01601600111016000000000001.1.6606006061.61

000001

20001 00071 000000001 1 000000

An FPGA-based Verdict System for Assessing
Structured Binary Data

MSc Thesis Computer and Embedded Systems
Engineering

SlepinEr a2 Qe Kl

010101010000010000000110000166011
0101016000011000100010000001.1606000
¢0000011010101010000010000001.010
61011010011001010111001001101111
¢1001100001100010010160160600110000
€0000011010101010600001000000001 1
01011010011001010111001001101111¢
01001100001000000101001001010601.1.
01000100011011110110110101100001¢
001000000101001101160016010110001 1
©11001010010000001.01001101101601
_66%@6@@661@666’365666665-6 7N W%151%1%]

Cuantum &

‘T Delft Qgﬁgﬂﬁé’é‘?&g 9 A4 A hition

The Binary Verdict Engine

An FPGA-based Verdict System for Assessing
Structured Binary Data

by

Stephen van der Kruk

to obtain the degree of Master of Science
in Computer and Embedded Systems Engineering
at the Delft University of Technology,
to be defended publicly on Monday June 23rd at 10:00.

Project duration: May, 2024 — June, 2025

Thesis committee: Dr. ir. J.5.5.M. Wong, TU Delft, Thesis Advisor
Ir. F. Floros, Technolution B.V., Daily Supervisor
Dr.ir. G.C.M. Moura, TU Delft, Committee Member

Cover: Binary X.509 certificate of www.tudelft.nl.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Abstract

Binary formats are used in low-level communication between systems. This binary data must be vali-
dated for correct structure and allowed content to ensure meaningful data exchange. This is especially
important in high-security contexts such as air-gapped networks or classified communication channels.
Such contexts can also be dynamic, requiring a flexible system to support quick changes to the allowed
format.

This thesis presents the Binary Verdict Engine, an FPGA-based system that can assess a binary data
stream by providing a verdict on the data that it has checked. It supports a wide range of binary
formats without having to reconfigure the hardware to change formats. It achieves this through the
programmability of its virtual machine architecture. The system executes instructions of a program
binary, called a schema program. A language for writing schemas was created to define how the
data should adhere to a specific binary format. Furthermore, a custom instruction set architecture was
designed, consisting of instructions to traverse and assess data or to update control flow. Assessment
consists of two types of assertions on the data. Field assertions exactly match or numerically compare
a field of the data to a constant, and length assertions check whether the length of a section is equal
to an earlier field specifying that length. The module design of the engine consists of: an input and
output system that traverses the binary data per data field, a controller that executes instructions and
manages verdict state, an instruction fetcher that provides instructions to the system and manages the
instruction pipeline, and a stack for length assertions and control flow utility.

The design is implemented on an FPGA and evaluated for flexibility and performance. Benchmarks
range from assessing externally defined flat formats, such as Internet packet headers, to self-describing
hierarchical formats, such as ASN.1 DER. The varying use cases across benchmarks show the sys-
tem’s flexibility, which it trades off for a lower performance compared to fully custom FPGA designs.
Synthetic benchmarks show a reciprocal decrease in throughput and a linear increase in latency once
schemas become more complex, and show flexibility when switching schemas, as downtimes are min-
imal when switching between them. The system establishes itself as a flexible validation system for
diverse and dynamic use cases.

11

Acknowledgements

This thesis marks the end of my internship at Technolution and the end of my time as a student at the
TU Delft. It closes a chapter of my life where | have learned and experienced a lot, and have developed
myself as a person and engineer. | take this opportunity to thank the people around me, as this would
not have been possible without the incredible support from them.

| want to thank my daily supervisor from Technolution, Fanis Floros, for his invaluable guidance during
the project. Your help and systematic approach to problems enabled me to continuously improve my
work and made me a better engineer. | would also like to thank Sijmen Woutersen for his constructive
insights during key design moments of the system.

| want to thank my thesis advisor from the TU Delft, Professor Stephan Wong, for his time and effort put
into our meetings and in providing insightful feedback, keeping the project and thesis writing on track.
Additionally, | would like to thank Professor Giovane Moura for his time and effort in being part of the
thesis committee.

Finally, my heartfelt gratitude goes out to my friends and family. To my parents, | am forever thankful
for your support throughout my life and education. To Wenjia, thank you for your encouragement and
your continuous joy that made difficult times endurable. To all my friends from high school, university,
and badminton, thank you for all the fun and experiences we’ve had so far. | look back on this chapter
of my life with great fondness, and | look forward to what the future holds.

Stephen van der Kruk
Delft, June 2025

contents

Abstract iii
Acknowledgements '
List of Abbreviations Xi
1 Introduction 1
1.1 Problem Statement 1
1.2 Methodology 2
1.3 ThesisOutline e 3

2 Background 5
21 BinaryData 5
2.1.1 Formats, Encodings, and Protocols 5

2.1.2 ClassifyingBinary Formats 6

21.3 BinaryDataTypes 7

22 BinaryParsing 7
221 Single-passparsing 7

222 Assertions. 8

2.2.3 Describing FormatsforParsing, 8

23 FPGAs . . . 8
24 RelatedWork 9
241 Generated HDLsystems 9

2.4.2 Templated GenericParsers 10

2.4.3 Match-actionsystems 10

244 Hardware-based VM 11

245 PacketParsingDSLs 12

25 Conclusion e e 12

3 Design 15
3.1 Requirements and Design Direction 15
3.1.1 Derivation of Data Assessment Requirements 16

3.1.2 Architecture Selection 16

3.1.3 Consideration of Security L 17

3.2 Schema lLanguage Design 17
3.21 SchemaNotation 17

3.2.2 Requirements and Schema Notation Matrix 22

3.3 Instruction Set Architecture 23
3.3.1 Shift(sft) 24

3.32 End(end) 25

3.3.3 Load Immediate (1dim) 25

3.34 Compare (cmp) o e 26

3.3.5 Branch(brch). e 27

3.3.6 Jump (Jmp) - . . o e e e 27

3.3.7 Call (call) o o 28

3.3.8 Return(ret) 29

3.3.9 Increment (inc). L 29

3.3.10 Instruction Field Width Elaboration 30

3.4 From Schemato Instructions 30
3.4.1 Field Assertions 30

3.4.2 Conditional Statements and Schema Calling 31

vii

viil Contents

3.4.3 Exactlengthassertions 32
3.44 Repeatandrepeatwhileloops 32
3.4.5 Schema Notation and Instructions Matrix 33

3.5 Module Design e e 33
3.5.1 Inputand OQutputSystem 34
3.5.2 Controller e 36
3.5.3 Instruction Fetcher L 38
3.54 Stack 39
3.5.5 FullDesign e 39

3.6 Conclusion e e 40
4 Implementation 43
4.1 Schema Development Approach 43
4.2 Python Assembler L 44
421 PreproCesSOr v v i i i e e e e e e 44
422 Converter 44

4.3 PythonEmulator 45
4.3.1 Differences with Module Design, 45
4.3.2 Emulator Operation 45

44 VHDL Implementation e 46
441 AXl4-Streamand AXI4-Lite 46
442 Module Implementation 47

45 Conclusion 51
5 Benchmarking and Results 53
5.1 Benchmarking Setups L 53
511 Hardware Setup 53
51.2 SimulationSetup e 55

5.2 SynthesisResults 56
521 Timing 56
522 ResourceUsage e 56
5.2.3 Energy Consumption 56

53 Metrics 56
5.3.1 The MeasurementWindow 57
5.3.2 Deriving Average Throughput and Average Latency 58

54 BenchmarkingResults 58
5.4.1 Benchmark: Packet HeaderParsing 58
5.4.2 Benchmark: Packet Header Validation 60
5.4.3 Benchmark: Checking the Structure of X.509 Certificates 60
5.4.4 Benchmark: Weather Station Data Validation 61
5.4.5 Benchmark: MPEG TS Video Stream Validation 62
5.4.6 Benchmark: XDR Drone Command Validation 63
5.4.7 SchemaTimingGrowth 63
5.4.8 Schema Flexibility 64

5.5 Results Discussion 65
5.6 Conclusion 66
6 Conclusion 67
6.1 SUMMArY e e 67
6.2 Contributions 68
6.2.1 Answering the Research Questions 69
6.2.2 Main Contributions 69
6.2.3 Other Contributions 70

6.3 Futurework e 70
6.3.1 SchemalLanguage Compiler 70
6.3.2 New Data Type Support 70

6.3.3 Smaller System Architectures Evaluation 70

Contents ix
References 7
A Module Activation per Instruction 75
B Benchmarking Schemas 81
B.1 PacketHeaderParsing 81
B.1.1 FullGraph-5tuplefields 81

B.1.2 FullGraph-Allfields. e 83

B.1.3 Simple Graph-5tuplefields 85

B.1.4 Simple Graph-Allfields 86

B.2 Packet Header Validation 88
B.3 X.509 Certificate Checking 88
B.4 Weather Station Data Validation 92
B.5 Video Stream Header Validation 93
B.6 Drone Command Validation, 93

List of Abbreviations

Abbreviation Definition

ASIC Application-specific Integrated Circuit

ASN.1 DER Abstract Syntax Notation One Distinguished Encoding Rules
AXIl4l Advanced eXtensible Interface 4 Lite

AXl4s Advanced eXtensible Interface 4 Stream

BFM Bus Functional Model

CPU Central Processing Unit

DSL Domain-specific language

FIFO First-In-First-Out

FPGA Field-Programmable Gate Array

FSM Finite State Machine

ICMP Internet Control Message Protocol

loT Internet of Things

IPv4 Internet Protocol version 4

ISA Instruction Set Architecture

LUT Lookup Table

MPLS Multiprotocol Label Switching

P4 Programming Protocol-Independent Packet Processors
PC Program Counter

RAM Random Access Memory

RDL Register Description Language

TCP Transmission Control Protocol

TLV Tag Length Value

UART Universal Asynchronous Receiver-Transmitter
UDP User Datagram Protocol

VHDL VHSIC Hardware Description Language
VLAN Virtual Local Area Network

VM

Virtual Machine

el

Introduction

Data exchange is at the core of communication between systems. Low-level machine-to-machine
communication involves the data being transferred in binary formats. These are, for example, used in
the lower layers in networking or in distributed embedded systems, where the focus is on fast, machine-
to-machine-based communication. To ensure meaningful communication between such systems, this
data must be correct in both structure and content.

In contexts where security is of major importance, such as air-gapped networks or classified commu-
nication channels, extra efforts must be made for security to ensure that the data is valid for safe pro-
cessing. Such contexts can also be dynamic, where the format of allowed data can frequently change,
requiring a flexible system to support future changes to the validation policy. A software-based system
can support dynamic use cases, but such levels of flexibility allow for more ways to exploit such a sys-
tem from a security perspective. On the other hand, a customised hardware implementation is usually
targeting a specific use case, allowing for less flexibility in dynamic contexts.

1.1. Problem Statement

This introduces the need for a system that can, using a description of a format, interpret a binary
format, assess its structured binary data, and provide a verdict on this data based on the assessment.
Assessments include range checks, comparisons and exact matches. Different descriptions that can
be interchanged allow for a wide range of binary formats to be interpreted and assessed. The system is
preferably implemented on an FPGA as a custom hardware-based engine and takes in a data stream at
the input, with the sole function of interpreting and assessing this stream. Having the hardware explicitly
defined minimises the attack surface, as anything not described in the design cannot be exploited.
Therefore, this benefits the overall security of the system.

The main design challenge lies in supporting a wide range of binary formats on an FPGA, without
having to reconfigure the underlying hardware. Creating this "reconfigure-once” design allows users of
the system to create a description of the binary data and deploy this to the system without the need to
generate new FPGA bitstreams. This makes the system more accessible to its users, as generating
bitstreams requires advanced knowledge of the underlying FPGA platform and synthesis toolchain.
Reconfiguring the hardware also introduces more security risk, as it can be reconfigured into anything
that can exploit the system, as long as there are matching interfaces. The verdict system configuration
process aims to be quicker than the process of generating bitstreams.

Therefore, the main research question this work aims to answer is:

How can we build a reconfigure-once, FPGA-based verdict system to assess structured
binary data across different formats?

The overarching topic of the research question is how we build a flexible system for our purpose. This
flexibility is expressed in two dimensions. First, the system must support assessment within a class
of binary formats, meaning it can handle different structures and data types to interpret and assess

1

2 Chapter 1. Introduction

these formats. Second, the system must be able to quickly and drastically switch its interpretation and
assessment from one format to another. The flexibility of the system is important for its effectiveness
for its users. Hence, it is an important factor to evaluate in the system.

Two additional research questions this work aims to answer are:

» What hardware architecture should be chosen for this verdict system?

* How can we describe binary data such that the verdict system can check adherence to this de-
scription?

The following goals are formed to answer the research questions stated above:

1. Define the design requirements and hardware architecture for designing the binary verdict system.
2. Design a description method for binary data interpretation and assessment.

3. Design and implement the binary verdict system.
4.

Evaluate the implemented binary verdict system in hardware for flexibility and performance.

1.2. Methodology

To achieve the aforementioned goals, the methodology to reach each goal is listed below.
Common steps for Goals 1 and 2

1. Investigate the properties of binary data formats.

2. Investigate how binary data can be interpreted and assessed.
Goal 1

1. Investigate what architectures other hardware-related systems that handle binary data have.

2. Enumerate the design requirements for the binary verdict system based on the performed re-
search.

3. Select a suitable architecture based on the performed research and requirements.
Goal 2

1. Investigate related description methods for describing, interpreting and assessing binary data.
2. Design a binary description method that adheres to the design requirements.

3. (If time permits) Implement tooling to convert from a format description to a verdict system con-
figuration.

Goal 3

1. Design the binary verdict system based on the design requirements, chosen architecture and
designed description method.

2. Implement the design on the FPGA.
Goal 4

1. Define benchmarks for assessing the flexibility and performance of the binary verdict system.
2. Implement a hardware testbed for executing the benchmarks on the binary verdict system.

3. Execute the benchmarks on the binary verdict system and compile the results.
4

. Evaluate the results of the implemented hardware and benchmarks and compare with related
systems.

1.3. Thesis Outline 3

1.3. Thesis Outline

The thesis is divided into 6 chapters. After this introductory chapter, Chapter 2 describes the back-
ground required for the thesis. This discusses binary data formats, binary data assessment, and ex-
plores related works for various hardware architectures and binary description methods. Chapter 3
handles the design of the binary verdict engine. The created design requirements of the system are
discussed, after which the binary description method and hardware architecture (ISA and modules) are
explained. Chapter 4 explains the implementation of the system. As well as two implementations which
help in the development of the system. Chapter 5 explains the implemented testbeds for evaluating
the system and analyses the results obtained from the performed benchmarks. Chapter 6 summarises
and provides the contributions of this thesis, and discusses various proposals for future work.

Background

Based on the problem statement in Chapter 1, we perform a background study in this chapter to in-
vestigate relevant topics for this project. We investigate binary data regarding its structure, how to
properly traverse and assess it, and what benefits FPGAs can provide for traversing and assessing
binary data. To investigate the additional research questions, we perform a literature study to consider
related systems in terms of their architecture and how they describe binary data. The insights received
from this background study provide the necessary knowledge to create concrete requirements and
design a system in the next chapter.

This chapter is organised as follows. Section 2.1 explains the focus of the system on binary data, and
we create a classification of how binary formats organise their data. Section 2.2 considers the concepts
behind binary parsing of binary formats. Section 2.3 provides a short explanation on why FPGAs were
chosen as the implementation platform for this system. Section 2.4 covers the related work, providing
an exploratory overview of related parsing and filtering systems and various domain-specific languages
(DSLs) for describing binary data. Finally, Section 2.5 concludes this chapter.

2.1. Binary Data

To create a system that can process binary data, we need to consider how bits are used to represent
data. Vectors of bits are used to represent more complex information; the structure and layout of
these vectors are determined through a format. Text-based formats, such as XML or JSON, represent
information in human-readable characters and require a character encoding, such as ASCII or UTF-8,
to convert these characters to bytes, i.e., every bit vector consists of 8 bits, representing a character.

This work focuses on binary formats, which contrast with text-based formats as there is no human-
readable representation; they are meant to be processed and exchanged by machines. The information
is directly represented as data fields within the bit vector. The binary data we consider are bit vectors
of finite length, such as packets, messages, certificates, etc.. The working definition we will use for a
bit vector encoded in an arbitrary binary format is a binary blob. Protocols often make use of binary
formats to have a compact representation of information in their message structure. As an example,
many of these can be found in the TCP/IP protocol suite.

This section will further explain how binary formats relate to encodings and protocols, as they are
frequently used alongside binary formats. Afterwards, we discuss how binary formats can be classified
through different structural concepts. This relates to how the verdict system should eventually support
these concepts to interpret various binary formats structurally. Finally, the binary data types that the
system should be able to interpret are discussed.

2.1.1. Formats, Encodings, and Protocols

As these definitions are occasionally mixed up, it is good to set a working definition for binary formats,
encodings, and protocols. This ensures there is a clear relation between the terms and that the dis-
cussed topics can build upon these definitions:

6 Chapter 2. Background

» A binary format specifies the structure and layout of the binary data, such that every field has
properties such as a position, bit/byte width, and data type. When a machine knows the binary
format, it can correctly store and interpret the binary data while adhering to the format.

» A binary encoding defines the rules on how to transform a higher-level data format, such as text,
numbers, or data structures, into a specific binary format.

» A binary protocol is a set of rules which specify how two or more systems can communicate with
each other. It specifies a binary format to give structure to its messages, and it specifies how
messages are sequenced to ensure meaningful communication between systems.

Both a binary encoding and a binary protocol link in their definition to a binary format, but each has a
distinct meaning.

2.1.2. Classifying Binary Formats

Binary formats can be classified according to how they structure their data. As different formats are
designed for different trade-offs, domains, and use cases, there is no universal classification that can
cover every binary format. Such a classification becomes either oversimplified or too granular to be
practical. To this end, the current classification focuses on the base IPv4 header [1] (without extensions)
and ASN.1 DER [2], which are two contrasting binary formats in the domain of networking and security.
Creating a classification out of their underlying concepts provides a generalisation to see what other
formats can be classified by this classification. The two dimensions of this classification are described
below:

Externally described vs. Self-describing

The base IPv4 Header is an externally described format. Such formats have the structure of their
fields declared in an external definition, such as a predefined specification. The formats provide a fixed
position and width for each field, which a system can use as a blueprint to extract and interpret the
fields. These formats transmit fields more compactly but are inflexible to changes.

ASN.1 DER is a self-describing format. These formats bundle the fields with metadata, such as tags
or other structural markers to delimit and describe fields, allowing machines to extract and interpret
fields without an external definition describing the structure and data type of each data field. In the
case of ASN.1 DER, the tag describes the field type, which is followed by a length field, which refers
to the length of the value field. This is called a Tag-Length-Value (TLV) format. Self-describing formats
provide greater flexibility, as the structure of the data can be derived through processing the metadata.
However, the metadata introduces an overhead for processing and transmission.

It should be noted that formats can make use of both methods to structure their data. This is useful
in contexts where there needs to be a balance between efficiency and flexibility. The full IPv4 header
includes this, as it has a fixed 20-byte header for fast processing, but it can include one or more optional
"Options” fields formatted as TLVs, allowing for more expressivity within the format.

Flat vs. Hierarchical

A flat format, like the base IPv4 header, organises the fields in a single sequential layer. This is a simpler
way of extracting and interpreting fields, but it is not able to represent more complex relationships within
the data. A hierarchical format allows fields or groups of fields to be nested within other data elements
to represent a relation between data elements. ASN.1 DER supports this data hierarchy through their
SEQUENCE and SET field types. While flat formats are faster to process due to their simpler structure,
hierarchical formats allow for more complex relationships to be expressed.

Other Concepts

The base IPv4 header and ASN.1 DER do not cover all concepts for structuring data within a binary
format. Other binary formats can contain other structural concepts which are not part of the current
classification. This can be introduced as other classification dimensions, such as little-endian vs. big-
endian data, and row-based vs. columnar formats. These are dimensions, for example, Viotti and
Kinderkhedia [3] and Maltsev et al. [4] used in their classification. However, because of their focus on
different domains or text-based formats, their dimensions are outside the scope of the project, empha-
sising again that a universal classification is not practical to create.

2.2. Binary Parsing 7

2.1.3. Binary Data Types

Binary formats consist of data fields of various data types. Data types have a binary representation
which a system must recognise and support when assessing the data. Simple data types, such as null
or boolean types, only have a single or limited number of binary representations, and can be assessed
by checking if the value matches the binary representation. String data types are more complex to
check as their underlying binary representation requires knowledge of the character encoding used to
correctly interpret and check the string. ASN.1 DER, for example, has multiple string types, each for a
different kind of character encoding.

More complex data types are numeric data types, namely, unsigned and signed integers, as well as
fixed-point numbers. Their binary representation can be checked for an exact value, but can also be
used for numeric comparisons. This implies that a system should include comparison hardware for such
comparisons. Many binary formats also include floating-point data types, which can also be matched
or compared, but require different hardware to support the comparison of floating-point types.

To highlight the difference with text-based formats, numbers in text-based formats cannot be directly
used in numeric comparison, as numbers are represented as a string of decimal characters. Using this
in a comparison leads to a lexicographic comparison, which has fewer practical use cases compared
to using the number for an actual numeric comparison. For compatibility with numeric comparisons, a
conversion from a numeric string to a binary number is required, which requires more hardware and
introduces more processing overhead. Furthermore, there are losses in precision during this conver-
sion, as decimal fractions often cannot be represented in binary with exact precision. Because of these
disadvantages and the project’s focus on binary formats, we will not include this conversion.

2.2. Binary Parsing

Binary parsing is the process of extracting the data fields from the binary data, as well as checking
whether the data adheres to the format structure. The latter part of this process relates to this research,
which is why we discuss binary parsing and subsequently, why we cover binary parsing systems in the
related work (see Section 2.4). The following section discusses the implications of performing the binary
parsing process in a single pass, as this is beneficial for handling stream-based data. Afterwards, we
discuss how assertions are used in binary parsing to check that the binary data adheres to the binary
format in both structure and content. Finally, it is discussed that a binary parser needs a description
method, such that it can understand how to parse a binary format.

2.2.1. Single-pass parsing

In single-pass parsing, the data fields are extracted, and adherence to the structure is checked in a
single traversal. The first advantage is that a single traversal over the data has the benefit of low latency
and memory usage compared to other types of parsers. Other parsers might perform multiple passes or
perform backtracking, which requires memory to buffer the input and introduces more latency as more
processing is done on the same data. The second advantage is that single-pass parsing outputs its
results in real time. As soon as a field enters from the input, a single-pass parser can extract, validate
for content and structure, and send it to the output. This also enables early termination of the parsing
process in case a field is found to be invalid. If only valid blobs are important, a parser can drop further
processing on the invalidated blob and move on to the next. These advantages of single-pass parsing
make it suitable for a streaming system, where it is desired to have minimal latency between the input
and output stream, and where data invalidation needs to be recognised as soon as possible.

However, single-pass parsing does have limitations. The single traversal cannot handle complex re-
lations within the data. For example, when a later data field influences the interpretation of an earlier
field. This would require other parsing methods, such as using a lookahead buffer or performing mul-
tiple passes to process such relations. Furthermore, error recovery is minimal, as an invalidated field
cannot be traversed again with a different interpretation, which might still validate the field. Resolving
these ambiguities within the data is something a multi-pass parser would be able to do. These limi-
tations are not major disadvantages in our context, as in general the binary formats that we consider
(see Section 2.1.2) do not contain complex relations and contain unambiguous structure, therefore
traversing the data in a single pass suffices for assessing these formats.

8 Chapter 2. Background

2.2.2. Assertions

Performing assertions on binary data is central to a binary parsing system, as it is the means to check
the content and structure of a format. Assertions are used to find inconsistencies in the expected
format, such as unexpected types, forbidden values, or missing data.

Assertions on content focus on whether data fields (not metadata) in the format adhere to a certain
value. It requires interpretation of the data type, after which it can be compared with one or more
expected values or ranges. For an externally described format, this is the only way to check whether
the value of each field is correct, as there is no metadata to check for.

Assertions on structure are used for checking metadata fields, which are relevant for self-describing
formats. These ensure that tags, lengths, and other structural markers have the appropriate position
and value. These assertions need to take the relation of the metadata with the content data into account.
For example, when a tag field determines that a data field will follow with a certain width, data type,
and value, the appropriate content assertions are required on the data field to check that the value is
correct given the width and data type. When length fields are included, it is important to cross-check
the length field with the actual length of the section to which it is referring, otherwise, this can lead to
cascading errors in parsing if the length is assumed to be correct.

On top of that, assertions can be configured to be stricter than what the data format requires. For
example, an assertion can be placed on an address field to permit only addresses from a certain range,
rather than the entire address space. Similarly, assertions on structure can enforce stricter constraints,
such as allowing only specific tags or types to appear in a certain nesting. This enables finer control,
ensuring that only a subset of the binary format is accepted according to the user’s needs.

2.2.3. Describing Formats for Parsing

For binary parsing, we require a language to describe a binary format, such that a parser knows how to
parse a format. Such a language provides a higher-level abstraction to the system, where a user can
describe the organisation of the data by specifying fields, lengths, relationships, etc. This description
needs to be converted to an input for a parser to understand. To our end, this means a description
needs to be converted to assertions that check whether the binary data adheres to the specified format.
Section 2.4.5 discusses such DSLs from related research.

2.3. FPGAs

The platform for implementation is a field-programmable gate array (FPGA). To elaborate on why it was
chosen for this task, the following points were considered:

1. An FPGA is better suited to streaming applications compared to a software-based solution, as
the design can be oriented around processing a data stream, allowing for much quicker access to
the data than what a software program can achieve. A program running on a CPU often requires
many instructions to be executed before anything functional to the process is performed.

2. FPGAs are not limited to byte-aligned processing. Therefore, bit-level operations on an FPGA
can be performed much more efficiently compared to software. This property is desirable for
processing binary formats, which often have fields that represent data at the bit level. Software
programs running on a CPU are bound to operations on byte-aligned units, requiring shifting and
masking to operate on values at the bit level.

3. A CPU contains more functionality than required. It can run any kind of program as a CPU contains
a Turing-complete instruction set. This additional functionality increases the risk of vulnerabilities
due to extra hardware that does not contribute to the purpose of checking whether binary data
adheres to a user-specified format, making its use undesirable in the context of security for this
project. A design on an FPGA can be customised to contain the minimum hardware necessary
for its goal, lowering the risk of exploits.

These points showcase why an FPGA was chosen over a software-based solution on a CPU.

In contrast, the hardware implementation in an ASIC was not considered for this project, as it was
outside the scope of the implementation. Although it would likely result in a faster system, designing
a system for an ASIC takes much longer and is much more expensive than implementing a design on

2.4. Related Work 9

an FPGA. It is only worthwhile for the large-scale production of such an ASIC. An FPGA design may
be slower compared to an ASIC, but the process of conceptualising, prototyping and implementing on
an FPGA will be much quicker, which is needed for this project.

2.4. Related Work

This section will discuss the related binary parsers and filters presented in related research. We per-
formed a literature review to find a suitable architecture to form the basis of our system. Related FPGA-
based parsers and filters have been researched that have a degree of configurability in what they can
parse. An important note is that the FPGA-based systems that were found during this literature review
solely focus on the domain of networking. The presented parsers are built around parsing the headers
of various protocols in the TCP/IP protocol suite. We need to consider this when selecting a suitable
architecture from related research, as our system needs to support a wider category of formats. This
section is structured as follows. Sections 2.4.1 to 2.4.4 each introduce a category of FPGA-based
packet parsing/processing systems and explain how they achieve their configurability. This is then fol-
lowed up by a showcase of related research. Finally, a discussion is held on how the category relates
to the desired functionality of the to-be-implemented verdict system. Finally, Section 2.4.5 discusses
related packet parsing DSLs.

2.4.1. Generated HDL systems

The first category of FPGA-based systems are packet parsers/filters/processors that are created from
a generated HDL framework. The rise of Software-Defined Networking (SDN) has driven the need
for more flexible packet parsers. This category addresses this need through FPGA-based systems
that generate a hardware description or implementation from a higher-level packet parsing, filtering, or
processing description. This enables such systems to be flexible to a degree while still being able to
create a customised hardware solution to process different kinds of packet formats.

One of the earlier frameworks to generate HDL is the system by Benacek et al. [5] introduces a pipeline
which converts a P4 parse-graph (P4 is a DSL for programmable packet parsing and processing) de-
scription into synthesizable VHDL code for deployment. In hardware, the packet header goes through
a pipeline in parallel, consisting of multiple extraction blocks where every block extracts the fields from
a different protocol. Cabal et al. [6] build upon this generator and can generate parsers with a maxi-
mum throughput of 1 Tbps by handling multiple packets in parallel. Santiago da Silva et al.[7] take a
similar approach but allow multiple protocol extraction blocks to execute in parallel, making them more
flexible regarding which protocols are used within the packet. Mashreghi-Moghadam et al. [8] built a
generic packet parser that makes use of pipelined, templated VHDL blocks, each parsing one header
layer per clock cycle. These blocks are configured through bit vectors and parameters, allowing for
much hardware reuse. With their design, they also managed to reach a throughput of 1 Tbps.

Besides purely hardware-based packet parsers being generated, ClickNP from Li et al. [9] generates
hardware from a custom C-like description for an entire packet processor. This system can parse and
filter, but can also perform more network functions on packets. Wang et al. [10], Ibanez et al. [11]
and Yazdinejad et al. [12] do the same but generates hardware from a P4 program, which is a more
standardised way of programming network devices. Making such frameworks compatible with other
P4 programs.

Finally, Fiessler et al. [13] created a packet filter system that splits the processing of packets against
user-defined filter rules to an FPGA-based filter as well as a software firewall. It differentiates complexity
in the rules, where simple rules can be processed at high speed in the FPGA, while complex rules are
handled in software. Showing that the more complex the analysis, the more flexible the system must
be.

Generated HDL systems offer high performance by generating a hardware design for a specific binary
format from a user-defined high-level description. Packets pass through in parallel, allowing quick
extraction of data fields. In some cases, multiple packets can be processed in parallel, allowing for
scalable solutions. However, these systems are not flexible for changing the format at runtime, as
any change in the parser or filter description requires new hardware to be generated and synthesised,
which is a time-consuming process and requires expertise in the tooling to integrate it into a desired

10 Chapter 2. Background

FPGA platform. Furthermore, the data must be complete before it is parsed by the system. This makes
the processing less real-time in the case of a data stream, as the data arrives in segments. Even with
these challenges, generated HDL systems are powerful for high-speed networking in contexts where
performance is more important than having to reconfigure frequently.

2.4.2. Templated Generic Parsers

The second category, templated generic parsers, offers a more flexible approach to packet parsing
on FPGAs. Unlike the first category, which requires hardware to be updated for changing or updating
protocols, templated generic parsers allow changes during runtime to support different binary protocol
formats without updating or generating hardware. This is usually done by the architecture, consisting of
generic hardware structures for extracting fields. These are parametric so that they can be configured
during runtime. An overview of notable research is showcased below.

Switchblade from Anwer et al. [14] is a packet-forwarding platform that makes a packet go through a
pipeline for parsing and forwarding. Within the pipeline, hardcoded modules can be selected through
register access for parsing and processing different protocols. This provides a coarse level of config-
urability during runtime. Similarly, Pus et al. [15] work with the same idea for parsers, where at runtime
the parsing format can be switched to a different module to recognise different protocols, but without
any further granularity for altering the layout of the format within the modules.

Attig and Brebner [16] designed a packet parsing system that makes use of programmable modules.
Each module parses one protocol layer of a packet header and is parametrised using 'microcodes’.
These are configuration vectors that determine how the protocol is laid out and contain more parsing
functionality, such as configuring conditional checks to determine which header to parse next. Allowing
this amount of granularity in these vectors to be configurable at runtime allows for a highly flexible
parsing system for packets. Similarly, Lixin et al. [17] provides the same granularity through a software-
based configuration, which generates a descriptor that contains information on how to parse the various
headers per packet. Furthermore, matching rules are stored in RAM, which can be changed during
runtime. The system uses this to extract fields and determine which next protocol format to parse in
the header. Finally, Sun and Guo [18] created a packet parser which uses one parametric parsing
module. This is used to parse a stack of protocol headers iteratively. Matching and configuration
settings are stored in RAM and are used by the state machine to extract relevant fields and to find the
next protocol header. When the next protocol is known, the next settings are retrieved from RAM to
configure the module, after which the next parsing iteration starts. This architecture has the benefit of
a low hardware footprint.

Templated generic parsers offer a more flexible approach to parsing configuration than generated
parsers, while still containing a fast, parallelised extraction of data fields from the packet header. Hav-
ing configuration (partially) possible during runtime allows quicker changes to the parsing pipeline be-
haviour compared to the first category. However, due to the general architecture consisting of multiple
generic stages that can only extract fields, there are difficulties in extending such a template for im-
plementing assertions and supporting data hierarchy. For number comparison assertions, it would
require a stage to make comparisons of arbitrary field width for an arbitrary number of fields that arrive
in parallel. For checking data hierarchy, it would only support one nesting per stage by design. This is
fine for packets where one protocol is nested inside another, but any more complex hierarchy (multiple
nestings in one layer or variable-length nestings) would be more difficult to implement. Another con-
straint would be the number of pipeline stages, as this will determine the number of operations that can
be performed on the data. If there were more assertions than what the pipeline supports, resynthesis
would be required to add more stages. This leaves this category with complex issues to solve for the
desired purpose of the system.

2.4.3. Match-action systems

The third category of related systems is match-action systems. These systems operate on packets
where they parse headers and match them to values in a table. A matching operation can be an exact
match, ternary matching, or longest prefix matching. A successful match is then linked to an action.
This can be, for instance, a modification of the header or forwarding the packet to a port. Multiple match-
action operations are put in a pipeline, making it possible to perform multiple operations on a packet.

2.4. Related Work 11

Match-action systems make networking flexible because these match tables can be reprogrammed to
perform a different match operation or link to another action. Programming the match tables is done
with P4 [19]. Systems that use P4 programs to process packets were described earlier in Subsection
2.4.1. However, such FPGA-based systems required resynthesis when the system had to run a new
P4 program. In this subsection, FPGA-based match-action systems are discussed, which can update
to a new P4 program during runtime.

Bosshart et al. [20] introduced the Reconfigurable Match Tables (RMT) model, a hardware architecture
for match-action packet processing. It was later coined as PISA (Protocol-independent switch archi-
tecture). It works with a parser that extracts packet header fields. The extracted fields go through
stages, where each stage contains a match table and action primitives. The parser, match tables and
action primitives can be programmed at runtime, allowing different packet formats to be parsed and pro-
cessed. This provides quick adaptability to changing network requirements. The research of Bosshart
et al. achieved a 10 Gb/s throughput for a single pipeline. Luinaud et al. [21] refined the architecture
by alleviating some bottlenecks seen on FPGA-based PISA implementations and performing a design
space exploration. They achieved a maximum throughput of 786 Gb/s for a single pipeline.

Match-action systems have also been expanded upon in terms of functionality in [22], where pro-
grammable ASICs for match-action processing with fixed actions were expanded in functionality using
FPGAs. Thus, the P4 program used to program the ASIC could be extended with functional modules
for the different hardware targets. Furthermore, match-action systems were made stateful in [23]. This
was done by the idea that stages in the pipeline can make use of an FSM. This allows for more complex
network functions that use state, such as firewalls that track packet flows. This shows that match-action
systems can be extended to allow even more functionality.

Match-action systems are powerful for packet processing because they allow for complex network
functions to be executed while keeping up with networking speeds. For our purpose, however, the
match-action pipeline contains more functionality than necessary for providing verdicts on binary data.
The functionality regarding parsing and matching is also built around Internet packet headers. Exact
matches are very fast and efficient, but number comparisons are not supported. Similarly to the second
category, there is a maximum limit to the size of the pipeline, resulting in a finite number of matches
and actions that can be done.

2.4.4. Hardware-based VM

Hardware-based Virtual Machines (VMs) are systems that operate similarly to a conventional proces-
sor, where processing happens through the execution of instructions. This architecture is inherently
runtime-programmable because the behaviour of the system can be changed by updating the instruc-
tion memory. The presented VMs are built for packet parsing and processing and perform this task
through the execution of instructions.

Zolfaghari et al. [24] created a custom processor for header parsing. Instructions are decoded by
a control unit, which then controls the header. The control unit extracts fields from the header at a
specific layer and determines which header to parse next, and can branch to a subroutine to parse the
next header. It also keeps track of length sections in the payload using a stack, returning once the
length has been reached. The has the same functionality as the parser from the RMT model [20] but
without making use of Ternary Content Addressable Memory (TCAM) for matching fields, which would
otherwise consume more power and area. A single pipeline achieves a faster throughput compared to
the RMT parser, namely 27 Gb/s.

hXDP by Brunella et al. [25] introduced an FPGA-based model that runs the XDP[26] framework in
hardware. XDP allows quick access to the incoming network traffic and runs an eBPF[27] program for
processing the packet. Similar to hXDP, Pacifico et al. [28] created eBPFlow, an FPGA-based multi-
core environment with 16 parallel cores which can execute eBPF programs. Both systems can offload
network functions to the FPGA, such as firewalling or Deep Packet Inspection (DPI), while still allowing
the same programmability from a software-based environment using eBPF.

Hardware-based VMs are flexible systems because they allow different packet formats to be parsed and
processed based on the flow of instructions. The main difference compared to the previous categories
is that the VMs operate on the data using a "run-to-completion” model, meaning they need to complete

12 Chapter 2. Background

processing one packet before another can enter the system. The other categories could support multi-
ple packets simultaneously in the system through pipelining, allowing for higher throughput. Zolfaghari
et al. [29] point out this performance difference, showing that pipelined header processing achieved
a 40x higher throughput compared to run-to-completion. However, they note that run-to-completion is
more flexible in its sequence of actions, whereas pipelined designs have a relatively short sequence
of actions due to the length of the pipeline. Furthermore, extending the pipeline with another stage
requires resynthesis. For a VM, however, this is much more straightforward because the only limit to
the number of actions that can be executed for a packet is the size of the instruction memory, and
swapping instructions can be done without having to change the hardware.

2.4.5. Packet Parsing DSLs

From the showcased packet parsing research, custom DSLs have been introduced to describe the
binary formats of protocols to a packet parser. They provide an abstraction for the user to the underlying
system, allowing the user to define how the system should parse incoming data. In existing research,
a format description is used to generate a hardware description for the parser or is compiled to input
for the underlying parser, such as configuration vectors or instructions.

These languages share several concepts for describing packet formats:

1. Ordered field declaration: Fields within the packet format are declared in the sequence which
reflects their actual order in transmission, and therefore the order in which they should be parsed.

2. Labels for declared fields: Each field can be given a unique label, used to reference the field
when required for its value. For example, when a field determines what the next header will be,
we refer to it via its label.

3. Bit/Byte width indicators per field: Every field is given a bit or byte width, such that the parser
knows the exact layout of the format for extraction.

4. Conditional Header Parsing Notation: Notation is included for conditionally determining the
sequence of headers to be parsed. This is essentially a conditional statement, where the value
of a specified "next header” field determines which protocol header is parsed next. This allows
for the implementation of parse graphs for headers, which is a directed graph containing the
supported headers, with the order of protocol headers that can follow after another.

From the discussed research, examples of DSLs are the PP language from Attig and Brebner [16] and
the DSL from Zolfaghari et al. [24]. Both make use of the aforementioned concepts to build header
format descriptions. Their descriptions are compiled down to microcodes or instructions, respectively,
that the parsing hardware can use to configure itself. Furthermore, P4 from Bosshart et al. [19] is
the standard for programming network devices. Besides containing functionality to define a parsing
description for the header data, it contains much more functionality for implementing network functions.
From the discussed research, it is shown to be platform-independent as well, as many networking
systems use P4 to generate parsing hardware or configure existing hardware. Making P4 the most
versatile DSL in the networking domain.

These DSLs inspire our own "schema” language (see Section 3.2). This language would expand be-
yond the discussed DSL concepts to support the notation for data types, self-describing formats, hi-
erarchy, and assertions. This would enable the language to support a wider range of binary formats
(see Section 2.1.2), which go beyond the domain of protocol headers, and it would cater to our need
to assess whether the binary data adheres to the declared format.

2.5. Conclusion

In this chapter, we discussed the required background for the thesis project. We set the project scope
on binary formats. A binary format classification was created to describe the binary formats that needed
to be supported, where we identified that formats could be externally described or self-describing (or
a hybrid), and flat or hierarchical. We described how binary formats hold data fields with various data
types and how these types can be checked, such as exact matching on strings and comparison on
integers. Afterwards, the binary parsing process was explained, specifically the advantages and dis-
advantages of single-pass binary parsing. We discussed how binary parsing relies on assertions to

2.5. Conclusion 13

check for the format structure and content, and why a DSL was required to provide parsing configura-
tions. Finally, for the general background, we discussed how FPGAs provided advantages over CPUs
related to better data streaming, bit-aligned operations, and purpose-built hardware. We also briefly
touched upon why FPGAs were preferred over ASICs for this project. Afterwards, the related work was
discussed and provided an exploration of various categories of configurable hardware-based packet
parsing systems. The first category, generated HDL parsers and filters, generated hardware based on
a parsing/processing description. They provide high performance for field extraction but are inflexible
to change. The second category, templated generic parsers, is more flexible as it supports changes
in the format description during runtime through generic hardware stages, but has challenges related
to supporting assertions and data hierarchy. The third category of systems, match-action systems,
are hardware-based systems with wide functionality for executing network functions. It also remained
a challenge for this category to support assertions and data hierarchy. The final category, hardware-
based VMs, are programmable systems which are very flexible, at the cost of high-performance parsing.
Lastly, we considered what concepts several packet parsing DSLs had in common in terms of notation.
The showcase of related research provided the knowledge to make a design direction for the system.

Design

The researched topics from the background study in Chapter 2 led to the creation of concrete require-
ments, hardware architecture, and binary data description method, which this chapter discusses. These
form the basis for a top-down design process of our verdict system, named the Binary Verdict Engine.
We start with explaining a schema language, thereafter discuss the ISA, and finally, handle the module
design. This provides a complete design which is ready to be implemented on a platform, which we
discuss in the next chapter.

This chapter is organised as follows. Section 3.1 discusses the requirements of the system and the cho-
sen architecture after having performed the background study. Section 3.2 will introduce the schema
language, which provides an overview of the desired functionality of the system. Section 3.3 discusses
the Instruction Set Architecture with provided pseudo notation for programming schemas. Section 3.4
connects the schema language to instructions, showing how a program should be compiled down to
instructions for the system. Section 3.5 introduces all the modules within the system and provides a
top-level module overview of the full system. Finally, Section 3.6 concludes this chapter.

3.1. Requirements and Design Direction

The problem statement and the performed background study led to the following requirements. These
are categorised into data assessment and architectural requirements. The data assessment require-
ments describe all required functionality for assessing streams of binary blobs. The architectural re-
quirements describe functionality that the architecture should support and how it should handle input
and output. All requirements are explained in Sections 3.1.1, 3.1.2, and 3.1.3

Data Assessment Requirements

* REQ1: The system shall output a verdict per binary blob.

* REQ2: The system shall update the verdict as soon as the system knows the data is invalid.

* REQ3: The system shall check for adherence to the data against a schema.

+ REQ4: The system shall sequentially traverse the binary data in segments of specified bit lengths.

* REQ5: The system shall recognise data fields as raw binary, unsigned, signed, unsigned fixed-
point and signed fixed-point data types.

+ REQ6: The system shall perform equality and numeric comparison assertions on the data fields.
* REQ7: The system shall be able to perform multiple assertions on a data field.
* REQS8: The system shall be able to use the current data field as the size of the next field.

+ REQ9: The system shall be able to switch its control flow based on an assertion condition on a
data field.

* REQ10: The system shall be able to check the length of the section.
* REQ11: The system shall be able to repetitively assess repeating sections in a binary blob.

15

16 Chapter 3. Design

* REQ12: The system shall be able to repetitively assess repeating sections until an exact length
is reached.

Architectural Requirements

* REQ13: The system shall be implemented on an FPGA.
REQ14: The system shall take a stream with arbitrary length as input.

REQ15: The system shall be able to change schemas without having to reconfigure the hardware.

REQ16: The system shall be designed and operate with security in mind. (see Section 3.1.3)

REQ17: The system shall keep input and output interfaces to a minimum.

REQ18: The system shall keep the content of the output stream identical to the input stream.

3.1.1. Derivation of Data Assessment Requirements

Chapter 2 discussed how binary formats organise their data by data fields. Systems discussed in the
related work base their operation around data fields, either for extraction, filtering or processing. REQ4
generalises this and notes that our system will base its operations on segments of specified bit lengths,
taken from the input stream, which can be either single data fields or multiple fields.

Furthermore, related systems make use of DSLs to define a binary format and what operations are
performed on them. Our system will also include a language, called the "schema language”, where a
schema for a binary format can be defined and include what assessment operations are performed on
each data field. This is what REQ3 denotes. Adherence of the data to this schema determines whether
the data adheres to a binary format and other data constraints. Schemas are explained in Section 3.2.

Data assessment REQs 5, 6 and 7 include the system’s functionality related to assertions on data fields.
This includes interpreting data fields as various data types, and being able to perform various assertion
operations on these data fields, with multiple assertions possible per field. These requirements already
allow for flat and externally described formats, such as the base IPv4 header, to be assessed for validity.

Data assessment REQs 8 to 12 extend the assessment functionality to support hierarchical and self-
describing formats, such as Tag-Length-Value formats like ASN.1 DER. The background study iden-
tified that such formats, besides checking for value, also need to be checked for structure. This can
require handling variable data field sizes (REQ8), conditional statements (REQ9), length checking of
data sections (REQ10), and repetition of various data sections (REQ11 and REQ12).

3.1.2. Architecture Selection

Section 2.4 discussed four categories of related systems. Out of these four, the Hardware-based VM
design described in Section 2.4.4, where the instructions execute the functionality of the schema, suits
the system best, as this shows flexibility in multiple dimensions:

» Format variability: Formats differ in structure and content, therefore, assessments highly differ
per format. A VM design can support many schemas that each describe different formats and
assertions in different orders and lengths.

* Runtime programmability: A VM is inherently programmable. Schemas can be changed during
the runtime of the system, without having to change the underlying hardware (fulfils REQ15).

» Implementing and extending system functionality: The instructions are used to implement the
required data assessment functionality. They are implemented independently from each other
and can therefore be changed in their functionality without affecting other instructions. If new
functionality is required, new instructions can be implemented to support new functionality.

No hardware implementations with a similar function were found in the researched literature, but the
design of the VM-based system is deemed viable for implementation, as it has similar properties to a
conventional hardware processor. Therefore, we can design for a hardware-based implementation on
an FPGA with this architecture (REQ13) while providing the flexibility found in software-based systems.

The binary blob input can be of any size, structure, and layout, and multiple blobs can follow in a
sequence. This data will be in a stream. The VM-based architecture will therefore perform its operation

3.2. Schema Language Design 17

on this data stream (REQ14) and require a verdict per binary blob to be synchronised with the stream
(REQ1). At the start of each blob, this verdict is positive (true or 1) and stays positive until an assertion
fails. This updates the verdict to a negative verdict (false or 0) as soon as the system knows the data
is invalid (REQ2).

The other categories of architectures from the related work take a more parallelised approach to process
the data. In general, this forms the basis for a higher throughput and lower latency. However, these
architectures fall short of providing the desired flexibility. They have a maximum size per binary blob
and are limited in the number of assertions that can be performed when the blob propagates through
the system. Flexibility regarding how quickly a binary format description (i.e. schema) can be changed
is also limited compared to a VM architecture. Further desired functionality, such as data interpretation
of various data types and assertion operations on the data, is limited in these systems or is built around
the domain of packet parsing, therefore being less relevant for processing other formats.

3.1.3. Consideration of Security

We elaborate on REQ16, as it does not state security as a main design requirement. The main goal
of the project is to prototype a design and implementation of the system and have it be functional.
However, various considerations will be taken into the design to facilitate future secure operation, as
we identified that the most likely application domain will be for secure networking purposes. This is why
REQ16 is formulated as having "security in mind” rather than to be fully secure.

The first consideration is formulated as REQ2; once the data is determined to be invalid, the verdict on
the binary blob is updated as soon as possible. This is to let the recipient of the blob know as soon as
possible that the data is not safe for further processing. Secondly, REQ17 notes that input and output
interfaces to the system are kept to a minimum, as to minimise the attack surface for potential malicious
activity. An additional benefit is that minimal interfaces make it easier to use the system as part of a
larger system. Finally, REQ18 notes that the system should keep the output stream identical to the
input stream, and implies that the system is not allowed to mutate the data.

Relating the security requirements to the Instruction Set Architecture, we strive for a minimum set of
instructions to fulfil the data assessment requirements, where each instruction has a clear and specific
purpose. The ISA should not contain operations to be able to mutate the data going to the output,
through arithmetic operations, for example. Nor should the ISA be able to reset the verdict after invali-
dation, prior to the arrival of the next blob.

3.2. Schema Language Design

This section introduces the design and notation of the schema language. This language is used to
describe binary formats, such that the system knows how to check the blobs that it receives. A schema
dictates in what order the data fields are arranged and traversed by the system. Furthermore, it declares
the assertions that need to be performed on the data to result in a positive verdict.

Note that this language was not used to program the system, as building a corresponding compiler fell
outside the project timeframe. Nevertheless, defining the notation and functionality played an important
role in the design process, as it provided a top-down approach for designing the system. First, Section
3.2.1 will explain the schema notation. Thereafter, Section 3.2.2 describes a matrix which links every
language feature to the data assessment requirements from the previous section.

3.2.1. Schema Notation

The schema language is a DSL with an imperative programming style that follows a top-to-bottom
execution of statements. We explain the notation starting with the basic constructs, such as declaring
fields and assertions, to gradually more complex functionality, such as callable schemas and loops.

Declaring fields

Section 2.4.5 discussed related research containing custom DSLs for describing binary formats. Four
commonly used concepts were identified that were used to describe packet formats. The first three
characteristics - ordered field declaration, labelled fields, and width indicators per field - form the basis
of the schema language. They allow the declaration of data fields in a blob in order of appearance. In

[2 I XU RN

18 Chapter 3. Design

operation, the system will traverse the data in the order of these declared fields in the schema program.

A basic field declaration in the schema language consists of a width, data type, and name tag. In
the case of many binary formats, including the IPv4 header and ASN.1 DER encoded data, their blobs
are byte-aligned or word-aligned. The schema language covers this by declaring the width of a field
with the byte<n> notation, where n is the number of bytes belonging to that field. There is no explicit
notation to adhere to a word alignment in the schema. In the case that a format has a word alignment
and includes padding bytes, an extra field can be declared to serve as padding.

Although the blob as a whole, encoded in a binary format, is byte-aligned. Fields can internally consist
of bit-aligned fields. Such fields can be specified using the bitfield keyword. This is used as a
safeguard to prevent misalignment of the fields, as the programmer (or a future compiler) can check
whether the bitfields add up to the number of bytes to maintain byte alignment. Finally, bitfields can
also be used for simulating don’t care bits within a field. The don’t care bits are declared in the bitfield,
but no assertions are put on those bits.

Declared fields in a schema traverse the blob from top to bottom in a single pass. This is in line with
the stream-based nature of the system, where the arriving data is assessed for its adherence to this
field order. The code block below showcases how both bytefields and bitfields are declared.

schema MySchema {
byte<3> unsigned MyFieldl; // A basic field declaration.
byte<2> bitfield {
/* The bitfields must add up to byte<2>. x*/
bit<5> unsigned MyField2;
bit<11> unsigned MyField3;

s }

2 TR RN

Data types specify information about how the field should be interpreted. The schema datatypes are
unsigned for unsigned integers (also used for raw binary), signed for signed integers and fixed<x,y>
and uf ixed<x,y> for signed/unsigned fixed-point numbers, where x indicates the number of bits in the
integer part, and y indicates the number of bits in the fractional part. Signed numbers are encoded in
2’s complement representation. Future inclusion of data types such as floats would also be declared
here as a separate float data type. The code block below shows fields with various data types.
schema MySchema {

byte<4> unsigned MyFieldUnsigned;

byte<2> signed MyFieldSigned;

byte<4> fixed<12,20> MyFieldFixed;
byte<3> ufixed<2, 22> MyFieldUFixed;

Assertions on fields

When the system starts checking the blob, the verdict is positive. The fields are checked for structure
and content through assertions. If a field is determined to be invalid, the verdict becomes negative and
is only reset when the next blob is ready to be processed.

For performing assertions on the data, we use a list-like notation per declared field where assertions
can be listed. An assertion consists of an assertion operator and a constant to which the data is being
compared. The field is always placed on the left-hand side of the assertion operation, and the constant
on the right-hand side. The possible assertions are:

» Equality (== x): All bits for the width of the field are equal with constant x.
* Inequality (!'= x): At least one bit for the width of the field is unequal to constant x.
* Less than (< x): The value of the field is less than the value of the constant x.

* Less than or equal to (<= x): The value of the field is less than or equal to the value of the
constant x.

» Greater than (> x): The value of the field is greater than the value of the constant x.

» Greater than or equal to (>= x): The value of the field is greater than or equal to the value of
constant x.

3.2. Schema Language Design 19

* Has range (range x..y): The field has a value between constant x and constant y. This is
syntactic sugar for performing a >= x AND-ed by a <= y assertion.

» Does not have range (!range x..y): The field does not have a value between constant x and
constant y. This is syntactic sugar for performing a < x OR-ed by a > y assertion.

Additional notes about assertions are:

» Constants used in assertions can be declared in hexadecimal, decimal, or raw binary format.
This requires a conversion step (in the future compiler) for hexadecimal and decimal values to be
converted into a binary constant before they can be used in the system.

* Assertion comparisons support all four data types.

« If an assertion fails, the associated blob is invalidated (i.e., it receives a negative verdict), and
processing proceeds to the next blob.

Multiple assertions are possible on a field through Boolean operators. The "&” operator performs an
AND operation between two assertions. The ”|” operator will perform an OR operation. These opera-
tions evaluate assertions accumulatively from left to right, making them best used when all assertions
need to be AND-ed or OR-ed. A more complex order of operations can be handled using the conditional
statements explained further below. The code block below shows how assertions are declared.

schema MySchema {
byte<4> unsigned MyFieldl [== O0xFB5C923C]; // Assertion with hexadecimal constant.
byte<1> unsigned MyField2 [>= 0b01010]; // Constant will be padded with leading 0's.
byte<2> signed MyField3 [range -25..5000]; // Signed range comparison
byte<4> unsigned MyField4 [== 0xFB5C923C | == 123456789]; // Multiple assertions
byte<1> unsigned MyField5 [!= 0b00000000 & <= 0b010101110];

Variable width fields

In the case of ASN.1 DER and other TLV-based formats, its TLV structure has a length field which refers
to the length of the value field, resulting in value fields which can be of variable width. To support the
notation of a field with variable width, the byte<n> notation can have n refer to the value of the previous
field (which in the case of TLVs is the length field). The code block below shows how an ASN.1 DER
integer with variable width can be declared.

schema MySchema {

byte<1> unsigned MyIntTag [== 0x02];
/* ASN.1 DER Length fields denote the size in bytes. */
byte<1> unsigned MyIntLength [<= 32]; // Assert integer width <= 32.

byte<MyIntLength> signed MyIntValue;

Conditional statements

Section 2.4.5 discussed that related DSLs share four characteristics. The fourth characteristic, condi-
tional header parsing notation, is less relevant for describing binary formats, as determining the next
header is related to packet parsing. The schema language instead includes conditional statements for
conditional schema processing. This is for a more general purpose of describing binary formats beyond
packet headers.

Conditional statements are used in the schema language when different structures or values in the
data will follow, based on the value of the current field. For instance, the IPv4 header has the Protocol
field that indicates which next header will follow. In the schema language, all assertions in a conditional
statement are performed on the last declared field before the conditional statement. Per if or else
if case, different assertions can be declared to determine which branch is taken. Multiple conditional
assertions can be listed per case, and they are evaluated in the same method as field assertions
(cumulatively, from left to right). This also allows for more complex field assertions, as an order of
operations for assertions can be programmed. The code block below showcases how a conditional
statement is used for an IPv4 schema. Based on the Protocol field, a TCP or UDP header is expected
to be the next protocol.

20 Chapter 3. Design

1 schema IPv4_header {
2 ...IPv4 fields...

3 byte<1> unsigned Protocol; // This is the field used in the conditional statement.
4 // Check which protocol follows.

5 if (Protocol == 0x06) {

6 . // Parse IPv4 remainder + TCP

7 } else if (Protocol == 0x11) {

8 . // Parse IPv4 remainder + UDP

9 } else {

10 fail; // Fail the schema

i }

A notable constraint about the schema language is shown in the code block above, which is that the
conditional statement needs to be declared right after the declaration of the field used in the statement.
This results in the issue that it is not possible to first finish processing the IPv4 header, and afterwards
check the Protocol field for the next header.

This would be solved by saving the value of the Protocol field, but we found that saving such state
increased the complexity of the system due to introducing state that requires random access writes
and reads to memories. Writing conditional statements for the current field is a way to reduce this
complexity. This is therefore something the programmer should keep in mind when writing a schema.

Callable Schemas

Schemas are callable to allow for better schema code organisation and code reuse. A schema can be
called by writing the schema name at the desired location within the caller schema. Multiple schemas
do mean that a starting schema needs to be determined. This starting schema is the topmost schema
in the file. This follows the natural reading order, making it straightforward for a programmer to know
where the schema execution starts. The code block below shows a revised version of the previous
schema example with callable schemas.

schema IPv4_header {

1
2 ...IPv4 fields...

3 byte<1> unsigned Protocol;

4 // Check which protocol follows. NOTE: We cannot save the value of the Protocol field for

later. We perform the assertion now and process the remainder of the IPv4 fields.

5 if (Protocol == 0x06) {

6 remainder_IPv4; // Process remaining IPv4 fields

7 TCP; // Process TCP

8 } else if (Protocol == 0x11) {

9 remainder_IPv4; // Process remaining IPv4 fields
10 UDP; // Process UDP

1 } else {...}
12 }

4 schema remainder_IPv4 {...remaining IPv4 fields...}

16 schema TCP {...TCP fields...}

1¢ schema UDP {...UDP fields...}

Length Assertions

Self-describing hierarchical formats, like TLV, can include length fields which refer to the length of a
section that follows. This length field needs to be cross-checked with the actual length of the section.
The schema language supports this with a notation for making length assertions. The length keyword
is used to declare that the current field is a length field. This is followed up by a bytes, bits or fields
keyword. This indicates that the length field either denotes the number of bytes, bits, or fields. The
indented section between the { } is where the section which will be checked for its length can be declared.
Finally, length assertions can be nested as well. The code block below illustrates how length assertions
and nested length assertions are declared. (Note: the example is not ASN.1 DER but a TLV-like format)

i schema LengthAssertionExample {

2 byte<1> unsigned sequence_tag [== 0x01];
3 byte<1> length bytes { // Sequence denotes its length as bytes.

o g AW N

18

3.2. Schema Language Design 21

/* Indented section for length assertion. */
byte<1> unsigned nested_array_tag [== 0x02];
byte<1> length fields { // Array denotes its length as fields.

}

process_remainder; // Process remaining fields in the sequence

Repeat loops
In the case that a schema has repetition in its structure, repeat loops can repeat the execution of
the desired routine to improve schema code organisation. A repeat loop can be declared using the
repeat keyword followed by the number of repeats. The code block below shows how repeat loops
are declared.

schema MySchema {

repeat 42 { // Repeat section 42 times
byte<1> unsigned MyTag;
byte<1> unsigned MyValue [range 1..3];
}
}

A special type of repeat loop is a repeat "while” loop. This repeats a routine until the accumulated
section length (either in bytes, bits or fields) has been exactly reached. To illustrate: a hierarchical
structure can have a length field stating the length of that section. The section has several fields, but it
is not known beforehand how many fields in this routine fit inside the length of the hierarchical structure,
and of what length they are. This type of repeat loop can be interpreted as: "While the current counted
length has not exactly reached the value of the declared length field, rerun the routine.” If an iteration
happens to overshoot the length, the length field is invalid and the blob is given a negative verdict. The
code block below illustrates the function of the repeat while loop for processing ASN.1 DER.

schema MySchema {

byte<1> unsigned sequence_tag [== 0x30];
byte<1> unsigned sequence_len;
/* while loop: repeats until a 'sequence_len' amount of bytes has passed. */
repeat sequence_len bytes {
process_integer; // A variable amount of variable-length integers.
}
}

schema process_integer { // Process a variable-length integer
byte<1> unsigned int_tag [== 0x02];
byte<1> unsigned int_len [range 1..2];
byte<int_len> signed int_val [range 1..350];

Ending a schema
The schema execution can end in 5 ways, as shown by the code block below:

schema MySchema {
byte<1> unsigned MyCommand;

if (MyCommand == 0x01) {
byte<1> unsigned MyField [== 39 | == 100]; // 1. An assertion might fail.
} else if (MyCommand == 0x02) {

byte<1> length bytes {
process_something;
} // 2. A length assertion might fail
} else if (MyCommand == 0x03) {
byte<1> unsigned MyWhileLength;
/* Repeat while loop. */
repeat MyLength bytes { // 3. A repeat while loop might fail.
process_something;
}
} else {
fail; // 4. An explicit fail call is made.
}
} // 5. The schema ends normally.

22

Chapter 3. Design

. Field assertion fail: the schema execution can end with a negative verdict through a failed

assertion of a field. For multiple assertions on a field, it depends on the cumulative assertion
result to determine whether the field assertion failed or not.

. Length assertion fail: the schema execution ends if a length field does not match the section to

which the length is referring.

. Repeat while loop fail: the schema execution can be stopped with a negative verdict through

the accumulated length overshooting the supposed length of that section. This means the length
field does not match the actual length of that section.

. Explicit fail call: An explicit fail statement stops the execution of the schema and sets a nega-

tive verdict. For example, in an else case of a conditional statement, when one of the conditional
blocks must be taken and the schema execution must be stopped otherwise.

. Normal end: the schema execution ends normally if the last statement of a schema is executed

and the schema was not a called schema (otherwise it returns execution to the caller schema).

When a schema has ended execution, any remaining data in the input stream is "flushed” through the
system. The execution restarts from the top of the schema for the next blob. Flushing is explained in

Section 3.5.1.

3.2.2. Requirements and Schema Notation Matrix

Table 3.1 shows which requirement is related to what functionality in the schema language. Only the
data assessment requirements are considered, as these are what need to be implemented by the
schema language. We also include REQ14, as a stream-based system is related to how the data is
declared and traversed in the schema language.

Single-pass traversal
Declaring fields
Variable width fields
Conditional statements
Callable schemas
Repeat loops

Data types
While loops

REQ1: Verdict per blob

X | X| Schema restart

REQ2: Verdict update

X | X | X| Assertion operations
X | X| X| Multiple assertions
X | X| X| Length Assertions

X | X | X| Explict fails

>
P

REQ3: Schema adherence

REQ4: Data traversal X | X

REQ5: Data types X

REQ6: Assertion operations X

REQ7: Multiple assertions X

REQS8: Field is next size X

REQ9: Control flow changes X X | X

REQ10: Check section length X | X

REQ11: Repetition X

REQ12: Repetition until length X

REQ14: Stream-based X

Table 3.1: The requirements and schema notation matrix.

3.3. Instruction Set Architecture 23

3.3. Instruction Set Architecture

This section explains the Instruction Set Architecture (ISA). The ISA is a 32-bit architecture consisting
of 9instructions that execute the functionality of the schema language. Table 3.2 briefly describes every
instruction. The next subsection explains how the ISA was derived. This is followed by an explanation
of the instruction pseudo notation. Sections 3.3.1 to 3.3.9 discuss each instruction in detail, explaining
their functionality, describing each instruction field, and providing the corresponding pseudo notation.
Finally, Section 3.3.10 explains the design decisions behind various instruction field widths.

| Instruction | Description \
shift Sets a new data field by shifting bits from the input onto the data field bus, moves
the previous field to the output, and updates bit/byte/field counters.
end End the operation on the current binary blob. Either output the current accumu-

lated comparison "cmp” verdict or explicitly fail the blob.
load immediate | Loads a constant into the constant register for comparison. Consecutive load
immediate instructions create bigger constants.

compare Compare two operands together and add the comparison result to a cumulative
verdict. This is accumulated for a data field assertion or branching.

branch Branch to another instruction based on the accumulated branching "brch” verdict.

jump Jump unconditionally to another instruction.

call Push a stack entry to the stack and jump to a subroutine.

return Pop the topmost stack entry from the stack and return to the caller address.

increment Increment the topmost stack entry on the stack.

Table 3.2: Instruction overview

Deriving the ISA

As mentioned in Section 3.1.3, we strive for a minimal ISA that can fulfil the data assessment require-
ments. The previous section translated these requirements into concrete functionalities of the schema
language. Therefore, we strive for a minimal set of instructions to fulfil the schema functionality. Read-
ing Sections 3.3.1 to 3.3.9 first provides an understanding of each instruction’s functionality and pseudo
notation. Subsequently, Section 3.4 demonstrates how the 9 instructions collectively use their function
to implement the functionality of the schema language.

We chose a 32-bit instruction set as it contains the right balance of instruction compactness without
compromising on the required fields per instruction. To put this decision into perspective, earlier iter-
ations of the ISA were 64 bits wide. This provided a larger space for instruction fields and contained
larger address fields and immediate values. However, this field space went unused for many instruc-
tions. Furthermore, every instruction had compound functionality: every instruction had the same fields
for shifting input data. This approach was later deemed impractical, as certain instructions depended
on the data shifting to happen first, before executing their own functionality. This made it harder to
implement these instructions in a single clock cycle.

Furthermore, previous iterations of the ISA included instructions for saving and loading constants in
comparison operations. This implied the usage of another memory in the system that can contain
these constants. This made the system harder to program, as either the instruction memory had to
contain the instructions to fill this memory with constants, or an external port had to fill this memory with
constants. The latter also enlarged the attack surface of the system, as a new external interface would
be required. Removing these instructions and reverting to a single instruction memory to program the
system was therefore safer and less complex.

Our final 32-bit instruction set contains 9 instructions, where every instruction has a single function. The
instructions from earlier iterations were split to exclude the shifting fields and instead include a stan-
dalone shift instruction. This made it more achievable to implement this functionality in a single clock
cycle. The functionality of each instruction could be categorised by either contributing to advancing
data flow (shift), advancing control flow (end, branch, jump, call, return, increment), or performing
field or length assertions (load immediate, compare, call, return).

© ©® N o o » w N =

24 Chapter 3. Design

Instruction Pseudo Notation

We program the system by writing the instructions manually, due to the absence of a compiler. The
instructions are written in a pseudo notation, which is a textual representation of instructions that makes
writing programs and reasoning about programs more accessible and understandable. We introduce
additional notation to explain the pseudo notation and various accessible fields and counters accessed
in the instruction in the code block below.

// HELPING NOTATION

(...) -> optional, can be left out.

<...> -> varying value (e.g. an address).

/ -> selection, one of the options must be selected.

// ACCESSIBLE FIELDS

inp // The current value of the data field bus.
stacktop // The entry_value of the stack top-level entry.
bit_cnt // The number of bits counted so far in the current blob.

byte_cnt // The number of bytes counted so far in the current blob.
field_cnt // The number of fields counted so far in the current blob.

3.3.1. Shift (sft)

The sft instruction moves data through the system. It moves a segment of bits from the current section
of the input stream onto the data field bus based on the shift amount (More on the system data flow in
Section 3.5.1). The bit and byte counters of the system are incremented by the amount that is shifted.
The field count is incremented by one. At the same time, the previous value on the data field bus and
its specified width move to the output, and the verdict at the output is updated. If the outgoing field is
deemed invalid, the data is flushed, and the program restarts with the next blob. Furthermore, there
is no restriction that every field needs to be shifted individually onto the data field bus. Therefore, one
or more fields can be “shifted through” in a single shift amount, which is useful if those fields can be
skipped. Finally, the shift instruction also functions as a no-op instruction when all fields are set to 0.

32 28 27 19 18 17 0
I 1 | I N T I A N [I T) N B

Opcode .
0000 Shift Amount A,

ILength field is in bytes
Use length field

Figure 3.1: Shift instruction with bit positions.

Field overview in order from left to right:

» Opcode (4 bits): Opcode of the instruction.

+ Shift amount (9 bits): Determines the number of bits to "shift in”. The value can range from 0 to
256. This value is used to update the current bit and byte count

» Use length field (1 bit): Flag indicating that the current data field value will be used as the next
shift amount (for variable width fields).

* Length field in bytes (1 bit): Flag indicating that the current data field value indicates a byte
amount, rather than a bit amount.

* Reserved (17 bits)

The pseudo notation for the shift instruction is provided in the code block below.

sft
0..256/bitinp/byteinp

// Examples

sft 42 // Shift in a new field of 42 bits

sft bitinp // Shift in a new field with a width of the current data field in bits.
sft byteinp // Shift in a new field with a width of the current data field in bytes.

(- NS T Y U RN

3.3. Instruction Set Architecture 25

3.3.2. End (end)

The end instruction is used to end the operation on the current binary blob. This is used, for instance,
in conditional statements where the else case implies an invalidation of the data. Besides being able
to set an explicit 'fail’ to set a negative verdict, the message can also end normally. This is set at the
end of the normal schema flow and outputs the assertion verdict of the last field. In both cases, the
remaining data of the packet is flushed to the output, and the system jumps to the first instruction and
starts processing the next blob.

32 28 27 0
[1 1| AN I I T I e O Ay

Opcode

0001 |

ISet explicit fail

Figure 3.2: End instruction with bit positions.

Field overview in order from left to right:

* Opcode (4 bits): Opcode of the instruction.
* End or Fail flag (1 bit): (0) sets normal end, (1) sets explicit fail.
* Reserved (27 bits)

The pseudo notation for the end instruction is provided in the code block below:

end
(fail)

// Examples
end // Normal end
end fail // Explicit fail end

3.3.3. Load Immediate (1dim)

The 1dim instruction loads a constant value into the constant register for comparison. Consecutive
‘Idim‘ instructions will shift the existing contents in the register to the right, allowing the new immediate
value to be inserted. From this, bigger constants can be made up to the maximum data field width.

32 28 27 26 25 0
| 1 | AN S N I I N)

Opcode
0010 ||

Iconstant is signed

Reset constant value

Immediate value

Figure 3.3: Load Immediate instruction with bit positions.

Field overview in order from left to right:

» Opcode (4 bits): Opcode of the instruction.

* Reset constant value (1 bit): This flag resets the constant register, therefore indicating that a
new constant is being loaded in.

» Constant is signed (1 bit): This flag indicates that the immediate value is signed, therefore,
the constant register should sign extend based on the MSB of the immediate value. In case of
multiple consecutive 1dim instructions, sign extension is only relevant for the firstimmediate value.
Therefore, the "reset constant value” flag will also need to be 1 in case this flag is raised.

» Immediate value (26 bits): The immediate value to be inserted in the const register.

The pseudo notation is included in the compare instruction (next section).

26 Chapter 3. Design

3.3.4. Compare (cmp)

The cmp instruction compares two operands together and checks whether the comparison output bits
(either smaller <, equals =, bigger >) matches with one of the bits in the expected result field. We
call the result of this match operation the assertion result. The assertion result is cumulatively
AND-ed or OR-ed in either a cmp_verdict bit for field assertions or a brch_verdict bit for branching.
Both these bits are initialised to 1 at the start of the execution at the current binary blob. Meaning that
successful assertions keep the verdict to 1, and failing assertions will set the verdict to 0. The verdict
of the system will be set to the cmp_verdict bit at the next shift instruction.

32 28 27 26 25 23 22 21 20 0
L1 | | [AN I I T I S I O |
Opcode | input | Expected

0011 Mode | Result

[
‘ |Cnmpareforbranc:hing

and/or result with cumulative result

unsigned or signed cmp

Figure 3.4: Compare instruction with bit positions.

Field overview in order from left to right:

* Opcode (4 bits): Opcode of the instruction.
* Input mode (2 bits): Determines which two operands are used for comparison. They are:
— 00: the input field is compared against a constant
— 01: the stack top entry is compared against a constant
— 11: the stack top entry is compared against a counter. The selected counter (bit/byte/field)
is dependent on the length_mode in the top stack entry. See call instruction: length mode.
» Expected result (3 bits): Used to encode which output is expected from the comparator. The
comparator has 3 outputs: <, =, >. Therefore, each of the 3 bits refers to the comparator output
being expected. The assertion result (1 pass, 0 fail) is based on whether the comparator matched
with one of the bits of the expected result. See table 3.3 for all possible combinations.
* Unsigned or signed compare (1 bit): Flag to set to use unsigned (0) or signed (1) comparison.
» And/or the result (1 bit): Flag to set whether the current assertion result will be ANDed (0) or
ORed (1) with either the cmp or brch verdict.
» Compare for assertion or branching (1 bit): Determines whether the assertion result con-
tributes to the cmp or brch verdict bit.

* Reserved (20 bits)

Bit config | Comparator Expected outputs Notes
000 Not Used
001 >
010 =
01 =or> Essentially >=
100 <
101 <or> Essentially =
110 <or= Essentially <=
111 <or=or> Not Used

Table 3.3: The possible "expected result” field combinations.

The pseudo notation for the compare instruction includes shifting and constant loading in the same
statement. This allows for a direct conversion from a field with a single assertion in the schema lan-
guage to this pseudo notation. Converting this pseudo notation to actual instructions would be split
into sft, 1dim, and cmp instructions. (More on schema-to-instruction conversions in Section 3.4.) The
pseudo notation for the compare instruction is provided in the code block below.

o A W N =

[S I TR R RN

3.3. Instruction Set Architecture

27

sft
0..256/bitinp/byteinp
cmp

(brch) // omitting means field assertion instead of branching assertion
(or) // omitting means AND-ing the result

unsigned/signed
inp/stacktop // lhs operand of the compare
>/==/>=/</!=/<= // comparison operation

const=<const_value>/bit_cnt/byte_cnt/field_cnt // rhs operand of the compare

//Examples
sft 32 cmp unsigned inp > const=42

// Field assertion
sft 8 cmp brch or signed inp <= const=0x1A // Branching assertion

sft O cmp unsigned stacktop == byte_cnt // Length assertion

3.3.5. Branch (brch)

This instruction branches to another address in the instruction memory when the ‘brch’ verdict is true
(1). Otherwise, the flow continues with the next instruction. The brch verdict bit is afterwards reset to

1 to be ready for the next branching assertion.

32 28 23

Opcode
0100

Branch Address

Figure 3.5: Branch instruction with bit positions.

Field overview in order from left to right:

» Opcode (4 bits): Opcode of the instruction.
* Reserved (4 bits)

» Branch address (24 bits): Address to branch to.

The pseudo notation for the branch instruction is provided in the code block below:

brch
<subroutine_name>

// Example
brch MyBrchRoutine

3.3.6. Jump (jmp)

This instruction unconditionally jumps to a given address.

32 28 23
L1 1 [1 1 I T I N

Opcode
0101

Jump Address

Figure 3.6: Jump to instruction with bit positions.

Field overview in order from left to right:

» Opcode (4 bits): Opcode of the instruction.
* Reserved (4 bits)
» Jump address (24 bits): Address to jump to.

The pseudo notation for the jump instruction is provided in the code block below:

jmp
<subroutine_name>

// Example
jmp MyJmpRoutine

28

Chapter 3. Design

3.3.7. Call (call)

This instruction pushes a stack entry (see Table 3.4) onto the stack and jumps to a subroutine.

Field: length_mode (2 | call_mode (2 bits) entry_value | return_address
bits) (256 bits) (24 bits)
Description:| The unit of the Determines what the The value of | The return
entry_value. entry_value the stack address of the
Either bytes, represents, as well as entry in entry.
fields, bits or what checks are amount of
custom. performed during the length_mode.
return instruction.

Table 3.4: An overview of a stack entry. Stack entries are 284 bits wide, requiring a stack of the same width.

32 28 27 26 25 24 23 0
[| | I)
Opcode | can [Length
0110 |mode | mode Call Address

Figure 3.7: Call instruction with bit positions.

Field overview in order from left to right:

* Opcode (4 bits): Opcode of the instruction.

+ Call mode (2 bits): Determines what data is put into the stack entry and how it is used. The call
mode configuration is also written to the stack entry such that the return operation knows what to
evaluate when popping that stack entry. The different call modes are:

— 00: Function call mode — Pushes only the return address to the stack. Other fields are
unused.

— 01: Counter mode — Used for fixed repeat loops. Pushes a value of 0 to the entry and the
return address.

— 10: Exact length check mode — Used for checking the exact length of a section. The
pushed entry_value is the sum of the current field on the data field bus + the bit/byte/field
counter value (depending on the "Length mode”). If the current field is a length field, the sum
represents the length of the following section + the blob data that has passed through the
system so far. Hence, this value represents the expected amount of bits/bytes/fields
counted after the section has passed through the system. (Section 3.4.3 provides an
example of this check in practice)

— 11: While length check mode — Used for checking the length of a section using a repeat
while loop. Pushes the value on the data field bus + bit/byte/field counter value, similarly to
the exact length check mode.

* Length mode (2 bits): Specifies whether the entry_value (see Table 3.4) refers to the number
of bits, bytes, fields, or is a manually incremented field (for counter mode).

— 00: Custom Counter — The length is initialised to zero and is manually incremented using
the inc instruction (only compatible with Call mode 01: Counter mode)

— 01: Byte Counter — The length value indicates the number of bytes (only compatible with
Call modes 10: Exact length check mode and 11: while length check mode)

— 10: Field Counter — The length value indicates the number of fields, i.e. the number of
shifts (every time a shift is done, a new field is retrieved) (only compatible with Call modes
10 and 11)

— 11: Bit Counter — The length value indicates the number of bits and can be the same
counter as the byte counter. (only compatible with Call modes 10 and 11)

+ Call address (24 bits): The address the Program Counter is set to.

The pseudo notation for the call instruction is provided in the code block below:

3.3. Instruction Set Architecture 29

// Call variation one

call
(count) // Enables counter mode
<call_subroutine>

// Call variation two

call
len/whilelen // Select exact length check or while length check mode
bits/bytes/fields // Select length mode
<call_subroutine>

// Examples

call MySubroutine

call len bytes ProcessDERSequence
call whilelen fields ProcessArray

3.3.8. Return (ret)

This instruction pops a value from the stack and updates the PC with the return address in the popped
stack entry. Depending on the call mode, various things are checked. The following list explains what
happens at the return instruction depending on the call mode:

» 00: Function call mode — Only updates the PC with the return address.

* 01: Counter mode — Only updates the PC with the return address. Any assertion of the counter
value is done beforehand using a cmp instruction, where the top entry_value on the stack con-
taining the current number of repeats is compared to a constant containing the final repeat count
value.

» 10: Exact length check mode — The PC is updated with the return address stored in the popped
stack entry. A comparison is made with the expected length value of the section, stored as the
entry_value of the popped stack entry, with the appropriate counter value (depending on the
"length mode”), representing how much data has been counted (in either bits, bytes or fields).
These should be equal if the length of the section is to be correct. This length assertion result
is AND-ed to an internal 1len_verdict bit, initialised to 1. A single failed length assertion keeps
the bit at 0, regardless of successful length assertions that follow. This updates the verdict at the
next shift instruction, as the verdict moves with the data.

* 11: While length check mode — The PC is updated with the return address stored in the popped
stack entry. Any assertion of the length is done beforehand using a cmp instruction, where the
top entry_value on the stack, containing the expected length value of the section, is compared
against the appropriate counter value (depending on the "length mode”). Their equality is the
break condition of the while loop. An overshoot of the counter should invalidate the blob.

32 28 0
[1 1| A [I T Y O [O Ay
Opcode

0111

Figure 3.8: Return instruction with bit positions.

Field overview of the return instruction:

* Opcode (4 bits): Opcode of the instruction.
The pseudo notation for the return instruction is ret.
3.3.9. Increment (inc)

This instruction increments the top element of the stack by 1. Used for counting repeats in a fixed
repeat loop.

Field overview of the increment instruction:

* Opcode (4 bits): Opcode of the instruction.

30 Chapter 3. Design

32 28 0
L1 | N I T T O T O O
Opcode

1000

Figure 3.9: Increment instruction with bit positions.

The pseudo notation for the increment instruction is inc.

3.3.10. Instruction Field Width Elaboration

After the detailed instruction overview, we elaborate on why various field widths in the ISA were chosen.
We assume that for smaller fields, such as configuration flags or encoded instruction modes, their widths
are self-explanatory. For the following fields, the chosen width is explained:

+ Shift amount (9 bits): The 9-bit shift amount in the sft instruction encodes 257 different values
as an unsigned value ranging from 0 to 256, determining how many input bits to "shift” onto the
data field bus. This reflects an implementation detail, as the prototype implementation supports
a maximum data field size of 256 bits per shift. An implementation with a different width will
also determine the shift amount field width. Furthermore, it is important that a shift of 0 can be
represented by all Os in the shift amount field. This is for two reasons. First, this can prevent
conflicts when input field shifting bits are set. Second, this allows an instruction of 32 Os to be
used as a no-op instruction, which can be used for no-op insertion in programs as a security
technique to randomise the control flow of the system.

» Immediate value (26 bits): The 26 bits of the immediate value of the 1dim instruction represent
a section of the constant register which gets loaded in. Consecutive 1dim instructions shift and
load their immediate values to create the final constant. To save on instructions, this needs to
be done in as few 1dim instructions as possible. Hence, the 26 bits fill all remaining bits after the
opcode and the two flags. The 1dim instruction would benefit the most if the ISA had a larger
width, as it could use this extra width to reduce the number of 1dim instructions required to load
in larger constants.

* Branch/Jump/Call address (24 bits): These addresses of the brch, jmp, and call instructions
are used to update the program counter. These determine that the possible address space of
the system is 24 bits wide (224 32-bit instructions = 64 MB), which we determined to be sufficient
space for many realistic schemas. The 24-bit width is determined by the call instruction, as it
is the remaining space after the opcode and mode configuration fields. Both the brch and jmp
instructions were also set to 24 bits to maintain the same address space.

» Opcode (4 bits): The opcode is 4 bits wide, as that is the required width to encode the 9 instruc-
tions of the ISA, leaving space for 7 more instructions. If the opcode space is widened, this would
first impact the widths of the immediate value field or the address fields. Another option would be
to increase the ISA width to create more opcode space. For our design and implementation, we
stuck to a 32-bit width, which provided the right balance between instruction compactness and
instruction functionality.

3.4. From Schema to Instructions

This section explains various schema-to-pseudo notation examples below to show how the schema
language gets translated to instructions. This is relevant to see how the ISA instructions achieve the
desired functionality of the schema language. NOTE: A future compiler would directly compile the
schema language to binary instructions; a conversion to pseudo notation would be a redundant inter-
mediate step. Pseudo notation examples are used in this explanation as they are human-readable and
have a clear conversion to actual instructions.

3.4.1. Field Assertions

Field declarations and assertions are converted, as shown in the code block below. On line 5, the
pseudo notation can shift the input, load a constant, and compare the two in one statement. Line 6
performs the second assertion on the same field. Hence, no shifting is done.

35

3.4. From Schema to Instructions 31

This single example below shows how this converts into actual single instructions (we still use a human-
readable notation). Starting from line 9, the pseudo notation translates to a sft instruction shifting in 32
bits, an 1dim instruction loading in the constant ’0’, and a cmp instruction comparing the (unsigned) input
with the loaded constant (the result is AND-ed with the accumulative cmp_verdict bit). The second
assertion is done by loading in a new constant value of 10, and another comparison whose result gets
OR-ed with the cmp_verdict.

//////// Schema language ////////

byte<4> unsigned MyField [== | > 10];

//////// Pseudo notation ////////

sft 32 cmp unsigned inp == const=0 // Field is shifted in at this statement.

sft 0 cmp or unsigned inp > const=10 // No shift, only constant load and comparison.
//////// Conversion from pseudo notation to instructions ////////

sft 32 // Line 5, shift 32 bits

ldim 0 // Load in constant 0

cmp unsigned inp == const // Compare shifted field with constant

1dim 10 // Line 6, load in constant 10

cmp or unsigned inp > const // Compare field with constant and OR with the accumulated result

3.4.2. Conditional Statements and Schema Calling
The conversion of conditional statements and schema calling is shown in the code block below. The
comments explain how it works.

//////// Schema language ////////

schema IPv4_example {
byte<1> unsigned Protocol;
// Conditional statement: check which protocol follows.
if (Protocol == 0x06) {
IPv4_TCP_header; // Parse IPv4 remainder + TCP
} else if (Protocol == 0x11) {
IPv4_UDP_header; // Parse IPv4 remainder + UDP
} else {
fail;
}

}

//////// Pseudo notation ////////
IPv4_example:
// Shift in the protocol field, load a constant and compare for branching.
sft 8 cmp brch unsigned inp == const=0x06
// Take the branch if the branching assertion is true.
brch if_case_1
// Execute the branching assertion in the else if block.
sft O cmp brch unsigned inp == const=0x11
brch if_case_2
jmp else_case // No brch assertion for the else case, hence the jmp instruction is used.

// All conditional blocks jump to this subroutine when they are finished.
IPv4_example_post_if:
end // No code after the if statement, hence the program ends normally.

if_case_1:
call IPv4_TCP_header // Call function
jmp IPv4_example_post_if

if_case_2:
call IPv4_UDP_header // Call function
jmp IPv4_example_post_if

else_case:
end fail

IPv4_TCP_header:
// Process fields, call more schemas, etc..
ret // Return to if_case_1

44
45
46

~N o o A W N o

32 Chapter 3. Design

IPv4_UDP_header:
// Process fields, call more schemas, etc..
ret // Return to if_case_2

3.4.3. Exact length assertions
The conversion of exact length assertions is shown in the code block below. It is explained through an
example. The comments provide further elaboration.

//////// Schema language ////////
schema MyDERSequence {
byte<1> unsigned sequence_tag [== 0x30];
byte<1> length bytes { // Length check of bytes
byte<3> unsigned DER_boolean_true [== 0x0101FF];

}
}
//////// Pseudo notation ////////
MyDERSequence:
sft 8 cmp unsigned inp == const=0x30 // Check the tag. (byte_count is 1)
sft 8 // Length field with value 20. (byte_count is 2)

call len bytes ChecklenO // The entry_value of this entry is the byte_count + length
field value, which is 2 + 20 = 22. This is the expected value of the byte_count after
the ChecklenO routine has finished.

end
ChecklenO:
sft 24 cmp unsigned inp == const=0x0101FF // Process 3 bytes (byte_count is 5)
// Process 17 more bytes (byte_count becomes 22)
ret // At this instruction it is evaluated whether the entry_value (22) == byte_count

(22) . This is equal, therefore, the length assertion passes.

3.4.4. Repeat and repeat while loops
The conversion of a repeat loop is shown in the code block below. The comments explain how it works.

//////// Schema language ////////

schema MySchema {
repeat 10 {
check_integer;
}
}
//////// Pseudo notation ////////
MySchema:
call count MySchema_repeat // Counter mode enabled in MySchema_repeat
end

MySchema_repeat:
sft O cmp brch unsigned stacktop == const=10 // Check if the required number of
iterations has been achieved.
brch MySchema_continued
call check_integer // Execute one iteration.
inc // Increment the stacktop by one.
jmp MySchema_repeat // Start next iteration.

MySchema_continued:
ret // Return to the main subroutine.

The conversion of a repeat while loop is shown in the code block below. The comments explain how it
works.

//////// Schema language ////////
schema MySchema {
byte<2> unsigned MyLength;
repeat MyLength bytes {
check_integer;

}

3.5. Module Design 33

//////// Pseudo notation ////////
MySchema:
sft 16 // Shift in the MyLength field.
call whilelen bytes whilelenO
end

whilelenO:
// Repeat while loop assertion. Branch to the fail routine if the byte counter becomes
larger than the length.
sft O cmp unsigned stacktop < byte_cnt
brch whilelenO_fail
// Break condition if length equals the number of processed bytes.
sft O cmp unsigned stacktop == byte_cnt
brch whilelenO_post
call check_integer // check one integer, i.e. run another iteration of the while loop.
jmp whilelenO // jump back to the top of the while loop.

whilelenO_fail:
end fail

whilelenO_post:
ret // Return to the main subroutine.

3.4.5. Schema Notation and Instructions Matrix
Table 3.5 provides an overview of the instructions used for each functionality in the schema language.

]
©
5
o —
£l G
E|8 |5 IS
2lo|g|E|8| 2= 5 e
5| 5|2|8|a|3|8|2|<
Single-pass traversal X
Declaring fields X
Data types
Assertion operations X | X
Multiple assertions X | X
Variable width fields X
Conditional statements X[X[X|X
Callable schemas X | X
Length assertions X | X
Repeat loops X[X | XX | X|X|X
While loops X X | XX | X]|X
Explicit fails X
Schema restart X | X

Table 3.5: The schema notation to instructions matrix.

3.5. Module Design

This section discusses the modules in the system. Figure 3.10 shows the layout of the verdict engine
and connections between its modules.

To explain the system structure, we start with the Input and Output systems. These are responsible for
the data flow of the system. The byte-aligned input stream has the binary blob data arrive in sections.

34 Chapter 3. Design

Instruction

Fetcher
Verdict
omparator{
Controller Stack
4_

| 1

» Output System > Output Stream

Input Stream —» Input System Daia
field bus

Figure 3.10: Module overview

The Input system consumes this data per section and puts, per sft instruction, an individual bit-aligned
data field on the data field bus. The Output system will consume the data field per sft instruction and
create the output stream, identical to the input stream. Because of these two modules, we can
assess the blob per data field and have the verdict move with the data field.

The Controller has access to the data field bus to perform this assessment per data field. It contains
a comparator to perform assertions through cmp instructions, can load constants for comparison, and
can update the verdict based on the outcome the the field assertion, or use the outcome of an asser-
tion to determine the control flow. The Controller receives the current instruction from the Instruction
Fetcher. The Instruction Fetcher contains the expected elements of a VM-based architecture, namely
the instruction memory and the program counter. Furthermore, the Instruction Fetcher handles the
instruction pipelining to achieve a higher productivity within the system. This functionality is contained
in a single module to keep the focus of the other modules on executing the instructions.

Finally, the Stack serves multiple purposes. It is used for calling subroutines, storing the values for
checking the length of a section, or counting iterations of routines. These functions would not be
possible without a stack, as they require temporary storage of a value and support for nesting these
operations. For example, subroutines may call other subroutines, or sections being checked for their
length can contain nested length checks within themselves.

Appendix A contains an overview of which modules are activated per instruction, showing how the
described functionality relates to the instructions.

The remainder of this section performs a deep dive on the modules and is structured as follows. First,
Section 3.5.1 explains both the Input and Output systems for how they handle the data flow of the sys-
tem. Second, Section 3.5.2 discusses the Controller for what it functionally executes for every instruc-
tion. Third, Section 3.5.3 introduces the Instruction Fetcher and how it handles instruction pipelining.
Fourth, Section 3.5.4 explains the Stack for its various functions. Finally, Section 3.5.5 handles the full
design, showcasing all module interconnections.

3.5.1. Input and Output System

The Input system is responsible for converting data from the input stream to data fields, which it puts
on the data field bus. The Output system converts these data fields back to an output stream, which
has identical contents to the input stream. In conjunction, they also perform the task of "flushing” data
through the system, which sends any remaining data through the system as fast as possible. This is
done when the blob is invalidated during processing, and the next blob needs to be accessed as soon
as possible.

3.5. Module Design 35

Input System

The Input system takes a byte-aligned input stream. This stream contains the data of the binary blob and
is in big-endian order. The byte-aligned data arrives in fixed-size sections, which by themselves cannot
be used for individual data field assessments. The input system instead consumes these sections,
where it outputs them as an individual bit-aligned data field, suitable for assessment. This operation
is initiated by a shift_enable signal, and the amount of bits to be shifted from these sections onto
the data field bus is determined by the shift_amount. Multiple data fields can be located in a section,
meaning that multiple sft instructions can operate on the same section. When the section is fully
traversed, the next section of the input stream is consumed by the Input system. It is also possible that
a data field is split across two or more sections of the input stream, which the Input system takes care
of by consuming the required sections to create the data field.

Besides shifting in data fields by a fixed amount, the input system also supports variable shifting for
TLVs or other similar formats. This essentially uses the current field on the data field bus as the shift
amount for the next data field. It can be interpreted as a bit or byte amount. A byte amount will first be
converted to bits, as the shift amount denotes the number of bits.

Finally, the input system counts the number of bits, bytes, or fields that have passed through the system.
This is for length assertions, as these counts are used to check the length of a section. First, the
counters are accessed when a length field (denoting either bits, bytes or fields) is on the data field bus.
By adding the value of the appropriate counter to the length field, we get the expected counter value
when that section has passed through the system. This value is pushed to the stack for later evaluation.
Second, after the section has passed through the system, we pop from the stack, the popped expected
counter value is then compared with the current counter value. If they match, the length assertion
passes.

Figure 3.11 shows the input system as a module. A control signal which was not discussed yet is the
flush_enable, which will be discussed further down in this section.

= Z 5

R < counter_select<——

s 3 s

4 g 3 selected counter—»

=2 c o

© 3 @

Input System

—>input_stream_in datafield_out—>

Figure 3.11: The input system module.

Output System

The output system does the reverse process compared to the input system. It takes individual data
fields as input and converts them to an output stream, the contents of which are identical to the input
system. It consumes data fields when the transfer signal is raised during the shift instruction. When
the input system extracts a new data field and puts this on the bus, the output system consumes the
current data field on the bus and adds this to the current section that it is building. Once the accumulated
data fields have reached the section width, the section is outputted to the output stream. If a part of
the data field goes over the section width, it is put in the next section.

The reason why an output system exists instead of having the input system output the original input
stream is because of how the verdict travels with the data. In the case of an invalid data field, the verdict
needs to become negative at the first section of the stream where the invalid data field is located. Let
us assume the output system does not exist. In the case there is an invalid data field which overlaps
across two sections, the first section needs to be outputted first to fetch the next section containing the

36 Chapter 3. Design

remaining part of the invalid data field. This means that the previous section has already been sent
to the output with a positive verdict, before the data field was even complete. Only when the second
section completes the data field, assertions will invalidate the second section containing the data field.
This goes against the requirement of having the verdict be in real-time with the data. This is prevented
by having the output system, as the sections are only outputted once all data fields in that section have
been processed, including the ones that overlap with later sections.

Figure 3.12 shows the output system as a module. A control signal which was not discussed yet is the
last_field, which will be discussed further down in this section.

lajsuel)«———
pley ise|—>

Output System

——datafield_in output_stream_out——>»

Figure 3.12: The output system module.

Flushing

Flushing is the process of having the data be passed through the input-output system as quick as
possible, and can be triggered at any point when assessing the blob. Flushing happens when the verdict
becomes negative, or the schema has ended but has remaining data left at the input. In both cases
further processing is unnecessary, and we want to continue with the next blob as soon as possible.

Flushing happens when the f1ush_enable signal is raised for the input system. At the same time, the
transfer signal is also raised, which causes the output system to consume the current data field and
any subsequent data thereafter. First, any remaining data from the current section is outputted to the
data field bus. Afterwards, the data field bus is filled with the data from each subsequent section, until
the last section of that blob is consumed by the output system. From that point onwards. The output
system raises a last_field flag, which indicates that the last section has been sent to the output. The
rest of the system then knows it can reset itself for processing the next blob.

3.5.2. Controller

The controller module ensures that the instructions are properly executed. It sets the right signals for
each instruction, such that the surrounding modules perform the appropriate task. It keeps the state of
the verdict and three internal verdicts, namely the comparison verdict (cmp_verdict) for field assertions,
branching verdict (brch_verdict), and length verdict (1en_verdict) for length assertions. It manages
the constant register and houses the comparator unit. Furthermore, it manages the state of the system,
such that it is either processing or flushing. Finally, it resets the required parts of the system before
processing a new blob. The list below explains what the controller performs per instruction. Appendix
A highlights this functionality in terms of the module activations per instruction.

+ sft: The controller enables the input system and output system by setting the shift_enable and
transfer signals. Furthermore, it sets the shift amount either from the shift instruction or from
the current data field on the bus (for variable shifting). Finally, if the cmp_verdict or len_verdict
of the current data field is negative (0), the controller sets a negative verdict, such that this verdict
moves with the current data field, and triggers a flush.

* end: In the case of a normal end, the controller checks the comparison verdict and the length
verdict. If at least one of them is negative, the verdict is set to negative. Otherwise, the verdict
stays positive and the blob is deemed valid. When the explicit fail flag is raised, a negative verdict
is always outputted. In all cases, the flush is triggered.

3.5. Module Design 37

» 1dim: The controller will left shift the contents in the constant register by the amount of the im-
mediate value in the instruction (26 bits), and load the new immediate value from the instruction.
Alternatively, if the flag for the constant register reset is raised, all bits in the constant register
are reset to 0 in case of an unsigned constant. All bits in the register are reset to the MSB of the
immediate value in case of a signed constant, therefore handling sign extension. After the reset,
the first immediate value from the instruction is loaded into the register.

» cmp: The controller will select the operands for the comparison based on the input_mode from
the instruction and configure the comparator to perform a signed or unsigned comparison. The
comparator can either output a <, =, or > comparison result bit. The assertion result is derived by
the controller by comparing the set bit from the comparator output with the expected result. The
assertion result is set to true if the raised bit of the comparator output matches one of the raised
bits in the expected result. Either the cmp_verdict or the brch_verdict (based on the compare
or branch flag) is selected for accumulation with the current assertion result. This is either AND-ed
or OR-ed (based on the AND/OR flag) with the selected verdict, which is how multiple assertions
are accumulated.

* brch: The actual branching happens in the instruction fetcher, as this module manages the pro-
gram counter. (Explained in Section 3.5.3) The controller resets the brch_verdict to 1 after the
branching has finished.

+ jmp: The instruction fetcher executes this instruction. The controller does not perform any action.

» call: The controller will signal the stack to perform a push operation and select the right data for
the stack entry that will be pushed into the stack. The instruction fetcher will take care of updating
the PC to the call address.

» ret: The controller will signal the stack to perform a pop operation. In case the call mode in the
popped stack entry is the exact length check mode, the length value of the stack entry is compared
with the selected bit/byte/field counter. The result of this comparison is cumulatively AND-ed with
the len_verdict. This is relevant in consecutive length assertions. All length assertions need to
be true for all section lengths to be correct. Hence, the len_verdict is all the length assertions
AND-ed together. Finally, the instruction fetcher will take care of updating the PC to the return
address.

+ inc: The controller will signal the stack to increment the entry_value of the top stack entry by 1.
Finally, when a flush is triggered, the controller will go into a "flush phase”. This means no instructions
will be executed, and the controller will stay idle until all the data has passed through the system, after

which the system will reset the state for the next blob to be processed. Figure 3.13 shows the controller
as a module.

restart

plBAT NS UL

brch_verdict

verdict———»

ul"uep sl

Comparator

push———»
push_stack_entry ——»
Controller pop——»
p_stack_entry «——
inc——»

Junowe "1ys

8|qeus Hus
3[gEUS SN
Jglunco pepaeles g
pajes Jaunco
playelEp JuaUno

Jdajsueln
play Ise|

VT T

Figure 3.13: The controller module. Orange arrows interface with the instruction fetcher, green arrows interface with the stack,
and blue arrows interface with the input and output system. The pink arrow is the verdict on the binary blob.

38 Chapter 3. Design

3.5.3. Instruction Fetcher

The instruction fetcher module is responsible for providing the system with instructions and managing
the instruction pipeline. It contains the instruction memory and the program counter. The instruction
fetcher updates the PC in case of the brch, jmp, call instructions. The instruction fetcher outputs
the PC + 1 address such that the call instruction can use this as the return address during the call
instruction. In the case of the ret instruction, the PC is updated with the return address of the popped
stack entry. Figure 3.14 shows the instruction fetcher as a module.

instruction_memory_access

Instruction
Fetcher

plieA” Jjsu
10IRIBA Yolq

1ppe Wwinjal

N0 UonONLSUl

JE)sal
I + Od

Figure 3.14: The instruction fetcher module.

Pipelining

The verdict engine has an instruction pipeline to improve system performance. In earlier versions of the
system, the instructions were not pipelined, which led to every instruction taking an extra clock cycle
to fetch the instruction from memory. This instruction fetch can overlap with the instruction execute,
reducing the number of cycles per instruction. The system has a 2-stage pipeline with instruction
fetch and execute stages. A decode, memory access, or writeback stage was not required as the
system does not need to decode additional operands, like registers, nor does it need to access a
memory or register file. Pipeline stalls are possible with the following instructions:

+ sft: A data field shift causes a pipeline stall of one cycle if the data field spans across two input
sections. This is dependent on consuming new sections from the input stream. Where each
section takes one cycle to consume and use for the shift.

* brch (when the brch_verdict is true), jump, call, and return: These instructions update the
PC, which introduces a one-cycle stall to fetch the correct instruction from the instruction memory.

Every cycle, the instruction fetcher will output an instruction; however, an extra instr_valid signal is
introduced that travels with the outputted instruction. This determines whether the instruction is valid or
not. Suppose the current instruction will stall the instruction pipeline for the next cycle. The instruction
fetcher will then invalidate the next instruction, which allows the instruction fetch stage to fetch the
correct instruction from the instruction memory for the next cycle. Figure 3.15 shows the pipeline.

Stage split

Instruction Fetch Stage Execute Stage

Instruction Fetcher ,

Update PC__ |Validate| | instr_valid
next -
A Controller
@ 0 | ¢ instruction
PC o—> Instr.
mem

Figure 3.15: The instruction pipeline of the verdict engine. The validate next block can recognise instructions that stall. It will
then invalidate the next instruction, such that the instruction fetch stage has an extra cycle to fetch the correct instruction from
memory.

3.5. Module Design 39

3.5.4. Stack

The stack module is used to store stack entries. (See stack entries in Table 3.4 and their usage in
Sections 3.3.7 and 3.3.8). They are used for calling schemas, checking lengths, and managing hierar-
chy within data formats. It is a Last-In-First-Out (LIFO) stack, meaning that stack entries can only be
accessed from the top, without random access to inner elements like in conventional processors. The
stack has 3 control signals:

1. push: Puts a new stack entry on top of the stack.
2. pop: Removes to topmost entry on the stack.
3. inc: Increments the entry_value of the topmost stack entry by one. Used for repeat loops.

Figure 3.16 shows the stack as a module.

——»restart

— > push

=3 stack_entry_in

pop Stack

«———top_stack_entry

—>inc

Figure 3.16: The stack module.

The system cannot perform length assertions, subroutine calling, or subroutine iterations without a
stack, as these operations require the storage of a value, and these operations can be nested. ALIFO
stack is the minimal data structure which can support this functionality. A random-access stack, like in
conventional processors, was not chosen due to the added complexity and lack of data isolation. The
complexity of a random-access stack relates to the actual implementation of the stack module, requiring
more logic and error handling to support random access, but also extends to a future implementation
of the compiler and ISA, requiring concepts like stack frames, liveness analysis and more instructions
to ensure proper access to data on a random-access stack.

The stack will always output its topmost stack entry during system execution and is only updated during
a push or pop operation. Having strict access to only the topmost element isolates access to deeper
stack entries at a specific hierarchy level in a binary format. Therefore, lowering the risk of accidental
or malicious data leakage across hierarchy levels.

The main advantage of a random-access stack would be to store data fields for assertions further down
in the data. However, it was shown that such assertions can still be performed earlier, as shown in the
”Callable schemas” code example in Section 3.2.1. Therefore, the same control flow can be maintained,
at the cost of an overhead in instructions.

3.5.5. Full Design
The overview in Figure 3.17 shows the full design, consisting of the modules and their connections.
Some notable connections in this overview are:

» The data field bus is connected to the controller as it is used for multiple occasions. It is used for
comparison with constants. It can be used as the shift amount in the next shift instruction, and
the data field can be pushed onto the stack for length assertions.

» Next to the controller requiring a restart before processing the next blob, the restart also goes to
both the instruction fetcher and the stack. The instruction fetcher needs to restart the program at
the first instruction, and the stack needs to restart its stack pointer at the bottom of the stack.

» The return address is split from both the stack_entry_inand top_stack_entry. The stack_entry_in
getsthe PC + 1 address from the instruction fetcher, and the instruction fetcher requires the return

40 Chapter 3. Design

instruction_memory_access

Instruction
Fetcher;

ssalppe” uinad

PlpiaA Lplg

o~ uo|pruisu|

uels
I +2d

verdict >
restart’
brch_verdict
push: »push
push_stack_entry »stack_entry_in

Y
restart

Ul uoponasul

Comparator

pop- »pop
top stack entry« . top_stack entry

i Stack

5
3]

Controller

unowe yys

CILENER TS

Pa|es Jeunco

Jeuno papajes

a|gqeua ysny«———8|geus usny
—> Pl 1sE|
ratdCh

p|eyEjEp jueLInD

Jsjsuel)

counter_select «

a|geus” }lys«
JUNOWE Ylls«
pley sel

JajsUE] <

counter_out

Input System Output System

e iNpUt_Stream_in datafield out » datafield in output_stream out =3

Figure 3.17: Overview of all modules and their connections.

address from the top_stack_entry to return to the caller subroutine.

* The top_stack_entry always has the topmost element available on its bus. This is in case
assertions are required with the topmost entry_value.

3.6. Conclusion

In this chapter, we explained our design for this project. Before discussing the design, we provided
the requirements of the system, as derived from the background study. These requirements were cat-
egorised into either data assessment requirements or architectural requirements. As these required
much flexibility from an underlying architecture, the VM architecture was chosen as it allowed for for-
mat variability, runtime programmability, and future extension to system functionality. Furthermore, we
touched on how we considered security in the design process. From the data assessment requirements,
we designed a schema language which can: declare fields in the expected order of arrival; declare as-
sertions on fields; assert the length of a section; declare fields with a variable width; declare conditional
statements to change program flow; call other schemas; declare repeat loops; declare repeat while
loops; and declare the end of a schema. Afterwards, the ISA was explained per instruction, and a
pseudo notation was explained to denote the instructions in a human-readable format. We linked the
schema language to the ISA by explaining the conversion from schema language constructs to pseudo
notation. Finally, we discussed the module design. The modules execute the instructions of the system.
First, the input and output systems were discussed in how they convert the input stream to data fields

3.6. Conclusion 41

with a specified width, and how the data fields are converted back to an unmodified output stream. Sec-
ond, the controller was explained for its function per instruction. Third, the instruction fetcher provides
instructions to the system and maintains the instruction pipeline when updating the Program Counter
or shifting. Fourth, the stack can push and pop stack entries used for schema calling, length assertions,
repeat loops, and while loops. Lastly, the full design was provided, showing the interfaces between the
modules and external interfaces.

Implementation

The previous chapter explained the module design, ISA, and pseudo notation for the Verdict Engine.
This design is implemented in VHDL, and an assembler program is made in Python to convert the
pseudo notation to binary instructions that the VHDL implementation can run. Furthermore, a functional
emulator of the Verdict Engine is made in Python to test and debug schemas before deployment on
an FPGA. These implementations are discussed in this chapter. At the end of this chapter, we end up
with an implemented design that we evaluate in the next chapter.

This chapter is organised as follows. Section 4.1 describes the schema writing workflow that uses
the implemented systems. Section 4.2 explains the Python assembler program used to convert the
schemas in pseudo notation to the final binary instructions, which both the Python emulator and hard-
ware implementation can use. Section 4.3 introduces the Python emulator and highlights the imple-
mentation details, and provides an overview of its operation. Section 4.4 introduces the hardware
implementation in VHDL and explains how AXl4s, AXl4l, and pipelining work in the implementation.
Finally, Section 4.5 concludes this chapter.

4.1. Schema Development Approach

The implemented systems in this chapter are part of a systematic and iterative workflow for developing
schema programs for the verdict engine. This workflow is shown in Figure 4.1.

Testing and Debugging :

feedback Python

® / Emulator
Write/Update Python Ama Program Binary

Schema Schema | Assembler
in pseudo 4
notation

_ FPGA
Final Program 1 (\HDL Implementation)

Figure 4.1: The schema development approach for new schemas.

The numbers in the figure determine the workflow order. These are:

1. Writing a Schema: The process begins with writing a schema for a binary format, using instruc-
tions in the pseudo notation described in Section 3.3.

43

N o=

FN

o

~ o

44 Chapter 4. Implementation

2. Python Assembler: The written schema is passed to the Python-based assembler, which con-
verts the instructions in pseudo notation into binary instructions that can be processed by the
subsequent systems.

3. Python Emulator: The binary instructions are then loaded into the Python Emulator, which is
a VM program that functionally emulates the verdict engine. This environment allows for testing
and debugging the schema program using test input data. Any issues discovered here provide
feedback for updating the schema, prompting a return to step 1.

4. FPGA (VHDL Implementation): Once the schema is confirmed via the emulator to have the cor-
rect functionality, the binary program can be loaded into the VHDL implementation of the verdict
engine on the FPGA. Final system-level tests can be performed to confirm the correct operation
of the schema in hardware. Finally, the schema is used to process actual input data in real-time.

Each of the blue-highlighted components in this workflow will be described in detail in Sections 4.2 to
4.4.

4.2. Python Assembler

Because of the absence of a schema language compiler, the schemas have to be written as instructions.
To program the system without having to write binary instructions, an assembler program is created in
Python to convert the instructions written in pseudo notation to binary instructions. This allows for a
more human-friendly way of programming the system. A program in pseudo notation contains instruc-
tions written inside one or more subroutines. This is processed first by the preprocessor, which turns
the pseudo notation into a single list of individual pseudo instructions. This then enters the converter,
which converts them to the final binary instructions.

4.2.1. Preprocessor

The preprocessor will start by removing comments, whitespaces, and leading/trailing spaces. Next,
1dim instructions are inserted before cmp statements that contain an input-constant comparison. In
case a shift is included in the same cmp statement, this is also inserted before. The code block below
showcases this process with an example.

/* Pseudo notation. */
sft 8 cmp unsigned inp == const=1

/* Intermediate representation after the preprocessor. */

ldim 134217729 // 1dim instr, the number represents the reset const flag and immediate value
in binary.

sft 8 // Shift in 8 bits.

cmp unsigned inp == const // Compare with current data field and constant register.

Furthermore, the preprocessor derives the start addresses of each subroutine and creates a map from
the subroutine label to the start address. This is used for all the brch, jmp, and call instructions
to replace the label of the target subroutine by the starting address of that subroutine. Afterwards,
all instructions are put into a list from all subroutines, and the program is now a list of preprocessed
instructions.

Finally, the preprocessor also checks for faulty decimal, binary or hexadecimal numbers that are used
in a pseudo notation. Furthermore, it is detected when a non-existent subroutine is referred to (e.g.
due to a typo.) The preprocessor will throw an error and stop the program so the programmer can fix
the mistake.

4.2.2. Converter

The converter converts all the preprocessed instructions to the final binary instructions. Based on the
instruction keyword, the opcode is set, and the various keywords, numbers, or addresses that follow
to configure the instruction are set to the right final bit values. Any instruction which has the wrong
keywords, wrong values or wrong order will be detected. Every faulty notation detected has a specific
error message, such that there is a degree of feedback when writing the schema, which makes it easier
to program and debug. The converter outputs a list of binary instructions, which can be used by both
the Python emulator and VHDL implementation of the verdict engine.

4.3. Python Emulator 45

4.3. Python Emulator

The Python emulator is a Python virtual machine program which executes the instructions from the ISA.
Instructions are executed in the emulator according to their functional description in Section 3.3. This
Python emulator was made to help evaluate whether the ISA can meet all the functionality required
to assess various binary formats. This was done before starting with the VHDL implementation, as it
was deemed a harder platform to test the instructions on whether they contain the right functionality.
Furthermore, the emulator makes the testing and debugging of schemas more accessible, as a flexible
software environment with a Python debugger provides adequate feedback when testing a schema
program. On the other hand, testing a VHDL implementation often requires manual implementation of
various debugging or feedback capabilities.

4.3.1. Differences with Module Design

Although the instructions executed perform the functionality described by the ISA, the implementation
has some differences concerning the module design. This is because the implementation is in software,
and the use case of the emulator is schema writing and debugging. This led to different input and output
handling, instruction fetching and execution.

Input and Output Handling

The software environment led to the implemented system having a different approach to the input and
output stream, as well as the verdict. As an input and output, the emulator takes in binary files. Every
blob is put in a single binary file to indicate the boundaries of each blob. All the data at the output is
written to a single binary file containing the data of all the blobs. This was done to save the order in
which the blobs were processed. The verdicts of each blob are written together to a separate file. A
verdict is displayed as true or false in the file. Each verdict is written in the order in which the blobs
are outputted in the output file.

When shifting in data fields, the input system reads the input file per byte. In case the data field is not
byte-aligned, the remaining bits in the last fetched byte are saved for the next shift instruction. Similarly,
the outgoing data field is also written to the file per byte by the output system, and any remaining bits
in the last byte will be saved until the next outgoing data field needs to be written to the output file.

Finally, the maximum data field width which the input system can shift is 256 bits. This means that the
comparisons are also 256-bit integer comparisons, constants can be loaded in up to 256 bits, and the
entry values in the stack entries are also 256 bits wide.

Instruction Fetcher and Controller

The fetcher and controller have their logic merged, which differs compared to the module design. In
hardware, this separation makes more sense as instruction fetching and execution are different stages
in the instruction pipeline (Section 4.4.2 - Instruction Fetcher and Pipelining will explain this in more
detail). In the emulator, this separation does not exist, which led to the logic being merged. The
emulator keeps the instructions in a Python list, with the program counter being the index for this list.
Once the instruction is accessed, it is decoded by a decoder object, which creates an Instruction
instance. This instance contains the opcode of the instruction and a list containing every field in the
instruction. Afterwards, the program continues with the execution of that instruction.

Stack
The stack in the Python emulator is implemented as a class. The stack is a Python list containing stack
entries. The stack is manipulated through push (), pop(), and peek () functions.

4.3.2. Emulator Operation

The schema binary and the input files are loaded into the emulator. The emulator has a execute_instr ()
function, which executes one instruction per call. This function is continuously called in an infinite while
loop and stops the program once the output is complete, or if an error is thrown during execution.

The execute_instr () function fetches the next instruction from the instruction array and decodes the
instruction fields based on the opcode. Afterwards, the instruction is executed. The instruction logic
is located in a large Python match case statement. Based on the opcode, the individual instruction is

46 Chapter 4. Implementation

executed in the case block. After the execution, the PC is either incremented or updated to the target
address in the case of brch, jmp, call, and ret instructions. Flushing happens during a shift instruction
when the outgoing data field is invalid, or when an explicit fail call is made in the end instruction. After
flushing, all the output is written to the output file, and the program execution is stopped.

4.4. VHDL Implementation

This section discusses the VHDL Implementation of the verdict engine. First, Section 4.4.1 explains
the AXI4-Stream and AXI4-Lite protocols and their use throughout the system. Second, Section 4.4.2
provides an overview of the implemented modules.

4.4.1. AXI4-Stream and AXI4-Lite

AXI4-Stream[30] and AXI4-Lite[31], or how we for short refer to them: AXl4s and AXI4l, are syn-
chronous communication bus protocols specified by ARM as part of the Advanced Microcontroller Bus
Architecture (AMBA) specification. AXl4s is a high-speed streaming protocol and is used for the input
and output stream, as well as the data field bus. AXI4l is used within the system to access control and
status registers and write to the instruction memory (More on the control and status registers in Section
5.1.1 - Serial Connection and Registers).

Handshake signals

Both AXlI4s and AXI4l rely on a handshaking mechanism to ensure reliable data transfer between a
source and destination. The handshake involves two signals, namely the READY and VALID signals.
The source sets the VALID signal to indicate the data bus has valid data is available. The destination
sets the READY signal to indicate that it is ready to consume the data. A data transfer completes when,
in a clock cycle, both signals are high. A READY signal being low provides back-pressure to the source,
and a VALID signal being low can signal that there is data throttling to the destination. This is relevant
when multiple AXI4 buses are used between modules in a pipelined manner. Each stage can signal
when it is ready to provide or consume data. This throttling or back-pressure can propagate through
the pipeline, ensuring there is no data loss or data overflow when it moves through the system.

AXI4-Stream

The AXl4s protocol is a high-speed data transfer protocol that operates unidirectionally without address-
ing. In the system, it is used to send binary blob data to the input system, and for the output system
to send the checked binary blob to any receiving module. Each binary blob consists of one or more
AXl4s transfers, each transfer containing 256-bit sections. We will from now on refer to the signals of
an AXl4s transfer as an AXl4s packet. Figure 4.2 shows how data is transferred over an AXl4s bus.

aclk | | | | | | | | | | | | | | | | |
| t t t t t t |
waid b b L
| | | T T T T T
weady L 1 4

tdata - D1 K D2 X D3 X D4 _

Figure 4.2: How AXl4s packets are transferred [32]. When both the valid and ready are high, a packet is transferred in that
clock cycle. The last indicates the last packet of the data.

The signals in AXl4s that were used during the implementation of the input and output stream are:

» VALID (1 bit): Handshake signal. Indicates that the source is providing valid data on the bus.
* READY (1 bit): Handshake signal. Indicates that the destination is ready to accept the data.

+ DATA (256 bits): Contains the data of the binary blob. In case the binary blob is larger than 256
bits, multiple AXI4s packets are used to send the blob.

» LAST (1 bit): Marks the last packet of the binary blob. This is used as a delimiter between binary
blobs. The next packet after the last packet will therefore be from the next binary blob.

4.4. VHDL Implementation 47

» KEEP (32 bits): Specifies which bytes of DATA are actual data. This is a 32-bit bitfield indicating
which bytes (from MSB to LSB) in the DATA bus are valid for use. In case a binary blob does not
have a size as a multiple of 256 bits, the last packet will have fewer KEEP flags set. All earlier
packets of the same blob have all their KEEP flags set to 1.

If a binary blob has a size of 800 bits, i.e. 32 + 32 + 32 + 4 bytes, the binary blob will be sent in four
AXl4s packets. The first 3 packets will have KEEP values of 11111111111111111111111111111111,
indicating that all 32 bytes of the DATA bus contain data. The final packet will have the LAST signal set
and will have a KEEP value of 11110000000000000000000000000000, indicating that the first 4 bytes
on the DATA bus contain the remaining binary blob data.

Between the input and output systems, there is an AXl4s bus meant for presenting bit-aligned data
fields to the rest of the verdict engine. Every AXl4s packet on this bus is a single data field from the
binary blob. This bus has been modified from the AXl4s specification. The DATA signal on this bus
is a 256-bit wide signal that holds data fields up to a maximum size of 256 bits. The LAST and KEEP
signals are only meant for the output system to reconstruct the input stream packets. They are set on
all the data fields that were originally located in the last AXI4s packet of the binary blob. Hence, it is
possible that multiple data fields have their LAST and KEEP signals set, although they belong to the
same binary blob. The KEEP signal is therefore not used to indicate the width of the data field; rather,
a SIZE field is added to indicate the bit width of the data field. This is both important for comparison
and for stream reconstruction.

AXl4s (to d"‘l"ef AXIds AXlds
packet in modules) yatafield packet_out
1256 1256 1256
datafield_dataﬂg)
packet_ln_dataﬂg) _ packet_out_dataﬁg)
datafield_size—/—>
packet_in_valid——»| (0 to 256) packet_out_valid—>

Input ——datafield_valid———| Output

«—packet_in_ready
System el ready

«——packet_out_ready

System

packet_in_last——

packet_in_kee pﬁ%b

packet_out_last—>

packet_out_keep#)

datafield_last——»

—dataﬂeld_l{eepﬁ?

Figure 4.3: All AXl4s buses in the verdict engine. From left to right: the input stream, data field bus, and the output stream.

The 256-bit wide bus is deemed large enough for binary formats. Larger data fields are possible, but
these are split into multiple packets. This data field then loses the ability to be a proper comparison
operand because of this split, however, exact binary matches are still possible.

AXI4-Lite

The AXI4l protocol is a subset of the AXI4 protocol, meant for simpler register-style control and data ex-
change between an initiator and target. It is a bidirectional protocol, but achieves this through unidirec-
tional channels, which have either the initiator or the target send data. It provides 5 different channels:
Write address (from initiator), Write data (from initiator), Write response (from target), Read address
(from initiator) and Read data (from target), each with their handshake signals. The data width used
in the implementation per transfer is 32 bits, where it is used for memory-mapped control and status
register interfacing, as well as writing in multiple transfers to the instruction memory.

4.4.2. Module Implementation
This section explains the implementation of each module in the system.

Input System

The input system converts the AXl4s input stream to data fields and outputs these to the datafield_data
and datafield_size signals of the AXl4s data field bus. (See Figure 4.3. We will refer to these signals

more often in this section.) Both the input stream and data field bus have a 256-bit DATA bus. The

AXl4s input stream sends binary blobs to the input system. When there is data available at the input

48 Chapter 4. Implementation

stream, the input system will handshake with the data source to receive an AXl4s packet containing a
segment of the binary blob and store its packet_in_data in a std_logic_vector (255 downto 0) for
traversal. The input system will not be ready for the next AXI4s packet until the current packet data has
been fully traversed. For traversal, we introduce a counter, called the header, starting at the topmost
bit position (255). This keeps track of which bit positions have not been traversed yet in the vector.
Once the header reaches 0, the next packet is consumed from the input stream.

The Input System is implemented as an FSM with 3 states: standby, shift, and flush. In standby,
the system idles until a shift or flush is initiated.

A shift is initiated through the shift_enable. This has the FSM transition to the shift state. To extract
the data, the upper and lower bit positions of the data field within the stored packet data must be
calculated. The header counter already indicates the upper bit position of this data field. The lower
bit position, called the footer, is calculated by subtracting the shift_amount from the header, plus 1.
With the range of bits determined, the data field is extracted from the current packet and placed on
the datafield_data bus. The datafield_size is set to the shift_amount. To be ready for the next
shift instruction, the header is updated by subtracting the shift_amount fromit. The datafield_valid
signal is then set to high, and we return to the standby state. This process happens in a single clock
cycle. Figure 4.4 shows how the input stream packets are converted to individual data fields.

Time

1 ~7 |

moy eeq
-«

:255 D: :255 C': :255 E':
! T0: Before shift for Field 1 N T1: After shift for Field 1 e T2: After shift for Field 2 !
W _
E 'E—l Mexd AXl4s packet... Mext AX|4s packet... Second Mext AXl4s packst...
3
. (header) wpr (footer) i | -w ‘*‘ : (header reset for next packet) :
o
o _
% = Field 1 Field 2 Field 1 Field 2 Mext AX|4s packet...
= 5 Current AX|4s packet Current AXl4s packet
QT T e 3=
g 1 :
=5 Empty A Field 1 Field 2 ;
& | L . i

walsig
nding

Figure 4.4: How AXl4s packets from the input stream are converted to individual data fields.

A shift can also take two clock cycles, this is the case when the shift_amount is larger than the current
header value. Meaning that the next data field spans over two AXl4s packets. During the first cycle,
the remaining data from the current packet is put on the data field bus, but the datafield_valid signal
is kept low. The header is reset to 255, and another packet is requested from the input stream. This
becomes available in the second cycle. During the second cycle, the remaining amount of bits is put
on the data field bus, the datafield_valid signal is set to high, and we return to the standby state.
Figure 4.5 shows how a split data field is put on the data field bus.

A flush is initiated through the flush_enable. The FSM transitions to the flush state. For the first
cycle, the remaining data of the current packet is outputted. The remaining data, with a bit range of
header down to O, is put on the data field bus, and the VALID is set. If this was not the last packet, the
next packet is requested from the input stream. In every subsequent cycle, the packet DATA, LAST
and KEEP signals are copied onto the data field bus, the size is set to 256, the VALID signal is set, and
the next packet is requested. The flushing ends when the last packet has been put onto the data field
bus. The FSM transitions back to the standby state.

4.4. VHDL Implementation 49

2 1;255 o | 288 o | 1285 o
E ! T0: Before shift for Field N i T1: Shift for Field M (part 1) v T2: Shift for Field N (part 2) !
o 1
E §¢ Field N (2) Field N+1 Second Mext AXI4s packet... Second Mext AXI4s packet...
3 | Mext A%14s packst
) (header) (footer) | i(header reset) N 1
w T i w v w i
o
= § Field M-1 Field M (1) Field M (2) Field N+1 Field M (2) Field M+1
3 7 Current AX|4s |pachet New|Curent AXI4s packet Mew |Current AX|4s packet
D.—-l --------------------------------- R LR EE LR LR B LR LR L i
@) il) i I3
woaE ' L ! (incomplete . {complete| _ . H
< E: i Field N-1 i Field N) Field N (1) i Field N) Field N (1) |Field N (2) E
=i | AR L Ll
B N i P
g9 | _ 1 i |
=g | Empty ! Field N-1 ! Field MN-1 !
3 5 | | i i

Figure 4.5: How a data field split across two AXI4s packets is put on the data field bus.

Output System

The output system converts the data fields received from the data field bus back to binary blob packets.
The handshake signals of the data field bus in the output system are AND-ed with the transfer signal.
Therefore, a data field is blocked from an AXI transaction until the transfer signal is raised. This
happens during a shift, where the outgoing data field enters the output system and allows a new data
field to be set on the bus. Similarly to the input system, the output system works with a header counter,
this time keeping track of the bit position where the next incoming data field can be placed in the
output packet. The footer of the output packet can be calculated from the header by subtracting the
datafield_size, plus one. This determines the range where the data field is placed. The header is
updated for the next data field transfer by subtracting the data field size from it. In case the packet is
filled, the LAST and KEEP signals are copied from the data field bus and the VALID signal of the output
packet is raised, the packet is outputted, and the header counter is reset to 255. This process happens
in a single clock cycle.

The output system can also take two clock cycles when an incoming data field spans over two output
packets. In the first cycle, the part of the data field is placed in the remaining part of the output packet.
This output packet is made valid and outputted. In the second cycle, the remaining data of the data
field is placed at the top of the new output packet.

There is no flushing state in the output system, since the input system provides the size of the data
placed on the data field bus. Therefore, regardless of whether it is an actual data field or data from the
flush, the output system places the incoming data into AXI4s packets and outputs these once they are
filled. The output system will raise a 1ast_field_in signal once the last data field has been transferred
to the output system.

Controller

The implementation of the functionality per instruction is split between combinatorial logic and sequen-
tial processes. This has to do with achieving instruction execution on one clock cycle. The signals
which are used to interface with modules (input and output systems and stack) are set combinatorially,
such that the sequential processes in those modules can finish their operation in the same clock cycle.
Combinatorial signals that trigger modules (shift_enable, transfer, push, pop, and inc) check for the
validity of the instruction and the right opcode, and other instruction-specific checks before being raised.
Execution in a single clock cycle is not possible for every instruction, such as in some sft instructions
or instructions that update the PC. These will be explained in the instruction fetcher.

Signals that are set within the controller, such as updating the constant register or updating verdicts,

50 Chapter 4. Implementation

happen within the sequential process. The sequential process is structured as a VHDL case statement
on the opcode. This case statement only executes when the system is not in the flush phase. The
following list explains where each instruction is implemented.

» sft: The shift_enable, shift_amt, and transfer signals are set combinatorially. In the se-
quential process, it is checked whether cmp_verdict or len_verdict is false (i.e. the current
field is invalid), such that the controller transitions to the flush phase.

* end: In the sequential process, if either the cmp_verdict or len_verdict is false, or the fail flag
is set, the controller transitions to the flushing phase.

» 1dim: The constant register (i.e. std_logic_vector) is updated in the sequential process.

» cmp: The comparison, as explained in Section 3.5.2 is performed in the sequential process. A
difference between the design description and the implementation is that a comparator module

does not do the comparison. Instead, the selected operands are compared using the "<” and "=

operators in VHDL. (The ”>” operator is equal to both "<” and "=" being false, hence it is not used.)
* brch: The controller resets the brch_verdict to 1 in the sequential process.
» jmp: The instruction fetcher executes this instruction. The controller does not perform any action.

» call: The push signal and all the fields for the stack entry are set combinatorially, such that the
stack module can write the data to the stack in the same cycle.

» ret: The pop signal is set combinatorially, such that the stack module can remove the data from
the stack in the same cycle. The length check for a section and len_verdict update in the exact
length mode are performed in the sequential process.

» inc: The increment (inc) signal is set combinatorially, such that the stack module can increment
the top stack value in the same cycle.

During the flush phase, the controller only sets the flush_enable and transfer signals. Other signals
cannot be set as the flush phase invalidates all incoming instructions. Once the output system signals
the last_field_in signal, the flush phase in the controller ends, and the controller sets the restart
signal. This is a different signal than the hardware reset signal, which is a global reset of every module.
The restart signal is used to bring the system to a state where it is ready to process the next binary
blob. It resets signals in the controller, instruction fetcher and stack modules, such that operation starts
with reset verdicts, at the first instruction, with a clean stack.

Instruction Fetcher and Pipelining

The instruction fetcher contains the instruction memory and PC (implemented as a VHDL unsigned
signal). The instruction memory is a dual-port RAM, one port is always reading instructions, the other
port is connected to an AXIl4l interface, meant for writing/reading instructions. The PC is connected to
the address port of the read port, and the instruction being outputted is connected to the data port of
the read port. An instruction read operation at the PC address requires 1 cycle before the read data is
available.

A sequential process controls the instruction fetcher. This increments the PC by 1 every cycle, and
checks for every valid instruction whether it is going to create a pipeline stall next cycle. The instructions
which (optionally) stall the instruction pipeline are:

» sft (optional): Data field shifts cause a pipeline stall of one cycle if the data field spans across two
input packets. This is because the second input packet is taken from the stream, which takes an
extra cycle for receiving this data and extracting the remaining part of the data field. The instruc-
tion fetcher can predict this stall by checking if the shift_amt in the current instruction is bigger
than the number of bits remaining in the current AXI4s packet. This is named the available_bits.
In case of a stall, the PC is not incremented for that cycle.

* brch (when the brch_verdict is true), jmp, call or ret: During a branch, jump, call, or return
instruction, the PC is updated to the brch/jump/call/return address. This introduces a one-cycle
delay to fetch the correct instruction from the instruction memory, and the instruction during this
delay cycle is invalidated. When the branch is not taken in the case of a branch instruction, there
is no stall, and the next instruction is executed in the next cycle.

4.5. Conclusion 51

A catch with this implementation of handling pipeline stalls for the shift instruction is that the input
system must have data available at the next cycle once requested. This means the implementation
currently only supports operation at maximum throughput. Any data throttling or pushback can
introduce errors in pipeline stalling when the shift instruction is executed. For the purpose of evaluating
this prototype system, this is not an issue, as we want to run the system at maximum throughput for
evaluating the maximum achievable performance of the system. How we provide the data to the system
at maximum throughput during benchmarking is discussed in Section 5.1.1 - Packet Relay and Section
5.1.2.

Stack

The stack is implemented using a dual-port memory and several address pointers. These address
pointers are stack_push_addr, stack_top_addr, and stack_pop_addr. The stack has the push, pop,
and inc signals that are set by the controller, which initiate a stack operation. Per operation, the
following happens:

» push: The new stack entry provided by the controller is set at the write data port of the memory and
is written to the address that the stack_push_addr is pointing to. These are set combinatorially.
The 3 address pointers are all incremented by one in the sequential process of the stack.

» pop: The topmost entry of the stack is always set on the bus. The controller sets the pop signal
and uses the topmost entry in the same cycle. Furthermore, the read address for the stack top
is set to the stack_pop_addr such that the second-to-top entry is read at the next cycle. The 3
address pointers are all decremented by one in the sequential process of the stack.

* inc: Aincremented_top value stores the value of the topmost stack entry, where the entry_value
is incremented by one. This is written to the address in the stack_top_addr. Because memory
reads and writes introduce a clock cycle delay, this needs to be taken into account if there is any
push or pop or increment operation before the current increment. In case in the previous clock
cycle there was a push, the incremented_top is set in that clock cycle to the new stack entry
value, incremented by one. In case in the previous cycle there was a pop, the incremented_top
is set in that clock cycle to the second-to-top value, incremented by one (the second-to-top value
is always being read out at the second port of the memory). Finally, in case in the previous clock
cycle there was another increment, the incremented_top set during that clock cycle is again
incremented by one in the current clock cycle.

A precedence order of commands is determined to prevent multiple commands from trying to access
the stack within a single clock cycle. Pushing data takes precedence over popping, and popping takes
precedence over incrementing the top.

Full Implemented Design

Figure 4.6 shows the implemented design of the verdict engine. This implemented design further details
the design from Section 3.5.5 and includes the AXI4s and AXI4l buses, and the available_bits signal
for pipelining.

4.5. Conclusion

In this chapter, we discussed the implemented module design in VHDL and the Python emulator and
assembler programs. An overview was provided first on a workflow with the implemented systems for
developing schemas. The assembler and emulator programs are used to debug and test schemas be-
fore they are deployed onto the VHDL implementation. Second, the working of the Python assembler
was explained, where a schema in pseudo notation is first preprocessed to an intermediate represen-
tation, such that there is a one-to-one conversion to the final binary instruction. Third, the differences
between the functional emulator of the verdict engine and the module design were discussed, and
its general operation was explained. Finally, the VHDL implementation of the verdict engine was dis-
cussed. We first explained the AXI4-Stream protocol and how we used it in the input and output system
of the verdict engine. We briefly touched upon the working of the AXI4-Lite protocol and where it was
used in our system. Afterwards, the implementation of the modules was explained. First, the implemen-
tation of the input system was explained. Its interfaces had been made concrete as AXl4s buses, and
the internal processing from AXl4s input packets to AXl4s data field packets during both shifting and

52 Chapter 4. Implementation

AX14L

instr binary_engine.vhd

instruction memory restart

fetcher.vhd

d od

PIpaAY2Iq

clock

JppeTudn}al

auo~sn|

»S1q "8 |qeleAR

o sul

reset

pIleAgs Ul

restart
brch_verdict

U sul
pllea”sul

verdict_out - Verdict—»
push
pop
inc

= =
= =1
=

ysnd

push_value .
length “mode stack_entry_in

controller.vhd cal_mode
stack_top
top_length mode stack_entry_out

fop_call_mode
stack.vhd

restart

datafield_data and datafield_size €——
selected_counter <

clock counter_select clock
reset reset

counter_select <

a|qeus” ysny
3|EUS PUS<
JUNOLLE ™ PIUS <
Ul plal 1sel

18)SUBl «—

counter_out =

available_bits

AXlds
datafield_out ~——————4datafield——|datafield_in

AXlds input_system.vhd /256 output_system.vhd AXl4s
—packet_in»packet_in packet_out-packet_out»

/256 /256

clock clock

reset reset

Figure 4.6: The fully implemented binary verdict engine design

flushing was explained. Second, the output system was explained for how it converts the AXI4s data
field packets to the AXl4s output packets. Third, the controller was explained on how it implements the
required functionality per instruction. Fourth, the instruction fetcher and its handling of the instruction
pipeline were explained. The instruction fetcher needs to manage a two-stage pipeline and needs to
be able to handle 1-cycle hazards during various instructions. An important catch with this pipeline was
highlighted, which was that input data must always be available upon request. Fifth, the stack imple-
mentation was explained, and attention was given to how the next incremented entry_value was set.
Lastly, the full design was shown, with the updated interfaces for the input and output systems and
updated signals for the instruction pipeline.

Benchmarking and Results

In this chapter, the implemented design discussed in Chapter 4 is benchmarked. The system is bench-
marked in several compatible use cases to showcase its flexibility. Furthermore, the benchmarks mea-
sure the performance to serve as a basis for comparison with related systems or as a reference point for
future performance improvements of the system. We discuss an FPGA testbed and a VHDL simulation
testbed, and how various metrics during benchmarking are measured. The performed benchmarks are
explained, and their results are analysed. This evaluation of flexibility and performance fulfils the final
goal to answer the research questions, which we conclude in the next and final chapter.

This chapter is organised as follows. First, Section 5.1 explains the setups created for benchmarking
the verdict engine. Second, Section 5.2 displays the synthesis results of the design on the FPGA. Third,
Section 5.3 explains how the metrics are collected during benchmarks and how specific metrics are
derived afterwards. Fourth, Section 5.4 showcases the results from the performed benchmarks. Fifth,
Section 5.5 discusses these results. Finally, Section 5.6 concludes this chapter.

5.1. Benchmarking Setups

This section will explain the setups created for benchmarking the verdict engine. Section 5.1.1 explains
the setup on the FPGA and interfacing with the verdict engine module on the FPGA. Section 5.1.2
discusses the setup for benchmarking in the VHDL sim.

5.1.1. Hardware Setup

The implementation described in Chapter 4 is implemented on an FPGA to evaluate the design on
physical hardware and to run benchmarks. The FPGA used is the Polarfire MPF300TS from Microchip
Technology. Running on an MPF300-EVAL-KIT. The hardware setup is depicted in Figure 5.1.

Figure 5.1: The evaluation kit with serial connection.

53

54 Chapter 5. Benchmarking and Results

The testbed on the FPGA consists of the top-level verdict engine module and a packet relay module,
as depicted in Figure 5.2. The verdict engine module has a 256-bit AXl4s packet input and output for
the binary data. Furthermore, its AXI4l interface allows a computer to read and write to the instruction
memory and status and control registers. The packet relay module matches the 256-bit AXl4s buses
to send and receive the binary data. It also has an AXI4l interface for writing input data, reading output
data, and writing to a control register containing the start signal.

: FPGA "L

H AXlds

H packet_in

e —
Di—u.ﬂ.m—f—b UHAJEIIEQ A |4 — Packet relay Verdict engine

! o
Test Computer) AXlds

packet_out

Figure 5.2: An overview of the modules and interfaces in the FPGA testbed.

Serial Connection and Registers

The test computer has a serial connection to interact with the system. To explain what this connection is
used for and how it is established, we start with registers. Registers are used to interact with the testbed
modules. Technolution has an in-house register description language (RDL) where registers can be
declared and mapped. From an RDL description, a hardware module is generated where, on one side,
the hardware can access the values of the declared registers, and, on the other side, the AXI4l bus
master can read or write the values. Secondly, a Python class is generated for the test computer that
contains the register values and mappings. A Python AXI4l master uses this class to manage these
registers. We can use the AXI4l master to manually write to these registers via a console or use a
testing script to run more automated tests and benchmarks. The Python AXI4] master connects to a
serial port, performing its AXI4l reads and writes over UART with a 115200 baud rate. On the FPGA,
this serial signal passes through a module that converts it from UART to AXI4l, thus establishing the
AXI4l connection that can read and write to registers.

Control and status registers were implemented for the verdict engine module for interfacing over AXI4L.
The control registers contain signals which the user can write to give a command to the system. The
status registers contain read-only signals and counters which the user can access to see the state of
the system.

The first control register contains a schema_loaded signal, which the user should set after programming
the system. It is internally AND-ed with the READY signal of the AXl4s packet input, meaning that the
system cannot consume data unless a schema is loaded. Furthermore, a flush_then_restart signal
is used to force flush and reset the system, in case of a stuck program. The second control register
is the blob_count, and contains the number of blobs that need to be processed before various metric
counters are written to the status registers.

Various status registers were implemented. The first register contains various verdicts. It contains
the real-time verdict, as well as a sticky_verdict, sticky_cmp_verdict, and sticky_len_verdict,
which contain the verdict and the two internal verdicts of the last processed packet. The second register
contains error signals. Both a stack_underflow and stack_overflow signal can be set by the stack.
Next, a shift_amt_too_high signal will be raised if the shift amount is too big. This can happen if the
current data field is used for shifting and contains a value larger than 256 bits (or >32 bytes).

Finally, multiple metric count registers are implemented, which contain the number of clock cycles
counted, instructions executed, data fields shifted, and AXl4s packets traversed. These are updated
once the number of blobs in the blob_count has passed through the system.

5.1. Benchmarking Setups 55

Packet Relay

The packet relay module is implemented for two reasons: First, it provides an interface between the
computer and the verdict engine module for the binary input. It translates the AXI4l data we sent to
AXl4s data, which it then sends to the verdict engine. Second, it functions as a data buffer that buffers
the data until it is complete. The packet relay will always have data ready at the input when a start
signal is given. This enables us to measure the system at full throughput, as the serial connection from
the computer to the system cannot provide data at a sufficient rate.

The functionality of the packet relay is described by illustrating how data flows through it. The test
computer divides one or more binary blobs into 32-bit chunks, as the AXI4l bus has a maximum data
width of 32 bits. The packet relay modules have registers implemented for interfacing over AXI4l. The
input data can be written per chunk to an input register, along with first, last, and keep signals, enabling
the packet relay to interpret the data as a 32-bit AXl4s packet. An adapter module converts multiple
32-bit packets into a single 256-bit packet. The 256-bit packets are buffered in a FIFO. When the data
is complete, the start signal can be activated, allowing the 256-bit packets to be consumed by the
verdict engine. On the receiving end of the packet relay, the process is done in reverse: the processed
packet is stored in a FIFO, after which it enters a packet adapter that converts the 256-bit packet back
into multiple 32-bit packets. The computer can then consume the packets via an output register and
receive the processed blobs.

5.1.2. Simulation Setup

Besides the hardware setup, A VHDL simulation environment is used for benchmarking. The simulation
platform used is Riviera-PRO[33] and works in conjunction with cocotb[34]. Cocotb is a testbench
environment in Python. It runs the Riviera-PRO simulator to simulate the VHDL, but the stimulus to
the inputs and the monitoring of outputs are managed in the Python cocotb environment. Through this
environment, bus functional models (BFMs) from Technolution simulate the AXI4s and AXI4| buses that
are directly connected to the verdict engine top-level module. This enables us to do benchmarks as
we can load schemas, provide the verdict engine with input blobs, consume the blob at the output, and
access registers through the BFMs. Figure 5.3 provides an overview of the VHDL sim benchmarking
setup.

Instruction

— Reaqisters T
cocoth MEmory cocotb)
" AXI4l BFM " AX14l BFM
AXlds Verdict engine AXlds
packet_in packet_out

cocotb /. [y cocoth /
- Axlds BFM 256 256 - AXl4s BFM

Figure 5.3: An overview of the VHDL sim benchmarking setup.

The simulation setup is used for benchmarks which require a bigger data set for metric collection. This
is relevant for schemas which have variable timing for processing binary blobs, resulting in different
measurements per blob. This can be because of variable lengths or many branches in the schema.
Therefore, a larger set of blobs is required to evaluate the performance characteristics of the system
when using the schema. However, running many blobs through the FPGA setup is a slow process due
to the serial connection. With the VHDL sim, we can simulate the hardware at the maximum throughput
of the data by using the BFMs, identical to how the packet relay can feed data to the system in hardware.
Although VHDL sim cannot simulate the hardware at the speed of the FPGA, it is much quicker than
having to send data over the serial connection.

56

Chapter 5. Benchmarking and Results

5.2. Synthesis Results

This section shows and discusses the synthesis results of the implemented design. The synthesis tool
used is Libero version 2021.2. Timing, Resource usage and Energy consumption are discussed.

5.2.1. Timing
The system achieves a clock frequency of 100 MHz (period of 10 ns). The synthesis tool achieved
this timing constraint and reported a worst slack of 0.818 ns. The critical path is related to moving
data fields from the input to the output system. This is, in general, where the longest paths reside, as
well as in the 256-bit comparison. Knowing the maximum possible frequency of the system allows us
to derive our results for throughput and latency.

5.2.2. Resource Usage
The resources used by the implemented design in the FPGA fabric consist of 4-input lookup tables
(4LUT), D Flip-flops (DFF), micro SRAM (uUSRAM) and large SRAM (LSRAM). uSRAM and LSRAM are
memory blocks unique to the Polarfire FPGA family [35]. uSRAMs are 768-bit RAM blocks, containing
one read and one write port. LSRAMs are 20K-bit true dual-port RAM blocks. The total available
resources on the MPF300TS FPGA as reported by Libero are: 299544 4LUT and DFF (together they
make one Logic Element), 2772 uSRAM units and 952 LSRAM units.

Table 5.1 shows the resource usage of the synthesised design. The indentation in the first column
indicates that the module is a submodule. The total resources used include the verdict engine, packet
relay, and other modules, e.g. for clock synchronisation and the serial connection. Libero reports the
resource usage of the verdict engine module and its modules. The Input System is the largest module
in terms of logic, which is in line with the functional complexity of this module. On the other hand, the
Fetcher is the smallest but includes memory blocks for the instruction memory.

| (Sub)modules \ 4LUT \ DFF [uSRAM | LSRAM |
Total 48295 (16.12%) | 8431 (2.81%) | 140 (5.05%) | 3 (0.32%)
L Verdict Engine 43151 (14.41%) | 3974 (1.33%) | 46 (1.66%) | 3 (0.32%)
N Controller 2992 (1.00%) | 263 (0.09%) 0 0
N Fetcher 248 (0.08%) | 180 (0.06%) 0 3(0.32%)
N Input System | 19311 (6.45%) | 1163 (0.39%) 0 0
N Output System | 16261 (5.43%) | 615 (0.21%) 0 0
N Stack 3997 (1.33%) | 1388 (0.46%) | 46 (1.66%) 0

Table 5.1: Resource Usage Results for the total design, Verdict Engine module, and individual modules.

5.2.3. Energy Consumption
Table 5.2 shows the energy consumption from the Libero energy consumption report of the synthesised
design. The results include the extra hardware required for the testbed, instead of solely the verdict
engine module.

5.3. Metrics

This section explains how the metrics are counted and derived. Section 5.3.1 explains the window
during the hardware execution in which various metrics are counted. Subsequently, Section 5.3.2
explains how average throughput and latency are derived from the counted metrics.

|

| Energy Consumption (mW) |

Dynamic 181.195
Static 103.320
Total 284.515

Table 5.2: Static, Dynamic and total energy consumption of the system

5.3. Metrics 57

5.3.1. The Measurement Window

Thus far, we have created benchmarking environments on the FPGA and in simulation, which can buffer
data and, at a given start signal, provide the data to the verdict engine without any delays. This gives
us a window of data processing at the maximum possible throughput, during which we count various
metrics. This window starts the moment the first AXl4s packet handshake occurs at the input. This is
the first point in time where the verdict engine gets access to the binary blob that we want to assess.

Figure 5.4 shows where the measurement window starts.

Name Value " F;ct:lul T |5§~:?u‘ e ‘3;.:;-' e |3$a|ul oo Bl . F'I)L;UI .
~ = clock 1 { I |
Ir state Eneasure idle measure
B = pHEkeT in 5{0009001 100@00000BOG@GGGBG@DO@FG@QACBBﬁGG105086009005F1490@0@385
ﬁl ®* data ;DUOODDO‘ 00B000DEEEHD0ODEOEODBFOE9ACE9600105086000000F 14900003892
B- = keep {003FFFF| FFFFFFFF 0O3FFFFF
» User éNu data
» first D
» last i
= drop 0
» forward 0
b valid b1 A
i » meta valid i1
-- # packet_in_ready 0 A
--JIr latch valid i1
nr clk_counter {000OA00) 00008AER LIl 00000003 DOEEBBO4 pOBEBEOS GLELEELG
I instr_counter 20000000100003000 oopeeeel 0ooooBe2 oooeeoee3 ooopeeD4

nr field counter
nr packet counter
-JUr blob_counter

-8

i6000O00; 0000060
{0000000. HHODAOED
0000000 AEEAA0ER

00600001
60600601
00600001

Figure 5.4: VHDL simulation showing where the measurement window starts. The red arrows highlight the AXl4s handshake
at the input.

Inside the measurement window, the system counts clock cycles, instructions, data fields, AXl4s pack-
ets, and processed blobs (in case multiple blobs were buffered in the packet relay). The following list
explains under which conditions a metric gets incremented in the measurement window:

» Clock cycles: The clock counter is incremented at every clock cycle.

* Instructions: The instruction counter is incremented every time the instr_valid signal of the
instruction fetcher is high.

+ Data fields: The field counter is incremented every time an AXl4s handshake occurs between
the input and output system, indicating a new field has been placed on the data field bus for
processing.

» AXl4s packets: The packet counter is incremented every time a packet handshake occurs at the
output of the verdict engine, indicating a 256-bit AXl4s packet has been processed by the engine.

* Processed blobs: The processed blob counter increments at the same condition as the AXl4s
packets, with the additional condition that the "packet last” signal is high, indicating that the last
AXl4s packet of a blob has been processed.

The measurement window ends when the last AXI4s packet of the last blob in the buffer has its hand-
shake with the output. This is when the processed blobs counter is equal to the blob_count register.
Subsequently, the metric counters are written to the status registers, after which the test computer can
retrieve them. Figure 5.5 shows where the measurement window ends. In case we want to measure
more blobs that cannot fit in a single window, the measurements from multiple windows can be added
together. This is not a problem as two measurement windows with a break between blobs would count
the same number of clock cycles as if combined.

58 Chapter 5. Benchmarking and Results

Hams :VE"“E rangooaliEtin gl angos e min ool nggor
= clock i1
I state Eidle measure idle
E}- @ packet out E{UOOODODDDI {00866000D0DEOHBOOO0 BE
[E' # data ;0000000000(' 0000060000000000000008
[:H ® keep EFFFFFFFF FFFFFFFF 003FFFFF FFFFFFFF
i user iNo data
® first 1
® last 0
® drop 0
» forward 1
valid 0 —
» peta valid i1
» packet out ready i 1
--Ir latch valid ‘0
B-1r clk counter ;?1 68 59 70 71
E-JU instr counter 58 57 58
E- 1 field counter i22 20 21 22
- 1 packet counter i3 2 3
E- 1 blob_counter i 1

Figure 5.5: VHDL simulation showing where the measurement window ends. The red arrows highlight the AXI4s handshake
with the output stream.

5.3.2. Deriving Average Throughput and Average Latency

The average throughput is the number of bits passed through the system divided by the number of
counted clock cycles converted to seconds. More specifically, it is the average throughput of the system
during the measurement window. If a schema has variable timing per blob, we can measure the average
throughput for a larger set of blobs to get a representative average throughput for the schema. The
formula below shows the calculation for the average throughput.

#bits_processed

average_throughput =
e~ ghp #clock_cycles * 1e—8

To calculate the average latency, we need to calculate the average number of clock cycles required for
an AXl4s packet at the input to go to the output. For every AXl4s packet, we count the clock cycles
required for processing. These counts need to be summed up to average them. As every packet
follows after another, the clock cycle count of the measurement window fulfils the task of counting the
clock cycles for processing and summing them up. By dividing the clock cycle count by the number of
AXl4s packets processed and multiplying this by 10 (1 cycle = 10 ns), we get the average latency in
nanoseconds as a result. The formula below shows the calculation for the average latency.

#clock_cycles
#AX14s packets

average_latency = x 10

5.4. Benchmarking Results

This section shows the benchmarking results of the Binary Verdict Engine. Sections 5.4.1 to 5.4.6
discuss multiple benchmarks that show the performance of the verdict engine in various realistic use
cases. Furthermore, Sections 5.4.7 and 5.4.8 show the timing characteristics of the engine related to
schema growth and schema flexibility.

5.4.1. Benchmark: Packet Header Parsing

The first benchmark has the verdict engine parse internet packet headers. This benchmark enables the
system to be compared to FPGA packet parsing systems discussed in the related work (Section 2.4).
Various notable works related to FPGA-based header parsers implement parsers that implement two

5.4. Benchmarking Results 59

parse graphs. The first graph is Ethernet, 2x VLAN, 2x MPLS, IPv4/IPv6, TCP/UDP, ICMP/ICMPV6.
The second graph is a smaller variation of the first: Ethernet, IPv4/IPv6, TCP/UDP, ICMP/ICMPV6.
The graphs are displayed in Figure 5.6.

Ethernet

VLAN OQuter

v

VLAN Inner

MFLS Level 1

Ethernet

N

MPLS Level 2

IPv4 IPvG
IPvd IPvG M\
ICMP TCP upp ICMPvG ICMP TCP UppP ICMPvE
Graph 1 - Full Graph 2 - Simple

Figure 5.6: The two parse graphs which the benchmark schemas adhere to.

Four schemas are made, which can be found in Appendix B.1, each handling a different parsing case:

1. From the first graph, the classical quintuple of header fields is extracted: IP source, IP destina-
tion, Protocol, Source Port and Destination Port. (Appendix B.1.1)

2. From the first graph, all header fields are extracted. (Appendix B.1.2)
3. From the second graph, the classical quintuple of header fields is extracted. (Appendix B.1.3)

4. From the second graph, all header fields are extracted. (Appendix B.1.4)

A catch with this benchmark is that the verdict engine cannot provide an output of the parsed fields.
Instead, the schema localises the appropriate field by putting it on the data field bus. The schemas
mainly consist of shift instructions, which shift the appropriate fields onto the data field bus or shift
through fields which can be skipped. Furthermore, it checks whether the data adheres to the parse
graphs by checking the appropriate "next header” fields in each header. Therefore, it can also invalidate
any header stack which does not adhere to the parse graphs.

For benchmarking these schemas, we report the worst-case average throughput and latency. For this,
an input is required, which takes the longest to complete. In the case of packet header parsing, this is
a packet header with the most fields. For the first graph, the longest input we can provide is a header
stack containing Ethernet, 2x VLAN, 2x MPLS, IPv4, and TCP headers. For the second graph, this
is a header stack containing the Ethernet, IPv4 and TCP headers. The verdict engine only needs a
single blob to derive the worst-case timing, as the schema has a fixed timing for this input. The results
are displayed in Table 5.3.

] | 1st graph 5 tuple | 1st graph all | 2nd graph 5 tuple | 2nd graph all |

Schema size (#instrs) 85 142 51 103

Clock cycle count 53 71 26 40

Instr count 42 61 19 33

Field count 9 25 17 38

Processed bits count 592 592 432 432

AXl4s packet count 3 3 2 2

Avg throughput (Mbps) 1116.98 833.80 1661.54 1080.00

Avg latency (ns) 176.67 236.67 130 200

Table 5.3: Benchmark results for packet header parsing

60 Chapter 5. Benchmarking and Results

Other works achieve higher performance with packet parsing compared to the system. The work of
Benacek et al.[5] achieves 100 Gbps throughput for extracting the classical 5-tuple in both graphs with
a latency of around 46.1 ns. Similarly, the research of Santiago Da Silva et al.[7] achieves 100 Gbps
throughput for both graphs but has a lower latency of around 25.6 ns. Finally, the work of Mashreghi-
Moghadam et al.[8] achieved a throughput of over 1 Tbps for all 4 cases, with their latency staying
under 15 ns.

The gap in performance of the verdict engine compared to these systems is expected, as the verdict
engine uses a run-to-completion model and handles data fields sequentially. These systems gain higher
performance through parallel extraction of fields, pipelining multiple packets and their hardware being
custom-generated to only parse packets. Our system instead shows its strength in flexibility, as shown
in Section 5.4.8. Being able to load in new schemas within a few seconds means that changing existing
parse graphs or loading in new parse graphs is much quicker than resynthesizing a newly generated
parser.

5.4.2. Benchmark: Packet Header Validation

The second benchmark has the verdict engine validate Internet packet headers for structure and con-
tent. A packet filtering system can subsequently use the verdict to filter the packet. A schema has been
created for ICMP that only validates an ICMP "Echo Request” or "Echo Reply”. The use case would be
to ping a host to test the reachability of that host within a network. The verdict engine does not count
other ICMP types as valid to minimise the attack surface of ICMP attacks.

The schema checks that data consists of an Ethernet header, followed by a base IPv4 header and
finally, ICMP. It checks for the correct EtherType and Protocol field, as well as checks whether the total
length of the IPv4 packet does not exceed the maximum transmission unit. In the ICMP header, only
the Echo Request and Echo Reply types are allowed. The schema can be found in Appendix B.2.

The benchmark data is a single blob containing a valid Ethernet-IPv4-ICMP packet header. The timing
of the schema is fixed as the header formats do not specify variable length. For one or more correct
blobs, the average throughput and latency stay the same. The benchmark results are displayed in
Table 5.4.

| [ICMP validation |

Schema size (#instrs) 29

Clock cycle count 35

Instr count 29

Field count 10

Processed bits count 336

AXl4s packet count 2

Avg throughput (Mbps) 959.99
Avg latency (ns) 175.00

Table 5.4: Benchmark results for ICMP packet validation

The ICMP validation schema is a representative case of assessing an externally defined binary for-
mat. The schema checks for adherence to the expected order of packet headers and validates impor-
tant fields to minimise the potential attack surface from improper packets. The average throughput of
roughly 960 Mbps for the header shows that the system with the schema shows suitable speeds for
gigabit networks that require real-time packet validation. The added benefit of the system’s flexibility
allows for quick adjustments of the schema in dynamic networking conditions.

5.4.3. Benchmark: Checking the Structure of X.509 Certificates

The largest benchmark has the verdict engine check for the structure of ASN.1 DER encoded X.509
public key certificates. In the domain of secure networking, public key certificates are the basis for a
public key infrastructure (PKI), which allows two parties to establish trust. Once this trust is established,
it enables a secure exchange of information over a network. An example is browsing the web through
HTTPS, where Transport Layer Security (TLS) uses these certificates to encrypt data. Another example

5.4. Benchmarking Results 61

would be a PKI for loT devices to ensure trusted exchanges of data. For trust to be valid, the certificate
needs to be correct. Incorrect certificates can be a way to exploit a system, introducing possible attacks
around these certificates, such as [36][37][38]. To this end, a schema is made to check for the correct
structure of these certificates.

The schema checks the structure of an ASN.1 DER encoded version 3 X.509 certificate according
to the specification provided by the ITU [39]. It follows the public key certificate definition from the
AuthenticationFramework.asn ASN.1 module. And checks whether the data is specifically DER-
encoded, instead of other ASN.1 binary encoding rules. The schema can be found in Appendix B.3. It
should be noted that no claims are made about the correctness of this schema, as a way to prove the
correctness of a schema is currently outside the scope of the project. For now, the responsibility is for
the programmer to check whether the schema checks the format against the appropriate standard.

The benchmark is done in the VHDL sim, as the timing of the schema is variable per certificate blob, and
certificates can vary in size. To obtain a realistic performance evaluation of the schema, a large dataset
was required, containing random, unique certificates. To this end, a public dataset has been found
called the x509-cert-testcorpus [40]. This corpus consists of around 1.74 million X.509 certificates,
which have been collected from TLS servers. This dataset was downloaded from GitHub and consists
of many SQLite3 database files. These were merged using Python into one large database. However,
this amount was too much to run through the VHDL sim. Hence, the size was reduced to the first 10000
entries of this merged database, making this our benchmark dataset. The results are shown in Table
5.5.

] | X.509 structure checking |

Schema size (#instrs) 227
Clock cycle count 69799183
Instr count 55452436
Field count 13736635
Processed bits count 127331256
AXl4s packet count 502251
Avg throughput (Mbps) 182.43
Avg latency (ns) 1389.73

Table 5.5: Benchmark results for X.509 structure checking

The results show a lower average throughput and latency relative to the other performed benchmarks.
This is expected as the schema shows a fair amount of complexity compared to other benchmarked
schemas. Translating the clock cycles from our benchmark to the time in seconds results in the 10000
certificates being checked within 0.7 seconds. Within the related research, there were no comparable
hardware-based systems found that could parse and check X.509 certificates. One software-based
solution from Ni et al. [41] has built an ASN.1 DER parser. Focusing on the correctness of parsing
ASN.1 DER. They evaluated their system by parsing 10138 X.509 certificates, which their system could
parse in 198 seconds. However, they do not state what hardware was used to run their parser, and
they used a different dataset from ours. (We made attempts to obtain the same dataset, but they were
unsuccessful.) Therefore, a comparison between their system and the verdict engine is not possible.

5.4.4. Benchmark: Weather Station Data Validation

To showcase support for other binary formats, the following 3 benchmarks use formats which were
not specifically taken into account during the design phase, but are still partially/fully supported by the
system. The first of these new format benchmarks has the system validate weather data blobs at a
weather station. A use case was created where weather data blobs are created from loT weather
sensors and are encoded using MessagePack. These are then sent to a weather station that checks
if the fields within the blobs are within the correct bounds. This is relevant for minimising exploitation
through falsely encoded blob data, as well as valid data collection, as out-of-bound sensor values get
detected and can therefore be discarded.

This schema assesses data fields containing information about the sensed data (e.g. temperature and
humidity) and metadata concerning the loT sensing device (e.g. device ID and battery level). The blob

62 Chapter 5. Benchmarking and Results

passes the schema if all datatypes are correct and values fall within the right ranges. The schema can
be found in Appendix B.4.

The benchmark is done in the VHDL sim, as the schema has a variable timing. This is because Mes-
sagePack encodes fields with a variable type and length. For instance, a field containing a sensor
value can have a range for which the smaller values can be encoded in an 8-bit field, but larger values
require 16 bits or more to encode the data. As a variable number of instructions are executed to eval-
uate the data type and data length, the timing of the schema is different per blob. Therefore, a dataset
of correct blobs is required to evaluate the schema’s realistic performance. To this end, we created
a data generator in Python which generates a dataset containing 10000 correct blobs and randomly
generated values, resulting in various data types being used to encode such a value across different
blobs. The benchmark results are displayed in Table 5.6.

] | Weather data filter |

Schema size (#instrs) 95

Clock cycle count 2525806
Instr count 2175806

Field count 355681
Processed bits count 2304976

AXl4s packet count 10000

Avg throughput (Mbps) 91.26
Avg latency (ns) 2525.81

Table 5.6: Benchmark results for weather data filtering

The performance of this schema is the lowest relative to the other benchmarked schemas. The com-
plexity of the schema is reflected in the average latency, which reports the most clock cycles (and
therefore instructions) per unit of data compared to other schemas. The schema has many value com-
parisons, branching, and subroutine calling relative to the amount of data that needs to be checked.
This was mainly due to almost every field being checked for its correct range, as well as for determining
which number encoding was used for each field. To better understand the timing characteristics when
a schema scales in complexity, the schema timing growth is investigated in Section 5.4.7.

5.4.5. Benchmark: MPEG TS Video Stream Validation

This benchmark assesses MPEG Transport Stream (TS) packets. This is a binary format used in the
storage and transmission of audio and video data. The packet size is 188 bytes and consists of a
header and payload data. Validating these packets has, for instance, the use case of filtering a video
stream.

The schema checks for several flags and fields to check whether packets are not corrupted and belong
to a specific packet ID to invalidate other streams. The payload for this stream consists of a Packetized
Elementary Stream (PES) packet, of which the header is also checked. The schema ends by flushing
the payload data through the system. Furthermore, the schema reduces its instruction count by check-
ing multiple fields in one comparison. This is possible in the case that multiple consecutive fields need
one value to be exactly matched on. Therefore, we can construct a constant which concatenates the
constants required for the two individual fields. This results in only one comparison with one constant,
saving on instruction execution. The schema can be found in Appendix B.5.

As the schema has a fixed timing, the provided data to the benchmark is a single blob containing the
MPEG TS header, PES header, and payload. The benchmark results are displayed in Table 5.7.

The average throughput and latency are high for this schema and can be attributed to the payload
data being flushed through the system. Additionally, the complexity of this schema is not high due to
the headers not containing many fields. Furthermore, the schema is less complex as some parts of
the format could not be checked, as state is required between blobs. This format has, for example,
a “continuity counter”, which increments per blob. Moreover, the format has a "Program Association
Table” payload when the packet ID is 0. This table lists available programs with their linked packet IDs.
If those IDs can be saved, validation of packets can be state-specific, which is useful for this format.

5.4. Benchmarking Results 63

] | Video stream filter |

Schema size (#instrs) 17

Clock cycle count 26

Instr count 18

Field count 6
Processed bits count 1504

AXl4s packet count 6

Avg throughput (Mbps) 5784.62

Avg latency (ns) 43.33

Table 5.7: Benchmark results for video stream filtering

Considering the current functionality of the system, a format can only be checked for its fields which
do not require state saving between blobs. But it is shown that an extension to the verdict engine is
required for properly checking stateful binary formats.

5.4.6. Benchmark: XDR Drone Command Validation

The final schema benchmark has the system validate a custom binary command message for a drone,
encoded in the External Data Representation (XDR) format. This has its use case in operational drones,
which require real-time commands for information on where to fly. Validation for these commands is
important as they are mission-critical. If a command is invalid, it can lead to drones flying to the wrong
target location, or worse, potentially crashing.

The schema checks whether the command fields, such as priority level, target latitude, target altitude,
etc, have the right values or fall within the correct ranges. Various fields in the blob are encoded as a
fixed-point number. Which are checked accordingly to the constants by offsetting them. The schema
can be found in Appendix B.6.

The data provided to the benchmark is a single correct command blob. As the command format is
externally described and does not have a variable length, the schema also has a fixed timing. Therefore,
the performance characteristics will be the same for all blobs. The results are shown in Table 5.8.

] | Drone command filter |

Schema size (#instrs) 49
Clock cycle count 57
Instr count 50
Field count 16
Processed bits count 928
AXl4s packet count 4
Avg throughput (Mbps) 1628.07
Avg latency (ns) 142.5

Table 5.8: Benchmark results for drone command filtering

This benchmark of this schema shows how the system can check command messages in real-time.
With an average throughput of around 1630 Mbps, the system can keep a consistent and adequate
throughput for processing valid messages. For communication channels in use today in drones such
as TCDL [42], with data rates around 1 to 10 Mbps, the system will not be a bottleneck regarding
throughput for checking mission-critical command data, and it helps minimise any attacks related to
tampering with these messages.

5.4.7. Schema Timing Growth

From the benchmarks, it has been shown that schemas that contain many comparisons with constants
per unit of data take a hit in performance. This is reflected by the latency metric, which becomes higher
once the clock cycles increase due to comparisons, whilst the amount of data (expressed in AXl4s
packets) stays the same. A synthetic benchmark was created to profile this performance characteristic.

64 Chapter 5. Benchmarking and Results

The benchmark consists of 4 schemas. In the first schema a dummy field of a byte is put on the data
field bus, after which a comparison is made with a constant. For the second, third and fourth schemas,
this same comparison is made 10, 50 and 100 times respectively. Having the same comparison being
done multiple times on the same field provides insight into the impact on performance and how that
impact varies per schema.

Table 5.9 shows the results for this benchmark.

] | 1 constant | 10 constants [50 constants | 100 constants |

Clock cycle count 8 26 106 206
Instr count 5 23 103 203
Field count 1 1 1 1
Processed bits count 8 8 8 8
AXl4s packet count 1 1 1 1
Avg throughput (Mbps) 100 30.77 7.55 3.88
Avg latency (ns) 80 260 1060 2060

Table 5.9: Benchmark results for schema growth

This benchmark confirms, based on the clock cycle count and latency, that there is a linear increase in
the time taken to perform more comparisons on the data. For the average throughput, this becomes
a reciprocal function based on the clock cycles. The more clock cycles used per bit, the further the
throughput converges to 0.

Larger constants also influence the slope of the linear time increase. Currently, a comparison is made
up of 2 instructions (1dim + cmp), but bigger constants increase the number of 1dim instructions for
loading the constant, increasing the instruction count per comparison.

The properties of this behaviour lead to what can be implemented for future improvement. Optimisations
lie in eliminating the linearity in time caused by comparison operations being performed sequentially.
Or reducing the slope of the linear increase per comparison by reducing the amount of instructions
required for a comparison.

5.4.8. Schema Flexibility

To see how adaptable the system is to changing input data conditions, we benchmarked the flexibility
of changing schemas during the runtime of the system. We measured the time required to program the
system during its runtime.

For loading each schema from the previous sections into memory, we performed two measurements.
The first measurement is done in the VHDL simulator, where the clock cycles are counted from the first
AXI4l transaction with the instruction memory until the schema_loaded flag in the control register is set.
This provides the maximum speed at which each schema can be loaded into the system. The second
measurement uses the FPGA and the serial connection, where a schema program is serially written
to the FPGA via a serial bus. The Python program that runs the AXI4l master then measures the time
taken to write the schema program to the FPGA. The second measurement is not as strict, as it can
contain more overhead from the measurement process, the OS, the serial connection, etc. However,
it does provide a realistic environment in which schemas can be loaded into the system.

Table 5.10 shows the benchmark results, which are ordered from smallest schema to largest schema.

The benchmark results show a linear increase in both measurements as the schema size increases.
This aligns with the sequential writing to the instruction memory, where every instruction contributes
to a longer writing time. The smaller schemas, such as the MPEG TS and ICMP validation, take a
longer time to write per instruction. This can be attributed to overhead. In the first measurement, this
overhead can be attributed to setting the schema_loaded flag high. In the second case, the overhead
is more random, as is apparent from the cases where a bigger schema takes more time per instruction
write compared to the previous smaller schema.

5.5. Results Discussion 65

Qo
o [
c £ = 2 3
g e s |5 |g |z |2
o | = S & & < T T =
> a =) =) S o)) Q
O] o £ £ o £ £ ©
L s DOC @ 2 > 2 2 3
s | O < g g = & g 2
Instructions 17 29 49 51 85 95 103 142 227
Clock cycles | 57 93 153 159 261 291 315 432 687
(VHDL sim)
Clock cycles | 3.35 | 3.21 3.12 3.12 3.07 3.06 3.06 3.04 3.03
per instr
Milliseconds 61 97.75 | 149.33 | 154.85 | 263.08 | 272.73 | 296.07 | 405.02 | 655.47
(serial - FPGA)
Milliseconds 3.59 | 3.37 | 3.05 3.04 3.10 2.87 2.87 2.85 2.89
per instr

Table 5.10: Benchmark results for schema flexibility

These results highlight the flexibility of the verdict engine, as these schema loads can be performed
during runtime without having to change the underlying hardware, with a low downtime during writ-
ing. In contrast, other related hardware-based parsing/filtering systems require resynthesis to integrate
schema changes, or are limited in what changes can be made in the format during runtime. This makes
the verdict engine suitable for different use cases with dynamic workloads.

5.5. Results Discussion
The benchmarking results showcase the performance characteristics across various schemas and,
importantly, showcase the flexibility of both schema diversity and schema loading of the verdict engine.

The system supports a broader range of binary formats beyond the initial design scope of validating the
base IPv4 header and ASN.1 DER encoded data. This is shown through the additional benchmarks of
ICMP packet validation, MessagePack weather station data validation, MPEG TS video stream valida-
tion, and XDR drone command validation.

Across the benchmarked schemas, the system can successfully check for adherence to the data, em-
phasising the verdict engine’s ability to support various use cases. The flexibility comes at the cost of
lower performance compared to fully custom FPGA designs. This trade-off is an inherent result of the
VM architecture and a run-to-completion model, but allows us to prioritise implementation of diverse
schemas, complex assertions, and runtime schema updates, instead of aiming for high performance
with a pipelined model.

The timing characteristics of schemas were analysed using a synthetic benchmark. The results con-
firmed that an increase in the number of comparisons on the same data linearly influences the increase
in execution time and average latency, and has the average throughput decrease reciprocally. This is
also seen in the more complex schemas, such as the weather data validation case, where there is a
higher latency on average due to a large number of field assertions and branching per data field. We
reason that with optimisation of these aspects, through parallel comparisons or instruction efficiency
improvements, performance can be increased.

Finally, the verdict engine is flexible in how quickly it can change from checking one format to another.
The benchmark results show that new schemas can be loaded into the system with minimal downtime.
Compared to other related hardware-based systems, which usually require a lengthy resynthesis pro-
cess to update to a new format, the verdict engine does not have to change the underlying hardware
at all. This ability benefits various use cases with dynamic scenarios that often experience chang-
ing conditions and require minimal downtime, such as network security, streaming and mission-critical
systems.

66 Chapter 5. Benchmarking and Results

The benchmarking results highlight the flexibility of the verdict engine and report adequate performance
characteristics for various use cases, establishing its use as a flexible validation system for diverse and
dynamic use cases.

5.6. Conclusion

In this chapter, we evaluated the implemented design and benchmarked the system for its performance
and flexibility. To be able to test and benchmark the verdict engine on an FPGA, a hardware setup was
determined. For the FPGA testbed, a packet relay module was implemented to be able to send data
to the verdict engine at maximum throughput over a serial connection with the test computer. Besides
the FPGA setup, a VHDL simulation setup was explained for benchmarks with larger datasets, where
BFMs send multiple packets in succession and provide them at the maximum throughput of the system.
Afterwards, the synthesis results were discussed for timing, resource usage, and energy consumption.
The design’s obtained clock frequency of 100 MHz was used to convert clock cycles to time during
the benchmarks. Subsequently, the measurement window was explained, in which the system counts
various metrics during a benchmark. Finally, the system was evaluated through several benchmarks,
consisting of: Internet packet parsing, Internet header validation, X.509 certificate validation, weather
station MessagePack data validation, MPEG TS video stream validation, and XDR drone command
validation. This showed that the system is compatible with binary formats that go beyond the initial
formats for which the system was designed. This showcased flexibility in the various formats that the
system can assess. The measured performance varied per use case due to the varying number of
required checks in the data and the complexity of branching. To profile this, a synthetic benchmark
was run, measuring the timing effects of the number of comparisons on the same data. This led to a
linear increase in clock cycles and a reciprocal decrease in the average throughput when the number
of comparisons increased. Finally, the timing regarding schema switching was benchmarked. It was
shown that downtimes of the system were minimal. This, together with not having to manage a lengthy
and complex synthesis process, made the system a much more flexible option compared to other
systems. This evaluation showed that the binary verdict engine is a flexible validation system that can
be used in the validation of diverse and dynamic use cases.

Conclusion

6.1. Summary

In Chapter 2, we discussed the required background for the thesis project. We set the project scope on
binary formats. A binary format classification was created to describe the binary formats that needed
to be supported, where we identified that formats could be externally described or self-describing (or
a hybrid), and flat or hierarchical. We described how binary formats hold data fields with various data
types and how these types can be checked, such as exact matching on strings and comparison on
integers. Afterwards, the binary parsing process was explained, specifically the advantages and dis-
advantages of single-pass binary parsing. We discussed how binary parsing relies on assertions to
check for the format structure and content, and why a DSL was required to provide parsing configura-
tions. Finally, for the general background, we discussed how FPGAs provided advantages over CPUs
related to better data streaming, bit-aligned operations, and purpose-built hardware. We also briefly
touched upon why FPGAs were preferred over ASICs for this project. Afterwards, the related work was
discussed and provided an exploration of various categories of configurable hardware-based packet
parsing systems. The first category, generated HDL parsers and filters, generated hardware based on
a parsing/processing description. They provide high performance for field extraction but are inflexible
to change. The second category, templated generic parsers, is more flexible as it supports changes
in the format description during runtime through generic hardware stages, but has challenges related
to supporting assertions and data hierarchy. The third category of systems, match-action systems,
are hardware-based systems with wide functionality for executing network functions. It also remained
a challenge for this category to support assertions and data hierarchy. The final category, hardware-
based VMs, are programmable systems which are very flexible, at the cost of high-performance parsing.
Lastly, we considered what concepts several packet parsing DSLs had in common in terms of notation.
The showcase of related research provided the knowledge to make a design direction for the system.

In Chapter 3, we explained our design for this project. Before discussing the design, we provided the
requirements of the system, as derived from the background study. These requirements were cate-
gorised into either data assessment requirements or architectural requirements. As these required
much flexibility from an underlying architecture, the VM architecture was chosen as it allowed for for-
mat variability, runtime programmability, and future extension to system functionality. Furthermore, we
touched on how we considered security in the design process. From the data assessment requirements,
we designed a schema language which can: declare fields in the expected order of arrival; declare as-
sertions on fields; assert the length of a section; declare fields with a variable width; declare conditional
statements to change program flow; call other schemas; declare repeat loops; declare repeat while
loops; and declare the end of a schema. Afterwards, the ISA was explained per instruction, and a
pseudo notation was explained to denote the instructions in a human-readable format. We linked the
schema language to the ISA by explaining the conversion from schema language constructs to pseudo
notation. Finally, we discussed the module design. The modules execute the instructions of the system.
First, the input and output systems were discussed in how they convert the input stream to data fields
with a specified width, and how the data fields are converted back to an unmodified output stream. Sec-

67

68 Chapter 6. Conclusion

ond, the controller was explained for its function per instruction. Third, the instruction fetcher provides
instructions to the system and maintains the instruction pipeline when updating the Program Counter
or shifting. Fourth, the stack can push and pop stack entries used for schema calling, length assertions,
repeat loops, and while loops. Lastly, the full design was provided, showing the interfaces between the
modules and external interfaces.

In Chapter 4, we discussed the implemented module design in VHDL and the Python emulator and
assembler programs. An overview was provided first on a workflow with the implemented systems for
developing schemas. The assembler and emulator programs are used to debug and test schemas be-
fore they are deployed onto the VHDL implementation. Second, the working of the Python assembler
was explained, where a schema in pseudo notation is first preprocessed to an intermediate represen-
tation, such that there is a one-to-one conversion to the final binary instruction. Third, the differences
between the functional emulator of the verdict engine and the module design were discussed, and
its general operation was explained. Finally, the VHDL implementation of the verdict engine was dis-
cussed. We first explained the AXI4-Stream protocol and how we used it in the input and output system
of the verdict engine. We briefly touched upon the working of the AXIl4-Lite protocol and where it was
used in our system. Afterwards, the implementation of the modules was explained. First, the implemen-
tation of the input system was explained. Its interfaces had been made concrete as AXlI4s buses, and
the internal processing from AXl4s input packets to AXl4s data field packets during both shifting and
flushing was explained. Second, the output system was explained for how it converts the AXI4s data
field packets to the AXl4s output packets. Third, the controller was explained on how it implements the
required functionality per instruction. Fourth, the instruction fetcher and its handling of the instruction
pipeline were explained. The instruction fetcher needs to manage a two-stage pipeline and needs to
be able to handle 1-cycle hazards during various instructions. An important catch with this pipeline was
highlighted, which was that input data must always be available upon request. Fifth, the stack imple-
mentation was explained, and attention was given to how the next incremented entry_value was set.
Lastly, the full design was shown, with the updated interfaces for the input and output systems and
updated signals for the instruction pipeline.

In Chapter 5, we evaluated the implemented design and benchmarked the system for its performance
and flexibility. To be able to test and benchmark the verdict engine on an FPGA, a hardware setup was
determined. For the FPGA testbed, a packet relay module was implemented to be able to send data
to the verdict engine at maximum throughput over a serial connection with the test computer. Besides
the FPGA setup, a VHDL simulation setup was explained for benchmarks with larger datasets, where
BFMs send multiple packets in succession and provide them at the maximum throughput of the system.
Afterwards, the synthesis results were discussed for timing, resource usage, and energy consumption.
The design’s obtained clock frequency of 100 MHz was used to convert clock cycles to time during
the benchmarks. Subsequently, the measurement window was explained, in which the system counts
various metrics during a benchmark. Finally, the system was evaluated through several benchmarks,
consisting of: Internet packet parsing, Internet header validation, X.509 certificate validation, weather
station MessagePack data validation, MPEG TS video stream validation, and XDR drone command
validation. This showed that the system is compatible with binary formats that go beyond the initial
formats for which the system was designed. This showcased flexibility in the various formats that the
system can assess. The measured performance varied per use case due to the varying number of
required checks in the data and the complexity of branching. To profile this, a synthetic benchmark
was run, measuring the timing effects of the number of comparisons on the same data. This led to a
linear increase in clock cycles and a reciprocal decrease in the average throughput when the number
of comparisons increased. Finally, the timing regarding schema switching was benchmarked. It was
shown that downtimes of the system were minimal. This, together with not having to manage a lengthy
and complex synthesis process, made the system a much more flexible option compared to other
systems. This evaluation showed that the binary verdict engine is a flexible validation system that can
be used in the validation of diverse and dynamic use cases.

6.2. Contributions
This section answers the research questions and lists the contributions of this work.

6.2. Contributions 69

6.2.1. Answering the Research Questions
The questions from Section 1.1 can now be answered. Starting with the research question:

How can we build a reconfigure-once, FPGA-based verdict system to assess structured
binary data across different formats?

We built the binary verdict engine as a hardware-based VM, using schema programs (i.e. instructions)
to traverse the binary data stream per data field, assess data fields and binary sections, and change
control flows to other instruction routines. We assess the data through assertions, of which we have
created two variants in the system: field assertions that check the data field with a constant, and length
assertions that check if a section of the data is of the correct length. We defined a schema DSL with
which we can create schema programs to specify how the data adheres to a specific binary format.
Schema programs can be interchanged by uploading a new program to the instruction memory. We
achieved a reconfigure-once design with the binary verdict engine, as the system can be reprogrammed
to support assessment of various binary formats without having to alter the underlying hardware design.
We implemented the design on an FPGA, and we evaluated the implementation for its flexibility and
performance. We showed the flexibility of the design in various use cases containing different formats
and in applying schema changes, and evaluated the performance in use cases and schema timing
characteristics in synthetic benchmarks.

The first additional question:
What hardware architecture should be chosen for this verdict system?

We identified multiple architectural categories from researching the related work. We chose a Virtual
Machine architecture for the verdict system for its flexibility, as it supports wide variability in the formats
that it can parse. Because of its inherent programmability, it is also flexible in its ability to quickly change
schemas during the system’s runtime. Furthermore, the VM architecture is flexible as it can be extended
in functionality through the implementation of more instructions. We found that other architectures take
a more parallelised approach, but lack flexibility as they can only support a maximum size per blob,
are limited to a fixed amount of operations as the data goes through the system, and are limited in the
formats that they can support.

The second additional question:

How can we describe binary data such that the verdict system can check adherence to this
description?

We discussed various DSLs from the related work that demonstrated similar methods of a binary format
description. We used this as a basis to create the schema language to describe data encoded in a binary
format per data field. We can give data fields a width in bytes or bits, and they can be interpreted as
an unsigned or signed integer. We can declare one or more assertions per data field, or we can check
sections of data fields for their combined length using length assertions. We can determine the control
flow of the program using conditional statements and calling functions. We showed conversions from
the schema language to instructions to show how a future compiler can compile the schema language
to the program binary that the verdict engine can execute.

6.2.2. Main Contributions
The main contributions this work has provided are:

1. Compiled a list of requirements for the design of a verdict system for binary data.
Designed a schema language for describing and assessing binary formats.

Provided a design for the binary verdict engine to assess binary data against a schema.
Implemented an FPGA-based binary verdict engine on an FPGA.

Implemented a Python Emulator of the binary verdict Engine.

I e

Evaluated the binary verdict engine for its flexibility and performance characteristics.

[T TR RN

70 Chapter 6. Conclusion

6.2.3. Other Contributions

Other contributions made in this project are:

1. Created an assembly-like pseudo notation with which schemas can be written in a human-readable
format.

2. Implemented a Python Assembler that converts Schemas in pseudo instruction notation to binary
instructions.

3. Presented and demonstrated the design within Technolution and one of its clients, which was met
with positive reception.

6.3. Future work
This final section discusses various proposals for future work on the system.

6.3.1. Schema Language Compiler

The first proposal is the implementation of a compiler for the schema language. This compiler provides
a higher-level abstraction to the system user, as schemas can now be implemented using the schema
language. Compared to the pseudo notation, the schema language looks like a more conventional
programming language and shows a clearer structure of what the data is expected to look like. Further-
more, the compiler compiles fields and other constructs to multiple instructions, so there is less room
for human error as instructions do not need to be written manually. Finally, a compiler can create an
abstraction for comparisons bigger than the maximum data field size into smaller comparisons. For
example, the following code block showcases a string field with an assertion which goes beyond the
256-bit/32-byte maximum data field size, but is two string fields under the hood.

// This big string of 45 bytes

byte<45> unsigned MyBigString [== "The quick brown fox jumped over the lazy dog."]
// is an abstraction for:
byte<32> unsigned MySmallStringl [== "The quick brown fox jumped over "]

byte<13> unsigned MySmallString2 [== "the lazy dog."]

6.3.2. New Data Type Support

To broaden the support for binary format assessment, other data types can be supported for comparison
operations, such as |IEEE floats, or date and time formats. For these data types, it is expected that they
require new hardware with a new or adjusted comparison instruction to support these comparisons.
Furthermore, as the system now only supports formats that encode their data in big-endian order,
we can also extend support to formats which use a little-endian encoding for their data fields. Data
type support can also be implemented more generically, though the implementation of an "offload”
comparison instruction. This can send the current data field to another external module, which performs
the comparison, after which it returns an assertion result which can be processed by the verdict engine.

6.3.3. Smaller System Architectures Evaluation

The verdict engine is designed to be modular regarding its input and output stream data widths and
data field bus width. However, the current prototype implementation has 256-bit-wide buses. This
affects the rest of the system, as it must account for this width when comparing 256-bit wide data
fields to constants, storing these wide data fields to the stack, or incrementing them on the stack. This
increases the hardware resources required for the system. Depending on the use case, the assessed
binary formats may not contain 256-bit data fields and can be adequately assessed using, for instance,
a smaller 64-bit wide verdict engine. Implementing a smaller system will require less hardware and
memory, resulting in different timing characteristics, resource usage, and energy consumption.

Itis expected that systems with a smaller data field bus width can achieve higher clock speeds, allowing
them to assess binary formats more quickly. Evaluating the performance of these systems across
various bus widths can provide us with a profile of the verdict engine’s performance relative to the bus
width. If possible, we can recommend an optimal configuration of the verdict engine which balances
performance, area usage and bus width.

(1]

(2]

[3]

[4]

[3]

[6]

[7]

8]

(9]

[10]

(1]

[12]

References

Rfc 791 - internet protocol, [Online; accessed 2025-05-04]. [Online]. Available: https://datatr
acker.ietf.org/doc/html/rfc791.

X.690: Information technology - asn.1 encoding rules: Specification of basic encoding rules (ber),
canonical encoding rules (cer) and distinguished encoding rules (der), [Online; accessed 2025-
05-04]. [Online]. Available: https://www.itu.int/rec/T-REC-X.690-202102-I/en.

J. C. Viotti and M. Kinderkhedia, “A survey of json-compatible binary serialization specifications,”
no. arXiv:2201.02089, Jan. 2022, arXiv:2201.02089 [cs]. DOI: 10.48550/arXiv . 2201 . 02089.
[Online]. Available: http://arxiv.org/abs/2201.02089.

E. Maltsev, O. Muliarevych, and A. Razzaque, “Classifying serialization formats for inter-service
communication in distributed systems,” 2024. [Online]. Available: https://science.lpnu.ua/
sites/default/files/journal-paper/2024/dec/37009/vsedoi-87-92_0.pdf.

P. Benacek, V. Pu, and H. Kubatova, “P4-to-VHDL: Automatic Generation of 100 Gbps Packet
Parsers,” in 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), May 2016, pp. 148—155. DOI: 10.1109/FCCM. 2016 . 46. (visited
on 07/15/2024).

J. Cabal, P. Benacek, L. Kekely, M. Kekely, V. Pus, and J. Kofenek, “Configurable FPGA Packet
Parser for Terabit Networks with Guaranteed Wire-Speed Throughput,” in Proceedings of the
2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey CAL-
IFORNIA USA: ACM, Feb. 2018, pp. 249-258, ISBN: 978-1-4503-5614-5. DOI: 10.1145/31742
43.3174250. (visited on 07/15/2024).

J. Santiago da Silva, F.-R. Boyer, and J. P. Langlois, “P4-Compatible High-Level Synthesis of Low
Latency 100 Gb/s Streaming Packet Parsers in FPGAs,” in Proceedings of the 2018 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser. FPGA 18, New York, NY,
USA: Association for Computing Machinery, Feb. 2018, pp. 147-152, ISBN: 978-1-4503-5614-5.
DOI: 10.1145/3174243.3174270. (visited on 07/15/2024).

P. Mashreghi-Moghadam, T. Ould-Bachir, and Y. Savaria, “A Templated VHDL Architecture for
Terabit/s P4-programmable FPGA-based Packet Parsing,” in 2022 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), May 2022, pp. 672-676. DOI: 10.1109/ISCAS48785 .
2022.9937607. (visited on 06/06/2024).

B. Li, K. Tan, L. (Luo, et al., “ClickNP: Highly Flexible and High Performance Network Process-
ing with Reconfigurable Hardware,” in Proceedings of the 2016 ACM SIGCOMM Conference,
ser. SIGCOMM '16, New York, NY, USA: Association for Computing Machinery, Aug. 2016, pp. 1-
14, ISBN: 978-1-4503-4193-6. DOI: 10.1145/2934872.2934897. (visited on 07/18/2024).

H. Wang, R. Soulé, H. T. Dang, et al., “P4FPGA: A Rapid Prototyping Framework for P4,” in
Proceedings of the Symposium on SDN Research, ser. SOSR 17, New York, NY, USA: As-
sociation for Computing Machinery, Apr. 2017, pp. 122-135, ISBN: 978-1-4503-4947-5. DOI:
10.1145/3050220.3050234. (visited on 07/15/2024).

S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The P4->NetFPGA Workflow for Line-
Rate Packet Processing,” in Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA’19, New York, NY, USA: Association for Computing
Machinery, Feb. 2019, pp. 1-9, ISBN: 978-1-4503-6137-8. DOI: 10. 1145/3289602 . 3293924.
(visited on 06/25/2024).

A. Yazdinejad, R. M. Parizi, A. Bohlooli, A. Dehghantanha, and K.-K. R. Choo, “A high-performance
framework for a network programmable packet processor using P4 and FPGA,” Journal of Net-
work and Computer Applications, vol. 156, p. 102564, Apr. 2020, ISSN: 1084-8045. DOI: 10.
1016/ . jnca.2020.102564. (visited on 06/03/2024).

71

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc791
https://www.itu.int/rec/T-REC-X.690-202102-I/en
https://doi.org/10.48550/arXiv.2201.02089
http://arxiv.org/abs/2201.02089
https://science.lpnu.ua/sites/default/files/journal-paper/2024/dec/37009/vsedoi-87-92_0.pdf
https://science.lpnu.ua/sites/default/files/journal-paper/2024/dec/37009/vsedoi-87-92_0.pdf
https://doi.org/10.1109/FCCM.2016.46
https://doi.org/10.1145/3174243.3174250
https://doi.org/10.1145/3174243.3174250
https://doi.org/10.1145/3174243.3174270
https://doi.org/10.1109/ISCAS48785.2022.9937607
https://doi.org/10.1109/ISCAS48785.2022.9937607
https://doi.org/10.1145/2934872.2934897
https://doi.org/10.1145/3050220.3050234
https://doi.org/10.1145/3289602.3293924
https://doi.org/10.1016/j.jnca.2020.102564
https://doi.org/10.1016/j.jnca.2020.102564

72

References

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

A. Fiessler, S. Hager, B. Scheuermann, and A. W. Moore, “HyPaFilter: A Versatile Hybrid FPGA
Packet Filter,” in Proceedings of the 2016 Symposium on Architectures for Networking and Com-
munications Systems, Santa Clara California USA: ACM, Mar. 2016, pp. 25-36, ISBN: 978-1-
4503-4183-7. DOI: 10.1145/2881025.2881033. (visited on 07/16/2024).

M. B. Anwer, M. Motiwala, M. bin Tariq, and N. Feamster, “SwitchBlade: A platform for rapid
deployment of network protocols on programmable hardware,” ACM SIGCOMM Computer Com-
munication Review, vol. 40, no. 4, pp. 183—-194, Aug. 2010, ISSN: 0146-4833. DOI: 10. 1145/
1851275.1851206. (visited on 05/30/2024).

V. Pus, L. Kekely, and J. Kofenek, “Design methodology of configurable high performance packet
parser for FPGA,” in 17th International Symposium on Design and Diagnostics of Electronic Cir-
cuits & Systems, Apr. 2014, pp. 189-194. DOI: 10 . 1109 /DDECS . 2014 . 6868788. (visited on
07/01/2024).

M. Attig and G. Brebner, “400 Gb/s Programmable Packet Parsing on a Single FPGA,” in Pro-
ceedings of the 2011 ACM/IEEE Seventh Symposium on Architectures for Networking and Com-
munications Systems, ser. ANCS ’11, USA: IEEE Computer Society, Oct. 2011, pp. 12-23, ISBN:
978-0-7695-4521-9. DOI: 10.1109/ANCS.2011.12. (visited on 05/23/2024).

M. Lixin, L. Qingrang, and W. Xin, “Software-Defined Protocol Independent Parser based on
FPGA,” in Proceedings of the International Conference on Industrial Control Network and Sys-
tem Engineering Research, ser. ICNSER2019, New York, NY, USA: Association for Computing
Machinery, Mar. 2019, pp. 42-46, ISBN: 978-1-4503-6627-4. DOI: 10.1145/3333581 . 3333591.
(visited on 05/23/2024).

Y. Sun and Z. Guo, “The Design of a Dynamic Configurable Packet Parser Based on FPGA,”
Micromachines, vol. 14, no. 8, p. 1560, Aug. 2023, ISSN: 2072-666X. DOI: 10.3390/mi14081560.
(visited on 05/29/2024).

P. Bosshart, D. Daly, G. Gibb, et al., “P4: Programming protocol-independent packet processors,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87-95, Jul. 2014, ISSN: 0146-4833. DOI:
10.1145/2656877.2656890. (visited on 07/15/2024).

P. Bosshart, G. Gibb, H.-S. Kim, et al., “Forwarding metamorphosis: Fast programmable match-
action processing in hardware for SDN,” in Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, ser. SIGCOMM ’13, New York, NY, USA: Association for Computing Machinery,
Aug. 2013, pp. 99-110, ISBN: 978-1-4503-2056-6. DOI: 10.1145/2486001.2486011. (visited on
07/15/2024).

T. Luinaud, T. Stimpfling, J. S. da Silva, Y. Savaria, and J. P. Langlois, “Bridging the Gap: FPGAs
as Programmable Switches,” in 2020 IEEE 21st International Conference on High Performance
Switching and Routing (HPSR), May 2020, pp. 1-7. DOI: 10.1109/HPSR48589 . 2020 . 9098978.
(visited on 08/01/2024).

J. Santiago da Silva, T. Stimpfling, T. Luinaud, B. Fradj, and B. Boughzala, “One for All, All for
One: A Heterogeneous Data Plane for Flexible P4 Processing,” in 2018 IEEE 26th International
Conference on Network Protocols (ICNP), Sep. 2018, pp. 440-441. DOI: 10.1109/ICNP.2018.
00063. (visited on 07/01/2024).

S. Pontarelli, R. Bifulco, M. Bonola, et al., “{FlowBlaze}: Stateful Packet Processing in Hardware,”
in 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), 2019,
pp. 531-548, ISBN: 978-1-931971-49-2. (visited on 07/16/2024).

H. Zolfaghari, D. Rossi, and J. Nurmi, “A custom processor for protocol-independent packet pars-
ing,” Microprocessors and Microsystems, vol. 72, p. 102910, Feb. 2020, ISSN: 0141-9331. DOI:
10.1016/j.micpro.2019.102910. (visited on 06/03/2024).

M. S. Brunella, G. Belocchi, M. Bonola, et al., “hXDP: Efficient software packet processing on
FPGA NICs,” Commun. ACM, vol. 65, no. 8, pp. 92-100, Jul. 2022, ISSN: 0001-0782. DOI: 10.
1145/3543668. (visited on 07/18/2024).

“Xdp.” en-US. (), [Online]. Available: https://www.iovisor.org/technology/xdp.

“Ebpf - introduction, tutorials & community resources.” en. (), [Online]. Available: https://ebpf.
io.

https://doi.org/10.1145/2881025.2881033
https://doi.org/10.1145/1851275.1851206
https://doi.org/10.1145/1851275.1851206
https://doi.org/10.1109/DDECS.2014.6868788
https://doi.org/10.1109/ANCS.2011.12
https://doi.org/10.1145/3333581.3333591
https://doi.org/10.3390/mi14081560
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2486001.2486011
https://doi.org/10.1109/HPSR48589.2020.9098978
https://doi.org/10.1109/ICNP.2018.00063
https://doi.org/10.1109/ICNP.2018.00063
https://doi.org/10.1016/j.micpro.2019.102910
https://doi.org/10.1145/3543668
https://doi.org/10.1145/3543668
https://www.iovisor.org/technology/xdp
https://ebpf.io
https://ebpf.io

References 73

(28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]
[37]
[38]

[39]

[40]

[41]

[42]

R. D. G. Pacifico, L. F. S. Duarte, L. F. M. Vieira, B. Raghavan, J. A. M. Nacif, and M. A. M. Vieira,
“eBPFlow: A Hardware/Software Platform to Seamlessly Offload Network Functions Leveraging
eBPF,” IEEE/ACM Transactions on Networking, vol. 32, no. 2, pp. 1319-1332, Apr. 2024, ISSN:
1558-2566. DOI: 10.1109/TNET.2023.3318251. (visited on 07/18/2024).

H. Zolfaghari, H. Mustafa, and J. Nurmi, “Run-to-Completion versus Pipelined: The Case of 100
Gbps Packet Parsing,” in 2021 IEEE 22nd International Conference on High Performance Switch-
ing and Routing (HPSR), Jun. 2021, pp. 1-6. DOI: 10.1109/HPSR52026.2021.9481797. (visited
on 07/18/2024).

Arm, Amba axi-stream protocol specification, [Online; accessed 2025-04-22], Jun. 2023. [Online].
Available: https://developer.arm.com/documentation/ihi0051/latest/

Arm, Amba axi and ace protocol specification version h.c, [Online; accessed 2025-04-22], Jan.
2021. [Online]. Available: https://developer.arm.com/documentation/ihi0022/hc/?lang=
en.

Axid-stream interface * soft-decision fec integrated block logicore ip product guide (pg256)
reader « amd technical information portal, [Online; accessed 2025-04-23]. [Online]. Available:
https://docs.amd.com/r/en-US/pg256-sdfec-integrated-block/AXI4-Stream-Interface.

“Riviera-pro - advanced verification platform.” [Online; accessed 2025-04-02]. (), [Online]. Avail-
able: https://www.aldec.com/en/products/functional_verification/riviera-pro.
Cocotb 1.9.2 documentation, [Online; accessed 2025-04-02], 2025. [Online]. Available: https:
//docs.cocotb.org/en/stable/.

Polarfire family fabric user guide, [Online; accessed 2025-03-28], 2023. [Online]. Available: htt
ps://wwl.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/
UserGuides/PolarFire_FPGA_PolarFire_SoC_FPGA_Fabric_UG_VD.pdf.

Nvd - cve-2023-30588, [Online; accessed 2025-05-04]. [Online]. Available: https://nvd.nist.
gov/vuln/detail/cve-2023-30588.

Nvd - cve-2022-3602, [Online; accessed 2025-05-04]. [Online]. Available: https://nvd.nist.
gov/vuln/detail/cve-2022-3602.

Nvd - cve-2022-3786, [Online; accessed 2025-05-04]. [Online]. Available: https://nvd.nist.
gov/vuln/detail/cve-2022-3786.

X.509: Information technology - open systems interconnection - the directory: Public-key and
attribute certificate frameworks, [Online; accessed 2025-05-04]. [Online]. Available: https://
www.itu.int/rec/T-REC-X.509-201910-I/en.

johndoe31415, Github - johndoe31415/x509-cert-testcorpus: X.509 certificate test corpus that
was scraped from public tls servers, [Online; accessed 2025-04-07]. [Online]. Available: https:
//github.com/johndoe31415/x509-cert-testcorpus.

H. Ni, A. Delignat-Lavaud, C. Fournet, T. Ramananandro, and N. Swamy, “ASN1*: Provably Cor-
rect, Non-malleable Parsing for ASN.1 DER,” in Proceedings of the 12th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs, ser. CPP 2023, New York, NY, USA:
Association for Computing Machinery, Jan. 2023, pp. 275-289, ISBN: 9798400700262. DOI:
10.1145/3573105.3575684. (ViSited on 05/30/2024).

C. to Wikimedia projects, Common data link - wikipedia, [Online; accessed 2025-04-28], Jun.
2007. [Online]. Available: https://en.wikipedia.org/wiki/Common_Data_Link.

https://doi.org/10.1109/TNET.2023.3318251
https://doi.org/10.1109/HPSR52026.2021.9481797
https://developer.arm.com/documentation/ihi0051/latest/
https://developer.arm.com/documentation/ihi0022/hc/?lang=en
https://developer.arm.com/documentation/ihi0022/hc/?lang=en
https://docs.amd.com/r/en-US/pg256-sdfec-integrated-block/AXI4-Stream-Interface
https://www.aldec.com/en/products/functional_verification/riviera-pro
https://docs.cocotb.org/en/stable/
https://docs.cocotb.org/en/stable/
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/UserGuides/PolarFire_FPGA_PolarFire_SoC_FPGA_Fabric_UG_VD.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/UserGuides/PolarFire_FPGA_PolarFire_SoC_FPGA_Fabric_UG_VD.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/UserGuides/PolarFire_FPGA_PolarFire_SoC_FPGA_Fabric_UG_VD.pdf
https://nvd.nist.gov/vuln/detail/cve-2023-30588
https://nvd.nist.gov/vuln/detail/cve-2023-30588
https://nvd.nist.gov/vuln/detail/cve-2022-3602
https://nvd.nist.gov/vuln/detail/cve-2022-3602
https://nvd.nist.gov/vuln/detail/cve-2022-3786
https://nvd.nist.gov/vuln/detail/cve-2022-3786
https://www.itu.int/rec/T-REC-X.509-201910-I/en
https://www.itu.int/rec/T-REC-X.509-201910-I/en
https://github.com/johndoe31415/x509-cert-testcorpus
https://github.com/johndoe31415/x509-cert-testcorpus
https://doi.org/10.1145/3573105.3575684
https://en.wikipedia.org/wiki/Common_Data_Link

Module Activation per Instruction

This appendix describes which modules from the module design in Section 3.5 get activated per in-
struction from the ISA in Section 3.3. Each figure shows the module activation of an instruction. Green

modules or buses (arrows) represent module activation or usage of the bus. Yellow modules or buses
represent optional module activation or optional bus usage.

1

Instruction Fetcher

Shift Instruction

A
Shift
Instruction
Update
Verdict
Comparator J‘
>
Controller < Stack
Input/Qutput
Control
Input Output
Stream SELirE AT Current datafield Sl SsE Stream

Shift data field or flush

Figure A.1: Module activation during the Shift instruction.

75

76 Appendix A. Module Activation per Instruction

End Instruction

Instruction Fetcher

r
End
Instruction
Update
Verdict
Comparator ¢
>
Controller < Stack
e
Input/Output
Contral
Input Qutput
Stream ELEEED Current datafield SULT T Stream
Flush if remaining input
data
Figure A.2: Module activation during the End instruction.
Load Immediate Instruction
Instruction Fetcher
rs
Ldim
Instruction
Comparator J'
>
Controller < Stack
e
A 2 l
—reee e Input System > QOutput System >

Figure A.3: Module Activation during the Load Immediate instruction.

77

Compare Instruction

Instruction Fetcher

Cmp
Instruction

Comparator

Controller

»
>

L
T

:)p entry value

Stack

—e Input System

Current datafield

Output System

Figure A.4: Module activation during the Compare instruction.

Branch Instruction

Instruction Fetcher
Update PC to Brch Addr

Branch
Verdict

Comparator

Controller

Y

Y

A

F 3

Stack

R Input System

Figure A.5: Module activation during the Branch instruction.

Output System

78 Appendix A. Module Activation per Instruction

Jump Instruction

Instruction Fetcher
Update PC to Jmp Addr

Y

Comparator

Y

Controller

Stack

r 3

r 3

Qutput System >

v

—p Input System

Figure A.6: Module activation during the Jump instruction.

Call Instruction

Instruction Fetcher

A
Call PC
Instruction {Return address)
Comparator Push
Stack input
Controller —— Stack
T

—_— Input System > Output System >

Figure A.7: Module activation during the Call instruction.

79

Return Instruction

Instruction Fetcher

Ret Return
Instruction address
Comparator
(Length Pop
compare)
—
Controller
Stack output Stack
e
A 4 l
—_— Input System > Output System EEE——
Figure A.8: Module activation during the Return instruction.
Increment Instruction
Instruction Fetcher
r
Inc
Instruction
Comparator Increment top
Controller — Stack
e
A 2 l
—reee e Input System > Output System >

Figure A.9: Module activation during the Increment instruction.

1
2
3
4

25

28

Benchmarking Schemas

This appendix shows all schemas that were used during benchmarking. Schemas start their execution
from the topmost routine.

B.1. Packet Header Parsing
B.1.1. Full Graph - 5 tuple fields

packet_parser_5tup_full:
// Start with Ethernet header

sft 96

// 802.1ad double tagging

sft 16 cmp brch unsigned inp == const=0x88A8
brch VLAN_Outer

// 802.1Q

sft O cmp brch unsigned inp == const=0x8100

brch VLAN_Inner
jmp ethermnet_2

ethernet_2:
// MPLS Unicast or Multicast
sft O cmp brch unsigned inp == const=0x8847
sft 0 cmp brch or unsigned inp == const=0x8848
brch MPLS_Level_1
jmp ethermnet_3

ethernet_3:
// IPv4
sft O cmp brch unsigned inp == const=0x0800
brch IPv4_header
// IPv6
sft O cmp brch unsigned inp == const=0x86DD
brch IPv6_header
end fail

VLAN_QOuter:
sft 48
// MPLS
sft 16
jmp ethernet_2

VLAN_Inner:
sft 16
// MPLS
sft 16
jmp ethernet_2

MPLS_Level_1:

sft 23
sft 1 cmp brch unsigned inp == const=0b0

81

48

55

65

78

87

97

82

Appendix B. Benchmarking Schemas

brch MPLS_Level_2
sft 8

sft 16

jmp ethernet_3

MPLS_Level_2:

sft 31

sft 1 cmp unsigned inp == const=0bl
sft 8

sft 16

jmp ethernet_3

IPv4_header:

sft 72

// Protocol

sft 8 cmp brch unsigned inp == const=0x06
sft O cmp brch or unsigned inp == const=0x11
brch IPv4_TCP_or_UDP_header

sft O cmp brch unsigned inp == const=0x01
brch ICMP4

end fail

IPv4_TCP_or_UDP_header:

sft 16

// IP Source Address
sft 32

// IP Dest Address

sft 32

// TCP/UDP Source Port
sft 16

// TCP/UDP Dest Port
sft 16

// Remainder is not relevant for extraction in this schema,
end

ICMP4:

sft 16

// IP Source Address
sft 32

// IP Dest Address
sft 32

thus we flush

// Remainder ICMP4 is not relevant for extraction in this schema, thus we flush

end

IPv6_header:

sft 48

// Next Header field

sft 8 cmp brch unsigned inp == const=0x06
sft O cmp brch or unsigned inp == const=0x11
brch IPv6_TCP_or_UDP_header

sft O cmp brch unsigned inp == const=0x3A
brch ICMP6

end fail

IPv6_TCP_or_UDP_header:

sft 8

// IP Source address
sft 128

// IP Dest address

sft 128

// TCP/UDP Source Port
sft 16

// TCP/UDP Dest Port
sft 16

// Remainder is not relevant for extraction in this schema,
end

ICMP6:

sft 8
// IP Source Address
sft 128

thus we flush

114
115
116
17

29

50
51
52
53
54
55
56
57
58
59
60
61
62
63

B.1. Packet Header Parsing

83

// IP Dest Address
sft 128

// Remainder ICMP4 is not relevant for extraction in this schema,

end

B.1.2. Full Graph - All fields

packet_parser_btup_full:

// Start with Ethernet header
sft 48 // MAC Source

sft 48 // MAC Dest

// 802.1ad double tagging

sft 16 cmp brch unsigned inp ==
brch VLAN_Outer

// 802.1Q

sft O cmp brch unsigned inp ==
brch VLAN_Inner

jmp ethernet_2

ethernet_2:

// MPLS Unicast or Multicast
sft O cmp brch unsigned inp ==
sft O cmp brch or unsigned inp

const=0x88A8

const=0x8100

const=0x8847
== const=0x8848

brch MPLS_Level_1

jmp

ethernet_3

ethernet_3:
// IPv4

sft

0 cmp brch unsigned inp =

brch IPv4_header
// IPv6é

sft

0 cmp brch unsigned inp =

brch IPv6_header

end

fail

VLAN_QOuter:

sft
sft
sft
sft

jmp

16 // TCI Outer
16 // TPID Inner
16 // TCI Inner
16 // Ethertype
ethernet_2

VLAN_Inner:

sft
sft

jmp

16 // TCI
16 // Ethertype
ethernet_2

MPLS_Level_1:

sft
sft

sft 1 cmp brch unsigned inp == const=0b0

20 // Label
3 // Traffic Class

brch MPLS_Level_2

sft
sft

jmp

8 // TTL
16 // Ethertype
ethernet_3

MPLS_Level_2:

sft
sft
sft
sft
sft
sft

jmp

8 // TTL from level 1

20 // Label

3 // Traffic Class

1 cmp unsigned inp == const=0bl
8 // TTL

16 // Ethertype

ethernet_3

IPv4_header:

sft
sft
sft
sft

4 // Version

4 // THL

8 // TOS

16 // Total Length

const=0x0800

const=0x86DD

thus we flush

64
65
66
67
68
69

7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
%
o7
98
99

100

101

102

103

104

105

106

107

108

109

110

11

112

13

114

115

116

17

18

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

Appendix B. Benchmarking Schemas

84
sft 16 // Identificiation
sft 3 // Flags
sft 13 // Fragment Offset
sft 8 // TTL
// Protocol
sft 8 cmp brch unsigned inp == const=0x06
brch IPv4_TCP
sft 0 cmp brch unsigned inp == const=0x11
brch IPv4_UDP
sft 0 cmp brch unsigned inp == const=0x01
brch ICMP
end fail

IPv4_TCP:
sft 16 // Header Checksum
sft 32 // IP Source Address
sft 32 // IP Dest Address
// TCP
sft 16 // TCP Source Port
sft 16 // TCP Dest Port
sft 32 // Sequence Number
sft 32 // Acknowledge Number
sft 4 // Data Offset
sft 4 // Reserved
sft 8 // Flags
sft 16 // Window
sft 16 // Checksum
sft 16 // Urgent Pointer
end

IPv4_UDP:
sft 16 // Header Checksum
sft 32 // IP Source Address
sft 32 // IP Dest Address
// UDP
sft 16 // UDP Source Port
sft 16 // UDP Dest Port
sft 16 // Length
sft 16 // Checksum
end

ICMP:

sft 16 // Header Checksum
sft 32 // IP Source Address
sft 32 // IP Dest Address
// ICMP Header

sft 8 // Type

sft 8 // Code

sft 16 // Checksum

sft 32 // Rest of Header
end

IPv6_header:

sft 4 // Version

sft 8 // Traffic Class
sft 20 // Flow Label

sft 16 // Payload Length
// Next Header field

sft 8 cmp brch unsigned inp == const=0x06

brch IPv6_TCP

sft O cmp brch unsigned inp == const=0x11

brch IPv6_UDP

sft 0 cmp brch unsigned inp == const=0x3A

brch ICMPv6
end fail

IPv6_TCP:

sft 8 // Hop Limit

sft 128 // IP Source address
sft 128 // IP Dest address
// TCP Header

B.1. Packet Header Parsing

135 sft 16 // TCP Source Port
136 sft 16 // TCP Dest Port

137 sft 32 // Sequence Number
138 sft 32 // Acknowledge Number
139 sft 4 // Data Offset

140 sft 4 // Reserved

141 sft 8 // Flags

142 sft 16 // Window

143 sft 16 // Checksum

144 sft 16 // Urgent Pointer
145 end

146

147 IPv6_UDP:

148 sft 8 // Hop Limit

149 sft 128 // IP Source address
150 sft 128 // IP Dest address
151 // UDP Header

152 sft 16 // UDP Source Port
153 sft 16 // UDP Dest Port

154 sft 16 // Length

155 sft 16 // Checksum

156 end

157

158 ICMPv6:

159 sft 8 // Hop Limit

160 sft 128 // IP Source address
161 sft 128 // IP Dest address
162 // ICMPv6 Header

163 sft 8 // Type

164 sft 8 // Code

165 sft 16 // Checksum

166 end

B.1.3. Simple Graph - 5 tuple fields

packet_parser_btup_simple:

:
2 // Start with Ethernet header

3 sft 96

4 // IPv4 or IPv6

5 sft 16 cmp brch unsigned inp == const=0x0800
6 brch IPv4_header

7 // IPv6

8 sft 0 cmp brch unsigned inp == const=0x86DD
9 brch IPv6_header

10 end fail

12 IPv4_header:

13 sft 72

14 // Protocol

15 sft 8 cmp brch unsigned inp == const=0x06

16 sft O cmp brch or unsigned inp == const=0x11
17 brch IPv4_TCP_or_UDP_header

18 sft O cmp brch unsigned inp == const=0x01

19 brch ICMP4

20 end fail

22 IPv4_TCP_or_UDP_header:

23 sft 16

24 // IP Source Address
25 sft 32

26 // IP Dest Address

27 sft 32

28 // TCP/UDP Source Port
29 sft 16

30 // TCP/UDP Dest Port
31 sft 16

32 // Remainder is not relevant for extraction in this schema, thus we flush
33 end

34
35 ICMP4:

37
38

40
41
42
43

45
46
47
48
49
50
51
52
53

55
56
57
58
59
60
61
62
63
64
65
66

68
69
70
7

73
74

86

Appendix B. Benchmarking Schemas

sft 16

// IP Source Address
sft 32

// IP Dest Address
sft 32

// Remainder ICMP4 is not relevant for extraction in this schema, thus we flush

end

IPv6_header:
sft 48
// Next Header field
sft 8 cmp brch unsigned inp ==
sft O cmp brch or unsigned inp
brch IPv6_TCP_or_UDP_header
sft O cmp brch unsigned inp ==
brch ICMP6
end fail

IPv6_TCP_or_UDP_header:
sft 8
// IP Source address
sft 128
// IP Dest address
sft 128
// TCP/UDP Source Port
sft 16
// TCP/UDP Dest Port
sft 16

const=0x06
== const=0x11

const=0x3A

// Remainder is not relevant for extraction in this schema, thus we flush

end

ICMP6:
sft 8
// IP Source Address
sft 128
// IP Dest Address
sft 128

// Remainder ICMP4 is not relevant for extraction in this schema, thus we flush

end

B.1.4. Simple Graph - All fields

packet_parser_btup_simple:
// Start with Ethernet header
sft 48 // MAC Source
sft 48 // MAC Dest

// Ethertype, check for IPv4 or IPv6

sft 16 cmp brch unsigned inp == const=0x0800

brch IPv4_header

// IPv6

sft O cmp brch unsigned inp ==
brch IPv6_header

end fail

IPv4_header:
sft 4 // Version
sft 4 // IHL
sft 8 // TOS
sft 16 // Total Length
sft 16 // Identificiation
sft 3 // Flags
sft 13 // Fragment Offset
sft 8 // TTL
// Protocol
sft 8 cmp brch unsigned inp ==
brch IPv4_TCP
sft 0 cmp brch unsigned inp ==
brch IPv4_UDP
sft O cmp brch unsigned inp ==
brch ICMP

const=0x86DD

const=0x06

const=0x11

const=0x01

30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
6

62
63
64
65
66
67
68
69
70
7

72
73
74
75
76
77
78
79
80
8

82
83
84
85
86
87
88
89
)
9

92
93
%4
95
%
o7
98
99

B.1. Packet Header Parsing

87

end fail

IPv4_TCP:
sft 16 // Header Checksum
sft 32 // IP Source Address
sft 32 // IP Dest Address
// TCP
sft 16 // TCP Source Port
sft 16 // TCP Dest Port
sft 32 // Sequence Number
sft 32 // Acknowledge Number
sft 4 // Data Offset
sft 4 // Reserved
sft 8 // Flags
sft 16 // Window
sft 16 // Checksum
sft 16 // Urgent Pointer
end

IPv4_UDP:
sft 16 // Header Checksum
sft 32 // IP Source Address
sft 32 // IP Dest Address
// UDP
sft 16 // UDP Source Port
sft 16 // UDP Dest Port
sft 16 // Length
sft 16 // Checksum
end

ICMP:
sft 16 // Header Checksum
sft 32 // IP Source Address
sft 32 // IP Dest Address
// ICMP Header
sft 8 // Type
sft 8 // Code
sft 16 // Checksum
sft 32 // Rest of Header
end

IPv6_header:
sft 4 // Version
sft 8 // Traffic Class
sft 20 // Flow Label
sft 16 // Payload Length
// Next Header field
sft 8 cmp brch unsigned inp == const=0x06
brch IPv6_TCP
sft O cmp brch unsigned inp == const=0x11
brch IPv6_UDP
sft O cmp brch unsigned inp == const=0x3A
brch ICMPv6
end fail

IPv6_TCP:
sft 8 // Hop Limit
sft 128 // IP Source address
sft 128 // IP Dest address
// TCP Header
sft 16 // TCP Source Port
sft 16 // TCP Dest Port
sft 32 // Sequence Number
sft 32 // Acknowledge Number
sft 4 // Data Offset
sft 4 // Reserved
sft 8 // Flags
sft 16 // Window
sft 16 // Checksum
sft 16 // Urgent Pointer
end

100
101
102
103
104
105
106
107
108
109
110
M
112
113
114
115
116
17
118
119
120

Appendix B. Benchmarking Schemas

IPv6_UDP:

sft 8 // Hop Limit

sft 128 // IP Source address
sft 128 // IP Dest address
// UDP Header

sft 16 // UDP Source Port
sft 16 // UDP Dest Port

sft 16 // Length

sft 16 // Checksum

end

ICMPv6:

sft 8 // Hop Limit

sft 128 // IP Source address
sft 128 // IP Dest address
// ICMPv6 Header

sft 8 // Type

sft 8 // Code

sft 16 // Checksum

end

B.2. Packet Header Validation

ICMP_filter:

// Start Ethernet header

sft 96 //
sft 16 cmp unsigned inp == const=0x0800 //
// Start IPv4 header

sft 8 cmp unsigned inp == const=0x45 //
sft 8 //
sft 16 cmp unsigned inp >= const=28 //
sft O cmp unsigned inp <= const=1500

sft 40 //
sft 8 cmp brch unsigned inp == const=0x01 //
brch ICMP

end

ICMP:
sft 80 // Shift through remaining IPv4 fields

// Start ICMP header

Shift through MAC Source and MAC Dest
Ethertype

Version and IHL
Skip TOS
28 <= Total Length <= 1500 (MTU)

Skip IPv4 fields until protocol field.
Protocol == ICMP

sft 8 cmp unsigned inp == const=0x0 // Type == Echo Reply
sft O cmp or unsigned inp == const=0x8 // Type == Echo Request
sft 8 cmp unsigned inp == const=0x0 // Code == 0

// Shift through the rest
end

B.3. X.509 Certificate Checking

Certificate:

sft 8 cmp unsigned inp == const=0x30
call parse_length

call len bytes Certificate_value

end

Certificate_value:

// Parse TBSCertificate (SEQUENCE)

sft 8 cmp unsigned inp == const=0x30
call parse_length

call len bytes TBSCertificate_value

// Parse AlgorithmIdentifier (SEQUENCE)
sft 8 cmp unsigned inp == const=0x30
call parse_length

call len bytes AlgorithmIdentifier_value
// Parse Signature (BIT STRING)

jmp parse_BIT_STRING

TBSCertificate_value:

// version (Context-specific INTEGER) Only version 3 certificates supported

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
5

52
53
54
55
56
57
58

59

61
62
63
64
65
66
67
68
69
70
7

B.3. X.509 Certificate Checking

89

sft 40 cmp unsigned inp == const=0xA003020102
// serialNumber (INTEGER)
sft 8 cmp unsigned inp == const=0x02

sft 8 cmp unsigned inp <= const=32

sft byteinp

// signature (AlgorithmIdentifier)

sft 8 cmp unsigned inp == const=0x30

call parse_length

call len bytes AlgorithmIdentifier_value

// issuer (Name)

sft 8 cmp unsigned inp == const=0x30

call parse_length

call whilelen bytes Name_value

// validity (Validity)

sft 8 cmp unsigned inp == const=0x30

call parse_length

call len bytes Validity_value

// subject (Name)

sft 8 cmp unsigned inp == const=0x30

call parse_length

call whilelen bytes Name_value

// subjectPublicKeyInfo (SubjectPublicKeyInfo)
sft 8 cmp unsigned inp == const=0x30

call parse_length

call len bytes SubjectPublicKeyInfo_value

// issuerUniqueIdentifier (Context-specific Uniqueldentifier OPTIONAL)
sft O cmp brch unsigned stacktop != byte_cnt
sft 8 cmp brch unsigned inp == const=0xAl

brch issuerUID_start

// subjectUniqueIdentifier (Context-specific Uniqueldentifier OPTIONAL)
sft O cmp brch unsigned stacktop != byte_cnt
sft O cmp brch unsigned inp == const=0xA2

brch subjectUID_start

// extensions (Context-specific Extensions OPTIONAL)

sft O cmp brch unsigned stacktop != byte_cnt
sft O cmp brch unsigned inp == const=0xA3
brch extensions_start

ret

AlgorithmIdentifier_value:
// algorithm (0ID)
sft 8 cmp unsigned inp == const=0x06
sft 8 cmp unsigned inp <= const=32
sft byteinp
// parameters (ANY OPTIONAL)

sft O cmp brch unsigned stacktop != byte_cnt
brch parse_ANY
ret

Name_value:
// while-loop assertion. Fail if the byte counter becomes larger than the length
sft O cmp brch unsigned stacktop < byte_cnt
brch while_fail
// break condition if length equals the amount of processed bytes
sft O cmp brch unsigned stacktop == byte_cnt
brch while_continue
// parse one RelativeDistinguishedName in the sequence
sft 8 cmp unsigned inp == const=0x31
call parse_length
call whilelen bytes RDN_value
// jump back to the top of the while loop
jmp Name_value

RDN_value:
// while-loop assertion. Fail if the byte counter becomes larger than the length
sft O cmp brch unsigned stacktop < byte_cnt
brch while_fail
// break condition if length equals the amount of processed bytes
sft O cmp brch unsigned stacktop == byte_cnt
brch while_continue
// parse one AttributeTypeAndValue in the sequence

103
104
105
106
107
108
109
110
EEE|
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

Appendix B. Benchmarking Schemas

90
sft 8 cmp unsigned inp == const=0x30
call parse_length
call len bytes ATV_value
// jump back to the top of the while loop
jmp RDN_value
ATV_value:
//AttributeType
sft 8 cmp unsigned inp == const=0x06

sft 8 cmp unsigned inp <= const=32
sft byteinp

//AttributeValue (ANY)

jmp parse_ANY

Validity_value:
sft 8 cmp unsigned inp == const=0x17
sft O cmp or unsigned inp == const=0x18
sft 8 cmp unsigned inp <= const=32
sft byteinp
sft 8 cmp unsigned inp == const=0x17
sft O cmp or unsigned inp == const=0x18
sft 8 cmp unsigned inp <= const=32
sft byteinp
ret

SubjectPublicKeyInfo_value:
// AlgorithmIdentifier
sft 8 cmp unsigned inp == const=0x30
call parse_length
call len bytes AlgorithmIdentifier_value
// Public Key (BIT STRING)
jmp parse_BIT_STRING

issuerUID_start:
call parse_length
call len bytes parse_BIT_STRING
jmp issuerUID_rest

issuerUID_rest:

// Check if subjectUniqueldentifier is present
sft O cmp brch unsigned stacktop != byte_cnt

sft 8 cmp brch unsigned inp == const=0xA2
brch subjectUID_start
// Check if extensions are present

sft O cmp brch unsigned stacktop != byte_cnt
sft O cmp brch unsigned inp == const=0xA3
brch extensions_start

ret

subjectUID_start:
call parse_length
call len bytes parse_BIT_STRING
jmp subjectUID_rest

subjectUID_rest:
// Check if extensions are present

sft O cmp brch unsigned stacktop != byte_cnt
sft 8 cmp brch unsigned inp == const=0xA3
brch extensions_start

ret

extensions_start:
call parse_length
call len bytes parse_extensions
ret

parse_extensions:
sft 8 cmp unsigned inp == const=0x30
call parse_length

call whilelen bytes Extensions_SEQUENCE_value

B.3. X.509 Certificate Checking

163 Extensions_SEQUENCE_value:

164 // while-loop assertion. Fail if the byte counter becomes larger than the length
165 sft O cmp brch unsigned stacktop < byte_cnt

166 brch while_fail

167 // break condition if length equals the amount of processed bytes
168 sft O cmp brch unsigned stacktop == byte_cnt

169 brch while_continue

170 // parse one Extension in the sequence

171 sft 8 cmp unsigned inp == const=0x30

172 call parse_length

173 call len bytes Extension_value

174 // jump back to the top of the while loop

175 jmp Extensions_SEQUENCE_value

176
177 Extension_value:

178 // extensionID (0ID)

179 sft 8 cmp unsigned inp == const=0x06

180 sft 8 cmp unsigned inp <= const=32

181 sft byteinp

182 // critical (BOOLEAN)

183 sft 8 cmp brch unsigned inp == const=0x01
184 brch parse_critical

185 jmp Extension_value_rest

186
187 parse_critical:

188 sft 16 cmp unsigned inp == const=0x01FF
189 sft 8
190 jmp Extension_value_rest

191
192 Extension_value_rest:

193 // extensionValue (OCTET STRING)

194 sft O cmp unsigned inp == const=0x04
195 call parse_length

196 sft O cmp brch unsigned inp > const=32
197 brch big_shift

198 sft byteinp

199 ret

200 ////////// HELPER ROUTINES //////////
202 // Helper routine to parse ome TLV
203 parse_ANY:

204 sft 8

205 call parse_length

206 sft O cmp brch unsigned inp > const=32
207 brch big_shift

208 sft byteinp

209 ret

210

211 // Helper routine to parse a BIT STRING
212 parse_BIT_STRING:

213 sft 8 cmp unsigned inp == const=0x03
214 call parse_length

215 sft O cmp brch unsigned inp > const=32
216 brch big_shift

217 sft byteinp

218 ret

219

220 // Helper routines to shift a large (> 256-bit) section of data
221 big_shift:

222 call whilelen bytes big_shift_while

223 ret

224

225 big_shift_while:

226 // Shift one byte and break condition if length equals the number of shifted bytes
227 sft 8 cmp brch unsigned stacktop == byte_cnt

228 brch while_continue

229 // jump back to the top of the while loop

230 jmp big_shift_while

231
232 // While-loop stop routines
233 while_continue:

92 Appendix B. Benchmarking Schemas

234 ret

235

236 while_fail:

237 end fail

238

239 // Helper routines to parse a DER (long-)length field
240 parse_length:

241 sft 1 cmp brch unsigned inp == const=1
242 sft 7

243 brch parse_long_length

244 ret

245

246 parse_long_length:
247 sft byteinp

248 ret

B.4. Weather Station Data Validation

1 Start:

2 sft 8 cmp unsigned inp == const=0x9b
3 // sensor_id

4 call extract_unsigned_data

5 sft O cmp unsigned inp >= const=1000
6 sft O cmp unsigned inp <= const=2000
7 // battery_level

8 call extract_unsigned_data

9 sft O cmp unsigned inp <= const=100

10 // timestamp

1 call extract_unsigned_data

12 // temperature

13 call extract_data

14 sft O cmp signed inp >= const=-12800
15 sft O cmp signed inp <= const=12800
16 // humidity

17 call extract_unsigned_data

18 sft O cmp unsigned inp >= const=10
19 sft O cmp unsigned inp <= const=100
20 // wind_speed

21 call extract_data

22 sft O cmp unsigned inp >= const=0

23 sft O cmp unsigned inp <= const=25600 // 100.0 m/s in fixed_point with 8 bits frac
24 // wind_direction

25 call extract_unsigned_data

26 sft O cmp unsigned inp <= const=360
27 // pressure

28 call extract_data

29 sft O cmp unsigned inp >= const=8448
30 sft O cmp unsigned inp <= const=28160
31 // precipitation

32 call extract_data

33 sft O cmp unsigned inp >= const=0

34 // solar_radiation

35 call extract_data

36 sft O cmp unsigned inp >= const=0

37 sft O cmp unsigned inp <= const=19200
38 // uv_index

39 call extract_unsigned_data

40 sft O cmp unsigned inp <= const=10

41 end

43 extract_data:

44 sft 1 cmp brch unsigned inp == const=0b0

45 brch pos_fixint

46 sft 2 cmp brch unsigned inp == const=0bl1l

47 brch neg_fixint

48 sft O cmp unsigned inp == const=0bl0

49 sft 5 cmp brch unsigned inp == const=0b01100

50 sft O cmp brch or unsigned inp == const=0b10000
51 brch sft_8

52 sft O cmp brch unsigned inp == const=0b01101

B.5. Video Stream Header Validation

93

sft 0 cmp brch or unsigned inp == const=0b10001
brch sft_16

sft O cmp unsigned inp == const=0b01110

sft 32

ret

extract_unsigned_data:

sft 1 cmp brch unsigned inp == const=0b0
brch pos_fixint
sft 7 cmp brch unsigned inp == const=0b1001100 // uint8

brch sft_8

sft O cmp brch unsigned inp
brch sft_16

sft 0 cmp unsigned inp == const=0b1001110 // uint32
sft 32

ret

const=0b1001101 // uinti16

pos_fixint:
sft 7
ret

neg_fixint:
sft 5
ret

sft_8:
sft 8
ret

sft_16:

sft 16
ret

B.5. Video Stream Header Validation

Start:
// Sync byte and TEI
sft 9 cmp unsigned inp == const=0b010001110
// PUSI and Transport Priority
sft 2
// PID, TSC and AFC
sft 17 cmp unsigned inp == const=0x00211
// cc
sft 4

// PES packet

// Start code

sft 32 cmp unsigned inp >= const=0x000001EO
sft O cmp unsigned inp <= const=0x000001EF
// Packet length

sft 16 cmp unsigned inp == const=0

// Flush the payload

end

B.6. Drone Command Validation

Start:
// Session ID (uint)
sft 32

// Command code (uint)

sft 32 cmp unsigned inp <= const=10
// Priority level (uint)

sft 32 cmp unsigned inp <= const=0x02
// Timestamp (uint)

sft 32

// Target speed (ufixed e2)

sft 32 cmp unsigned inp <= const=27778
// Target orientation (fixed e2)

sft 32 cmp signed inp >= const=-18000
sft O cmp signed inp <= const=18000

94

Appendix B. Benchmarking Schemas

// Target latitude (fixed e7)

sft 32 cmp signed inp >= const=300000000
sft 0 cmp signed inp <= const=400000000
// Target longitude (fixed e7)

sft 32 cmp signed inp >= const=-450000000
sft 0 cmp signed inp <= const=-250000000
// Target altitude (ufixed e2)

sft 32 cmp unsigned inp <= const=2000000
// Auth token (opaque)

sft 32 cmp unsigned inp == const=32

sft 256

// origin_id (opaque)

sft 32 cmp unsigned inp == const=1

sft 8 cmp unsigned inp == const=1 // Only allow command from origin ID 1
sft 24

// command_hash (opaque)

sft 32 cmp unsigned inp == const=32

sft 256

end

	Abstract
	Acknowledgements
	List of Abbreviations
	Introduction
	Problem Statement
	Methodology
	Thesis Outline

	Background
	Binary Data
	Formats, Encodings, and Protocols
	Classifying Binary Formats
	Binary Data Types

	Binary Parsing
	Single-pass parsing
	Assertions
	Describing Formats for Parsing

	FPGAs
	Related Work
	Generated HDL systems
	Templated Generic Parsers
	Match-action systems
	Hardware-based VM
	Packet Parsing DSLs

	Conclusion

	Design
	Requirements and Design Direction
	Derivation of Data Assessment Requirements
	Architecture Selection
	Consideration of Security

	Schema Language Design
	Schema Notation
	Requirements and Schema Notation Matrix

	Instruction Set Architecture
	Shift (sft)
	End (end)
	Load Immediate (ldim)
	Compare (cmp)
	Branch (brch)
	Jump (jmp)
	Call (call)
	Return (ret)
	Increment (inc)
	Instruction Field Width Elaboration

	From Schema to Instructions
	Field Assertions
	Conditional Statements and Schema Calling
	Exact length assertions
	Repeat and repeat while loops
	Schema Notation and Instructions Matrix

	Module Design
	Input and Output System
	Controller
	Instruction Fetcher
	Stack
	Full Design

	Conclusion

	Implementation
	Schema Development Approach
	Python Assembler
	Preprocessor
	Converter

	Python Emulator
	Differences with Module Design
	Emulator Operation

	VHDL Implementation
	AXI4-Stream and AXI4-Lite
	Module Implementation

	Conclusion

	Benchmarking and Results
	Benchmarking Setups
	Hardware Setup
	Simulation Setup

	Synthesis Results
	Timing
	Resource Usage
	Energy Consumption

	Metrics
	The Measurement Window
	Deriving Average Throughput and Average Latency

	Benchmarking Results
	Benchmark: Packet Header Parsing
	Benchmark: Packet Header Validation
	Benchmark: Checking the Structure of X.509 Certificates
	Benchmark: Weather Station Data Validation
	Benchmark: MPEG TS Video Stream Validation
	Benchmark: XDR Drone Command Validation
	Schema Timing Growth
	Schema Flexibility

	Results Discussion
	Conclusion

	Conclusion
	Summary
	Contributions
	Answering the Research Questions
	Main Contributions
	Other Contributions

	Future work
	Schema Language Compiler
	New Data Type Support
	Smaller System Architectures Evaluation

	References
	Module Activation per Instruction
	Benchmarking Schemas
	Packet Header Parsing
	Full Graph - 5 tuple fields
	Full Graph - All fields
	Simple Graph - 5 tuple fields
	Simple Graph - All fields

	Packet Header Validation
	X.509 Certificate Checking
	Weather Station Data Validation
	Video Stream Header Validation
	Drone Command Validation

