(employee), employeeView)

}
}
procedure writeManagerView(p : ProgressMeeting) {

who { principal = p.employee.manager }
view {

derive procedurePage from p
for (view(employee), managerView)

}
}
procedure writeReport(p : ProgressMeeting) {

who { principal = p.employee.manager }
view {

derive procedurePage from p
for (view(employee), view(employeeView),

view(managerView), report)
}

}
procedure approveReport(p : ProgressMeeting) {

who { principal = p.employee }
do { p.approved := true; }

}
procedure commentReport(p : ProgressMeeting) {

who { principal = p.employee }
view {

derive procedurePage from p
for (view(employee), view(report),

commments)
}
do { email(commentNotification(p));
}

}
procedure finalizeReport(p : ProgressMeeting) {

who { principal = p.employee.manager }
when { p.report != "" && p.approved }

}

(a) writeManagerView(p)

(b) approveReport(p) |XOR|
commentReport(p)

(c) commentReport(p)

(d) repeat{ writeReport(p) ... }
until finalizeReport(p)

Fig. 3. Progress meeting workflow procedure with screenshots.

finalizeReport procedure tests that the report has actually been written by
requiring that it is not the empty string, and that the report has been approved.
Another application of the when clause is to test timing constraints, e.g. the
deadline for a submitPaper procedure. A procedure is only applicable when
the actor and activation constraints are satisfied. Thus, the page for applying a
procedure and the links to that page are not accessible if these constraints are
not satisfied.

SERG WebWorkFlow

TUD-SERG-2008-029 5

User interface The view clause defines the user interface for applying a proce-
dure. This may be an arbitrary WebDSL page definition, allowing a completely
customizable user interface [18]. The page definition can display any relevant in-
formation accessible through the workflow object and session, and will typically
display a form for user input required by the procedure. It is often convenient
and appropriate to derive a page definition from the data model. The WebDSL
derive construct

derive style from e for (p1 ,...,pn)

provides a flexible mechanism for deriving a page from an entity declaration [8].
The style argument declares the style of the page, the expression e indicates the
object and thus the type for which to generate the page, and the pi properties
indicate which properties of the object should be displayed (view) and which
should be edited. The commentReport procedure in Fig. 3 demonstrates how a
procedurePage can be generated for two view properties (employee and report)
and one edit property (comments).

Action The do clause describes the action taken when the procedure is applied.
Actions can be described using a simple imperative language. For a standard
procedurePage the default action is to save the changes for the edit fields in
the form, and no further action is needed. Additional actions may be taken to
implement business logic, to send a notification email as in the commentReport
procedure, or to create sub-workflows as described below.

extend entity ProgressMeeting {
meetings -> Set<ProgressMeeting>

}
procedure meeting(p : ProgressMeeting) {

process {
employeeMeetings(p);
(employeeView(p) |AND| managerView(p));
... as before ...

}
}
procedure employeeMeetings(p : ProgressMeeting) {

who { principal = p.employee }
do {

for(u : User in p.employee.employeesList) {
p.meetings
.add(ProgressMeeting{employee := u})

}
}
process {

AND(q : ProgressMeeting in p.meetingsList) {
meeting(q)

}
}

}

Fig. 5. Recursive workflow procedure.

Process The process clause con-
tains a process expression defin-
ing the composition of proce-
dures to apply after invoking
the containing procedure. For ex-
ample, the meeting procedure
in Figure 3 defines the com-
position of the individual steps
in the ProgressMeeting work-
flow. Process expressions are com-
posed from procedure invocations
with several combinators. The se-
quential composition e1 ; e2 of
two expressions first applies e1
and then e2. The parallel com-
position e1 |AND| e2 applies e1
and e2 in parallel waiting for
both to terminate. The iteration
repeat{e} until f(o) applies e
until procedure f is applied. The parallel composition e1 |XOR| e2 enables the
application of e1 and e2, but cancels one if the other has terminated.

WebWorkFlow SERG

6 TUD-SERG-2008-029

Recursive Procedures The meeting example defines a workflow on a single
workflow object ProgressMeeting. However, there can be multiple instances of
this workflow in different stages of execution in parallel. For each user there
can be a ProgressMeeting instance, or even several, say if an employee has
more than one manager, or one for each year of employment. Thus, a work-
flow instance corresponds to an instance of the corresponding workflow object.
Procedures can instantiate new sub-workflows by invoking procedures on linked
objects (through properties). Such sub-workflows can also be recursive in the
sense that a procedure may call itself on another workflow object. The example
in Figure 5 illustrates recursion by extending the progress meeting example. In
this workflow users do not only have managers, they can also be managers. Be-
fore evaluating the progress of a manager, all his or her own employees should
be evaluated first. Thus, the meeting workflow procedure is adapted to invoke
employeeMeetings(p). In the do clause, a ProgressMeeting object is created
and added to the set of meetings for each employee of the user. Then, in the
process clause, the meeting workflow is initiated for each employee meeting in
parallel so that all employees can start working on their employeeView simul-
taneously. The employeeMeetings procedure needs to be finished (all reports
approved and finalized) before the managers meeting can proceed.

3 Transforming Procedures

In this section we explain how we implement the compilation by normalization
approach to realize WebWorkFlow. We describe how WebWorkFlow procedures
are implemented by means of model-to-model transformations to the underlying
WebDSL language. The conceptual design of WebWorkFlow may suggest that
it is an object-oriented language that can be directly translated to a regular
object-oriented language such as Java. However, due to the statelessness of the
HTTP protocol, state has to be kept in between requests. Traditionally, sessions
have been used for this purpose, however sessions typically only last a few hours
whereas a workflow can last years. Furthermore sessions are bound to one par-
ticular user, whereas many users can participate in a workflow. So rather than
using sessions, the workflow state is persisted in the database through extension
of the application’s data model. Furthermore, page definitions are used to im-
plement the user interface for applying a procedure, and access control rules to
regulate the applicability of a procedure. The transformations rely on the data,
user interface and access control modeling languages of WebDSL.

Procedures to Pages The basic idea for the implementation of a procedure is
illustrated in Figure 6 with the transformation of procedure f (a :A){...}. To
record the state of a procedure, the workflow entity A is extended with a prop-
erty with the name of the procedure referring to a ProcedureStatus object.
The basic implementation of ProcedureStatus provides an enabled property,
which indicates whether the procedure may be applied, and an enable() func-
tion, which can be used to set this property to true. The user interface for the

SERG WebWorkFlow

TUD-SERG-2008-029 7

procedure is realized by means of a page definition with the name of the proce-
dure and the workflow object as argument. The view from the procedure is used
as specification of the presentation and the do action is performed on submit and
disables the procedure by resetting the enabled flag. Finally, an access control
rule uses the who and when expressions to regulate access to the procedure. The
enabled property of the status object is used as an additional requirement for
applicability of the procedure.

procedure f (a : A) {
who { who }
when { when }
view { elem* }
do { stat* }

}

⇓
extend entity A {

f -> ProcedureStatus
}
entity ProcedureStatus {

enabled :: Bool
function enable() {

enabled := true;
}

}
define page f (a : A) {

elem*
action do() {

a.f.enabled := false;
stat*

}
}
access control rules {

rule page f (a : A) {
who && when && a.f.enabled

}
}

Fig. 6. Transformation of
procedure into access control
rule, page definition, and
entity declaration.

procedure f (a : A) {
enabled { stat* }
who { who }
when { when }
view { elem* }
do { stat* }
done { stat* }
process { pexp }
processed { stat* }
disabled { stat* }

}

Fig. 7. Procedure events

Task Lists and Navigation In addition to the
basic page for applying a procedure, further ele-
ments for the user interface of an application can
be derived from procedure definitions. In partic-
ular, a definition of a task list with links to pages
for applicable procedures for a particular work-
flow object, or a list with all available procedures
for a particular user. The access control mecha-
nism of WebDSL ensures that links in such work
lists are only displayed if the pages they point
to are accessible. Thus, the user interface is dy-
namically adapted to the state of the applica-
tion. This is illustrated in Figure 3, where links
to applicable procedures can be seen in the side-
bar.

Procedure Event Model A procedure has a
life cycle that starts with the creation of the
workflow object it is associated with and ends
with its destruction. WebWorkFlow provides an
event model for observing the changes in the life
cycle of a procedure. Observation of events is re-
alized using the following event handling clauses
in a procedure definition (Figure 7):

– enabled is triggered after a call of enable()
– disabled is triggered after a call of

disable()
– done is triggered after the execution of the

do clause
– processed is triggered after the procedure’s

process has terminated; in case a procedure
has no process clause the processed event
follows directly after the done event.

To support modular subscription to the events of a procedure, the extend
procedure mechanism can be used to add additional statements to an event
handler. For example, the definition

WebWorkFlow SERG

8 TUD-SERG-2008-029

extend procedure f (a : A) { processed { stat* } }

extends the processed event handler with the stat* statements.

Encoding Procedure Dependencies The procedure event model provides a
general mechanism for encoding a wide variety of policies for ordering procedures.
For example, the definition

extend procedure writeReport(p : ProgressMeeting){

processed { p.approveReport.enable(); p.commentReport.enable(); } }

enables the procedures approveReport and commentReport after the writeReport
procedure has terminated, which corresponds to a parallel split.

entity ProcedureStatus {
caller -> ProcedureStatus
returnstate :: Int
function enable(c : ProcedureStatus,

r : Int) {
this.enabled := true;
this.caller := c;
this.returnstate := r;
this.enabled(); }

function disable() {
this.enabled := false;
this.disabled(); }

}

Fig. 8. Re-definition of Procedure-
Status for recording return address
of procedure call.

procedure f(a:A){ process{ g(a); h(a) } }

⇓
entity FStatus : ProcedureStatus {

a -> A
function next(state : Int) {

if(state = 0) { a.g.enable(this, 1); }
if(state = 1) { a.h.enable(this, 2); }
if(state = 2) { this.processed(); }

}
}
extend procedure f(a : A) {

enabled { this.next(0); }
processed {

this.caller.next(this.returnstate);
}

}

Fig. 9. Sequential composition with
state machine.

Process Expressions While the pro-
cedure event handlers provide a flexible
mechanism for composing procedures, it
is also a rather tedious mechanism. A
large number of procedure composition
patterns can be captured using concise
process expressions from which the cor-
rect event handling code can be gener-
ated automatically. For example, the se-
quential composition of two procedures
can be encoded as in the writeReport
definition above. That is, the sequential
composition f(x); g(x) is encoded by
calling x.g.enable() in the processed
clause of f. This direct enabling of the
successor of a procedure works fine pro-
vided that procedures are only called
from one call site. Since workflow proce-
dures are intended for human consump-
tion, it is generally not a good idea to
require the same activity in many differ-
ent contexts. However, this constraint is
typically violated in the case of recur-
sion, which requires an initial call and
the actual recursive call.

Dealing with multiple call sites re-
quires a more dynamic approach to se-
quencing of calls. In order to return con-
trol to the proper callee, it is necessary
to record the ‘return address’. The re-
turn address of a workflow procedure
call can be represented by the identity

SERG WebWorkFlow

TUD-SERG-2008-029 9

of the caller, i.e. its ProcedureStatus object, and its state. Figure 8 redefines
ProcedureStatus with an enable function taking the caller identity and its
state as arguments.

To determine the next step to take after a procedure returns, a process ex-
pression is transformed to a finite state machine encoded by the next function of
the F Status entity, which specializes ProcedureStatus for a procedure f . To
compute the state machine, all positions in the process expressions are assigned
a unique number. For each combinator there are special rules for computing the
transitions. We illustrate the computation with two examples, sequential com-
position (Figure 9) and parallel split (Figure 10). Procedure f in Figure 9 applies
the sequential composition of g and h. It is transformed to the next function in
the FStatus entity declaration and an extension of the procedure event handlers.
When f is enabled, the transition from the start state (0) is taken, which will
lead to g being enabled with state 1. When the next transition is taken from
g, h is enabled with state 2. On return from h the process is completed and the
processed event handler is called, which itself returns to the caller of f.

procedure f(a : A) {
process {
p(a); [1]
((g1(a); e1*; h1(a) [3])
|AND| (g2(a); e2*; h2(a) [5]));

q(a) } }

⇓
extend entity A { count :: Int }
extend entity FStatus {

extend function next(state : Int) {
if(state = 1) {

a.g1.enable(this, 0);
a.g2.enable(this, 0);

}
if(state = 3 || state = 5) {

if(a.count = 1) {
a.count := 0;
a.q.enable(this, 0);

} else {
a.count := a.count + 1;

} } } }

Fig. 10. Implementation of the
split and join transitions of the
|AND| parallel combinator.

Figure 10 defines the implementation of
the e1 |AND| e2 combinator, which applies
procesess e1 and e2 in parallel and waits
for both to complete before proceeding. The
transformation assumes a normalized process
expression in which the expression is pre-
ceded and succeeded by a simple procedure
call. This assumption is also made for the
branches of the split. Expressions that do
not match this pattern (e.g. (e1 |AND| e2);
(e3 |AND| e4) can be transformed to this
form by insertion of automatic identity proce-
dures. Note that the [i] expressions are state
labels. When the split is reached (state 1), the
heads of the two branches are enabled. When
the first of the branches returns, the counter
count is incremented. When the next branch
returns the counter is 1 and the continuation
q is enabled.

4 Encoding Patterns

A lot of research has been conducted on the assessment of workflow languages.
Van der Aalst et al. [16] describe an extensive set of workflow patterns from the
process perspective ranging from simple patterns such as sequential execution to
complicated patterns such as loops and cancellation patterns. Recently, a revised
version of these patterns was published [13]. Patterns have also been devised for
the resource perspective [15] and the data perspective [14]. In this paper, we focus
on the use of control patterns for evaluating workflow languages from the control

WebWorkFlow SERG

10 TUD-SERG-2008-029

perspective. Fig. 11 shows the coverage of these patterns for WebWorkFlow. In
this table + means this pattern directly supported by WebWorkFlow, +/- means
it is possible to implement through a workaround, and - means the pattern is
not supported by WebWorkFlow. A number of patterns that are particularly
noteworthy for WebWorkFlow are patterns 10, 12-15 and 22.

Although arbitrary cycles (10) are not often needed, they can be implemented
using the lower-level procedure events processed or done, in which an arbitrary
procedure can be enabled. This is an example of why it useful to have a high-
level process description language, while at the same time still having access to
a lower level of abstraction where not directly supported process features can be
implemented.

Pattern Support
1. Sequence +
2. Parallel split +
3. Synchronization +
4. Exclusive Choice +
5. Simple merge +
6. Multi choice +
7. Synchronizing merge +
8. Multi-merge +/-
9. Discriminator +
10. Arbitrary cycles +/-
11. Implicit termination -
12-15. Multiple instance patterns +
16. Deferred choice +
17. Interleaved parallel routing +/-
18. Milestone +/-
19. Cancel activity +
20. Cancel case +/-
21. Structured Loop +
22. Recursion +
23. Transient Trigger +
24. Persistent Trigger +

Fig. 11. Control flow pattern
coverage of WebWorkFlow

Multiple instances (12-15) of procedures
in WebWorkFlow are supported through
multiple instances of the objects they oper-
ate on. One instance of a process can run on
each object that the process is defined on.
By creating new object instances, any num-
ber of instances of a process can be created.
Multiple instances without synchronization
(pattern 12) can be implemented by simply
calling enable() on them, which instantiates
them in a non-blocking manner. Synchroniz-
ing on a number of instances (pattern 13 and
14) can be realized by instantiating them us-
ing the AND(a : A in o.aList){proc} con-
struct. Pattern 15 (Multiple instances with-
out a priori runtime knowledge) can be im-
plemented as follows:

multiproc(o).enable(); stopmultiproc(o)

In the done clause of multiproc, the proce-
dure instantly re-enables itself using enable(), creates a new object, and starts
a process with enable(). Finally, stopmultiproc disables multiproc through
a call to multiproc.disable(). To synchronize all processes created, a when
clause can be added to the stopmultiproc procedure, to require for all instances
that their processes are finished.

For recursion (22) we can distinguish three cases. First, tail recursion can
be implemented using repeat and while. Second, recursion on properties of the
object is supported by simply calling a procedure recursively on the property
(e.g. Figure 5). Recursive self calls on an object a from a process defined on
a are not supported. We have not yet found a use-case for non tail-recursive
self recursion, so it does not seem much of an issue. (But examples are most
welcome!)

Data patterns Rusell et al. in [14] discuss a number of workflow data patterns.
WebWorkFlow defines its processes directly on top of data entities. This gives
the procedures in the process direct access to the data entity and all the data

SERG WebWorkFlow

TUD-SERG-2008-029 11

that is linked from it. Through this mechanism many of the data patterns are
naturally supported. WebWorkFlow is mostly lacking in data hiding, for which it
provides no explicit support. Lack of space prevents us from providing a thorough
evaluation of the data patterns that are supported by WebWorkFlow.

5 Discussion

During the design of WebWorkFlow a number of design decisions were made
that distinguish it from other workflow systems. We compare our approach to
other workflow approaches and discuss opportunities for future work.

Evaluation Most workflow systems (YAWL, JBPM, BPEL) dynamically load
a workflow description and interpret it. The advantage of this approach is the
ability to adapt the workflow while the system is running. The workflow de-
scription can then simply be reloaded. This ability is often limited, however,
to process descriptions, which means that no new tasks or procedures can be
defined at runtime. In WebWorkFlow on the other hand, workflows are compiled
to WebDSL (which in in its turn compiles to Java/JSF). As a consequence,
run-time adaptations of the workflow process are not supported. However, the
compiled application is much more light-weight than an interpreted worfklow
management system.

The main concern of most workflow management systems is controlling the
process. User interfaces and the rest of the application are handled in separate
systems and are thus outside the scope of the workflow system. WebWorkFlow
is an embedded DSL in WebDSL and therefore integrates well with the rest
of WebDSL. This integration enables the developer to more easily develop and
generate complete user interfaces, automated tasks and control flow. At the same
time, it gives a maximum of flexibility as one can always resort to a lower level
of abstraction in case the ultimate abstraction layer does not support a certain
construction.

Following the tendency to design languages that are understandable by both
business analysts and technical developers, and the shift from workflow to busi-
ness process modeling, most workflow approaches use a graphical language for
specifying processes. WebWorkFlow is specifically aimed at web developers and
uses a textual language. The first reason to use a textual language is because it
is an embedded DSL within WebDSL, which is a textual language. The second
reason is that it turns out to be a very efficient and expressive way of expressing
workflows.

Related Work The approach that is taken by Brambilla et al. in [1], is that of
adding workflow support to any domain model by performing a model trans-
formation, by which the original model is extended with the necessary do-
main model elements to support workflow. WebWorkFlow applies these ideas
to WebDSL. WebWorkFlow is more expressive than the approach discussed by

WebWorkFlow SERG

12 TUD-SERG-2008-029

Brambilla, because it does not cover nested sub-processes, which precludes recur-
sion. Brambilla et al. themselves applied the ideas from [1] to WebML [2], where
they describe how processes described in BPMN can be used to enact workflow
processes in WebML applications. The authors envision that their explicit design
styles in the future could be automated to generate skeleton applications based
on process descriptions. WebWorkFlow realizes this vision; it does not only gen-
erate a skeleton application, but a complete application that can be customized
at the model level to better suit application-specific needs.

YAWL is a graphical worklow language and system designed by Van der
Aalst and Ter Hofstede, authors of the work on workflow patterns [13, 15, 14].
YAWL is designed to support almost every workflow pattern. Its formalization
is based on high-level Petri nets [17]. Although YAWL is a graphical language,
a lot of configuration needs to be done by setting parameters in property boxes.
The process diagram does not always shows a complete picture because so much
information is hidden inside properties. While YAWL is very expressive, it does
not have the layered implementation that WebWorkFlow has, which allows to
use lower level constructs to implement workflows not directly supported by the
workflow language.

Panta Rhei [6] is a web-based workflow system that interprets workflows
specified in a textual language. Workflow data in Panta Rhei is persisted in a
database, which, like in WebWorkFlow, makes it possible to alter the execution of
workflows at run-time by changing this data. A web browser is used as interface
to the user. Communication with other systems is possible using an internal form
representation, which remote systems must be able to interpret. Panta Rhei also
has support for timing and transactional features, both of which are future work
for WebWorkFlow.

WebWork is a web-only implementation of the workflow management system
Meteor-2 [11]. It uses a graphical designer to specify a workflow, from which
HTML and CGI scripts are generated. Automated tasks are performed using a
socket connection with a web server and invoking CGI programs. WebWork is
not as expressive as BPEL or BPMN, as only somewhat more than half of the
first 20 workflow pattern are supported [16]. Also, the use of CGI adds flexibility,
but a custom task is not easily constructed, as opposed to WebWorkFlow, where
all code can be specified in one language.

BPMN (Business Process Modeling Notation) is a business process modeling
notation language designed by the Business Process Modeling Initiative [20] and
now maintained by the Object Management Group [12]. Its goal is to provide
a notation for describing business processes understandable for both business
analysts and technical developers. WebWorkFlow on the other hand is much
more technical and mainly aimed at developers. In contrast to WebWorkFlow,
BPMN is not directly executable. It is possible however, to derive executable
workflow specifications from workflows specified using a subset of BPMN.

Future Work An interesting area of research for WebWorkFlow is making
procedures accessible through a web service interface (as opposed to the current

SERG WebWorkFlow

TUD-SERG-2008-029 13

HTML interface) and accessing procedures of remote servers. WebWorkFlow
could then be used for web service orchestration, similar to BPEL. Because of
the user-initiated nature of WebDSL (and WebWorkFlow by extension), using
timed events is not yet possible. Conceivable applications of timing features are
scheduling tasks and using deadlines to automatically influence the execution of
procedures.

As WebWorkFlow is used to generate a fully functional workflow system
instead of specifying a workflow that is interpreted by a WFMS, regenerating
and deploying the workflow system could potentially break ongoing workflows.
This is a data model evolution problem and is future work. The automatically
generated navigation based on procedure definitions is useful, but can still be
enhanced. Process descriptions can be more fully utilized to generate navigation.
Although it is possible to disable (parts of) procedures in the current version of
the language, it is not straightforward to roll back the state of an application
when errors occur. A transaction system similar to Panta Rhei might be helpful.

6 Conclusion

In this paper we introduced WebWorkFlow, an embedded DSL extending WebDSL
with object-oriented workflow abstractions. Based on the definition of work-
flow procedures a full fledged executable application can be generated, including
navigation and work lists. Following the ‘compilation by normalization’ [10] ap-
proach, WebWorkFlow achieves great flexibility and customizability by making
the lower abstraction levels of the procedure event model and WebDSL web
application modeling accessible next to the high-level workflow abstractions.
WebWorkFlow covers most of the workflow control patterns. The patterns that
are not directly expressible through the process expression language can often
be implemented on the procedure event level, demonstrating the advantages of
building a (workflow) language as an abstraction on a lower-level language.

Acknowledgments This research was supported by NWO/JACQUARD project
638.001.610, MoDSE: Model-Driven Software Evolution.

References

1. M. Brambilla, J. Cabot, and S. Comai. Automatic generation of workflow-extended
domain models. In G. Engels et al., editors, Model Driven Engineering Languages
and Systems (MoDELS 2007), volume 4735 of LNCS, pages 375–389. Springer,
2007.

2. M. Brambilla, S. Ceri, P. Fraternali, and I. Manolescu. Process modeling in web
applications. ACM Trans. Softw. Eng. Methodol., 15(4):360–409, 2006.

3. M. Bravenboer and E. Visser. Concrete syntax for objects. Domain-specific lan-
guage embedding and assimilation without restrictions. In D. C. Schmidt, editor,
Proceedings of the 19th ACM SIGPLAN Conference on Object-Oriented Program-
ing, Systems, Languages, and Applications (OOPSLA 2004), pages 365–383, Van-
couver, Canada, October 2004. ACM Press.

WebWorkFlow SERG

14 TUD-SERG-2008-029

4. F. Curbera, Y. Goland, J. Klein, F. Leymann, Thatte, and S. Weerawarana. Busi-
ness process execution language for web services, version 1.1. Technical report,
IBM, 2003.

5. M. Dumas and A. H. M. ter Hofstede. Uml activity diagrams as a workflow specifi-
cation language. In Proceedings of the 4th International Conference on The Unified
Modeling Language, Modeling Languages, Concepts, and Tools (UML 2001), pages
76–90, London, UK, 2001. Springer-Verlag.

6. J. Eder, H. Groiss, and W. Liebhart. The Workflow Management System Panta
Rhei. Advances in Workflow Management Systems and Interoperability. Springer,
Istanbul, Turkey, August, pages 129–144, 1997.

7. D. Groenewegen and E. Visser. Declarative access control for WebDSL: Combining
language integration and separation of concerns. In D. Schwabe and F. Curbera,
editors, International Conference on Web Engineering (ICWE 2008). IEEE CS
Press, July 2008.

8. Z. Hemel, L. C. L. Kats, and E. Visser. Code generation by model transformation.
A case study in transformation modularity. In J. Gray, A. Pierantonio, and A. Val-
lecillo, editors, International Conference on Model Transformation (ICMT 2008),
volume 5063 of Lecture Notes in Computer Science, pages 183–198. Springer, June
2008.

9. D. Hollingsworth. The Workflow Reference Model. Workflow Management Coali-
tion, Document Number TC00-1003 - Issue 1.1 edition, 1995.

10. L. C. L. Kats, M. Bravenboer, and E. Visser. Mixing source and bytecode. A case
for compilation by normalization. In G. Kiczales, editor, Proceedings of the 23rd
ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Languages,
and Applications (OOPSLA 2008), Nashville, Tenessee, USA, October 2008. ACM
Press.

11. J. A. Miller, D. Palaniswami, A. P. Sheth, K. J. Kochut, and H. Singh. Webwork:
Meteor2‘s web-based workflow management system. J. Intell. Inf. Syst., 10(2):185–
215, 1998.

12. J. Recker and M. Strategy. Process Modeling in the 21 stCentury. BPTrends, May,
pages 1–8, 2006.

13. N. Russell, Arthur, W. M. P. van der Aalst, and N. Mulyar. Workflow control-flow
patterns: A revised view. Technical report, BPMcenter.org, 2006.

14. N. Russell, A. ter Hofstede, D. Edmond, and W. van der Aalst. Workflow Data
Patterns. In Proc. of 24th Int. Conf. on Conceptual Modeling (ER05), pages 353–
368, 2005.

15. A. ter Hofstede, D. Edmond, and W. van der Aalst. Workflow resource patterns.
BETA Working Paper Series, pages 216–232, Jan 2004.

16. W. M. P. van der Aalst, A. H. M. T. Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

17. W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: yet another workflow
language. Information Systems, 30(4):245–275, 2005.

18. E. Visser. WebDSL: A case study in domain-specific language engineering. In
R. Lammel, J. Saraiva, and J. Visser, editors, Generative and Transformational
Techniques in Software Engineering (GTTSE 2007), Lecture Notes in Computer
Science. Springer, 2008.

19. WfMC. Terminology and glossary, 3rd edition. Document Number WFMC-TC-
1011, Workflow Management Coalition, 1999.

20. S. White. Introduction to BPMN. IBM Cooperation, 2004.

SERG WebWorkFlow

TUD-SERG-2008-029 15

WebWorkFlow SERG

16 TUD-SERG-2008-029

TUD-SERG-2008-029
ISSN 1872-5392 SERG

