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ABSTRACT

RNA transcription is an integral stage in the process cells undertake to synthesise proteins
based on the DNA. For a long time, transcription was seen as a rather trivial procedure,
but in recent years it has gained more recognition as a complex physical process with many
external influences and interacting particles that are called RNA polymerase (RNAp). As a
result, transcription has attracted a vast amount of scientific research and many stochas-
tic models based on the mathematical theory of Markov processes have been proposed to
emulate the motion of RNAps. A common assumption in most of these models is the use
of uniform DNA. However, this assumption is not entirely justified as the DNA is in reality
highly variable due to its changing nucleotide sequence and numerous proteins that bind
to the DNA in specific positions. As such, the question arises whether results obtained in
homogeneous models are still valid in inhomogeneous systems as well.

We will investigate a particular RNAp model proposed by (Klumpp, 2011). We estab-
lish the validity of the model by performing several numerical simulations to show that
it exhibits various features typical to the motion of RNAps, such as clustering and a par-
ticular phenomenon known as “RNAp cooperation’, thus reproducing results obtained by
(Klumpp, 2011). Additionally, we will place the model in a more general, mathemati-
cal setting called the class of layered Markov / jump processes. Aside from transcription,
this class has a wide range of physical applications, such as run-and-tumble particles and
electron spin flip dynamics. We perform a thorough mathematical analysis of this class
and present several theorems on the limiting behaviour of particles in these systems, such
as the drift of the particle and the variation around this drift. These limit theorems can
consequently be applied and interpreted in the relevant physical systems.

Additionally, we rigorously prove that the limit theorems carry over from homogeneous
to inhomogeneous environments, which provides evidence that the original assumption
of uniform DNA is justified in RNA transcription models. We complement this mathemat-
ical evidence by conducting numerical simulations in inhomogeneous environments and
confirm that this leads to similar results as for the homogeneous model.
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INTRODUCTION

The modern theory of DNA has proven instrumental in the understanding of evolution
theory, heredity and the biological processes that constitute life. The basic principles are
simple: DNA encodes the information needed for cells to produce proteins and these
proteins play a fundamental role in all processes in the body. For examples, proteins
are responsible for the contraction of muscles, the transportation of nutrients across the
body and the catalyzation of chemical reactions such as metabolism.

Upon cell division, the DNA is replicated, such that offspring inherits genetic informa-
tion from parents. For some time, many scientists believed that the genetic informa-
tion alone fully encapsulates all characteristics and traits of the individual (van den Berg,
2017). Perhaps unsurprisingly, this view is not the complete picture, as some experimen-
tal observations cannot be explained solely from genetics. For instance, (Nakata et al.,
2021) points out that children born to famished mothers are more susceptible to disease
later in life.

Such phenomena can only be explained by looking further than the static DNA code.
Even though DNA acts as a blueprint for protein synthesis, the actual synthesis is highly
dependent on dynamic, external factors. This synthesis consists of two main stages:
transcription and translation. During transcription, the DNA is copied onto an RNA
strand, which serves as the protein template. In translation, this template is moved to
a ‘cellular factory’ called ribosome, which assembles proteins. In this thesis, we will fo-
cus exclusively on transcription. Cells use various techniques to regulate this stage. For
example, the cell can alter the structural organization of the DNA, which has a major im-
pact on the rate of transcription. Any influence on protein synthesis that does not stem
directly from the DNA sequence is called epigenetic. Epigenetic information is said to be
as crucial as genetic information (Nakata et al., 2021).

It should therefore come as no surprise that the epigenetic influences and transcription
have become “one of the most intensely studied areas of all of science” (Sims et al., 2004).
Transcription consists of three phases: initiation, elongation and termination. Although
elongation was long considered trivial, it is now seen as a complicated process with many
external influences and dozens of interacting particles, called RNA polymerase (RNAp)
(Sims et al., 2004). Several models have been proposed to emulate the motion of RNAps
(Julicher and Bruinsma, 1998; Tripathi and Chowdhury, 2008). Many of these models are
stochastic in nature and model the RNAp as jumping randomly between DNA sites. The
models are, as is common in physical stochastic processes, fully based on Markov theory.

In this thesis, we will investigate a particular RNAp model, presented by (Klumpp, 2011;
Klumpp and Hwa, 2008). In essence, this model is as a one-dimensional process with
multiple internal states or “layers”. Each layer is associated with a different type of mo-
tion. In transcription, the RNAp may enter a paused state, a backtracking state or an
active transcribing state. Although the model is relatively simple, it exhibits some fea-
tures typical to RNAp, such as clustering and cooperation.
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The RNAp model is part of a much more general class of Markov processes that we name
‘layered jump processes’. In this class, we consider all Markov processes with various dif-
ferent internal layers, each having a specific type of diffusive or active motion. The main
benefit of generalising the model’s framework to such a degree, is that the class is highly
applicable to other physical systems as well. For instance, layered jump processes are
also used to model other molecular motors in nanobiology, such as cytoskeletal walk-
ers (Akhmanova and Kapitein, 2022) and Run and Tumble particles (RTPs) (Bechinger et
al., 2016). Additionally, layered jump processes have found applications in a wide range
of fields outside of nano-biology. For instance, they can serve as a model for heat con-
duction (Kramli et al., 1986), a model for spin flip dynamics of an electron (Demaerel
and Maes, 2018) or even as a model for the movements of groups of animals or humans
(GroBmann et al., 2016; Fodor and Marchetti, 2018).

A thing all these applications and many other models based on Markov processes have in
common is that they are usually assumed to take place in homogeneous environments.
In the case of transcription, this is especially unrealistic. Not only does the DNA se-
quence itself vary, it is also covered with obstacles, that make the RNAp’s movements
highly position-dependent. More generally, the considered physical media are uniform
on large scales, but do exhibit drastic fluctuations locally.

It would be significantly more realistic and thus highly beneficial to consider the models
in inhomogeneous environments as well. Of course, we expect that any small fluctua-
tions in the medium will average out as the particle moves through space. We call this
process of evening out “homogenisation”. It is difficult to support the expectation of ho-
mogenisation with rigorous evidence when working with Markov processes.

We can extract two primary problems from the discussion above.
1. What results can be derived for the general class of layered jump processes and
how are these applied to specific applications such as RNA transcription?
2. Do these results still hold when moving from homogeneous to inhomogeneous
environments and how can we verify this?

Of course, the above problems are extremely broad. To answer such questions, different,
more specific avenues of attack need to be explored. The first problem can already be
narrowed down: a particularly useful result for the applications would be the classifi-
cation of the movements of particles in systems that behave as layered jump processes.
The mathematical theory of Markov processes is tailor-made for this purpose and has a
highly developed framework for deriving results on long time scales, particularly in the
case of single-particle systems. In the late 20th century, many advances were made on
central limit scaling theorems for particles in both homogeneous and inhomogeneous
media, for instance by the works of (Kipnis and Varadhan, 1986 and Landim et al., 2012).
We aim to apply these results to the layered jump processes and find the exact scaling
limit for single-particles in these systems. We will consider both homogeneous and in-
homogeneous systems to see if homogenisation takes place. Subsequently, these limit-
ing behaviours can be interpreted and used in the related physical applications such as
RNA transcription.
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While the single-particle systems are intriguing on their own, real physical systems often
operate with many interacting particles simultaneously. Although multi-particle analy-
sis is possible, it is far more difficult. A better understanding of the single particle system
can serve a stepping stone for further research into multi-particle systems and can cer-
tainly aid our understanding of more complex systems. Furthermore, to expand on the
mathematical single-particle results, we will perform numerical simulations of multi-
particle systems. Results from these simulations can be compared against the theoret-
ical predictions for single-particle systems, but can also be more directly applied to the
relevant physical systems. In particular, we will conduct simulations to investigate the
effect of RNAp interactions and DNA inhomogeneity on transcription.
Although the basic layered system is already a reasonable model for transcription, it
lacks some additional components. For example, RNAps encounter a few insurmount-
able barriers on the tracks which are not included in the mathematical analysis. Our
numerical simulations indicate that the barriers lead to a special phenomenon known
as “RNAp cooperation”, presented by (Klumpp, 2011; Nudler, 2012).
From the discussion presented above, we can summarise our research on the two pri-
mary problems into three main research questions:
1. What is the exact scaling limit for layered jump processes in both homogeneous
and inhomogeneous environments?
2. What conclusions can we draw on RNA transcription and the motion of RNAps,
based on our mathematical and numerical analysis of the layered jump processes?
3. What additional phenomena do we observe when adding the extra, more realis-
tic components, such as RNAp interactions and diffusion barriers, to our Markov
model and how can this be interpreted in the context of RNA transcription?
The outline of this thesis to answer these three questions is as follows.
We shall begin by outlining the preliminary mathematical theory on Markov processes in
chapter 1. The definitions and theorems presented there are prerequisites to all subse-
quent mathematical analysis and should mostly be familiar to the reader. For instance,
we will define the exact meaning of stochastic processes, Markov processes and layered
jump processes. Secondly, we will introduce the formalism of semi-groups and genera-
tors. These extra tools will greatly aid the remainder of the mathematical analysis.

We will follow up on this fundamental mathematical theory by going into further detail
on physical applications in chapter 2. We begin this chapter by discussing why Markov
processes are widely used to model physical systems. Afterwards, we investigate appli-
cations, of which several have already been brought up in this introduction. A particu-
larly archetypal application is Brownian motion. Brownian motion will prove to be the
continuous-time counterpart of the Gaussian distribution in the context of central limit
theorems and is therefore crucial in all scaling limit theorems of the subsequent chap-
ters. After introducing Brownian motion, we will delve deeper into actual applications of
jump processes, such as the molecular motors and RNA transcription. Additionally, we
establish a connection between our microscopic model and the modelling of vehicular
traffic. This surprising link is important as some of our results from numerical simula-
tions are easiest to interpret in the context of vehicles travelling on a highway.
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After familiarising ourselves with the physical systems, we move on to a mathematical
analysis of layered jump processes in chapter 3. In particular, we will be considering the
limit behaviour of single particle systems, by using ergodic theory and martingales. For
both homogeneous and inhomogeneous systems, we prove analogous theorems to the
law of large numbers (LLN) and the central limit theorem (CLT). These type of limit the-
orems are generally referred to as invariance principles.

In the homogeneous case, it is in fact possible to derive exact formulas for the drift ve-
locity of the LLN and the diffusion coefficient of the CLT. The main results concerning
this are theorems 24, 30 and 31. These equations can be used to determine the drift of
a particle and to estimate the variation around the drift. In the inhomogeneous case,
we will consider two types of random environments; namely the random-waiting-time
model and the random conductance model. In both cases, it becomes infeasible to actu-
ally find closed-form expressions for the diffusion constants, but it is mostly still possible
to show abstract limit theorems. This rigorously confirms our expectation of homogeni-
sation. The main results are analogous to the ones for homogeneous environments and
are shown in theorems 33 and 36.

These abstract theorems can be practically applied to the physical systems. For instance,
the theorems confirm that RTPs are comparable to Brownian particles and that homogeni-
sation is valid for RTPs. For RNA transcription, the drift theorem is more important for
practical use, as it provides estimates and bounds for the transcription speed. Chapter
3 concludes the mathematical analysis of our (single-particle) systems and provides an-
swers to the first main research question and partially to the second.

To add to the results of single-particle systems, we conduct simulations on multiple-
particle systems as well. In chapter 4, we introduce a general numerical algorithm that
can simulate jump-processes. We implement this algorithm in Python and verify the va-
lidity of this implementation by confirming our derived mathematical results.

Having introduced a general method of computing layered jump processes, we can fi-
nally apply this to our main process of interest, RNA transcription. In chapter 5, we
will reproduce results obtained by (Klumpp, 2011) in both homogeneous and inhomo-
geneous environments. In particular, we find that the phenomenon of clustering occurs
in our simple model. Additionally, we find that the addition of certain barriers to our
simple model leads to the experimentally observed RNAp cooperation. We also explain
how this effect naturally arises due to this added component, thus investigating the third
research question. Lastly, we will compare our numerical results against the theoretical
results in both sparse and dense conditions. This analysis will provide the main answer
to the second research question.

Lastly, in the conclusion 6, we will summarise our findings and discuss any potential
shortcomings which indicate a potential direction for future study.



CHAPTER 1
MATHEMATICAL FOUNDATION OF
MARKOV PROCESSES

In the introduction, we outlined the main relevant physical systems. The models for
these systems are all stochastic in nature. Even to be able to formulate statements re-
garding stochasticity, an adequate mathematical foundation is needed. More specifi-
cally, the processes will turn out to be Markov processes, for which a vast and rich math-
ematical framework is readily available. In this chapter, we will therefore lay the ground-
work for further analytical investigations and we begin exploring the theory on general
Markov processes so that we can apply these results to the physical systems later.

1.1. PROBABILITY THEORY

A first step is to clarify the notion of “stochastic processes”. The word “stochastic” be-
longs to the mathematical domain of probability theory, probability spaces and random
variables, which we take as prerequisite concepts. The second part, “processes’, refers to
time dependent phenomena. We shall now combine these two concepts more formally.

Definition 1. Stochastic process:

A stochastic process on probability space (Q), <,P) is a collection of random variables
(X rer on (Q,of,P). Here, T is a linearly ordered index set (normally N,Z or Rxq). Each
X; maps to the same pair (F,%) and may depend on previous random variables in the
collection. The pair (F, %) is usually the physical space in which the process takes place.
For any w € Q, the function X“ : T — S with X (t) = X;(w) is called a sample path.
Furthermore, we call a stochastic process stationary if Px, does not dependon t. Py, is the
push-forward measure on F withPyx, (f) =P (X;(f)) foreach f € &.

From this definition, we find the surprising consequence that the underlying sample
space (€2, «,P) is not all that interesting. Since we are more interested in the outcomes
of the process and the probabilities of these outcomes occurring, the more important
aspects are the index set T, the outcome space (F, %) and the measures Py,. In fact,
the process is often defined directly using the random variables and the push-forward
measures themselves, omitting (Q2, «/,P) altogether.

Definition 2. Discrete and continuous stochastic processes.

We say that a stochastic process on (Q, o/ ,P) — (F, %) is in discrete space if F is countable.
Commonly F <N or F € Z in this case.

Secondly, a stochastic process is in discrete time if T is countable. On the other hand, it is
in continuous time if T is continuous (for our applications, this means T = Rx).

Our main focus will be on continuous time, discrete space stochastic processes. Never-
theless, discrete time processes are often simpler and hence it is insightful to provide a
discrete example first.
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Example 1. The simple discrete time random walk:

We let (S;,) nen be a stochastic process in discrete space and time, defined by S,, = ;’:1 X;.
Here, (X;)en is a sequence of i.i.d. random variables mapping to{-1,1} withPx, ({1}) =: p.
The process can easily be visualised by viewing S, as the position of a particle at time n.
After each time step, the particle jumps to a new position, making it a random walk. We
call the random walk simple since the particle can only jump to neighbouring positions.
Ifp= %, the process is a simple, symmetric random walk. On the complete opposite end of
the spectrum, for p =0, p = 1, the walk is completely deterministic in one direction.

This process is defined without referring to a sample space Q). In principle, Q can be con-
structed, but this is cumbersome. The usual method is to take a product space of the un-
derlying sample spaces of the increments X; (Saeki, 1996; Hewitt and Stromberg, 1965).

1.2. DISCRETE SPACE MARKOV CHAIN BASICS

We are now equipped with the necessary ingredients to turn to Markov chains. These
are stochastic processes which additionally satisfy the Markov property. This property
entails that the processes only depend on the present, but not the past. This constraint
narrows down the scope of stochastic processes to allow for a deep mathematical analy-
sis. However, the property is also not too restrictive, rendering it useful for applications
in a wide range of scientific fields. In fact, many physical processes can be modelled as
Markov processes (van Kampen, 2007) and we provide several examples in chapter 2.

1.2.1. DISCRETE TIME MARKOV PROCESSES

Definition 3. Discrete space and time Markov chain:

Take a stochastic process X, in discrete time on (2, &« ,’) mapping to a discrete space S.
We call X,, a Markov process if it additionally satisfies the Markov property:
IfVneN,ig,iy,...,in, j €S we haveP (X, =iy,...,Xo = ig) >0, then

P(Xy+1 = ]lX = in’Xn—l = in—l»---»XO = iO) =P(Xp41 = ]erL = in)- (1.1)

Note that the condition P(X}, = iy,..., Xo = ip) > 0 is only there to guarantee that equa-
tion 1.1 is conditioned on events with positive probability.

Without knowing it, we have already encountered our first discrete time Markov process
in the form of the random walk described in example 1. All we need to do, is simply verify
that the Markov property is satisfied for this process. Consider any path iy, iy,...,i, € Z
that satisfies the conditions of equation 1.1 and take i,+; € S arbitarily. Then,

P(Sn+1=in+1lSn=1in,...,So = i0) =P(Sp + Xp+1 = in+1lSn =in,...,So = ip) =
P(Xn+1 = in+1 — inlSn=in,..., So = i0) = P(Xp+1 = in+1 — inlSn = in) =P(Sp+1 = in+11Sn = in).
where we use the independence of X, to any X for k < n+ 1 in the third equality.

The simple random walk also exhibits an important property known as time homogene-
ity. Time homogeneous Markov processes form an important class of Markov chains.

Definition 4. (Time) Homogeneous Markov chain:
A chain for which the transition probabilities P(X,+1 = j| X, = i) do not depend on time.
By this we mean, Vn, j,i :P(X,41 = jl X, =1) =P(Xy = j| Xo =1).
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Corollary 1. Chapman-Kolmogorov equation (G. R. Grimmett and Stirzaker, 2001):
Take a time-homogeneous Markov chain on a finite state space S. Then, the transition
probabilities can be written in a matrix as P = [p; ;] = [P(Xy = jlXo = i)]. The n-step
probabilities are p;f i P(X,, = jl Xo = i) with corresponding n-step matrix [plff j] =P,.
Let = (P(Xo = 1)) jes be the initial condition. We can compute P, andP(X,, = j) by:

Pp=P", P(Xp=j)=(uPy);=(uP");. (1.2)

1.2.2. CONTINUOUS TIME MARKOV PROCESSES

Although much more can be said about discrete time Markov processes, we move on to
continuous time Markov processes as all our applications will be in continuous time. We
will use our discrete time definitions as a basis for the counterparts in the continuous
time setting.

Definition 5. The continuous time Markov property:
Let (X;) teT be a stochastic process mapping to countable S with T = [0,00). X; satisfies the
Markov property if for any sequence iy, ...,in-1,in €S, {) < tp <--- < t, € T we have that:

P(X(tn) = inlX(th-1) = in-1,..., X(01) = 01) =P(X(tn) = in| X(tp-1) = in-1) (1.3)

In discrete time, we could describe the process completely by its transition matrix P. In
continuous time, this becomes more difficult as there is no unit step of time. The role of
the transition matrix is assumed by the semigroup and generators in this context.

THE SEMIGROUP AND GENERATORS
Firstly, we shall assume that the state space S is finite to illustrate the concepts.

Definition 6. Transition probability:
The transition probability p; j(s,t) fors<te€ T andi, j€ S is

pi,j(s, 1) =P(X; = jlXs =1). (1.4)
The process is time-homogeneous if the transitions only depend on the time increment:
pi,j(s,0) = p; j0,t=38)=:p; j(£—5). (1.5)

Definition 7. Semi-group:
Take a time-homogeneous Markov chain and let S; = [p; j(1)]; jes be a transition matrix.
Then, the family {S; : t = 0} is called a stochastic semi-group.

Proposition 2.

The semi-group satisfies three basic properties (G. R. Grimmett and Stirzaker, 2001):
1)So=1

2) S; is stochastic, meaning that Vi, j : pij(t)=0 and Vi : Z'J.Szll pi,j(t) = 1.

3) The Chapman-Kolmogorov equation: S;Sg = S¢+s = Ss4+t = SsS;¢ fors, t = 0.
Proposition 3. The stochastic semi-group {S; : t = 0} is a family of operators on the space
of continuous functions mapping from Q to R, € (Q). For f € €(Q) define:

S f(x) =E(f(X)IXo = X) = S (f (x0), £ (x1)y-.0r fNT (1.6)

where the indexing S = {xo, ..., X,} is used on both S and the ordering of elements of S;.
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For any process we can easily find its corresponding semi-group {S; : £ = 0}. Bug, it is
especially useful that one can start with a semi-group and guarantee that there actually
exists a corresponding process. In example 1, we saw that working with the definitions
of stochastic processes can become quite unwieldy. The semi-group simplifies work-
ing with this formalism. Additionally, semi-groups have generators associated to them,
which track the transitions of X; on small time scales. In turn, these generators simplify
the formalism even further.
In the following sections, we will derive a general form for generators of so-called “jump
processes”. Using the general form of these generators, all one needs to do to figure out
the generator of a specific jump process, is to draw out a kinetic scheme of the process.
Definition 8. Generator:

. Si—1

L=1lim

(-0
The existence of L is not at all obvious, but we shall only analyze the specific class of jump
processes in which L can be directly computed and thus we can safely assume existence.

(1.7)

Theorem 4. Kolmogorov's Forward equation:

d
Est:StL' (18)
Proof. The forward equation can be derived from proposition 2 (van Kampen, 2007).
d . Seen—=Sr . Sp—1
—S;=lim ————=1lim § =S;L. O
Tt S ot h !

Kolmogorov’s forward equation also became known as the Master equation in the con-
text of discrete space processes in applied sciences. In the case of infinite state space
S, the step %S (= limh_.ow becomes problematic. Under some extra assumptions
that we will not delve further into, the Kolmogorov equations still hold (G. R. Grimmett

and Stirzaker, 2001). For jump processes, these extra conditions are satisfied.

Theorem 5. Kolmogorov’s Backward equation:

d
—S;,=LS 1.9
PTRL t (1.9)

Kolmogorov’s backward equation is also called the Fokker-Planck equation in applied
sciences and can similarly be proven using proposition 2. Note that both Kolmogorov
equations describe the evolution of the transition probabilities in terms of the generator.
This allows for direct computation of S;; for instance, by using the following corollary.
Corollary 6. (Bhattacharya and Waymire, 2023):

(e e] lJ’l

Si=el=Y —L" (1.10)
n=0 n!

is the solution to the differential equations 1.8 and 1.9 with initial condition Py = I.

In principle, e’ can be computed by diagonalising L, but this is usually cumbersome
and often even impossible. We will provide alternative methods of solving the master
equation that are based on Fourier and Laplace transforms in chapter 3.

The generator and semi-group formalism is especially useful when working with irre-
ducible processes, for which further deep and intriguing results can be derived.
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Definition 9. Irreducible chain:
A Markov chain is irreducible if for any i, j € S, there exists some t € T such that p;(t) > 0.

Definition 10. Stationary distribution:
Avector m = (71,...,7,) WithVj:mj =0 and Z]-Esnj =1 can be seen as an initial distri-
bution of the chain. Such a distribution is unchanging in time, or stationary, if:

m=nS;. (1.11)

Theorem 7. Stationarity and the generator (G. R. Grimmett and Stirzaker, 2001):
For finite state space,  is stationary ifand only ift - L=0".

Theorem 8. Ergodic theorem (G. R. Grimmett and Stirzaker, 2001):

Let X; be an irreducible Markov chain with associated semi-group {S;}, then either:

a) If there exists a stationary distribution 7, then it is unique and p; j(t) — 7 ; as t — oo.
b) Otherwise, p;;(t) — 0 as t — oo.

So, no matter the initial distribution of the Markov chain, the eventual distribution con-
verges to the stationary distribution. Theorem 8 can can be further generalised and the
main ergodic theorem is given in equation 3.3.

We now turn to the case of more general state spaces, namely countable S. In this
case, these processes belong to a class of processes called Feller processes. In particular,
we shall be working with S = Z x I where I is some finite set of “layers”. We can once
again define the semi-group, based on the intuition gained from the case of finite state
space. This time however, S; and L cannot be interpreted as matrices, but rather only as
operators on function spaces.

Definition 11. Let S; be an operator on € (Q)) defined by

Sif(0)=E(f(X)IXo=x) =) PX;=ylXo=xf()). (1.12)
yeS

Proposition 9. Once again, as consequences of the definition of S; we get:

1)So=1

2) St4+s = 8:Ss (Semi-group property / Chapman-Kolmogorov equations)

3)Vf:t— S, f isaright continuous map. (This point is an assumption on the process.)

Corollary 10. As a consequence of point (3), we once again obtain that S, = e'" for some
generator L. The generator can be computed by using definition 8 and is an operator on
the space of functions for which this limit exists.

1.2.3. JUMP PROCESSES

In the previous sections, we laid out some general results of continuous time Markov
processes. In doing so, we have already announced several times that we will only be
considering “jump processes”. In this section, we will finally clarify what we mean by
jump processes. We shall introduce the concept by means of two useful examples and
afterwards finally extract a complete definition.
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A FINITE STATE SPACE EXAMPLE

Let S =1{0,1} and let Hy(0), H;(0) be two positive, continuous random variables. We refer
to Hy, H; as waiting/holding times. When the process X; enters state i € S at time ¢, we
take a new H;(1), i.i.d. to H;(0). The particle waits for a time H;(¢) until transitioning
to the opposite state. If we demand that X; is a time-homogeneous Markov chain, it
automatically follows that H; must have an exponential distribution (Sigman, 2022):

P(H;>x+ylH;>x)=P(H; >x+y|Vse[0,x]: Xs=1)

P(H; >x+ylVse[0,x]: Xs=0)=P(H; >x+ y| X\ =1) (Markov property)
P(H; >x+ylXy=1)=P(H; >yl Xp=1) (Demand of time homogeneity)
P(H; >yl Xo=1i)=P(H; >y) (by definition of H;)

We see that H; must be memoryless. The only memoryless continuous distributions are
exponential distributions with a certain rate parameter A; (Sigman, 2022).

Now, let us compute the generator of the process. We first need to establish what the
probability of making at least 2 jumps in a time interval [0, 7] is. If the process starts from
Xp =0, the probability is of order O(t?), since:

t pt—hy
P(Hy <t Hy <t— Hp) :f f /11/126_/10%_/11}“ dhydhy = O(tz).
0 JO

The latter equality follows easily by considering the cases Ao = 1; and Ay # 1, separately.
Here, O(#?) denotes the Landau big O, where f (1) = O(g(#)) means lim,_.g % < 0.

The probability of making at least 2 jumps starting from X, = 1 yields the same expres-
sion with 1y and 1; exchanged. We let K; denote the amount of jumps up to time ¢ and

compute the generator by using the tower rule (Jacod and Protter, 2004):
S f () =E(f(Xp)|Xo = i) = EE(f (XK, = k)| Xo = ). (1.13)

Note, P(K; = 2|Xo = i) = O(t%) and P(K; = 0| Xy = i) = e il
Therefore, P(K; =1|Xp=i)=1- e Yt + O(1%). We conclude that:

E(f(X)|Xo = i) = E(f(X)|K; =0, Xo = D)e M + E(f(X)IK, = 1, Xo = D) (1 — e~ M) + O(?)
= f(Xne M+ FX_p)(1-e M) + 0%
= f(XDA -1t + (XAt +O().

Consequently, the generator is

1 ([1—/101‘ Aot

. 1 0
L=lim - At 1-At

0 1

Ao Ao
A=A

+O(t2)) =

] : Ao, A1 >0. (1.14)
1

We can repeat the procedure on a space with three states, S = {0, 1,2}, with holding times

e . - LAy .
Hy, Hi, H,. We distinguish between the possible transitions by letting A_l] fori # j be the
probability of transitioning from state i to state j upon ajump. Once again, the result will
be that all H; are exponentially distributed with parameter A;. This yields the generator:

-Ao Aoq Aoz
L=1A,p0 -A1 A2 (1.15)
Ao Azl —Ao
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The tower rule method can in fact be used to compute L on any finite space S. Again, let u
Aij o . s : .
A A_,] be the holding time rate and the transition probabilities at state i respectively.

Aii
Si—Df@) =M -1DfH)-a-etH Y A—ff(j)+0(t2) = Aitf(i)+ Y Aijtf(j)+O(£?)
j#i M Jj#i
= Lf(D) =) Aij(f()— f@). (1.16)
J#i

where we used that }_jx; A; j = A;. It is easily verified that the generators in equations
1.14 and 1.15 also satisfy 1.16 when interpreting f as a vector (f(1), f(2), f(3)).
We can re-interpret this generator by using two properties of exponential distributions:

Theorem 11. Minimum of exponential distributions:
Take an arbitrary statei. Let H; 1,...,H; ;—1, H; j+1,..., H; , be independent, exponentially
distributed variables with respective rates A 1,...,A; n = 0. Let H = min{H; ; : j # i}.

Then H is also an exponentially distributed random variable with rate A; :=

n .
j=1j#i Mg

The shorthand notation 1; ; = 0 denotes an impossible transition, i.e. “H; ; = c0".
Theorem 12. Relating minimum of exponential distributions to components:
Leti, H; j, H be defined as in the previous theorem.

Aij ., .
Then, P(H = H; ;) = /l_l] forany j # i such that A; # 0. If A; = 0, there are no transitions
possible exiting state i (i.e. “H = 0o") and the process will remain in i indefinitely.

These two results are standard results from probability theory (G. Grimmett and Welsh,
2014) and therefore we do not include the proofs. Equipped with these two properties,
the nature of the jumping process can be seen in a different light.

Proposition 13. We can re-interpret the finite state jumping process as follows:

Every state has a finite set of neighbours. A transition from state i is always to one of its
neighbours j. For each neighbour, we set a exponentially distributed clock with rate A; ;
(i.e., a holding time). Then, we transition to a new state as soon as one of the clocks “goes
off” and move to the state corresponding to this first clock.

Consequently, the process exits state i with total rate A; by theorem 11 and transitions to

state j with probability —* by theorem 12. Hence, this new interpretation is completely
4
equivalent to the earlier presented formalism and thus yields the same generator L.

The benefits of this second interpretation will become apparent when we explain the
Gillespie algorithm in chapter 4. Another advantage of the second interpretation is that
it can be related to actual physical systems, in which particles transition similarly to the
“clock formulation” given above.

Before we continue to the more general Feller processes on countable state space S, we
derive some final results for finite state spaces. In particular, we need to find the station-
ary distributions of the 2-state and 3-state systems. These will be used to calculate the
drift of physical jump processes in section 3.3.1.
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Theorem 14. Stationary distribution of two state system:
The stationary distribution t of processes on S = {0, 1} with generator 1.14, is given by:

_( M Ao
Ao+ AL g+ A

(1.17)

Proof. 1f 11,2 > 0, the process is irreducible (any state can be reached by any other
state). By theorem 7, the stationary distribution can be found by solving 7+ L = 07. The
proposed vector 7 of equation 1.17 is a solution to the resulting system of equations:

To+m =1, A1 —meAg =0. O

The assumption Ay, A; > 0 is necessary in this theorem. If either of the two are in fact 0,
the process will eventually remain stuck in one of the states forever, which is automati-
cally a trivial stationary distribution.

Theorem 15. Stationary distribution of three state system:
The stationary distribution n of irreducible processes with generator 1.15 on state space
S =1{0,1,2} is given by:

7 =K(A12A20+A20A1,0+A1,042,1; 42,0401 +A2,1402+A2,140,15 40,2410+ 41,2402+ A1,240,1)
(1.18)
with K being a normalization constant.

Proof. Again, this is the solution to the system ¥ ;7; =1,7-L=0". O

Once again, we need the assumption of irreducibility in this theorem. For non-irreducible
processes, the process will eventually reduce to the 2-state system.

Note that by theorem 8, any irreducible process in the 2- and the 3-state systems will
converge to the stationary distribution, no matter the initial condition p = (P(Xy = i) jes-

Proof.

pij(0) =) = (uSt)jes — i ) M- m
j€S

THE RANDOM WALK FELLER PROCESS

We have just established the general form of generators in finite state spaces, by defin-
ing time homogeneous Markov processes and their transitions using holding times. For
countable spaces, we can work our way backwards; starting with the generator to define
the process and its transitions.

First, we consider a continuous time variant of the simple random walk (example 1).
Let S = Z and let take symmetric transition rates Ay x+1 =1 = A, x—1. The generator

Lf)=1-(f(x+D-f)+1-(f(x-D - f)=(flx+D+ fx-1)-2f(x))

defines a simple, symmetric continuous time random walk. Particularly intriguing here
is the striking similarity to a second-order central difference, which is the discrete ana-
logue to the second derivative of a function. Any term in the generator that has this
central difference form is referred to as a diffusive component of the process.
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This name is not a coincidence, as there is a somewhat surprising connection between
these generators and diffusive processes. For instance, (Schwarz, 2022) shows that an
actual diffusion equation in the form of Fick’s second law of diffusion can be derived
from such difference equations. The probabilistic process most closely related to dif-
fusive motion is Brownian motion. This process has an actual second derivative in the
generator which will be of significance in section 2.2. The random walk above can be
seen as the discrete time variant of this process due to the similarities in the generator.
As opposed to central differences, forward differences may also appear in the generator.
These parts are called active components and we will provide an example below.

GENERAL JUMP PROCESSES
Definition 12. Let S be a countable state space. For each x € S, assign a finite set of neigh-
bours Ny. For each y € Ny take a rate Ay, > 0 and let Ay := ¥ yen, Ax,y- When a process

. . . . e A
starts in x, we make a jump to any neighbour y with probability /{‘xy and total rate A .

We call any process based on these transitions rates a jump process. Jump processes have
a generator operating on the functions with bounded supremum norm:

LX) =) Avy(f) = F0)). (1.19)

YENK

Furthermore, we call the process a layered jump process if S = Z x I for some finite I.
A particularly useful layered jump process is described by the following generator:

Lf(x,0)=xs(f(x+1,0)+ f(x—1,0)-2f(x,0)) + f(x+ vs,0) — f(x,0)
+ Y Ao (f(x,7) = f(x,0)) (1.20)
T#£A
where o € I denotes the layer. So, this is a process in which each layer has a distinct diffu-
sive term with rate x; and an active component of size v; and rate 1. From now on, we
will only be considering layered jump processes. An example is given in figure 1.1.

Proof. The derivation of the generator is the same as in equation 1.16. Again, we use
that the probability of more than one jump in a time interval [0, t] is O (tz). Furthermore,
from the fact that | Ny/|, || fllco < 00, we can safely conclude that the sum converges. O

o)

~-0—0—0 OO
ikb kp
OO OO
fi oA ke
—(O—O c 0 O—O—
— &5

Figure 1.1: A three-layer system used for modelling RNA transcription in chapter 5. We have diffusive motion in
the upper layer, active motion of rate ¢ in the lowest layer and the second layer is a pause layer. The parameters
for this specific model are given by vg = 1,x9 =1 = v1 = v2 = 0,x2 = kp and switching rates

Mo = iMoo =171 012 = kp, A2t = kp, A2 = ke, o2 = 0.




CHAPTER 2
MARKOV PROCESSES IN PHYSICS

Now that we have covered the necessary background in probability theory, it is about
time that we actually defend why we consider Markov processes at all. We will begin with
a justification of the use of stochastic processes in physical applications. Afterwards, we
show that Markov processes are widely used in systems of all scales, such as in the fields
of nanobiology and life/behavioural sciences. The particular application we focus on is
RNA transcription and we introduce the basic theory of transcription in this chapter.

2.1. WHY DO WE NEED STOCHASTIC PROCESSES IN PHYSICS?

One of the fundamental principles associated with classical physics is determinism (Van
Strien, 2021). The exact future trajectory of a particle can, in theory, be determined using
Newton’s laws, if its position, velocity and all forces acting upon it at a certain time are
known. Inherently, there is no randomness about such motion, but determinism does
trivially guarantee the Markov property.

However, for complicated systems with many interacting particles, actually analytically
solving the equations of motion becomes impossible. In fact, for physical systems such
as the ideal gas model, even numerically solving the trajectories of the enormous amount
of particles involved is infeasible. As a result, we need to forfeit the idea of keeping track
of the exact motion of each and every particle and instead work with only a few macro-
scopic variables. The justification for being able to filter out so much information, is that
we expect the movements of the particles to average out amongst each other, resulting
in measurable realisations of macroscopic quantities such as pressure and temperature.
The transition from microscopic to macroscopic often comes hand in hand with intro-
ducing stochasticity into the model (van Kampen, 2007). Instead of following what state
the particle is in, we only speak of what state the particle is likely to be in and assume
that all particles follow the same probability distribution. Another benefit of this proba-
bilistic formulation is its aptness to modern physics and quantum indeterminancy.

A problem that arises when restricting ourselves to macroscopic variables is that the
Markov property may become invalidated. Indeed, this property may have depended
on some of the relinquished information. We illustrate this idea by an example:

Example 2. Consider a particle in a simple harmonic potential U(x) = %xz. The trajectory
(x(1),x' (1)) is a Markov process, as two initial conditions at each time t are sufficient to
solve the equation of motion. However, if we restrict ourselves to the process (x(t)), we
lose the Markov property. Indeed, for a particle at x(0) = 0, the future trajectory is highly
dependent on the history. For instance, the histories V't € [-2m,0] : x(t) =0 and

x(t) = sin(t) lead to vastly different future trajectories.

Hence, the validity of Markov property is an assumption in our models. Nevertheless,
when transitions are caused by molecular collisions (such as in chemical reactions), the
transitions can be approximated as being exponentially distributed (Gillespie, 2007) and
are thus Markovian by our discussion in proposition 13.

14
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For the case of RNA transcription, approximating the transitional process by exponen-
tial distributions is further justified in (van Kampen, 2007; van den Berg, 2017). During
transcription, the RNA polymerase traverses an energy landscape that contains several
energetically favourable positions on the DNA. RNA is transcribed at these DNA sites. To
move between two adjacent sites, RNAp has to cross a certain free energy barrier of size
AG. For instance, the particle has to perform work to open the double-stranded DNA and
to overcome viscous drag due to sliding along the DNA (Jiilicher and Bruinsma, 1998).
Note that AG may depend on the DNA sequence. In fact, this dependence may be a way
for RNAp to identify and copy the code (Jiilicher and Bruinsma, 1998).

To overcome the energy barrier, energy is attained through thermal noise and the energy-
releasing binding of NTP to the RNA transcript (Jiilicher and Bruinsma, 1998).

We can view the thermal noise as the polymerase being bombarded by numerous smaller
molecules. Upon collision, the polymerase transitions to excited energy states. After
several collisions, the polymerase gains enough energy to cross the energy barrier and
travels to the next site on the DNA chain. The transitions to excited states approximately

follow the simple master equation % = —kp (van den Berg, 2017), which has an expo-

nential as solution. The Arrhenius-Boltzmann factor, eﬁ?, relates to the probability of
an excited particle having a change of AG in energy (van Kampen, 2007). By combin-
ing the transition master equation with the probability of the transition having enough
energy to cross the barrier, it follows that the total transition of RNAp to the next site ap-
proximately occurs at an exponential rate.

We have thus shown that Markov processes are suitable for modelling physical systems.
We will now show examples of such models and introduce the model of transcription.

2.2. BROWNIAN MOTION

Brownian motion is an archetypal example of continuous time Markov processes in physics.
It is particularly of interest to us, since our objective is to prove that the rescaled move-
ments of particles in several systems converge to Brownian motion.

BROWNIAN MOTION IN PHYSICS

The discovery of Brownian motion is often attributed to Robert Brown. In 1827, Brown
investigated the movement of pollen suspended in water and noticed tiny particles mov-
ing in an erratic, unpredictable fashion (Schwarz, 2022). The movement of a heavy parti-
cle, such as the pollen, immersed in a fluid of light particles is now called Brownian mo-
tion (van Kampen, 2007). In our applications, we will only work with one-dimensional
Brownian motion. However, we emphasise that the following discussion generalises to
higher dimensions in a straightforward manner by letting each coordinate behave inde-
pendently as a one-dimensional Brownian motion.

As explained in (van Kampen, 2007), when the heavy particle has a positive velocity V,
it will collide with more molecules in front than in the back. The amount of collisions
and the subsequent values of velocity depends on the present V, but not on the past.
The process {V (1)} is therefore Markovian. We can also observe the position at some
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time steps, Xy, Xy, ,..., for times that are not too close. By this we mean that the time
increments are larger than the self-correlation time of the process (van Kampen, 2007).
For such time increments, the differences X;, — Xy, X;, — Xy,... will all be independent.
Additionally, each difference only depends on the time duration ¢;;+; — t; but not on its
history. Hence, the position at these time steps is also Markovian.

Famously, Albert Einstein published in his “miracle year”, 1905, a theoretical investiga-
tion on the displacement and the diffusion coefficient D of Brownian particles, using a
molecular collision model as basis. Recall that we are dealing with stochastic processes
rather than exact motions. As such, Einstein provides an equation for the (probability)
density p(x, ) of particles at each position and time (x, #) (Einstein, 1905):

op(x,1t) _ Dazp(x, t)-

ot ox? @1

Of course, this equation is a diffusion equation and a particular solution with initial con-
dition p(x,0) = d is given by (Einstein, 1905):

2
plx,t) = 4Dt (2.2)

1
V4nDt ¢
Here, we recognise a Gaussian distribution function with expectation 0 and variance
2Dt =: 0 t. Einstein concludes that the average displacement of a single particle is pro-
portional to v/z. This conclusion relies on an ergodic property: the behaviour of the
same particle in different time periods is interchangeable with the behaviour of differ-
ent independent particles at the same time. The ergodic property allows for exchanging
time averages with sample/ensemble averages, as we will see in theorem 18.

BROWNIAN MOTION IN MATHEMATICS

Brownian motion also holds a central place in mathematics and is known as the Wiener
process in this context. We will later see that in continuous-time central limit theorems
(CLTs), the Wiener process assumes the same role the Gaussian has in discrete-time
CLTs. Therefore, it is important to formalise the discussion presented above.

Definition 13. Wiener process (G. R. Grimmett and Stirzaker, 2001):

The Wiener process {W (t) : t = 0} is defined by three basic properties:

1) The trajectories t — W (t) are continuous.

2) The initial condition is given by W(0) =0

3) The increments in position are independent and normally distributed, i.e.

V() :0S h<tr<..tp,Visn:W(t)—W(ti-1) ~ AN (0,0%(t = t;-1).

The Wiener process satisfies some basic, desirable properties such as existence, well-
definedness and the Markov property (G. R. Grimmett and Stirzaker, 2001). Additionally,
the physically derived equation 2.2 follows directly from property (3). Thirdly, the gener-

ator of the process can be found by comparing equations 1.8 and 2.1. We conclude that

L= %02 %. Once again, this confirms the diffusive nature of this process, as this is the
continuous space analogue of the discrete diffusion generator given in section 1.2.3.
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Lastly, we need to establish some computational properties of the Wiener process that
will be used later in the central limit theorem proofs of chapter 3.

Proposition 16. Foracertain time t, the characteristic function (CF) of a random variable
W (t) from the Wiener process {W (t)} is given by:

Pr(s):= [E(eiW(t)s) _ D15 (2.3)

This can be directly found from the CF of Gaussian distributed random variables (Jacod
and Protter, 2004). Consequently, the Laplace transform of these CFs is given by:

oo 1
£ (p(s =| e e Pt gr= . 2.4
(¢:(5)) (2) fo D (2.4)
On the other hand, the Wiener process also has some unexpected properties. For ex-
ample, almost all sample particle paths of the process are nowhere differentiable, which
seems contradictory to the motion it is trying to model. The nowhere-differentiability is
most clearly exemplified by the scaling property of Wiener processes (Lowther, 2009).

Proposition 17. Scale invariance (Lowther, 2009):
IfW (t) is a Wiener process, then Y a € (0,00) : W, () := aW (a~?t) is also a Wiener process.

By Taylor’s theorem, differentiable processes look approximately linear when zoomed in
close enough. By property 17, it is clear that this is not true for the Wiener process.

The apparent contradiction can partially be attributed to the fact that in the model, the
molecular collisions are assumed to have an instantaneous effect on the heavy particle.
In reality, the collisions act for a nonzero, albeit small duration.

2.3. LAYERED JUMP PROCESSES IN PHYSICAL SYSTEMS

In the previous section, we presented Brownian motion as an example of a continu-
ous time and space process. However, the main focus of this report lies on discrete
space Feller processes. In section 2.1, we already expanded on the idea that exponen-
tial transitions often arise in molecular systems and chemical reactions. Therefore, we
can expect that microbiological systems are the main application of Feller processes in
physics. Interestingly enough, macroscopic applications also exist. In particular, jump
processes have found a remarkable extent of applicability in life and behavioural sci-
ences (Schwarz, 2022). Before we present the main matter on applications in micro-
scopic biology, we will therefore first discuss some applications on larger scales.

2.3.1. JUMP PROCESSES IN LIFE AND BEHAVIOURAL SCIENCES

(Schwarz, 2022) presents some particularly striking macroscopic examples, like mod-
elling the movements of animals such as reindeer, the length of a hospital stay and the
decision making process of a bee colony as a random walk.

More specifically tied to the Feller processes of section 1.2.3 is the notion of discrete and
continuous time stochastic cellular automaton models (Klumpp and Hwa, 2008). These
automaton models appear in all sort of macroscopic contexts, most notably in modelling
vehicular traffic. The study (Chowdhury et al., 2000) provides an extensive overview of
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several traffic models, including “particle-hopping models” that are comparable to jump
processes. In fact, viewing traffic from a statistical physics perspective is actually com-
mon practice (Chowdhury et al., 2000). Theories on kinetic gas models, interacting par-
ticle systems and compressible fluids lend themselves to use in traffic models and vice
versa. We emphasise the strong and surprising connection to this application, since we
will later see phenomena in chapter 5 that one would also expect from a traffic model.

2.3.2. RUN AND TUMBLE PARTICLES

Now, we move on to microscopic applications. The Feller processes studied in section
1.2.3 focus on layered jump processes. The different layers of the process can be used
to represent the internal state of a particle. A notable example of particles with different
internal states are so-called run and tumble particles (RTPs). These are a class of “self-
propelled Brownian particles that exhibit an interplay between random fluctuations and
active swimming” (Bechinger et al., 2016). Examples of RTPs are bacteria such as motile
E. coliand M. xanthus and algae such as C. reinhardtii (Bechinger et al., 2016; GroBmann
et al., 2016). Aside from biological swimmers, the development of artificial RTPs has re-
cently progressed rapidly too (Bechinger et al., 2016).

The random fluctuations in the motion of RTPs are diffusive in nature and caused by
interactions with the medium, similar to the Brownian particle. The active part is per-
formed by the particle itself, by converting ATP from the environment into (kinetic) en-
ergy. The active motion causes the particle to drift linearly in a certain direction. From
time to time, the particle reorients itself (tumble) and starts drifting in a different direc-
tion. The different internal states of a layered jump process lend themselves perfectly
for modelling the different possible drift directions of the RTPs, as each layer has its own
type of active and diffusive motion. Especially the M. xanthus bacteria behaves similarly
to a one-dimensional layer process, as the bacteria completely flips direction when re-
orienting (Mignot, 2007). However, when considering a system with many bacteria, the
movement will still be higher-dimensional due to collisions.

There are also some differences between the RTPs and the layer processes. The motion
of RTPs mostly takes place in 2 or 3 dimensional continuous space, while the mathemat-
ical theory under consideration is in 1-dimensional discrete space. As the continuous
space can suitably be discretised by a lattice, the fact that jump processes are in discrete
space is not problematic. In principle, the mathematical theory can also be expanded
to 2 and 3-dimensional systems, but this would be highly case-dependent. For example,
the way in which the particle reorients itself needs to be incorporated into the layers and
this may lead to different models for different RTPs. In (Grofmann et al., 2016; Fodor
and Marchetti, 2018), some higher-dimensional mathematical models of RTPs and fur-
ther examples of bacteria, cells and even groups of animals or humans that move like
RTPs are presented. Since the focus of this thesis lies on the 1-dimensional process of
RNA transcription, we will not generalise the theory to higher dimensions here.

2.3.3. RNA TRANSCRIPTION

In the introduction, we outlined the process of protein synthesis in a very rudimentary
form: cells produce proteins based on the DNA via the stages of transcription and trans-
lation. We shall now describe each step in transcription in more depth.
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DNA AND RNA

As is commonly known, DNA encodes the genetic information of any individual. The
DNA is a long chain of sequences of nucleotides, with 4 possible constituents: guanine
(G), cytosine (C), adenine (A) and thymine (T). These nucleotides provide the blueprint
for the synthesis of proteins, although only a small portion of the DNA (1.5 % in humans)
is actually protein code (Nakata et al., 2021). The specific protein coding sequences are
called genes. Even inside a gene, not all nucleotides are used for protein generation. The
parts that do encode protein information are called exons, while the parts that do not go
into the eventual RNA are introns.

The DNA has a distinct double helix structure, in which two nucleotide sequences are
placed in complementary form. By this, we mean that the nucleotides in direction op-
position always come in base pairs, that are either G and C or A and T. The double helix
structure provides chemical stability through hydrogen bonds but also allows for error-
correction as the same information is stored twice in the DNA. Both strands of the DNA
have a polarity related to their internal structure, which run in opposite directions com-
pared to each other. During the replication of DNA, both strands are copied simultane-
ously by a family of proteins called DNA polymerases.

Although we have presented DNA as a sort of long chain, it can actually spatially bend
and twist too. To efficiently compactify the DNA, and to protect DNA against tangling
and damage, it is wrapped around packaging proteins called histones. A structure of the
DNA wrapped around a histone is called a nucleosome. In turn, a compact structure of
multiple nucleosomes is called a chromatin.

In transcription, the DNA is used to construct a corresponding RNA strand. An RNA
strand is similar to a single DNA strand but with thymine replaced with the base uracil
(U). Although there are in fact multiple types of RNA, the messenger RNA or mRNA is the
most important for transcription, as the mRNA actually encodes the information needed
for protein synthesis. Similarly to the replication of DNA, the creation of RNA from DNA
is done by RNA polymerases and RNA polymerase (RNAp) 11 is responsible for mRNA.

RNA TRANSCRIPTION

The transcription of RNA from DNA consists of three stages; initiation, elongation and
termination. Out of these three, the elongation phase will be of main interest to us as
this is a direct application of jump processes in a physical system.

During initiation, RNAp binds to one DNA strand in specific “promoter regions”. The
availability of promoter regions is controlled by proteins called transcription factors (TFs).
As such, TFs regulate which genes are transcribed and the rate at which this occurs.

After initiation, the RNAp becomes active through use of NTP and ATP and can begin
transcribing the gene (Sims et al., 2004). This phase is called elongation. Due to the po-
larity of the DNA strand, the RNAp moves in a specific direction along the chain. The
double helix of the DNA is “zipped open” in the direction of operation, after which the
RNAp copies the nucleotides onto an RNA strand in a stepwise manner. Once the DNA
is transcribed, the DNA behind the RNAp is “zipped closed”. The RNAp’s forward motion
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is interspersed with pauses, which are for example used to benefit genome stability (van
den Berg, 2017; Jonkers and Lis, 2015) and to ensure proper pre-mRNA modifications
are made (Sims et al., 2004). The RNAp can return from a pause to the active elongation
state or switch to a backtracking pause. During a backtracking pause, the RNAp moves in
a diffusive fashion while being detached from the RNA transcript (Klumpp, 2011). This
backtracking movement is theorised to serve the function of correcting any potential
earlier mistakes (Nudler, 2012). The site where an RNAp starts a backtrack is called the
initiation site. The RNAp can exit a backtracking state via two mechanisms. The RNAp
can return to the initiation site and switch back to the pause state. Otherwise, the RNAp
can cleave the transcript and re-engage transcription from any earlier position on the
DNA chain. Note that the RNAp can never move past the initiation site in a backtrack,
as the transcript and zipped open DNA prevent it from moving further (van den Berg,
2017). A schematic drawing of the process of elongation can be found in figure 5.1.

The RNAp completes gene transcription once it reaches the end of the chain, which is
signaled by specific nucelotide sequences called termination regions. When the RNAp
terminates, it detaches itself from the DNA chain and finishes the pre-mRNA transcript
is finished. This transcript is called pre-mRNA, as it still has to go through a splicing
process of clearing out the excess intron regions before it is entirely mRNA.

REGULATING TRANSCRIPTION

The cell needs to be able to adjust to the need of specific proteins at any moment. There-
fore, control of the rate of transcription of different genes is required.

Transcription is a highly complex process subject to many influencing factors, but there
are two main mechanisms the cell can use to regulate transcription. Firstly, the amount
of polymerase binding to specific genes can be controlled. Secondly, the speed at which
the RNAp traverses the DNA strand can be regulated as well. The latter is for example
important to synchronise the transcription with the speed of translation (Klumpp, 2011).

We shall now introduce some of the influencing factors on which the rate of transcrip-
tion is dependent. These influences can be divided into two categories: influences that
stem directly from the genetic information of the DNA and influences that are more from
external, which we call epigenetic. The epigenetic information therefore involves all fea-
tures that cannot be directly seen from the nucleotide sequence, such as the spatial or-
ganization of the DNA and the surrounding environment.

RNAp binding is mostly controlled by epigenetic influences such as the TFs. Additionally,
the spatial structure of the DNA and the manner in which it is wrapped around histones
have a major impact on binding. If the gene is wrapped tightly around the histone, it
becomes less accessible to RNAps and less RNAps will bind to it (Nakata et al., 2021).

The transcription speed itself is influenced by both genetic and epigenetic information.
The main epigenomic influences are again histones and TFs. Even when the RNAp is on
the DNA chain, it can still be blocked or hindered by histones in specific positions on
the DNA. As a result, the RNAp slows down or even halts completely when encountering
histones on the track (van den Berg, 2017; Li et al., 2007).
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TFs can also somewhat control the dynamics of RNAp as they can attach to specific DNA
sites and form so-called regulatory regions (Merkenschlager and Odom, 2013). For ex-
ample, the protein CTCF can bind to the DNA and slow down transcription (Merken-
schlager and Odom, 2013). Consequently, the RNAp behaves differently at different posi-
tions on the DNA chain. TFs can even influence the rate at which the RNAp enters pauses
at specific sites (van den Berg, 2017). “Indeed, upon collisions with different DNA-bound
proteins, ..., RNAp backtracks in vitro and in vivo” - (Nudler, 2012).

(Sims et al., 2004) aptly summarises the effect of genetic and epigenomic properties on
pausing as follows: “Transcriptional pause and arrest in vivo are most likely caused by a
combination of identifiable DNA sequences, protein factors, and the nascent transcript.”
Lastly, the manner in which RNAp moves on the DNA strand is also directly dependent
on the genetic nucleotide sequence. For instance, it has been experimentally observed
that the RNAp moves differently on exon and intron parts of the sequence (Nakata et al.,
2021; Kolasinska-Zwierz et al., 2009; Sneppen et al., 2005).

INTERACTING POLYMERASE

A gene is typically thousands of nucleotides in length. On the other hand, an RNAp pro-
tein is about 30-50nt long and copies only one nucleotide at a time (Nakata et al., 2021;
Klumpp, 2011). The RNAp operates at a velocity of approximately 25-65 nt per second
(Sneppen et al., 2005). This means that when many proteins are required at a certain
moment, a single transcribing RNAp may not be sufficient. Fortunately, multiple RNAps
can work the same track simultaneously. These RNAps can interact with each other. We
shall assume a simple form of RNAp interaction, namely exclusion interaction.

Definition 14. Exclusion interaction:
Two particles cannot occupy the same position at the same time. Hence particles cannot
move to a position that is already taken by another particle.

In reality, the RNAp has more complex interactions, such as pushing forces and colli-
sions. In fact, RNAp may even collide with RNAp that is working on the other DNA
strand in the opposite direction (Sneppen et al., 2005). Exclusion is only an approx-
imation of these interactions, but still leads to interesting phenomena. For example,
(Klumpp, 2011) shows that RNAps can block each other from making long backtracks,
thus leading to shorter backtracking pauses in general. As a result, multiple RNAps can
work together to increase the rate of transcription along the gene and we call this effect
“RNAp cooperation”. This does come at the cost of accuracy though, as transcript cleav-
ing occurs less frequently. The cooperation between RNAps has also been observed in
experiments on E. coli bacteria and yeast (Nudler, 2012). A main goal of this thesis is to
replicate this result obtained by (Klumpp, 2011) and to extend its validity to inhomoge-
neous media as well.

One of the consequences of the exclusion interaction is that RNAps cannot overtake
each other during transcription along the chain. In reality, DNA has a spatial structure,
which allows for nucleotides that are far removed in the DNA sequence to be spatially
close. Consequently, RNAp shortcutting a part of the DNA and thus potentially over-
taking other polymerase is possible (Nakata et al., 2021). However, we shall neglect this
phenomenon and work with the simplifying assumption that RNAp does not shortcut.
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In similar vain, a process that arises due to the spatial structure of DNA is the re-entering
of terminated RNAp to the start of the gene. This might occur if both ends of the DNA
chain are spatially close and allows for modelling transcription with periodic boundary
conditions (Nakata et al., 2021). We also do not include this process in our model and
will instead work with open boundary conditions. By this, we mean that RNAp is free
to enter at the start of the chain and terminates after reaching the end of the chain, but
these processes are not directly dependent. We will assume that new RNAp binds to the
chain at rate a. This parameter is also called the initiation attempt rate.

RELATING TRANSCRIPTION TO JUMP PROCESSES

The main aspects of RNAp elongation are excellently encapsulated by the jump process
formulation of section 1.2.3. First of all, the RNAp also transitions from state to state
with exponential rates by our discussion in section 2.1. Secondly, the state space the
RNAp operates on is the DNA, which is naturally one-dimensional and discrete. Thirdly,
the RNAp operates with 3 internal states that can be modelled as layers in the jump pro-
cess.

Despite the common basis to both RNAp elongation and jump processes, there are some
important differences as well. In particular, the motion of RNAp is more complicated
and the basic jump process formulation simplifies transcription in a couple of ways. We
already discussed that the transitions of RNAp are sequence-dependent. For instance,
this is due to histones and TFs being located at specific DNA sites. The nucleotide se-
quence itself and its introns and exons also add to the sequence-dependence. There-
fore, the spatially homogeneous generator of equation 1.20 is not completely adequate.
In this thesis, we will also introduce space-inhomogeneity to the mathematical analysis
by investigating random environments, thus allowing for a more realistic modelling of
RNADp.

The main distinction between RNAp and a jump process however is the fact that the
polymerase cannot pass the state where backtracking was initiated in the diffusive layer.
This barrier adds glaring issues when trying to combine it with the Markov theory. Since
the barrier is placed at the location where the polymerase entered a backtrack, the poly-
merase’s past influences future motion and thus the Markov property is violated.

We will regard the barrier as an added component to the jump process formulation, and
in chapter 5, we will investigate numerically the new phenomena this additional com-
ponent introduces into the system.

Again, we also discussed that pausing of the polymerase may only occur at specific sites
on the DNA (for example due to the TFs). We will also view these “pause sites” as an extra
component to the simple jump process model. We will conduct both simulations with
and without sites and compare the results between the two.



CHAPTER 3
INVARIANCE PRINCIPLES FOR
LAYERED MARKOV PROCESSES

In this chapter, we conclude the mathematical analysis of single-particle layered Markov
processes by deriving invariance principles in homogeneous and inhomogeneous envi-
ronments. In the next chapter, we will follow up on this by conducting numerical simu-
lations on multi-particle systems and comparing the numerical and analytical results.

To be able to derive the results on single particle systems, we need to expand further
on the theory of Markov processes. For instance, we introduce martingales, which act as
a standard tool in proving central limit theorems/invariance principles. After introduc-
ing this new theory, we apply it to investigate the limiting behaviour of particles in the
layered systems of section 1.2.3. In particular, we prove that the particles, on average,
drift off with a certain drift velocity and that the spread around this drift is diffusive in
nature. The drift part of the limiting behaviour can be seen as a sort of continuous time
generalisation of the law of large numbers, while the diffusive motion is akin to a central
limit theorem (CLT), which is also known as an invariance principle in continuous time.
In homogeneous environments, we find exact expressions for the drift velocity and dif-
fusion coefficient. However, we will not provide these estimates in inhomogeneous me-
dia; these lie outside the scope of this thesis, and in a sense also outside of the scope of
available mathematical theory. Diffusion coefficients in random environments are more
suited to analysis in less general, more application-specific settings.

But first, as promised, we need some more advanced Markov theory to be able to es-
tablish all these limit theorems in homogeneous and inhomogeneous environments.

3.1. EXPANDING ON THE BASIC MARKOV THEORY

3.1.1. INTRODUCING NEW TYPES OF PROCESSES

In the context of finite state space, we introduced several notions to distinguish between
different types of Markov processes. We will now classify several types of Feller processes
as well. By classifying the processes, we allow for new category-specific consequences to
arise. Therefore, we will also investigate what new properties each category brings and
apply these results later in this chapter.

STATIONARY DISTRIBUTIONS

In finite state space, we introduced stationary distributions as distributions that remain
unchanged in time. The defining equations were 7S; = 7 and 7L = 07, which can be
found in definition 10 and theorem 7. We will now generalise this idea to an arbitrary
countable state space S.

23
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Definition 15. Stationary measure:
Let S; be the transition operator of a Feller process with generator L on state space S.
We call a measure u stationary if, for any bounded and measurable f:

Eu(Sef) =Eu(f). 3.1

which can be viewed as the countable space version of tS; = 7.
Equivalently, u is stationary if for any f in the domain of L we have that:

E,(Lf) =0 (3.2)

which, in turn relates to the finite space equation tL =07 .

ERGODIC PROCESSES

Ergodicity entails that the process will eventually explore every state in the system. We
briefly touched on the notion in our discussion of theorem 8 and in the interchanging of
sample and time averages in section 2.2. We will now define ergodicity more formally.

Definition 16. Invariant set:
With the same set-up as in definition 15, take a set of states Ac S.
We call A invariant if S;la=1,4,i.e. Xoe A = X;€ A.

The invariant sets are closed regions in the state space. Once the Markov process enters
such a set, it will remain there and can never exit the region.

Definition 17. Ergodic measure:
A stationary measure [ is called ergodic if all invariant sets have u-measure one or zero.
Equivalently, all invariant bounded measurable functions are p1-almost surely constant.

Take an ergodic measure p as initial condition and consider the region in S where all
possible processes start; i.e. the set with measure 1. As p is stationary, the process can-
not leave this region. So, from the particle’s perspective, this might as well be the entire
space. Hence, ergodicity says that the only stationary sets are the empty set and the en-
tire space/starting region. Consequently, there is no strict subset of space in which the
process will stay forever, which corresponds with our intuitive idea of ergodicity.

With the complete definition of ergodicity at hand, we can finally present the full ergodic
theorem, which builds further on theorem 8.

Theorem 18. Let X; be an irreducible Markov chain on finite state space S. By theorem 8
and the fact that S is finite, there exists a stationary distribution 7.

Firstly, note that m will be ergodic, since the only invariant set is S due to the irreducibility.
Secondly, we have that for any function f : S — R:

1 T
o fO f(XDdt —Ex(f) as. (3.3)

Corollary 19. By taking f(x) = 1x=; in the previous theorem, we see that the mean time
spent in state i converges to ;. This also holds for the layer processes of equation 1.20.
Indeed, we can write X; = (x;,0;) where o ; denotes the layer at time t and x; denotes the
position in the layer. Note that x; and o ; are independent and that (o ;) itself describes a
Markov process on finite state space. Therefore, we can conclude that the mean time spent
in each layer is given by ; with nt being the stationary distribution over the layers.
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3.2. MARTINGALES

Most of the theory on central limit theorems relies on a concept known as martingales. In
this section, we introduce the definition of martingales and show why they are especially
useful in proving invariance principles by stating the martingale central limit theorem.

Definition 18. Filtration:

Let (O, /,P) be a probability space and let T = [0,00). Suppose that we have a collection
of sub-sigma algebras of <f : (F) re7. If this collection satisfies q < r — F, < 5, we call
the collection of sigma algebras a filtration. Any stochastic process X; on (), «,P) has a
natural filtration given by %; = o{X, : r < t}.

Filtrations entail the information that is available to the process at each moment in time
and thus also the history of the process. Martingales are the probabilistic counterpart of

a constant sequence: given the position at present, martingales have an expectation to
stay in the same place. We elaborate this idea in the following definition.

Definition 19. Martingale:
Let M; be a stochastic process on (Q, < ,P).
Let (F1) te[0,00) De the associated natural filtration. We say that M; is a martingale if:

Vs < t:E(M:|Fs) = M. 3.4)
That is, we expect M; to retain its current value in the future. Equivalently, we have:

Example 3. Dynkin martingales (Landim et al., 2012).

The most important martingales in our work are the ones naturally associated to Markov
processes: the so-called “Dynkin martingales’. Let L be the generator and let f € D(L), the
domain of L. We have that the following process, My, is a martingale (Landim et al., 2012):

t
M; = f(Xs) - f(Xo) _fo (L) (Xs)ds. (3.9)

Additionally, we will see that the associated process M? is of significance in estimating
the variance of the limiting process of X;. For calculations on M?, we turn to the concept
known as the quadratic variation of a martingale.

Definition 20. The quadratic variation [M, M];:

Let M; be a martingale. [M, M]; is defined as the unique increasing process such that:

D [M,M]y=M;.

2) Mf — [M, M]; = M; where M, is also a martingale.

Corollary 20. By properties 1 and 2, we have that M? — [M, M|, is a martingale with
expectation zero. It follows that [E(Mf) =E([M, M];) forany t.

Theorem 21. Quadratic variation for Dynkin martingales (Landim et al., 2012):
If M; is a Dynkin martingale defined as in equation 3.5, then we have:

t
[M»M]t:j(; (Lf?)(X) = 2f (X (L) (Xo)ds. (3.6)

Additionally, if t is a stationary measure of the process X;, then: B ([M, M];) = 2t{f,—Lf ).
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Theorem 22. Martingale Central Limit Theorem (Landim et al., 2012):
Let M; be a martingale with stationary increments on (Q, </ ,P).
Suppose that My = 0 and that for some 0> < co':

[E(l
alr;

Then, the distribution of % converges in probability to a Gaussian with mean zero and

variance .

(M, M]; -

o? )—»Oast—»oo.

Proposition 23. Let M; be a Dynkin martingale for a process X; with stationary and er-
godic measuren. Then, the Martingale Central Limit theorem holds if Ep,, (% (M, M];) < oo.

Proof. The assumption [M, M], = Mg is clearly satisfied. The other assumptions such
as convergence in L (P;) and stationary increments are proven in (Landim et al., 2012)
based on a general ergodic theorem and on the fact that X; is stationary.

Furthermore, for Dynkin martingales, theorem 21 states that E, (% (M, M)s) =2{f,—Lf)5.
Thus, equivalently, we could check that 02 = 2(f, —Lf), < co.

In practice, we will often only verify that % (M, M) is bounded. Then, E, (% (M, M) ;) must
automatically be finite too, as the expectation is taken over a probability measure. Of
course, this last step only holds if the ergodic probability measure 7 exists in the first
place. However, we shall work with irreducible processes, such that any stationary mea-
sure is automatically ergodic, as the only invariant set is the entire space. Generally, the
stationary measure can be found quite easily by combining the known stationary mea-
sure of the switching process with symmetry considerations for the spatial process. O

3.3. LIMIT BEHAVIOUR IN HOMOGENEOUS ENVIRONMENT

For sequences of random variables, the reader should already be familiar with standard
convergence theorems such as the law of large numbers (LLN) and the CLT.

The LLN and CLT take on the form 5% ==~ E(S1) and “& === A’ (E[S1], Var[S1])
respectively, where S, is the sum of n i.i.d. random variables X;.

These theorems apply naturally in the context of discrete random walks, where we take
S, to be the position at time 7 and X; to be the increments. If we want to generalise these
results to continuous time random walks and processes, we will have to change the way
in which we define the sequences = Su and 5—2

We postulate that the scaling should be the same as in the discrete case. So, for the LLN
we will use the scaling “t with t — oo and x; the position of the particle. For the CLT, we
take the scahng \/_ as k — 00, which is equivalent to taking ex,-2, with € — 0 since

hrn €Xp-2; = hm €Xp-2 hm —
P o ' koo \/_
Our main objective will be to derive that, for the layered jump processes of generator
1.20, x—tf — ¢ and x—\/’% — B(D1), with ¢ being the drift velocity and with B(Dt) denoting
Brownian motion with diffusion constant D. The former of these two is our continuous-
time analogue to the LLN, while the latter is an invariance principle similar to the CLT.
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3.3.1. WEAK LAW OF LARGE NUMBERS
Theorem 24. Drift in general layer processes:
Let X; be an n + 1-layered jump process, similar to equation 1.20. So, X; = (xs,0;) walks
onZ x{0,1,...,n}. Each layer i has a diffusive walk with ratex; and an active component
making jumps of size v; with rate 1. Note that for a system with active components with
arbitrary rates, we can always reduce it to rate 1 by rescaling time.
Additionally, we shall assume irreducibility over the layers, by which we mean that for any
pair of layers i, j, we have that p; ;(t) > 0 for some t onwards.
Let it be the stationary distribution over the layers, then the drift of the process is given by:
n
ﬁRvai ast— oo (3.7)
L
Proof. Firstly note that  exists by irreducibility over the layers.
Our approach will now be to show that x—[ — %Z?:O T;v;, where T; is the time spent in
layer i, i.e. T; = fot]lgs:ids.
We take f(x,0) := x and its corresponding Dynkin martingale M; (equation 3.5):
Xt _
=

All diffusive components and switching terms trivially cancel out in Lx. So, all that re-
mains in Lx are the active terms 1,-; f(x+ v;,i) — f(x,i) = 15=;v;. We conclude that

xo 1 (¢ M
24 —f (Lx) (x5, 05)ds + —
t tJo t

Xt X0 1 & Ml’
—=—+- 1y.—ivids+—.
t t th l:zl gemt t

Since the layer process is irreducible, we may use the ergodic theorem (equation 3.3) and
we find %fot ?:1 ﬂgszi vids — ZT[i V;.
Therefore, all that remains to finish the proofis to get rid of the xy and M; terms. Firstly,

itis clear that x—t" — 0 since Xy is a finite constant. The M; term vanishes as a consequence
of its linear quadratic variation and Chebyshev’s inequality. Indeed, we have that:

t
[M,M]t=f0 (Lx?) (x5,05) — 25 (LX) (x5, 05)ds

t n n
= To=i ((xs+ v1)% = %% +1¢; (x5 + 1% + (x5 — 1)* —2x2)) - (2x5 Y v,-) ds
i=0

0 j=0
t n n
= Yl (vi+2x;)ds<|Y vi+2x;|t.
0 =0 i=0
Therefore,
M? M,M nv? 42K E(M?
OS[E—t=[E[ ]ts =0 i ! = lim ( t)=0.
t? 1? t t—co 2
Hence, by Chebyshev’s inequality:
2
P( My ze) < EM
t r2e?

From this last expression, it follows that the convergence of x—[ is in probability. O
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3.3.2. INVARIANCE PRINCIPLES/CENTRAL LIMIT THEOREMS
Our goal is to prove an invariance principle for the continuous-time layered jump pro-
cesses under our study. In the previous section 3.3.1, we found the drift of such pro-
cesses. Therefore, we can reasonably expect that the scaling should be

Xr—cCc-t th—C‘(kt)
Vi Vk

Here, we centered the process by subtracting the drift velocity ¢ multiplied by the time.

or equivalently € (x,2, — ¢+ (€7*1)).

THE STANDARD METHOD
The standard method of proving central limit theorems for these layered random walks
is outlined by (Landim et al., 2012). We employ the following procedure:

1. Formulate the Dynkin martingale x; — xo — fot (Lx)(X5)ds = M;. Since we need to
center the process, it also makes sense to subtract ¢ from both sides, hence:

t t
xt—ct:x0+f (Lx)(Xs)—cds+Mt::xo+f V(Xs)ds+ M.
0 0

2. % automatically vanishes due to xy being a finite constant.

3. Apply the Martingale CLT (theorem 22) to %

4. All that remains is to deal with the term % fy V(X5)ds. This term is referred to as
an additive functional of X;. A large framework of results that provide conditions
for its convergence to Brownian motion has been established (Landim et al., 2012,
Kipnis and Varadhan, 1986). Admittedly, these results are not well-suited to the
case ¢ # 0 as they mostly operate under the assumption that V(X;) = Lf for some
f € D(L). Therefore, the cases ¢ # 0 are in general problematic.

However, if Lx happens to depend only on the layer o, but not on the position, we
can introduce a second Dynkin martingale to resolve this term as well. This idea
will be illustrated in the upcoming section.

CONVERGENCE TO BROWNIAN MOTION FOR LAYER PROCESSES

Lemma 25. The drift additive functional lemma.

Let (x,0¢) be a jump process in n+ 1 layers with generator L. Let L, be the corresponding
generator of the switching process between the layers. As always, assume that the layer
process is irreducible and has stationary distribution .

Then, the centered functional fot 1y—ivi— 2?21 v;m;ds satisfies a central limit theorem.

Proof. Note that the lemma is trivial for the case n = 0. Indeed, for n = 0, we see that
15,=0 =1 and 7y = 1. Therefore, the centered functional vanishes.

For n = 1, the plan is to relate the integrand to another Dynkin martingale and to use its

quadratic variation. If we can solve the equation (Lsh)(0) = 145=;v; — Z?Zl vim; =: V(o)

for some function &, then we have that for some martingale M, P

t n

f ]los Vi— Z

0 i=

t
v,-n,-ds‘:f (Lh)(o5)ds = h(a,) — h(og) — M,.
=1 0
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If such a function h exists, the quadratic variation of M; is certainly going to be bounded,
as h takes only finitely many values. Therefore, by the Martingale CLT, we can conclude
that M, ¢ satisfies a central limit type theorem. Additionally, the terms h(o ;) — h(oy) triv-
ially fall out as h is bounded. Therefore, the centered functional will follow a central limit
theorem, if the equation (Ls h)(0) = V(o) has a solution.

We can borrow some theory from linear algebra to show that 34 : (L, h)(0) = V(o). Note
that this problem is equivalent to showing V € Range(L) = Col(L). A well known result
from linear algebra is that the row space and the null space of a matrix are orthogo-
nal (Fraleigh and Beauregard, 1995). Therefore, Col(L) = Row(L”) = Null(LT)+. By the-
orems 7 and 8, we know that 7 is the only probability measure in Null(LT). Hence,
Null(LT) = {Cn : C € R}. For any function g it is easy to see that g —[E,(g) € Null(LT)*,
as (§—Ex(8) 7w =Er(g) — X", 7wiEx(g) = 0. Therefore, V € Null(L")* = Range(L). O

Theorem 26. Central limit theorem for layer processes:

Let X; = (xt,04) be a layered jump process on n+1 layers. Again, we shall assume irre-
ducibility over the layers. Hence there exists a stationary distribution m over the layers.
The process has a drift velocity c given by theorem 24.

Then, the rescaled process Mt —ckt converges to Brownian motion B(Dt) in probability, for

some diffusion constant D. The exact value of D will be extracted in the next section.

Proof. We will apply the standard method of proving CLTs. We have already computed
the Dynkin martingale in theorem 24. Writing out the scaling fully yields:

M: ﬁ+ifkti]la :ivi—cd8+%.
vk vk Vi Jo i=1 ’ vk

Now, we can move on to step 3. Both conditions of the martingale CLT are met for M;.
The stationary increments of M; follow directly from the homogeneity of space and the
stationary layer process. To establish L!-convergence of the quadratic variation, we re-
mark that by the ergodic theorem 18, we already have the following convergence:

1 1 tn n

—IMMly==| Y Ly =i(vF+2x)ds— ) mi(vF +2x;) =07 as.

4 tJo o i=0
By boundedness of %[M, M], (see the proof of 24), we may apply the dominated con-
vergence theorem to conclude [E(% [M, M];) — 02 as well and hence the L! -convergence
follows from Scheffe’s lemma. Therefore, by the martingale CLT:
il E»JV(O,U—%) — M ﬂﬂ(o,@) = B(D,1).
vkt 2 vk 2
Lastly, we can perform step 4. We can now employ the drift functional lemma 25 to re-
solve the additive functional. As a consequence of this lemma, fot V(X)ds — B(Dat) for
another constant D,. It is clear that processes giving rise to B(D; t) and B(D; t) are com-
pletely independent: the first is caused by the movements within each layer, the second
by the movement between layers. Therefore, we can safely conclude that:

JCkLthPB(D 1)+ B(D2t) ~B((D1+Dy)t) a
\/E 1 2 1 2 .
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CALCULATING THE LIMITING DIFFUSION CONSTANTS

In this section, we will derive the actual value of the constant D for the limiting Brown-
ian motion of 2- and 3-layer systems by solving the master equation 1.8. Chapter 1 in-
troduced an approach based on matrix exponentials, but other solving techniques also
exist. A particular method that comes to mind is based on Fourier-Laplace transforms
(FLTs), which turn differential equations into polynomial ones. We follow this approach
based on (van Ginkel et al., 2021) to solve master equations for layered jump processes.

Let u;(x,0) be the probability to be in (x,0) at ¢ and fi;(g) be its Fourier transform (FT):

fi(q,0) = F (e (x,0) =Y ", (x,0). (3.8)

Master equation %uf(x, o) = LT,utT(x, o), becomes %ﬁt(q) = M(q)[i;(q) for some M(q).
The FT is convenient as it expresses all positional information in terms of phase shifts
based on transition increments y—x. This trick works if the generator itself only depends
on increment; that is, Ny and Ay,, both only depend on y — x for y € N,. We will refer to
this property as space homogeneity of the generator. In section 3.4, we will also cover an
inhomogeneous model that cannot be treated with the FT.

To eliminate the differential equation, we find the Laplace transform of the expression:

-zt

— . © _ -1 ® 1o, d
,u(q,z)::ff(ut(q)):f fe(qetde=|—1If(q)e +—f e ' —f(g)dt
0 z o =2Jo dt

1 1 [ _
= ;Iﬁo(q) + ;fo M), (q)e *'dt = ji(q,z) = fi(q,2) = (zI—M(q)) 1ﬁo(q).
(3.9)

We also compute the Laplace transform of the characteristic function (CF) of the process:

S(q,z)::f E(e'9%)e #dr = ZZeiqx,ut(x,U)e_“dt:Zf Zei"xpt(x,a)e_”dt
0 0 o X o J0 X
=Y @q,z,0)=(1,...,Diq2) = (1,...,1) (2] - M(q) " fio(q) (3.10)

Using all these transforms, we can finally start computing actual diffusion coefficients.
In the lemmas below, we show that the FLT of the limit of X, is the limit of the transforms
of X;. Note that we know that the limit of X; is Brownian motion B(Dt) with FLT given
by equation 2.4. However, since it is easier to compute the limit of the FLTs, we can find
the exact value of D from the sequence of FLTs instead of the process itself.

Theorem 27. Lévy’s continuity theorem (Jacod and Protter, 2004):
Let (x) nen be a sequence of real-valued random variables with CFs/FT5s: vy, , defined by

Yy, =E(e!"“*n) for u € R. Suppose that x,, 4 x for some random variable x.
Then,Yu:yx,(u) — ¢(u) as n — oo, where ¢ is the CF of x.

Lemma 28. The Fourier-Laplace Convergence Lemma:
Let x; be a positional process, (€,)nen be any decreasing sequence converging to 0 and
label x, (t) = EnXe=2;. Then, the diffusion constant D can be found from:

(Xke—ckt) p B(Dt):(xkf'm) d B(Dt) = LWx,0) —— :

Vi = k—oo Vk = k—oo t—oo z+ Ds?’
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Proof. Convergence in probability is stronger than convergence in distribution, so we
may use Lévy’s continuity theorem 27. Hence, ¥,y — ¢pr where Y, (1) is the CF of
Xp(t) and ¢pps(s) = e D s? is the CF of Brownian motion with constant D by equation 2.3.
By definition, we know that the modulus of any CF for a real-valued stochastic process is
at most 1. Consequently, we get a sequence of Laplace transforms (y x, () (s)e~*'), which
satisfies two important properties. Firstly, wx(, ne *" — ¢pe *' almost everywhere.
Secondly, |y x,(ne”?'| < e”?!, which is an integrable function on our time domain [0, 00).
Therefore, the sequence of Laplace transforms satisfies all the conditions of the Domi-
nated Convergence Theorem for complex-valued functions. We conclude:

oo oo
lim f ’lj/Xn(t)e_th[ =f chte_tht =
0 0

O
z+ Ds?

n—oo

We can now apply this result to the transform S(g, z), defined in equation 3.10. Hence, we
see that we can compute the diffusion constant D by finding the limit of the transforms
instead of the transform of the limit of the process itself. Of course, the main difficulty
in using S(g, z) lies in inverting the matrix. Nevertheless, it can be used to calculate the
diffusion constant for the 2- and 3-layer systems of equation 1.20. But first, we begin
with a 1-layer system, to give a simple example of the Fourier-Laplace method in action.

Theorem 29. The main homogeneous environment 1-layer invariance principle:
Let x; be a 1-layered jump process with initial condition xy = 0, as defined by
the generator: Lf(x) =x(f(x+ 1)+ f(x—1)=2f(x)) + f(x + vo) — f(x). Then,
2
v
e (%2, — ce2t) L B(D0) ase— 0 with D =¥+ . (3.11)

Proof. The master equation results in:
d . . . L
— (@) =xo(e'T+e™"T-2)+ '™ -1 = S(q,2) = (z+(2—2cos(q)) +(1 —e“’oq)) :

dat

S(g, z) is the FLT of the process x; without any rescaling or centering. The actual process
under consideration is: €(x,-2, — € ?ct) and has its own Fourier-Laplace transform:

A S8 . -2 o0 3 . -1
S(q,2) :f [E(ethe(xe-zt—ce t)) et dt :f [E(el((mxe'zt) o tzriqee™) gy
0 0
*° 1 -2 2 :
- ezf [E(el(qe)xe_%) e™¢ EEHIqe) ge=2 ) = €2 S (ge,e*z + iqce) .
0

Hence, S(g, z) can be obtained by taking S(q, z) under the transformation z — z + igc
and afterwards substituting g — ge, z — €z. We will be brief with these calculations, as
many of the steps are repeated in more detail for the 2- and 3-layer systems.

-1 2 -1
— (z+ (KQ + ?Oqz)) .

In lemma 28 we showed that S n(qg,2) (z+ qu)_l for discrete sequences S n, With D
the diffusion constant of the limiting Brownian motion. The continuous limite | 0 given

above, shows in particular that any sequence will also converge to this limit. Therefore,
2

the diffusion constant of the 1-layered jump process can be read off: D =« + % O

22

vgq

§(q,z)=€2 (ezz+( €2+iqevo—iqev0+1<oq262+0(€3)

n—oo




32 3. INVARIANCE PRINCIPLES FOR LAYERED MARKOV PROCESSES

Theorem 30. The main homogeneous environment 2-layer central limit theorem:

Let X; be a 2-layered jump process as defined by the generator 1.20. So, both layers have
diffusive rates x; and active jumps of size v; and rate 1. We assume that 112,121 > 0 to
guarantee irreducibility. Let Y; = X; — ct be the centered process with:

_Aovo— Ao s
A0+ Ao

(3.12)
Then, for any initial distribution py(x,0) = ad 0 (x,0) + (1 —a)d 1) (x,0) with a € [0,1]:

€Y, 2, % B(Dt) ase — 0 (3.13)
Here, B(Dt) denotes Brownian motion with diffusion constant

2 2
Do 1,001 (Vo + v1)? (Ko+%)/11,0+(1<1+%)/10,1
(A1,0+20,1)3 Ao+ Ao

(3.14)

Proof. Note that, since we have to transpose L, the transformed master equation states:

Ko(2cos(q) —2) — Ap,1 +elv0d _q A0

d
E'ut(q’ o) = Ao1 K1(2cos(g) —2) +e 19 —1— 11

ﬁt(q: U)
(3.15)
The cosine term that arises in the diffusive component is a typical result for Fourier
transform of equations with nearest-neighbour interactions. For instance, the term also
appears in the context of atomic chain models in solid state physics (Simon, 2019). In
these chains, atom bonds are modelled as springs between nearest neighbours.

On the off-diagonals, we recognise the rate of transitions between the two states. In
physics, this phenomenon is also apparent in multiple different fields. For example, in
quantum perturbation theory, an overlap matrix W is used to compute perturbed quan-
tum states (Griffiths and Schroeter, 2018). In this matrix, the off-diagonals provide a
measure for the overlap between different states which is similar to the off-diagonals
measuring transitions between states in our example. Another striking similarity is again
in the field of solid state physics, where the off-diagonals of energy-transition matrices
represent the “hopping” between different atomic orbitals (Simon, 2019).

Now, to continue the calculation we need to compute (zI — M(g)) ™" :

M(q) = K0(2€08(9) ~2) = Ao,y + €0 ~1 A10

" Aoy K1(2cos(q) —2)+e 19 —1-11

-1
-1 Z+(p0+/101 _AIO ]

I1-M =: ) ) _

(= (@) —Ao,1 Z+@1+ 10
1 |z+e1+10 Ao }

z2+ z2(po + @1+ A1+ A1,0) + Qo1+ Podio + @101 Aot Qo+z+Aio |’

Recall that S(q,2) = (1,1) (2] - M(q))_1 o(q). So, we still need to choose an appropriate
initial condition py(x,o). By theorems 8 and 18 the limit of the process cannot depend
on the layer distributions }_, po(x,0) and }_, to(x, 1) as the distributions will converge to
the stationary distribution anyways.
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Consequently, any initial distribution of the form Xy (x,0) = ad(9,0)(1—a) (x,0)+ (0,1) (X, 0)
must have the same limit.
The limit process for a more general initial distribution such as:

Xo(x,0) = Z 6x/ygl(x,0')'axl'o.r,

(x',0"eF

for some finite F can be found by using symmetry and superposition arguments.
Indeed, recall that the process is space-homogeneous. Therefore, if the process has a
limit when starting with o (x,0) = §(9,0), any process starting from o (x, o) = 6 x,,0)(x,0)
must have the same limit shifted by xy, as it is the exact same process translated to a
new coordinate system. Again, 6 x,,1)(x,0) and 8y, 0)(x,0) or any linear combination of
the two must give the exact same limit. Therefore, the total limiting process will be a
weighted sum of |F| shifted, independent identically distributed Brownian motions.

We therefore might as well just start with the entire density concentrated at one point
(x,0) = (0,0) to compute the limit. So, we take po(x,0) = §(9,0)(x,0) which has the Fourier
transform 15— = (1,0)T. Consequently,

S(g,2) = (1,1) (z2I- M(q)) " (1,0)7

_ Z+@1+A10+ Aoy

22+ z2(po + @1+ Ao + A1,0) + Po@1 + Porio + P1Aon (3.16)
_ (z+ 2o + Pop1 + PoA1,o + P10,1 )_1,

zZ+ (,bl + AI,O + AO,I

S(Cl, z) = (EZS(q, Z)lz—>z+iqc)

z—€2z,q—eq

(Z+ lC]C) (/)() + QDO(PI + gb()Al,() + le/l(),l )_1
(Z+ lC]C) +(P1 +A1,0 +/1(),1

=¢? (z +iqgc+
z—€2z,q—¢€q

1 -1
Y B iqc(po+dr+ A0+ Ao +2) — G*c* + Pop1 + PoAro + P10
(e+igc)+¢r+A10+ Ao

z—€%z,q—€q

To compute the limit, we need to collect terms of the same order of €. In particular, we
look at the numerator:

Z(/)() + iqC ((p() + (Pl + /11,0 + /10,1 + Z) - qZCZ + (po(/)l + (/)0/11,0 + (PIAO,I-

Any term with g" will be of order ¢’ and any term with z will be of order €>™. Also note
that the numerator will be multiplied by €2, so any higher order terms will vanish when

taking the limit e — 0.
By Taylor series:
. V2 a2
$o = Ko(2—2cos(q)) + 1 — e = xyq° + —ivog+0(q°).
‘ 2 2
O1=K1(2-2cos(q)+1—e 9 =k q* + g, ivg+0(q*).
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Collecting terms of order € we get:
iqc(ﬂll,o + 10,1) i V()C]/lly() +1 U1 6]%,1-

This term needs to vanish, otherwise the expression will certainly not converge as it
would be of the form (z + Ke™!)~! for some nonzero constant K. Therefore, we demand:

iqC(/ll,o + /1(),1) - l'U()(/]A,l,() + il)l q/l()’l =0
_ voA1,0— 1do
Ao+ A1

which is the given expression for the drift of the process! Of course, we already knew that
¢ should equal this value by theorem 26 and equation 1.17. It is however reassuring that
the calculation yields the exact same result.

Now, we collect the terms of order €2, giving:

2 2 2 2
. . . 22 2 2, Vo 2 U
igc-(—ivog+iviq)—q°c +vov1q° + (Kogq” + 5 JA10+ (K1g° + 5 JAo1
v2q?

Note that we can already recognise the terms (x; g> + >—)7; from the proof of theorem
26 and conclude that these are a result of the Dynkin martingale. The other terms in the
diffusion constant are caused by the additive functional.

We conclude that:

) -1,
g, =€ Z+Z¢0+Z6IC(<P0+<P1+7Ll.0+7to,1+Z)—q202+(l>0¢1+¢0/11,0+<P17lo,1 K
) - .
(Z + lqc) + (Pl + /11,() + /10,1 7—€27
. . . 22 2 2, %q° 2, nd !
+zqc(—zv0q+w1q)—q c“+vov1g©+ (Kog” + —5-)A10+ (K19°+ —5-)Ao,1 + Ol€)
=|z
O(e) + 11,0 + 10,1
2 2, 2 vs v -
q-clvo—v1—c)+vov1qg°+4q ((Ko+7°)/11,0+(1<1+71)10,1)
—|z+ ase—0
Ao+ Ao
-1
1,001 (V3 +V3)—vouv1 (A2 | +A2 ) v2 V2
2 [ Aroto1 (W +uy 01710 2 Yy n
Ao o) +voUr|+g°| (Ko + 5 A0+ (K1 + )01
=|z+
Ao+ 20,1
vy v -1
2 Allolo,l(l}0+vl)2 (KO+7)11,0+(K1+7)/10,1 2. -1
=|z+q —— =:(z+q°D) .
(A1,0 +2A0,1) Ao+ o1
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Theorem 31. The main homogeneous environment 3-layer central limit theorem:

We can repeat the proof and the result for the general three layer process as well;

Let X; be a 3-layered jump process as defined by the generator 1.20 where we shall assume
irreducibility over the layers. We shall assume that layer 1 is a pause layer, while layers 0,2
both have diffusive rate x; and active jumps of size v; with rate 1.

LetY; = X; — ct be the centered process with

¢ =K (vo(A1,0A2,1 + 21,0420 + A1,242,0) — v2(Ao1A1,2 + Ao2A1,0 + Ao2A1,2)). (3.17)
Then,

€Y, 2, & B(D) ase — 0 (3.18)

for any initial distribution po(x,0) = ad,0)(x,0)+ (1 —a— )61 (x,0) + 60,2 (x,0) for
somea,B=0:a+ p < 1. Thediffusion coefficient is given by:

D= K(CVO(/h,o +A20+A21+A12) —cva(Ao1 + A2 +A10+A12) + Vov2 (A1 + A1 2)

2 2
v v
—c* (o1 + Aoz + A0+ A2+ Aa1 + ﬂfz,o)) + (ko + ?0)710 + (K2 + ?Z)ﬂz
(3.19)
where K is the normalization constant
o 1
Ao (Ao + A2 +A12) + A12(A20 + Ao2) + A1,0(A2,0 + A2 + Ao2) + A21 402
Proof.
—¢o— 0,1 —Ao2 Ao A20
M(q) = Ao -Ao—A12 A2 (3.20)
Ao,2 A2 —-p1—A21—-A2p

By similar reasoning as in theorem 30 we can restrict ourselves to p = §(9,0). Hence, only
the first column of the inverse of (zI — M(q)) is needed. The inverse of a 3 x 3 matrix is:

-1

a b c 1 ei—fh .. ..
d e S : -di .. . 3.21)
¢ n ]: alei— fh)—b(di—-fg)+c(dh—eg) gi—eg

if it exists. In our case, this results in a numerator .4 and a denominator 2:

[(Z +A10+A12)(z2+P1+ Az 1+ A20) - /12,1/11,2] + [/12,1/10,2 +Ao1(z+p1+Az7 + /12,0)]

+ [AO,IAI,Z + AO,Z(Z+A1,0 +/11,2)] =: [e/Vl] + [JVZ] + [e/%;] =N
(Ao +Ao2) (24 A1,0+ A1,2) (24 1+ Az1 + A20) — A21A12) — A20 (o1 41,2 + Ao 2(2+ 1,0 + A1,2))
+ 21,0 (—A2,140,2 — Ao (2 + 1+ A1 + A20)) =2 D

Therefore, the resulting expression is equivalent to

S(g,2)=|z (3.22)

N (po + o1 +Ao2) M + (=A1,0—2) N2 — (A9 + 2) N3 )_1
" )
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After the usual coordinate transformation z — z+ igc, we get:

(Z+ ((p()-l-/'l(),l +A0’2 + zqc);ﬂ + (—Al,o—z— iqC+ iqc)%— (12’0+Z+ iqc— ch);f/g !
% .

The notation .#; indicates that these terms are equal to the original .4; but with z sub-
stituted by z + i gc. Once again, we can collect terms in the new numerator:

M = A1+ M2) A1+ A20) = A2 A1 2

+ivoqA10+A12) +ige(Aio+A12+A21+A2)0)
2
+ Z(/llyo + /11,2 + AZ,I + /lz,o) + 6]2 (‘Kz + 72 (/11,0 + /11,2) - q2 (62 +cvy) +h.o.t.

— v2
N = [AZ,I/IO,Z + /10,1(A2,1 + /12_0)] + [ivzqﬂo,l + l'qC/lo_l] + [Z/lo,l + 6]2 (Kz + ?2) /10,1 +h.0.t.]

% = [Aoyl/llyg +/10,2(Al’() +/11,2)] + [iqcﬂoyg +Z/1()’2 +h.0.t.].
Therefore, the order O(1) terms in the numerator amount to:

(Ao,1 +A0,2) (A1,0 +A1,2)(A2,1 + A2,0) = A2,141,2) = A1,0(A2,1 40,2 + A0,1(A2,1 + A2,0))
—A20(A011,2+A02(A10+A12)) =0

The order O(e) terms in the numerator add up to:

iOI(Uz (Ao,1 +A02)(A1,0+A1,2) —vadiodo1 +c((A1,0+ A1,2) (A2 + A2,0) — A2, 1 A1 2+
(A1,0 +A1,2 +A21 +A2,0)(Ao,1 +Ao2) — A1,040,1 — Ao,2A2,0) = Vo((A1,0 + A1,2) (A2,1 + A2)0) — A2 11,2))

Once again, for convergence we require that this term is equal to zero. Consequently,

vo(A10A2,1 + A1,0A2,0 + A1,242,0) — V2 (A0,1 41,2 + Ao2A1,0 + Ao,2A1,2)

"~ AoAda1 +A10A2,0+ A12A20+ A10A02 + A1 2do1 + A12do2 + Ao 1Az + A2 + A20ho
(3.23)

Cc

Again, we already knew this by theorem 26 combined with equation 1.18.
Lastly, we collect the terms of order O(e?):

) 2 2
2 Vo4 2 Ur(q
(Kog~ + 5 Y(A1,0A2,1 + A1,0A2,0 + A1,242,0) + (K2g” + 5 )(A1,0A0,2 + A1,240,1 + A1,240,2)

+ (o1 +A02) (A1,0+A12+A21 +A20)2
—q*c* (o1 + Mo+ A1+ A2+ Az g +A20)

—q*cva(Mo1 + Ao+ A1,0+ A12) + GEcvoMi 0+ A0+ Az1 + A12) + U200G* (A10 + A1 2)
—z(A1,0d0,1 +A2,1 40,2 + 10,1 (A2,1 + A2,0) + Ao2A2,0 + Ao, 1 41,2 + Ao2(A1,0 + A1,2)).
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From the order O(e?) terms, it follows that:

D= (Cvo (A1,0+A2,0 + 2,1 +A1,2) —cv2(Ao1 + Ao + A1,0 + A1,2) + vov2a(A1,0 + A1,2)

2 2
1% V.
- Cz(ﬂ,o’l + /10’2 + 11,0 + 7[1,2 + 12’1 + 12,0))K+ (KO + ?0) o + (Kz + 72) T2

with K the same normalization constant as in equation 1.18. In principle, we still need to
check that D > 0. However, since we know by lemma 28, that it is the diffusion constant
of some Brownian motion process, this must automatically be satisfied. O

3.4. INVARIANCE PRINCIPLES IN RANDOM ENVIRONMENTS

In physics, it is commonly assumed that the medium is completely uniform. For exam-
ple, when modelling a fluid, we tend to ignore small fluctuations in temperature and
assume a completely homogeneous liquid with constant viscosity everywhere. Homo-
geneity is an approximation used for its practical merit in deriving theoretical results,
but also in performing numerical simulations. It would be more realistic if thermal fluc-
tuations, or other factors causing the medium to be locally disordered could be incor-
porated into these models. However, we expect that small local variations will average
throughout the environment, i.e. that homogenisation takes place, thus validating the
original assumption of complete homogeneity. It is therefore of particular significance
to put homogenisation of the environment, on a rigorous footing. On the other hand,
it is even more important to outline possible scenarios in which homogenisation does
not occur. It might be possible that the local variations cause significant changes in the
behaviour of the system at a global scale. Especially for applications in these scenarios,
one needs to realise that modelling with the assumption of homogeneity may lead to
different results than what happens in reality.

A particular application of a Markov process in a highly inhomogeneous environment
is RNA transcription. In section 2.3.3, we already outlined several factors that influence
RNAps on the DNA at a local scale. Therefore, for application of RNA transcription in
particular it is important to verify that homogenisation takes place.

In light of this discussion, we will expand the mathematical theory of previous sections
to inhomogeneous environments as well. In particular, by inhomogeneous environ-
ments, we mean random environments, in which the transition rates are taken as po-
sition dependent and drawn from independent, identical distributions. As a result, on
large scales, the random environment still looks similar to the homogeneous environ-
ment, but locally, the medium is highly variable.

For these models, we will attempt to prove analogous limit theorems. However, due to
the more complex nature of random environments, the proofs and theorems of previous
sections do not directly translate over. In fact, several aspects of the previous section re-
lied heavily on translation-invariance. For example, this caused the additive functional
fot V(X;)ds to be independent of x;, allowing use of lemma 25. In our calculations of dif-
fusion constants, we exploited space homogeneity too, as we used Fourier transforms.
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Nevertheless, we will see that even in inhomogeneous environments, one can still prove
invariance principles for most models, by introducing some extra assumptions such as
additional symmetry conditions on the processes. We will also present some models in
3.4.3 for which we were unable to show CLTs. These models indicate that there is either
some missing pieces in the available mathematical theory to resolve these cases, or they
point at the surprising possibility that homogenisation might not happen in them.

Before we can get into the details of those problematic models, we first need to speci-
fiy what is meant by a random environment. There are two competing, main formula-
tions of random environments; the random waiting time model and the random con-
ductance model. The random waiting time model has been introduced by (Bouchaud
and Georges, 1990) and has also become known as the Bouchaud Trap model. The main
principle behind the Bouchaud model is the idea that each site is a trap in which particles
remain stuck for some time. Some traps are larger than others, thus forming a disordered
medium. The Bouchaud Trap model allows one to model the diffusive motion of charge
carriers in a conductor with impurities (Bouchaud and Georges, 1990). However, one can
also make the case that the Bouchaud model lends itself for RNA transcription. Earlier,
we discussed the presence of histones on the DNA and the sequence-dependent move-
ment of RNA polymerase. As a result, some of the nucleotide sites can be seen as traps;
the polymerase is somewhat blocked out of escaping these sites. Since each nucleotide
has a slightly different effect on the polymerase, the chain becomes a inhomogeneuos
medium of random traps.

At the opposite end of the spectrum, we have the random conductance model. Instead of
assigning transition rates to each site, the conductance model assigns the rates to each
link between sites. Varying the transition rates between sites allows one to model the
conductance of current in a resistor network (Doyle and Snell, 1984, Biskup, 2011). Aside
from the connection with electrostatics, the conductance model can also be employed
in biochemical applications. In fact, out of the two formalisms, the random conductance
model seems best suited for modelling RNA transcription. One of the main drawbacks of
the Bouchaud Trap model is the fact that the transitions have no preferential direction.
Transitions to the left and right occur equally at each site and this seems incompatible
with the sequence-dependent nature of the movement, as the left and right neighbours
are not necessarily equal on a DNA chain. On the other hand, the random conductance
model does allow for polarity at each site. However, the lack of polarity in the random
waiting time model simplifies the mathematical analysis. As the random waiting time
model is the easier of the two, we will commence with analysing this model, after outlin-
ing the general procedure in the next section.

3.4.1. THE STANDARD METHOD

Once again, we employ the standard scheme of section 3.3.2. Previously, the additive
functional fot V (X;)ds was relatively easily dealt with using lemma 25. In random envi-
ronments, this term becomes more difficult to resolve and we will rely on general results
on additive functionals obtained by (Landim et al., 2012; Kipnis and Varadhan, 1986).
Additionally, we introduce a new formalism for the positional process of the particle.
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The associated process is known as the environment process (Biskup, 2011).

In the positional process, we track the movement of the particle from the position of
a stationary observer in a fixed coordinate system. For the environment process, we
change perspective and follow the trajectory from the particle’s point of view. Similarly
to changing observers in relativity theory, we now view the particle as stationary and
the environment as moving. Therefore, the random walk becomes a process traversing
from one environment to another. Due to the fact that the environments now actually
vary in space, we can distinguish between different environments as opposed to the case
where all transition rates were translation invariant. The environment process is usually
notated using shift operators, which we will introduce in the upcoming sections.

3.4.2. BOUCHAUD TRAP MODEL

Just now, we introduced the Bouchaud trap model; the main idea behind this model is
that each site operates as a trap, out of which the particle can escape with a certain rate.
In the start of this section, we also stated that the random waiting time model is easiest
to analyse. We will round off this subsection by discussing why this is the case.

THE FRAMEWORK

Let & = [k, K]'““*D be the set of environments of random waiting times for some con-
stants K = k > 0. Here, I = {0, ..., n} represents the set of possible layers.

The set of particle sites is S = Z x I, and each site is assigned a waiting time w(x, o), re-
sulting in the environment (w(x,0))(x,0)es € #. The coordinates are assigned waiting
times based on a joint distribution v. We shall assume that v is independent of x. In
some applications, v will be layer-dependent and written as v = (v, vy, ..., Vv,) such that
Vx,i,YAc [kK]:v(w(x,i) € A) = v;(A). In other applications, we will demand layer-
independence as well, resulting in v; = vy.

Given any environment w, the particle will make a diffusive random walk on Z x I with
transitions based on w. The transitions (x,0) — (x £ 1,0) both occur with rate w(:lc,a)‘
Transitions between layers are modelled in the same way as always. Again, we assume
that the layer-process is irreducible. So, given w, the generator of the process will be:

1
Lyf(x,0)= Eo (fx+Lo)+ fx-Lo)-2f(x,0))+ Y Agi(f(xi)—f(x,0))

w(x,o ieLiZo
(3.24)

Definition 21. We introduce the shift operators T, for any e € Z as a function on & — &.
Te(W(X,0))(x,0)es := (W(X + €,0)) (x,0)es (3.25)

The environment process {(w;, o) : t = 0} is a Markov process on S, defined via
its generator:

Lf(w,0) = (f@iw,0)+ faoiw,0)-2f(w,0))+ Y. Agi(f(wi)- f(w,0)

w(0,0) ieLito
(3.26)




40 3. INVARIANCE PRINCIPLES FOR LAYERED MARKOV PROCESSES

INVARIANCE PRINCIPLES FOR THE BOUCHAUD TRAP MODEL

Due to the complexity of the model, even if we can prove a central limit theorem, obtain-
ing a closed form formula for the diffusion constant D is often not possible. However, we
shall commence with one of the unique setups in which we can actually find a diffusion
constant D for the limiting motion.

Theorem 32. Fix a random environment of waiting times w. Let X; = (x;,0;) be a ran-
dom walk in 1-layer, with diffusive motion based on w and generator 3.24.
We demand that the measure vy, from which the random environment w is drawn, is er-
godic under shifts.
. . . . . P
Then, x; — xy is a martingale that satisfies the Martingale CLT. That is, % k—» B(D¢t).
— 00

Furthermore, the limiting diffusion constant is given by

1 1

D=————=1—.
Jw(©,00dvy M

Proof. Let M := [ w(0,0)dv,. We will use this as a normalization constant.

Note that x; —xy— fot(wa) (xs,0)dsis a Dynkin martingale. Also note that L,,x = 0 here,
since we only have diffusive motion. Therefore, x; — x is itself a martingale.

We compute the quadratic variation of this martingale:

t t 1 t 2
[x,x]t:[ waz—Zwaxds:f -st:f ds
0 0o wi(xs) 0o w(xs)

We postulate that the reversible and ergodic measure of the environment process is given
by du = %dvo. Indeed, note that for stationarity we require [ Lfdu =0:

0
fo(w)dy:f A;"u(}(z)) (FTiw) + fT1w) —2f(w)) dvo =0

by shift invariance under vj.
For ergodicity, we need to check Lf =0 = f is constant almost surely.
Suppose that Lf = 0. Then, we compute {f,—Lf):

1
0=(f,~Lfy=1 f @F2(w) — f(rw) f(w) - fT_1w)dv
1 1
= f(fz(w) + fA(ryw) = 2f (11 w) f(w))dvy = Mf(f(w) — friw))*dw.

again by shift invariance of vo. So, we have that all terms in the integrand are non-
negative. We conclude that f(w) = f(r;w), thus f is constant vy-almost surely by the
assumed ergodicity of vy under shifts.

By proposition 23, we only need to check that [Ep” (% [x, x] ;) < oo to guarantee that x; — x
satisfies the martingale CLT. Note that we can couple the positional process and the en-
vironment process by introducing the notation w(xs, i) = w(0, 7). Also note that we can
exchange the integrals by the Fubini-Tonelli theorem:

E (1[ ])—ftlf 2 (0)dvd—2—2< O
U:DH l_x>xt — 0 ' Mws(O)wS 0 S—M—U Q.
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We can now generalise this theorem to include multiple layers, with layer-dependent ac-
tive and diffusive components as well. This provides an analogous theorem to 26 in ran-
dom environments. However, as soon as we introduce layer-dependence in any fashion
into the model, the calculation of D becomes irrecoverable. Therefore, we do not com-
pute D and we will have to be content with a purely abstract invariance principle instead.

Theorem 33. Central limit theorem for random waiting times:

Fix a random environment of waiting times w. Let (vy,V1,...,V,) be the layer-dependent
distributions of w(-,i). Let X; = (x¢,0) be a random walk in n+ 1 layers.

The diffusive motion with random waiting times is based on w in each layer. Note that
the distribution of w is i.i.d. inside each layer, but may be different between layers. Also,
suppose that each layer has an active component with velocity v; at rate 1.

Then, the process x’“%;kt converges in probability to Brownian motion.

Proof. This time, note that L, (x) = Y7,
Therefore, x; —xg—ct = M; + fotzl’.’zo 1,,=iv; — cds for some martingale M;.

]10'521' Vl‘

Bylemma 25, we have that fot " o Lo =ivi—cds satisfies a central limit theorem. We can
deal with M; in the same way as in theorem 26. In this case, the generator is given by:

1
Lyf(x,0)= (—(f(x+1 ,0)+f(x=1,0)-2f(x,0)+(f (x+Vg,0) = f(x,0)+ ) (f(x,D)—f(x,0)).
) l;ﬁU

Define ml := [ ——=dv;. For the quadratic variation, we have:
1

w(O i)

1 1 2 L 2
[MM tﬁ leas l(V + — (xs,l) (Z I)?+—.)<OO.

i=0 i=0 m;

Again, Ep, (% [M, M];) < oo now, since the expectation is taken over a probability mea-
sure.

So, by the Martingale CLT, the rescaled and centered process converges to Brownian mo-
tion for some diffusion constant D. To actually find D however, one would need to com-
pute [E[py (% [x, x];) and find the stationary ergodic measure p. O

Note that without the need for computing D, we could refrain from using the environ-
ment process and only needed to find a bound for the quadratic variation. This allowed
for a vastly more general result than given in theorem 32.

Also note that the above theorem still holds when some layers do not have a diffusive
component. We already allow each layer to have a different distribution on [k, K], how-
ever it is still equally valid when some layers have “w(-,0) = c0” everywhere, as long as
any position can still be reached from any other position. Also note that the theorem is
still equally valid when all layers do not only have i.i.d. waiting times, but have exactly
equal waiting times. By this we mean, w(x,0) = w(x,0) always. In this case, the waiting
times only need to be drawn for one specific layer and can be copied onto all others. This
is a more realistic model in applications in which diffusivity is caused by the surround-
ings of the particle and therefore independent of the internal state of the particle.
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DISCUSSION

The Bouchaud trap model has two main benefits from which the theorems given in the
previous section follow. These benefits make it a simpler model to work with than the
random conductance model. Firstly, we already discussed that sites have no preferential
direction. As a result, the limit theorems hold for any possible Bouchaud environment.
In the conductance model, environments which have a global preferential direction are
technically possible. Even though the chance of drawing such an environment is 0, we
certainly cannot prove limit theorems for these specific environments. Therefore, in the
random conductance model, any convergence theorem must be in v-probability, where
v is the joint distribution of the random environment.

The second benefit of the trap model is the additive functional only depending on the
layer process. For example, in theorem 32, the term was zero. In theorem 33, the term
was equal to the layer-dependent drift, which enabled use of the drift functional lemma.

3.4.3. THE RANDOM CONDUCTANCE MODEL

THE FRAMEWORK

In the previous section, we introduced the Bouchaud model, in which transition rates

were picked for each site. In the random conductance model, the transition rates are

drawn for each connection separately. So, let {(x, y,i) denote the transition rate from

x — yin layer i; i.e. the transition (x, i) — (y,1). Then, we draw ¢ € { c [k, K] (ZXDZ.

Here, ( is the set of environments that satisfy the following two equations:
Déex,yd=¢0,x1 2)¢kxy)#0 = lx-yl=1

The transition operators 7, are functions from { — ¢ with (7.8)(x,y,i) =¢(x+ e,y + e, ).

For any random walk x; in a random conductance environment, the environment pro-

cess is taken as ¢(xs, x5+ e€,1) = 74,£(0,e,1) :=¢5(0, e, 1).

We shall work with environments that are layer-independent. Therefore, we can drop

the third variable and just write ¢(x, y,i) = &(x, y). With this new formulation, we still

leave the possibility open that some layers do not have a passive component at all, as

these components can be left out of the generator. Similarly to the random waiting time

model, we draw the environment from a joint distribution v.

The conductance model is the first example where the additive functional also depends
on x;. Therefore, we will have to rely on results and techniques presented in (Landim
etal., 2012) for dealing with this integral. Unfortunately, this greatly restricts the systems
for which a CLT can be proven. In particular, any case where the drift ¢ is nonzero is
problematic. Therefore, we will not derive a comparable theorem to 33 in this section.
We shall briefly summarise the relevant available results from (Landim et al., 2012) here.
We begin with a Markov process X; that is ergodic and stationary with respect to mea-
sure 7. (Landim et al., 2012) provides conditions that guarantee that fot V(X;)ds sat-
isfies a central limit theorem. Here, V(Xj) is a general function with V € L?(7) and
with E; (V) = 0. Notably, we have often not met the second requirement E, (V) so far.
Therefore, we need to additionally reduce the models that include drift to models with
E; (V) =0 so that we can use the results of (Landim et al., 2012).

On the next page, we give the simplest set of conditions that is sufficient for a functional
central limit theorem.
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Theorem 34. Suppose thatV = Lf for some f € D(L) combined with o*(V) < co where
a?(V) is a Green-Kubo integral for the variance of the limiting Brownian motion:

a2 (V) = 2[ Ex(V(Xs)V(Xo))ds=2((—L)"'V, V). (3.27)
0

Then, the additive functional fot V(X)ds satisfies a central limit type theorem.

For the remainder of the book, (Landim et al., 2012) considers a more general V than

V = Lf and tries to reduce it back to the original case, for example through approxi-
mating sequences. For these general functions, (Landim et al., 2012) provides several
equivalent inequalities to o?(V) < oo that we can still employ when V = Lf as well!

One of these equivalent inequalities is known as the sector condition:

Theorem 35. Sector condition (Landim et al., 2012):

Let V € L% () such thatE,(V) = 0. Suppose that

1)VeFH,.

2)AKeR:Vf,ge D) : {f, A% < K(f,(—L))x(g (~Lg))x

Here, A is the anti-symmetric part in the decomposition of L, i.e. L =S+ A for some self-
adjoint S.

Then, the additive functional satisfies a central limit type theorem.

We shall not go into further detail on the meaning of /#_; here as it is irrelevant to our
purposes. In any case, V= Lf = V € /-1, so we may use the sector condition.

RESULTS

Equipped with the sector condition 35, we can begin proving some first CLTs in ran-
dom conductance models. As soon as we introduce any drift into the model, we can no
longer use the sector condition directly. Even indirectly, through reducing a process with
drift to a drift-less one, we still run into trouble. We shall illustrate why the combination
of random conductances and drift is problematic in this section. Furthermore, we will
conclude with some illustrative examples of models with no drift for which CLTs do hold.

When we only have diffusive processes in each layer, the process automatically is drift-
less. From a similar calculation as in theorem 32, we can conclude an analogous central
limit theorem for diffusive processes.

Theorem 36. Central limit theorem for random conductance models:

Take a random conductance environment ¢ based on the distribution v = (vy,Vv1,..., V).
Let X; = (x,0) be a random walk in n+1 < 2 layers, with diffusive motion in each layer
based on the random conductances based of {. Assume that the layer process is irreducible.

Then, the rescaled and process % converges in probability to Brownian motion with some

diffusion constant D.

Proof. This time, L¢(x) =X Lg,=i€L0) = EL(-1).
Therefore, x; — xo = M; + [/ " o 1o,=i€L(0) — €L (~1)ds for some Dynkin martingale M;.




44 3. INVARIANCE PRINCIPLES FOR LAYERED MARKOV PROCESSES

Note that the generator of the environment process is given by

n

Lf(&,0) =& 0)(f(11&,0)-fE&oN+E (D) (fr_1&0)-fEoN+ Y, (fE& N-fE&0))As.
Jj=0,j#0

We postulate that the stationary distribution of the environment process is p = (vomy, ..., Vi y)
with 7 being the stationary distribution over the layers. For stationarity, we have:

Z (]10'2161(0)(]:(‘[16} l)_f(é-) l))+€l(_1)(f(r—1€) l)_f(f) l))+ Z (f(gyj)_f(éi l))ﬂ‘l]) dﬂ,
i=0 .

j=0,j#i
= | Y EOF@ED - FEN+EED(EaE - fEN+ Y. (FE - f(é,i)m,-j)mdv,-
i=0 Jj=0,j#i
= | YO @é D - FEN+EOFED - fFEiN+ Y, (f(f,j)—f(vf,i))/lij)ﬂidvi
i=0 Jj=0,j#i
=X X (f(ﬁ,j)—f(é,i))lij)ﬂidvi=fod,U:0
i=0\j=0,j#i

Due to the last switching term being equal to 7Q f for a layer-process generator Q with
stationary distribution 7, it is equal to zero.
We will only show the ergodicity for the 2-layer system. Assume Lf =0, then:

1 . .
fo—LHiu=| Y 7 (6‘(0)( FPED - fF@EDFED+EED(FPED - fFa1&DfE, i))) dv;
i=0
+(mo(F2(€,0) = (&, D FE 0 Ao +m1(f2(E,1) = £(E,0)f(E, DA10) dv

A1,0A0,1

]' .
= | Y mi@E O E D - f@ginHdvi+ 1 fE0)-f(E1D)dv=0

i=0 Ao+

All terms in the integrand are non-negative, but the integral is zero; therefore, all terms
in the integrand must be zero, which confirms that f is v-almost surely constant. The
proof for n+ 1 =1 is analogous and simpler.

Now that we know the stationary ergodic measure, we can verify the sector condition by
showing that L is self-adjoint. Using the sector condition 35, we can conclude that the
additive functional satisfies a CLT, as A must be equal to zero when L is self-adjoint.

1 . .
folgu= | LmfEn(EOEE 0 - g i) +& (—DEE D -gr1g,i))dv,
i=0

Ao
21,0701 (f&0)(g& 0 —gE& 1)+ f(&1D(gE 1) -gE0))dv
Ao+ Ao

1 , )
= [ (0@ D fE D -gE D FmE D) +E (~D(EEDFE D -gE D FT18, 1)) dvi
i=0

A1,00,1

A0+ 0,1
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We can deal with M; in the same way as in theorem 26. The generator is given by:

Le f(x,0) = &% (x, x+ D (f (x+1,0)— f(x,0))¢E7 (x, x-1) (f (x—L0)= f(x,0N+ Y, (f(x,)—f(x,0)Aq;.

i=0,i#0
Thus resulting in:
1 1 [t . .
—[IM,M];==| )Y 15-i(&5(0)+E5(-1)) 2K <00
So, by the martingale CLT, the rescaled process converges to Brownian motion. O

We will now illustrate why attempting to bring an active component into the system fails.
As an example, we consider a 2-layer model with only active motion in the bottom layer
and only diffusive motion in the top layer.

Lef(5,0) = Tomt (€060, 0+ D(F e+ 1,1) = £, 1) + €0 x = D(F =1 = £(0)
+ A0(F(5,0) = 06, 1)) + Lomo£x+1,00 = 2,00+ Ao, (£, 1) = F(x,00).

The Dynkin martingale is: x; — ct = xo + fot 15,21&5(0) = ¢s(=1)) —c+ 1y —ods+ M;.

As always, we can get rid of 1,,—¢ — ¢ by using lemma 25. We then recognise that the
remaining terms have the same form as in theorem 36. However, it would be incorrect
to infer that the term 1,,-1($s(0) — ¢s(—1)) is the exact same as in the purely diffusive
scenario. In fact, in our active model, the environment is not explored in a symmetric
fashion. Consequently, (s(0) —¢s(—1)) is not the same process as it was in theorem 8.
This asymmetry therefore forbids us from reducing to the previous theorem.

A second natural attempt is to incorporate the drift correction —ct into the process such
that we once again get an additive functional [ V(X;)ds with V having mean zero. So,
we could view x; — ct = y; as a new process with generator

L f(y,0) = Ao p-o (f(1,0) = f(y,0) + Lo=o(f (¥ + 1,0) = f(3,0) —c(f(y = 1) = f())
+1o=1C(y+ D+ LD = f, D) +Ex-D(f(y-D = f)—c(f(y—D = f().

Unfortunately, it becomes impossible to show that the sector condition is upheld. There-
fore, we can only apply the theory to specific cases in which either of these two methods
of reduction actually do work.

Example 4. The first natural example in which the second approach works is when the
active component is the exact same in each layer. If this is the case, adding the drift correc-
tion into the generator combines in each layer to form a diffusive term. By theorem 36, we
know that these processes satisfy a central limit theorem.

The second natural examples occur when the total drift is zero and the process is reversible
in nature. By reversibility, we mean that it satisfies time symmetry. For example, consider
a 2-layer process in which we have the same diffusive behaviour in both layers and equal
switching between layers. Additionally, we have an active component with rate 1 in each
layer, but with jumps in opposite directions. By a theorem of (Kipnis and Varadhan, 1986),
this process follows a central limit type theorem.
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DISCUSSION

Despite the fact that the homogeneous environment central limit theorems of 29, 30
and 31 could be generalised without too much trouble for the Bouchaud trap model, the
random conductance model turned out to be surprisingly resistant to analysis for envi-
ronments with drift. The asymmetric exploration of the environment combined with the
asymmetric rates at every site lead to processes that cannot be resolved with the avail-
able mathematical theory. Although much research has been done on both layered sys-
tems without any random conductances and multi-dimensional random-conductance
models without any layer-dependence, there seems to be little literature connecting the
two. By multi-dimensional random conductance models, we mean in particular the so-
called ballistic random walks. Similarly to our jump processes, these are Markov pro-
cesses in multi-dimensional grids where the particle drifts off in a certain direction.
Many invariance principles have been established for these ballistic processes in en-
vironments with random conductances, such as in Z¢ (Rassoul-Agha and Seppailidinen,
2009; Sznitman, 2002; Zeitouni, 2004).

However, it is important to note that all of these ballistic models assume that all states
in the entire space follow the same distribution. Therefore, these results cannot be re-
covered easily when introducing layer-dependence into the model, which is the main
purpose of using the layers in the first place!

Nevertheless, we were still able to provide CLTs for some specific random conductance
systems that are useful in physical applications. In example 4, we presented a system
of 2 layers with flipped active motion in the layers, which is comparable to the one-
dimensional behaviour of the bacteria M. xanthus mentioned in section 2.3.2. We can
conclude that the motion of this run and tumble particle is similar to a Brownian particle
and that this holds in both homogeneous and inhomogeneous environments.

Theorem 33 is our main evidence for homogenisation being valid in a wide range of
Bouchaud trap models and this indicates that we should expect homogenisation to ap-
ply to the random conductance model as well. In the upcoming chapter 5, we will also
perform some numerical simulations to further investigate homogenisation in the ran-
dom conductance model and these initial simulations support this hypothesis.



CHAPTER 4

NUMERICAL METHODS AND
SIMULATING JUMP PROCESSES

In chapter 2, we described potential applications of the theory of jump processes. Re-
call that these layered jump processes are trajectories of particles with multiple internal
states and exponentially distributed transitions. In the previous chapter 3, we conducted
a mathematical analysis of single-particle jump processes. However, we are also inter-
ested in studying physical, multiple particle systems, which are more difficult to analyse
mathematically. We shall now present a general numerical model for jump processes
that can be used to simulate multi-particle systems. In the next chapter 5, we will apply
this numerical model specifically to modelling RNA transcription.

4.1. GILLESPIE ALGORITHM

The Gillespie algorithm is widely used in biochemical applications to simulate systems
with jump process transitions numerically (Kierzek, 2002). The algorithm is an exact
method and completely based on the formulation given in proposition 13.

The algorithm operates as follows (Gillespie, 2007). Given a certain initial system, we
sum the rates of all possible transitions into one total rate A. As the probability of having
two events occur simultaneously is 0, we may consider the transitions sequentially. We
determine how long it takes for one transition to occur by sampling a time increment
from an exp(A) distribution. Afterwards, we use theorem 12 to pick the precise transition

.. , v . e Aij
that occurred. For example, the transition from state i to j is picked with probability —*.
However, the transition is only performed if the exclusion interaction allows it.

4.2, IMPLEMENTING THE GILLESPIE ALGORITHM

Although the Gillespie algorithm itself is quite simple, there are various techniques that
can be used to speed up the implementation of the algorithm. Optimisations and often
even approximations methods are necessary, as the Gillespie algorithm is computation-
ally intensive for systems with many particles (Rao and Arkin, 2003).

Instead of using an approximation method, we will be looking at 3 main aspects of our
model that can be sped up significantly by optimising the naive implementation. We will
outline these optimizations using an example to illustrate the ideas more clearly.

All optimizations focus on the part of the Gillespie algorithm where the occurred event
needs to be picked. This event is picked from a list of all possible transitions at that

moment, where each transition has a probability —* to be picked. A natural way to im-
plement this picking procedure is through the use of lists of cumulative sums. We will
illustrate what is meant by this through an example.

47
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Example 5. We consider a 3-state system containing a particle in both states 0 and 1.
For illustration, we take Ag1 = 1,102 = 0.5 and A1 = 0.25 with A; j = Aj ;. The time
increment is generated with rate 1+0.5+140.25 = 2.75. We assign an ordering to construct
the list of cumulative sums. In this case, we can take the order in which the transitions
rates where given, resulting in the cumulative list [1,1.5,2.5,2.75]. We then generate a
U|0,2.75]-distributed random variable X to determine which transition occurs. To do so,
we use a built-in bisection method to find the position in which X can be inserted in the
list while keeping the ordering intact. For example, if X € (2.5,2.75), we can insert it in the
fourth position of the list. Consequently, we pick the fourth transition to take place, which

is (p1, p2) = (0,1) — (0,2), where p; is the coordinate of particle i. Note that the probability

that this transition took place is exactly 27257_525 = % Due to the use of cumulative sums

and a uniformly distributed X, we always attain a probability % for transitioni — j.

Had X been lower than 1, we see that the transition (0,1) — (1,1) is attempted. However,
this transition is forbidden by the exclusion interaction and hence blocked. In this case,
the time is still increased by the increment, but the state of the system remains unchanged.

A naive implementation would be to fully rebuild the cumulative list every time step.
However, previous lists can also be used to build new ones and this greatly reduces the
amount of computations needed. Note that there are three categories of transitions: par-
ticles can enter or leave the system, or transition between certain states in the system.
For each of category, we will present a method to update the cumulative list.

Firstly, the addition of new particles into the system. When this happens, we can ac-
count for the extra rates of a new particle by appending them to the previous list. In
example 5, adding a particle to state 3 would change the list to [1,1.5,2.5,2.75,3.25,3.5].
Of course, this example is a bit redundant as the entire system is now clogged up due to
exclusion. However, in other systems with more free space, the technique of appending
the new rates works similarly. By working in this manner, we ensure that the rates for all
other particles do not need to be altered, which is where most of the time-save is gained.

Secondly, the removal of particles from the system. Since we are looking at systems in
which particles cannot overtake each other, we know that the first particle to enter the
system is also the first to exit the system. Therefore, when a particle leaves, we would
have to remove the first element of the cumulative list and update all the others. How-
ever, we can instead also change the way we draw the random variable X by using offsets.
Suppose that the first particle leaves and used to contribute a total transition rate of 1 to
the total rate A. We remove all entries of the list associated with the first particle, but leave
all others unchanged. So, in example 5 this would change the list from [1,1.5,2.5,2.75]
to [2.5,2.75]. We add A, to our offset 0 and from now on draw X from [o, A] instead of
[0,A - A;]. Consequently, none of the transition probabilities change, but we also do not
need to subtract A; from all other entries, thus saving a lot of computations.

The final optimisation technique deals with transitions of existing particles. Suppose
that the i-th particle transitions. Note that only the sums at indices of at least i will
change due to this transition. On average, when the rates at each position in the system
are comparable to each other, only half of the list needs to be updated after a transition.
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Combining these three improvements already significantly improves the speed at which
the model computes simulations. In fact, most of our simulations on RNA transcription
could be completed within a couple of hours, which was sufficiently fast for gathering
the needed data for our purposes. For more complicated systems, such as ones with
thousands of particles, further optimizations or even approximations can be introduced.

4.3. THE NUMERICAL MODEL OF TRANSCRIPTION

In figure 4.1, we present a schematic of a general model that can simulate any jump
process and which employs all of the outlined techniques of section 4.2. This schematic
was implemented in Python code and used for simulations on RNA transcription. This
Python code can be found in (van der Post, 2024).
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Figure 4.1: A comprehensive flowchart detailing the general model for simulating jump processes. This model
will be applied to simulating RNA transcription in the next chapter 5. The boxes represent tasks that need to
be performed for the simulation. The arrows indicate chronological transitions between tasks. The different
colours of the arrows are used to distinguish between different options exiting the same box. Note that the
schematic is divided into three main parts. Firstly, the upper two boxes represent the initiation or start of the
simulation. Secondly, the leftmost and bottom-right boxes indicate the termination or end of the simulation.
Everything else is a loop that is continuously repeated to simulate space for a prolonged period of time.

Y

The schematic contains several components that require some more clarification, which
we will now present in more depth.

EXCLUSION/OVERTAKING

In the flowchart we emphasise that both exclusion and overtaking are checked. In princi-
ple, the distinction between overtaking and exclusion is not necessary for our transcrip-
tion model. One of our key assumptions, outlined in section 2.3.3, is that the RNAps do
not overtake each other. The mentioning of overtaking is therefore exclusively for other
potential applications, such as the ones given in section 2.3.
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INITIALIZATION

The first stage of the simulation is initialising the DNA chain. In essence, this means
actually imposing the initial conditions of the system. In most simulations, we will begin
with an empty chain. Since we want to conduct steady-state simulations, it may seem
counterproductive to start with an empty initial configuration. However, we shall see in
section 5.2 that the system quickly converges to steady state in our model. Hence, the
small period in which it is not steady state does not affect the eventual results.

In a handful of simulations, we want to be able to force the chain to attain a certain
polymerase density to analyse congestion effects. In these scenarios, we need to begin
with a chain that already has a specific RNAp density.

TERMINATION

There are two conditions that automatically end the simulation once they are fulfilled.
The first condition is based on the amount of polymerases that reached the end of the
chain. After a preset amount Nfgpjsheq have finished transcription, we stop the simulation
since enough data has been gathered. The second condition is based on the amount of
computation steps and is intended as a failsafe. We place a restriction on the maximum
amount of steps that can be performed before the simulation ends. In case the acquisi-
tion of data takes too long, or something else goes wrong, this condition ensures that the
simulation will abort eventually. Under normal conditions, Ngnisheq is Obviously chosen
small enough such that it is reached before the maximum amount of steps.

DISTINCTION IN DETERMINING EVENTS

In section 4.2, we picked the occurring transition based on one list containing all possi-
ble transitions. In practice, we actually divide the picking into multiple stages. First, we
determine which RNAp makes a transition, based on the total rate of particle: A;. This
also includes the possibility that a new particle enters the model, which happens with
rate a. Only after picking the particle, we determine what happens to that RNAp. This
can be an active jump, a diffusive jump or a switching of layer. Once the type of jump is
determined, the exact location to which the RNAp moves is picked. Note that by theorem
12, dividing the picking procedure into stages does not affect the actual outcome.

4.3.1. VERIFYING THE VALIDITY OF THE NUMERICAL MODEL

Since the numerical model is already quite involved, it is good practice to perform some
sanity-checks on it. For instance, we established in theorem 18 and corollary 19 for fi-
nite state spaces, what fraction of time a particle should be in each internal state. Since
the layer-process of the particles is independent of all other processes, we can consider
this finite state space process separately from the rest and apply this corolary. We shall
now verify that results generated from this model back up the conclusion obtained in
corollary 19. For this purpose, we took a sample 3-layer system. We conduct 600 single-
particle simulations of 4 - 108 transition steps each. The size of the system is larger than
4-10°, so that the particles will not reach the boundaries during the simulations and thus
this is comparable to simulating in infinite space.

The transition rates are picked as somewhat arbitrary coprime integers:

AO,I = 1,&0,2 = 5,&1,0 = ll,ﬂlyg =7, /12’() = 3,/12,1 =2.
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Layer 0 only has active motion at rate 1 and size vg = 2, layer 1 is the pause layer and layer
2 only has diffusive motion at rate 10. The outward transition rates are picked highest for
layer 1, so that the particle spends most of the time in the more interesting layers.
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(a) A realization of the layer process of one of the 600 runs of
4-10% time steps. By theorem 18, we expect the layer pres-
ence to converge to the theoretical limit of 0.40426 and the
simulated data did in fact closely approach this limit. In
the figure, we present the lowest layer only; the trajectories
looked analogous for the other layers. Obviously, the trajec-
tory is quite volatile in the first couple of time steps due to
the initial condition. Therefore, the first 1000 steps are left
out of this data set, so that we can view the convergence on
a closer scale for the remaining time steps.
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(b) The simulated distribution of the rescaled process after
4-108 time steps for 600 runs. By theorem 31, we expect the
distribution to be Gaussian with mean 0 and standard devi-
ation 3.48. The theoretical Gaussian is plotted in green and
had a Kolmogorov-Smirnov (KS) p-value of 0.288. We also
add a Gaussian fit to the data, which resulted in fitted pa-
rameters —0.153,3.634. The fitted Gaussian had a KS p-value
0f0.929. These results and p-values increase our confidence
in the validity of the implementation of the model, as they
correspond reasonably well to the theoretical predictions.

By theorem 18, the proportion of time spent in each layer i should converge to 7;, where
7 is the stationary distribution. By equation 1.18, the stationary distribution is given by
(7o, 1, 72) = (0.40426,0.07979,0.51596). In figure 4.2a, we see a realization of the layer
presence of one of the particles. Clearly, this realization closely approaches the theoret-
ically predicted limit. In fact, averaging over all 600 runs gave (0.40428,0.07977,0.51594)
as average proportions, with respective standard deviations of (5-1074,2-107%,5-107%).
The correspondence between theoretical predictions and simulation results confirms
that the switching processes in the simulation are operating as expected.

Secondly, we test the result of the drift formula 24 in a different set of simulations. The
theoretical value for the drift is ¢ = % ~ 0.8085. We perform 100 distinct simulations to
estimate the average of x—; after 2-10° time steps. The obtained data set has a mean of
0.80846 and standard deviation 0.0112, which again aligns nicely with the prediction.
We also check the result of central limit theorem 31 against the simulation. We use the
original 600 runs to estimate the distribution of (x; — ct)¢~% after 4 - 10° steps. In figure
4.2b, the resulting distribution is compared against the theoretical Gaussian and a fitted
Gaussian. The predicted and simulated means and standard deviations are 0,—-0.15 and
3.48,3.63 respectively. The simulations and predictions are close, but not as convincingly
as for example for the layer process. This suggests that the convergence to the Gaussian
goes at a slower pace and more steps are needed to get a closer approximation.

All in all, the numerical simulations correspond closely to the theoretical predictions,
which implies that the implementation is functioning as intended.



CHAPTER 5
MODELLING RNA TRANSCRIPTION

In the previous chapter 4, we introduced the computational model of layered jump pro-
cesses in a general setting. Now, we can finally apply the model to perform multi-particle
simulations on RNA transcription. In particular, we are interested in the rate of tran-
scription. From the biological perspective, this rate is of utmost importance as the amount
of transcription that is performed on a particular gene greatly influences how fast and
how many specific proteins can be synthesised. Therefore, the transcription rate is the
main feature the cell will aim to regulate to accommodate for the biological needs at a
certain moment. We will see that the way in which different RNAps traverse the DNA
and interact with each other naturally leads to a maximal flow of RNAps that can pass
through the system and thus that the transcription rate is limited by this optimal flow.

Recall from section 2.3.3, that the cell has a high degree of control over the binding rate
on the gene, via the use of transcription factors. We will therefore mainly be investigat-
ing the effect different binding rates have on the total transcription rate and the different
phenomena that take place on the DNA to optimise this transcription rate. For this pur-
pose, we will be closely following the analysis performed by (Klumpp, 2011) and a simi-
lar model as in (Klumpp, 2011 and Klumpp and Hwa, 2008) and aim to reproduce their
results. These studies identified in particular a phenomenon through which different
interacting RNAps push each other forward on the DNA, thus leading to a higher RNAp
velocity and a higher transcription rate. We will investigate how this phenomenon arises
and reproduce this “RNAp cooperation” effect in our simulations as well.

Additionally, we will compare our numerical results to the mathematical results. We es-
pecially expect that the two yield similar results in the case of sparse polymerase density
on the DNA chain. Nevertheless, the mathematical analysis is still useful for high RNAp
densities as well. In particular, it helps us identify the main aspects that are different
or that change when comparing dense environments to sparse environments. These
considerations in turn aid us in explaining the new phenomena that arise in dense envi-
ronments, such as the cooperation effect.

5.1. THE MODEL AND PARAMETERS

We have already extensively discussed general layered jump process models in chapters
1 and 3 and presented how to apply these models to the particular case of transcription
in sections 1.2.3 and 2.3.3. We will now explain the specific layered jump process model
of transcription in more detail. Additionally, we introduce the actual used values of the
relevant physical parameters, which are taken from (Klumpp, 2011).

52
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Figure 5.1: The basic jump process model of transcription. Note that the string of beads represent the DNA
chain, while the coloured particles depict RNAps in different internal states. There are three internal states:
backtracking (red), pausing (blue) and active transcribing (green). In the upper part of the figure, we sketch
the scenario on the actual DNA chain, with zipped open DNA parts, transcribed mRNA and moving RNAps. In
the lower part, we depict how we model this process by using different internal layers.

At the left, new polymerases attempt to bind to the DNA with rate @. However, they can only enter if enough
space has been vacated, as RNAps interact via the exclusion interaction. RNAps exit the chain at the end of
the gene after finishing transcription. In the active state, the RNAp moves forward with stepping rate € and
switches to the pause state with rate f. From the pause state, the RNAp either returns to the active state with
rate % or enters a backtrack. In a backtrack, the RNAp moves diffusively with rate kp, but cannot pass the
initiation site. It can either re-enter the pause state at the initiation site with rate kp, or cleave to the active
state with rate k.. We will consider both a scenario in which particles can switch states at every site and one in
which RNAps can only do so at specific “pause sites”. The latter case is depicted by the coloured pause sites.

We take RNAp width of w = 50 nucleotides (nt), gene length of L = 3000 nt and a vari-
able initiation attempt rate a. The stepping rate is ¢ = 100s™!, while the diffusive rate
is kp = 10s™!. For switching rates we let f = 10s™1,7 = 1s,k}, = kp, k. = 0.05s7 1. It is
however often assumed that the RNAp can only enter the pause state at specific pause
sites on the DNA. As was explained in section 2.3.3; pause sites form at certain positions
on the DNA due to the presence of histones, transcription factors and recognisable nu-
cleotide sequences. The switching rate of f = 10s~! is therefore only applicable at these
pause sites. Usually, we shall assume that there are 50 pause sites, which is slightly higher
than the 1% pause site density taken in (Klumpp, 2011).

Recall that the model presented in figure 5.1 is based on the general jump process sys-
tems, but needs some additional components to simulate RNA transcription more real-
istically. In particular, we require the specific pause sites and the backtracking barrier
preventing the polymerase from moving past the initiation site. Additionally, the cleav-
ing process of the RNAp is site-dependent. Although the RNAp can cleave the transcript
to return to the active state after a backtrack anywhere along the DNA, re-entering the
pause layer from the backtracking layer can only be done at the site where the back-
track was initiated. We will perform analyses with and without these extra features to
compare and contrast between the different results. Nevertheless, the simplest possible
model, with no pause sites, no barriers and switching rate kp and k. at any position in
the third layer already exhibits some interesting behaviour, such as RNAp clustering and
optimal RNAp flow, that will continue to occur in the more complex models as well.
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Therefore, we will begin with an analysis of this simple model. Since we now assume that

every position in the first layer operates as a pause site, we need to adjust the rate f to

accommodate for this large increase in the amount of pause sites. Hence, we adjust f in

such a manner that the proportion of time a particle spends in a backtrack is roughly the

same for the model with 50 pause sites and the simple model. We know that 50 pause
50

sites of rate 10s~! and 3000 pause sites of rate 10- 3005 Will produce the same results in

this regard, and will therefore employ the corrected rate of f = %s_l in these simulations.

We will use steady-state simulations to measure the transcription rate and a couple of
related quantities. Some initial trial simulations revealed that steady state is without a
doubt reached in all models after 200 RNAps have finished transcription. Steady state
can for example be recognised by the computation time increasing linearly with the
amount of computation steps and by the rate at which RNAps finish the chain stabil-
ising. The quantities that we will investigate in steady state are the average velocity, the
completion rate, the steady state density and the transcription rate. The average veloc-
ity is defined as the velocity an RNAp particle has on average, throughout its journey on
the DNA track. So, this velocity is akin to the drift velocity and calculated by the length
of the gene divided by the time it takes for the particle to complete transcription. The
completion rate is defined as the amount of RNAp that finishes every second. The poly-
merase density is defined as the amount of polymerase per nucleotide that is on average
on the chain. Therefore, this density is at most % = 0.02 when the chain is entirely filled.
Lastly, the transcription rate quantifies the amount of mRNA that is transcribed on the
gene each second, by measuring the flow of RNAps on the DNA. It can be found via two
equivalent calculations. Firstly, the transcription rate is the completion rate multiplied
by the gene length of 3000. Equivalently, the transcription rate can also be found by mul-
tiplying the RNAp density with the RNAp velocity and the length of the gene.

Hence, the transcription rate is the result of a fine balance between the amount of RNAps
on the chain and the speed at which these RNAps can move. As the amount of particles
increases, we expect the maximal speed to drop. Picking a density that is too high will be
outweighed by a drastically lower velocity and vice versa. As a result, there will be a cer-
tain maximal transcription rate characterising the maximal flow through the network.
We will refer to this maximal rate and the corresponding RNAp density as optimal. In
the upcoming section, we will show that the system automatically approaches the opti-
mal conditions if the binding rate is chosen large enough. Additionally, if the DNA chain
temporarily attains a higher RNAp density, it will eventually revert back to the optimal
scenario. In a sense, the optimal density can therefore be seen as a stable equilibrium.

5.2. DYNAMICS IN THE BASIC TRANSCRIPTION MODEL

In the basic jump process model, we do not include the pause sites, barriers and site-
dependent cleaving and use pause rate f instead of f. We will now study the dependence
of transcription on the initiation attempt rate a and the consequent RNAp density p on
the chain. We will see that the results are quite similar to one would be expect for traffic
flow through a network. As such, we will also interpret the results from this perspective.
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Figure 5.2: Two figures depicting the RNAp dynamics on the DNA chain for 50 different values of the initiation
attempt rate @. Each data point is based on a simulation with 1500 finished RNAps.

In the left figure, we depict the average velocity of the 1500 RNAps. In the right figure, we present the accom-
panying average steady state density. In sparse conditions (low a and thus low density), we see that the drift
velocity is slightly higher than the theoretical prediction of 75.9nt/s; which can be found from theorem 24 us-
ing the specific model parameters. We attribute this small difference to the fact that all RNAps are initialised
in the active state and hence have a small bias for the first layer that is noticeable on a scale of 3000 nt. As
a increases, the chain becomes more crowded and the RNAp density increases. Dense traffic begins to form
on the DNA causing a decrease in overall speed. The decrease is first linear, but flattens out for larger o and
settles at around half of the maximal velocity. As the velocity converges, the density also approaches a limit of
about 0.01 at large @. Note that 0.01 RNAp/nt corresponds to 50% occupation, as the RNAps have a width of
50 nt and thus 100% occupation would mean 1 RNAp for every 50 nucleotides. The density is not completely
stable in the high a region, which indicates that the different simulations exhibit slight differences in long term
behaviour, possibly due to long-term congestion forming in some chains but not in others.

In figure 5.2, we present the RNAp dynamics of this initial, simplified model. As ex-
pected, an increasing attempt rate a leads to a rising density and a decreasing velocity.
The density seems to be bounded by an occupation of circa 50%, no matter the rate a.
This suggests that the optimal flow of the system, as discussed in section 5.1, is obtained
at this combination of density and velocity. The reasoning behind this conclusion is as
follows. By mass conservation, this maximal flow is a balance between the inflow and the
outflow. Since the outflow is bounded, it takes time for particles to exit the system. As a
result, the particle density increases as more and more particles enter with increasing a.
The inflow is in turn dependent not only on a, but also on the availability of free space on
the chain. At higher densities, this availability is diminished, making the arrival of extra
particles unlikely, even despite the high a. At some point, we reach the optimal density
which maximises the outflow. The inflow is restricted by this maximal outflow; so as we
keep increasing a, the inflow does not increase further due to a lack of available space.
Hence, we expect the system to steer towards a local maximum in flow with increasing a.

To show that the above intuitive reasoning holds true, we need to verify that the RNAp
flow is suboptimal at densities higher than 50%. We were able to confirm this result
through two different methods. Firstly, we conducted steady-state simulations of sys-
tems initialised at high a and high densities such as 100%. We looked at the steady-state
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flow through the network after 200 particles finished transcription. These simulations
revealed that it is actually impossible to sustain a high density in steady state. No matter
the initial condition, the system converges to a steady state in the condition of optimal
flow at 50% occupation. From this, we can conclude that the state of optimal flow is
stable and systems at high densities temporarily have an imbalance between inflow and
outflow automatically returning them to the state of optimal flow.

To quantify this in- and outflow imbalance, we also performed measurements to deter-
mine the temporary outflow at high densities. Each measurement is an average over
1000 simulations of systems at the same high density. Each system is initialised with
evenly spread RNAps that together constitute the total density. For each simulation, we
estimate the transcription rate by measuring the amount of mRNA actively transcribed
by all RNAps before the first particle finishes and divide by the elapsed time. The results
of these simulations can be seen in figure 5.3.
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Figure 5.3: Simulations comparing the steady state flow to the temporary outflow immediately after initializa-
tion at a specific density p. The transcription rates coincide for low values of p, but even before the optimal
flow has been reached, the temporary outflow begins to exceed the optimal steady state flow. Nevertheless, the
graph of maximal outflow confirms our intuition that there is a fine margin between having a too large density,
causing the decrease in velocity to outweigh the gain in amount of polymerase, and having a too small density,
with the opposite effect. As a result, the graph follows a standard shape of traffic flows (Klumpp, 2011), which
1-
kp—(kpf)p
the observed data and have R? values of 0.998 and 0.986 for steady state and outflow respectively. In the same
order, the fit constants were (c, k) = (4.21-103,0.921), (1.31-10%,3.15).

has been added as fit based on the relationship ¢

, where ¢ and k are constants. The fits closely match

What immediately stands out in figure 5.3, is the maximal outflow already exceeding
the optimal flow at low densities. This can be explained by the fact that the chain was
initialised with evenly spread out RNAps. From the discrepancy, we see that in steady
state something different happens. We can conclude that in reality, the RNAps somewhat
clump together in the density range 20 — 50%, thereby lowering the flow of the system.



5.3. TRANSCRIPTION DYNAMICS WITH DIFFUSION BARRIER, PAUSE SITES AND CLEAVING57

The clumping of RNAps is therefore an inherent property of our stochastic model. Intu-
itively, clustering makes sense; we expect that particles will catch up to their predeces-
sors if these predecessors are temporarily in a (backtracking) pause. As such, the RNAps
will automatically come closer together and form groups or clusters. This result con-
firms previous research as clustering was extensively studied by (van den Berg, 2017).
To verify the clustering with some more direct evidence, we took 100 samples of steady-
state simulations at 50% density to measure the nearest-neighbour distances. The aver-
age mean of these distances was 65.2 with a standard deviation of 25.4, while the average
median was 12.3 with a standard deviation of 20.9. Note that the mean is not a great es-
timator for clustering, as it also measures the distance between clusters, which may be
quite large. However, the median provides a strong indication of clustering occurring,
since, on average, half of the nearest neighbour pairs are at most 12.3 nt separated. On
the other hand, the high standard deviations imply large variations between the differ-
ent simulations. In fact, 40% of the simulations had medians of 3 or lower, while there
were a couple of outliers with medians larger than 50. We can conclude that congestion
and clustering is likely to occur in steady state, but not guaranteed. In figure 5.2, we saw
a similar result where the density at high a was not completely stable around the limit.

Recall that one of our main goals is to reproduce the phenomenon of RNAp coopera-
tion obtained by (Klumpp, 2011). An important requirement for this is the clustering of
RNAps, so that they are close enough to cooperate with each other to begin with! As such,
the simulations of the simple model already reveal the significant phenomenon of clus-
tering. Once we introduce the diffusion barriers, clustering causes a delicate interplay
between RNAp interaction and barrier interaction, resulting in the RNAp cooperation.

5.3. TRANSCRIPTION DYNAMICS WITH DIFFUSION BARRIER, PAUSE
SITES AND CLEAVING

In the simple model, we were already able to establish two important conclusions. Firstly,
we saw that the DNA chain has a certain optimal flow, which is also stable. Secondly, we
concluded that the RNAps will form clusters. Especially this second point is crucial to be
able to observe cooperative interactions between the RNAps. The cooperation effect is
one of the main phenomena (Klumpp, 2011) derived; a slight increase in the velocity of
RNAps for low densities. This bump stems from the fact that RNAps at low densities were
able to push each other forward, by shortening the length of a backtrack, but simultane-
ously without hindering each other too much in their forward motion.

This bump only occurs with the addition of two components to the basic model. Firstly,
recall that the RNAp is precluded from moving past the initiation site, which can be vi-
sualised as a barrier at this site. Furthermore, the RNAp has two mechanisms of exiting
a backtrack. It can re-enter the pause state at the initiation site, or cleave the transcript
and reactivate at any other site. Re-entering the pause state occurs at rate 10s™!, while
cleaving occurs at rate 0.05s~!. Hence, the RNAp will exit a backtrack much quicker when
it is placed on the initiation site. If we have several RNAps in close proximity, exclusion
interaction can force a backtracking RNAp forwards to return to the initiation site. As
a result, RNAps can cooperate and push each other out of a long backtrack! This phe-
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nomenon is consequently observed as an uptick in the RNAp velocity at low densities.
We performed several simulations to reproduce this result obtained by (Klumpp, 2011).

We took 60 simulations in the range a € [0,0.6] with 3000 RNAp finishes in each.
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(a) We compare the steady state velocity in three differ-
ent systems, each having a different amount of pause sites.
The switching rates are corrected for the pause sites, which
should lead to equivalent layer presence. The velocity
uptick becomes more apparent with fewer pause sites. We
attribute this to fewer pause sites being more spread out. As
a result, the clusters of RNAps will consist of many active
particles stuck behind a backtracking particle, which leads
to more pushing. Surprisingly, the velocities are a bit sepa-
rated between the three systems. We will go into more detail
on this result when discussing the transcription rate itself.
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(b) This figure depicts the layer presence of the system with
50 pause sites at each value of @. Note that this data has
been normalised at each different a. In reality, the amount
of particles in the system is also increasing with a.

Despite the fact that we do not observe a velocity bump for
the 50-sites system, we still see the phenomenon of short-
ened backtracks in full effect here. As the density on the
chain is increased, the amount of RNAp interactions also
increases. We see that as a result of this, the proportion of
backtracking RNAps decreases, which is exactly the antici-
pated cooperation phenomenon.

Figure 5.4: On the RNAp cooperation effect and its dependence on the amount of pause sites.

We came to the conclusion that the cooperation effect is highly dependent on the dis-
tribution of pause sites on the DNA sequence. For example, in the basic model with ev-
ery nucleotide functioning as a backtracking site, we found no noticeable uptick in the
velocity of the RNAps. In fact, even for a model with 50 sites of rate 10, there is no real
bump, although the slope at which the velocity decreases is lower for low a. Therefore,
we also moved to models with 20 or even 5 sites, where the switching rates were compen-
sated for the lower amount of pause sites, so that the particle distribution over the layers
remained similar. With fewer pause sites, we do observe the hypothesised uptick in ve-
locities. We propose that this phenomenon is therefore highly dependent on the spread
between different pausing sites. The farther these sites are removed, the more likely it
is that all particles closely behind a backtracking particle are actively transcribing. As
a result, these particles are more likely to push the backtracking particle forward. This
reasoning is in line with findings of other studies. (Nudler, 2012) remarks: “The prob-
ability of backtracking varies dramatically even at adjacent nucleotides, implying that,
when leading EC backtracks, trailing EC would most likely be in the active mode, ‘push-
ing’ leading EC forward.” (EC stands for E.coli here). Similarly, (Klumpp, 2011) found
that: “Indeed if there are additional backtracking sites upstream of a backtracked RNAP,
the trailing RNAP may be stuck there for some time and will therefore need a longer time
to catch up with the leading RNAP”
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In any case, the velocity uptick was remarkably stronger in the results of (Klumpp, 2011)
than in ours. We attribute this disparity to the fact that (Klumpp, 2011) actually differ-
entiates between pause sites and backtracking sites. In our model, we did not consider
this distinction, which allows for a smaller amount of backtracking sites while not affect-
ing the total amount of particles in pause state versus in active state. As such, (Klumpp,
2011) also did not introduce rate correction factors.

A second feature that stands out in figure 5.4a, is the fact that the velocities are dras-
tically lower than in figure 5.2. This can also be attributed to the fact that in the basic
model, the RNAp could re-enter the pause state with rate 10s~! at any site. As a result,
the RNAp spends more time in the backtracking layer as compared to the basic model.

Lastly, another aspect of the results that is highly dependent on the pause sites is the
actual transcription itself. In figure 5.4a, we noticed that the velocity for the systems
with fewer pause sites are consistently higher. In figure 5.5, we see that this is caused by
a difference in polymerase densities. The combination of this difference in densities and
velocities also causes varying transcription rates, as can be seen in figure 5.5.
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Figure 5.5: Overview of the steady state transcription rates and density for the three systems with different
pause sites. These results were obtained with 60 simulations at different @ and 3000 RNAp finishes for each
simulation. Surprisingly, the density seems to depend non-monotonically on the amount of pause sites. We
did not find any plausible explanations for this observation.

We were not able to identify a reason for this behaviour. It is particularly surprising that
the inflow for 20 sites is highest, while the inflow for 5 sites is lowest. Therefore, the den-
sity does not depend monotonically on the amount of pause sites. Nevertheless, it is
already important to establish and to realise that the transcription rate is highly depen-
dent on the amount of pause sites. Additionally, we expect that not only the amount of
pause sites, but also the distribution of these pause sites has a large impact on transcrip-
tion. In our analysis, we only considered evenly spread pause sites, however results may
change drastically when considering more concentrated pause site distributions. For in-
stance, if all pause sites are placed at the start of the chain, this greatly affects the local
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behaviour of the RNAps in this region. Consequently, the start of the chain will form a
“bottleneck” where RNAps are moving forward slowly, with the added consequence that
less RNAps can bind to the DNA as well. We therefore expect the actual distribution and
locations of the pause sites to have a large influence on the actual transcription rate.

5.4. RELATING THE RESULTS TO THE MATHEMATICAL ANALYSIS
AND EXPANDING TO INHOMOGENEOUS ENVIRONMENT

We have just concluded our numerical analysis of the basic and advanced transcription
models. Both models are extensions of the general framework of layered Markov pro-
cesses and exhibit behaviour typical to RNA transcription.

Especially the basic model is closely related to the systems that were analysed mathe-
matically in chapter 3. The only differences being, that the basic model is in finite space
and allows for the presence of multiple particles simultaneously. Nevertheless, the math-
ematical results are still applicable when the system is at a low RNAp density. Specifically
the results on the particle distribution over the layers (corollary 19) and the drift formula
(theorem 24) are useful theoretical equations for this particular application. The former
of the two allows us to estimate the proportion of time the RNAp spends in backtracks.
This quantity is biologically important as it relates to the amount of self-correction that is
performed by RNAps on the gene. On the other hand, the drift formula provides an esti-
mate for the velocity of RNAps and thus also for the transcription rate at low densities, as
can be seen in figure 5.2. At higher densities, the drift formula serves as an upper bound
to the actual velocity of RNAps; since the emergence of congestion causes the RNAp ve-
locity to decrease when more particles enter the system. The drift formula can therefore
function as a comparison standard for the velocity of particles in a multiple-particle sys-
tem and is helpful in identifying the causes for deviations from this standard. We were
able to identify the density regimes where the RNAps are significantly lower due to con-
gestion, but also regimes in the advanced model where the RNAp velocity was actually
higher due to RNAp cooperation. We found out that RNAp cooperation is the result of a
delicate interplay between the spread of pause sites, the diffusion barrier and cleaving.

Aside from the drift formula, we also derived several invariance principles for the single-
particle systems. These central limit theorems provide estimates for the variation of the
particle’s motion around the drift velocity. Unfortunately, the many additional complex
features and the RNAp interactions are more dominant effects than the diffusive nature
of the model. As a result, the RNAps cannot really be compared to Brownian particles,
especially at high RNAp densities. Nevertheless, the invariance principles are still highly
applicable for other physical applications, such as the run and tumble particles. Ad-
ditionally, the CLTs and drift formulas and their generalisations to inhomogeneous en-
vironments serve as fundamental rigorous evidence that homogenisation takes place.
These random environments provide a more realistic depiction of the actual DNA, where
the RNAp’s motion is position-dependent due to histones, transcription factors and the
DNA sequence itself. Since the DNA chain is highly inhomogeneous, verifying whether
or not homogenisation occurs is an important question with practical ramifications on
the validity of homogeneous models of transcription.
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Note that the inhomogeneity of the DNA strand comes in two different forms. Firstly,
there is inhomogeneity in the roles of different DNA sites, since only a fraction of the
sites act as pause sites. It turned out that this inhomogeneous feature is a particular ex-
ample of something for which homogenisation does not take place. The spread in pause
sites leads to the local effect of RNAp cooperation, which has an influence on the global
outcome of the total transcription rate.

The second inhomogeneous aspect of the DNA is the fact that the transition rates be-
tween sites vary along the DNA chain. Note that these transition rates can either be for
diffusive or for active motion. In our mathematical analysis, we have mostly focused on
proving homogenisation for systems with randomly changing diffusive rates. We pre-
sented both the Bouchaud trap model and the random conductance model as potential
candidates for modelling the RNAp’s sequence dependence. Of these two, the random
conductance model seemed the most realistic as this allows particular DNA sites to have
a certain polarity. Nevertheless, most of our rigorous homogenisation results were found
in the Bouchaud trap model. In the trap model, we found that the drift formula and the
CLTs fully carried over, thus implying that homogenisation takes place for varying dif-
fusion rates. Since we also expect the active rates of the RNAp to vary with the DNA
sequence, a potential extension to our mathematical model would be to consider ran-
dom active rates and to prove CLTs for these systems as well.

To confirm the expectation that homogenisation also takes place for the random con-
ductance model, we performed several simulations with random environments of dif-
fusive rates. For the random environments, we took the diffusive rates to be uniformly
distributed on [5,15], instead of taking all rates equal to 10s~!. Given a certain random
environment, we performed a similar analysis to the one given for the homogeneous
environments. However, it turned out that the consequent results on global phenom-
ena such as transcription rates, average velocities and RNAp densities were all almost
completely the same as in the case of homogeneous environment. Although the ho-
mogeneous and inhomogeneous models are quite different on a local scale, the striking
similarity in global results clearly indicates that homogenisation is valid for this specific
random conductance model and thus justifies the use of uniform diffusive rates in tran-
scription models.




CHAPTER 6
CONCLUSION

In this thesis, we set out to investigate the motion of RNA polymerase (RNAp) during the
elongation stage of RNA transcription by using a stochastic model based on Markov pro-
cesses. In particular, our first goals were to identify and categorise the long-term move-
ments of a single RNAp particle, to determine and to compare the effects of RNAp inter-
actions when considering multiple particles and to relate our findings to the overall rate
of transcription under different conditions of the DNA. We conducted both a mathemat-
ical and a numerical analysis of the model to derive practical results on single-particle
and multi-particle transcription systems respectively.

Additionally, we identified the DNA on which transcription takes place as a highly in-
homogeneous medium. Nevertheless, most standard transcription models assume that
several aspects of the environment are completely uniform. Intuitively, it is reasonable to
expect that small local variations in an inhomogeneous medium eventually average out,
thus yielding similar global behaviour to particles in homogeneous environments. This
process of “averaging out” is known as homogenisation of the environment. Therefore,
our last goal was to validate the standard homogeneity assumptions by verifying that
results obtained in homogeneous environments carry over to inhomogeneous environ-
ments with both rigorous evidence and evidence gathered from numerical simulations.

For the mathematical analysis, we embedded the specific transcription model into a
general class of Markov processes that we call layered jump processes. Aside from tran-
scription, this class has a wide array of applications in several scientific fields, such as
molecular motors, electron spin dynamics and even the macroscopic study of the move-
ments of groups of animals and humans.

For these general layered jump processes, we proved that the limiting behaviour of single
particles is a linear drift determined by the drift velocity given in theorem 24. This drift
equation is useful in the physical applications, as it estimates the speed of particles in
these systems. Additionally, we found that the variation around this drift is comparable
to Brownian motion and derived closed-form expressions for the diffusion constants in
theorems 26, 30 and 31; these results are known as an invariance principles in probabil-
ity theory. We concluded that single particles in layered jump processes can be seen as
propelled Brownian particles that drift in one direction on average.

Furthermore, we were able to extend the invariance principles to the particular case of
Bouchaud inhomogeneous environments in theorem 33. This provides initial rigorous
evidence of homogenisation. Nevertheless, we did not fully succeed in confirming ho-
mogenisation for random conductance environments, bar a couple of specific cases. In
particular, it proved to be difficult to combine random conductances with non-zero drift
components. However, we did come to the conclusion that the random conductance
models portray the inhomogeneity of DNA more accurately than the Bouchaud mod-
els. Therefore, these random conductance models may serve as interesting systems for
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follow-up research to find whether the lack of homogenisation is actually an inherent
property of the system or a symptom of a gap in available mathematical theory.

We complemented the single-particle mathematical analysis by conducting various nu-
merical simulations of multi-particle systems. For these simulations, we implemented
the general framework of layered jump processes and applied this specifically to the case
of RNA transcription. In these simulations, we found that the Markov processes exhibit
several intriguing phenomena which are typical to RNA polymerase and transcription.

First of all, we noticed that the DNA has an optimal RNAp density at which transcription
is maximised. Cells can regulate the rate at which RNAp binds to the chain to achieve
this optimal density. Therefore, it is particularly useful that our model indicated that the
optimal condition is stable. Either having a high enough binding rate or starting from a
high RNAp density always resulted in a steady state configuration at optimal RNAp flow.

Secondly, we observed that RNAps start to cluster together at higher RNAp densities.
Once the DNA got busier, congestion started to form, thus slowing down the RNAp ve-
locity. Clustering is also a necessary phenomenon for the occurrence of the “cooperation
effect” described in the following paragraph.

Previous studies, such as (Klumpp, 2011; Nudler, 2012), observed that RNAps in close
proximity to one another may cooperate to increase the rate of transcription. This co-
operation causes back-tracking pauses to endure for shorter periods of time, leading to
more active transcribing. Using a simple jump process model, we were able to reproduce
this observation and we could also explain how it arises. It turned out that this coopera-
tion effect is the result of a delicate interplay between the distribution in pause sites, the
interactions between RNAps and the diffusion barrier.

Consequently, the cooperation effect is highly dependent on the configuration of pause
sites on the DNA sequence and we inferred that the prevalence of the effect may vary
between actual genes. A future research direction could therefore certainly be focused
on the actual distribution and location of pause sites on specific genes.

Lastly, since we were unable to derive mathematical invariance principles for the ran-
dom conductance model, we performed transcription simulations with an inhomoge-
neous medium of random conductances as well. Our numerical simulations yielded the
same global results in both homogeneous and inhomogeneous environments, thus in-
dicating that homogenisation is valid in our transcription model.

To summarise, our stochastic transcription model reproduces many aspects of the move-
ments of RNAps that have been observed experimentally. Hence, we can conclude that
the model is realistic and warrants further theoretical analysis, such as a mathemati-
cal analysis of multi-particle systems. The general class of layered jump processes has
proven itself to be applicable in a wide array of physical systems, such as RNA transcrip-
tion, and to be suitable for a deep mathematical analysis with striking fundamental re-
sults, such as invariance principles and homogenisation.
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