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Abstract—Transit networks are complex systems in which
the passenger flow dynamics are difficult to capture and un-
derstand. While there is a growing ability to monitor and record
travelers’ behavior in the past decade, knowledge on network-
wide passenger flows, which are essentially high-dimensional
multivariate data, is still limited. This paper describes how
Principal Component Analysis (PCA) can be leveraged to develop
insight into such multivariate time series transformed from raw
individual tapping records of smart card data. With a one-month
data set of the Shenzhen metro system used in this study, it is
shown that a great amount of variance contained in the original
data can be effectively retained in lower-dimensional sub-spaces
composed of top few Principal Components (PCs). Features of
such low dimensionality, PCs and temporal stability of the flow
structure are further examined in detail. The results and analysis
provided in this paper make a contribution to the understanding
of transit flow dynamics and can benefit multiple important
applications for transit systems, such as passenger flow modeling
and short-term prediction.

Keywords—Transit system, smart card data, multivariate pas-
senger flows, principal component analysis

I. INTRODUCTION

Transit systems have been rapidly developed in many
places as a solution to mobility and environmental problems,
especially in metropolitan areas with dense population and
limited road resources. These transit systems, mostly com-
prised of lines of buses, trams and metros, are being used by a
great number of travelers every day for all kinds of activities.
As many transit systems are still expanding and attracting
more travelers, it becomes imperative for transit researchers,
managers and operators to gain more knowledge on such
complex systems, which can largely benefit the development of
advanced transit management tools. For example, one of the
significant tasks is to understand the dynamics of passenger
flows in transit systems in order to facilitate advanced transit
fleet and demand management. This particular task, which was
until recently hindered by limited amount of flow observations,
has now been enabled thanks to the vast amount of smart
card data collected by automatic fare collection (AFC) systems
[1]. Since individual travelers’ trips are passively recorded
while they travel, the information contained in such data is
very complete and characterized by fine granularity. It hence
provides both practitioners and researchers with a precious

chance to investigate transit mobility and flow dynamics in
depth.

Numerous studies which leverage smart cart data to unravel
the spatial-temporal patterns of transit trips, urban mobility and
travelers’ behaviors have been published, such as [2]. Besides,
researchers have also attempted to measure the variability of
mobility patterns [3] and identify urban activity centers or
clusters [4] based on passenger flows obtained from smart
card data. These existing studies succeeded in strengthening
our understanding of urban mobility and transit systems, but
a limited number of them were found to shed light upon
passenger flow dynamics from a multivariate perspective,
which means to deal with the high dimensionality of such
flow data. Due to the existence of the so-called “curse of
dimensionality” [5], the development of a series of important
transit applications, such as network-wide flow modeling and
prediction, might be hindered without sufficient insight into
these multivariate passenger flows. It becomes substantially
difficult to find effective and intuitive solutions in a high-
dimensional space while dealing with complex systems like a
transit network which consists of multiple lines and hundreds
of stations. As argued by [5], this particular difficulty results
from the conjunction of two effects. Firstly, some geometrical
properties of high-dimensional spaces are counter-intuitive and
different from what can be observed in 2- or 3-dimensional
spaces. Secondly, data analysis tools are usually designed in
low-dimensional spaces with intuition.

Given the research gap and difficulty described above,
this study is aimed at performing a multivariate analysis of
transit passenger flows based on a well-known dimensionality
reduction technique, Principal Component Analysis (PCA).
We detail how a one-month smart cart data set from the
Shenzhen metro system is transformed to multivariate time
series of flows and how PCA is performed on such time
series. The results of PCA, including the low dimensionality of
flows, features of principal components (PCs), approximation
of original flows, and temporal stability of flow structure, are
explicitly presented and analyzed, providing an insight into the
underlying structure of flow dynamics within a complex transit
network. Overall, this study contributes to the development of
multivariate analysis on transit passenger flows, and shows the
potential of incorporating PCA into promising applications,
such as anomaly detection and short-term forecasting.



The remainder of this paper is organized as follows. Sec-
tion II gives a general background of PCA and the specific
procedure of applying PCA to multivariate time series. Then
a detailed description of transit network and data studied
is provided in section III, followed by the presentation of
results and analysis. Conclusion is drawn in section V with
suggestions for future research directions.

II. PRINCIPAL COMPONENT ANALYSIS

A. Background

PCA was initially proposed to describe the variation of a
set of uncorrelated variables in a multivariate data set [6], [7].
So far it has been extensively used as a technique to perform
various tasks, such as dimensionality reduction, factor analysis,
feature extraction, and lossy data compression. In the field of
traffic and transportation, for example, PCA was utilized to
compress traffic network flow data [8], and was integrated into
dynamic origin-destination (O-D) estimation and prediction in
order to overcome the computational problem caused by high-
dimensional O-D matrix data [9]. It was also leveraged to
analyze travelers’ longitudinal behavior by extracting the so-
called eigen-sequences [10], to name a few.

The central idea of PCA is to reduce the dimensionality of
a data set consisting of a large number of interrelated variables,
while retaining as much as possible of the variation present in
the data set [11]. PCA achieves this target by projecting the
observations onto a new set of axes which are called the PCs.
Each PC has the property that it points in the direction of
maximum variance remaining in the data, given the variance
already accounted for in the preceding components. As such,
the first PC captures the total energy of the original data to
the maximal degree possible on a single axis. The following
PCs then capture the maximum residual energy among the
remaining orthogonal directions. In this sense, the PCs are
ordered by the amount of energy in the data they capture.

B. Application to Flow Analysis

It has been shown that PCA can be used as an effective tool
to analyze whole-network traffic flows which are essentially
high-dimensional multivariate time series [12]. By performing
PCA on the flow data, a smaller number of dimensions can
be found and leveraged to well approximate original high-
dimensional data. Let X denote a matrix of multivariate flow
time series as equation (1) shows. Each column i of X
denotes a single flow variable, while each row j represents
an observation of all flow variables at time j. This yields a
t × p matrix X, where t represents the total number of time
instances and p represents the total number of flow variables.

X =


x1(1) x2(1) . . . xp(1)
x1(2) x2(2) . . . xp(2)

...
...

. . .
...

x1(t) x2(t) . . . xp(t)

 (1)

As shown in equation (2), obtaining all the PCs of X is
actually equivalent to calculating the eigenvectors of XTX
which is a measure of the covariance between flows [11].

XTXvi = λivi (2)

where λi is the eigenvalue corresponding to eigenvector vi

(p×1) and the number of eigenvalues/eigenvectors is equal to
the number of variables p. In fact, the eigenvalue λi indicates
how much variance of the original data is explained by the
dimension i specified by eigenvector vi.

Var(vi
TX) = λi (3)

Arranging all the eigenvalues in a descending order (λ1 ≥
λ2 ≥ ... ≥ λp), the first PC is thus the eigenvector which
corresponds to the largest eigenvalue since it accounts for the
greatest variance in the entire data.

By mapping the original data onto the derived principal
component space, it can be seen that the contribution of
dimension i (the i-th PC) as a function of time is given by
Xvi. Normalizing this vector to unit length with λi as shown
in equation (4), we obtain a t × 1 vector ui which contains
the information of temporal variation along the i-th PC. As a
matter of fact, the vector ui captures the temporal variation
common to all flows along this dimension (PC). The set of
vectors [u1,u2, . . . ,up] , which are perpendicular, can thus
be referred to as the eigen-flows of X.

ui =
Xvi√
λi

(4)

Let V denote a p × p matrix consisting of all the PCs
[v1,v2, . . . ,vp] which are arranged in order. The first column
v1 refers to the first PC, and so on. Let U denote a t × p
matrix of which column i is ui. Consequently, each individual
flow Xi can be written as:

Xi√
λi

= U(VT)i (5)

where Xi is the time series of i-th flow and (VT)i is the
i-th row of V. This equation indicates that each flow Xi

is essentially a linear combination of the eigen-flows with
weights specified by (VT)i.

By selecting the first r (r ≤ p) eigenvectors with largest
eigenvalues, the information contained in original data X can
then be effectively transformed onto a r-dimensional subspace
of IRp. It is shown in equation (6) how the approximation can
be done.

X′ ≈
r∑

i=1

√
λiuiv

T
i (6)



Fig. 1. An illustration of Shenzhen metro network (2014).

III. TRANSIT NETWORK AND DATA

A. Shenzhen Metro Network

The network of Shenzhen metro system by the end of 2014
was studied. Shenzhen is one of the largest cities in China
with a metropolitan area population of over 18 million. By
the end of 2014, there were in total five lines in operation
with 118 stations. An illustration of the network is shown in
Fig. 1, where five lines are represented with different colors,
and all transfer stations are highlighted with yellow marks.
As a major transportation service in Shenzhen, the metro
system accounts for approximately one third of the total public
transport passenger traffic, which results in complex passenger
flow dynamics over time. It is therefore a significant task to
understand these flow dynamics for achieving better system
operations and management.

B. Smart Card Data

AFC system was employed by the Shenzhen metro system
and passengers could not travel without using a smart card.
Moreover, tapping is required for both entry and exit activities
because the fare was collected using a distance-based scheme.
As a result, complete travel information of individuals except
for transfer activities were recorded in the database. A typical
record includes the time-invariant anonymous card ID, metro
station ID, transaction timestamp, and transaction type (21 for
tap-in and 22 for tap-out). The data set used for this study
contains 139,646,884 records, covering the whole period of
December of 2014. The period includes 23 normal weekdays
and four weekends.

C. Entry and Exit Flow Profiles

Entry and exit flows at stations were investigated in this
study. Raw data were transformed from a per-user basis to a
per-station basis with time discretization. Time series of both
entry and exit flows for each station with a time interval of 5
minutes were constructed. In line with the operational time of
the metro system, the time horizon considered in this study was
from 6 AM to 11 PM each day (17 hours). The total number
of measurements for each flow variable over the entire period
is then 6324 (= 12×17×31). Cumulative distribution function
(CDF) plots of these flow profiles are shown in Fig. 2a. It can

Fig. 2. Illustrations of flow profiles. (a) Cumulative distribution function
plots of entry and exit flows; (b) A typical example of entry and exit flow
time series of Shenzhen metro station (Luohu station).

be understood from the diagrams that, in this case, flows are
accounted for by a relatively large percentage of stations rather
than only a few. This feature will be reflected in the following
analysis.

D. Training and Validation Sets

In order to examine whether the structure of entry and exit
flows is temporally stable, the entire data set was divided into
training part and validation part, with the former containing the
data from the first three weeks (2014-12-01 to 2014-12-21) and
the latter from the rest of the days (2014-12-22 to 2014-12-
31). Note that Christmas day and New Year Eve are included
in the validation set. The main motivation is to know whether
the decomposition of entry and exit flows into eigen-flows, as
determined by the set of PCs, is useful for analyzing data that
are not part of the input to the PCA procedure. This is crucial
for applications like forecasting. By using the training data
alone, we obtained a 4284×236 flow matrix following equation
(1). With p equal to 236, the first half of the columns were
filled with entry flows while the second half with exit flows. An
advantage of using PCA is that both entry and exit flows can
be analyzed simultaneously, thus allowing us to obtain insight
into underlying patterns of the network-wide flows.

IV. RESULTS AND ANALYSIS

A. Low Dimensionality of Flows

PCA was performed on the training flow matrix which
was specified in the previous section. Since the magnitude of
eigenvalues indicates how much variance is explained by the
corresponding eigenvector, which is equivalent to PC, a scree
plot shown in Fig. 3a based on eigenvalues can be leveraged to
conduct visual examination. It can be seen through the sharp
knee of the curve that the majority of variance contained in
the data is virtually contributed by the first few eigen-flows,



Fig. 3. Demonstration of the low dimensionality of entry and exit flows.
(a) Scree plot of eigenvalues; (b) Cumulative percentage of the total variance
explained by PCs (principal components). Over 90% variance can be explained
by only 8 PCs, while over 95% can be explained by 29 PCs.

namely the temporal variability on the first few PCs. Fig. 3b
further explicitly displays that 8 and 29 PCs, respectively, can
account for over 90% and over 95% variance in the data.

There are two possible explanations to such intrinsic low
dimensionality of multivariate flow time series. The first one is
that it may be attributed to the fact that variation along a small
set of dimensions in the original data is dominant. The second
reason is that non-negligible correlation among variables may
matter greatly, which implies the common underlying patterns
or trends across dimensions. In order to understand how each
of these two factors accounts for the variance in the current
case, PCA can be as well performed on normalized flow
variables with zero mean and unit variance. The normalization
is specified by equation (7). The motivation is that if the
low dimensionality still exists after normalization, it can be
concluded that the correlation among flows plays the most
important role because the normalization procedure has already
removed the effect of magnitude in all original flows.

X̄i =
Xi − µi

σi
(7)

where µi and σi denote the sample mean and variance of the
i-th column of X.

A comparison between normalized and unnormalized cases
is illustrated in Fig. 4. No striking difference between two scree
plot curves can be seen in Fig. 4a, which indicates that the
vast majority of low dimensionality of these flows is actually
a result of the correlations among them. Moreover, Fig. 4b
displays that the difference in flow magnitude also accounts for
the low dimensionality to some limited extent because more
PCs are needed to retain as much variance as before. This
important finding coincides with the nature of Shenzhen metro
system reflected by Fig. 2a in which the CDF curve does not
quickly reach a relatively flat level. Such pattern indicates that
this is not the case where only a few flows are completely
dominant. How these PCs relate to flow and demand patterns
are further illuminated in the following section.

Fig. 4. Comparison of PCA results for normalized and unnormalized flows.
(a) Scree plots based on eigenvalues; (b) Cumulative distribution function
plots.

B. Principal Components and Eigen-flows

Three typical examples of PCs (236 in total) and corre-
sponding eigen-flows are demonstrated in Fig. 5. While the
top eigen-flow evidently shows weekly periodicity, the other
two mostly show randomness with the middle one having two
noticeable spikes. Clearly, the first PC very well captures the
morning and afternoon peaks of passenger flows in the metro
system. The spikes in the middle plot, however, are normally
a sign of some special occurrences in the data. Following the
taxonomy proposed by [12], the top, middle, and bottom eigen-
flows can be roughly referred to as the deterministic, spike,
and noise ones, respectively, though in the current case the
spike eigen-flows are not always sufficiently significant. This
is mainly because there are not many irregular observations of
flows in the training set.

The so-called eigen-flows essentially capture all original
flows’ temporal variation projected onto the PCs. These PCs,
shown in the right column of Fig. 5, specifically determine
how their corresponding eigen-flows contribute to each original
flow. Therefore the matrix V consisting of PCs is also called
a loading matrix or coefficients. It can be observed that top
eigen-flows (variability on top PCs) make greater contribution
to original flows. This is consistent with the low dimensionality
of original flows.

It can be further investigated how many eigen-flows sig-
nificantly contribute to one single original flow. This can be
done by checking whether a loading coefficient on that row is
larger than

√
p. With p equal to 236 in this case, such threshold

would be 0.0651. This standard is deemed reasonable because
a perfectly equal mixture of all eigen-flows would result in
a row of V with all entries equal, under the condition that
columns of V have unit norm. The result of applying this rule
to all rows of V is illustrated through a CDF plot in Fig. 6a. It
shows none of the original flows needs more than 70 significant
PCs for sufficient reconstruction. In fact, about half of them
are composed of less than 45 significant PCs, implying that
each entry or exit flow only possesses a relatively small set of
temporal variability features.

Furthermore, it is also possible to understand how the



Fig. 5. Illustration for examples of eigen-flows and PCs.

magnitude of a single flow is linked to the significant PCs
(loading coefficient larger than

√
p) that constitute it. A graph

shown in Fig. 6b is used for better visual examination. Its
horizontal axis represents the index of PCs ordered in a
descending sequence in terms of their eigenvalues (how much
variance they explain), and the vertical axis represents the
index of original entry and exit flows which are also ordered
in a descending sequence in terms of their average magnitude.
Once a loading coefficient is larger than

√
p in absolute value,

a black dot will be plotted at that spot. In this manner, the
top rows in the graph demonstrate the PCs that are significant
in explaining the temporal variability of strong flows, while
the bottom rows show those that are significant for weak
flows. Although all the dots in Fig. 6b scatter considerably,
a general diagonal trend from upper left to lower right can be
identified. It implies that larger flows tend to be composed of
most significant PCs, and vice visa (smaller flows tend to be
composed of insignificant PCs). This feature pertains to the
approximation of original flows using PCs, which is going to
be discussed in the following section.

C. Reconstruction of Original Flows using PCs

According to equation (6), the original flows can be
approximated using a set of selected PCs. Essentially, such
approximation is realized by forming a linear combination
of eigen-flows. Fig. 7 demonstrates three typical examples
of reconstructed flow time series using both 8 (90% total
variance explained) and 29 PCs (95% total variance explained).
Specifically, the left column displays the overall time series for
three weeks, while the right one zooms into a more detailed
level with only one day illustrated.

As the busiest metro station in Shenzhen, Laojie station’s
entry flow profile (top) can be well reconstructed in both
scenarios. The middle row, however, shows a different case
where the original data (Luohu entry flow) can be approxi-
mated much better with 29 PCs than 8 PCs. Note Luohu is

Fig. 6. Illustration of analysis on flow structure. (a) CDF plot of the number of
significant PCs needed for original flows; (b) A scatter plot showing how every
single flow is significantly contributed by PCs. The flow index is arranged from
top to bottom in a descending order in terms of flow magnitude, while the
PC index is arranged from left to right in a descending order in terms of the
variance it explains.

a metro station heavily used by travelers because of the train
station and port connecting Shenzhen and Hong Kong next
to it. The bottom row then shows something different from
both above. It can be seen that the entry flow at AntuoHill
station is very low all the time, and both approximations cannot
capture detailed fluctuations but the main trend of the time
series. These results are in line with the low dimensionality
of flows and the implication obtained from the last section
that larger flows tend to be composed of most significant PCs,
while smaller ones tend to be composed of insignificant PCs.

D. Temporal Stability of Flow Structure

With the whole data set divided into training and validation
parts, it can be examined whether the PCs derived from the
previous time period can be also used to approximate future
time series. It is valuable to know if the underlying flow
patterns are stable over time so that this intrinsic feature
can benefit multiple applications, such as anomaly detection
and short-term prediction. In practice, the PCs contained in
the loading matrix V was computed using the training set,
and then these PCs were used to derive eigen-flows of the
validation data set based on equation (4). Eventually, the same
approximation procedure can be performed using equation (6),
of which results are shown in Fig. 8.

Overall, it can be observed that the PCs computed using
past data are still capable of approximating the profile of future
data. Nevertheless, it should be noticed that the effectiveness
of these “old” PCs can be diminished when non-recurrent or
special events occur, as shown in the top row of Fig. 8 which
demonstrates the entry flows of Laojie station on the new year
eve (December 31, 2014). With more incoming passengers than
an average weekday, it can be seen that the approximation
results of both cases (8 and 29 PCs) illustrate more deviation
from the original flow as well. The comparison between the
top right plots of Fig. 7 and Fig. 8 makes it even clearer. As
to the other two examples, however, the distinction is not as
clear as the case of Laojie station. It can thus be concluded that
the structure of flows captured by PCs can still be temporally



Fig. 7. Examples of approximating original flows using different number of
PCs. The left column illustrates the results of the entire period covered by the
training data, while the right column shows the zoom-in plots of the first day
(December 1, 2014).

stable, mostly for normal days, but failure can occur when
there are uncommon changes in flows.

V. CONCLUSION

This paper demonstrates how Principal Component Anal-
ysis (PCA) can be applied to multivariate transit passenger
flows as a solution to high-dimensional data analysis problems.
With a one-month smart card data set from the Shenzhen
metro system leveraged, PCA is performed on a 4284 × 236
multivariate time series matrix (entry and exit flows consid-
ered simultaneously) transformed from the original individual
tapping records. The results and analysis show that a great
amount of variance contained in the original data can be
effectively retained in lower-dimensional sub-spaces composed
of top few Principal Components (PCs). This feature of low
dimensionality is thus thoroughly examined in the study, with
the essence of PCs and eigen-flows, as well as the temporal
stability of PCs revealed in the subsequent investigation.

As the availability of advanced transit data increases
rapidly, new chances of understanding the dynamics of com-
plex transit systems have been opened up. Future studies can
explore how the low dimensionality of flows can be incorpo-
rated in transit flow modeling and prediction. Moreover, other
non-linear dimension reduction techniques which can keep the
nonlinear relations between the components of the initial data,
as mentioned in [5], can also be tested and compared in the
context of transit systems.
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Fig. 8. Examples of approximating flows using PCs that are not computed
based on these flow data. The left column illustrates the results of the entire
period covered by the validation data, while the right column shows the zoom-
in plots of the last day (December 31, 2014).
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