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Summary

The Storm Surge Barrier in the New Waterway was built to protect the city and port of Rotterdam and the area of the
lower Rhine against flooding during extreme conditions. This construction, consisting of two gigantic arc shaped
barriers, is to be pivoted into the New Waterway and then lowered in case of an impeding emergency. The arc shape
makes it a very efficient design against forces from the seaside, but if the level on the riverside surpasses the level on
the seaside, a negative force will be exerted on the construction. Seiches contribute to this effect. The barrier only
has a relatively small capacity to withstand a negative head difference. To accurately predict the maximum expected
head difference a numerical model that handles seiches correctly is needed. In this thesis, the boundary conditions for
such a numerical mode] are investigated.

The program currently used to calculate the effects of seiches, RAS/FLOW predicts a head difference that exceeds
the design specifications of the construction. However, the calculations done with Rasflow are not accurate with
respect to the amplification of the seiches. The amplitude is overestimated significantly due to the use of an
inaccurate boundary condition at the sea boundary of the model.

The boundary condition at the channel entrance is very complex. Méndez Lorenzo (1997) studied a new boundary
condition: the epsilon boundary. This boundary is a combination of a water level and a Riemann invariant with a
factor epsilon. In the analytical case the results of this boundary condition match the analytical solution exactly. The
step from the analytical boundary condition to a numerical boundary condition involves a set of derivations and
simplifications that fixate the value for Epsilon. With a fixed value for epsilon, the amplification function obtained
will only match one of the peaks in the spectrum: the peak for which the value of epsilon is set. In this thesis the
addition of non-linear terms to the epsilon model can be found. The non-linear terms did not resolve the problem of
the fixed epsilon.

To reduce the complexity of the boundary condition a different approach to the problem is taken, namely a
combination of a one and two-dimensional approach. In this model a two-dimensional sea area is attached to the one-
dimensional channel. Thus moving the complex boundary condition at the channel entrance to a simpler boundary
condition on the open sea boundary. With this model it is possible to correctly model the amplification for more than
one peak. The results obtained with this model are satisfactory and are recommended for a future implementation.
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1. Introduction

1.1 Introduction

The Storm Surge Barrier in the New Waterway was built to protect the area of the lower Rhine against flooding,
from the sea, during extreme conditions. This structure, consisting of two gigantic arc shaped barriers, is to be
pivoted into the New Waterway and then lowered in case of an impeding emergency. The arc shape makes it a
very efficient design against forces from the seaside, but if the level on the riverside surpasses the level on the
seaside, a negative force will be exerted on the structure. Seiches can contribute to this effect. The barrier only
has a relatively small capacity to withstand a negative head difference. To accurately predict the maximum
expected head difference a numerical model that handles seiches correctly is needed. In this thesis, the boundary
conditions for such a numerical model will be investigated.

1.2 Problem definition

Seiches are resonating standing waves in a (semi-) closed basin. Closure of the Storm Surge Barrier creates a
basin in which, under certain circumstances, standing waves can resonate. Their contribution to a positive head
difference over the barrier is relatively small (0.5m, contract BD001, 1989), because during these extreme
conditions there is a flooding of the neighboring harbor areas at the seaside of the barrier. This has a damping
effect on the amplitude of the seiches. A negative head difference can occur during the opening of the barrier.
This is the result of the delayed opening operation and the lowering of the outside water level. In this case, the
amplitude of the seiche can be larger because there is no flooding of the harbor areas. At the closing operation,
there is also a chance of a negative head difference due to seiches if the water level on the seaside does not rise
fast enough.

F
[ E—
Seaside Riverside

Seiche p— Barrier
a0 &

Figure 1 Effect of a seiche on the barrier

The design the barrier allows for a negative head difference of 1.5 meters. Recent calculations (BMK, 1996),
show a maximum negative head difference of 1.7 meters. However, the model used to calculate this head
difference, RAS/FLOW, cannot accurately handle seiches. The boundary condition on the sea boundary, used in
RAS/FLOW is a highly reflective water level boundary condition. This leads to insufficient damping in the
system, causing the amplitude of the seiches in the model to be overestimated.

It is expected that the negative head difference caused by seiches can be reduced by an interactive response from
the barrier to the water levels. This requires modifications to the present decision support system. To investigate
this further a numerical model is required which can properly mode! the seiches phenomenon.

Two-dimensional models such as PHAROS and TRISULA are capable of accurately modeling seiches. The
largest drawback of the two-dimensional models is that their calculation time is relatively long compared to that
of a one-dimensional model. Probabilistic calculations have to be executed with this model, therefore a one-

dimensional approach is preferred.
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Due to finite computational resources, numerical models are always restricted to a limited space domain. This
leads to areas being enclosed by open boundaries. These open boundaries are by definition artificial; they are
only meaningful for the mathematical model. On open boundaries, boundary conditions are needed that are
defined in such way they approximate the calculated solution obtained in the case that the model would not be
limited. In the case of a one-dimensional numerical model of the Europort area, there is an open boundary at the
outlet of the New Waterway into the North Sea. The imposed boundary condition at this boundary replaces the
entire sea area, which makes it very complex.

One approach for this boundary condition has been studied by Méndez Lorenzo (1997). It is based on modeling
the radiation of energy in the seaward direction, However, due to restrictions in the numerical modeling this
boundary condition needs to be investigated further.

1.3 Scope and Aim

Scope

The scope of this study is limited to the amplification factor of waves with a wavelength in the order of the
length of the channel itself. The amplitude of the waves is assumed very small so that the behavior can be
considered as being linear. This implies that the loss of energy at the entrance of the channel due to the in and
outflow is negligible and will not be dealt with. In the channel itself, a one-dimensional network will be used.

Aim
Development of a practical solution for the seaward boundary condition for a numerical model which describes
the amplification effect of seiches in a channel as correct as possible.

1.4 Outline

Introductory part

After the introduction in chapter 1, chapter 2 gives a description of the seiche phenomenon and its damping
mechanisms. In chapter 3 the test problem is presented (see figure 1) together with the analytical solution of the
test problem as derived by Mei (1984). In the linear analytical solution, only the damping caused by radiation to
the sea is accounted for. The test problem will serve as a reference point to compare all relevant numerical

results.

Channel

| Shore

Figure 2 Schematic layout of the Test problem




One-dimensional approach

A one-dimensional numerical approach to the problem is described in chapter 4 (see figure 2). In this part, an
attempt is made to make a numerical seiches model consisting of only a one-dimensional network for the
channel. In this approach the open boundary is located at the entrance of the channel. The boundary condition
imposed on the open boundary virtually represents the entire sea area. A summary will be given of the approach
to this problem used by Méndez Lorenzo (1997). This approach will then be investigated in further detail by the
addition of non-linear terms to the model.

® node
< open boundary

el

Cha

nn
Sea = P

one-dimensional network

Figure 3 One-dimensional approach

One-dimensional / two-dimensional approach

In chapter 5, a description can be found of the combined one-dimensional and two-dimensional approach to the
problem (see figure 3). In this chapter an attempt is made to construct a numerical seiches model by connecting
a one-dimensional network, representing the channel, to a two-dimensional sea area. The open boundary of the
numerical model is thus moved from the entrance of the channel, used in the previous approach, to a region

further at sea. This simplifies the required boundary condition.

® node

... < open boundary

Sea, 1, Shane!

one-dimensional network

| ¥ two-dimensional network

Figure 4 One-dimensional / two-dimensional approach

Results
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Chapter 6 compares the results obtained with both approaches to the results of the two-dimensional programs
Pharos and Trisula. The conclusion and recommendations for a further study are presented in Chapter 7 together
with recommendations for a future implementation of the model.




2. Seiches

2.1 Introduction

Free oscillations of a free water surface, seiches, can be observed in harbors, bays, lakes, etc. Earthquakes,
moving storm depressions, tidal currents and ocean waves, can trigger seiches. Seiches are a resonance
phenomenon. To understand roughly the physical mechanism of these oscillations, consider a harbor with the
entrance in line with a long and straight coastline. Incoming waves are partly reflected and partly absorbed
along the coast. A small portion is, however, diffracted through the entrance into the harbor and reflected
repeatedly by the interior boundaries. Some of the reflected wave energy escapes the harbor and radiates into the
ocean again., while some stays inside. If the incoming wavetrain is of long duration and the incident wave
frequency is close to a natural frequency in the basin, resonance will occur in the basin so that a relatively weak
incident wave can induce a large response in the harbor.

If one would just keep sending long waves into the channel these would go on reflecting between the sea
transition and the channel’s end. If the frequency of these waves coincides with the resonant frequency, this
results in more and more wave energy trapped in the channel, and consequently an increasing wave height.
Without any energy dissipative mechanisms, the amount of energy inside the system would increase with time
and so would the amplitude of the waves.

2.2 Damping mechanisms

Without damping mechanisms, no energy dissipated. This results in an ever-increasing wave height for waves
with a resonant frequency. This is not possible, in reality the attainable amplitude is restricted. For a growing
wave height, the energy dissipating process will become increasingly important until equilibrium is reached,
when the incoming energy equals the outgoing energy plus dissipated energy. For short waves, breaking is an
important dissipative factor. However, for the long wavelengths of seiches, the shores and banks can be
considered vertical so no breaking will occur. Seiches will be restricted in their amplitude through several
mechanisms:

e Radiation of energy to the sea

e Bottom friction

e Non-linear terms other than bottom friction

These damping mechanisms are described below.

Radiation

Waves that encounter the open boundary on the seaside partially radiate their energy outward to the sea through
diffraction. When the reflected wave encounters the transition between the harbor and the sea, part of it will be
reflected back into the channel and the other part will be transmitted outwards to the sea. The ratio of the
amplitudes of these waves depends on the wavelength relative to the width of the channel. Relatively short
waves barely notice the transition and will travel into the ocean. However, relatively long waves are reflected by
the sudden transition. The waves with a wavelength between these two extremities will be partially reflected and
partially transmitted, depending on the wavelength. In the next graph, the factor for reflection and transmission
is plotted against ka, which is a measure of the wavelength to the width of the channel.
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Graph 1 Factor for transmission and reflection.

With:

2a
ka=rm
A
2a = width of the channel

A = wavelength

It can be clearly seen from this graph that the longer waves, with a lower ka, are reflected more. The reflection
factor i.e. for the shorter waves, with increasing ka, decreases and it can be seen that these waves are transmitted

more.

Friction

Energy is lost due to friction forces on the bottom of the channel. The effect of friction mainly depends on the
amplitude and wavelength of the wave. For small waves, the effect is barely noticeable, but as the wave
amplitude increases in height the effect of bottom friction increases.

Non-linear terms other than friction

Advection causes wave energy to be transferred from the base tone to the higher harmonics. The distortion of the
wave, caused by its higher celerity in deeper water, transfers the waves base tone energy to its higher harmonics.
These in turn again create higher harmonics. This process cascades until at the highest frequency the energy is
dissipated into heat and turbulence. On a larger scale, advection is also responsible for the head losses at the
channel entrance due to the energy loss resulting from a sudden widening.




3. Test problem and linearized solution by Mei

3.1 Introduction

To evaluate and to compare the various approaches to the seiches problem described in this thesis a test problem

will be used, Mei (1984). The test problem consists of a straight and narrow channel connected to an infinite sea.

The seashore and the banks of the channel are assumed vertical. Waves coming in from the ocean at an angle,
are reflected on the shore. Parts of these waves enter the channel, causing seiches in the resonant case. At the
channel entrance waves are emitted radially. This situation is depicted in Figure 5. In this chapter the analytical
solution for the test problem will be presented.

y

-~ near field
D v
& far field
L s : N R e
& Ne
Figure 5 Test Problem
With:
ul Wave in the channel moving towards the end of the channel.
n. Wave in the channel moving towards the entrance of the channel.
n;i Incoming wave with a straight crest.
n, Wave reflected on the straight shore.
Ns Scattered wave with a radially expanding crest.

3.2 Linearized solution of the test problem by Mei

The two-dimensional shallow water equations will be used in the modeling of the sea and channel section of the
test problem. They can be derived from the Navier Stokes equations by a number of simplifications.

Equation of continuity
The continuity equation is based on the basic principle of conservation of mass, which for an incompressible
fluid reduces to:

tNY

og N Ouh N Ovh _

0 — A (1)
o ox Oy
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With:

¢ = Deviation of the water level from the still water level
u = Velocity in x direction averaged over the depth

v = Velocity in y direction averaged over the depth

h = still water depth

Equation of motion :
The equation of motion is based on the conservation of momentum. For this scale the effects of Coriolis are
negligible so the equations are reduced to:

ou ou Ou o¢ ulu® +v? ou o u
u——+v g +go 0o~ Vy 5 =0 2)
ot ox oy ox C*h 0. oy
v ov v ¢ vyt ot v )
o Mo e Tt o T e T oy
With:
C = Chézy constant of friction
2 = Viscosity constant

For the linear case, the response has been solved analytically by Mei (1984). The linear case implies that all
damping mechanisms for seiches, except for the radiation of energy to the sea have been omitted. For the
radiation of energy to the sea the Sommerfeld radiation condition is used. This condition states that a wave
emitted from a channel entrance will move in a radially expanding fashion; far away from the channel entrance
its amplitude will be reduced to zero.

In the linear case the equations for motion and continuity can be reduced to:
Equation of continuity:

0 v =0 4
ot
Equation of motion:
ol
=—oV 5
o = EVS ©

Eliminating u for a constant depth yields:

gV (W) - ?;4 =0

; (6)

For waves sinusoidal in time with radian frequency o the space and time dependency may be separated by:

§ =nlx,y)e™ ?)

For a constant depth h this reduces the previous equation to the Helmholtz equation:

Vn+kin=0 (8)
with:
r= @

| gh




The Helmholtz equation is used for the entire model, but the solution cannot be found right away due to large
differences in scale.

The general solution can be found by a method of matched asymptotic expansions, which is very convenient for
a problem which is governed by different scales. The equations and boundary conditions are approximated
according to local scales with solutions valid for these regions. Then the solutions are required to smoothly
match in the intermediate region. To solve the test problem, Mei divides the problem into four regions, each with
their own solution. In the following figure the different regions are depicted together with all the possible waves:

;}1831’ field
far field

Ne | e

Figure 6 Definition of the far and near fields for the problem

For this problem the situation can be divided in four different regions:
Far field for the channel

Near field for the channel

Near field in the ocean

Far field in the ocean

Ll e

As can be seen in Figure 6 the near field is used to match the solutions from the channel to those in the ocean.

Far field channel

In the far field section of the channel, the Helmholtz equation can be reduced to a one-dimensional equation
The waves in the channel should satisfy the following 1D solution:

n.=n,+n = Be™ + De™ (9)

In the previous equation, both components can be distinguished clearly. The first term represents a wave
travelling in the negative direction and the second a wave travelling in the positive direction. With B and D the
amplitudes of the respective waves.

Far field ocean

In the ocean, far away from the channel, the system can be split into three different components.

771) = 77/' + ,7r' + 77\' (]0)
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With:
The incoming wave, with a straight crest line:

77,' — Aeik(xcos@%»ysin@) (II)
This wave is reflected at the shoreline (x=0) creating the second wave.
n, = Ae"k(‘xcos@fvsin@) 12

Third is the outgoing wave, which moves in a radially expanding fashion away from the origin. The latter waves
correspond to the Sommerfeld radiation condition; a Hankel function is used to describe them in terms of the
radius r from the origin at the channel entrance.

nz=? g H,(kr) (13)
28

The Sommerfeld condition states that a wave emitted from a channel or narrow gap into the sea will expand
radially with a decreasing wave height. Far away from the gap, the wave height will approach zero. Atr= o0
only incoming waves will be present.

Combining these three components, the solution for the far field in the ocean becomes:

n, =2Acoskx+ C;Q H. (kr) (14)
g

Near field

The near field is a problem of potential flow past a right-angled estuary. In this region, the ratio of r to half the
width of the channel is in the order of one. This leads to the flow being essentially governed by the Laplace

equation:

Vin=0 (15)
With a harmonic 1 may be taken as the real part of an analytic function W of the complex plane z.
n=Re, W(z) (16)

To solve this problem the physical region in the complex z plane is mapped onto the upper half of the rplane by
using a Schwarz-Christoffel transformation.

n=Re, Wr=Re,(MInz+C) (17)
iy

@fA Tim’c
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Figure 7 Mapping of the near field from the physical z plane to the tplane.
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To find the solution for the outer expansion the near field must be divided in two sections, one for the ocean side
x>0 and one for the channel x<0. For the ocean side the solution is:

n;MlnﬂT +C (18)
2a

For the near field in the channel the solution is reduced to:

X e
=M =-MIn—-+C 19
7 2a 2 )

Boundary condition

To find the solution to equation 10 a boundary condition is needed. For the end of the channel, this is a fixed
highly reflective wall. Therefore at x=-L the flow is zero, which results in this boundary condition:

0
Te _ 0 (at x=-L) (20)
Ox

Solution

The unknowns in the formulae can be solved by matching the solution from both the far (10) and near (20) field
in the channel and the far (15) and near (19) field in the ocean. The found unknowns can then be used to provide
the response of the channel:

2Acosk(x+ L)

| 21)
cos(kL) + 7X@ sin(kL) 1n( 2”“’) _ ikasin(kL)
T e

.=

With:
y: Euler’s constant 0.577215

The amplification factor is defined as being the response of the bay to the incoming wave. The incoming wave
for the channel is:

n. =2Acosk(x+1L) (22)

Amplification function

The amplification function at a certain point is defined as the ratio of the amplitude of the water level deviation
at that point to the amplitude of the incoming wave. The amplification function for the analytical solution can
thus be found by dividing the harbors response (22) by incoming wave (23) at the channel entrance. This results
in the amplification factor, R:

1
N = (23)

2ka 29ka) .
cos(kL) + - sin(kL)In o — ikasin(kL)
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In this formula it can be clearly seen that the amplification depends only on the width to length ratio of the
channel and the wavelength of the incoming wave. This is also found in the Miles and Munk harbor paradox
(Miles and Munk, 1961). .

Plotting this function for a length to width ratio of the channel of 12 gives the following graph:

20

amplification factor

0 0.25 0.5 0.75 1
channel length / wavelength

Graph 2 Analytical linear amplification function according to Mei (1984).

The first peak is the highest. It occurs at a channel length over wavelength ratio slightly less than one quarter.
The second and subsequent peaks will be lower, because for higher frequencies more energy is radiated back to
the sea.




4. One-dimensional approach

4.1 Introduction.

In this chapter, a one-dimensional approach is described. It is based on a one-dimensional network representing
the channel with a boundary condition at the end node representing the sea arca as shown in Figure 8. Méndez
Lorenzo (1997) studied a boundary condition that is a combination of a water level and a Riemann invariant.
Analytically this boundary condition models the radiation of energy to the sea exactly according to the
Sommerfeld radiation condition, resulting in an exact match with the test problem. However, due to
approximations required for a numerical model this boundary condition can only match a single peak in the
amplification function correctly. The non-linear terms are added to the one-dimensional model in an attempt to
overcome this problem.

® node
< open boundary

Sea

one-dimensional network

Figure 8 Schematic representation of a one~dimensional approach

4.2 Boundary condition types

4.2.1 Riemann boundary

The Riemann boundary condition is characterized by its non-reflective nature. A wave that encounters a
Riemann boundary will travel onwards without reflection. Using a Riemann boundary condition the incoming
and outgoing waves remain separated and do not affect each other. It is possible to impose an incoming Riemann
invariant for the boundary condition, which sends a wave into the system. The Riemann boundary condition will
be used throughout this thesis, and therefore its full derivation will be given.

The derivation of the Riemann boundary condition starts with the derivation of the Riemann invariants.

The linear shallow water equations are presented below.

Equation of continuity:

&, ou
a o

Equation of motion:

-0 (24
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n X
+ = 25
4 g S (25)
Multiplying the continuity equation with (g/h)"* and rewriting the equation of motion leads to:
o 8
L + gh ou 0
‘ &gn = (26)
ot 7. 4
ac- g
o + gh h 0
gh = (27)
a X
Adding both equations and subtracting them gives respectively:
o(u+¢ - i) ourg- V)
Mg 2
at o
(28)
g g
ow-¢- 5y ow-¢- )
h ) i\ h
= /gh , =0 (29)
ot ox
The incoming and outgoing Riemann invariants are defined as follows:
Incoming Riemann invariant: Z =u + 4 & (30) ‘
X —
g v <
Outgoing Riemann invariant: ¥ = u — h g 31 X
The Riemann invariants are constant along the lines:
ox
=+ gh (32)
ot
(These are the characteristic directions)
At the boundary only the incoming Riemann invariant is imposed:
u+ g é/ — g ei(ol (33)
H H
With:
é’ — el(t)/
The resulting amplification factor in the case that this boundary condition is used is:
R=1 (34)




When a Riemann boundary condition is used, no waves are reflected back into the channel. Therefore, no energy
can be accumulated inside the channel to increase the wave amplitude, and no resonance occurs inside the
channel.

4.2.2 Water level boundary condition

In the case of a water level boundary condition, the water level is imposed at the boundary.
é/ — eiwl (35)

The amplification factor for a water level boundary can be calculated with:

1
cos(kL)

(36)

It is clear that as the factor cos(kL) approaches zero the amplification factor increases to infinity. This happens
for a channel length equal to an odd number of quarter wavelengths. (kL=n/2+nm, n=0, £1...)

4.2.3 Epsilon boundary condition

With a Riemann boundary condition there is no amplification in the channel and with a water level boundary
condition there is too much amplification. A logical choice would therefore be to combine the two. This is the
basis for the epsilon boundary condition. The epsilon boundary condition is a combination of the water level
boundary condition and the Riemann boundary condition:

g g g il il
j +ulu+ = 2™ + ue (37)
s ’[ ng H( e

with:

o+ 24 In( Maj

T e
p= S (o (38)
1—ka - @ ln{ ;/kq)
T e

This boundary condition is derived from the analytical solution and in this form it will give the exact solution.
However, there are two problems with p:

1. It depends on the wavelength (ka)

2. Itis a complex.

For the implementation of p in a numerical model the complex operator has to be converted into a real operator.
There are several methods by which this can be achieved, e.g. (Enquist, Majda, 1977) or (Taylor, 1975). In
(Méndez Lorenzo, 1997) the u is made real by rewriting it as:

M1 =10& (39)
with:
ka
£ dka)* o[ 27k
a)z(l—zka+(ka)2+ (ka) 1n2[ yan
’ w e

Now i can be approximated as &/0t which yields a real operator for the boundary condition:

e
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2{4“9— & U+ ;; f{{ = fjf(e’“” +ia)ge"”’) (40)

However, ¢ is still dependent on the wavelength. A different way of converting the complex unit into a real
operator might resolve this problem. The resultant amplification function for the epsilon boundary is given by
the following formula:

201+ cwi
1+e™™ +2ewi
4.2.4 Comparison epsilon, water level and Riemann boundary conditions
Plotting the four amplification functions (24, 35, 37, 42) results in Graph 3.
20
18
16 L - — — -
14 L. -
12 |
; U Analytical (Wa)
i . Epsilon boundary

____ Waterlewel boundary
e Ri€EMaNN boundary

amplification factor

0 0.25 0.5 0.75 1
channel length / wavelength

Graph 3 Amplification function of Epsilon, water level and Riemann boundary for a width/length ratio of 20.

This graph shows how the amplification function is equal to one for the whole wave spectrum when a Riemann
boundary condition is imposed on the open boundary (there is no resonance). The water level boundary
condition amplification function resonates to infinity at the resonant frequencies. The epsilon boundary
condition comes closest to the analytical solution of the test problem. The peak is shifted just a bit for the epsilon
boundary. This is caused by the approximations used to make € a real operator.

A problem arises at the numerical implementation stage. For a numerical calculation, it is impossible to retain a
variable epsilon in the formulae. The value for epsilon is therefore fixed. This value depends on the value of ka
and has to be determined before the calculation is started. This is in contrast to the variable epsilon used in
Graph 3. With a fixed value the epsilon can be tuned to either the first or the second peak. If it is tuned to the
first peak, then for the higher frequencies the boundary condition will tend to Riemann boundary condition,
resulting in insufficient reflections and consequently a lower amplification. If the value for epsilon is tuned for
the second peak then, for the lower frequencies the boundary condition will tend too much to a water level
boundary condition, reflecting too much energy. This results in an overestimation of the first peak. The
following two graphs, in which a fixed value for epsilon is used to tune either the first peak or the second peak,
clearly show this.
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Graph 4 Amplification function for the Mei analytical solution and for the epsilon boundary condition.
Length to width ratio of the channel set to 20. Value for fixed Epsilon tuned to the first peak.

With this value for Epsilon, the first peak is modeled correctly, but the second peak is too low. Now with a
different value for Epsilon set to correctly model the second peak the amplification function plotted in Graph 5 is
obtained.

40

35
30

25 . [

__RMel
20 ] - . e : )
; - R epsilon

amplification factor

Q 0.25 0.5 0.75 1
channel length / waveiength

Graph 5 Amplification function for the Mei analytical solution and for the epsilon boundary condition.
Length to width ratio of the channel 12. Value for fixed Epsilon tuned to the second peak. (Different scale)

With the fixed value for epsilon tuned to the second peak the second peak is modeled correctly. The first peak,
however, is now a factor 2 too high.

This clearly illustrates the main drawback of using the epsilon boundary condition; a fixed value for epsilon has
to be determined before the calculations can start. From the previous graphs it is clear that no matter what value
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for epsilon is taken it is impossible to correctly model both peaks at the same time. For a simple prismatic and
straight channel there are only two peaks one is interested in. It is not very difficult to determine the correct
epsilon per peak and then do two runs on the system. In this manner, the amplification function can be
determined. For a more complex geometry, determining the value for epsilon might prove to be very difficult. A
system of channels has many resonant frequencies and if one wants to obtain correct results for the entire
spectrum then the calculation has to be repeated for every peak and corresponding epsilon. This might prove to
be an inefficient and impractical solution. Furthermore, for larger amplitudes, the non-linear terms start to play a
role and the transfer of energy to higher harmonics cannot be modeled correctly if only one frequency is
inserted in the model. Waves from the lower part of the spectrum will influence the ones in the higher region so
a full spectrum run is required. Up to this point, there is a basis for a good boundary condition, but the results are
not yet satisfactory.

4.3 Non-linear model (Seiches ll) & numerical implementation

By adding non-linear terms to the system, the results from the epsilon boundary condition might be better,
because the higher amplitudes are influenced more by them than the lower ones. Therefore, by tuning the system
to the second peak, the first peak, which is presently overestimated, might be reduced to its proper proportion.
This non-linear numerical model will be referred as Seiches II hereafter. With these non-linear terms, the first
peak would be lower while the second peak should remain at almost the same height, resulting in an
amplification function that resembles the analytical function more closely. It should be noted however that the
analytical solution is linear. Therefore, a comparison between these two is not entirely valid.

4.4 Non-linear equations
The flow of the water in the channel can be modeled by using the long wave equations. The non-linear one-

dimensional equations used in the model are:
Equation of motion:

u  ou é’é’ guu B

+ U +g (42)
ot X ﬁc C*h
The second term in this equation is the advective term, and the fourth term is the Chézy type friction.
Equation of continuity:
& duh _
(43)
ﬁ[ ox

Imposing a grid on the continuous time and space domain the grid size in the space direction is defined as Ax
and numbered with the letter j, and the grid size in time is At numbered with the letter n. For every grid point
(j,n) the water level and the velocity are calculated.

These partial differential equations are discretized using the Preissmann Box scheme:




n+1 +
v v

B+1

n® *

. i1
j Ax j
Figure 9 Preismann Box scheme

With y = % this results in the following form:

Motion:
1 H 1 1 1 7 1 1 1 | :
u;,,;b/; +,u;+] —lffil, +g (]....9\ é/;H —é//n +9§]’:1 ——glm‘ + %I/I'H u;:: *;u; ujﬁ J_l/]:: _H/ZIHV g iugem -0 (44)
N N e Ax Ax 2 °¢-H,,
Continuity:
11+l 3 anl 1 71+l " n+l n 4] i+l n J1+1
;; _é} Lo o Upg 1, U H; + Uy 'Hj+1 ] “Hj -0 (45)
A 2Nt 2Ax 2Ax

H,.., is the water depth and u,, is the velocity both averaged in space with y= 4. In the linearized case, the

gem

shallow water equations can be reduced by omitting the friction and advective terms (see equations 4 and 5)

4.5 Results

The biggest drawback of the epsilon boundary is the need to choose a fixed ka value. To show this the
calculations in this section have been done with two ka values for each mode. One to get the first peak of the
calculation right and a second to get the second peak of the amplification function right. If the second peak is

right then the first peak will be too big. The graphs are done in two different scales to clearly show the details.

For these numerical calculations, a ratio of 20 was used for the length and width of the channel because this
provides blunter peaks than for higher ratios. With a blunter peak, the resolution of the number of frequency
components of the numerical program will be sufficient to hit the peak value. For a sharper peak, this is more
difficuit.

451 Linear

The following results were obtained with the numerical program for a linear case. They are included here for
comparison with the analytical solution as shown in graph 4 and 5. The graphs show how well the program
works in the linear case.
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amplification factor

Graph 6 Amplification function Seiches Il linear mode. Epsilon tuned to the first peak.
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Graph 7 Amplification function Seiches II linear mode. Epsilon set on second peak. (Different Scale)
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4.5.2 Advection

When adding the advection term to the model the height of the peak is not lowered. The advective term does not
play a major role apparently. The transfer of energy to the higher harmonics is for these amplitudes small. (See
appendix III for more details on the higher harmonics)

20.00

18.00 H O N
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amplification factor
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Graph 8 Amplification function Seiches II, non-linear mode. Advection term activated. Epsilon tuned to the
first peak
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Graph 9 Amplification function Seiches 11, non-linear mode. Advection term activated. Epsilon tuned to the
second peak. (Different scale)
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4.5.3 Friction

Adding the friction term has a much bigger effect than the advection term as can be seen on

20.00

H i
18.00 |- e e
16.00 |.
14.00 |

12.00

[+ Seiches it]

10.00 .
Met

amplification factor

800 L - .

6.00 |

4.00

2.00

0.00 1 :
0.00 0.25 0.50 0.75 1.00

channel length / wavelength

Graph 10 and Graph 11. Graphs 10 and 11 show how the highest peak is lowered significantly. This is because
the friction term primarily reacts on the amplitude of the wave. At the first peak this amplitude has become so
large that the bottom friction starts to play a mayor role. The results now match the analytical case closely as
shown in graph 11.

20.00

18.00 - S S U
16.00
14.00 |

12.00

|+ Seiches Il

10.00 .
Met

8.00

amplification factor

6.00

4.00 |

2.00

0.00 ! :
0.00 X . 1.00
channel length / wavelength

Graph 10 Amplification function Seiches 11, non-linear mode. Friction term activated, advection term off.
Epsilon tuned to the first peak.
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Graph 11 Amplification function Seiches II, non-linear mode. Friction term activated. Advection term off.

Epsilon tuned to the second peak.

4.5.4 Advection & Friction

Graph 12 and 13 confirm that the friction term has the greatest damping effect, this in contrast to the noise
created by the advection term. Just as in graph 11 the results of graph 13 coincide well with the analytical

solution.
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Graph 12 Amplification function Seiches I1, non-linear mode. Advection and friction term activated. Epsilon

tuned to the first peak.

25




Boundary conditions for a Seiches Model

20.00

18.00

16.00 |

14.00

§ 12.00
é 10.00 o Seiches i
] Mei
L2 N
&
g so0
E
6.00
4.00
2.00

0.00 ; ;
0.00 0.25 0.50 0.75 1.00

channel length / wavelength

Graph 13 Amplification function Seiches I, non-linear mode. Advection and friction term activated. Epsilon
tuned to the second peak.

4.6 Conclusion for the one-dimensional approach

A numerical model with an epsilon boundary condition has to be tuned. This has to be done such that the
damping is reasonable for a range of frequencies. Its qualitative behavior seems to overestimate the damping of
higher harmonics as compared to the fundamental harmonics. This is principally caused by the need to supply a
predetermined epsilon before the calculation. This fixed epsilon causes only one of the peaks in an amplification
function to be matched exactly. Other peaks will be too high or too low. For a model with simple geometry, this
is not a serious problem because there are only two peaks in the spectrum of our interest. So with two runs the
entire amplification function can be made to match. With a more complex geometry such as for the Europoort,
this is a much more difficult task. The complex geometry results in an amplification function with many peaks.
To determine the amplification function of such a complex model many runs are required with each a different
epsilon. Sending in only one frequency at the time is not a solution either, considering the fact that the energy is
transmitted to higher harmonics and that the entire signal plays a role in the amplification function. The addition
of non-linear terms to the one-dimensional model has not improved this situation, although it could not be
verified entirely due to lack of comparative material. What is needed is a boundary condition, which does not
depend on part of the answer to obtain the solution. Further investigation is needed to improve the epsilon
boundary condition. This option is not pursued. A different approach to the boundary condition problem will be
studied further. This approach, consisting of one-dimensional and two-dimensional coupling, will be presented
in the next chapter.
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5. Combined one and two-dimensional approach

5.1 Introduction

Although a one-dimensional approach, as chosen in the previous chapter, can provide adequate results with
respect to the amplification function, it is not a perfect solution. Especially the choice for a fixed epsilon is
problematic. A less complex boundary condition can be achieved by constructing a coupled one-dimensional
and two-dimensional model: a one-dimensional area (the channel) connected to a two-dimensional area (sea) as
is shown in Figure 10. (This model will be referred to as the 1D2D model).

® node
< open boundary

one-dimensional network

.... ¥ two-dimensional network

Figure 10 Connection of the one-dimensional channel to the two-dimensional sea

In this setup, both components of the model do exactly what they are best at: the two-dimensional component
takes care of the radiation of energy outward into the sea, and for the channel a one-dimensional network is
sufficient. This cooperation between both components has a great potential. In this thesis, this 1D2D model has
been developed to evaluate its usefulness and its accuracy with respect to the one-dimensional approach as
explained in the previous chapter. To be able to compare the results with the test problem all calculations with
the 1D2D model will be done for the linear case. However, because the D2D model is based on the non-linear
shallow water equations it is capable of doing non-linear calculations.

5.2 Numerical approximation

5.2.1 Computational grid

The continuous formulae for motion (2 & 3) and continuity (1) cannot be used by a discrete (digital) system.
They therefore have to be discretized. The discretization of these formulae results in a grid. In this grid, all
variables are calculated in all points, but to solve the equations not all the variables are necessary in each point.
Only one is required per grid point. To remove this redundancy the grids can be shifted with respect to each
other. This results in a staggered grid: A grid with only one variable per grid point. Such a grid is shown in the
next figure:
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As can be seen from the scheme in every branch the velocity either in y or x direction is calculated and the water
level (h) is calculated in the nodes.

5.2.2 Discretization

The discretization is based on a completely implicit scheme with a staggered grid as shown above. The
discretization in time is based on the theta method. This results in a grid of spatial points. For the linear case the
following discretization is used:

Equation of continuity:

n+l n i ot n ot n+l gl e+l 4,0t
g -¢" +(1- @) Yinra “ ¥ | Vijriz ~ Vi +Oh Uiz ~ Ui + Vigaa " Vijon | _ 0 (46)
At Ax Ay Ax Ay

Equation of motion:

n+l 1 ? n i n+l
u,:” 2 u"”/ 2. +(1-0) gé/"”/_:g'l +0| g é’,;i,:é/,; =0 (47)
At Ax Ax
V-’H-—] _ Zl{’ . n 'n‘ ,'H.‘] _ 'nfl
PR CEIE L (1-0)| g g,ﬁlﬁéf +0| g ;’,zl*‘,,,,,,_g{:;!f‘ =0 (48)
At Ax Ax

5.2.3 Matrix inversion

Using a minimum degree method (Duff, 1986) solves the resultant array of equations. With a minimum degree
method, the array is solved by eliminating the node which has the least edges connected to it. The prerequisites
for using this method are a symmetrical and positive definite matrix.
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5.3 Model

The numerical model is based on the sources of Sobek and a newly developed 1D2D (alpha stage) program. For
efficiency reasons 6=0.55 turned out to be the best choice (See appendix VII & VIII). The schematic layout of
the model is as follows:

Western boundary

Channel

Figure 12 Schematic view of the numerical model

The different components of the model are:
5.3.1 Channel

For the situation in the channel a one-dimensional network is sufficient. At the end of the channel a discharge
equal to zero is imposed.

5.3.2 Western boundary

A series of one-dimensional channels are attached to the two-dimensional sea area to impose the correct
boundary condition. At the end of the one-dimensional channels, it is possible to impose a water level, discharge
or Riemann boundary condition. The Riemann boundary condition is essential in this model since it allows for
an approximation of the Sommerfeld condition. As stated before in chapter 4 the Riemann boundary condition is
capable of handling the incoming and outgoing waves independently. This enables it to send in an incoming
wave and just let the outgoing wave pass through without reflecting. By making use of the Riemann boundary
condition waves can be sent into the channel without reflecting outgoing waves.

5.3.3 Northern boundary

For the open northern boundary of the model a Riemann boundary with amplitude of zero could be imposed.
This would ensure that all waves in the outgoing direction can pass undisturbed. Unfortunately, the incoming
wave from the western boundary is also influenced by the open boundary and will therefore leak energy through
it. This results in a curved wave front. (See figure 11).
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Figure 13 Incoming wave front for a Riemann boundary condition on the northern boundary of the model.

The amplitude of this wave decreases due to the leakage of energy through the northern boundary. The incoming
signal into the channel is thus dependent on the open boundary condition. Increasing the width of the 2D sea will
decrease the effect of the north boundary on the channel, but a larger width will also result in a longer
calculation time.

To completely solve the problem a boundary condition has to be devised that will let outgoing waves pass
through undisturbed but that works as a closed boundary for the incoming waves. The requirements for this
boundary condition can be analyzed if one splits the waves in the 2D area into their respective components as
was used in the test problem (Chapter 3). One can see that it is composed of an incoming wave, a reflected wave
from the shore and the radially emitted wave from the channel entrance. To make use of the symmetry of the
model the incoming waves are perpendicular to the shoreline.

¢=¢,+¢,.+¢, (49)

With:

€, = incoming wave

€. = reflected wave

£, = radiated wave from the channel

The waves ¢, and ¢, are required to be able to pass parallel to the northern boundary. The wave emitted from the
channel entrance, £, will move in a radial fashion and it should pass through the northern and western boundary
without any reflections.

In the report Seiches Europoort (Kernkamp, 1994) a special boundary condition is used to model the open
boundary. The basis for this condition is the Riemann invariant, but with a special incoming signal. The
incoming signal is based on the fact that if only incoming and reflected waves are present then the velocity (u) in
the direction perpendicular to the boundary is zero as is the case in a closed boundary. Recall that a Riemann
boundary condition is composed of:

utd =10 (50)
With:

u = Velocity component in the direction perpendicular to the boundary

f(t) = Incoming Riemann Signal.

Now with the first requirement that u = 0 the boundary condition results in:

g ] i = (D) (51)

With the proper value for f(t) the correct signal can be sent into the two-dimensional sea. This signal should only
be composed of the incoming and outgoing wave, without the effect from the radiated wave. The value for C is
found by adding an auxiliary channel to the system in which only the incoming and outgoing waves are present.
This auxiliary channel can be one-dimensional because the waves are all straight and perpendicular to the coast.
The auxiliary channel has the same depth and length as the 2D sea and the input signal is identical. The end of
the channel is also closed. The required ¢; and &, can then be calculated for the auxiliary channel. During




calculation the values of the water levels in each cell in the auxiliary channel are then extracted and multiplied
with the factor sqrt(g/h). These values are then used as input for the right hand side in the Riemann boundary
condition imposed on the two-dimensional sea. This one-way communication between the two models results in
a proper boundary condition that meets both aforementioned requirements. The next figure depicts the situation.

Auxiliary Channel

I

fimaméﬂg Signal
1 Riemann Boundary

Channel

Figure 14 Layout of the model with the auxiliary channel.

The incoming wave from the western boundary will be supported by the incoming waves from the northern
channel. If the phase and period is correct then the waves will travel in a straight path. This has been confirmed
in test runs.

5.3.4 Sea

By making use of the symmetrical properties of the model the sea area can be halved. This results in a more
efficient model and an increase in resolution for the same calculation time. Due to the radiation of energy by its
boundary conditions, the area of the 2D component can be reduced considerably. It is no longer necessary to
model an area sufficiently large to ensure that the amplitude of the waves approaches zero, as stated in the
Sommerfeld condition. The minimum requirement for the size of the two-dimensional sea area has not been
determined yet.

5.4 Results

The results from the 1D2D model are depicted in the following graphs. The results are quite satisfactory as can
be seen from the graphs. It shows that this approach is not only efficient but also very useful. Although there is
still a bit of deviation at the first peak, the order of error taken over the entire graph is minimal.
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Graph 14 Amplification function for the modified 1D2D model. (200 frequencies).

The numerical results map very well on the analytical function, the position of both peaks is identical and in the
regions next to the peaks, the amplification is exactly one. Only the first peak is too low, this is might be a result
of the lack of resolution.

The analytical amplification function on the graph above is made with the same resolution as for the numerical
model. This illustrates the narrowness of the peak very well because if the analytical function were plotted with a
higher resolution the height of the first peak in the amplification function would be 28. An increase in resolution
should deliver a graph, which matches the analytical function better. However, at this moment the total accuracy
over the entire spectrum is already very good.

For comparative purposes, the amplification function is also made for more length/width ratios, resulting in the
following graphs:
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Graph 15 Amplification function for a channel with a length/width ratio of 10
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It is evident from the previous two graphs that for shorter channels the amplification factor for the first peak is
overestimated. This might be attributed to the fact that a Riemann boundary is only reflectionless when a wave
hits it perpendicularly. The radiating waves from the channel entrance will hit it at an angle resulting in small
reflections. This bit of energy remains trapped inside the two-dimensional sea area. This means that the
Sommerfeld radiation condition is not fully met. Verboom and Slob studied a modification to the Riemann
boundary, which enables it to let outgoing waves at an angle pass through without reflections. The second peak
appears to be shifted more to the lower frequencies. This might be caused by a decrease in spatial resolution for
the higher frequencies (Stelling, 1984)

5.5 Conclusion on the 1D2D model

Due to the small size of the 2D-sea area, the calculation time is not much longer than that of a one-dimensional
model. The addition of 121 grid points for the 2D-sea barely influences the calculation time. The results are
quite satisfactory. In contrast to the one-dimensional approach with the epsilon boundary condition this
boundary condition can be used with minimal tuning, which is a definite advantage.
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6. Comparison with other models

6.1 Introduction

The linear aspects of the Seiches 1l program and the 1D2D model have already been verified against the test
problem, but it is also good to see how well the developed models work compared to existing solutions.
Furthermore, there is no analytical solution to verify the non-linear aspects. Therefore, the non-linear results
have to be compared to those of another accepted computer package. This has led to a comparison with the
packages Pharos and Trisula. Pharos is a two dimensional linear package with the possibility of using a Chézy
type of bottom friction. Trisula is a full non-linear two-dimensional program.

6.2 Pharos

For seiche calculations, the computer package Pharos is being used. Pharos uses the Helmholtz equations (8) and
solves these for the system. It does offer a possibility to include a friction like term. By enabling this term to
simulate a Chézy type of bottom friction, it is possible to get an pseudo non-linear model. The model in Pharos
consists of a long and narrow channel connected to a wide sea basin.

The sea boundary of the Pharos model deserves special attention. It is based on the principle that waves radiating
out of the domain can be modeled as radiation sources along an open boundary, and that the energy emitted from
these sources travels radially. In this manner the Sommerfeld radiation condition is modeled. Two different
procedures are used to accomplish this, however only the one relevant to this thesis will be described here. For
more information refer to page 3-26 Seiches Europoort (Kernkamp, 1994).

The procedure uses an evenly spaced number of sources at the sea boundary 0 that emit waves radially. The
emitted potential ¢ is described by:

p(p) = [u()G(p.s)ds (52)

0Q

1 being the strength of the source, which will be calculated as part of the solution, and G(p,s) is the factor of
influence in a point p resultant of a source with end strength s given by:

G(p,s) = ; Hy(kr) (53)

in which r=[p-g| s.

The unknown p(s) is found by the Fredholm integral after imposing the incoming wave on equation 54.
With this configuration, the energy loss due to radiation of wave energy can be correctly modeled.

In the linear case the results from the Pharos calculations only differ a few percent with the analytical test
problem.

For the non-linear case a Chézy type of bottom friction was used, to get an indication of how well the Seiches Il
program compares to Pharos. For this purpose the results from an existing Pharos model were taken and
compared to the results obtained from an identical model made with Seiches Il

The amplification factor calculated with Pharos is 8.4 whereas with Seiches IT the amplification factor is 12.6.
However, this is not the only difference between both programs:

1. The peak of is shifted to a higher frequency for Pharos.

2. The amplification function in Pharos is constructed by a series of single waves. This is not a correct
approach because individual waves influence each other in a non-linear case. Energy is transferred from the
base frequency to the higher harmonics, hereby lowering the amplitude of the first peak and raising the
amplitudes at higher peak frequencies. This can be clearly seen in paragraph 5.3.4 and in appendix 1II graph
4.
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6.3 Trisula (Delft3D)

Trisula is a fully non-linear two-dimensional package. With Trisula a similar model was made as in figure 2,
except that the channel is two-dimensional as well. The concept of handling the boundary condition as described
in paragraph 7.4 with the additional channel was taken from this model. At the channel entrance a fine grid was
used to be able to provide sufficient resolution to model the inflow and outflow energy losses.

To verify the non-linear results obtained with the one-dimensional approach as implemented with Seiches Il a
comparison should be made with Trisula. Unfortunately, no full amplification function is available for a
calculation made with Trisula for the non-linear case. Only the linear results are available. Trisulas results can be
compared to the results from Seiches II because the model used in Trisula is non-linear, and it is possible to send
in a complete signal of multiple waves into the channel. Its only drawback for a comparison with the approaches
used in this thesis is that it also models the energy loss due to advection at the entrance of the channel. Taking
relatively large grid spaces in this region can compensate this (Kernkamp, 1994).

The non-linear results that are available from calculations with Trisula, are obtained from a model with similar
geometry to the one used in Pharos, with a single wave sent into the channel. The resultant amplification factor
is 5.5

For the linear case there is a full amplification function available as shown in the following two graphs. The
results resemble those obtained with the 1D2D program (compare this to graph 15). For a long and narrow
channel the amplification for the first peak is also too low compared to the analytical case:
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Graph 17 Results from Trisula for a channel length to width ratio 28’

Apparently, the solutions from the analytical model and the Trisula model match exactly. Unfortunately the
graph is a bit deceptive, not the full analytical function is plotted in the WL report. The first peak is 33 but this is
omitted from the graph, but it is mentioned in the legend. This shows how the results from Trisula are 33% off
whereas the results from the 1D2D model are only 25% off. This can be attributed to a lack of frequency
components used (Kernkamp, 1994). Due to the narrowness of the peak only a small deviation from it results in
a significantly smaller amplification.

For a shorter channel the results form Trisula also resemble those obtained with the 1D2D model (graph 16).

' Figure 8.2.1.i, from Seiches Europoort, Kernkamp, 1994, Printed with permission from WL{Delft.
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Graph 18 Results from Trisula for a channel length to width ratio 10°

Graph 18 shows how for a shorter channel the amplitude for the first peak is too high compared to the analytical
solution. The same is the case for the 1D2D model, both models are quite similar in their results. This is
surprising because the Trisula model uses a fine mesh at the channel entrance to model the flow. In the 1D2D
model only a single grid point is used, proving that this is sufficient resolution to model the radiation condition
at the entrance.

? Figure 8.2.1.g, from Seiches Europoort, Kernkamp, 1994. Printed with permission from WL|Delft.
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7. Conclusion and recommendations

7.1 Conclusion

The aim of this thesis has been to find a practical solution for the seaward boundary condition for a numerical
model that correctly describes the amplification effect of seiches in a channel. For the channel a one-dimensional
network is assumed to be sufficient. To find this solution two different approaches have been studied.

For the one-dimensional approach studied there is a perfect boundary condition: the combination of a water level
and Riemann invariant multiplied by a certain factor epsilon. However, at this stage, this epsilon boundary
condition cannot correctly model the seiches phenomenon over the entire wave spectrum This is caused by the
(numerical) approximation for epsilon, which makes it wave length dependent. This results in only one of the
peaks being modeled correctly. A different approximation for epsilon (Majda & Enquist, 1977) could remove
this dependency of the amplification function, which would probably lead to better results.

The solution of attaching a two-dimensional sea area to a one-dimensional channel is a much better alternative as
is demonstrated in this study. The boundary is moved from the entrance of the channel to an area at sea. This
simplifies the required boundary condition, because the radiation of energy is automatically modeled by the two-
dimensional component. It is therefore not necessary anymore to concentrate this effect into a boundary
condition at a single point. The boundary condition at the sea boundaries are relatively simple. Due to the small
area needed to model the sea the calculation time is of the same order of magnitude as that for the one-
dimensional channel itself. What is more important is that no special tuning is required to obtain correct results.
This in contrast to the one-dimensional approach with the epsilon boundary condition, where actually part of the
answer is needed to find the correct results.

The results from both the one-dimensional and the 1D2D approach do not match the analytical test problem
exactly but they are quite satisfactory. The difference at the peaks is minimal, especially if compared to the large
degree of uncertainty about the rest of the seiche phenomenon. No one knows what the incoming amplitudes are
and very few actual measurements are available. The uncertainty of approximately 20% in the peak of the
amplification function is probably negligible compared to the uncertainty of the rest of the factors that play a
role in the generation of seiches.

7.2 Recommendations

For the modeling of seiches a 1D2D model is recommended. It has proven to be flexible and accurate and the
calculation time is not affected significantly compared to a full one-dimensional model. What remains to be
investigated are the non-linear effects on the 1D2D model. Special care should be taken at the boundaries of the
two-dimensional sea area. The Riemann boundary used currently is not particularly suited for handling waves at
an angle. These waves reflect a bit of their energy back into the system. A solution to this problem has been
found by G.K. Verboom and A. Slob (1982). Alternatively, a radiation boundary condition could be used at the
open boundaries.

What should be incorporated into the model is a method to model the energy loss due to entrance and outflow at
the entrance of the channel because for larger amplitudes this is a major damping mechanism. This could be
done by moving part of the 2D area into the channel and increasing the spatial resolution. The effect of the
resolution in the entrance of the channel should also be evaluated to find the optimal resolution. If a higher
resolution is required, this can be achieved by introducing a finer mesh at the entrance only.

There is still one other feasible alternative for the boundary that could be investigated. This is a boundary
composed of a two-dimensional area but then written in polar coordinates, which reduces it back to a one-
dimensional system. The one-dimensional channel in Cartesian coordinates will then have to be connected to a
sea area in polar coordinates. Part of the difficulties in this project would be how to send in a straight wave front
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into the system from the sea. Modeling a complex sea area might also be more difficult to do in polar
coordinates than in a Cartesian grid.
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Appendix

I Derivation of the Analytical Solution according to CC Mei

L1 Introduction

The general solution can be found by a method of matched asymptotic expansions, which is very convenient for a
problem with is governed by different scales. The equations and boundary conditions are approximated according to
local scales with solutions valid for these regions. Then the solutions are required to smoothly match in the
intermediate region. In the following figure the different regions are depicted:

near field
N , 4 far field
Ne

Ne

far field

Figure 1 Definition of the far and near fields for the problem

For this problem the situation can be divided in four different regions:
Far field for the channel

Near field for the channel

Near field in the ocean

Far field in the ocean

Ranl el o M

Far field channel

In the far field section of the channel, there are only waves travelling in the +x and —x direction. These can be
described by the following solution:

77{ — Be—/kr + Delkr
With the inner expansion for |kx|<<l:

n.=(B+D)+ik(-B+ D)x+ ..O(kx)’




Boundary conditions for a Seiches Model

Far field Ocean

In the ocean far away from the channel, there are two types of waves present. One is the incoming wave, which
moves perpendicular to the coast. This wave is reflected on the shore, which results in a doubling of amplitude if the
coast is vertical. Second is the outgoing wave, which move in a radially expanding fashion away from the origin.
These waves correspond to the Sommerfeld radiation condition.

The Sommerfeld condition states that a wave emitted from a channel or narrow gap into the sea will expand radially
with a decreasing wave height. Far away from the gap, the wave height will approach zero. Atr = only outgoing
waves will be present.

v

Figure 2 Sommerfeld Radiation Condition

Combining these two waves, the solution for the far field in the ocean becomes:

n, =2 Acosks + 2 H' (kr)
2g

The first term represents the incoming wave with twice the amplitude of the same wave far away on the ocean. The
second term represents the radially expanding wave emitted from the channel entrance.
After the inner expansion of the Hankel function H for a kr<<1:

24+ a0y o)
77() ;7
2g T 2
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Near field Ocean

The near field is a problem of potential flow past a right-angled estuary. For this purpose the near field must be
divided in two sections one for the ocean side x>0 and one for the channel x<0. For the ocean side the solution is
reduced to the following formula after several operations:

nlen”fﬂ+C
2a

Near field Channel

For the near field in the channel the solution is reduced to:

nsz—MlneJrC
2a 2

Now matching the solution from the channels near field and far field gives:
e
B+D=C-MlIn 5

ik(-B+D)=""
2a

Doing the same for the ocean:

24+ P o+ My =cemm ®
2g T 2 2a

iQw
g

=M

Now only the boundary conditions are needed. For the end of the channel, this is a fixed highly reflective wall.
Therefore at x=-L the flow is zero this results in this boundary condition:

on,
© =0 tx=-L
o (at x=-L.)

This leads to the outer solution:
n. = Ecosk(x+1L)

With the corresponding variables:

-5
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1 _
B - Ee ikL
2
[
D=_Ee*
2
Combining these with the previous formulae for matching the near and far field the response of the bay can be found:
o= 2Acosk(x+ L)
© 2ka . 2pka .. .
cos(kL) + <L sin(kL) ln(lk—) _ ikasin(kL)
T e

The amplification factor is defined as being the response of the bay to the incoming wave. Recall that the incoming
wave for the channel is:

n.=2Acosk(x+L)

This results in the amplification factor, R is defined as:

1

R =
2ka 2dka)
cos(kL) + sin(kL)In| - | —ikasin(kL)
T e

With:

k: Wave number

L: length of the channel

a: Half the width of the channel

v: Euler’s constant 0.577215
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i Program

1.1 Introduction

In this chapter only a brief description of the basics of the program Seiches II will be given. The user manual can be
found in the help function when running the program.

1N Overview

The program follows this path during execution:

1. Collect input

The input variables can be collected from the screen or from a pre-formatted file. To simplify use there are already a
set of default values inserted at start up. A hint box pops up to give additional help at the input stage. Specifications
on how to change the default values and the pre-formatted file can be found in user guide.

2. Generate random phase
The random phase is generated by using the standard random generator with a pre determined random seed value.
The seed value ensures that the data set will be the same every run.

3. Generate appropriate equations
Depending on the choice of boundary condition and wave type the equations are generated. For multiple waves the
signal is composed of a orthogonal wave spectrum.

4. Solve equations
The equations solved by using a double sweep method.

5. Fourier analysis
The incoming and outgoing water levels are analyzed with a Fourier analysis. The Fourier analysis results can be
imported into a spreadsheet program such as excel to plot the amplification function.

6. Output
The Fourier analysis, water level and velocity is saved to disk in two separate files. The water level can be animated

on screen.

7. End

1 Limitations

Although the program has been subjected to extensive tests, it cannot be a guarantee for a 100% bug-free program
due to the intrinsic nature of software development. Several limitations of the program were discovered in the testing
phase, for a detailed description of the tests please refer to appendix VI.

If one looks at the amplification function, the first peak stands out as being very sharp, in contrast to the second peak,
which is much gentler. This sharpness of the first peak is what makes it so difficult to obtain the accurate results. A
bit left or right of the peak the values are much lower than exactly on the peak. This means that to obtain the correct
amplification function one has to ‘hit’ the peak exactly on its correct frequency. A small deviation results in a much
lower peak. This is exactly where the limitations of this program can be found. There are four main factors that

-7
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contribute to this apparent erratic behavior, but actually it can all be reduced to one thing: the number of calculations
is too short. After numerous test runs the following limitations of the program were discovered.

L Random generator.

The set of incoming waves must all have a different phase in order for the Fourier analysis to work correctly. If they
are too much in phase, the resultant amplification function will be too high. The random generator is used to produce
a set of numbers, which is used for the phase of the incoming waves. This data set will be different every time and
consequently the resultant maximum peak of the amplification function can vary as well. Most likely because the
amount of time steps calculated is not sufficient to reach an equilibrium state.

Several runs with exactly the same parameters have resulted in peaks varying between 18 and 26. Using a random
seed variable the data set will be random, but the sequence of random numbers will be the same every time, thus
creating a reproducible phase and a amplification function that is the same every time. This is important if one wants
to evaluate the effects of the non-linear terms on the amplification function. If a greater number of time steps is used
the effect of this random generator is smaller because the situation in the channel will have had enough time to come
to a stable solution.

TRIIRY Amplitude

In theory, the amplitude of the imposed wave does not have any effect on the amplification function. This is valid for
our program as well as long as the amplitude is greater than 0.0001 meters. Working with lower values for the
imposed amplitude will give less accurate results because the Fourier analysis cannot discern the signal correctly
anymore.

1L Depth

The depth of the channel is of no influence on the amplification function, that is in theory, in this program the depth
can influence the amplification factor. At first sight it is not obvious how this can affect the outcome, if one takes a
closer look at how the amplification function is constructed it becomes clearer. The graph shown is a function of L/A
on the x-axis and the amplification factor on the y-axis. The Fourier analysis is based on a orthogonal set of waves it
starts with the lowest possible frequency (1/dt*maxtime), every next frequency is n times this base frequency up to
the Nyquist frequency (maxtijd/2). From this it is clear that the Fourier analysis provides us with maxtijd/2
frequencies. This is a fixed number, however the frequency for the shortest wavelength one is interested in (A=L)
depends on the water depth:

g gH
A= or frequency =

frequency A

This means that with a greater depth H the frequency at which L=A is also higher. Therefore the number of
frequencies below L=\ is higher. With more frequencies in the amplification the resolution for this graph increases,
consequently the peak can be modeled with a higher accuracy resulting in a higher peak. A higher resolution can also
be obtained by taking more time steps in our calculation.
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Single Waves

Imposing a single wave on the boundary and then finding the amplification function without the Fourier analysis is

not a solution either. In simple cases without second order effects the amplification factor of a single wave can be
calculated by finding the amplitudes at the end of the canal. Graph A-1 shows the water level at the end of the

channel. In this case no Fourier analysis is needed to determine the amplitude of the wave: 2.65 m, dividing this by
the amplitude of the signal imposed on it 0.18 m an amplification factor of 14.7 is found which corresponds exactly

to the amplification factor found by the Fourier analysis in.

Graph 1 Water level at the end of the channel for a linear model. (Single wave)

1.5

zeta

Graph 2 Water level at the end of the channel for a non-linear model. (Single wave, different scale)
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However with second order effects the waves are distorted and it is impossible to visually determine the amplitude.
Graph 2 shows such a distorted signal.

)
o

Y
(@)

6y}

amplification factor
)

L

0.00E+00 2.50E-01 5.00E-01 7.50E-01 1.00E+00
Liwavelength

Graph 3 Amplification function for a single wave: 699m (L/wavelength=0.229) amplitude 0.18

Applying a Fourier analysis to this signal shows why: not only is there a peak at the imposed frequency but also at
the second and higher harmonics! (Graph 4) This means that the model is also taking into account the effects of

energy shifting to higher order harmonics.

11-10
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amplification factor (Different Scale)
w

2 I ]
l
0 / — _A /—k A
0 0.25 0.5 0.75 1
L/wavelength

Graph 4 Amplification function for a single wave: 699m (L/'wavelength=0.229) amplitude 0.18. Non-Linear mode:
Advection and Friction activated. (Different Scale!)

The interaction between waves in a non-linear case is evident from this. Waves from lower frequencies contribute to

the amplitude of their higher harmonics, running the model with single waves will therefore not give accurate results.

The amplitude is also much lower than for the linear case, this is due to the energy loss from advective and friction
terms in the calculation. To illustrate the effect 16 runs were made each with a single wave in the channel and these

are compared to a run with multiple waves. The results can be seen in

25

20

15 :
—e—single
—fi— multiple
10 '
5
0

0.19 02 0.21 0.22 0.22 0.23 0.24 0.25 0.26

Graph 5. The peak of the single waves run is shifted to a lower frequency and much lower than the peak with
obtained by using the full spectrum. The interaction between waves of different frequency is evident from this and
cannot be neglected. Fortunately, it is also more efficient to run the program with multiple waves because it does not
take more time to run the model with the full spectrum than to run it with a single wave.
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25

—e—single
—g§— multiple

0.19 0.2 0.21 0.22 0.22 0.23 0.24 0.26 0.26

Graph 5 Amplification function of single vs. multiple wave approach.

IHLHLLIV  Initialization

Every model needs to be initialized at the start. The simplest way of doing this is by setting all the levels at zero at
the beginning of the calculation. When the program starts running it takes some time before the effect initial situation
is not noticeable anymore. On graph 7 it can be seen that the effect from the initial disturbance of the model is still
noticeable after 4000+ time steps. The exact time it takes before this effect is gone depends on the disturbance and
the type of boundary condition.

0.1
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0
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-0.08
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Zeta

Graph 6 Water level at the end of the channel for a Riemann boundary

In the case of a Riemann boundary, all waves are transmitted and none reflected. This means that the initial effects
are not noticeable anymore after the first wave has exited the channel.



Appendix

With water level boundary the waves are all reflected back and forth in the channel so the disturbance is also
contained in the channel this results in a very long time before this effect is damped out if it happens at all. Without
any second order effect, there is no mechanism for the waves energy to dissipate, the initial wave will therefore stay
in the channel forever, this results in an always present initial effect. This can be clearly seen in Graph 6. There is a
beat in the wave. Increase the 6, a form of numerical dissipation is introduced. The beat effect is less but it does not
disappear completely.

0.6

ﬁh/\ A‘ |
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Zeta
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-0.6

Graph 6 Water level at the end of the channel for a Water level boundary.
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0.6
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Graph 7 Water level at the end of the channel for an Epsilon boundary. (Theta=0.5)

The epsilon boundary, being a combination of the two takes quite some time to damp out the effects of an initial
disturbance. In the linear case, this is achieved through radiation energy loss.
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Graph 8 Water level at the end of the channel for an Epsilon boundary. (Theta=0.6)
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Graph 9 Water level at the end of the channel for an Epsilon boundary Continued from previous graph.
(Theta=0.6)
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Appendix

i Equations and discretizations used in Seiches Il

The non-linear equations and their discretization as used in Seiches II are stated in this appendix. In the model three
versions of the Non-Linear equations are used:

Non-Linear Equations with Friction
Non-Linear Equations with Advection
Non-Linear Equations with Friction and Advection

T O

1. Non-Linear Equations with Friction:

LI Motion:

+§g’ 0”L¢guu_~
at o é}c C’H

Discretization

=+ 7 as! 1 ! d (as] 1+ i noo ol ml ]
L/, "L// +l’/+1 _l/m +g (]_9)4}1 —47 +9§;ﬂ —‘g/\ 4 77/,+| Z”//tl ] i ; L/ s ,+| ‘H ‘?u‘k’g’m -0
W W Ax Av 2 CH,

HIRRI! Continuity:

§§+&1H_
a &

Discretization:

rn’l 1 wn‘ 1 u*l n u« H n+l " n+l
- (., ‘4’—1 N /H H,q - : H/ " /+I H/H — !H/ =0
ZAI ZAI ZAx 24x

With H = (depth + £);

¢ =g {”’ -<, +{ ;’:}' (diepte +¢].,) - u”*' -(diepte +¢7') u/’H -(cﬁ'epte+§j’:§’)-zl;’ (diepte + ¢ )}_
2Ax 2Ax
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gt g luth (diepte+ £, )~ -(diepte +-¢] ) u’,, -diepte+u’, ;’"‘[‘ - dtepte—u' o
7 J + / J + J J+ AL ist Dot ; L
201 20 24x 2Ax |
nLi Non-Linear Equations with advection
[IRIN Motion:
8 fu guu
g THu -+ o=
ct ox & C°H
Discretization
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Hen Continuity:
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Discretization:
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Expand:
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H.in Non-Linear Equations with advection and friction
IRIIN: motion:
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Discretization
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e Continuity:
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IV  Testing

Iv.] Introduction

Several tests were run to verify the results of the program. Due to the complexity of the program, the program cannot
be guaranteed to be 100% error free regardless of how many tests are done.

. Test 1. 0=0 Test

The program was initiated without any disturbances. All water levels must remain the same in this condition. Instead
of using 0 the program was initialized with 1, because 0 is often not a good number to test with, This test was passed
successfully with all three boundary conditions and in the linear and non-linear modes.

. Test 2. Verification with previous program

The results of the program were compared to the results obtained by previous Fortran versions of Seiches I program.
These obviously matched exactly, as can be seen from the following graphs:
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Graph 10 Original Seiches I program.
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Graph 11 Seiches 1l program.

Iv.Iv Test 3. Fourier Analysis

The Fourier analysis was tested thoroughly by letting it analyze a set of known waves and comparing the results with
the expected output. The Fourier analysis passed the test successfully. As mentioned before in the limitations section,
the random phase of the incoming signal is extremely important to obtain accurate results. Waves that coincide in
phase produce unpredictable results.

This graph shows the results of one of the runs. The signal consists of an orthogonal set of 25 superimposed waves
each with amplitude of 0.2 meters. The set starts with a base frequency. From the Graph IV-1 3 it can be seen that the
Fourier analysis is correctly identifying the amplitude and frequency of each wavelength.
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Graph 1V-3Signal composed of 25 waves each with amplitude of 0.2, out of phase. Every wave is n times the base
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v.v Test 4. Small amplitudes test

With small amplitudes the effect of the non-linear terms is negligible the results therefore should be exactly the same
in the linear case. The following graph shows that this is the case for the program:
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ph IV-3 Comparison linear to non-linear mode with very small amplitudes.
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\' Amplitudes for stable calculations

v.i Introduction

Due to their long period and small amplitudes, seiches are not easy to measure. Mainly due to the lack of interest in
this region of the wave spectrum very few measurements are available and not much is know about the origin and
behavior of seiches at sea. Recently the seiche phenomenon has been getting more and more attention. especially
because of the problems caused by seiches in the Storm Surge Barrier New Waterway. New measurement projects
are being set up to finally obtain accurate data.

v.ii Assumptions

This lack of data forces this project to make an assumption on the incoming amplitude of seiches at sea. Most
estimates of this amplitude state that it should be around a few decimeters amplitude. Other model studies on seiches
such as the ones done by Delft Hydraulics. Work with a H; of 0.3 meters. This is the incoming wave height at sea.
The amplitude is one half of the wave height. Therefore, the amplitude at sea is 0.15 meters. When the wave reflects
at the shore boundary the amplitude is doubled. Therefore, the amplitude at the open boundary of the model is twice
the amplitude at sea: 0.3 meters.

To obtain reasonable results one should use the incoming amplitude at the sea boundary of the same order of
magnitude as 0.3 meters. The following index is used:

depth >~ 50 Equation V-1
amplitude

v Multiple waves

With a single frequency, the imposed amplitude is straightforward. If a combination of frequencies is used the
amplitude is not so easy to determine, especially if they are all out of phase as in this case. The root mean square
method can be used in this case to determine the overall amplitude.

Example:

e 245 different frequencies (As used with 10,000 time steps)
e 20 meters depth. (width=1km length=28km)
e amp (of a single frequency) = 0.02

245
>(0.02°) =0.313m
i
20m - _ 639
0.313m

Amplitude of 0.02 m per frequency is therefore a valid entry for multiple waves.
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VIV Stability

Instability of the program occurs when the slope of the wave front becomes infinite. This occurs only in the non-
linear case due to the celerity difference between the trough and the crest. The celerity is a function of the depth
(c=sqrt(gh)) and is higher for the crest than for the trough.

Test with the program have shown that it remains stable with multiple frequencies with an amplitude of 0.16m and a
depth of 20 m this gives a index of 8, with a smaller model, depth is 2m, the lowest index that still is stable is 14.
With a single frequency, the max amplitude for a depth of 20 meters is 6 meters. This gives an index of 3.33. This
shows that the stability of the program is sufficient for the region of interest.
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\"! Restrictions for using the 1D2D model

Vi1 Introduction

To obtain accurate and stable results the following suggestions and restrictions should be followed. They are
however no guarantee for correct results, they only serve as guidelines for a stable model.

VI Grid size

Frequency spectrum

The input signal is composed of an orthogonal series of waves all added. It is formed by taking a wave with a base
frequency and adding n times to this a wave with a frequency on step shorter. All waves have the same amplitude
just their frequency is different. This signal is composed as follows:

n=¥# freq
Signal = Z amp O fhuse
n=|
With:
1

.f/m.\'e = A[ T* -

max
The base frequency is the longest wave this Fourier analysis will distinguish:

# freq = max freq

This is the maximum number of frequencies. The shortest wavelength in the signal is then restricted to the
wavelength of the channel.

The shortest wavelength used equals the length of the channel. If the grid size of the 2d sea is bigger than that of the
Id channel anti-aliasing occurs in the 2d sea and the high frequency part of the spectrum is erroneously mapped onto
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the low frequency part resulting in a very strange signal for the 1d channel.
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lambda/L.

Graph 6 Fourier analysis of the signal at N116.

Graph 6 Fourier analysis of the signal at N116. depicts the results from a Fourier analysis of the signal at node 116,
which is on the sea boundary of the 2d model. Although a clean signal was imposed on this boundary, which should
have resulted in a straight line for all the frequencies. The lower frequencies show spikes in the signal. This effect
can be attributed to the anti-aliasing of the signal. By reducing the grid size and the time step to the same value as
used in the 1d component this effect can be reduced until a clean signal is obtained at the sea boundary.
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Graph 7 Fourier analysis of the signal at the sea boundary of the 2d model. Node 116 and n823

Graph 7 shows the clear signal obtained now at both the beginning and end of the 2D component. The amplification
of the amplitudes for the higher region of the spectrum is due to the fact that this signal was obtained from closed
model', more information on the models used can be found in the appendix III: testing of the 1D2D model.

This closed model acts as a closed sea basin. When waves hit the shores, they are reflected. With a vertical shore,
which is the case in this model, the wave will double in amplitude during the reflection. Although this also happens
in this model, it cannot be distinguished clearly due to size of the model. The 2D area is only 40 meters long and the
shortest wave in the signal is 160 meters. This means that the signal imposed on the boundary is not the same as the
original signal on the ocean far away. If this could be compared to the signal on the boundary, the doubling would be
evident. In this case, in the short wavelengths one is able to distinguish a certain degree of amplification. The signal
on the boundary is also influenced by this effect and will therefore increase in amplitude as well.

VILI Time Step

Due to its highly dissipative behavior of the model it is necessary to choose a small time step in order to compensate
this effect. Normally the courant number serves as a good indicator for what would be a good choice for the time step
/ spatial step. This number should have a value of approximately one for an ADI method. In this case, with a depth of
2m and a spatial step of 4 m a time step of 0.9 s would result in a courant value of: 0.99. Test runs with a value of 0.9
for a time step reveal a significant amount of dissipation especially in the higher frequencies. A wave height decrease
of 30% or more is not acceptable especially with very small amplitudes. The test was done on a similar model as the
original, with the exception of the boundary on the end of the channel. Instead of a discharge=zero boundary this was
changed into a Riemann=zero boundary. The effect of this is that for a wave the channel will seem to have an infinite
length. No waves are reflected and the signal can be analyzed without any amplification or other effects.

" A closed model is similar to the standard model but with the 1D component closed.
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Figure 3. Riemann model

In Graph 8, the Fourier analysis of the water levels at both the beginning and the end of the channel are shown. The
amplitude of the signal is very small 3x10-6 on a depth of 2 meters this should result in a linear case. This means that
the amplitudes at the beginning of the channel are equal to those at the end of the channel. This clearly not the case,
the very long wavelengths stay around their original amplitude but the shorter frequencies tend to decrease
approaching zero. With a larger time step, this effect is even bigger; wavelengths shorter than one half the length of
the channel just disappear. In this manner, part of the signal is lost.
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Graph 8 Fourier analysis of the signal at both beginning and end of the channel in a Riemann model.

Decreasing the time step can alleviate this problem. Graph 9 represents the results of a Fourier analysis of the signal
but now with a time step of 0.1 s. The line has only 30 points in contrast to the 250 obtained by the 0.9 s time step
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but it serves as a good indicator of the effect the time step has on the dissipative behavior of the model. It can be seen
that up to a L/lambda ratio of 0.25 both lines are equal. For higher frequencies, the differences are greater but not as

extreme as for a 0.9 s time step. A graph of the signal with a higher resolution can be found in the appendix HI
testing of the 2D model.
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Graph 9 Fourier analysis of the signal at nodes 783 and 823 for a Riemann model. Time step equal to 0.2 s.

The effect of a dissipation of energy can also be illustrated by analysis of a wave with a single frequency travelling
through the system. For this purposes the same Riemann model was used as for the previous result except for the
input frequency. This provides a clear signal that can be analyzed visually without any post processing. In this case
the signal was constructed by taking a single wave with a L/lambda ratio of 0.75 this is one of the waves in the
higher region of the spectrum the amplitude is extremely small: just a fraction of a millimeter. This wavelength is the
most influenced by the dissipative effects as can be seen from graphs 3 and 4.

The following graphs represent this signal at 6 different point in the model through time. The points at which the
measurements were taken are:

N116 :apoint at the western boundary. This is were the signal is imposed on the model
N17 - one node just before the connection between the 2D sea and the 1D channel.
N823  :node at the joint between the two models

N822  : one node further into the channel

N803  : node half way in the channel

N783 : node at the end of the channel at the outgoing Riemann boundary
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Graph 10 Single wave travelling through the model. Dt=0.9 s

In Graph 10 one can see how the wave decreases in amplitude by 25% and this over a distance of just 44 m. The
decrease in amplitude for the 2D component cannot be attributed entirely to the dissipation of energy. A great deal of
energy is also sent out through radiation at the open sides of the 2D region. More about this radiation can be found in
the next paragraph. Once the wave enters the 1D channel, it continues to decrease in amplitude eventually losing
another 33% of its amplitude in just 160 meters. With a large amplitude this could be attributed to friction, but with
an amplitude in the order of a fraction of a millimeter this is a negligible factor.

The effect of radiation of energy through the boundaries can be clearly seen in a top view of the 2D area:
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Graph 11 Top view of the 2D component of the model. Arc shaped wave pattern approaching the shore and

channel.

The wave front is at the boundary a straight line because it is imposed equally on all boundary points. As soon as it
enters the model, the points at the sides let the wave pass through. In this fashion energy leaks out of the model. The
wave front adapts to this situation and propagates in an arc shaped way. The 2D area only serves to provide a correct
boundary condition for the 1D channel. The actual information in this area is not measured or analyzed. For this
thesis all this information is irrelevant. If one would be interested in this aspect of the model as well then it would be
necessary to widen the model or find another trick to ensure a straight wave front.
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Graph 12 Single wave travelling through the model. Dt=0.5
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This arc shaped pattern actually confirms the proper working of the boundary conditions on the 2D model.

A reduction of the time step from 0.9 to 0.5 seconds barely influences the decrease in amplitude in the 2D
component. The amplitude in this area still decreases about 25%, this means that the majority of the energy loss in
the 2D component can be attributed to the previously mentioned radiation. Entering the channel the wave still
decreases significantly: 20%. This shows how the time step choice influences the dissipation of energy in the
channel.
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Graph 13 Single wave travelling through the model, Dt=0.2

In Graph 13 the relation between timestep and dissipation is confirmed. For the 2D component the amplitude is
diminished mostly by the radiation. Decreasing the timestep barely has an effect on this. In the 1D component is the
effect is more evident. A decrease in amplitude of just a few percent is now achieved. But even a reduction of the
timestep to 0.1 seconds cannot remove the effect from energy dissipation altogether.

VILHI Number of timesteps

Although the high dissipative effect can be solved by decreasing the timestep this creates a significant side effect: a
smaller time step results in less points in the Fourier analysis. Less points in the Fourier analysis not only makes the
chart look rougher but since the first peak is so sharp it also diminshes the chance of actually hitting the exact
frequency of amplification. A small deviation can already result in a significantly lower peak. To obtain an equal
resolution with smaller timesteps the number of timesteps have to be increased. In other words the total calculated
time must remain equal. Althought the effect of increasing the total time on the calculation time is directly
proportional it is not so on the Fourier analysis calculation time. A Fourier analysis of a signal of 10000 timesteps
takes about 10 minutes a Fourier analysis of 60000 timesteps exceeds 6 hours sometimes even leading to a system
crash. The typical Fourier analysis consist of 250 frequencies for a timestep of 0.9 s and 10000 timesteps. Decreasing
the timestep to 0.2 s and doubling the number of timesteps to 20000 results in a analysis of approximately 110
samples. Eventhough this is far less than that of the other graphs it serves as a good indicator of the amplitude.
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VLIl Results

The results from the initial 1D2D model are not what were expected from this model. The model did not match the
analytical solution perfectly. Several tests were done to determine the cause for this behavior, from this the
recommendations and restrictions on the model followed. (For a precise description of the tests run and their results
refer to appendix I11.) Even with these restrictions and suggestions the model did not succeed in producing an
amplification function that matched the analytical solution. If the dissipation can be fixed by decreasing the time step
even further it is not a useful model for such small time steps require an enormous amount of calculation time. This
would then just result in a working but impractical model. A better solution for this had to be found.
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Graph 14 Amplification function for a time step of 0.2 and 20000 time steps.

In Graph 14 the amplification function is shown obtained by a small time step. In the areas outside of the peaks, the
amplification function correctly provides a factor 1. Nevertheless, in the peaks the value of 14 for the first peak is
well below the analytical solution of 28. The second peak with a value of 7 is remarkably closer to the analytical
solution 9. This shows that it is not only dissipation that causes the low results. A brief look at the spectrum for a
Riemann boundary reveals that the dissipation for the higher frequencies is noticeable but for the lower frequencies
both lines are identical.
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Graph 15 Fourier analysis of the signal at the entrance and at the end of the channel, with an open boundary on
the end of the channel.

One would therefore expect the higher frequencies to be further away from the analytical solution and the lower
frequencies closer to it. Nevertheless, the opposite is the case. This means that the high degree of dissipation is not
the cause for the difference between the analytical and 1D2D model. The source of this discrepancy has to be
investigated before further calculations are made with this model. After thorough investigation and several
modifications the 1D2D model proved to work correctly as can be seen in chapter 8.
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Vil Testing of the 1D2D model

Vil.l Introduction

The original 1D2D engine developed by Stelling has been adapted to model the seiche problem. To validate the
results of this new model several test runs were made. Initially there were some problems with the choice grid
spacing and time step. (See chapter 7 for more details) After some trail and error runs, an acceptable choice was
made about these settings. Quick run with the Europort model provided promising results. To verify the validity of
the model several other test are necessary. The results do not match the analytical solution exactly. In this appendix
synopsis will be given on the test done to with the initial 1D2D model.

VILII Models

To verify the results of the 1D2D method four models were used: the standard model closed model, the Riemann
model and the Europort model. Every one of them has a specific testing purpose.

\YIRIR! Standard Model

The standard model consists of a square two-dimensional area attached to a one-dimensional channel. The 2D area
represents the sea. The water depth is equal to 2 meters in the whole model. The North, South and West boundaries
are Riemann boundaries. The amplitude of the imposed Riemann boundary equal to zero characterizes the North and
South boundaries. This results in only outgoing waves and no incoming waves. The Western boundary, also a
Riemann boundary, is responsible for sending in the desired signal. For waves travelling in an outward direction, this
boundary is completely transparent. The eastern boundary at the end of the channel is a discharge boundary set on
zero. This type of boundary is a pure reflective one and wili reflect all incoming waves.

With this setup of boundaries on the two dimensional component the outgoing radiation of waves can be modeled
correctly. Incoming waves are send into the channel by the western boundary. Waves reflecting from the shore and
radiating from the channel pass the boundaries unobstructed without any undesired reflections.

foaf

§1gig
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Figure 4. Standard model.

The dimensions of the model are not set to model real world dimensions but at this stage; it is only necessary to
evaluate the validity of the results. The dimensions are set to give a width/length of the channel ratio of 20:
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Dx, Dy =4 m

Dt=09s

Depth =2 m

Chezy =60

Width of the channel = 8m
Lenght of the channel = 160

VILILH Closed Model

The closed model is used to evaluate the amplitude of the waves at the shore. For a correct calculation of the
amplification function it is necessary that a clear signal be obtained without of the disturbing effect of the radiating
waves emitted from the channel. For this purpose, the channel is removed from the system.

T of

§rgg

U |

Figure 5. Closed Model

VILILIHT  Riemann Model

As stated before the 1D2D engine suffers from a high degree of energy dissipation. To evaluate it magnitude and the
effect of it on the model it’s necessary to remove the other variables that also influence the amplitude. A clear signal

o ff

gl i d

Figure 6. Riemann Model
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without the effects of reflections or radiation is required for this. This can be accomplished by making the channel
infinitely long so that no reflections can influence the waves in the rest of the channel. Creating a signal originating
at the western boundary will send a pure signal into the system. This signal will propagate through the model
undisturbed.

Imposing a Riemann boundary with amplitude equal to zero on the end of the channel will make this boundary
completely transparent for outgoing waves. In this case waves will travel through the channel into the Riemann
boundary and disappear. The resultant effect is the same as for an infinitely long channel. All waves can pass
through.

VILILIV  Europort Model

This model is almost identical to the standard model. The difference lies in the dimensions. The dimensions in the
Europort Model are equal to those as used for the modeling the Europort in the Trisula and Pharos calculations. This
permits a comparison between the four models, namely: Seiches 11, Trisula, Pharos and 1D2D.

The dimensions are:
Width = [000m
Length = 28000m
Chezy = 60
At=50s

Ax=T00 m

VILIIT Analytical Solution

The analytical solution, explained in detail in chapter3, is derived from the Sommerfeld boundary condition and the
linear shallow water equations. The validity of the model can be verified by comparing the results to those obtained
by an analytical model. This comparison is valid because with small amplitudes and flow velocities the effect of
friction and advective terms is negligible compared to the linear terms.

VILIHLE  Test1

The standard model was used in this test. A signal consisting of multiple frequencies is sent into the model, with a
spatial step of 4m and a time step of 0.9 seconds.
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Graph 16 Amplification function (c11)

At first sight, this graph appears to give correct results. The peaks are on the right position: one fourth and three-
fourths. The amplification factor on the regions next to the peaks is 1. However, the peaks height is not correct.
According to the analytical solution, the first peak should give a value of 28 and the second a peak of 9. Both peaks
are about 3 times less!

This low amplification factor cannot be attributed to friction because the amplitudes are in the order of a few
millimeters on a water depth of 2 meters. Friction is negligible on this scale.

VILIV Numerical dissipation

Depending on the way a numerical model is implemented and what schemes and discretization are used, a type of
numerical dissipation can be introduced into the system. Numerical dissipation is similar to ordinary dissipation of
energy due to turbulence or friction, but it is not caused by natural phenomena but rather their translation into a
digital system. Numerical dissipation can also ‘leak’ energy. To verify the order of magnitude of this numerical
dissipation the Riemann model was used. With this model a clear signal can be obtained without any amplification or
other disturbances in the signal. In theory, the incoming signal should be equal to the outgoing signal. A combined
signal was sent into the Riemann model and the signal at the begin and end of the channel were analyzed.
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Graph 17. Fourier analysis for a Riemann model

The line at the top shows the amplitudes per frequency at the begin of the channel, node 823. The line sloping down
is the spectrum at the end of the channel. The input signal is uniform over the entire spectrum. At node 823 the signal
is still uniform, just a bit lower than the imposed signal. This confirms the hypothesis that the majority of the energy,
which is lost in the 2D part, can be attributed to radiation through the boundaries. This radiation lowers all
amplitudes regardless of their frequency; it does not work as a filter. Therefore, the entire signals amplitude is
decreased instead of only the higher frequencies. The signal in the 1D channel is distorted. The waves at the lower
end of the spectrum retain their amplitude; this in contrast to the significant reduction in amplitude of 40% by waves
in the higher region of the spectrum. It should aiso be noted that since there is no radiation through the boundaries
the entire signal is not lowered. It is as if some sort of filter acts on the signal. The short waves are influenced much
more by a large time step than the longer waves. This is due to the numerical dissipation in the model. The shortest
wave in the spectrum has a wavelength of 160 m, at a water depth of 2 m this is a period of: 36 seconds. With a time
step of 0.9 seconds this is more than 40 points per wave: sufficient to correctly model it. Therefore, this cannot be the
cause either.

To verify the hypothesis that the amplitude reduction is caused by a too large time step, the time step is reduced to
0.2 seconds, resulting in the following graph:
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Graph 18 Spectrum of the signal at node 783 and 823 for a Riemann model. Time step = 0.2 seconds

In graph 3, it can be clearly seen that now the amplitude of the higher spectrum does not decrease as much as with a
large time step. For the lower region and especially near 0.25, for the factor L/lambda, both signals are identical. This
is an important part of the signal because this is where the first peak occurs. The first peak now should have reached
the analytical solution and the second peak should be close to it. Due to some numerical dissipation, it can be lower
though. Another test run was made with the standard model to verify this, but now with a time step of 0.2 seconds.
Since the resolution of the spectrum is directly proportional to the time step and number of time steps, a smaller time
step results in a decreased resolution. To compensate for this the number of time steps was doubled. This should be
enough to provide an indication of the amplification and confirm the theory.
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Graph 19. Amplification function for a Standard model. Time step = 0.2 seconds.

Although the first peak shows an increase up to 14, it is still a factor 2 away from the analytical solution for the first
peak of 28. The second peak, with 7, is much closer to the analytical solution of 9 for the second peak. If one now
compares the spectra from both signals one with a time step of 0.9 and one with 0.2 seconds, it can be seen that the
difference for the lower frequency region is small. The amplitude decrease for waves with a L/lambda factor of 0.25
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is minimal. However, this minimal difference accounts for an increase in amplification factor of 40%. This shows
how sensitive the peak is for numerical dissipation an even smaller time step could be taken to circumvent this but
this would result in an impractical model.

Y//A4 Resolution

Due to smaller time steps the resolution of the signal decreases. A typical graph of the amplification function is
composed of 250 points/frequencies. Decreasing the time step from 0.9 to 0.2 decreases the number of samples to 55.
This results in a very rough chart. By doubling the total number of time steps one can obtain a graph with a
resolution of 110 points. This is still not as accurate as the one with 250 points but it may serve as an indication. The
number of samples is so important because of the narrowness of the peak itself.

It could be that the model is actually behaving correctly with a time step of 0.2 but that the peak, because of its
narrowness, has not been sampled on the exact frequency. With such a narrow peak, a small deviation from the exact
frequency results in a much lower amplification factor. To circumvent this the resolution of the graph could be
increased. This requires more samples and therefore longer total time. Because the other programs used to perform
the Fourier analysis cannot cope with more than 20000 time steps, another method was used. Using a single
frequency wave it is not necessary to employ a Fourier analysis to determine its amplitude. This is of course only
possible as long as the wave does not deform. Due to the extremely small amplitude bottom friction has no
significant effect on the wave. The wave will remain sinusoidal in the linear region. Therefore, various runs were
made with single frequencies each to verify the results:
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Graph 20. Sensitivity analysis for the first peak.

The squares on graph 5 are the 3 points surrounding the first peak on the Fourier analysis graph 4. The diamond
shaped points show the results from the various single frequency runs. Although it appears that the actual peak has
been hit correctly, it must be noted that due to the narrowness of the peak it may still lie in between the investigated
points. Only an increase in resolution can prove this.

[t should be noted that this is actually not a truly correct manner of obtaining the amplification factor. In a signal
composed of many frequencies, all frequencies influence each other. Sending in a single frequency this effect is not
present. However, this effect only occurs as soon as the non-linear terms in the equation of motion start kick in. The
order of magnitude of the used frequencies is still in the linear region. Therefore, this is a legitimate way of verifying
the amplification factor.
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ViL.viI Conclusion

The model failed in reproducing the exact results of an analytical model. Without this important requirement further
testing and use of this model is not advised. Unless the cause and solution to the discrepancy in the peak height can
be found and implemented this model should not be used to calculate the amplification function for a seiches
problem. It may be that comparing this model to an analytical model is not valid. The analytical model has of course
only one boundary condition, the Sommerfeld radiation condition. This model is implicitly fitted with this boundary
and perhaps more. What is surprising is that the results resemble those of the true 2D model such as TRISULA and
PHAROS. Those models do not match the peak of the analytical amplification function exactly either.
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