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ABSTRACT
This paper presents a novel framework for customised modular
bus systems that leverages travel demand prediction and modu-
lar autonomous vehicles to optimise services proactively. The pro-
posed framework addresses two prediction scenarios with differ-
ent forward-looking operations: optimistic operation andpessimistic
operation. A mixed integer programming model in a space-time-
state network is developed for the optimistic operation to determine
module routes, schedules, formations and passenger-to-module
assignments. For the pessimistic case, a two-stage optimisation pro-
cedure is introduced. The first stage involves two formulations (i.e.,
deterministic and robust) to generate cost-saving plans, and the
second stage adapts plans with control strategies periodically. A
Lagrangian heuristic approach is proposed to solve formulations effi-
ciently. The performance of the proposed framework is evaluated
using smartcard data from Beijing and two state-of-the-art machine
learning algorithms. Results indicate that the proposed framework
outperforms the real-time approach in operating costs and high-
lights the role of module capacity and time dependency.
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1. Introduction

Theon-demandcustomisedbus (CB) service is a fast-growingpublic transit (PT) travelmode
that aims at alleviating traffic congestion and enhancing individual mobility and accessi-
bility (Asghari, Al-e, and Rekik 2022). This demand-responsive PT system promises to offer
flexible, transfer-free and door-to-door travel capability to passengers with similar travel
requirements in time and space (R. Guo et al. 2019).

One significant advantage of CBs compared with traditional route-based PT systems
is that passengers can reserve services in advance via online platforms (Lyu et al. 2019).
This beforehand information (i.e., reserved demands that comprise pick-up and drop-off
points and preferred time windows) enables CB systems to explore the representative
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demand-supply patterns, predetermine planning activities and avoid excessive capacity
(X. Chen et al. 2021). On the other hand, this also leads to one of the major challenges of
CB operations: how to accommodate real-time requests submitted during operation while
ensuring punctuality and a good level of service for reserved demands.

Existing approaches focus on the interests of operators by exploiting dynamic demand
insertion, in which a predefined en-route service is updated with extra detours to pick
up and drop off newly appearing requests, and dynamic dispatching strategy in which
idle vehicles are activated to emerging demands (C. Wang, Ma, and Xu 2020; D. Huang
et al. 2020). Such approaches take the reactive perspective of adapting an existing service
to some unexpected demands in real-time and, therefore, have limited ability, such as inef-
ficient vehicle allocation, suboptimal routing and scheduling delays. It can be beneficial to
forecast travel requests to support proactive routing and scheduling, which enables man-
aging demand surges better, avoiding overcrowded or near-empty services, and ultimately
offering a higher level of service for passengers. Existing studies on CB demand acquisition
mainly focussedon theextractionof potential requests frombus smartcarddata (SCD), such
as Qiu et al. (2018) and R. Guo et al. (2019), while there is a lack of work to anticipate travel
requirements, which has been instead extensively explored of ride-hailing and shuttle bus
systems (Kong et al. 2018; Z. Huang et al. 2021).

Even in the case of predictable newly incoming requests, conventional CBs fail to fulfil
the time- and space- fluctuating travel demandswithhuman-driven fixed-capacity vehicles,
which fosters the interest in CB systems with the potential to exploit Modular Autonomous
Vehicles (MAVs). The modular feature allows significant flexibility in capacity, i.e., multiple
units can assemble together into a larger vehicle, or disassemble into smaller ones at any
time and place, to adapt capacity to current or expected demands. The module formation
has already been targeted in demand-responsive transit (DRT) services by X. Liu, Qu, and
Ma (2021) and Gong et al. (2021). The adoption of modularity provides the opportunity to
improve the capacity utilisation rate, energy consumption-saving and systemperformance
in PT service by jointly optimising the module formation and service plan (Z. Chen, Li, and
Qu 2022).

While some studies have explored modular on-demand services, they have typically
yet to incorporate newly incoming requests into their designs. Additionally, the literature
on CBs has mainly focussed on reactive operational approaches for handling incoming
requests. This work addresses these gaps by proposing a proactive CB system that employs
MAVs. By integrating demand predictions, the proposed system can shift frommyopic and
reactive decision-making to a forward-looking and proactive design, enabling dealingwith
reserved and incoming requests at minimal operating costs.

This paper proposes a novel framework for customised modular bus (CMB) systems to
generate forward-looking operational designs. We focus on two different forecasting sce-
narios, scenario 1 (optimistic) and scenario 2 (pessimistic), and then use these terms as syn-
onyms in the rest of the paper. Optimistic operation assumes a high forecasting capability
where sufficient resources are available for complex forecast modelling, and the passen-
gers’ demands have somepatterns that support predictions. Amixed integer programming
model applying a space-time-state network is developed here to jointly determinemodule
routing and scheduling, passenger-to-module (P2M) assignment, and module formation
design. As this proactive plan is pre-designed, this operation greatly relies on predicted
demands, and has no adaptation during operation. Pessimistic operation considers the
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limited accuracy of predictions where simplicity is a priority, the cost of forecasts is rela-
tively low, anddemandsarehighly irregular. Todealwith this case, a two-stageoptimisation
procedure is introduced. The first stage involves a deterministic and robust formulation
to create conservative plans based on uncertain predictions, including module move-
ments and P2Massignments, with aminimal penalty incurred for unserved passengers. The
second stage employs control strategies to adjust the plans, including changing routes, dis-
assembling modules and reassigning passengers, to fulfil actual requests received during
operation.

This study makes three primary contributions:

• First, the proposedCMB framework leverages the benefits ofmodular autonomous vehi-
cles and integrates demand predictions, to proactively manage reserved and incoming
travel requests. This approach fosters forward-lookingoperations, accommodating vary-
ing vehicle capacity based on predicted incoming demands, thereby enhancing the
operational efficiency of the CMB system.

• Second, the proposed framework considers both highly and less accurate prediction
scenarios, covering the full spectrumofpossible cases encountered in real-worlddeploy-
ment. Two forward-looking operations, namely optimistic and pessimistic operations,
are developed to tackle each scenario, respectively. The optimistic operation is a purely
proactive service design that significantly relies on predictions. The pessimistic oper-
ation combines proactive and reactive designs, allowing services generated based on
predictions to be adjusted to meet actual demands.

• Finally, an extensive experimental analysis is conducted with historical smartcard data
(SCD) from Beijing collected over 2 months. State-of-the-art machine learning algo-
rithms are exploited to generate highly and less accurate prediction scenarios. Our
findings show that the proposed system can effectively leverage demand predictions
to improve operational efficiency compared to a real-time reactive operation. Besides,
module capacity and time-dependent travel time heavily influence module utilisation
and system performance.

The remainder of this paper is organised as follows. Section 2 reviews the related studies.
Section 3 formally defines the addressed problem. Sections 4 and 5 illustrate the formula-
tions and solution approaches for optimistic and pessimistic operations. Section 6 reports
the computational results andanalysis. Finally, Section7 concludes this paper anddiscusses
future work.

2. Related work

This section is devoted to discussing relatedwork from the areas of CB, demandpredictions
in public transport, and applications of modular autonomous vehicles to PT.

2.1. Customized bus service design problem

CBs originated from car-sharing andwere introduced in the late 1970s. This novel demand-
responsive transit system has been implemented inmany cities, such as Beijing and Shang-
hai, and it can provide non-transfer services to passengers with similar travel requirements
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(Asghari, Al-e, and Rekik 2022). The comprehensive introduction of CB systems is referred
to T. Liu and Ceder (2015).

The traditional CB operational design problem aims to optimise flexible services for
already known travel demands. For example, Ma et al. (2017) first introduced the CB line
planning framework, where the deployments of stops and routeswere generated based on
clustered OD pairs. This framework was extended to a planner, including timetable design
and vehicle schedules in Lyu et al. (2019). In operation research, the CB service design with
static demands extends the vehicle routing problem with pick up and delivery (VRPPD),
such as X. Chen et al. (2021).

In the limited literature considering dynamic travel patterns, the CB operational design
has been formulated into a hybrid optimisation problem with static and dynamic stages.
The static optimisation problem can be modelled as a CB routing problem with time win-
dows, while the dynamic optimisation mechanism is adopted to re-optimise the service
to demands collected periodically. D. Huang et al. (2020) proposed a two-stage opti-
misation approach for the CB network design problem with maximum profit, in which
incoming passengers were added to existing solutions with a dynamic insertion algorithm.
C. Wang, Ma, and Xu (2020) put forward the real-time CB service optimisation under
stochastic user demand and designed a two-stage method based on Non-dominated
sorting genetic algorithm II algorithm to process the fixed and newly-added passen-
gers. In Y. Wu et al. (2022), the unexpected passengers were fulfilled with the periodic
re-optimisationprocedure,where real-timedemandswere servedwith four passenger han-
dling approaches. These approaches attempt to tackle dynamic travel patterns by imple-
menting reactive routing and scheduling; they may be limited in their ability to optimise
services to short response times and short time horizons.

2.2. Employing demand prediction in public transit operations

Many researchers have recognised the potential of short-term travel demandprediction for
controlling andmanaging transit systems. Estimatinghigh-value travel information (includ-
ing origin-destination (OD) pairs and preferred departure time) is challenging with various
data sources, owing to issues related to data dimensionality and sparsity (P. Li, Wu, and
Pei 2023; Y. Liu, Liu, and Jia 2019). The conventional predictive methods are always practi-
cally inapplicable due to the spatial and temporal attributes of travel data (Jiao et al. 2016).
To overcome the issue, numerous studies have exploitedmachine and deep learning tech-
niques in OD demand prediction, such as convolutional neural networks (Ke et al. 2017),
stacked gradient boosting decision trees (W. Wu, Xia, and Jin 2021), and long short-term
memory (Baghbani, Bouguila, and Patterson 2023).

The growing interest of OD demand prediction is driven by its practical benefits for
both passengers and PT systems (Feng et al. 2021; Wen, Nassir, and Zhao 2019). For pas-
sengers, the accurate demand forecast can pave the way to proactive operational designs,
enhancing the overall travel experience. The work of Van Engelen et al. (2018) has proven
that passenger in-vehicle times can be reduced when demand prediction is employed in
routing and vehicle relocation. From the perspective of PT systems, demand prediction
plays a pivotal role in tracking the spatial-temporal distribution of demands. This pro-
motes efficient decision-making to improve system performance, such as allowing control
strategies to address time-varying demands or mitigate deadheading (Kong et al. 2018;
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Kontou, Garikapati, and Hou 2020). For example, W. Wang, Zong, and Yao (2020) devel-
oped a proactive real-time control strategy that couldmodify bus schedules beforehand to
avoid disturbances; Grahn, Qian, andHendrickson (2021) demonstrated that implementing
demand predictions significantly improved the reliability of travelling times (Grahn, Qian,
and Hendrickson 2021). Furthermore, a few studies have explored how predictive accuracy
impacts passenger-oriented transit services. They found that the performance is greatly
affected by noise distribution skewness and occasional substantial prediction errors (Peled
et al. 2019, 2021).

2.3. Application ofmodular autonomous vehicles in transit systems

Adopting MAVs in PT systems has attracted significant attention in the literature. This idea
enables the modular formation design (i.e. multiple module units can be assembled and
disassembled)with the functionality of dynamic capacity on roads, which can achieve time-
varying capacity design for addressing uncertain and uneven demands in transit systems
(Q. Li and Li 2022; Tang et al. 2023; Z. Chen, Li, andZhou2020). Some studies have leveraged
the benefits of MAVs on the mismatch between heterogeneous demand and fixed vehicle
capacity, enabling terminalmodule formation (Dakic et al. 2021; Z. Chen, Li, andZhou2019).
Subsequent work has explored the case where varying-capacity service is generated in
motion (Tian et al. 2022). For example, J. Wu, Kulcsár, and Qu (2021) depicted module for-
mation operations that occurred based onmovement directionswhen they approached an
intersection. Z. Chen, Li, and Qu (2022) introduced a station-wise formation operation for
urban mass transit corridor systems.

Despite on-demand transit services can be very beneficial, a limited work explored the
combination of modularity with a semi-flexible or fully-flexible transit system. X. Liu, Qu,
and Ma (2021) presented a flex-route modular transit service for heterogeneous demands,
where vehicles were allowed to deviate from base routes for curb-to-curb requests; Gong
et al. (2021) designed a transfer-based CMB operational network considering a passenger-
to-route assignment, allowing passenger in-motion transfers; Fu and Chow (2021) pro-
posed a modular dial-a-ride problem and introduced a mixed integer linear programming
to track vehicle platoon status and capture passenger en-route transfer. These studies
assume that passengers are known beforehand instead of dynamic travel patterns.

Different fromprior studies that havemainly employed reactive strategies formanaging
incoming demands of CB systems, this work focuses on developing a proactive operational
design framework informed by future demand predictions to address emerging demands.
This innovative framework takes advantage of MAVs to extend conventional CB to more
advanced CMB systems, thereby enhancing capacity utilisation. To our knowledge, this
integrated concept has not been previously explored in the existing body of literature.

3. Problem statement

This paper considers the proactive operational design of the CMB system that can deal
with two distinct prediction scenarios, namely optimistic and pessimistic operations. The
former operation tackles the highly accurate prediction scenario, where forecasts aremade
by sophisticatedpredictivemodels that can achieve potentially high accuracy, given a large
amount of available data. The latter corresponds to the less accurate prediction scenario,



6 R. GUO ET AL.

where the predictive capabilities of models are limited, but may provide other advantages
such as simplicity or lower resource requirements. The considered problem aims to iden-
tify the most cost-saving services by jointly determining module movements, formation
design, and P2M assignment.

Figure 1 presents the timeline of the proposed system. Three types of travel demands
are considered: reserved demands (PS) collected before operation, estimated incoming
demands (PF), and actual incoming demands (PR) during operation. PS and PF are static
and known in advance, while travel demands of PR are obtained periodically from the plat-
form within each time interval h (h denotes a customised inter-operation interval, which is
assumed to be 15 min here). Each passenger group p (p ∈ PS ∪ PF ∪ PR) is characterised by
the number of passengers qp > 0, an origin r, a destination s, and desired time windows
[er , lt] and [es, ls] for departure and arrival.

In the context of optimistic operation (see Section 4), the central system has the full
information of PS and PF before operation (i.e.before timestamp t0), and aims to min-
imise operating costs by jointly planning the CMB service. However, due to the reliance
on demand predictions, in this context, there is no adaptation of the service to the real
emerging demands during operation.

In the pessimistic operation scenario (see Section 5), the incoming demandsmay be sig-
nificantly underestimated or overestimated, leading to greater resource wastage or unmet
demands. Thus, a two-stage optimisation procedure is employed. The first stage formulates
a deterministic and robust formulation, considering the penalty of unserved passengers,
to produce initial plans with PS and PF . The second stage involves periodic adjustment
with control strategies, which can update the plans at each timestamp t within the oper-
ation period (from t0 to T). Specifically, the central system evaluates predictive demands
PF with actual needs PR collected during h to adjust plans at the end of h (i.e. timestamp t)
accordingly.

Travel demand prediction. In this work, we utilise historical trips extracted from the bus
SCD to generate predictions, following the methodology of R. Guo et al. (2019). Predictive
processing includes three main activities: aggregation of ODs, feature extraction, and

Figure 1. Timeline of the CMB system.
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demand prediction. We extend the OD-based trip features by considering the time period,
OD flow, day type, and demand size. Given the complexity and nature of the features, two
state-of-the-art machine learning methods (namely LightGBM and AdaBoost), which have
demonstrated their effectiveness in regression modelling, are selected via a preliminary
set of experiments to deliver the accurate and less accurate predictions (Ke et al. 2017;
Schapire 2013). It is worth noting that the proposed framework is independent of the spe-
cific tool used for generatingpredictions. For amore comprehensive descriptionof our data
processing and predictive methods, please refer to Section 6.2.

Modular feature.This paper explores theCMBsystem,which considers a set of fuel-based,
homogeneous modules (M = {1, 2, . . . , |M|}) with a fixed capacity cap. One key feature of
the system is that these modules can be assembled and disassembled into vehicles on
roads, with different formations w(w ∈ W) depending on the number of modules incor-
porated. This adaptability allows the CMB system to dynamically change its capacity to
meet demands,making it highly flexible. Figure 2 shows an example ofmodule assembling
and disassembling operation based on the spatial and temporal travel requirements. The
demand of O1 → D1 is 9 people, a 10-people module is dispatched with formation w = 1
to serve. After reaching D1, this module is assembled with a module disassembled after
visiting O4 → D4 and O5 → D5. This assembled vehicle with formation w = 2 continues
serving 18 passengers ofO2 → D2. Then, three dispatchedmodules are reassembled into a
vehicle of formation w = 3, delivering 25 passengers from O3 → D3. It is noted that there
is no passenger movement between modular units.

Network representation. The CMB service design problem can be defined as a physical
transportation network (N, L), where the vertex set N consists of depot set O and demand
vertices set S, L represents the set of directed links. Each directed link (i, j) is associatedwith
a time-dependent travel time TTi,j,t from vertex i to j departing from time t. The travel speed
of each arc is a step function of the time, and the corresponding travel time function is a
piecewise linear function (R. Guo et al. 2021). To integrate all decision-making into a uni-
fied optimisation framework, the network (N, L) is extended to space-time-state network
G = (V ,A), which combines travel time and load information. The space-time-state vertex
(i, t, k) indicates the module maintains the loading state k (i.e. the cumulative number of

Figure 2. Proposed modular autonomous customised bus service.
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in-vehicle passengers) at vertex i at time t. A is the set of arcs. Each arc (i, j, t, t′, k, k′) ∈ A
is a space-time-state path from vertex (i, t, k) to vertex (j, t′, k′), signifying that the mod-
ule travels through the physical arc (i, j) during the time period (t, t′) with the loading state
changing from k to k′. The timeperiod (t, t′), considering the time-dependent travel time for
(i, j) anddwell time at j, canbe treated as the service timeneeded for pickingupor dropping
off activities. The cumulative loading state k can capture the state transition for both pick-
up and drop-off arcs. On a pick-up arc (with j as the pick-up vertex), passengers are picked
up, and the loading state increases to k′ at j. On the drop-off arc (with j as the drop-off ver-
tex), passengers are delivered and the loading state decreases to k′ at j. The state k should
be ≥ 0 and ≤ cap. The time horizon is uniformly divided into a series of 1-min intervals in
the planning time horizon. In order to eliminate any infeasible arcs, the solution algorithm
includes a set of constraints that take into account time windows and module capacity (Y.
Wang et al. 2020).

Assumptions. The proposed CMB operational design problem is based on the following
assumptions: (1) The reserved and predicted travel demands PS ∪ PF are known in advance,
the actual demands PR of each h are known at the end of the interval, i.e. t. (2) All modules
are fuel-based and homogeneous with the same capacity, eachmodule (m ∈ M) starts and
finishes the service between its earliest departure time em and latest arrival time lm from
the origin depot om to destination depot dm, with empty loading state ko. (3) The travel
time of each arc is time-variant and known, and a module departs from a vertex as early
as possible. (4) Modules can be assembled and disassembled into different formations w
with changeable capacity at any vertices during operation. (5) Passengers aggregated into
one group p(r → s) are independent and can be served by different modules, but there
is no passenger movement between modules. (6) When the pick-up arc (i, j, t, t′, k, k′) ∈
Ar(p) is visited, the service time is within the time window [er , lr], the picked up passen-
gers should ≤ qp, when the drop-off arc (i, j, t, t′, k, k′) ∈ As(p) is visited, the service time is
within the time window [es, ls], the dropped off passenger should≤ qp. (7) Passenger load-
ing state k cannot exceed the module capacity cap. The related notation is summarized
in Table 1.

4. Optimistic operation

This section introduces a mixed integer programming model to determine module move-
ments, formations and P2M assignment in the time-dependent space-time-state network.
Then, a Lagrangian relaxation approach is put forward to solve the model and find an
optimal solution.

4.1. Mathematical model

Given the reserved and predictive demands (P = PS ∪ PF), the CMB system aims to pro-
duce a solution encompassing routes, schedules, formations, and P2M assignments for
assembled or disassembledmodules. Based on themulti-dimension network, two decision
variables are defined to minimise the operating cost:

• xm,w
i,j,t,t′ ,k,k′ ∈ {0, 1}, where xm,w

i,j,t,t′ ,k,k′ = 1 indicates that the arc (i, j, t, t′, k, k′) is passed

through bymodulem incorporated to a vehicle of formationw; otherwise, xm,w
i,j,t,t′ ,k,k′ = 0.
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Table 1. Notation.

Symbol Definition

Set and indices
N Set of vertices, including depots and demand vertices
S Set of pick-up and drop-off vertices
O Set of depots
V Set of space-time-state vertices
PS , PF , PR Set of reserved, predicted and actual passenger groups
PU Set of assigned but unserved passengers
M Set of modules
T Set of timestamps in the planning horizon
K Set of cumulative passenger loading states of modules
Am Set of space-time-state arcs in modulem’s network
Arm(p), Asm(p) Set of pick-up and drop-off arcs of passenger group p in modulem’s network
i, j Index of vertices, i, j ∈ N
t, t′ Index of time stamps, t, t′ ∈ T
k, k′ Index of loading states, k, k′ ∈ K
p Index of passenger groups, p ∈ PS ∪ PF ∪ PR
(i, t, k), (j, t′ , k′) Index of space-time-state vertices
(i, j, t, t′ , k, k′) Index of space-time-state arcs indicating that the module travels from vertex i at time t with loading

state k to vertex j at time t′ with loading state k′

Parameters
cwi,j,t,t′ ,k,k′ Travel cost on arc (i, j, t, t′ , k, k′) per module involved in formationw

cwd Departure cost per module if it is involved in the vehicle with formationw
cp Penalty per unserved passenger of group p
TTi,j,t Arc travel time from vertex i to vertex j departing from time t
om , dm Origin and destination depots for modulem
em , lm Earliest departure time and latest arrival time ofm from om to dm

ko Empty loading state
λ Minimum load requirement of each module
qp Passenger quantity of passenger group p(p ∈ PS ∪ PF)
q′
p Real passenger quantity of passenger group p(p ∈ PR)
q̃p Uncertain demand quantity of group p
q̂p Standard deviation demand of group p
ratep Expected error rate of group p
δp Deviation rate of group p, δp ∈ [−1, 1]
[er , lr ], [es , ls] Time window of pick-up vertex r and drop-off vertex s of passenger group p
η Maximum vertices of changes allowed with respect to nominal plans xm∗

i,j,t,t′ ,k,k′

Decision variables
xm,wi,j,t,t′ ,k,k′ = 1, if arc (i, j, t, t′ , k, k′) is passed through by modulem incorporated to a vehicle of formation w;

= 0, otherwise
ymp Number of passengers from group p served by modulem
εp Number of unserved passengers of group p

This variable tracks the motion of each module while considering its formation. The for-
mation w refers to whether m operates independently or in combination with other
modules. This variable can understand and track the dynamic formation of modules as
they move through the network.

• ymp ≥ 0 denote the number of passengers from group p served by modulem.

The CMB optimistic operation is presented as follows:

min L = TC + DC

s.t. Constraints (2) − (13).
(1)



10 R. GUO ET AL.

The objective (1) minimises the operating cost of a CMB system, taking into account the
travelling cost TC of different module formations and departure cost DC presented as
Equations (2)–(3). Equation (2) shows that the travelling cost depends on the travelled dis-
tance of each module formation, which means TC is also related to the economy of scales.
Equation (3) specifics that the departure cost is related to the formation in which modules
are assembled at depots. It suggests that each module departs from its depot om as an
assembled vehicle with formation w at a designated time t(t ∈ T) with an initial loading
state of zero, i.e. ko = 0.

TC =
∑
m∈M

∑
w∈W

∑
(i,j,t,t′ ,k,k′)∈Am

cwi,j,t,t′ ,k,k′x
m,w
i,j,t,t′ ,k,k′ (2)

DC =
∑
m∈M

∑
w∈W

∑
(i,j,t,t′ ,k,k′)∈Am :(i,t,k)∈{(om ,t,ko)}

cwd x
m,w
i,j,t,t′ ,k,k′ (3)

Routing constraints. Constraints (4)–(7) capture the movements of each module. Con-
straints (4)–(6) ensure each module departs from its origin depot and finally arrives at its
destination depot, and make sure flow balance on every vertex in modulem’s space-time-
state transportation network. Constraints (7) specify that any given demand arc can be
visited by at least one module with any formation, ensuring that demand vertices can be
served by either a disassembled single module or an assembled combination.∑

w∈W

∑
(i,j,t,t′ ,k,k′)∈Am

xm,w
i,j,t,t′ ,k,k′ = 1, ∀m ∈ M, i = om, t = em, k = ko (4)

∑
w∈W

∑
(i,j,t,t′ ,k,k′)∈Am

xm,w
i,j,t,t′ ,k,k′ = 1, ∀m ∈ M, j = dm, t = lm, k′ = ko (5)

∑
w∈W

∑
(j,t′ ,k′)∈V :(i,j,t,t′ ,k,k′)∈Am

xm,w
i,j,t,t′ ,k,k′ −

∑
w∈W

∑
(j,t′ ,k′)∈V :(i,j,t,t′ ,k,k′)∈Am

xm,w
j,i,t′ ,t,k′ ,k = 0,

∀m ∈ M, (i, t, k) /∈ {(om, em, ko), (dm, lm, ko)} (6)∑
m∈M

∑
w∈W

∑
(i,j,t,t′ ,k,k′)∈Arm(p)

xm,w
i,j,t,t′ ,k,k′ ≥ 1, ∀p ∈ PS ∪ PF (7)

Assignment constraints.Constraints (8)make sure that eachpassenger group,whether com-
posed of reserved or predicted passengers, has the flexibility to be assigned to multiple
modules as required. ∑

m∈M
ymp = qp, ∀p ∈ PS ∪ PF (8)

Operation constraints. It enforces that the served passengers are greater than theminimum
load factor to achieve long-term profits. In other words, modules can travel if they have a
minimumnumber of passengers to serve, otherwise, it is economically unsustainable to run
the service. ∑

p∈PS∪PF
ymp ≥ λ, ∀m ∈ M (9)

Space-time-state constraints. They indicate that the module needs to visit both pick-up and
drop-off arcs of paired OD (i.e. group p), and that the number of served passengers from p
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by this module is not greater than the total passengers of p.

ymp ≤ qp
∑
w∈W

∑
(i,j,t,t′ ,k,k′)∈Arm(p)

xm,w
i,j,t,t′ ,k,k′ , ∀p ∈ PS ∪ PF ,m ∈ M (10)

ymp ≤ qp
∑
w∈W

∑
(i,j,t,t′ ,k,k′)∈Asm(p)

xm,w
i,j,t,t′ ,k,k′ , ∀p ∈ PS ∪ PF ,m ∈ M (11)

Module formation constraints. Constraints (12) enforce that the number of modules travel-
ling fromvertex i to vertex jduring timeperiod (t, t′) is equal to formationw. Constraints (13)
ensure that a modulem travels through (i, j, t, t′, k, k′) in any given formationw.∑

m∈M

∑
k∈K

∑
k′∈K

xm,w
i,j,t,t′ ,k,k′ = w, ∀(i, j, t, t′, k, k′) ∈ A,w ∈ W (12)

∑
w∈W

xm,w
i,j,t,t′ ,k,k′ ≤ 1, ∀(i, j, t, t′, k, k′) ∈ Am,m ∈ M (13)

Note that the limitation is that passengermovements betweenmodules are not considered
explicitly, as we assume passengers will remain in themodule they board. These simplifica-
tions allowus to focus on the flexible capacity affordedby themodularity andon the impact
of predictions in the considered scenarios; investigations into extensions that address those
assumptions are beyond the scope of this paper.

4.2. Solution approach

The proposed optimistic operational design problem is computationally challenging to be
optimally solved, due to itsNP-hardness. In this section,we introduce a Lagrangianheuristic
algorithm to solve it. Lagrangian heuristic algorithm has already been used for large-scale
optimisation problems, including a number of variants of vehicle routing problems (Tong
et al. 2017).

4.2.1. Lagrangian relaxation
To solve the proposed mixed integer programming model, we first reformulate it by relax-
ing constraints (10)–(11), which assemble variables xm,w

a (a is the abbreviation index of
arc), and ymp . Two sets of multipliers αm

p and βm
p are introduced to relax the corresponding

constraints:

min L(α,β) =
∑
m∈M

∑
w∈W

⎛⎝∑
a∈Am

cwa +
∑

a∈Am :(i,t,k)∈{(om ,t,ko)}
cwd

⎞⎠ xm,w
a

+
∑

p∈PS∪PF

∑
m∈M

αm
p

⎛⎝ymp − qp
∑
w∈W

∑
a∈Arm(p)

xm,w
a

⎞⎠
+

∑
p∈PS∪PF

∑
m∈M

βm
p

⎛⎝ymp − qp
∑
w∈W

∑
a∈Asm(p)

xm,w
a

⎞⎠
s.t. Constraints (4) − (9), (12) − (13).

(14)
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The new Lagrangian relaxation problem can be decomposed into two sub-problems,
namely module routing and formation problem (MRFP) and P2M assignment problem
(PAP):

Subproblem 1: MRFP (SP1(α,β)):

min SP1(α,β) =
∑
m∈M

∑
w∈W

∑
a∈Am

(cwa + cwd )xm,w
a

−
∑

p∈PS∪PF

∑
m∈M

∑
w∈W

qp

⎛⎝αm
p

∑
a∈Arm(p)

xm,w
a + βm

p

∑
a∈Asm(p)

xm,w
a

⎞⎠
s.t. Constraints (4) − (7), (12) − (13).

(15)

Subproblem 2: PAP (SP2(α,β)):

min SP2(α,β) =
∑

p∈PS∪PF

∑
m∈M

(αm
p + βm

p )ymp

s.t. Constraints (8) − (9).

(16)

4.2.2. Feasible solution generation
The Lagrangian relaxation can calculate the lower bounds of the model. However, as the
space-time-state constraints are relaxed, the optimal solution of lower bounds may only
satisfy P2M assignment restrictions. Thus, a feasible solution using the optimal routes of
the relaxation problems is generated to obtain the upper-bound solution.

Algorithm 1 Feasible Solution Generation
Input: solution x of SP1, passenger groups P = PF ∪ PS, module setM
1: for each request p ∈ PS ∪ PF do
2: if

∑
m∈M xm,w

a ≥ 1(a ∈ Arm(p),w ∈ W) then
3: Determine P2M assignment ymp
4: if

∑
m∈M ymp ≤ qp then

5: for each module route xm,w
a ∈ xp do

6: if p(r → s) ∈ Sx && RemainCapm is available then
7: Update P2M assignment for modulem

8: Put unassigned passengers (qp −∑
m∈M ymp ) into request pool PU

9: for each unassigned request p ∈ PU do
10: Dispatch newmodules for serving
11: Update P2M assignment y and determine module formation

12: Update route and formation solution x
Return: module route and formation x and P2M assignment y

Specifically, if the developed relaxed plan is a feasible solution to the primal problem,
this solution is available to update the upper bound directly; otherwise, the modifica-
tion procedure will be triggered when module routes do not satisfy the passengers’ travel
requirements. We use the routing and formation solution of SP1 to check whether the sup-
plied CMB service fulfils each travel request. For each request, passengers are assigned
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across the modules travelling through the corresponding arcs, based on the remaining
module capacity and unassigned passengers. If the provided capacities are sufficient, pas-
sengers are inserted into the current routing plan; otherwise, the unassigned passengers
are sent to a request pool. Then, newmodules are activated to cater to these demands. The
updating SP1 solution is used to compute the upper bounds. The details for generating a
feasible solution are shown in Algorithm 1.

4.2.3. Sub-gradientmethod
Generally, the standard sub-gradient algorithm is adopted to iteratively update the
Lagrangian multipliers that are given in Section 4.2.1, when calculating the upper and
lower bounds of the relaxation problem (Pu and Zhan 2021). The initial multipliers are set
to 0. Then the multipliers αn+1 and βn+1 in iteration n+ 1 can be updated based on the
sub-gradient directions of relaxed constraints, an example is given with αn+1:

αn+1 = max

⎧⎨⎩0,αn + ξn

⎛⎝ym,n
p − qp

∑
w∈W

∑
a∈Arm(p)

xm,w,n
a

⎞⎠⎫⎬⎭ (17)

where xm,w,n
a , ym,n

p are the solutions of the sub-problems at iteration n, the step size ξn is
defined in Equation (18), the step size ηn used for βn+1 is defined with similar way.

ξn = θn(UB(n) − LB(n))∥∥�(αn)
∥∥2 (18)

where UB(n) and LB(n) are the best upper and lower bounds in iteration n. The range of θn

is in the interval of [0, 1] to accelerate the calculations.
The details of the proposed Lagrangian heuristic algorithm are as follows.
Step 1: (Initialization). Initialize the Lagrangian multiplier αn and βn, set the iteration

index n = 0.
Step 2: (Lower bound generation). Solve the subproblems SP1(α,β) and SP2(α,β) with

CPLEX, and compute the LB = max{LB, SP1 + SP2} with xn and yn.
Step 3: (Upper bound generation). Determine the substituting xn, the yn with

Algorithm 1, and compute the UB = min{UB, SP1 + SP2}.
Step 4: (Update Lagrangian multipliers). Update the multipliers by the sub-gradient

method.
Step5: (Termination condition). Terminate if the relative gap between LB andUP is below

the threshold γ .

5. Pessimistic operation

This section is devoted to introducing the two-stage optimisation procedure used in the
case of pessimistic operation. For the sake of this investigation, we assume that it is possible
to estimate the expected error of a predictivemodel, for instance, by comparingpredictions
with available historical data.

Figure 1 shows that the initial plan solutions are generated in the first stage. However,
given the potential of overestimation or underestimation of demands due to the less accu-
rate predictions, it is likely that the CMB services will be overutilized or underserved, which
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can lead to significant unserved passengers or no-show passenger services. Thus, a deter-
ministic optimisation model offering partial services (i.e.conservative plans) is proposed to
minimise the penalty caused by unserved passengers on board. In addition, a nominal-
plan-based robust model is introduced to capture the risk-averse level of the system in
an uncertain demand environment. We first report two formulations are presented in Sec-
tions 5.1 and 5.2; Both formulations are tackled using the Lagrangian relaxation, which
is subsequently presented. Finally, the second stage with control strategies is given in
Section 5.3 to update the service to the actual requests at each timestamp.

5.1. First stage-deterministic optimizationmodel with penalty

This section formulates the problem as a deterministic model with a penalty, which can
reduce thewaste of resources by ignoring some predicted passengers. The detailed formu-
lation and solution approach are given below.

5.1.1. Mathematical model
To recognise the quality of predictions, we define the expected error rate ratep of each
group p. This parameter can be calculated using the real (or expected due to histori-
cal data) demand q′

p and predictive data qp. Then, we categorise the predicted data into
three classes based on the error rate: (i) underestimated groups, i.e. ratep ∈ [−50%, 0%]; (ii)
overestimated groups, i.e. ratep ∈ [0%, 50%] and (iii) overlooked groups (ratep < −50% or
> 50%).

ratep = (qp − q′
p)/q

′
p (19)

To alleviate the supply-demand imbalance potentially caused by predictions, we introduce
a deterministic model that considers the trade-off between operating cost and penalty
caused by unserved passengers, on top of the model proposed in Section 4.1, as follows:

min L = TC + DC + PC

s.t. Constraints (2) − (7), (9) − (13), (21) − (23).
(20)

The objective (20) aims tominimise the operating costs (TC andDC) and the penalty arising
fromunservedpassengers. Equation (21) indicates that if passengers frompredictedgroups
are not picked up, a penalty is imposed on the system.

PC =
∑
p∈PF

cp

(
qp −

∑
m∈M

ymp

)
(21)

Assignment constraints. Constraints (22) ensure that all passengers from reserved groups
are served, reflecting our commitment to fulfilling pre-determined reservations. Con-
straints (23) suggest that the assignment of passengers within predicted groups is influ-
enced by the calculated expected error rate ratep, which indicates that the system adjusts
its service level based on predictive accuracy: providing full, partial and no services for
underestimated, overestimated and overlooked requests.∑

m∈M
ymp = qp, ∀p ∈ PS (22)
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∑
m∈M

ymp

⎧⎪⎪⎨⎪⎪⎩
= qp, if ratep ∈ [−50%, 0%],

≤ qp, if ratep ∈ [0%, 50%],

= 0, if ratep < −50% or > 50%,

∀p ∈ PF (23)

5.1.2. Lagrangian relaxation
By relaxing constraints (10) and (11), the new Lagrangian relaxation problem of the deter-
ministicmodel can be decomposed into two sub-problems, where themodule routing and
formation problem (SP1) is similar to those presented in Section 4.2.1. The relaxed problem
SP2 is defined as the P2M assignment problem with the penalty (PAP-P):

Subproblem 2: PAP-P (SP2(α,β)):

min SP2(α,β) =
∑

p∈PS∪PF

∑
m∈M

(λmp + βm
p )ymp +

∑
p∈PF

cp

(
qp −

∑
m∈M

ymp

)

s.t. Constraints (9), (22) − (23).

(24)

Thedecomposedproblems canbe solvedby the Lagrangianheuristic algorithm introduced
in Section 4.2.

5.2. First stage-robust optimizationmodel

Let us point out that the introduced pessimistic design problem can also be considered
an operational problem under uncertain demand (Dou, Meng, and Liu 2021). For this rea-
son, we can also take inspiration from approaches implemented for treating the focussed
problem with an uncertainty set. The robust optimisation approach has been chosen due
to its excellent performance in similar scenarios (X. Guo, Caros, and Zhao 2021). Integrating
robustness into themodule routing, scheduling and formation design is oneway to protect
solutions against uncertain conditions (Santos et al. 2020).

5.2.1. Mathematical model
The robust optimisation approach presented here follows the box uncertainty set intro-
duced by Bertsimas, Pachamanova, and Sim (2004) to characterise demand uncertainty.
The demand concerning group p(p ∈ PF) is represented by q̃p; it is treated as uncertain
demand that can change to any value within the defined range. We bound the uncertain
demand q̃p ∈ [qp − q̂p, qp + q̂p], where qp denote the nominal demands obtained from the
predicted data of the group p, and q̂p denote the standard deviation demand representing
the difference between the predicted data and the actual requests (can be obtained based
on historical data). qp can be viewed as the mean of q̃p. The deviation rate δp ∈ [−1, 1] of
group p is defined as:

δp = (̃qp − qp)/qp (25)

As the estimated data is classified into overestimation (ratep > 0) and underestimation
(ratep ≤ 0) demands, the uncertain demands q̃p for overestimation have a falling state
q̃p ∈ [qp − q̂p, qp], while they have a rising state q̃p ∈ [qp, qp + q̂p] for underestimation case.

Theproposed robust formulation increases the robustness of the routingand scheduling
decisions (Cacchiani, Qi, and Yang 2020), which derives the new solutions based on the
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nominal plans generated for reserved demands and the nominal demands of predictive
data. Tomaintain the feasibility of the robustmodel, we consider the slack decision variable
and nominal plans. Besides, a limit is imposed to restrict changes in the nominal plans, as
follows:

• εp ≥ 0 denote the number of unserved passengers of a group p.
• xm,w∗

i,j,t,t′ ,k,k′ ∈ {0, 1} denote the nominal plans.

• η is the maximum vertices of changes allowed with respect to xm,w∗
i,j,t,t′ ,k,k′ .

∑
(i,j,t,t′ ,k,k′)∈Am

|xm,w
i,j,t,t′ ,k,k′ − xm,w∗

i,j,t,t′ ,k,k′ | ≤ η, ∀m ∈ M,w ∈ W (26)

Based on the notations above, the robust formulation based on the nominal plan is
formulated as:

min L = TC + DC + PC

s.t. Constraints (2) − (7), (9) − (13), (26), (28) − (30).
(27)

The objective (28) aims to minimise the operating cost and penalty incurred by unserved
passengers.

PC =
∑
p∈PF

cpεp (28)

Assignment constraints. Constraints (29) state the assignment of reserved demands. Con-
straints (30) insert the slack variable εp, encoding that the number of served and unserved
passengers are equal to the uncertainty demand.∑

m∈M
ymp = qp, ∀p ∈ PS (29)

∑
m∈M

ymp + εp = q̃p, ∀p ∈ PF ,m ∈ M (30)

The slack decision variable εp can be represented by the passenger assignment variable ymp
according to constraints (30), and Equation (28) can be represented as Equation (32):

εp = q̃p −
∑
m∈M

ymp , ∀p ∈ PF ,m ∈ M (31)

PC =
∑
p∈PF

cp

(̃
qp −

∑
m∈M

ymp

)
(32)

5.2.2. Lagrangian relaxation
Similar to Section 4.2.1, the introduced robust model can be relaxed into two subprob-
lems. The nominal-plan-based module routing and formation problem (NMRFP), and the
uncertain P2M assignment problem (UPAP), are presented below:
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Subproblem 1: NMRFP (SP1(α, β)):

min SP1(α,β) =
∑
m∈M

∑
w∈W

∑
a∈Am

(cwa + cwd )xm,w
a

−
∑

p∈PS∪PF

∑
m∈M

∑
w∈W

qp

⎛⎝αm
p

∑
a∈Arm(p)

xm,w
a + βm

p

∑
a∈Asm(p)

xm,w
a

⎞⎠
s.t. Constraints (4) − (7), (12) − (13), (26).

(33)

Subproblem 2: UPAP (SP2(α,β)):

min SP2(α,β) =
∑

p∈PS∪PF

∑
m∈M

(λmp + βm
p )ymp +

∑
p∈PF

cp

(̃
qp −

∑
m∈M

ymp

)

s.t. Constraints (9), (29) − (30).

(34)

The decomposed problems can then be solved by the proposed Lagrangian heuristic
algorithm.

5.3. Second stage-control strategies

In this section, we focus on the second stage of the proposed pessimistic operational
design, which is in charge of adjusting the plan generated by either of the proposed
approaches, to the actual demands. Note that plans are adjusted at each timestamp twithin
the planning horizon, where actual demands are known for every time period h corre-
sponding to the predictive time window. For the sake of readability, Figure 3 shows the
four scenarios corresponding to cases where adjustments regarding the original plans are
needed.

Figure 3(a,b) illustrates the undersupply cases when the actual passengers of group p
are greater than the predicted demand of p. In Figure 3(a), the actual demand of passen-
ger group p(O3 → D3) contains 40 passengers that is higher than the predicted 30 people.
If no adjustment is put in place, this will result in unserved demands of 10 passengers,
due to the limited capacity provided by the vehicle assembled with three 10-people mod-
ules. Figure 3(b) shows an example where the provided predictions do not contain group
p(O3 → D3), and the initial plans are not allowed to serve this request, even though there
are 20 people appearing for this OD. Figures 3(c,d) are instead cases of oversupply. The
excess capacity of 10peoplewastes capacity as the actual demand is less than thepredicted
one in Figure 3(c). Finally, Figure 3(d) represents a no-show passenger scenario.

Here, we design two strategies for undersupply or oversupply situations. Undersupply is
addressedby activating newmodules or inserting additional demand into existing services.
Oversupply drives the system to skip the planned route and reduce the module capacity.
The corresponding two strategies are presented as follows.

5.3.1. Passenger-reassignment control
Passenger reassignment jointly considers the unserved passengers in Figure 3(a,b) due to
unexpected demands, as well as the en-route and idle modules in the adjustment proce-
dure, andallows scheduling.Whenqp < q′

p orqp = 0, q′
p > 0, and there is available capacity
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Figure 3. Adjustment scenarios with undersupply and oversupply.

in the runningmodules, then assign extra passengers into the initial plans and update P2M
assignment:

∑
m∈M

ymp = q′
p, ∀p ∈ PR (35)

Otherwise, the unserved and newly emerging passengers are served by activating new
modules, as shown in the formulation of Section 4.1.
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5.3.2. Skip-stop andmodule-disassemble control
This strategy considers en-route modules, and allows to change route and schedule plans.
When the predicted data is higher than the actual requests, as shown in Figure 3(c), this
strategy is triggered to reduce the supplied capacity by disassembling modules from
the current formation. To be specific, the supplied modules are re-determined according
to the capacity required by including passengers who are assigned but not yet served of
p(r → s)(p ∈ PU), and actual requests q′

p of p. The module is removed from the plans (gen-

erated at timestamp t−h, t−h is the last adjustment timestamp) at timestamp t. ˘ymp and w̆
denote the P2M assignment, module formation and scheduling at t−h.

w · cap =
∑

p∈PU\{p}

∑
m∈M

( ˘ymp + q′
p), ∀w ∈ W (36)

w̆ − w =
∑
m∈M

∑
a∈Arm(p)

xm,w̆
a −

∑
m∈M

∑
a∈Arm(p)

xm,w
a , ∀p ∈ PU, w̆,w ∈ W (37)

Equation (36) re-determines the module supply at t. Equation (37) implies that the module
formation and routing are changed from t−h to t, with the module disassembling.

When q′
p = 0 as shown in Figure 3(d), the skip-stop tactic is triggered to prevent access-

ing origin r and destination s of p. The vertices are removed from the plans as shown in
Equation (38), and the module disassembling is triggered with Equations (36)–(37).∑

m∈M

∑
w∈W

∑
a∈Arm(p)

xm,w
a +

∑
m∈M

∑
w∈W

∑
a∈Asm(p)

xm,w
a = 0 (38)

6. Experimental analysis

This experimental analysis aims to demonstrate the usefulness of the framework exploited
for CMB systems, and to assess the strengths and weaknesses of the proposed approaches,
using a large-scale network from the city of Beijing, China. Figure 4 provides the flowchart
of the experimental methodology. Two machine learning techniques (LightGBM and
AdaBoost) are employed to yield two distinct prediction scenarios. When dealing with
highly accurate predictions, the optimistic operation is activated, where Model 1 (detailed
in Section 4.1) is employed to tailor services. The operation mode turns to a pessimistic
one when tackling predictions of limited accuracy: deterministic or robust model (Model 2
and Model 3) is deployed to outline initial service plans; control strategies are triggered to
dynamically update services in response to discrepancies. All models can be solved by the
solution approach proposed in Section 4.2.

The experimental settings are presented in Section 6.1. Section 6.2 presents the
OD-based demand prediction and evaluates the ability of predictive models. Then, in
Section 6.3, we compare the performance of optimistic and pessimistic operations. Finally,
Sections 6.4 and 6.5 analyse the impact ofmodule capacity and time-dependent travel time
on CMB services. Owing to the lack of time-related travel times for 2019 aligned with the
demand data year, we assume the constant travel speed in Sections 6.3 and 6.4, while time
dependency effects are explored in Section 6.5 leveraging time-varying travel time data
from 2015. This relative analysis can gain valuable insights, despite potential discrepancies
in the data. We conduct our experiments with Python 3.7 and CPLEX 12.8 on a computer
with a 3.4 GHz CPU and 16GB of RAM.



20 R. GUO ET AL.

Figure 4. Flowchart illustrating the process of the experimental methodology, from data collection
to implementation, highlighting the two distinct predictions and their corresponding optimisation
scenarios.

6.1. Experimental settings

The experiments are carried out with the bus smartcard data and the road network of Bei-
jing, China. The SCD contains approximately 12million travel records daily fromNovember
2018 to February 2019. Each travel record is associated with attributes including card IDs,
route numbers, boarding and alighting events. Besides the SCD, we also use the route and
station data of the conventional bus system in Beijing, which contains the longitude and
latitude position of each station.

Data generation. We focus on the commuter trips expected to be the main potential
demandsofCB services (Qiuet al. 2018).Weconsider theworkingdaysbetween3rdDecem-
ber 2018 to 18th January 2019 for training, and the days from 21st to 25th January 2019 for
testing, which avoids the restrictions or influences of COVID-19 pandemic and the Chinese
Lunar New Year. To extract the outflow from residential areas and the inflow to working
places during morning peak (7:00–9:00 AM), we select records of trips from typical resi-
dential communities to business districts, and follow the methodology introduced in R.
Guo et al. (2019) to identify the aggregated OD demands, as shown in Figure 4. Figure 5
gives the distribution of the extracted stations for commuting trips regarding the Beijing
metropolitan area.

Parameter setting.We assume a homogeneous fleet of 28 modules with a capacity of 15
people. Considering the maximal physical length for safe operation on urban roads with
limited width and turns, modules of about 5.5meters can be assembled or disassembled
into three formations (W = {1, 2, 3}), corresponding to the departure cost per module of
550, 450, and 370 (unit: �), based on data from minibuses and X. Liu, Qu, and Ma (2021)
and R. Guo et al. (2023). The travelling cost per distance permodule is set as 20, 17.97, 16.18
(unit: �) for three formations, as the travelling cost per distance is not a linear function
of formations. The constant travel speed is 20km/h. The minimum load requirement per
module is 10people. The travel cost is�20 for space-time-state arc, the service time for each
vertex is 1 minute. The penalty incurred per unserved passenger is�10, and themaximum
vertices of changes η is 2. The gap of Lagrangian relaxation heuristic algorithm is set as
<3%, and the maximum total number of iterations is 50.
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Figure 5. Distribution of OD for the extracted travel demands in Beijing, China, was initially applied to
in R. Guo et al. (2021).

Instance generation. To evaluate the performance of CMB under varying passenger dis-
tribution, three distinct instances have been created: R (random), C (clustered), and RC
(mixed), each signifying a different type of passenger distribution, that can refer to R. Guo
et al. (2023). Every instance contains 50 groups totalling around 300 passengers. Among
these groups, 10 are dedicated to reserved demands, while the remaining 40 cater to
incoming demands.

6.2. OD-based demand prediction

This section describes the prediction procedure of emerging requests, where the data pro-
cessing for feature extension, predictivemodels, andperformance evaluation are discussed
herein.

6.2.1. Data processing
The prediction problem at hand is dealt with as a regression problem, where the goal is
to predict the number of passengers that will require to use the CMB services between
each possible OD in a considered time window. To better use the demand features for
prediction, it is necessary to understand the spatial-temporal dynamics of OD flow at a
given period. Table 2 shows the set of features considered, including the original features
obtained from the raw OD demands, and the features derived to support the work of the
predictive models.
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Table 2. Original and Extracted Features for the considered dataset, with
the corresponding type and format.

Original features
Extracted
features Type Format

Date Date Datetime e.g. 1/1/2018
Week Day Categorical Mon, Tues, Wed, Thurs, Fri
DayType Categorical Weekday vs Mon vs Fri

Timestamp Time period Categorical e.g. 700–730 as Timestamp_1
Origin OriDes Categorical 1018–1020 as OD_1,
Destination 1020–1018 as OD_2
Demand Size Integer Numeric value

Presence Boolean Yes or No

The time period for which the demand has been assessed is divided into 5 intervals
of 7:00–7:30 am, 7:30–7:45 am, 7:45–8:00 am, 8:00–8:15 am, 8:15–8:30 am, where the first
corresponds to the reserved demands (10 groups), the remaining are the forecast timewin-
dows for incoming demands (40 groups). Each interval contains 10 passenger groups. From
theoriginal date feature, two variables havebeenderived: thedayof theweek, and the type
of the day (Monday, Friday, other weekdays).

Correlation analysis has been applied to all the original and derived variables and no
correlation is found between the variables, thus supporting the usage of all the variables
for predictive modelling.

6.2.2. Predictivemodels
Given the types and characteristics of the features, and considering the approaches at
the state-of-the-art of regression, this work focuses on the so-called ensemble learning,
where multiple learning methods are used together to improve the overall predictive per-
formance. Learningmethods canbecombined inparallel (bagging) or sequence (boosting).

After running a set of preliminary experiments with an extensive range of approaches,
two ensemble methods, LightGBM and AdaBoost, are selected for optimistic and pes-
simistic operations, respectively. Adaboost (Adaptive Boost) is a boosting ensemble
method that adds many decision ‘stumps’ (decision trees with only one split) sequentially
to generate a strong learner. Different from AdaBoost, LightGBM can use both bagging
or boosting (Ke et al. 2017). It also permits the model to choose between different gradi-
ent boosting methods: GBDT, DART and GOSS to best suit the problem statement (Barros,
Cerqueira, and Soares 2021).

To boost the performance of these models, we optimise their hyper-parameters using
Grid Search Cross Validation. Parameters considered for optimisation for Adaboost include
the number of estimators and their type, and the learning rate. Similarly, for LightGBM, the
parameters chosen for tuning are boosting type (GBDT, DART, GOSS), L1 and L2 regularisa-
tion along with learning rate, maximum depth of sub-trees, minimum child samples on a
sub-tree, number of estimators, and number of leaves in a sub-tree.

6.2.3. Prediction evaluation
To assess the achieved performance, we used the standard metrics of mean absolute error
(MAE), mean squared error (MSE), and root mean squared error (RMSE). MAE evaluates the
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Table 3. For the considered predictive models, the performance achieved on each testing day in terms
of RMSE, MSE, MAE, R2, explained variance and maximum error.

Date model RMSE MSE MAE R2 ex_var max_e

21st AdaBoost 4.545 20.66 13.795 0.2798 0.453 12
LightGBM 1.467 2.15 1.009 0.9250 0.924 5

22nd AdaBoost 4.387 19.25 13.561 0.2766 0.458 11
LightGBM 1.388 1.93 0.968 0.9276 0.927 6

23rd AdaBoost 5.235 27.41 14.286 0.1659 0.349 15
LightGBM 1.172 1.37 0.812 0.9582 0.958 4

24th AdaBoost 4.385 19.22 93.540 0.3546 0.487 13
LightGBM 1.206 1.45 0.848 0.9512 0.951 4

25th AdaBoost 5.436 29.55 54.912 −0.1290 0.423 14
LightGBM 1.254 1.57 0.894 0.9399 0.939 4

average of the differences between the actual values and the predictions of the observa-
tions. MSE is the average of the square of these differences, and RMSE is the square root of
the average of the square of the differences.

The performance of themodels for each considered testing day is shown in Table 3. Fur-
ther, the table provides the R2 results, the explained variance, and themaximumprediction
error on an OD demand. R2 is the well-known coefficient of determination. The explained
variance is a measure of the proportion of the variability of the predictions concerning the
actual data.

The presented results confirm that it is possible to predict the incoming demands under
the considered circumstances accurately, i.e. commuters travel onworking days. LightGBM,
as observed in a set of preliminary tests on a subset of the data, is the most precise predic-
tive model, and will be used in the remainder of this experimental analysis as the accurate
predictor. The MAE of this predictive model is at most 1; hence the expected predictive
error is in the region of 1 passenger. Intuitively, this is an excellent result, providing highly
accurate predictions. On the contrary, AdaBoost is not usually able to effectively predict the
ODpassenger demands, and can generally offer less accurate predictions, with errors in the
region of tens of passengers. It is considered in the pessimistic operation in the following
analysis. In Section 6.3, we use the reserved and predicted data on 25th February for the
system evaluation and sensitive analysis. Table 4 gives a subset of prediction outcomes for
various passenger groups, corresponding to different OD pairs on the 25th of January.

6.3. Operational performance of CMB

This section considers the baseline real-time optimisation approach to contextualise the
benefits of usingpredictions in theproposed framework. The real-timeapproach is the stan-
dardwayCB systems are currently run: the systemdoes not use forecasts; instead, incoming
demands are addressed during operation, either by activating new modules or assigning
the passengers to en-route modules.

Optimistic operation. Table 5 provides the performance achieved by proposed and base-
line real-time approaches on generated three instances. We include the best-case scenario
that canbe acquiredby the optimistic operationwith perfect predictions (Opt-P, represents
a 100% correct forecast without expected error). In other words, we measure theoretical
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Table 4. Predicted demands for selected paired OD on 25th January 2019.

Time period OD Real demand LightGBM ratep AdaBoost ratep

7:30–7:45 1026–2019 14 14 0 15 7.1%
1001–2004 23 21 −8.7% 16 −21.7%
1012–2002 6 6 0 7 16.7%

7:45–8:00 1007–2012 16 15 −6.3% 12 −25%
1017–2016 1 1 0 2 50%
1001–2002 13 14 7.7% 15 15.4%

8:00–8:15 1027–2018 17 17 0 14 17.6%
1012–2010 12 13 8.3% 10 −16.7%
1007–2012 3 3 0 4 33.3%

8:15–8:30 1024–2003 6 6 0 7 16.7%
1025–2018 23 22 −4.3% 16 −30.4%
1018–2010 5 5 0 7 40%

Table 5. Performance in terms of operating cost, distance travelled, number ofmodules dispatched and
number of routes of the baseline Real-time, of the optimistic operation leveraging an oracle (Opt-P), and
of the optimistic operation exploiting the LightGBM performance (Opt/Opt-C).

Operating cost/� Distance/km Module/veh Route Unserveddemand Avg.T/s

Save Save Save Save Save Diff.

R Real-time 23,544.0 546.4 28 22 0 98.1
Opt-P 20,579.9 12.6% 479.9 12.2% 23 5 19 3 0 132.7 35.3%
Opt 19,233.2 18.3% 473.5 13.3% 21 7 17 5 5 −5 121.3 23.6%
Opt-C 20,780.0 11.7% 485.7 11.1% 23 5 19 3 0 123.4 25.8%

C Real-time 19,614.1 494.9 26 17 0 88.6
Opt-P 15,415.7 21.4% 450.1 9.1% 20 6 15 2 0 118.4 33.6%
Opt 15,999.5 18.4% 440.1 11.1% 21 5 16 1 0 124.3 40.3%
Opt-C 15,415.7 21.4% 450.1 9.1% 20 6 15 2 0 118.4 33.6%

RC Real-time 23,041.2 524.8 28 19 0 96.7
Opt-P 18,807.5 18.4% 473.2 9.8% 22 6 18 1 0 125.6 29.9%
Opt 18,114.2 21.4% 469.4 10.6% 21 7 17 2 4 −4 122.5 26.7%
Opt-C 19,790.0 14.1% 482.5 8.1% 23 5 19 0 0 119.4 23.5%

maximum benefits with an oracle. As the results indicate, the proposed system with per-
fect predictions can lead to significant reductions in operating costs, more than 12% across
R, C and RC instances. This cost-saving is due to a reduction in dispatched modules and a
more effective route plan. Particularly, when the passenger distribution is more clustered,
the performance gap tends to be more pronounced, i.e. over 21% saving in the C instance.

Table 5 also presents the results that can be achieved by the optimistic operation
when predictions are generated by the LightGBM (i.e.Opt). We distinguish two different
operational modes: Opt, as discussed in Section 4, provides no service adjustment when
differences appear between predicted and actual demands; Opt-C instead exploits control
strategies described in Section 5.3 during operation, which can handle the rare deviations
when state-of-the-art predictive models are occasionally biased. Across both cases, the
optimistic operation can yield significant savings in all metrics. The Opt case even can out-
performance the oracle in operating costs (of 4.4% on average for R and RC instances); it
comes at the expense of unserved passengers, even though a limited number. However,
the Opt case conducts a worse scenario of C instance due to the overestimation of pre-
dictions. Although fully serving all passengers (Opt-C cases) can slightly reduce the overall
savings, they are still remarkable compared to the Real-time operation across all instances.
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Table 6. Performance achieved by the Real-time baseline and the two-stage approach when either
deterministic (Pess-D) or robust (Pess-R) techniques and control strategies are in use, based on the
predictions made by AdaBoost.

Operating cost/� Distance/km Module/veh Route Avg.T/s

Save Save Save Save Diff.

R Real-time 23,544.0 546.4 28 22 98.1
Pess-D 22,827.9 3.0% 516.0 5.6% 24 4 22 0 101.9 3.9%
Pess-R 21,110.6 10.3% 484.6 11.3% 22 6 21 1 100.8 2.8%

C Real-time 19,614.1 494.9 26 20 88.6
Pess-D 17,996.5 8.2% 478.7 3.3% 25 1 20 0 112.4 26.9%
Pess-R 16,108.8 17.9% 460.4 7.0% 23 3 17 3 105.3 18.8%

RC Real-time 23,041.2 524.8 28 19 96.7
Pess-D 21,443.5 6.9% 518.7 1.2% 26 2 21 −3 111.4 15.2%
Pess-R 19,319.7 16.2% 484.3 7.7% 22 6 18 1 115.3 19.2%

Pessimistic operation. We now turn our attention to assessing the pessimistic opera-
tion scenario. Table 6 shows the performance of the Real-time baseline compared to the
two-stage approach described in Section5 when either deterministic or robust optimisa-
tion models are used. The two-stage approach is tested using predictions generated by
the AdaBoost method. Our analysis reveals that even the pessimistic operation can lead to
operating cost savings, demonstrating the value of leveraging predictions, even if they are
less accurate. Unsurprisingly, thedeterministic approach cannot lead togreater operational
cost savings (6.0%on average of three instances). The reason behind this is the higher num-
ber of routes andmodules required. This is likely due to its conservative perspective, where
the deterministic model is put into operation in the first stage. On the contrary, the robust
technique results in remarkable savings (14.8% on average) across all instances. It is worth
noting that the deterministic and robust methods yield different outcomes, as noticeable
when comparing travelled distances and dispatched modules.

Impact of different prediction scenarios. Considering the different accuracy of forecasting
models, we examine the impact of two prediction scenarios on system performance. The
average expected error rates for the highly (generated by LightGBM) and less (acquired
by AdaBoost) accurate predictions are 93.1% and 79.8%, respectively. Tables 5 and 6 indi-
cate that solutions derived from highly accurate predictions tend to perform better, saving
8.0% and 5.2% in operating costs of R and RC, respectively, compared to less accurate pre-
dictions with robust techniques. It indicates that the performance gap tends to be more
noticeable when the passenger distribution is dispersed. However, it is worth noting that
while predictivemodels employed here have showngoodperformance in both operations,
the usefulness of other models requires further investigation to understand which one is
most beneficial, as the quality of predictions depends onmany factors, such as data quality,
demand patterns, and available computing resources.

Computational performance. The reported computational time (Avg.T) is the sum of
proactive service design time and the subsequent adjustment time during operation (i.e.
the second stage of Opt-C, Pess-D and Pess-R). Due to the short adjustment time (less than
1 second), the calculation times provided herein primarily illustrate the performance of the
proactive design. As canbe seen in Tables 5 and 6, the computational timeof CMB increases
slightly by considering predictions. The optimistic operation consumes more computa-
tional time than the pessimistic case, especially the worst case is 132.7 s for the Opt-P in
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R instance. The reason behind this is that, there are more passengers to be assigned in
the presence of highly accurate prediction, which may pose a challenge to the introduced
Lagrangian relaxation heuristic approach; and assigning actual requests during operation
is helpful to reduce the calculation time of the pessimistic scenario.

Summary. The obtained results for different passenger distributions indicate that (i) the
optimistic operation outperforms the pessimistic one regarding operating costs and trav-
elled distance, and (ii) both operations can lead to a significant improvement of operational
performance according to indicators, although the computational time slightly increases
compared to real-time approaches. While the proposed framework leverages predictions
by applying LightGBM and AdaBoost effectively, the quality of forecasts plays a critical role
in the framework’s performance. In other words, the effectiveness of the framework highly
depends on the accuracy of predictive models.

6.4. Impact ofmodule capacity

The trade-off between module capacity and travel demand is crucial to operating costs.
The higher capacity allows for absorbing overdemand quickly, while the lower capacity
reduces departure costs. To investigate how module capacity can affect module utilisa-
tion and operating costs, we assess the system performance for modules with capacities of
10, 15, and 20 people. Each module can assemble or disassemble into different formations
based on the maximal physical length for safe operation. For the 10-people modules, the
maximum formation is 4 (i.e. W = {1, 2, 3, 4}). The departure cost per module is 500, 420,
350, and 300 (unit:�) and the minimum load per module is 5 people. The travelling cost
per distance per module is set as 15, 13.4, 11.8 and 10.7 (unit: �) for four formations. For
the 20-people modules, the maximum formation is 3 (i.e., W = {1, 2, 3}). The correspond-
ing departure cost per module is 600, 480, and 400 (unit:�), and the minimum load per
module is 12 people (R. Guo et al. 2023; X. Liu, Qu, and Ma 2021). The travelling cost per
distance per module is set as 25, 22.4 and 19.7 (unit: �) for three formations.

Table7presents thekeyperformance indicators ofCMBservices combinedwithdifferent
module capacities of RC instance. In general, larger modules are superior to smaller mod-
ules in termsof travelled distances (i.e. average reductions of 18.2%and29.9% in the case of
15- and 20- people modules). This can be expected as higher capacity means that modules

Table 7. Impact of module capacity on performance for RC instance.

Operating cost/� Distance/km Module/veh Route Avg. load factor

Cap Save Save Save Save Diff.

Opt
10 20,678.2 582.8 29 19 81.5%
15 18,114.2 12.4% 469.4 19.5% 21 8 17 2 77.3% 5.2%
20 19,460.2 5.9% 397.7 31.8% 18 11 15 4 65.1% 20.1%

Pess-D
10 23,929.1 600.8 33 26 71.3%
15 21,443.5 10.4% 518.7 13.7% 26 7 21 5 69.8% 2.1%
20 23,457.5 2.0% 447.6 25.5% 23 10 21 5 61.3% 14.0%

Pess-R
10 22,426.2 618.3 29 22 80.9%
15 19,319.7 13.9% 484.3 21.6% 22 7 18 4 76.4% 5.6%
20 21,858.6 2.6% 418.3 32.3% 18 11 17 5 65.1% 19.5%
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are better suited to accommodate trips withmedium or high demand levels, and to absorb
passengers fluctuations. However, due to economies of scale inmodule departure and trav-
elling costs, the application of larger modules does not imply lower operating costs, i.e.the
average savings of 15-people and 20-peoplemodules are 12.2% and 3.5%. Besides, the sce-
narios with higher capacity performworse in average load factor (e.g. the data drops by an
averageof 19.8% for 20-people cases),which is an important performance indicator to iden-
tify utilisation efficiency. The benefits of larger capacity may not materialise for trips with
lowdemand levels, which can causemore empty seats and lead to lowermodule utilisation.

Overall, changes inmodule capacity have a pronounced impact on systemperformance,
and thehigher capacity tends tobe lessbeneficial due to lowermoduleutilisationandecon-
omy of scale, for the considered network and demand. The ideal module capacity depends
on the network architecture and the distribution and quantity of requests.

6.5. Impact of time-dependent travel time

Given substantial fluctuations in travel speeds owing to traffic congestion, it is crucial to
understand how the time-dependent travel time influences the service time at demand
vertices. This section explores the impact of time dependency on performance metrics by
comparing two distinct scenarios: time-dependent travel time (TDT) and constant travel
speed (CT). While the lack of travel time data for the year 2019, we apply the GPS data pre-
sented in R. Guo et al. (2021) to obtain travel times for each physical arc during themorning
peak, namely, 7:00–7:15 am, 7:15–7:30 am, 7:30–7:45 am, 7:45–8:00 am, 8:00–8:15 am, and
8:15–8:30 am. The constant travel speed is set as 20 km/h, representing the average derived
from the travel time data and aligns with the parameter setting detailed in Section 6.1.
Notably, this section assumes consistent travel patterns during the morning peak when
using demand and travel time data from different years.

Table 8presents thekeyperformance indicators ofCMBservices combinedwithdifferent
travel times of RC instance. Compared to the CT scenario, TDT results in increased operat-
ing costs, longer distances and travel times, and the necessity formoremodules and routes
across all operations. For example, operating costs increase by an average of 19.0%. The
reason behind this is that the constant speed may overestimate the efficiency of the trans-
portation system and fail to capture the dynamics of peak congestion, while the fluctuating
traffic conditions can significantly raise longer travel time between two vertices, leading to

Table 8. Performance achieved when either time-dependent travel time (TDT) or constant travel speed
(CT) are considered for RC instance.

Operating cost/� Distance/km Module/veh Route Travel time/h

Diff. Diff. Diff. Diff. Diff.

Opt
CT 18,114.2 469.4 21 17 22.3
TDT 21,853.6 20.6% 536.8 14.4% 27 6 21 4 28.5 27.6%

Pess-D
CT 21,443.5 518.7 26 21 25.9
TDT 25,088.5 16.9% 575.9 11.0% 31 5 26 5 30.5 17.4%

Pess-R
CT 19,319.7 484.3 22 18 24.9
TDT 23,113.1 19.6% 552.6 14.1% 27 5 22 4 28.9 16.2%
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increased fuel consumption and wear-and-tear. For instance, the average increases in total
distance and travel time are 13.2% and 20.4%, respectively. Besides, variability in travel con-
ditions may require the deployment of moremodules, to ensure on-time arrivals or to fulfil
service levels (e.g. an average increase of 5.5 additional modules required).

In summary, time dependency provides a more realistic representation, with all indi-
cators being improved due to the restrictions of the pick-up time window. However, the
absence of travel time data for 2019 necessitates a further discussion on the importance of
time-dependent factors.

7. Conclusion

This paper introduces a proactive customisedmodular bus (CMB) framework to tackle fluc-
tuations in reserved and newly incoming travel requests. We propose and demonstrate
that the optimistic and pessimistic operations under two different prediction scenarios can
significantly improve system performance. Additionally, modular autonomous vehicles in
the proposed framework provide the ideal ground to exploit the higher flexibility of on-
demand CMB systems. Amixed integer programmingmodel and a two-stage optimisation
procedure are introduced in the optimistic and pessimistic operations, respectively. An
extensive experimental analysis applied two state-of-the-artmachine learningmethods for
predictions, has been performed. The key findings are as follows:

• LightGBM is capable of generating highly accurate predictions, with an average error of
1 passenger. AdaBoost can provide less accurate predictions, with errors in the region of
10 passengers or more.

• Compared to the real-time approach, the CMB framework can lead to significant savings
across key operation indicators. The optimistic operation is better, leading to a reduction
of operating costs by up to 21%.

• Using larger module capacity has a pronounced impact on travelled distance, with aver-
age reductions of 24.1% to smaller capacity cases, but it performs worse in utilisation
efficiency of capacities.

• Considering fluctuating travel times can capture real-world traffic dynamics and lead
to improvements in all metrics, but the importance of time-related factors needs to be
further explored due to data limitations.

We see several avenues for futurework. First,weplan to thoroughly evaluate thebenefits
of incorporating demand prediction under different scenarios, including other predictive
models. Second, it would be valuable for future research to consider passenger in-motion
movements for CMB systems. Finally, we are interested in investigating meta-heuristic
algorithms to generate a robust solution for large-scale experiments.
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