

Delft University of Technology

Towards Deployable Battery-Free Networked Systems

de Winkel, J.

DOI
10.4233/uuid:77e3477b-b76b-429d-9dbd-f44cb457d2fa
Publication date
2023
Document Version
Final published version
Citation (APA)
de Winkel, J. (2023). Towards Deployable Battery-Free Networked Systems. [Dissertation (TU Delft), Delft
University of Technology]. https://doi.org/10.4233/uuid:77e3477b-b76b-429d-9dbd-f44cb457d2fa

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:77e3477b-b76b-429d-9dbd-f44cb457d2fa
https://doi.org/10.4233/uuid:77e3477b-b76b-429d-9dbd-f44cb457d2fa

Towards Deployable
 Battery-Free

 Networked Systems

Jasper de Winkel

Tow
ards D

eployable B
attery-free N

etw
orked System

s
Jasp

er de W
in

kel

TOWARDS DEPLOYABLE BATTERY-FREE

NETWORKED SYSTEMS

TOWARDS DEPLOYABLE BATTERY-FREE

NETWORKED SYSTEMS

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology,

by the authority of the Rector Magnificus, prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates,

to be defended publicly on Monday 3 July 2023 at 12:30 o’clock

by

Jasper DE WINKEL

Master of Science in Embedded Systems,
Delft University of Technology, the Netherlands,

born in Wageningen, the Netherlands.

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, Chairman
Prof. dr. K.G. Langendoen Delft University of Technology, promotor
Dr. P. Pawełczak Delft University of Technology, promotor

Independent members:
Prof. dr. ir. A. Bozzon Delft University of Technology
Prof. dr. S. Gollakota University of Washington
Prof. dr. D. Hughes KU Leuven
Prof. dr. M. Zimmerling University of Freiburg
Dr. J. Sorber Clemson University

Reserve member:
Prof. dr. ir. F.A. Kuipers Delft University of Technology

Embedded
Systems

This research was supported by the Netherlands Organisation for Scientific Research
(NWO), partly funded by the Dutch Ministry of Economic Affairs, through TTW Perspec-
tive program ZERO (P15-06) within Project P1.

Keywords: Battery-Free, Intermittent Computing, Wireless Networking, Internet
of Things, Embedded Systems

Printed by: Ipskamp Printing

Cover design: Ria von Hout

Copyright © 2023 by J. de Winkel

ISBN 978-94-6384-453-6

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

CONTENTS

Summary ix

Samenvatting xi

1 Introduction 1
1.1 Saving the State of Battery-Free Systems 3
1.2 Design of Battery-free Systems . 4

1.2.1 Energy Harvesting and Storage. 4
1.2.2 Networking . 5
1.2.3 Applications . 6

1.3 Problem Statement . 7
1.4 Challenges and Outline . 7

2 Battery-Free Interactive Devices 9
2.1 Introduction . 10
2.2 Challenges . 11
2.3 Battery-free Handheld Gaming . 13

2.3.1 Key Ideas. 14
2.3.2 ENGAGE Full System Nintendo Game Boy Emulator 15
2.3.3 Gaming Through Power Failures 16

2.4 ENGAGE Implementation. 21
2.4.1 ENGAGE Hardware . 21
2.4.2 ENGAGE Emulator Implementation 23
2.4.3 MPatch Implementation . 24

2.5 ENGAGE Evaluation. 27
2.5.1 End-to-End ENGAGE Performance 28
2.5.2 ENGAGE Power Consumption and Energy Generation. 29
2.5.3 MPatch Performance. 30

2.6 Discussion and Future Work . 32
2.6.1 Limitations, Alternatives and Future Work 32
2.6.2 Gaming and the Environment . 35

2.7 Related Work . 36
2.8 Conclusions. 39

3 Battery-Free Debugging 41
3.1 Introduction . 42
3.2 Debugging Intermittently-Powered Systems 44

3.2.1 Bugs Type Classification . 44
3.2.2 Why Debugging Intermittently-Powered Systems is Hard 46

v

vi CONTENTS

3.3 Debugger for Intermittently-Powered Systems 47
3.3.1 DIPS Hardware Debugger . 47
3.3.2 DIPS Energy Emulator . 49
3.3.3 DIPS Automated Software Testing 51
3.3.4 DIPS Hardware Implementation 52

3.4 DIPS Evaluation. 53
3.4.1 DIPS Characterization . 54
3.4.2 DIPS User Experience Study . 54
3.4.3 Software Testing with DIPS. 59

3.5 Limitations and Future Work . 62
3.6 Related Work . 62
3.7 Conclusions. 63

4 Battery-Free Timekeeping 65
4.1 Introduction . 66
4.2 Motivation . 68

4.2.1 Remanence Timekeepers . 68
4.3 System Overview . 70
4.4 CHRT: Hierarchical Timekeeping . 71

4.4.1 CHRT Circuit. 72
4.4.2 CHRT Range Heuristics . 72

4.5 CHRT Software Layer . 73
4.5.1 CHRT Hardware Abstraction Layer. 73
4.5.2 CHRT High-Level API . 74
4.5.3 CHRT Software Calibration . 75

4.6 System Implementation. 76
4.6.1 CHRT Platform. 76
4.6.2 Botoks Platform . 77
4.6.3 Software . 77

4.7 Evaluation . 77
4.7.1 Experimental Setup . 77
4.7.2 Evaluation Methodology . 78
4.7.3 CHRT Microbenchmark . 78
4.7.4 Application 1: Bicycle Analytics 80
4.7.5 Application 2: Intermittent Communication 81

4.8 Related Work . 82
4.9 Discussion and Future Work . 83
4.10 Conclusions. 84

5 Battery-Free Wireless Networking 85
5.1 Introduction . 86
5.2 Background, Challenges and Key Insights 88
5.3 Intermittently-Powered Wireless System 91

5.3.1 Target Network and Device Architecture 91
5.3.2 System Components . 92

CONTENTS vii

5.4 System Implementation: FreeBie . 96
5.4.1 FreeBie Hardware . 96
5.4.2 FreeBie Software . 97
5.4.3 FreeBie Applications . 100

5.5 FreeBie Evaluation . 101
5.5.1 Evaluation Setup . 101
5.5.2 FreeBie Evaluation Results . 102

5.6 Discussion and Future Work . 106
5.7 Related Work . 107
5.8 Conclusions. 108

6 Conclusion 109

Acknowledgements 115

Curriculum Vitæ 117

List of Publications 119

References 121

SUMMARY

The ecological impact of today’s battery-powered Internet of Things (IoT) is troubling.
Technology advancements that reduce the reliance on batteries could blunt the environ-
mental impact of the projected billions of IoT devices. With the emergence of low-cost,
small, and high-performance microcontrollers, along with more efficient micro-energy
harvesting devices that can harness the power of sunlight, motion, and heat a new revo-
lution in computing has come. That is, IoT devices are increasingly leaving their batteries
behind and are relying only on ambient power from sunlight, motion, thermal gradients,
and other modalities to power their operation. Unfortunately, harvested energy can
fluctuate greatly and is hard to predict, leading to intermittent operation. Intermittently-
powered devices form a new class of low-power devices that can guarantee correct and
forward-progressing computation despite these frequent power interrupts.

Despite the inconvenience of intermittent operation, the benefit of using intermit-
tently-powered devices instead of ‘classical’ battery-based ones is threefold. The removal
of batteries creates a more environmentally-friendly device, harvesting energy from
ambient sources is sustainable and removing the battery can potentially lead towards
perpetual operation—as long as there is an ambient energy source, battery-free devices
will continue operating.

Challenges of battery-free devices however, still include basic features that are foun-
dational to IoT devices. Interaction with battery-free devices has so far remained largely
unexplored although reactive and screen-oriented systems are a significant part of to-
day’s and future Internet of Things. Common tools used during development, such as
debuggers and testing frameworks, are practically non-existent for intermittent devices.
Even basic concepts such as keeping track of time need to be carefully considered on
intermittently-powered devices. Finally, wireless networking of intermittently-powered
devices is severely limited to only backscatter or one directional communication.

This dissertation addresses the challenges mentioned above by developing and de-
ploying mechanisms that enable connected and fully interactive applications on battery-
free devices. These mechanisms alleviate key challenges that hinder actual adoption and
infrastructure-less deployment of these battery-free devices.

To address the interactive battery-free device challenge, we present a framework
based around energy-aware interactive computing using a reference implementation of
a battery-free gaming console, the Game Boy. Using our energy harvesting mechanism,
we not only harvest ambient solar energy but also energy from “button mashing" by
the user to power its operation. With our from-the-ground-up energy-aware design, we
implement an efficient state saving (checkpointing) mechanism, that stores only the
modified memory regions since the last checkpoint. This mechanism is used to store
the system state prior to and restore the system state after a power failure, allowing the
system to continue operation after a power failure from the last successful checkpoint.

ix

x SUMMARY

We address the debugging and testing challenge by the development of a new tool
allowing for debugging of intermittently-powered systems just like any other embedded
system. Key mechanisms allow the proposed debugger to automatically reconnect and
restore debugging features such as breakpoints, enabling continuous debugging sessions
despite intermittency. Using automated testing we found intermittency-related bugs in
state-of-the-art battery-free systems, emphasizing the need for adequate testing tools for
intermittently-powered devices and their unique bugs.

Next, we explore solutions to keep track of time on intermittently-powered devices
in order to address this fundamental requirement for networking. We propose a new
flexible and robust timekeeping mechanism, featuring an array of cascaded RC circuits.
Low start-up time, high resolution and run-time reconfigurability are the key features of
our timekeeping mechanism. As a demonstration we show communication between two
intermittently-powered devices using our new timekeeping mechanism.

To enable infrastructure-less wireless networking on battery-free devices, we have
proposed a generic battery-free connected device architecture and introduced a new
kind of checkpointing mechanism. The architecture and checkpointing mechanism allow
the microcontroller to turn off when idle and seamlessly resume any connections when
restored, despite intermittent power. The decision on when to switch off, checkpoint and
restore is handled by extending the real-time operating system’s scheduler. Combined
with per-process checkpoints, it enables efficient intermittent operation with pre-existing
network stacks with minimal modification. Our architecture and mechanisms allow
for fully featured bi-directional communication, as demonstrated with Bluetooth Low
Energy (BLE), and lowers the idle power consumption. We design a smartwatch based on
our new architecture that connects using BLE with a smartphone, allowing it to tell time
and show email notifications.

The mechanisms developed in this dissertation enable a wide span of connected and
interactive applications. We demonstrate the capability of our mechanisms in several
applications such as battery-free speed monitoring of a bike, battery-free interactive
gaming consoles, and even a battery-free smartwatch with BLE. These demonstrations
highlight that even for connected and interactive applications, battery-free devices form
a viable alternative to their battery-powered counterparts. By enabling viable battery-free
alternatives, we hope to change the reliance on batteries for the future billions of IoT
devices, mitigating their troubling ecological impact.

SAMENVATTING

De ecologische gevolgen van de huidige op batterijen gebaseerde Internet of Things (IoT)
apparaten zijn verontrustend. Door de afhankelijkheid van batterijen te verkleinen, kun-
nen technologische ontwikkelingen de ecologische gevolgen van de voorspelde miljarden
IoT apparaten verkleinen. Met de komst van goedkope, kleine en krachtige microcon-
trollers, gecombineerd met steeds kleinere en efficiëntere manieren om energie op te
wekken uit bronnen zoals zonlicht, beweging en hitte is een revolutie begonnen waarin
IoT apparaten hun batterijen achter zich laten. Deze apparaten wekken zelf alle energie
op om te functioneren vanuit de omgeving, uit bronnen zoals zonlicht, beweging en
thermiek. Helaas fluctueert de hoeveelheid energie die uit deze bronnen gewonnen
kan worden sterk en is deze ook moeilijk te voorspellen. Dit leidt tot korte stroomon-
derbrekingen. Apparaten die om kunnen gaan met deze stroomonderbrekingen, ook
wel bekend als ’intermittent’ apparaten, vormen een nieuwe groep van energiezuinige
apparaten, zij garanderen nauwkeurigheid en continuïteit in hun berekeningen ondanks
deze frequente stroomonderbrekingen.

Ondanks deze problematiek is het voordeel van het gebruik van batterijvrije, in te-
genstelling tot ‘klassieke’ op batterij-gebaseerde apparaten, drievoudig. Het verwijderen
van de batterij resulteert in een milieubewuster apparaat, het opwekken van energie uit
de omgeving is duurzaam en het verwijderen van batterijen kan leiden tot een vrijwel
oneindige levensduur van het apparaat. Immers, zolang er energie opgewekt kan worden
uit de omgeving, kunnen deze apparaten blijven functioneren.

Echter vormen fundamentele eigenschappen van IoT apparaten nog uitdagingen
voor batterijvrije apparaten. Ondanks dat reactieve en schermgebaseerde systemen
een significant onderdeel vormen van de huidige en toekomstige Internet of Things,
zijn interactieve batterijvrije apparaten nog nauwelijks onderzocht. Gebruikelijke in-
strumenten zoals debuggers en testoplossingen, zijn praktisch niet beschikbaar voor
intermittent apparaten. Zelfs basale concepten zoals de manier waarop tijd bijgehou-
den wordt moeten zorgvuldig overwogen worden bij intermittent apparaten. Tot slot,
draadloze communicatie met intermittent apparaten is nog gelimiteerd tot alleen het
reflecteren van radiogolven of tot eenrichtingscommunicatie.

Dit proefschrift draagt oplossingen aan voor de bovengenoemde uitdagingen door
de ontwikkeling en inzet van mechanismes die verbonden en volledig interactieve ap-
plicaties mogelijk maken op batterijvrije apparaten. Deze mechanismes adresseren de
grote uitdagingen die de integratie en infrastructuurvrije inzet van batterijvrije apparaten
momenteel verhinderden.

Om de uitdagingen omtrent interactieve batterijvrije apparaten te adresseren, presen-
teren wij een raamwerk van oplossingen gebaseerd op een energiebewuste, interactieve
referentieimplementatie van een batterijvrije spelcomputer, de Game Boy. Ons mecha-
nisme wekt energie op uit zowel zonne-energie als de interactie met de gebruiker om het

xi

xii SAMENVATTING

systeem van stroom te voorzien. We ontwerpen en implementeren een efficiënt mecha-
nisme om de voortgang van het systeem op te slaan (ook wel bekend als een checkpoint
mechanisme), waarin alleen de veranderde geheugenregio’s opgeslagen worden sinds het
laatste checkpoint. Het mechanisme wordt gebruikt om de voortgang van het systeem op
te slaan voor en te herstellen na een stroomonderbreking. Dit stelt het systeem in staat
om na een stroomonderbreking vanaf het laatste checkpoint verder te werken.

We adresseren de debugging en testuitdaging door een nieuw instrument te ont-
wikkelen die het mogelijk maakt om intermittent apparaten te debuggen, op dezelfde
manier als ieder ander embedded systeem. Unieke mechanismes maken ononderbro-
ken debuggingsessies mogelijk ondanks stroomonderbrekingen, doordat de debugger
automatisch opnieuw verbindt en debuggingeigenschappen zoals breakpoints hersteld.
Met geautomatiseerde testen hebben we aan stroomonderbrekingen gerelateerde bugs
gevonden in recente batterijvrije systemen. Dit benadrukt de noodzaak voor adequate
testinstrumentatie voor batterijvrije systemen en hun specifieke problemen.

Vervolgens exploreren we oplossingen om tijd bij te houden op intermittent appara-
ten om deze fundamentele eis voor communicatienetwerken te adresseren. We stellen
een nieuw flexibel en robuust mechanisme voor om tijd bij te houden door middel van
een cascade van RC schakelingen. Snelle opstarttijd, hoge resolutie en herconfigureer-
baarheid zijn de centrale eigenschappen van ons timing-mechanisme. Als demonstratie
tonen wij aan dat met ons mechanisme het mogelijk is om twee intermittent systemen
met elkaar te laten communiceren ondanks frequente stroomonderbrekingen.

Om infrastructuurvrije draadloze netwerken mogelijk te maken op batterijvrije ap-
paraten hebben wij een generieke architectuur voorgesteld samen met een nieuw soort
checkpointing mechanisme. De architectuur en het checkpointing mechanisme stel-
len de microcontroller in staat om zichzelf uit te zetten als hij inactief is, en vervolgens
naadloos communicatieverbindingen voort te zetten als hij opnieuw opstart, zelfs onder
frequente stroomonderbrekingen. De beslissing wanneer uit te gaan, een checkpoint te
maken en de staat te herstellen wordt genomen door een uitbreiding van de scheduler
van het realtime besturingssysteem. In combinatie met een per-proces checkpointing
aanpak maakt dit het mogelijk om, met minimale wijzigingen aan reeds ontwikkelde
communicatiesoftware, efficiënt om te gaan met stroomonderbrekingen. Onze archi-
tectuur en mechanismes maken volledige bidirectionele communicatie mogelijk, zoals
gedemonstreerd met Bluetooth Low Energy (BLE), en reduceert het stroomverbruik als
het systeem inactief is. We ontwerpen een smartwatch op basis van onze nieuwe archi-
tectuur die door middel van BLE een verbinding opzet met een smartphone, waarover de
tijd en email-notificaties gedeeld worden.

De in dit proefschrift ontwikkelde mechanismes maken een brede span van verbon-
den en interactieve applicaties mogelijk. Wij demonstreren deze mogelijkheden door een
batterijvrije snelheidsmeter voor een fiets, batterijvrije interactieve spelcomputers en
zelfs een batterijvrije BLE smartwatch te realiseren. Deze demonstraties onderstrepen
dat batterijvrije apparaten zelfs voor verbonden en interactieve applicaties een gede-
gen alternatief vormen voor hun batterij-gebaseerde concurrenten. Door batterijvrije
alternatieven mogelijk te maken, hopen wij de afhankelijkheid van batterijen voor de
toekomstige miljarden Internet of Things apparaten te verkleinen en daarmee hun ecolo-
gische voetafdruk op de wereld te reduceren.

CHAPTER 1
INTRODUCTION

1

2 1. INTRODUCTION

Figure 1.1: Examples of IoT devices, ranging from smart thermostats and switches to smartwatches. All currently
still powered by batteries.

Ever-increasing numbers of Internet of Things (IoT) devices surround us in daily life [80,
123, 235, 14]. Examples of IoT devices (Figure 1.1) range from industrial sensors moni-
toring an assembly process [27], smartwatches capable of monitoring your exercise [12],
to intelligent thermostats [106]. As technology progresses, more computation power
becomes available at low power consumption hence, more and more applications will
become viable. However, IoT devices come at a cost to society as most IoT devices are
currently powered by batteries. These batteries often need to be regularly replaced, moni-
tored, and recycled [81]—inducing a potential environmental impact to our planet and
monetary cost to the consumer [78, 110]. While the search for a battery that is longer-
operational [81], better recyclable [203] and having high-energy density [274] continues,
the road leading to such batteries is still long [328, 35].

Current batteries used in IoT devices have a finite lifetime, usually limited by the
number of recharge cycles. Often the battery is the limiting part of an IoT device hindering
longer lifetimes or even perpetual operation [270]. Even when every battery is fully
recycled, batteries still pose a massive challenge to the environment as more and more
batteries are required to power the ever-increasing number of IoT devices.

Battery-free devices offer a more sustainable alternative by getting rid of the battery
entirely, solely operating on harvested energy from the (ambient) environment and store
this energy in small (super)capacitors [115]. Energy can be harvested from a variety of
sources including: solar energy (often harvested using solar panels), kinetic energy (can
be harvested from piezoelectric elements or the simple movement of a magnet in a coil),
energy from Radio Frequency (RF) waves (using an antenna) and thermal energy (with a
Peltier element).

Unfortunately, harvested energy might not be consistent as even a simple device such
as a room occupancy sensor powered by harvested solar energy will abruptly harvest
more/less energy when the lights are turned on/off in the room. In-road sensors might
be covered by a car, covering a solar panel. A person might block a RF antenna by
walking in front of it. Together with the limited storage capacity of (super)capacitors, this
leads to intermittent operation where at a certain point, not enough energy is present
to continue operation and the device ceases operation until enough energy is harvested
to resume. For battery-free devices powered by ambient energy on/off times can range

1.1. SAVING THE STATE OF BATTERY-FREE SYSTEMS

1

3

System on

In
te

rm
itt

en
t

Co
m

pu
tin

g

System o�

Time

Power failure

Re
st

or
e

Ch
ec

kp
oi

nt

Se
ns

e

Re
st

or
e

Ch
ec

kp
oi

nt

Co
m

pu
te

Re
st

or
e

Ch
ec

kp
oi

nt

Tr
an

sm
it

St
or

ed
En

er
gy

Figure 1.2: Schematic representation of intermittent operation: periods of system ‘on‘ state are intervened by
periods of ‘power failure‘ state (when the system’s capacitor is being re-charged). The power intermittency is
caused by the unpredictable nature of ambient harvested energy. Therefore, intermittently-powered devices
need to checkpoint and restore the intermediate state to and from non-volatile memory to guarantee forward
progress despite power interrupts.

from microseconds [246, Figure 1] to seconds [159, Figure 2(a)] for RF- and solar-powered
devices, respectively. Graceful handling of intermittency is an essential part of developing
battery-free/intermittent systems.

1.1. SAVING THE STATE OF BATTERY-FREE SYSTEMS

Researchers have addressed the intermittent computing challenge by designing methods
to save the system’s state upon an imminent power failure. The application developer
must programmatically account for two events. That is, whenever a power interrupt
happened, at any place in the code, the device (i) must resume operation from the
moment that power interrupt happened, and (ii) the state of the device’s memory and its
peripherals must be correctly restored. Saving of the system state is achieved by storing
volatile system elements such as volatile memory, peripheral and processor state to
non-volatile memory. When enough energy has been harvested to resume operation, the
system state is then restored from the copy in non-volatile memory, allowing the device
to continue operation from where it left off, as shown in Figure 1.2. To assure that both
events (i) and (ii) happen the programmer can instrument the code by means of two
common approaches.

A first approach of storing the system state is based on checkpoints that are inserted
into the system’s code. At a checkpoint the volatile system state is stored to non-volatile
memory and operation resumes from the point of the last checkpoint if a power fail-
ure occurs. The restoration process involves restoring the previously stored state in
non-volatile memory to the volatile system components. These checkpoints can be
inserted manually [66], triggered periodically [164] or placed automatically at compile-
time [28, 190, 306]. Commonly checkpoints are double buffered in non-volatile memory,
ensuring that even when the system experiences a power failure during checkpointing
the system can recover from the last checkpoint. Just-In-Time (JIT) based checkpointing
systems [191, 246, 5, 145, 315, 28] only start checkpointing when the system’s energy
storage is low, avoiding unnecessary checkpoints. The low energy threshold determining

1

4 1. INTRODUCTION

when the system starts checkpointing requires careful configuration. If set too low, the
system might not be able to complete a checkpoint, losing any progress made.

Alternatively, a second approach requires the developer to split the program into
atomic blocks called tasks [185, 50, 116, 325, 251, 47, 193] or threads [326]. When consid-
ering task based approaches it is important to note that these tasks differ from traditional
tasks in embedded systems. Tasks usually are responsible of handling processing of
a certain device function. In intermittent systems, tasks are defined as units of code
with clearly defined input and output whose execution time matches the specific energy
budget of the intermittently-powered device. The energy budget of an intermittently-
powered device can be determined by the size of its energy storage and can vary with the
amount of harvested energy. The minimum execution time is closely related to the energy
budget, as this is the time from the system switching-on until switching-off without
harvesting any additional energy. If a task exceeds the minimum execution time based
on the device’s energy storage, an infinite loop is possible where the task might not be
able to complete and no forward progress is made. The same applies for a checkpointing
system when checkpoints are placed too far apart.

1.2. DESIGN OF BATTERY-FREE SYSTEMS
As IoT devices span a wide range of applications, from interactive smartwatches and
thermostats to passive sensors monitoring temperature or observing industrial motors
for faults, implementations vary. However, most IoT devices sense, process the sensed
data, and then transmit their results either directly to the cloud or to an intermediate
device for further processing such as a smartphone. Despite the available strategies to
programmatically save the device’s state and resume, on a systems level battery-free
devices are fundamentally different. This is due to the limited available energy, limited
energy storage and the addition of energy harvesting circuitry when compared to battery-
powered IoT devices. Typical battery-free systems consist of five main components. That
is (i) an energy harvester, (ii) storage in the form of (super)capacitors, (iii) a Microcon-
troller Unit (MCU), (iv) sensors and (v) a radio. Not only are there different approaches
for harvesting and storing energy on battery-free devices but also communication has to
be carefully considered as radio’s are one of the most energy consuming elements of any
IoT device.

1.2.1. ENERGY HARVESTING AND STORAGE
Simple hardware architectures [64, 114] directly charge the capacitor from the energy har-
vesting source, such as a solar panel, as shown in Figure 1.3a. Using a set of comparators
the power form the capacitor to the regulator powering the MCU is enabled/disabled
with hysteresis according to an upper turn-on (Von) and low-cutoff (Voff) threshold. The
circuit prevents the MCU from operating on too low voltage and ensures a minimal on-
time for the system. A more complex arrangement [66, 68] features an energy harvester
chip (commonly a boost converter) to more efficiently harvest energy from the ambient
source. The boost converter then charges the (super)capacitor. With the addition of a
buck converter that is enabled and disabled according to the turn-on and off thresholds,
a stable but intermittent power supply to the system is generated from the boosted input,
as shown in Figure 1.3b.

1.2. DESIGN OF BATTERY-FREE SYSTEMS

1

5

+

+

+
-

-

(a) Simple architecture, power to the MCU is enabled and dis-
abled using two comparators.

+

(b) Boost and buck converter to generating a stable
but intermittent MCU power source.

Figure 1.3: Common energy harvesting architectures powering battery-free systems.

Dynamic adaptation of (super)capacitor configuration and/or size can result in faster
turn on times, by only enabling a small capacitor when little energy is available and sizing
up when more energy becomes available [51, 321]. As a alternative to a central energy
storage, each system element such as a sensor or radio can have its own dedicated energy
storage, providing additional flexibility [114].

1.2.2. NETWORKING

For any IoT device networking is crucial as without its ability to communicate, no actions
can be taken on the observations of the device. Imagine an occupancy sensor that is
unable to communicate occupancy to the lights or the controller. Communication is
required in both directions, from the device to send its findings or results to actuate upon
and to the device for configuration and firmware updates. As even the best designed and
evaluated IoT devices inevitably contain bugs in their code.

Apart from the differences in powering battery-free systems, wireless networking
on battery-free devices is severely restricted by power consumption and energy storage.
Continuous communication might require more power than can be harvested from
the ambient environment and there might not be enough energy to complete a full
transmission. Over the years many wireless technologies have been developed that have
been widely adopted, with the most ubiquitous local area network being WiFi. Wide
area networks such as NB-IoT and LoRa allow for nationwide coverage. Personal area
networks such as Bluetooth and Zigbee offer connectivity for a range of applications such
as connecting wireless headsets, monitoring industrial motors and asset tracking. Devices
communicating using the previously mentioned networks use radios that are capable of
generating their own (carrier) signals and commonly alternate between receiving and
transmitting. In this dissertation, we refer to these radios as active radios.

Alternatively, passive communication as used in Radio Frequency Identification
(RFID) can be achieved by selectively reflecting an incoming (carrier) signal, a method

1

6 1. INTRODUCTION

commonly referred to as backscatter. This simple and passive method of communication
requires little energy as it can be implemented with a simple switch, switching between
reflecting or absorbing the signal. From this same carrier signal, energy can be harvested
to power the device itself. The carrier signal itself however, is usually transmitted by a
reader at a radiated power of 1 W or 2 W, imposing power infrastructure requirements for
the reader/signal generator. The attenuation of a wireless signal as it propagates through
space between the transmitter and receiver known as path loss forms a fundamental
limitation for RFID. As the carrier signal is reflected, the signal is attenuated on both
the path to the device and on the reflected path back, limiting its range. Active radio’s in
contrast only suffer this loss once and operate without the need for external infrastructure
to supply a carrier signal.

So far several battery-free backscatter platforms have been developed such as [238,
207], even bi-directional communication between devices [194] has been demonstrated
but suffer from limited range and infrastructure requirements. For battery-free devices
many networking technologies such as WiFi currently remain out of reach without the
use of backscatter due to their power consumption. The use of a large energy storage and
a long period of energy harvesting could allow for transmission of a few packets using
LoRa as demonstrated in [230]. However, out of all the widely adopted non-backscatter
networking technologies, Bluetooth Low Energy (BLE) has one of the lowest power con-
sumption, making it a feasible option for battery-free devices. BLE allows for end devices
to transmit beacon packets to a usually continuously receiving device as a form of com-
munication without establishing a connection. This one-directional connection-less
beacon packet is usually sent from a single capacitor charge of harvested energy as been
demonstrated on various platforms [114, 39, 101, 90, 258]. However, this leaves a gap in
the state of the art as intermittently-powered systems still lack the ability to communicate
bi-directionally without backscatter through widely adapted networks such as BLE.

1.2.3. APPLICATIONS

Despite the differences in powering, networking and maintaining state, several appli-
cations of battery-free devices have been demonstrated. These applications include,
sensing at Circus Maximus [3], occupancy detection [254], video streaming [253], cycle
computer for bikes [268] and gesture recognition [301]. However, the full proliferation of
battery-free devices is still held back. Most of these applications focus on sensing and
many potential user-facing IoT applications remain largely unexplored such as interac-
tive devices despite that they form a significant portion of today’s IoT devices. Another
common feature of these applications is that they do not seamlessly integrate into pre-
existing common wireless networks but require specific (custom) infrastructure or lack
bi-directional networking capability.

When considering adoption of battery-free devices into applications, the develop-
ment of battery-free devices itself has to be considered. For replaying pre-recorded energy
harvesting conditions to the intermittent device several testbeds and tools have been
developed such as [112, 1, 96]. Nevertheless, actual debugging and testing of intermit-
tent devices is still challenging due to the lack of tools such as debuggers supporting
intermittent devices.

1.3. PROBLEM STATEMENT

1

7

1.3. PROBLEM STATEMENT
With the current state of battery-free devices, development and deployment of real-world
battery-free devices is still challenging as several basic features of their battery-powered
counterparts are still missing or lacking. This dissertation aims to address this gap in
research and thus centers around the following question:

What mechanisms must be developed and deployed in battery-free networked systems
to enable connected and interactive IoT applications?

In the following section we break down this overarching question into individual
challenges that we address in this dissertation.

1.4. CHALLENGES AND OUTLINE
Before battery-free devices can be deployed in practice several challenges still need to be
addressed. We outline them below.

Ï Interactive Devices. Prototype battery-free devices have been used to make phone
calls [288], deployed for machine learning [169], greenhouse monitoring [113], video
streaming [206], eye tracking [173], payment using smart cards [182] and even built into
a robot [325]. Although some of these devices present some form of interactivity, these
techniques or prototypes have not yet enabled fully interactive battery-free devices—like a
smartwatch, in-place interactive display or even a handheld video game console. This is
a critical gap in the research around battery-free devices, as these types of reactive, inter-
active, and screen-focused systems are a significant portion of the current and anticipated
smart systems. In Chapter 2 we focus specifically on an ignored part of the battery-free
device ecosystem, mobile gaming, and use this application to elucidate the essential
challenges that must be explored for a future where reactive and user-facing applications
can also be battery-free. As a proof by demonstration that battery-free interactive systems
are possible, we design a battery-free gaming console named ENGAGE. To power this
system we leverage a multi-input energy harvesting mechanism, harvesting both ambient
solar energy and energy generated by user interaction with the console itself.

ÏDebugging and Testing. During the implementation of ENGAGE we experienced the
difficulty of developing software for battery-free systems. This difficulty is not only due to
the lack of adequate tools that allow for debugging and repeatable testing of battery-free
intermittently-powered devices, but also due to the fact that not only traditional common
embedded systems bugs have to be resolved but also the bugs related to intermittently-
powered operation. Common examples of these intermittency-related bugs include
checkpoint or restoration bugs where the state is not correctly saved or restored from a
checkpoint. Where not only memory consistency has to be verified but also the state of
the peripherals. With Just-In-Time based checkpointing systems for example, bugs can
even be linked to a specific power trace to the system. Without easy-to-use debugging
and testing tools for intermittent systems, market adaptation could suffer. In Chapter 3,
we develop a tool named DIPS that enables debugging of intermittent devices just like
any normal embedded system. It integrates both a hardware debugger and an energy
emulator capable of replaying power traces to the device under test. Unlike traditional

1

8 1. INTRODUCTION

debuggers it features mechanisms to automatically reconnect and restore debugging set-
tings such as breakpoints to intermittently-powered devices when they resume, allowing
for a continuous debugging session despite intermittency. Using automated tests, DIPS
can find common intermittency-related bugs automatically. These tests are not only able
to verify memory consistency after restores but can also verify peripheral state using the
integrated hardware debugger.

ÏKeeping Track of Time. Hardware and platform approaches have focused on reducing
the cost of checkpointing [119], managing energy more efficiently to reduce power failures
and increase event detection [113, 114, 51], and getting a rough estimation of time elapsed
between power failures [245, 117]. However, deploying infrastructure-less intermittently-
powered devices still remains challenging due to the lack of a fundamental feature,
that is robust timekeeping. When operating on intermittent power, solely relying on
MCU peripherals, such as timers, is impossible as they are unavailable during power
failures. The ability to keep track of time undergirds a multitude of computing and
networking primitives such as synchronization and networking, data collection, and real-
time operation. One missing feature from our ENGAGE system was its lack of connectivity.
In order to enable the use of time-driven features such as the use of a scheduler and
Time Division Multiple Access (TDMA) based networking protocols like BLE, we need
an accurate reference of time on intermittent devices. In Chapter 4, we explore the pros
and cons of different timekeeping solutions and introduce a new ultra-low power flexible
timekeeping mechanism.

ÏWireless Networking. Widespread adaptation of battery-free devices is still hindered
by the final challenge addressed in this dissertation, wireless networking. Although
backscatter communication has been demonstrated on intermittently-powered devices,
backscatter is fundamentally challenged by limited range and the infrastructure require-
ment of the external carrier generator. In our vision battery-free devices should replace
their battery-powered counterparts without imposing any extra infrastructure require-
ments. They should integrate seamlessly in common widely adopted wireless networking
standards and offer bi-directional communication. In Chapter 5 we explore the design
of a new system architecture that allows for maintaining bi-directional communication
under intermittent power. Central to this architecture is a new checkpointing mechanism
that allows for simple integration of pre-existing non-intermittent software such as net-
work stacks in intermittently-powered applications. As a proof of concept we use BLE and
demonstrate the first BLE connection on intermittent power. In addition, we demonstrate
the capabilities of our architecture and mechanisms by designing a smartwatch, powered
solely by ambient solar energy. The watch connects to a smartphone using BLE and is
able to tell time and shows email notifications.

The challenges mentioned above are by no means exhaustive. However we identify
these challenges as crucial as they hinder practical widespread deployment of battery-free
systems. Additional research challenges such as improving energy harvesting efficiency
and further development of ultra-low power MCUs and radios, are not considered within
the scope of this dissertation.

CHAPTER 2
BATTERY-FREE INTERACTIVE

DEVICES

This chapter is based on:
Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Przemysław Pawełczak (2020).

Battery-Free Game Boy
Proceedings of the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies 4, 3 (September 2020), 111:1–111:34.

2

10 2. BATTERY-FREE INTERACTIVE DEVICES

2.1. INTRODUCTION
In this chapter, we focus specifically on an ignored part of the battery-free device ecosys-
tem, mobile gaming, and use this application to elucidate the essential challenges that
must be explored to enable a future where reactive and user facing applications can also
be battery-free. From a market perspective there is deep need to explore this area. The
global gaming industry is massive and generates unprecedented revenues, which already
exceeded 100 billion USD in 2016 [209]. Handheld console game sales constitute a large
portion of the industry [209]. In terms of units sold, as of September 30, 2019 Nintendo
sold 41.67 million units of its latest Switch console, since its release in March 3, 2019 [214]
and these numbers continued to grow rapidly during the worldwide COVID-19 lock-
down [223]. As a comparison, Nintendo’s Game Boy handheld, shipped 118.69 million
units since its official release in April of 1989.

To enable these types of devices, mobile gaming platforms must be re-imagined at the
system and interactivity level. The main challenge is that energy harvesting is dynamic
and unpredictable. This is intuitively apparent when considering a solar panel; a cloud,
the time of day, weather conditions, movement and orientation of the panel, even the
electrical load all change the amount of harvested energy. Because of this dynamism
and limited amount of energy, these devices lose power frequently, only computing
intermittently with the device having to wait seconds or minutes to gain enough energy
to turn back on. This long recovery process can be energy and resource intensive, causing
responsiveness delays. Worse, it can leave the game in an inconsistent state. Naturally,
going through the entire re-loading process (from loading screen of a game to starting
play) every time is burdensome, so just blindly replacing batteries in a game console with
an energy harvester is not enough to ensure smooth game operation.

To address this challenge, this chapter presents a framework of solutions based around
energy-aware interactive computing and a reference implementation of a popular game
console—8 bit Nintendo Game boy [215, 53]—as a demonstration, see Figure 2.1. To
reduce the unpredictability of energy harvesting, we take advantage of mechanical energy
generated by “button mashing” of the console, harvesting this energy generated by
actually playing a game on a handheld, and using it, along with solar panels, to power
all operation. We design the system hardware and software from the ground up to be
energy-aware and reactive to changing energy situations to mitigate the issues caused by
frequent power failures. Specifically we design a technique to create minimal save games

Light

St
or

ed
En

er
gy

System O!

System On

… …

Button Presses

Time
Frame 1 Frame 120Frame 45 Frame 120Frame 45

Power
Failure

Power
Failure

Sa
ve

 S
ta

te

Re
st

or
e

St
at

e

Sa
ve

 S
ta

te

Re
st

or
e

St
at

e

……{
Figure 2.1: Energy harvested from button presses and sunlight powers our custom handheld platform, ENGAGE,
running a Nintendo Game Boy emulator which can play classic 8 bit games. ENGAGE efficiently preserves game
progress despite power failures, demonstrating for the first time battery-free mobile entertainment.

2.2. CHALLENGES

2

11

that can be quickly created, updated, and saved to non-volatile memory before a power
failure, then quickly restored once power returns. Unlike save games seen in traditional
gaming systems, these capture the entire state of the system, so the player can recover
from the exact point of power loss; for example mid-jump in a platform game; all this
despite the device fully losing power.

Contributions. In this chapter we present a practical, usable mobile gaming device,
Energy Aware Gaming (abbreviated as ENGAGE). To date this is the first time full system
emulation of a real world platform has been done battery-free, and the first intermittently
powered interactive gaming platform. Our contributions follow:

1. We introduce the concept of intermittently powered, battery-free mobile gaming;

2. We develop an approach to failure resilient, memory-efficient, fast, whole system
save games for interactive, display driven devices. A just-in-time differential check-
pointing scheme is used based on the concept of tracking changed memory in
patches;

3. We develop a hardware platform as a reference implementation with a novel multi-
input architecture for harvesting energy from button presses and sunlight. This
device also enables any interactive-based system (not necessarily a game);

4. As a stress test and demonstrative exercise of the promise of battery-free gaming,
we use these systems and hardware to develop a full system Nintendo Game Boy
emulator which plays unmodified Game Boy games despite power failures.

2.2. CHALLENGES
Personal, handheld gaming, has brought entertainment and fun to hundreds of millions
of people in the past three decades. During the COVID-19 pandemic, when so many
where in lockdown, gaming was one of the activities that reduced stress and boredom [260,
262, 290]. The goal of this work is to develop the systems and hardware foundations
for battery-free mobile gaming. This is motivated by two reasons: (i) the enhanced
availability and usability of a platform that never needs to be recharged or plugged in—
making the platform more convenient for the average user, and more accessible for
everyone, and (ii) the need for alternative and sustainable forms of entertainment—a
nod to the various industry consortia such as Playing for the Planet [243] which aim to
reduce the gaming industries ecological impact. A battery-free handheld game console
reduces ecological costs and disappointment, as it is always ready to be picked up and
played without needing to be recharged.

Numerous explorations of battery-free smart devices address the calls for sustain-
able/carbon-neutral electronic device interaction and electronic design and comput-
ing [162, 29, 195, 316, 157] while preparing human-interactive electronics for the “post-
collapse society” [300]. Other work has developed core systems [115], hardware [51, 64],
and programming languages [190, 325] for serious systems focusing on solving the in-
termittent computing problem caused by energy harvesting and battery-free operation,
where frequent power failures prevent a program from finishing a task (see Figure 2.2). In
all cases the electronic device is powered by harvested energy from the environment [242]

2

12 2. BATTERY-FREE INTERACTIVE DEVICES

St
or

ed
En

er
gy

System O!

System On

Time

Power
Failure

 181 ld hl, 0x9000
 182 ld de, sprite
 183 sprt_vram:
 184 ld a, [de]
 185 inc de
 186 ld [hl+], a

 1 [org(0x100)]
 2 start:
 3 nop
 4 jp load_screen

185

1

Fail!

Figure 2.2: Dynamic energy harvesting causes voltage fluctuations which cause frequent power failures. Shown
is what would typically happen if a battery was removed from a Game Boy and replaced with solar panels.
The game would play until energy is lost (i.e. at line 185) and then restart at the loading screen. Intermittent
computing techniques seek to make it such that after the power failure, line 186 is then executed proceeding
from the exact system state as before the failure.

and stored in (super-)capacitors of much smaller energy density and size than batteries.
None have yet explored the question of mobile handheld entertainment, going beyond
the simple forms of battery-free gaming devices demonstrated commercially in early
1980’s [58]. This is because making such a device is challenging due to complex system
difficulties stemming from frequent power failures, listed below.

Challenge 1: Unpredictable Energy Harvesting. Environmental conditions change, this
is exacerbated by mobile gaming. When players move from place to place, most forms
of ambient energy change drastically (for instance, by moving from sun to shade), or
increasing distance from a radio frequency power source. Without a more predictable
source of power, it is hard to envision being able to play continuously without a battery.

Challenge 2: Keeping Track of System/Game State. Maintaining state of computation—
let alone game state—through power failures from intermittent harvested energy is
hard [184, 199]. Many software frameworks that support computation progress despite
these power failures exist, saving state in non-volatile memory like FRAM and then
restoring state after power resumes (see Figure 2.2), such as TICS [166], TotalRecall [315],
and many others. Most systems trade memory efficiency for performance, this approach
is opposite of that needed for gaming, where a display buffer and numerous sprites and
large game state variables must be saved, requiring high memory efficiency.

Challenge 3: Enormous Variability of Games. These previous issues are compounded by
the huge variability of games, both in terms of memory size, number of sprites, actions,
difficulty, and even number of button presses per second. Each game is unique, and
could pose difficulties when creating a general battery-free solution.

Challenge 4: Gaming’s High Computational Load. To date, no full system emulation
of any complex system has been attempted on battery-free, intermittently computing
devices. Games and gaming platforms require more performant processors even when
running natively—when running in emulation, this is compounded. All existing popular
runtimes for intermittent computing are based on Texas Instrument’s mixed-memory
MSP430 MCU [296], which is order of magnitudes slower than the fastest ARM MCU on

2.3. BATTERY-FREE HANDHELD GAMING

2

13

H
ar

dw
ar

e
K

er
ne

l
B

at
te

ry
-f

re
e

ga
m

in
g

Multi-modal energy harvesting FRAM

Battery-less
user interface

MPatch checkpointing runtime

Display

Checkpoints

ARM MCU

Running Checkpoint

Power failure

Running Checkpoint

Power failure

Restore RunningRestore

Store
Volatile

State

Patches

Restore
Volatile

State

Store
Volatile

State

Restore
Volatile

State

Game emulation

Fetch Decode Execute

Figure 2.3: ENGAGE hardware platform (left) and its internal architecture (right).

the market. To meet the high computational load of games, a practical runtime for ARM
microconrollers must first be built.

Challenge 5: Capturing User Actions. Playing a video game means a system needs to
be highly reactive: button presses post immediate updates to a screen. But none of the
existing battery-free interactive devices demonstrated this level of interactive complexity
with continuously reacting buttons and instantly-refreshing screen. Only simple touch
button interfaces that do not need constant pressing for interaction are demonstrated
with electronic screens that usually present static content not informed by user actions.
Guaranteeing reactivity with unpredictable energy is difficult.

Challenge 6: Realistic Demonstration. The over-arching goal is to play a real, unmodi-
fied, video game on a battery-free console that everyone around the world knows (like
Tetris)—in other words to be able to execute preexisting game code (or any existing
code for that matter), not to design a custom game only to demonstrate the potential of
battery-free gaming (we refer to extensive survey on this topic in Section 2.7). This could
be possible only when all above challenges are addressed.

To tackle above Challenge 1–6 we took one of the most popular gaming consoles of
all-time [214]—original 8 bit Nintendo Game Boy [215, 53]—and redesigned its hardware-
software, powering gameplay from the solar panels and button presses of the user, build-
ing the first ARM based intermittent computing hadware and runtime system, and doing
the first full system emulation of a real world platform (Nintendo Game Boy) with inter-
mittent computing techniques.

2.3. BATTERY-FREE HANDHELD GAMING
We designed the Energy Aware Gaming (ENGAGE) platform as a proof by demonstration
that the discussed challenges could be overcome. The design and architecture of the
ENGAGE platforms is shown in Figure 2.3. The ENGAGE hardware is the size and form

2

14 2. BATTERY-FREE INTERACTIVE DEVICES

factor of a Nintendo Game Boy, it is built around (i) user input via mechanical energy
harvesting buttons (on the A, B, and D-Pad of the original Game Boy), (ii) a display, (iii)
a slot for Game Boy game cartridges to be inserted, and (iv) energy harvesting circuitry
from solar cells and the buttons which store energy in a small internal capacitor. The
ENGAGE kernel consists of (i) a patch-based differential checkpointing system (denoted
as MPatch) which handles low level memory movement and automatically saves and
restores state of the entire system by efficiently moving necessary data to non-volatile
memory (FRAM) and back (SRAM), and (ii) an extensively rewritten full-system Nintendo
Game Boy emulator, which can run unmodified Game Boy games. ENGAGE is the first full
system emulation, and the first gaming platform built for battery-free, energy harvesting,
intermittently powered computing devices.

Usage and Impact. We intend to release the hardware designs, firmware and software
as open-source, living repositories on Github [72]. We target a broad audience with
our platform. Our battery-free platform (i) must be open-source—allowing hobbyists
to expand it and improve it, including developing bespoke gaming libraries completely
separate from the Game Boy emulator, (ii) have comparable gameplay and feel as the
original Nintendo Game Boy, and (iii) be able to play any popular retro game.

2.3.1. KEY IDEAS

Existing handheld gaming devices rely on large batteries because they need continuous
high power to support high compute load, energy cost, and reactivity. We want to enable
playing retro 8 bit console games, such as Tetris and Super Mario Land, on a battery-free
console that is similar in user interface and gameplay to the original Nintendo Game Boy.
Removing the battery and only using harvested energy causes intermittent operation,
which leads to the challenges discussed in Section 2.2. The ENGAGE platform design
navigates these challenges based on four key ideas.

Gather Energy from Gaming Actions and the Environment. ENGAGE harvests energy
from button pressing/mashing and solar panels facing towards the player. As opposed to
other techniques that rely on nearby dedicated wireless power generation, this approach
allows for truly mobile gaming; anywhere a player can find light to see the screen and
press/mash buttons. By pairing energy generation with the game actions, and the natural
environment where gaming happens, ENGAGE overcomes challenges stemming from
unpredictability of energy harvesting, and also ensures that energy is more likely to be
available when a user initiates an action (since actions generate energy). This addresses
Challenge 1 and Challenge 5.

Track and Checkpoint Minimal State at the System Level. We must handle intermit-
tent power failures to maintain state of play. Unfortunately, in games large amounts
of memory is moved back and forth to the display, often in the form of sprites, with
computation happening in between. Naively checkpointing the entire system state would
be impractical, significantly increasing latency of operation. We note that while large
memory movements happen, the changes in these memories are often small, meaning
we can reduce checkpoints to only the changed memory, save that state just in time
before a power failure, and then restore that state and resume game play. This addresses
Challenge 2, Challenge 3 and Challenge 4.

2.3. BATTERY-FREE HANDHELD GAMING

2

15

Use Processor Emulation to Play Retro Games. While ENGAGE could be used for custom
gaming libraries made specifically for intermittent operation, the more challenging and
interesting problem is full system emulation enabling the play of the thousands of existing
games, and even home-brewed games. This also allows us to explore and understand the
variability of real world games. This addresses Challenge 3 and Challenge 6.

Speedup Intermittent Computing. We embrace ultra low powered, high performance
ARM Cortex microcontrollers, and external FRAM memory to speed up computation.
While a seemingly trivial technology advancement, with this approach we increase com-
pute speed but increase our I/O burden for checkpointing, as the traditional MSP430
FRAM-enabled MCUs have internal FRAM memory accessible at CPU speeds. This is a
different tradeoff space than any other intermittent hardware platform [64, 114, 51]. This
addresses Challenge 2 and Challenge 4.

2.3.2. ENGAGE FULL SYSTEM NINTENDO GAME BOY EMULATOR

A key part of our approach is running a full system emulation on ENGAGE hardware. To
be able to run Nintendo Game Boy games an emulator is used to emulate the instruction
set of the Game Boy processor, i.e. 8 bit 4.19 MHz custom-built Sharp LR35902 MCU
with a processor closely based on the Z80 instruction set [53]. An emulator reads bitcode
instructions and executes them in native code, mimicking the emulated CPU as closely
as possible to ensure it executes in an identical fashion to the emulated CPU. With the
restrictions of battery-free systems additional scenarios are introduced that normally
do not exist, such as the loss of power while running a game and then attempting to
restore the system to the state it lost power. Additionally emulation efficiency is of critical
importance in regards of power consumption.

The emulator allocates non-volatile and volatile Game Boy game memory within the
memory space of ENGAGE, removing the need to keep cartridges continuously powered.
Only upon loading a new game is the cartridge interface used to retrieve the non-volatile
game data.

The process of emulating also requires emulation of the Game Boy I/O for the user
to be able to interact with the device, most importantly the buttons and the screen.
Changing behavior regarding interaction with the I/O might have an influence on the
user experience and interaction with the device.

Emulating Button I/O. As energy can be harvested from the press of a button, the fre-
quency of button presses determines the amount of energy generated. This button
press frequency is game dependent: in-game-cut-scenes usually require no game-user
interaction through the buttons compared to games like Space Invaders where buttons
are continuously pressed. As a proof, in Table 2.1 we present statistics about the time
between button presses in four popular Nintendo Game Boy games. The maximum time
varies greatly depending on the presence of cut-scenes in the game. Tetris and Space
Invaders have few, or short, cut scenes, and thus have a lower maximum time between
presses and lower variance. On the other hand, Super Mario Land has an animation upon
death and at the end of a level, and Bomberman has several cut-scenes, hence the higher
maximum time between between presses and greater inter-press time variance.

This simple experiment shows that the maximum time between button presses di-

2

16 2. BATTERY-FREE INTERACTIVE DEVICES

Table 2.1: Measurement statistics of all button pressing during a regular Game Boy game for four example
games, showing variation between games depending on the type of game. Data was extracted by logging key
presses during game play on a Game Boy emulator running on a stationary personal computer. Three similar
three-minute playthroughs are averaged in the presented results.

Game name
Time between

button presses (second)
Button presses

per second
Max Mean Variance

Tetris 3.230 0.508 0.169 1.981
Space Invaders 3.542 0.372 0.129 2.715

Super Mario Land 12.46 0.652 1.091 1.543
Bomberman 7.534 0.765 0.762 1.313

rectly pertains to the required energy buffer size, where button mashing games could
run on smaller energy buffers increasing the reactivity of the platform by reducing the
required charge time.

By changing emulator behavior of handling buttons more energy can be generated.
To generate more energy we prevented the holding of buttons. For example, in Super
Mario Land game it is common to hold the right button to keep moving, but in Space
Invaders this is less common. This results in a trade-off space between energy generation
and changes to the user interaction with Game Boy1. Finding the optimum between
energy harvesting without changing the user interaction is therefore game specific. In
Section 2.4 we further elaborate on our design choices regarding button emulation.

Emulating Screen Writes. The original Nintendo Game Boy does not employ a frame
buffer. Instead, it uses a tile-based approach where tiles are rendered in a CRT-like fashion
on the screen to save memory. This means when power to the system is lost, the state of
the screen can not be restored since knowledge of the full screen state is not maintained.
To combat this we employ a frame buffer and map the Game Boy tile-based rendering
into this frame buffer. The buffer is then checkpointed to be able to restore the state of
the screen upon power failure.

2.3.3. GAMING THROUGH POWER FAILURES
ENGAGE is protected from the loss of progress by the custom-designed runtime that
guarantees data consistency despite power interrupts. The goal of this runtime is to save
(i.e. to checkpoint) the current state of the emulator. This entails the current volatile
memory content and the registers of both the host processor and the emulated system.
Doing this will allow the system to continue execution from this point as if a power failure
never happened.

There are multiple intermittent runtime systems (all of them are summarized in
Section 2.7) which can be broadly divided into two classes: (i) those that use a special (C
program) code instrumentation to guarantee correctness of computation despite power
interrupts and (ii) those that use a special version of the checkpointing, of which a subset

1We note that the original Game Boy handles I/O through polling registers, meaning that every game can have
a different handling of the I/O all together, since the Game Boy directly executes machine code from the game.

2.3. BATTERY-FREE HANDHELD GAMING

2

17

0x0 0x1000 0x2000 0x3000 0x4000 0x5000 0x6000 0x7000
GameBoy emulated memory space

Tetris

Space Invaders

Super Mario Land

Bomberman

100

102

104

106

N
um

be
r

of
W

ri
te

s

Figure 2.4: Memory writes heat map of four popular 8 bit Game Boy games for one minute of play. Writes tend to
cluster in a few large regions; tracking and checkpointing these regions would allow for performant intermittent
execution. Note the log-scale of the number of writes.

is designed for systems that use volatile memory—such as SRAM—as their main memory,
and use a separate non-volatile memory that contains the checkpointed data. While
designing ENGAGE we chose to use a checkpoint based system to allow emulation of
arbitrary game code. We did not consider task-based runtimes simply because they
are too complex to comprehend by a programmer and more difficult to design than a
checkpoint-based system, see related discussion on this topic in [166]. But first and
foremost, task-based system cannot execute a binary (machine) code, which ENGAGE is
mostly executing.

The main requirement for ENGAGE is responsiveness, hence the checkpointing sys-
tem needs to be as lightweight as possible. Naturally all of the checkpoint systems have
some overhead, so when searching for a good solution we would like to minimize check-
point size as much as possible—resulting in minimum overhead from data restoration.
Checkpointing the entire system state, including game, and emulator, would be impos-
sible. One core idea, proposed first by the DICE runtime [5], is to checkpoint only parts
of device memory that have been changed since the last checkpoint. To check whether
this idea applies to battery-free handheld gaming system we have performed a simple
experiment. For four example Nintendo Game Boy games: (i) Tetris, (ii) Space Invaders,
(iii) Super Mario Land, and (iii) Bomberman, we have measured to which memory regions
of an MCU each game was writing to during one minute of game play. The result is
presented in Figure 2.4. Indeed, we see that memory writes are very unevenly distributed
for each game, hinting that such approach, which we broadly denote as differential
checkpointing, is well suited for our ENGAGE needs.

The checkpoint runtimes, including differential ones, can be further divided into two
unique classes: (i) corruptible and (ii) incorruptible.

• Corruptible Checkpoint: Such systems copy the current state of the MCU (memory,
registers, etc.) to a predetermined location in non-volatile memory. This location is
the same every time, as this eases the runtime development and reduces the non-
volatile memory requirements. However, it is required that a checkpoint operation
must guarantee to complete, otherwise part of the previous checkpoint may be
overwritten with the current checkpoint2. Often these corruptible runtimes include

2If the system where to run out of power during the creation of a checkpoint, with the next checkpoint
restoration a corrupt state will be restored leading to undefined behaviour—thus to a corrupt system.

2

18 2. BATTERY-FREE INTERACTIVE DEVICES

a check whether a checkpoint was completed successfully, otherwise they start the
program execution from the beginning. Such systems require exact prediction of
the energy (required to perform a checkpoint) and the energy currently consumed
by the complete system (to be able to guarantee that a checkpoint is only performed
when its completion can be guaranteed). Such a requirement is unrealistic for
a computing platform, such as ENGAGE, that includes many peripherals and
components all connected to the same energy buffer, as correctly predicting the
required energy—even the CPU alone—is difficult;

• Incorruptible Checkpoint: Such systems take a different approach: at all times they
guarantee that there is a valid checkpoint which can be restored. This means that a
new checkpoint will never overwrite part of the previous checkpoint in non-volatile
memory. Such guarantee is often implemented through double-buffering.

As of now, there are no known incorruptible differential checkpoint systems, and just
one corruptible differential checkpoint system, DICE [5], refer also to Table 2.2 where
existing intermittent runtimes are qualitatively compared from ENGAGE requirements
point of view. Therefore, to realize a working ENGAGE we developed a new checkpointing
runtime, denoted as MPatch, that performs incorruptible differential checkpoints. The
proposed runtime is aided by a new concept of patch checkpointing, discussed below.

MPatch—a Patch Checkpointing Intermittent Runtime. Memory is constantly being
modified during the execution of a program. However, as Figure 2.4 clearly illustrates, it
is unlikely that during an on-period of any intermittently powered embedded system,
including ENGAGE, all memory is modified. Therefore, when creating a checkpoint
containing all the known or active memory regions of the system, one will inevitably copy
memory locations that have not changed since the last checkpoint.

It is thus desirable to copy as little of the (embedded) system state as possible while
keeping the checkpointing incorruptible. The most fundamental method to do this
efficiently is to track which memory regions have been changed since the last checkpoint,
in other words, to see memory modification difference in-between checkpoints. As
mentioned earlier, the only checkpoint runtime that has employed this form of differential
checkpoint so far was DICE [5], see again Table 2.2. It is, however, difficult to apply the
techniques used by DICE while maintaining an incorruptible system (that uses double
buffering). Specifically, assuming that only one of the buffers is active, if part of the
checkpoint resides in the previous buffer, and yet another checkpoint occurs, then it is
impossible to keep the incorruptibility trait with DICE without still copying all checkpoint
data between the two buffers. Therefore, to achieve differential checkpointing that is
incorruptible, a new system has to be designed, which resulted in MPatch.

MPatch Just-in-Time Checkpoints. As we have shown in Figure 2.4 not all of the emulator
and display memory is written to at every MCU clock cycle. Hence we only checkpoint
the modified memory regions, which we denote as patches. Then, we monitor the voltage
level of the storage capacitor, as in other existing runtimes, e.g. [22, 5, 315, 145] and only
checkpoint the state when nearing a power failure—we call this just-in-time checkpoint.
We purposefully do not perform checkpoints at an interval timer: game players are
susceptible to lagging in a game, hence interval-based checkpointing (which introduces
frequent fixed-interval delay) is not desirable.

2.3. BATTERY-FREE HANDHELD GAMING

2

19

Table 2.2: Comparison of MPatch with state-of-the-art intermittent checkpointing runtimes.

System Incorruptible Differential Just-in-
time

Volatile
main

memory

ARM
support

Mementos [246] Yes ✓ No ✗ Yes ✓ Yes ✓ Yes ✓
Hibernus++ [22] No1 ✗ No ✗ Partially Yes ✓ No ✗

QuickRecall [145] No ✗ No ✗ Yes ✓ No ✗ No ✗
Chinchilla [190] Yes ✓ N/A No ✗ No ✗ No ✗

Rachet [306] Yes ✓ No ✗ No ✗ Yes ✓ Yes ✓
HarvOS [28] No1 ✗ No ✗ Yes ✓ Yes ✓ Yes ✓

TICS [166] Yes ✓ N/A No ✗ No ✗ No ✗
TotalRecall [315] No1 ✗ No ✗ Yes ✓ Yes ✓ No ✗

Elastin [46] Yes ✓ N/A No ✗ No ✗ No ✗
WhatsNext [95] Yes ✓ No ✗ No ✗ Yes ✓ Yes ✓

DICE [5] No 1 ✗ Yes ✓ Yes ✓ Yes ✓ Yes ✓
MPatch Yes ✓ Yes ✓ Yes ✓ Yes ✓ Yes ✓

1 These systems require perfect energy prediction to not get corrupted. Any changes in, for example, ca-
pacitor size [46], power consumption due to peripheral use, or harvested energy, will lead to incorrect
predictions and therefore corruption.

Logical Clock n n-1

Patches

0

Figure 2.5: MPatch stage operation. Patches outlined with red are staged, but not committed. Patches outlined
with blue signify committed patches.

Patch Handling. A patch is a non-volatile copy of a consecutive region of volatile memory
that has changed since the last successfully created checkpoint. As different memory
regions are modified during execution, multiple patches of different memory sections
might be required for a complete checkpoint. During the restoration, the most recent
patches (in combination with the pre-existing patches) are used to restore the volatile
memory to the state it was in during the last checkpoint. By only storing the modified
regions the checkpoint time is significantly reduced, as often only a small part of the
memory is changed between the two consecutive checkpoints (we will investigate this
further in Section 2.5).

As with traditional checkpoint-based systems that use double-buffering, an atomic
variable n, determines which of the two buffers should be used to restore the system in
case of a power failure [246, 166]. This variable n is changed—often incremented—to
mark the completion of a checkpoint. The requirement on n is that for its increment,
n +1, it holds that (n mod 2) ̸= (n +1 mod 2). MPatch patch management is also built
around the atomic variable. However, MPatch extends the function of this variable to act
as a logical clock, with the additional requirement that n ̸= n +1.

2

20 2. BATTERY-FREE INTERACTIVE DEVICES

Empty

Memory CP 1 CP 2 CP 3

(a) MPatch memory before restoration.

Memory CP 1 CP 2 CP 3

CP 1

CP 1

CP 3

CP 3

CP 2

(b) MPatch memory after restoration. The restore se-
quence applies only the parts of patches that are required
to reconstruct the memory.

Figure 2.6: MPatch patch restore procedure after three successful checkpoints (CP). For illustration, we assume
that the memory is initiated as empty; blue rectangles depict patches that have been successfully committed to
non-volatile memory and green rectangles signify the parts of the patches that are applied during restoration.

We now define three fundamental patch operations (i) Patch Stage, (ii) Patch Commit,
and (iii) Patch Restore.

• Patch Stage: When a patch is created, the required amount of non-volatile memory
is allocated and the volatile-memory is copied to the patch. Next, the patch is staged
by signing it with the current logical clock n and added to the front of the patch
chain, i.e. the list of patches, ordered from newest to oldest, that will be applied
during restoration. Staged patches are outlined in red in Figure 2.5. While a patch
is staged it will be discarded if a power failure (and thus a restoration procedure)
occurs.

• Patch Commit: When the logical clock n is incremented, all previously staged
patches will become committed. These patches are outlined in blue in Figure 2.5.
Committed patches will be considered during the patch restore procedure.

• Patch Restore: When ENGAGE inevitably fails due to a lack of energy, it should
be restored to the last completed checkpoint. Patches hold copies of consecutive
volatile memory regions and are linked together to form the patch chain. This
moves the complication of deciding what part of the patch to apply, if any, to
the restore operation. To reconstruct the state of the most recent checkpoint the
(partial) content of multiple patches has to be combined. This reconstruction,
due to the implicit ordering in the patch chain, starts from newest to oldest. For
each patch, only the parts that were not already applied during the current restore
operation are copied to volatile memory, as illustrated in Figure 2.6. In contrast,
for a traditional incorruptible checkpoint runtime, restoring a checkpoint means
reading the logical clock n and copying the checkpoint content from the selected
buffer to the corresponding volatile memory and registers.

2.4. ENGAGE IMPLEMENTATION

2

21

A

B

C

D

F

I

J

G

H

E

Figure 2.7: Energy Aware Gaming (ENGAGE) fabrication details. The main components are: (A) Ambiq Apollo3
Blue ARM Cortex-M4 MCU, (B) Fujitsu MB85RS4MT 512 KB FRAM, (C) ZF AFIG-0007 energy harvesting switch,
(D) Semiconductor Components Industries NSR1030QMUTWG low forward voltage diode bridge, (E) micro USB
debugging port, (F) display connector, (G) solar panels connector, (H) cartridge interface, (I) Texas Instruments
BQ25570 harvester/power management chip, and (J) Texas Instruments TPS61099 boost converter.

2.4. ENGAGE IMPLEMENTATION
We proceed with the implementation details of ENGAGE, following from the design
description provided in Section 2.3. All hardware, software and tools, as well as documen-
tation for ENGAGE are publicly available via [72].

2.4.1. ENGAGE HARDWARE
We built a handheld, energy harvesting, battery-free hardware platform to enable the
development and testing of our approach to battery-free mobile gaming. ENGAGE is
built using the following components.

PROCESSING AND MEMORY

Stemming from the requirements (Section 2.2), for compatibility and popularity reasons,
we build our ENGAGE around an ARM MCU architecture. However, none of the ARM
architecture MCUs we are aware of contains on-chip fast, byte-addressable non-volatile
memory—such as FRAM—serving as a main memory. Only slow and energy-expensive
FLASH memory is present. Therefore we equip our battery-free console with external
dedicated FRAM. Central to ENGAGE is the Ambiq Apollo3 Blue ARM Cortex-M4 MCU
operating at a clock frequency of 96 MHz [7], chosen for its good energy efficiency. The
Apollo3 runs the Game Boy emulator and MPatch software. External Fujitsu MB85RS4MT
512 KB FRAM [93] is connected through SPI to the MCU providing a fast and durable
method of non-volatile storage for patch checkpoints, see Figure 2.7. With the availability
of power switches within the MCU, it gates power to the screen and cartridge interface.

2

22 2. BATTERY-FREE INTERACTIVE DEVICES

To be able to read game cartridges, a cartridge connector is placed on the back of
the ENGAGE platform. The cartridge interfaces with the MCU using Semtech SX1503
I/O expanders [267], in this case the extenders also translate the 3 V system voltage to 5 V
logic required by the cartridge.

MIXED SOURCE ENERGY HARVESTING

We extract energy from two sources: (i) button presses of a regular Game Boy, using
mechanical off-the-shelf button press harvesters, and (ii) a set of solar panels attached
to the front of the Game Boy chassis. The selected buttons were ZF AFIG-0007 energy
harvesting switches [331]. Six of these kinetic harvesting switches are used (see Figure 2.7)
located at the position of the D-pad (four switches) and “A”, “B” operation buttons (two
switches). The energy harvesting switches generate energy by moving a magnet inside a
coil. Since both up and downward motion generates energy, the output of the switches is
rectified using a Semiconductor Components Industries NSR1030QMUTWG low forward
voltage diode bridge [265] before being boosted using a Texas Instruments TPS61099 boost
converter [295] to be stored in a small intermediate energy storage capacitor. When the
intermediate energy storage reaches 4 V the system turns on and the buck converter of
the power management chip steps down the voltage to 3 V to power the system. Addi-
tionally solar energy is harvested from eight small solar panels [233], each measuring
35.0×13.9 mm, affixed on the front of the ENGAGE chassis (see Figure 2.7).

Harvesting of solar energy is managed by a Texas Instruments BQ25570 harvester/power
management chip [292], integrating both a buck and a boost converter. The harvester
employs a boost converter and maximum power point tracking to harvest the solar energy
and stores the harvested energy in the intermediate energy storage capacitor. All energy
from energy harvesting is stored in a main 3.3 mF capacitor, chosen to enable even in the
worst energy harvesting conditions a few seconds of game play before the system reaches
a critical voltage and powers down to harvest more energy.

ULTRA-LOW POWER DISPLAY

Displaying game content consumes the most energy of any embedded platform. Making
energy-efficient display is research on its own, which is beyond the scope of this work.
At the same time, we want ENGAGE to be accessible to any hobbyist by being built out
of easily available and inexpensive components. Therefore we have relied on super-low
power state-of-the-art off-the-shelf commercial display. Note that we have excluded
e-ink displays as their refresh rates are too low for a good gaming experience (especially
with rapidly changing game states such as Super Mario Land).

We have chosen a low power non-back lit reflective Japan Display LPM013M126A
LCD [144], noting that the Game Boy also does not have a backlight. The LCD measures
26.02× 27.82 mm, which means the display is smaller compared to the original Game Boy
screen by 47×43 mm. Our chosen display offers a greater resolution of 176×176 com-
pared to 160× 144 pixels of the original Nintendo Game Boy and is capable of displaying
eight colors compared to the four shades of gray the Game Boy uses. Just like in case of
the cartridge interface, the MCU can enable and disable power to the screen.

2.4. ENGAGE IMPLEMENTATION

2

23

FORM FACTOR AND FABRICATION

For the same gaming feel we encapsulate the electronics of ENGAGE in a 3D-printed
chassis reminiscent of the original Game Boy. The only differences are: (i) the removal of
sound outlet, as we do not support sound generation on an intermittent power supply, (ii)
addition of slits to house the solar panels, (iii) slit for the USB port to provide constant
power supply to ENGAGE for debugging, and (iv) removal of slits for battery charge cable
and an on/off switch—as they are obviously not needed in a battery-free system. Since the
Apollo3 Blue MCU is only available in BGA packaging, we separated the MCU from the
main PCB creating a separate module containing this MCU only—see the green PCB in
the top left corner of Figure 2.7—to reduce the risk of soldering errors during small batch
manufacturing. This module is connected through connectors to the main ENGAGE PCB.
Complete fabricated PCB, front and back, are shown in Figure 2.7.

2.4.2. ENGAGE EMULATOR IMPLEMENTATION

As many Nintendo Game Boy emulators have already been written we have decided
not to build yet another one and relied on the existing emulator implementation that
targets a different MCU. Specifically, to run with ENGAGE we extensively modified and
rewrote a pre-existing freely-available implementation of original Nintendo Game Boy
emulator targeting a STM32F7 MCU [26]. All the modifications to this emulator, enabling
to reproduce our work, are part of our open-source repository freely available to download
from [72].

ENGAGE Screen Handling. Due to the availability of displaying colours on the chosen
display we remapped the default gray-scale colour palette (white, light gray, dark gray and
black) of the Game Boy to a colour version (white, yellow, red and black). This approach
is similar to popular emulators that enable colour remapping by default, transforming
Nintendo Game Boy games into the modern era where most games are rendered in colour.

ENGAGE Button Handling. In Section 2.3.2 we outlined the trade-off between energy
generation and user satisfaction by altering the emulators handling of the buttons, for
example removing the option to hold buttons for an extended duration of time. We limit
the duration a button can be held to 300 ms. This is a duration similar to the button
presses per second of Space Invaders as shown in Table 2.1. This approach forces the
user to press buttons in a frequent pace but does not require excessive button pressing,
balancing user satisfaction with energy generation. Due to the flexible nature of the
ENGAGE platform future work can focus on user interaction with intermittent gaming
devices. We will discuss this further in Section 2.6.1.

ENGAGE Memory Configuration. The Apollo3 ARM Cortex-M4 features flash and SRAM
as on-board memory, where the Flash memory contains all the code (MPatch and Game
Boy game emulator code) and non-volatile game data copied from the Game Boy game
cartridge. SRAM contains memory of the whole ENGAGE platform and the volatile game
memory—both separated from each other. Two buffers, Checkpoint A and Checkpoint
B, for double buffering during checkpointing, as well as all patches created by MPatch
reside in external FRAM. The complete memory map of ENGAGE is presented also in
Figure 2.8.

2

24 2. BATTERY-FREE INTERACTIVE DEVICES

Flash
1 MB

SRAM
384 KB

FRAM
512 KB

Code

Constant Game Data

ENGAGE Memory

Volatile Game Data
32 KB

ENGAGE Checkpoint A

ENGAGE Checkpoint B

MPatch Patches
Patch #1

Patch #2

Patch #3

Patch #p
Microcontroller SPI

Figure 2.8: ENGAGE physical memory structure. Constant game data is executed from Flash with its volatile
memory in SRAM, avoiding overhead from accessing the external FRAM. Only checkpoints and patches are
stored in external FRAM.

2.4.3. MPATCH IMPLEMENTATION

ENGAGE CORE CHECKPOINTS

MPatch is built upon a basic double-buffered checkpoint scheme which we denote as the
core checkpoint system. The core checkpoint encompasses all the emulation manage-
ment logic of ENGAGE, except for the emulated game memory, which is checkpointed
using patches as described in Section 2.4.3. Specifically, the core checkpoint system
checkpoints the .data, .bss and active stack sections of the MCU’s volatile memory as well
as the registers of the MCU, as can be seen in Algorithm 2.1. All this is double-buffered
in the external non-volatile memory of ENGAGE. Naturally, this means that for every
byte of volatile memory in the checkpoint, we need twice as much bytes in non-volatile
memory. We remark that not all memory of ENGAGE is checkpointed. Specifically, we do
not checkpoint memory buffers required for peripherals (as the peripheral state needs
to be re-initialized every ENGAGE reboot). The restoration of a checkpoint will restore
the state of the system to that of the last successful checkpoint. If the system does not
experience a first time boot, the default memory initialization step (which traditionally
runs before any user code) will be skipped. After this, the steps listed in Algorithm 2.2
are performed to continue executing as if no power failure had occurred. In line 3 of
Algorithm 2.2 the MPatch patch restoration process is started to restore the emulated
game memory which will be discussed further in Section 2.4.3.

We designed the core checkpoint system from the ground up, implementing special
keywords enabling the exclusion of certain volatile memory parts from a checkpoint.
Also, the core checkpoint provides hooks for every stage of the checkpoint for ease of
extension, which is required to incorporate patches from MPatch.

PATCH CHECKPOINTS IMPLEMENTATION

The emulated memory, i.e. the memory used by the Game Boy games, is a region in SRAM
accessed only by emulated read and write instructions form the emulator. Leveraging this

2.4. ENGAGE IMPLEMENTATION

2

25

Algorithm 2.1 Checkpoint Creation

1: function CHECKPOINTCREATE

2: CORECHECKPOINT ▷ Checkpoint memory not manged by MPatch
3: PATCHESCREATE ▷ Create and stage patches; see Section 2.4.3 and Alg. 2.3
4: REGISTERCHECKPOINT ▷ Checkpoint the CPU registers
5: RESTOREPOINT ▷ Continuation point after a restore operation
6: if ISNOTRESTORE then
7: CHECKPOINTCOMMIT ▷ Call function that commits the checkpoint
8: end if
9: end function

Algorithm 2.2 Checkpoint Restoration

1: function CHECKPOINTRESTORE

2: CORECHECKPOINTRESTORE ▷ Restore memory not manged by MPatch
3: PATCHESRESTORE ▷ Restore committed patches; see Alg. 2.5
4: PERIPHERALRESTORE ▷ Restore peripherals
5: REGISTERCHECKPOINTRESTORE ▷ Restore the CPU registers
6: RESTOREPOINT ▷ Continue at the restore point; see Alg. 2.1
7: end function

fact makes tracking modification to the emulated memory straightforward, and doing so
has little impact on the overall performance. ENGAGE tracks these modifications, and
when a checkpoint is created, this information is used to create the required patches as
can be seen in Algorithm 2.3. Tracking of these modifications is done using the memory
protection unit of the MCU. Upon writing to a region of emulated game memory, the
memory protection unit triggers an interrupt allowing the memory region to be marked as
modified. After a region is marked as modified the interrupt for the region is disabled. This
results in an efficient method of tracking memory writes since the introduced overhead
is only present during the first write after a reboot. The memory protection unit features
eight regions which each have eight sub-regions, for a total of 64 sub-regions. We equally
divided the memory space of the emulated Game Boy memory between these sub-regions
resulting in patches containing 32 kB / 64 = 512 B of emulated memory.

Content of a Patch. In addition to the copy of a volatile memory region, a patch contains
accompanying metadata required to successfully manage and restore a patch. This
metadata is: (i) the value of the logical clock n from when the patch was staged, (ii) the
interval of the volatile memory that is stored within the patch, (iii) the next patch in
the patch chain, (iv) the metadata to build an augmented interval tree to speed up the
restoration procedure, which will be discussed later in this section.

Patch Allocation. Patch sizes are allowed to differ, therefore some form of dynamic
memory allocation is required. This brings challenges, as dynamic allocation leads to
fragmentation, which is undesirable in an embedded system. Therefore patches are
allocated using a fixed-size block allocator [156]. These allocated blocks are chained
together to create enough room required to store the volatile memory within the non-

2

26 2. BATTERY-FREE INTERACTIVE DEVICES

Algorithm 2.3 Patch Creation

1: function PATCHESCREATE

2: while p ← MODIFIEDMEMORY do ▷ For each of the modified regions of memory
3: PATCHSTAGE(addressstart, addressend) ▷ Create and stage the patch; see Alg. 2.4
4: end while
5: end function

Algorithm 2.4 Patch Staging

1: function PATCHSTAGE(addressstart, addressend)
2: patch ← ALLOCATEPATCH(addressstart, addressend) ▷ Allocate memory for a patch
3: PATCHCREATE(patch) ▷ Copy the volatile memory region into the patch
4: end function

volatile blocks. Each block contains: (i) a link to the next block in the chain, and (ii) a
link to the next free block in the chain. All blocks are stored and managed in non-volatile
memory. This creates challenges when trying to synchronize its non-volatile and volatile
state. If these are not kept in sync, blocks will be lost, and the system may become corrupt.
Additionally, write-after-read (WAR) violations [62] should be avoided when interacting
with the non-volatile state. These two separate links in a block are required to eliminate
one of these WAR violations, this violation could also be eliminated by introducing forced
checkpoints, as inserting a checkpoint will break a WAR violation [62]. The total memory
overhead of a patch in ENGAGE as it is currently implemented is 29 B. By excluding the
interval tree required for the metadata, this can be reduced further to 17 B, but this would
require an additional dynamic memory allocator to allocate this memory in volatile
memory during a restoration (e.g. standard heap). For the final version used in ENGAGE,
this was deemed undesirable, and therefore we integrated the interval tree metadata
within non-volatile patches.

Patch Restoration. Restoring patches involves first discarding all staged—but not yet
committed—patches, and then iterating through the patch chain while applying only
the regions of a patch that were not previously applied during the restoration process.
To keep track of the regions of volatile memory that were already restored we maintain
an augmented interval tree during the restoration process. After a patch is applied, its
range is added to the interval tree, and when a patch is applied, the interval tree is
queried to detect overlaps. If there are no overlaps, the path is applied (i.e. written to the
corresponding region in volatile memory). However, if the patch region overlaps with any
region in the interval tree, the patch is split-up and all sub-patches are attempted to be
applied. The complete algorithm for patch restoration is shown in Algorithm 2.5, with its
accompanying patch apply algorithm shown in Algorithm 2.6.

Memory Recovery. One of the features of MPatch is its constant time patch creation
while being incorruptible. However, patches that are no longer useful, i.e. that will not
be applied during restoration, should be deleted. To avoid WAR violations, removing
a patch (reclaiming its memory), consists of two operations. Firstly, the patch is freed,
and secondly, the patch is deleted. Between these two operations, a checkpoint of only

2.5. ENGAGE EVALUATION

2

27

Algorithm 2.5 Patch Restoration (note: low(p), high(p) denote the low, high component of range p, respectively)

1: function PATCHESRESTORE

2: DISCARDUNCOMMITTED ▷ Call function that discards uncom-
mitted patches

3: while papply ← next(PatchC hai n) do ▷ Extract next patch from
patch chain to restore it

4: PATCHAPPLY(papply, low(papply),high(papply)) ▷ Apply patch; see Alg. 2.6

5: INTERVALINSERT(low(papply),high(papply)) ▷ Insert the patch range
into the interval tree

6: end while
7: end function

Algorithm 2.6 Patch Apply (note: low(p), high(p) denote the low, high component of range p, respectively)

1: function PATCHAPPLY(papply, low,hi g h)
2: if poverlap ← INTERVALOVERLAP(low,hi g h) then ▷ Check for overlapping re-

gion in interval tree
3: if low < low(poverlap) then
4: PATCHAPPLY(papply, l ow, low(poverlap)−1) ▷ Recursively apply patch

with a new partial range
5: end if
6: if hi g h > high(poverlap) then
7: PATCHAPPLY(papply,high(poverlap)+1,hi g h) ▷ Recursively apply patch

with a new partial range
8: end if
9: else

10: WRITE(papply, l ow,hi g h) ▷Write patch content between low
and high to the volatile memory

11: end if
12: end function

the MPatch management state is made containing patch and block allocation related
metadata. During the deletion of a patch special care is taken to avoid WAR violations
when modifying non-volatile memory in the patch chain. Memory recovery is not needed
during every time a checkpoint is created or restored, is automatically done when there
is no more non-volatile memory available to allocate a patch.

2.5. ENGAGE EVALUATION
We built ENGAGE as a proof by demonstration that battery-free mobile gaming was
possible. In this section we demonstrate that the system can play unmodified retro games
despite intermittent power failures. We analyze the real-world execution of the platform
while playing Tetris in different lighting scenarios (i.e. with different energy scarcity) to
show the effect of energy availability. We then benchmark the ENGAGE hardware platform
for power consumption and, investigate the performance of the MPatch system. We find
that in well-lit environments playing games that require at least moderate amounts of

2

28 2. BATTERY-FREE INTERACTIVE DEVICES

... ...
D
is
pl
ay

Figure 2.9: End-to-end evaluation of ENGAGE operating in ‘daylight’ (approximately 40 klx during Tetris game-
play using harvested energy only. Storage capacitor voltage is shown, overlaid by unique button presses (marked
as light blue dots). Additionally the following system events are shown at the bottom of the figure: initialization
time (marked in dark green), system on time (marked in light green), low energy state (marked in light blue,
denoting moments of ENGAGE periodically checkpointing due to critical system voltage) and checkpoint time
(shown in dark blue in the separate zoomed-in window on the right). The actual game frames are shown on
top, taken from recording the ENGAGE display during the evaluation scenario. The scenario shows that user
interaction prolongs the on time of ENGAGE, by pressing buttons during gameplay—achieving ten seconds or
more of on time with small off times. We consider this to be a playable Tetris scenario.

clicking, play is only slightly interrupted by power failures (less than one second of failure
per every ten seconds of play). Our measurements of MPatch across four different games
show that checkpoints are fast (less than 50 ms and restoration time after a power failures
is not noticeable (average of 140 ms).

2.5.1. END-TO-END ENGAGE PERFORMANCE

First, we look at the typical play of ENGAGE executing an example Nintendo Game
Boy game Tetris, chosen due to its requirement for moderate/high button presses and
a small number of cut-scenes. We show how the system operates only on harvested
energy. We execute two experiments, each in different lighting conditions: (i) ‘daylight’
with approximately 40 klx and (ii) ‘shade’ with approximately 20 klx, where a gamer
plays ENGAGE fully untethered, operating on harvested energy only. In the experiment
the voltage of the main supply capacitor of ENGAGE is recorded together with various
debugging signals indicating different system states. The system state and button presses
are recorded using a Saleae logic pro 8 logic analyzer [256]. The ENGAGE platform was
placed in a light box with two remotely controllable lights generating the two different
light exposure conditions. The luminance of both scenarios was verified using a UNI-T
UT383 lux meter [302].

In the first scenario (‘daylight’, Figure 2.9) we show a period of execution with both
little and many button presses. Here clearly the contribution of the energy harvesting
by the switches is shown, significantly prolonging the on time of the device (marked in
green). The figure shows the complete sequence from startup until the ENGAGE reaches
a critically low energy level when it starts checkpointing. Due to the variability in the
incoming energy pattern, ENGAGE can spend some time in this state, since it always
needs to account for the worst-case scenario of no additional incoming energy. This

2.5. ENGAGE EVALUATION

2

29

... ...
D
is
pl
ay

Figure 2.10: End-to-end evaluation of ENGAGE operating in ‘shade’ (approximately 20 klx. Description of figure
elements is the same as in Figure 2.9. With less energy available to ENGAGE as in the scenario in Figure 2.9,
on times are reduced to around 3.5 s, with off times of more than a second. This scenario creates a noticeable
impact to the user experience.

scenario results in on times of ten seconds or more with small off times of less then a
second, making it a very playable experience.

In the second scenario (‘shade’, Figure 2.10) we halved the amount of light the solar
panels are exposed to compared to ‘daylight’, a more challenging condition for ENGAGE.
This reduces on times to around 3.5 s with off times of more than a second. Despite
the system still functioning correctly the lack of incoming energy becomes noticeable
and even button mashing cannot compensate for the lack of energy. As with any energy
harvesting platform, the limits of operation are defined to a major degree by the available
energy in the environment. Full-system emulation is challenging and energy-intensive,
but the game is still playable and functional; just with longer intermittent outages. We
note that the downward peaks of storage voltage in Figure 2.9 and Figure 2.10 are caused
by the energy harvester: during maximum power point tracking no energy is harvested
causing the quick drop in the storage capacitor voltage.

Full-System Restoration Time. We have also measured end-to-end time of ENGAGE
restoration: from the moment of applying power to the MCU to the moment of executing
game code within the Game Boy emulator. In the case of Tetris this is 264 ms. The other
games we tested resulted in comparable restore times, the main difference resulting from
MPatch operations, as is further described in Section 2.5.3.

2.5.2. ENGAGE POWER CONSUMPTION AND ENERGY GENERATION
We have measured ENGAGE’s power consumption, looking into overall power consump-
tion whilst first measuring the consumption of MCU together with the FRAM and display.
The MCU and FRAM combined consume 11.15 mW and the screen consumes 344.31µW
during game execution taking a ten second average. During idle time the screen only con-
sumes 3.90µW, resulting in a combined system average power consumption of 11.50 mW.
As a comparison, the original Nintendo Game Boy consumes 232.08 mW during game
execution, varying slightly per game and cartridge architecture. While not necessarily
a useful or meaningful number, we conclude that our platform is more than 20 times
more power-efficient than the original Nintendo Game Boy (representing normal tech-

2

30 2. BATTERY-FREE INTERACTIVE DEVICES

nology advancement, but noting that ENGAGE is an emulator). The measurements
were conducted using a Fluke 87V [89] multimeter and the X-NUCLEO-LPM01A [281]
programmable power supply source with power consumption measurement capability.

Energy Generation. Then, to give more insight in the energy harvesting on the ENGAGE
platform we have measured the amount of energy the solar panels generate using a Fluke
87V [89] multimeter and compare this to the energy generated from the buttons. For
the buttons we use the minimal energy generation figures from the specification of the
harvester [331, summary] as a worst case scenario3. Assuming that a single button press
generates a minimum of 0.66 mJ and knowing the amount of button presses per game
is specific to the game as per Table 2.1, we can assume the buttons generate between
0.66 mJ for one press per second and 1.98 mJ for three presses per second. At 40 klx and
20 klx, the solar panels generated an average of 10.14 mW and 8.33 mW, respectively, i.e.
less than the required system average power consumption of 11.50 mW. We can conclude
that ENGAGE is mostly powered by solar panels and supplemented by the button presses
although the button presses can significantly increase the on-time of the platform, as
shown in Section 2.5.1.

2.5.3. MPATCH PERFORMANCE

To better understand and quantify the effect of patches on the checkpoint and restore
time, we evaluate MPatch against a naive approach—comparable in operation to Memen-
tos [246]—where all active memory in the system is copied to non-volatile memory during
a checkpoint, even if it was not modified since the last checkpoint. We compare these two
strategies, MPatch and naive, by running multiple different games on ENGAGE. These
games include: (i) Tetris, (ii) Super Mario Land, (iii) Space Invaders, and (iv) Bomberman.
These games represent a wide variety of play styles, developers, and even release dates.

MPATCH CHECKPOINT TIME

To measure only the impact of the MPatch patch checkpoints, we disable the just-in-
time checkpoints—used in Section 2.5.1—and run the system on constant power during
these measurements. Instead, we perform a checkpoint every c execution cycles of the
emulator, we chose three different values for c, which correspond to different on times,
i.e. 1 s, 5 s, and 10 s. During normal operation checkpoints will only be created when
the voltage reaches a critical threshold, as seen in Section 2.5.1, these fixed on times
represent a simplified scenario where the critical voltage threshold is reached after the
specified on time. The on time affects the number and size of the checkpoints, as it allows
for more memory writes between two consecutive checkpoints. The on time does not
affect the naive checkpoint, as it always checkpoints all memory, with the only variable
size being the system stack of ENGAGE. However, because of the way ENGAGE works—as
an emulation loop—the system stack size is virtually constant.

During the emulation of each game, with the three different on times, we measured
the cost of each component of the checkpoint using the same logic analyzer as used in
experiments in Section 2.5.1. A checkpoint of ENGAGE consists of a core checkpoint of

3Harvesting energy from the button energy harvesters is highly dependent on numerous factors such as the
force applied and the manner of pressing the button hence the choice for the minimal figure.

2.5. ENGAGE EVALUATION

2

31

1s 5s
Tetris

10s 1s 5s
Super Mario Land

10s 1s 5s
Space Invaders

10s 1s 5s
Bomberman

10s
0

50

100

150

200
Ti

m
e

(m
s)

Naive Checkpointing

MPatch Core
MPatch Patches
Outlier

Figure 2.11: MPatch checkpoint time comparison of approximately two minutes of game play per game using
three different on times (1 s, 5 s, and 10 s) between successive checkpoints. ENGAGE has noticeably better
performance than naive system, across all on times and games.

ENGAGE (Section 2.4.3) and additionally patches created by MPatch. The core check-
point includes the management of both the emulator and the emulated memory, but
excludes the emulated memory itself. This emulated memory is the largest memory com-
ponent of the system, and therefore also the largest component of a naive checkpoint. For
this reason we checkpoint this part of the system using MPatch, as the other components
of ENGAGE are virtually constant in the amount of memory that is modified and are thus
covered by the core checkpoint.

Figure 2.11 illustrates the naive checkpoint time as the horizontal line, the average
checkpoint time of a core checkpoint (light blue bar), the differential component of a
checkpoint using MPatch (dark blue bar), and the outliers (blue diamonds). As can be
seen, the cost of the core checkpoint is around 30 % of the complete naive checkpoint,
the rest being the emulated memory. However, when using MPatch to checkpoint the
emulated memory, the core checkpoint dominates the total checkpoint time. In total
MPatch is on average more than two times faster than the naive approach. This confirms
our hypothesis that only a small amount of emulated memory is modified during exe-
cution. This reduction in checkpoint time directly leads to a lower energy requirement
for each checkpoint and leaves more time for game emulation. Interestingly this as-
sumption seems to hold even when the on time approaches 10 s, which is substantial for
intermittent devices. Some outliers take longer than a naive checkpoint, this is due to a pe-
riodically performed memory recovery procedure (Section 2.4.3)—which was introduced
to keep the creation of patches constant while keeping the system incorruptible.

MPATCH RESTORATION TIME

We also evaluate restoration time of patch checkpointing of MPatch, in a similar manner
as in the previous section (i.e. the same set of games, comparison against three other
reference mechanisms). The results are presented in Figure 2.12.

Restoring a patch-based checkpoint requires more time than the creation of a patch,
as described in Section 2.4.3, due to the need to apply only the parts of the patches that
are required, and because all the volatile memory has to be restored. Additionally, the

2

32 2. BATTERY-FREE INTERACTIVE DEVICES

1s 5s
Tetris

10s 1s 5s
Super Mario Land

10s 1s 5s
Space Invaders

10s 1s 5s
Bomberman

10s
0

50

100

150

200
Ti

m
e

(m
s)

Naive Checkpointing

MPatch Core
MPatch Patches

Figure 2.12: Restoration time comparison of after approximately two minutes of game play per game using
three different on times (1 s, 5 s, and 10 s) between successive checkpoints. ENGAGE has comparable or better
performance than naive system, across all on times and games.

restoration procedure must take into account all the committed patches when trying
to restore the volatile memory, as each of these might hold some region that was only
checkpointed using that specific patch. Therefore it is not directly influenced by the
on-period, but influenced by the time since a memory recovery. Nevertheless, as can
be seen in the figure, MPatch often reduces the restoration time compared to the naive
restoration. We can also conclude from this that tested games often only modify a portion
of their memory (in this case the emulated memory), as can also be seen in Figure 2.4.

2.6. DISCUSSION AND FUTURE WORK

Our evaluation of ENGAGE has shown that retro games are playable without batteries,
making a next step in self-sustainable gaming made first decades ago by e.g. Bandai
Corporation’s LCD Solarpower game series [58]. Although the core gameplay mechanisms
of the mobile handheld gaming have been successfully implemented, i.e. interaction with
a screen-displayed data (for the original Nintendo Game Boy), other forms of interaction
that make game experience complete are waiting to be researched and implemented.

2.6.1. LIMITATIONS, ALTERNATIVES AND FUTURE WORK

Of course ENGAGE is just a first step in the direction of battery-free gaming and the
proposed platform has still many limitations that need to be addressed. First, our battery-
free platform plays no sound. We agree that no sound play is the main hurdle of complete
game immersion. How to make sound enjoyable despite power supply intermittency is
the core research question, but at the same time (in our opinion) an exciting research
area. Some approaches to the sound problem we anticipate as worth-considering are
(i) to include separate storage for sound buffering and play, following the architecture
of [51, 113], (ii) introduce superficial pauses in the original game tone—effectively making
the game sounds identical to the original battery-based game but punctured by silence at
pre-selected moments—to make sound interrupts less irritating during gameplay, or (iii)

2.6. DISCUSSION AND FUTURE WORK

2

33

to create intermittent system-specific game sounds—sounds that inform the user that
the system is about to die or has just become operational again—to enrich battery-free
gameplay.

Second, playing in the dark has not been addressed, as screen we used has no back-
light4. In the context of battery-free gaming, provision of a backlight for screen is very
difficult. Simply, lack of light reduces amount of energy from harvesting, which in con-
sequence reduces chance to perform any task—let alone supporting LEDs that are the
most energy-consuming components of any embedded system.

Third, haptics for battery-free games needs deeper investigation. The energy harvesting
buttons we have used in our prototype [331] are designed for industrial sporadic single-
press cases (think of a battery-free wireless light switch). In frequent pressing cases these
switches are much sturdy than the original Game Boy buttons, which for gamer can be a
distracting feature. This necessitates a quest for more natural press buttons with equal
(or better) energy harvesting. Furthermore, solar panels have to be placed on console’s
chassis such that their obstruction by fingers is minimized (as in our prototype). This,
however, might downgrade the aesthetics of the device or require to make it bigger.

Fourth, networking with battery-free game consoles is another important point to
consider, which was not addressed by us. Original Game Boy had an ability to connect,
via cable, to another Game Boy for tandem gaming. This cable connection can be actually
used for energy sharing and balancing between two consoles. Wireless networking of
battery-free is an ongoing research task, which we did not want to cover with this work
(for state of the art battery-free networking overview we refer to Section 2.7).

Fifth, we cannot claim that all games will have the same playability when ported to
the intermittently-powered domain. Only when the off-times are negligible for the player
we can safely assume that any existing game could be played intermittently/battery-free.
Negligible off-times will cause no irritation to the person who is accustomed to always-on
style of play. This observation would hold for any game system—not only classical (but
old) Nintendo GameBoy we used as a basis for ENGAGE, but also recent systems such as
PlayStation Portable or Nintendo Switch. An open research question is to find how long
this off time is (less than a second or maybe less than a millisecond)? Our intuition says
that this time is game-dependent and the longer the off times are present in a battery-free
console, the set of games that can be ported to the battery-free platform gets smaller.
Games that do not need frequent button pushes intuitively would be less irritating to
play intermittently (e.g. Chess) or Solitaire), refer also to qualitative comparison of 8-bit
Nintendo Games portability in Table 2.3. However, this creates an interesting paradox of
button-based interaction. More button presses during the game result in more energy
supplied to the game console, see also Table 2.1 and Section 2.3.2 (in extreme case games
that are based on button bashing, such as classical Track & Field arcade game from
Konami Corporation, gamer would be able to continuously generate energy purely from
gameplay). At the same time less button presses result in less energy being created,
causing reduction in continuous duration of play. To verify the above claims detailed user
studies considering large pool of gamers and games need to be performed, where users
play different games with artificially-induced intermittent operation (varying duration of
on and off times).

4To be fair, the original Game Boy had the same deficiency, so do some of the upcoming gaming consoles [234].

2

34 2. BATTERY-FREE INTERACTIVE DEVICES

Table 2.3: This table describes the difficulty (or irritability) of playing types of Nintendo GameBoy games on
intermittent power, assuming the intermittent effect is noticeable to the player and that enough energy is
available for some level of play.

Game name Type Button
presses

Intermit-
tent play

Comments

Baseball Sports Very High Hard Reaction time is part of the game
Super Mario
Land

Platformer High Hard Button press order is crucial

Tetris Puzzle High Medium Tile rotation is often infrequent
Solitaire Cards Low Easy No penalty for missing a press
WordZap Puzzle Low Easy Easy with “no solving time”

penalty
Chess Strategy Very Low Easy Most time spent on thinking

Sixth, screen retention needs to be introduced (keeping screen state in-between on
times) which our ENGAGE has not implemented yet. This simple extension would
significantly reduce perceived negative effect of intermittent operation (think of a Chess
game where state of the screen does not change much when the player is thinking and
often user would not distinguish between off time and regular game operation, see again
Table 2.3).

Finally, the overarching goal is to be able to play state of the art 21 century handheld
game consoles battery-free, such as the Playstation Vita or Nintendo Switch—going beyond
8 bit architecture. This however requires years of research and can only be achieved by
further advances in intermittently-powered software frameworks and ultra-low power
electronics, which hopefully this work made a first step in achieving this goal.

General Software Framework for Battery-free Games. The goal of being able to run
any existing or future game battery-free requires the introduction of general software
framework for such games, going beyond checkpoining mechanism or a driver design
presented in this paper, which is of course tailored towards the 8 bit Game Boy emulator.
We envision a game engine, inspired by game engines of existing video games, such as
the Source game engine [305] used in first-person shooter games such as Counter-Strike,
that supports battery-free interaction abstracting underlying frameworks for intermittent
operation form an actual game design.

Further Reduction of Game Console Carbon Footprint. We have made a first step
towards making Game Console fabrication more environmentally friendly, however this
is just a first step. Needless to say, original game cartridges of Nintendo Game Boy contain
battery, and our console is based on many electronic components that are responsible
for large CO2 emissions in production [107], not to mention chassis that is made of
plastic. More radical ideas need to be exploited, such as on the electronic level design
with minimum amount of components (e.g. crystal-free design), going beyond policy
changes in electronic fabrication enlisted, e.g. in [99].

2.6. DISCUSSION AND FUTURE WORK

2

35

Behavior Nudges to Generate More Energy. Many types of games have natural gaming
mechanics that could be leveraged to increase energy harvesting actions. Dance Dance
Revolution, Bop-It, and others, exploring this gaming induced behavior change for in-
creasing energy is an interesting research direction. For example, a specific rapid button
pressing sequence can trigger new game events (new levels, extra game points, etc.).
Then, there are great user interfaces for battery-free interaction, for instance a crank5,
that can be researched further.

Native Execution. We chose the hard path: running a game emulator on an intermittent
platform. This was to demonstrate the range of capabilities available to intermittent
computing, and to leverage the vast amount of pre-built games that can play unchanged
on the platform. However, one could imagine that native gameplay would significantly
increase the performance of the platform, by orders of magnitude, since a single emulated
instruction has significant overhead over native code for the platform. This could be
accomplished by compiling game binaries to native ARM code, or by leveraging a bespoke
gaming API from bare-metal C code. The latter is intriguing as an exercises to take
advantage of the unique aspects of intermittently-powered and battery-free gaming,
where the situation and context, as well as the gameplay, will effect how much energy is
harvested. Game mechanics leveraging this system attribute might increase engagement.

2.6.2. GAMING AND THE ENVIRONMENT

Electronic games are an important part of the world’s economy [209]. First and foremost
they are crucial to mental well being of many people around the world. Especially in the
time of the COVID-19 pandemic, when millions of people are stranded at home, various
forms of electronic gaming are one of the activities that reduce stress and boredom due to
lockdown implemented by most of world’s governments [260, 262, 290]. At the same time,
the electronic gaming industry is and important job creator, and although being a finan-
cially non-struggling industry, to say the least [223, 262, 209], is also actively supported
by international governments’: as an latest example refer to CD Projekt—creator of The
Witcher video game series—and its list of European Union-funded projects the company
participated in [41]. At the same time it is apparent that gaming industry contributes
significantly to global warming. In the United States alone gaming is responsible for “24
MT/year of associated carbon-dioxide emissions equivalent to that of 85 million refrig-
erators” [202]. To tackle that challenge the gaming industry is joining various industry
consortia such as Playing for the Planet [243] aiming at reducing its ecological impact.
Independently, some national governments aim at influencing the gaming industry re-
questing content providers to throttle-down data rate of streaming services with too high
demand [99]—resulting in smaller electricity consumption of data centers.

But all the above actions to address climate impact of the gaming industry do not
tackle the effect of battery-based/handheld/mobile gaming (the above-mentioned study
of [202] explicitly excludes such devices from the analysis). Beyond any doubt handheld
gaming devices, while extremely popular [214], contribute independently to increased
worldwide CO2 emissions. While we are not aware of any detailed studies on the carbon

5Which is already used in the upcoming post-retro Playdate console [234], which sadly is not used for internal
battery charging.

2

36 2. BATTERY-FREE INTERACTIVE DEVICES

footprint of popular handheld gaming consoles, such as Nintendo Switch6, its impact
is beyond negligible. For example, Nintendo was the least environmentally-friendly
company of Greenpeace 2010 Guide to Greener Electronics ranking [329], while none
of the video-game oriented companies are listed among the world’s most sustainable
corporations in year 2020 [57].

There are numerous components that gaming handheld console/mobile phone is
made of that cause substantial environmental impact [107] so removing some of them
without compromising the usability would by highly appreciated from the environment
point of view. A first potent candidate for such removal is a battery. Production of
batteries has great environmental impact by itself and many research projects are devoted
to making batteries-only more sustainable [81]. But even if most of the goals of more
sustainable batteries are met by 2030, they will still have to be produced, collected and
recycled. And while we conjecture that majority of console game players do not consider
reliance on batteries as a problem7 it is the environmental responsibility of the electronic
designers to address the battery issue for the users of handheld gaming consoles.

2.7. RELATED WORK

Battery-free Sensors. Long before our idea of a batter-free gaming console, non-gaming
embedded platforms were realized in a battery-free manner—making these sensor
more environmentally-friendly. The first such battery-free platforms were wireless sen-
sors [238]. First battery-free sensors were based on the idea of computational RFID
tags: programmable RFID tags with on-board sensors (such as accelerometers or tem-
perature sensors) communicating with the outside world by radio frequency backscat-
ter to a RFID reader. WISP [304, 257] and Moo [303] are the first realization of such
RFID tags. Since the introduction of WISP and Moo many research groups have fo-
cused on making battery-free backscatter communication more efficient [317], for in-
stance, by making it free from dedicated energy sources [236], by enabling communi-
cation with non-backscatter networks such as IEEE 802.11 [155] or LoRa [287], or by
improving backcatter-based networks—either based on standard RFID protocols [188],
or based on dedicated backscatter network stack [111]. A separate line of research fo-
cused on introducing camera-based image processing to backscatter-based sensors. First,
a backscatter-based battery-less cameras, as an extension to WISP platform, has been
demonstrated in [207, 208], later followed by a dedicated (non-WISP) backscatter-based
system [206, 253]. Additionally, non-radio frequency backscatter systems based on pas-
sive visible light communication backscatter, such as PassiveVLC mote [319], have also
been demonstrated. It is important to remark that the biggest drawback of backscatter-
based systems is the reliance on external energy source (itself powered by batteries or

6None of the handheld gaming platforms are listed in the Electronic Product Environmental Assessment
register [108]; the closest study of environmental impact of Nintendo Switch we are aware of is given in [167].
As a reference, in-depth analysis of carbon footprint of one of the most popular non-handheld gaming console,
Sony’s Play Station 4, is available in [107]. To quote from this study: “(s)ince the PlayStation 4’s release in 2013,
approximately 8.9 billion kilograms of carbon dioxide have been generated and subsequently released into the
atmosphere”.

7Actually, in many cases game console players are close to a power socket playing their games tethered, making
a problem of battery replacement or recharge even less profound.

2.7. RELATED WORK

2

37

power line) that downscales the benefit of removing battery from a complete system.
Additionally, battery-free sensors that communicate using non-backscatter, i.e. active,

communication techniques also become actively researched. These include simple sense
and transmit sensor powered by ambient temperature differences [336], UFoP [113] and
Capybara [51]—energy-harvesting storage-adaptive sensors, Battery Free Phone [288],
SkinnyPower—wearable sensor powered by intra-body power transfer [272], Camaroptera
— image-inferring sensor [210] or SoZu—battery-free activity detector [335]. Non-wireless/
non-communicating battery-free sensors include CapHarvester—local energy monitor
powered by harvesting stray voltage from AC power lines-[109], self-powered step motion
counter [149], Saturn—battery-free microphone [17], and active radio battery-less eye
tracker [173].

Battery-free Interactive Devices. It is imperative to extend battery-less devices beyond a
simple ‘sense-and-transmit’ functionality (as summarized above) demonstrating sim-
ple forms of user interaction. The same RFID technology that lay the foundation for
battery-free sensing was also used to demonstrate battery-less interaction. Such systems
include RFID-based tags displaying external information [226], elderly monitoring based
on embedded-in-clothes RFID tags [146], surface shape detection [148], speech recogni-
tion [312], augmented reality with (i) unmodified RFID tags [172] and (ii) modified RFID
tags (to enable touch sensing) [120], interactive building block system with augmented
RFID tags8 [178, 121] or finger gesture measurement [152]. It needs to be emphasized
that any RFID tags-based interaction is sensitive to interference as demonstrated in [311].

Separately from RFID-based battery-free interactive devices, non-RFID counterparts
are also actively researched. Most of these devices focus on remote device control through
touch. Examples of such devices are capacitance-based touch sensor (although com-
municating with FM radio receiver through backscatter) [310], Ohmic-Sticker—force-
to-capacitance sensor attachable to laptop touchpad [125], aesthetically pleasing self-
powered interactive surfaces based on photovoltaic cells [197] and self-powered gesture
recognition based on (i) photovoltaic panels [186]9, (ii) photodiodes [175] and (iii) capaci-
tance sensing [301]. E-ink battery-free wearable displays embedded in clothes, energized
by NFC-enabled smartphones were demonstrated in [79].

Another approach for battery-free embedded devices is to equip the area where
the sensor resides in some form of wireless power transfer system. Many end-to-end
wireless power solutions can be found in the literature, including recent systems build
on top of capacitive power transfer [332], magnetic resonant coupling [284], quasistatic
cavity resonance [259], lasers [140] or distributed RF beamforming [87]. As in the case of
backscatter-based sensors, wirelesly-powered sensors require external (complex, bulky
and still having not fully resolved safety issues) infrastructure. This limits applicability of
this approach to ubiquitous battery-free gaming.

Battery-free Gaming. An ultimate form of interaction is through a gaming system. A
first, commercial battery-free/solar-powered gaming platform was Bandai’s LCD So-
larpower [58], released already in 1982, that enabled manipulation of hard-coded ele-
ments on a liquid crystal display. Unfortunately, Bandai’s console and modern existing

8A similar concept for NFC-based tags has been presented in [36].
9System claims to be battery-less, while in evaluation a battery-based version was used.

2

38 2. BATTERY-FREE INTERACTIVE DEVICES

academic-grade battery-free gaming systems are limited to a simple game forms, such
as attachable touch pad extenders for better (but still battery-powered) mobile game
experience [44, 327] (similar to an earlier referred design [125]), extra controllers for
smartphones based on its front/rear cameras [320], or based on RFID technology that
requires heavy-lifting of battery-less features by an expensive RFID reader using either
(i) computational RFID tags [303, 304] as for instance in [196], or (ii) using commercial
off-the-shelf RFID tags as in [171]. Battery-free non-RFID touch pad extender for the
introduction of physical manipulation into touch screen-based games was prototyped
in [212]. Battery-free gaming aimed at children includes system based on rubbing/-
touching electrostatic surfaces to power simple electronics [150, 43, 42] and attachable
energy harvester mote for learning and understanding concepts of energy generation
and consumption [252].

New Electronic Game Forms. Battery-less handheld gaming console such as ENGAGE
presented in this chapter introduce a novel form of self-powering play, where user (to
continue playing a normal electronic handheld game platform) is (sometimes) required
to push buttons to continuously power a device. This is a twist on movement-inducing
(exer)games [139, 24] such as Pokémon GO [161] where movement is required only to
perform better in game instead of perform better and continue to play. This is a new
form of game interaction that use the human body as an immanent component of
gaming experience, as advocated in [205]. We note that novel forms of games with
dedicated hardware (albeit battery-powered) are introduced, where the energy of the
body is used to introduce a novel form of interaction. A recent example of such game
is based on swallowable temperature measurement pills [177] or through-body electric
field propagation [308, 307].

Gaming as a Behavioral Intervention. Research community is in constant search for new
forms of gaming interaction and our battery-less gaming console aims at defining yet
another gaming behavior. Such new forms of gaming are for instance, ‘idle games’ [6] or
new game forms with custom-made haptics, such as virtual reality games for blind peo-
ple [261]). Design challenges in behaviour-inducing games (such as exergames referred
earlier) have been discussed recently in [161].

Considering classical gaming behavioral studies we can refer to game design that
activate children to play outdoors [225], study on the effect of ‘gamification’ of cog-
nitive tasks [313] or observation of gaming experience as an indication of cognitive
abilities [137]. We are not aware of any non-orthodox gaming behavioral studies.

A separate line of research, although not strictly related to games, touches upon behav-
ioral change of battery-powered smartphones usage. These studies include crowdsensing
of battery usage for suggestion of better user behaviour extending battery lifetime [48],
optimization of frame rate for mobile (smartphone-based) games saving energy on frame
rendering [124], or a proposal for new form of interaction with mobile devices with
turned-off screen to conserve energy [318]. Our battery-free game console is the first
study that considers a behavioral intervention for battery-free device.

Sustainable Design of Interactive Devices. Design of any future interactive devices
must consider sustainability and reuse, as advocated already a decade ago in [29, 195].
The same plea, but in the context of pervasive devices, was presented in [142]. Since

2.8. CONCLUSIONS

2

39

almost a decade many studies call for sustainable ‘upstream’ HCI by making conscious
choices in HCI design process in selecting materials that are sustainable, recyclable
and reusable [157] or using post-apocalyptic terms— HCI “designed for use after the
industrialized context has begun to decay” [300]. We are unaware of any studies on
whether the (handheld) gaming community considers sustainable gaming as important,
let alone existing, problem. Loosely related study to our posted problem is the study on
the motivations behind leading green households [316].

Intermittent Computing Systems. The goal of intermittent computing frameworks
is to guarantee correctness and completion of the computation of battery-less energy
harvesting embedded platforms despite frequent power interrupts10. Such framework is
essential for the usability of battery-free gaming platform.

From the publication of a first framework supporting intermittently-powered devices,
Mementos [246]—voltage threshold-triggered checkpoining system, more efficient check-
point systems are being published. These include Hibernus++ [22] and QuickRecall [145]
(just like Mementos, both hardware-activated checkpoints), Chinchilla [190], Rachet [306]
and HarvOS [28] (all three compiler-instrumented checkpoints), TICS (time-aware check-
points) [166], TotalRecall (checkpoints using volatile memory) [315], Elastin (adaptive
checkpoints) [46], DICE (differential checkpoints) [4, 5] and WhatsNext (checkpoint-
ing augmented with approximate computing) [95]. A second class of systems include
runtimes based on specially instrumented code (by form for a task) such as Dino [185],
Chain [50], Alpaca [189], MayFly [116], InK [325], Coati [251], CoSpec [47] and Coala [193].
A third class of intermittent computation support systems are hardware-assisted sys-
tems such as Clank [119] that check for memory inconsistencies. Important to recall are
workload-specific computation systems such as on-device inference on intermittently-
powered devices with off-line and on-line learning, see [100] and [169].

A separate stream of work targets peripheral support for intermittently-powered
devices, such as Restop (through dedicated middleware) [18], Samoyed (through just-
in-time checkpoints) [191] and Karma (supporting parallel or asynchronous peripheral
operations) [34], or targeting handling of dedicated peripherals such as e-displays (to
improve their update rate) [198].

2.8. CONCLUSIONS
This chapter presented a first working example of a battery-free gaming console, and
the first full system emulation on intermittent power: ENGAGE. We demonstrate we
can port existing battery-based gaming platforms—such as in our case 8 bit Nintendo
Game Boy—to the battery-free domain. With this platform we have shown that deeply
interactive devices, like gaming platforms, are possible to create without batteries, and
in spite of frequent power failures, addressing the interactive devices challenge. We
developed a novel hardware and software platform to facilitate this new class of device:
(i) a hybrid energy harvesting device tailored towards battery-free gaming and (ii) a new
system for persistent computation across power failures based on a novel concept of
patch checkpointing of volatile memory state into non-volatile memory regions. ENGAGE
represents a bright future of deeply interactive, maintenance and battery-free devices.

10For a good overview of intermittent computing concepts we independently refer to [199, 184, 115].

CHAPTER 3
BATTERY-FREE DEBUGGING

This chapter is based on:
Jasper de Winkel, Tom Hoefnagel, Boris Blokland, and Przemysław Pawełczak (2022).

DIPS: Debug Intermittently-Powered Systems Like Any Embedded System
Proceedings of the 20th Conference on Embedded Networked Sensor Systems. ACM,

Boston, MA, USA, 222–235.

3

42 3. BATTERY-FREE DEBUGGING

3.1. INTRODUCTION
Despite the increasing number of battery-free intermittently-powered platforms, they
are still difficult to program [164, Section 7], as we found out during the development
of ENGAGE (Chapter 2). This difficulty stems from ensuring correct continuation of
program execution after restarting from a power interrupt. For intermittently-powered
devices the application developer must programmatically account for two events. That
is, whenever a power interrupt happened, at any place in the code, the device (i) must
resume operation from the moment that power interrupt happened, and (ii) the state of
the device’s memory and its peripherals must be correctly restored. Sadly, debugging of
software written for battery-free intermittently-powered devices is itself hard [49, Section
2.2]. This is because above the existence of ‘normal‘ bugs (not related to intermittently-
powered operation) one has to additionally deal with bugs resulting from these power
failures. Unfortunately, the debuggers developed for battery-powered embedded systems,
such as [263], assume the Device Under Test (DUT) is continuously powered in order to
debug. This effectively removes the ability of code debugging, as with every power failure
the debugger has to be reconnected manually.

To the best of our knowledge there is only one dedicated debugger targeting inter-
mittently-powered devices, i.e. EDB [49] that addresses some of the core limitations of
existing debuggers for embedded systems. Nonetheless, to debug code with EDB one has
to instrument the code manually with EDB-specific API for software based assertions and
breakpoints. This results in a time-consuming debug process, as for each new assertion or
breakpoint the code must be recompiled and the bug scenario has to be recreated. Then,
each breakpoint has to be manually enabled when starting the debugging session. When
an assertion is triggered, each variable responsible for triggering the assertion has to be
individually investigated by first looking up the address of the variable and then reading
the memory at that address. This does not allow the user to (i) easily inspect all memory
variables or the call stack in a breakpoint or (ii) transitions from one task to another. But
what is more important, EDB breakpoints themselves might mask intermittency-specific
code bugs—as we will show later in this chapter—which is detrimental to the debugging
process.

Furthermore, EDB does not allow for replay of energy traces powering the battery-
free device. Instead, EDB makes sure that the device storage capacitor is charged from
the instrumented assertion/breakpoint to keep the device alive, discharging it after the
assertion as if no assertion was included in the code. This allows for code checking
without an energy penalty to the device. Energy trace replay, however, would allow
for repeatable results and the ability to induce time-specific power interrupts. This is
unfortunately impossible with EDB-style debugging where the DUT is powered from
uncontrollable energy harvesting sources (in the case of EDB—an RFID transmitter).

To solve the debugging problem for intermittently-powered devices our idea is to
bring two necessary embedded debugging components together in a single debugging
platform. These components being: (i) a fully featured hardware debugger based on GNU
Debugger (GDB) [229, 278]—to enable step-by-step debugging in the way the majority of
existing (non-intermittently-powered) embedded platforms are being debugged right
now, and (ii) an energy emulator capable of replaying energy traces, allowing to power
battery-free platforms from the same energy trace (either pre-recorded or synthetically

3.1. INTRODUCTION

3

43

Figure 3.1: Photography of Debugger for Intermittently-Powered Systems (DIPS) hardware. DIPS is a new
hardware/software ecosystem designed for debugging and testing intermittently-powered battery-free devices.

generated) repeatably—to emulate specific intermittency patterns, such as in [96]. The
result is a new debugging platform named Debugger for Intermittently-Powered Systems
(DIPS), as shown in Figure 3.1.

The contributions presented in this chapter are as follows.

• Hardware-based debugging on intermittently-powered systems: We introduce
the first hardware based debugger for intermittently-powered systems, capable
of utilizing the hardware debugging features of the microcontroller under test,
despite being intermittently-powered. Our debugger does not require any software
modification to the Device Under Test (DUT) and is based on GDB, resulting in
direct integration into most Integrated Developer Environments (IDEs). This allows
for rapid debugging of code for intermittently-powered devices—in an identical
fashion compared to classical embedded devices. This observation is echoed by
the user experience study of DIPS vis-a-vis state-of-the-art debugger: EDB [49].

• Tightly-coupled energy emulator: Unlike other systems our emulator tightly in-
terconnects with the debugger and pauses emulation when, e.g. breakpoints are
triggered, keeping the DUT powered and seamlessly resuming emulation after the
user resumes execution. Our emulator is not only capable of providing synthetic
test patterns to power the DUT but is also capable of mimicking the power supply
circuit commonly used in state-of-the-art intermittently-powered systems: the
buck-boost converter and the storage (super-) capacitor. This allows for easy and
quick experimentation to determine the energy input requirements of the DUT and
to find an optimal capacitor size for the system. For the first time, these features
allow the developers to debug and test energy-related bugs in a repeatable fashion.

• Automated testing for intermittency-related bugs: Intermittent systems rely on
saving and restoring the state of the system to a non-volatile on-board memory.
Using an automated scripting framework we are able to verify if the volatile memory
of the intermittently-powered device has correctly been restored from the last
checkpoint. Not only volatile memory consistency is automatically checked using
DIPS but also peripheral state is verified by comparing peripheral configuration
registers prior to a checkpoint and post restoration.

3

44 3. BATTERY-FREE DEBUGGING

Intermittent Operation Bugs

RTC1_Start();
while(RTC1 >= 100)
 Checkpoint();
 NOP();

➊ Peripheral Restoration ➋ Memory Restoration
Common Bugs

while(i < 50) {
 j++;
}

while(RTC1 >= 100)
 Checkpoint();
 NOP();

P
ow

er
 F

ai
lu

re !=

Power Failure

i[0] = 5 i[0] = 7

i[n] = 2 i[n] = 2

0x00

0x05

0x00

0xff 0xff

➌ Task Sequence

Sense

Compute

Transmit

int* i = 0;
...

*i = 5;

0x05

Figure 3.2: Two major classes of code bugs are present in intermittently-powered battery-free systems: common
bugs such as using the wrong iterator or writing to null pointers and bugs related to intermittent operation.
These include peripheral restoration, memory restoration and task sequence bugs.

All hardware, software and tools pertaining to DIPS, together with its documentation,
will be made available open-source to the research community via our artifact [73]. We
will also provide fully assembled and calibrated DIPS boards to the community. We
envision DIPS becoming the de facto standard debugging tool for intermittently-powered
systems, simplifying testing and debugging of these novel embedded systems.

3.2. DEBUGGING INTERMITTENTLY-POWERED SYSTEMS
Debugging of embedded systems code is different from PC-based code debugging [10,
Chapter 8]. As PC-based code can mostly be directly debugged using tools such as GDB
in an IDE as it runs on the same device, unlike embedded systems where the code is
running on an external embedded system. Therefore, the developer must rely on external
hardware—such as [263]—acting as an interface between GDB and the MCU on-board
debug hardware.

3.2.1. BUGS TYPE CLASSIFICATION
We can categorise bugs present in the software for intermittently-powered devices into
two classes presented in Figure 3.2. First class are the common programming language
and embedded system-related bugs. Example of such bugs are algorithm implemen-
tation bugs (for example increment of the wrong variable in a while loop while (i <
50){j++;}) or code errors in embedded system-related functionalities (for example,
inaccurate peripheral initialisation). These bugs are extensively analysed since the dawn
of programming languages and will not be discussed here. The second class are the
intermittent operation-related bugs and these are the ones which the designed debugger
will specifically target.

We can further categorise intermittent operation bugs into: (i) peripheral restoration
bugs, (ii) memory restoration bugs, and (iii) task sequence bugs (see again Figure 3.2).

1. Peripheral restoration bugs occur due to inaccurate reinitialization after check-
point restoration, as seen in Figure 3.2. In this example: after the power failure the
program restarts from within the while loop without reinitializing the peripheral
causing an infinite loop from a not re-initiated Real Time Clock (RTC). Periph-
eral bugs also occur when the state of any external peripherals such as displays,

3.2. DEBUGGING INTERMITTENTLY-POWERED SYSTEMS

3

45

Listing 3.1 Masked Write After Read (WAR) error due to breakpoint insertion (listing (b)). When function calls
are instrumented as checkpoints such as in [165], the addition of software-based breakpoints as required by the
EDB [49] debugger can mask WAR-related errors, see listing (a), since the breakpoint itself will be instrumented
with a checkpoint. nv_x refers to a variable stored in non-volatile memory.

(a) WAR error

1 Checkpoint()
2 y = nv_x // wrong
3 // after restart
4 z = y + 1
5

6 nv_x=z
7 # Power failure
8 ...
9 Checkpoint()

(b) Masked WAR error

1 Checkpoint()
2 y = nv_x // correct
3 // after restart
4 z = y + 1
5 EDB_Breakpoint(0)
6 nv_x = z
7 # Power failure
8 ...
9 Checkpoint()

sensors and radios is not carefully considered, especially when these peripherals
have persistent state or are continuously powered. Examples of such bugs include:
(i) persistent configuration registers where the process of configuring the register
could not be confirmed due to a power failure, (ii) a failure to gracefully power
down an E-Ink display resulting in a faded background, and (iii) synchronization
issues where the external peripherals state is not aligned with the expected state.

2. Memory restoration bugs come from errors in the checkpoint process. In the
first place they can come from the wrong placement of checkpoints (function
Checkpoint()), as illustrated in Listing 3.1 (a) where a write after read error occurs
due to the lack of a checkpoint in-between reading from and writing to non-volatile
memory. But the implementation of a checkpoint itself can also contain bugs. For
example, checkpointing is often based on double buffering (such as in [164] where
the whole memory is checkpointed to a non-volatile memory at a predefined time
interval), where usually a binary flag specifies to which memory region a checkpoint
needs to be stored and from which region data needs to be restored. If a power
failure happens at the moment of the flag update, the checkpoint will be corrupted.
The more complicated checkpointing routines, like differential-checkpointing
of [66] where the only changed memory regions since the last checkpoint are
checkpointed, or undo logging-based checkpointing as used in [166]—the higher
the probability of error in the implementation of checkpoint.

3. Task sequence bugs are specific to special type of run-time systems for inter-
mittently-powered devices where input code is transformed into tasks (such as
‘Sense’, ‘Compute’ and ‘Transmit’) and checkpointing is performed always at the
task transition. Examples of such systems include InK [325], Alpaca [189] or Immor-
talThreads [326]. Bugs can not only occur with incorrect implementation of the task
state machine (as in case of example in Figure 3.2 ‘Compute’ task connects back
to ‘Sense’ instead of ‘Transmit’). Bugs can also occur when defining the volatile
memory associated with each task—if not accurately defined it could result in
writing to and reading from unrestored memory.

3

46 3. BATTERY-FREE DEBUGGING

Table 3.1: Feature comparison of DIPS (i.e. this work) against EDB [49]—debugger for intermittently-powered
battery-free embedded systems and J-link [263]—popular debugger for battery-based embedded systems.

Feature EDB J-Link DIPS

Energy breakpoints Yes ✓ No ✗ Yes ✓
Software breakpoints Yes ✓ Yes ✓ Yes ✓

Hardware breakpoints No ✗ Yes ✓ Yes ✓
Single step No ✗ Yes ✓ Yes ✓

Watchpoints Yes ✓ Yes ✓ Yes ✓
GDB support No ✗ Yes ✓ Yes ✓
IDE support No ✗ Yes ✓ Yes ✓

ARM support No ✗ Yes ✓ Yes ✓
MSP430 support Yes ✓ No ✗ Pending
Software testing No ✗ No ✗ Yes ✓

Energy trace emulation No ✗ No ✗ Yes ✓

3.2.2. WHY DEBUGGING INTERMITTENTLY-POWERED SYSTEMS IS HARD
We need a dedicated debugger that would aid in spotting all errors shown in Figure 3.2
and EDB [49] was the first one that addressed this need. EDB introduced new debugging
features, as listed in Table 3.1. Sadly, in special cases EDB can hinder bug finding. As
we mentioned in Section 3.1 EDB debugger [49] inspects the code by inserting software
based assertion flags and breakpoints (to trace potential intermittent operation-related
bugs). These however might mask the write after read bugs, as shown Listing 3.1 (b), as
software breakpoints are implemented as a function this might interact with compiler-
based runtime systems [165] that apply compiler based optimizations and instrument
each function. A software breakpoint (EDB_Breakpoint(0)) would then result in an
undesired checkpoint on the breakpoint location masking the write after read issue. A
release build without the software debugging functions would then re-expose the hidden
‘write after read bug’. Apart from introducing potentially unwanted checkpoints, software
debugging calls could also prevent further compiler optimization such as loop unrolling.

For the record, one can consider using a CPU emulator, such as [227] as used in [165],
as a replacement for EDB’s inability to fulfill its debugging task completely. However,
the timing of the instructions is not always perfect in emulation. Most importantly
however, in most emulators the peripheral state is mocked—disallowing detection of
peripheral-related bugs. Even with a cycle accurate emulation of the CPU and the asso-
ciated peripherals forming the complete MCU, emulators do not emulate the starting
sequence that occurs when power is applied to the actual chip. The CPU only starts
execution after, e.g., voltage rails stabilize and stable clocks are present. These processes
determine the start-up time and are subject to per component/design variation.

We thus conjecture that a debugger for intermittently-powered systems needs to have
the same list of functionalities as debuggers for ‘classical‘ embedded systems, e.g. [263],
which are listed in Table 3.1. Moreover, it needs to support intermittently-powered
systems specific features, which we denote as energy breakpoints, software testing and
energy trace emulation. Inspecting Table 3.1 neither EDB, nor J-Link supports complete
set of debugging features needed.

3.3. DEBUGGER FOR INTERMITTENTLY-POWERED SYSTEMS

3

47

1 int i = 0;
2 for(int i = 0; i < 50; i++){
3 int x = compute();
4 printf("Result: %d \n", x);
5 printf("Iterration: %d \n", i);
6 log_result(x);
7 }

Source

Compilation

*.elf

Register
file

*.svd

Code generation

Software Testing

IDE Support

Break & Watchpoints
Energy Guards
Energy Breakpoints

Hardware Debugger

GDB

Energy Emulator

Device
Under
Test

Synthetic
Emulation

Virtual Buck-
Boost Emulation

DIPS

Energy Neutral
Debugging

Memory
Restoration

Peripheral
State

Programmer

Step 1: Compile
the application.

Step 2: Program
and verify.

Step 3: Debug as any embedded system,
optionally enable software testing.

Step 4: Replay pre-recorded energy traces or
emulate synthetic energy traces.

Figure 3.3: DIPS architecture and workflow, enabling seamless debugging of intermittent systems. In the code
view marks an energy neutral section, marks the current line and hardware breakpoints are indicated by .
Arrows in the figure denote information flow between individual blocks.

3.3. DEBUGGER FOR INTERMITTENTLY-POWERED SYSTEMS

Driven by requirements listed in Table 3.1 we propose a new method of developing and
testing battery-free intermittently-powered devices. These development and testing
methods are implemented as a new debugger named DIPS. DIPS combines a hardware
debugger (described in Section 3.3.1) and an energy emulator (described in Section 3.3.2),
enabling seamless debugging of intermittently-powered systems. The energy emulator
acts as a controllable power source capable of emulating intermittent operation to the
Device Under Test (DUT). The architecture of DIPS is shown in Figure 3.3.

3.3.1. DIPS HARDWARE DEBUGGER

A core part of debugging any embedded system is the hardware debugger. It interfaces
with the DUT’s MCU enabling the use of the MCU’s debugging features. These features
usually include (i) halting, (ii) reading and writing memory, (iii) setting breakpoints, and
(iv) setting watchpoints.

As intermittently-powered systems switch on and off repeatedly, any state that is not
specifically stored prior to a power failure is lost. This includes the configuration of the
debugging registers. Even worse, these debugging registers are usually not configurable
from within the MCU itself due to the security risk associated. Hence the hardware de-
bugger must be able to quickly reconnect after power failures on intermittently-powered
systems. To address this requirement DIPS keeps track of all debugging attributes, such
as breakpoints and watchpoints, restoring those when the MCUs recovers from the power
failure. To implement these features we have taken a popular open-source hardware
debugger—the Black Magic Debug Probe [228]—as a base and build upon its functional-
ity, adding the required features to debug and test intermittently-powered systems. Many
popular MCUs are supported—for a full list please refer again to [228].

3

48 3. BATTERY-FREE DEBUGGING

ENERGY NEUTRAL DEBUGGING

One core feature of DIPS is the energy isolated interface between DUT and DIPS. This
allows DIPS to monitor the DUT whilst not interfering with the power consumption of
the DUT. If the DUT is paused by any debugging action e.g., a breakpoint, the hardware
debugger automatically pauses the energy emulator, making sure the DUT remains
powered. When execution is resumed the energy emulator restores the energy state prior
to the breakpoint and continues from where it paused.

We introduce two debugging modes with DIPS, (i) attached and (ii) detached, where
each of them is described below. The hardware implementation of the energy isolation is
further described in Section 3.3.4.

Attached Debugging. In the attached debugging mode, the debugger reconnects to
DUT after every power failure and any debugging attributes such as breakpoints are
restored. When the DUT is connected to the hardware debugger, additional power
will be consumed by the MCUs on-board debugging hardware. This is compensated
for during emulation by measuring the power consumption at idle with and without
the debugger attached. The attached mode gives most flexibility to the user as the
intermittently-powered system appears as a normal embedded system to the developer,
masking any effects of intermittency. We envision this mode to be used in a scenario of
active software development and during preliminary testing/evaluation of intermittent
systems. For example, during development of new checkpoint frameworks or when
testing if peripheral configuration is correctly restored after power failures.

Detached Debugging. This mode is intended for when the DUT powers itself, for example
by an external harvested energy source. In this mode the debugger only connects when it
receives the hardware interrupt from the DUT, generated by e.g. the DIPS_ATTACH call to
the C API listed in Table 3.2, if not already connected. When an interrupt is generated, the
emulator takes over powering DUT. Next the debugger connects, allowing the debugger
to interact with the DUT. After the user resumes code execution or when the debug
operation finishes, the debugger detaches and the energy state of the DUT is restored to
the level prior to intervention as further described in Section 3.3.2. This mode is intended
for debugging scenario’s close to final deployment where minimal interference is desired.
More specifically, in scenarios where the device operates on its own, whilst still offering
an option to debug the system when, for example, an assert fails.

ENERGY-AWARE DEBUGGING FEATURES

Most of DIPS’s debugging features utilize the build-in MCUs debugging hardware. Thus
unlike the software-based debuggers DIPS does not require the usage of a specific
API to debug the DUT. We extend GDB with the CLI commands listed in Table 3.2
to implement two key intermittent specific debugging functions: (i) energy breakpoints
(energy_breakpoint)—extending traditional breakpoints by only triggering when the
DUT’s capacitor voltage is lower than the provided threshold, and (ii) energy neutral
sections defined by energy guards (energy_guard)—allowing users to execute debug
code whilst emulation is paused and steady power is provided.

Apart from the GDB extensions, we introduce a limited C API listed in Table 3.2,
providing some optional convenience functions to the user. The function DIPS_PRINTF
implements a print to the console. When DIPS_ASSERT parameters assert to false, code

3.3. DEBUGGER FOR INTERMITTENTLY-POWERED SYSTEMS

3

49

Table 3.2: DIPS extensions to the GDB Command Line Interface (CLI) implementing debugging functional-
ity for intermittently-powered devices and an optional C language API for quick and simple debugging of
intermittently-powered systems. An extended description is provided in [73].

GDB CLI Description

energy_breakpoint Defines a voltage-dependant breakpoint
energy_guard Defines an energy neutral section

C API Description

DIPS_PRINTF Energy-neutral printf
DIPS_ASSERT Halts code execution upon assertion
DIPS_ATTACH Connect debugger (Detached mode)

execution is halted. DIPS_ATTACH triggers the debugger to connect and halts execution
until the debugger is connected.

All hardware debugging features and C API calls cause the emulator to pause whilst
keeping the DUT powered. When normal code execution is resumed, the emulator also
resumes. Compensating for the power consumption of the debug features itself.

Programmer. DIPS is also capable of programming/flashing of supported MCUs. Al-
though generic support for debugging ARM Cortex-M chips is provided, programming
might require additional vendor-specific or even chip-specific implementations. For a list
of supported MCUs please refer again to [228]. The programming/flashing feature com-
pletes the all-in-one suite of features served by DIPS for the developer of intermittently-
powered systems.

3.3.2. DIPS ENERGY EMULATOR

The second core part of our design is the energy trace emulator. State-of-the-art intermit-
tently-powered systems harvest energy and store this energy into a (super-)capacitor. The
voltage of this capacitor is often used as a threshold to determine when the voltage regula-
tor powering the MCUs turns on and off. In this case the MCU only is provided a regulated
supply that is switched on and off according to the voltage of the (super-)capacitor. Often
the harvesting and regulator circuit is implemented using a boost converter and buck
converter to generate the MCU supply stepping down the voltage of the (super)capacitor.

Unlike other emulation platforms such as Ekho [112] and Shepherd [96] we emulate
the buck-boost converter and the storage capacitor, and directly provide the resulting
on/off output to the DUT. We do not aim to fully replicate the buck-boost converter
but to attain similar behavior with a simplified model. This approach only requires a
voltage/current input trace, greatly simplifying capacitor size selection and makes it
capable of simulating any buck-boost converter that outputs a steady supply by adjusting
the converters specific parameters such as efficiency.

The emulator is implemented as configurable power supply and is able to quickly
switch off/on its supply to DUT. It is also capable of accurately measuring the power
consumption of the DUT, as depicted in Figure 3.4.

3

50 3. BATTERY-FREE DEBUGGING

Vout

LDO
Regulator

Vref

Current
Sense

Vin

R
di

sc
ha

rg
e

Energy
Emulator

Virtual Buck-
Boost Emulation

Synthetic
Emulation

I/O
UART

SWD
SBW

Hardware
Debugger

Programmer

GDB Server

DIPS
Hardware

Device Under Test

Energy Isolation

Integrated Development
Environment

1 int i = 0;
2 while(i < 50){
3 ENERGY_GUARD_START;
4 printf("Iterration: %d \n", x);
5 ENERGY_GUARD_STOP;
6 i++;
7 }

GDB Client

PC Energy Emulator
Graphical User Interface

Mode: Replay

BreakpointStatus:

Figure 3.4: DIPS simplified implementation overview of both hardware and software. The full hardware and
software implementation of DIPS can be found in DIPS’s artifact [73].

Virtual Buck-Boost Emulation. We have chosen to emulate the Texas Instruments’
BQ25570 ultra low power harvester power management IC [292], as it is one of the most
frequently used buck-boost converters in intermittently-powered systems. Our approach
is centered around the current voltage relation of a capacitor defined as

Vcap(t) = 1

C

∫ t

t0

I (τ)dτ+Vcap(t0), (3.1)

where Vcap(t) is the capacitor voltage, C the capacitance, I (τ) is the instantaneous current
flowing into (i.e. harvested) and out (i.e. consumed) of the capacitor, and Vcap(t0) is the
initial capacitor voltage at t = 0. Using a look up table we compensate the input current
according to the efficiency of the boost converter in the BQ25570 according to the input
voltage. The outgoing current is the current measured by the emulator which is also com-
pensated by the efficiency of the buck converter. Adding thresholds for turning the output
on (Vhigh) and off (Vlow), over-voltage protection (Vmax) and compensating for leakage
and quiescent current completes our simplified model. If the hardware debugger is run-
ning in attached mode, the additional quiescent current of the MCUs debug hardware is

3.3. DEBUGGER FOR INTERMITTENTLY-POWERED SYSTEMS

3

51

also compensated for as mentioned in Section 3.3.1. Our emulator is capable of operating
with a static input current and with replaying pre-recorded voltage/current input traces.
The emulator is compatible with Shepherd’s [96] Hierarchical Data Format (HDF) traces.

Synthetic Emulation Modes. Apart from operating as a virtual buck-boost converter, our
emulator is also able to generate arbitrary signals. These signals include square wave
and sawtooth modes with adjustable frequency and duty cycle. Synthetic emulation is
needed to stress test any intermittently-powered device.

HARDWARE DEBUGGER INTEGRATION

If the energy emulator is actively powering the DUT when a debugging feature is triggered
such as a breakpoint, emulation is paused whilst keeping the DUT powered. When execu-
tion is resumed, emulation also resumes. Any calls to the DIPS API also pauses emulation
until completed. The energy emulator also implements a passive mode compatible with
the debuggers detached mode, intended for a scenario of debugging an intermittently-
powered system operating using its own (harvested) energy supply. In this mode when a
DIPS API call occurs, the DUT voltage is first sampled. Then the emulator supplies a safe
slightly higher voltage than the system voltage to the DUT—taking over and powering
the DUT until the debugging action is completed. Then the original voltage of the DUT is
restored. This mode should be used with care as back-feeding could occur.

PC CLIENT SOFTWARE ARCHITECTURE

To control, configure and monitor the emulator we have designed a PC Graphical User
Interface (GUI) client build around the QT framework [244]. The client communicates
with DIPS through USB using an extendable Protobuf [105] interface. When the emulator
is connected to the PC, the client automatically attempts to connect to DIPS. Through
the Protobuf interface the client is able to select and configure the emulation modes.
For example, in square wave mode (i) the duty cycle, (ii) period and (iii) voltage are
configurable. One notable option specific to the virtual buck-boost mode is to stream
HDF voltage/current input traces to the emulator for replay. The emulator also has an
option to stream the measured voltage and current of the DUT to the client, where this
data is visualized by an interactive chart. Finally, a status indicator is present in the GUI,
indicating when emulation is paused by the hardware debugger.

3.3.3. DIPS AUTOMATED SOFTWARE TESTING
As DIPS integrates a hardware debugger it is able to provide full access to the memory
space of the MCU under test. By leveraging GDB and its interpretation of the debugging
symbols in the compiled code, DIPS is able to provide a full debugging context to the
developer, including rendering of the call stack, variable values and all other default
debugging features of normal embedded systems. Leveraging the emulator we are able to
detect issues that are traditionally present in intermittently-powered systems. Central to
the hardware debugger is the GDB server. Through the use of GDB many popular IDEs can
directly integrate with DIPS. In the debug environment of the PC, a GDB client interfaces
with the GDB server on the debugger. We utilize a transparent Python wrapper around
the GDB client to extend the interface and automate specific testing for intermittent
systems.

3

52 3. BATTERY-FREE DEBUGGING

SOFTWARE TESTING SCRIPTS

Through the wrapper’s extended interface we introduce two software testing scripts.
The first script verifies checkpoint correctness by comparing the volatile memory of
the DUT before the last checkpoint prior to a power failure and after restoration, at
which point the memory should be identical. The second script compares peripheral
configurations of the DUT prior to the checkpoint and after restoration, by comparing
the relative configuration registers. Both scripts are designed to run in attached mode
of the hardware debugger and are implemented in an extendable fashion so that more
scripts could be added in the future.

Memory Restoration. To check memory restoration correctness through power failures,
the user must specify the checkpointing function and the first function called after
restoration when using the script. Additionally the volatile memory regions that should
be checked need to be specified.

When running GDB with the script, the script automatically downloads and saves the
specified memory ranges at every checkpoint. It then compares the latest stored memory
against the memory after a restore. When a mismatch occurs, the symbolic name is
retrieved through GDB of the offending memory address and the debugger remains in a
breakpoint. The memory address together with its current contents and the content at
the point of the latest checkpoint are then presented to the user for further investigation.
The script also is optionally able to to monitor the time between checkpoints, if no
checkpoints are made within a user definable time, code execution is halted for further
investigation by the user. As an extended period without checkpoints on intermittent
systems is often a good indicator for the DUT getting stuck.

Peripheral State Restoration. Since DIPS has full access to the address space, including
the peripheral address space, we are also able to monitor peripheral configurations
during checkpoints and verify if these are properly restored. In addition to specifying
the checkpoint and restore functions, the user also needs to specify the configuration
registers to be checked. Then based on the register name, the configuration registers
addresses are retrieved by parsing the DUT MCU’s .svd file—a .svd file that is commonly
provided as part of a software development kit for MCU’s. Again, prior to the checkpoint,
the state of the peripheral configuration registers is retrieved and stored. Upon restoration
the register state is compared against the stored state. Any issues are reported to the user
and the debugger remains in a breakpoint.

3.3.4. DIPS HARDWARE IMPLEMENTATION

As described earlier DIPS is composed of two subsystems: (i) the hardware debugger
and (ii) energy emulator. Both subsystems, shown in Figure 3.5 and marked by blue and
orange polygon, respectively. The details of each subsystem hardware implementation
are as follows.

HARDWARE DEBUGGER

The hardware design of the debugger centers around a STM32F103RET [280] MCU A⃝
and is based on the Black Magic Debug Probe [228]. It is able to communicate with the
energy emulator through SPI. The MCU interfaces with the DUT through SWD/JTAG or

3.4. DIPS EVALUATION

3

53

Figure 3.5: The DIPS hardware debugger and emulator PCB. The hardware debugger components marked as
A⃝– E⃝ and energy emulator components as F⃝– J⃝ are explained in Section 3.3.4.

SBW E⃝, I/O interrupt pins and acts as a UART-USB bridge D⃝. To translate the signals to
the DUT voltage, first, the DUT voltage is buffered using a low input bias current buffer
amplifier OPA192 [134]. Next, all the interfaces with the DUT are level shifted by level
translators C⃝ [211] using the buffered DUT voltage. The debugger connects to the PC
with USB B⃝.

ENERGY EMULATOR

Central to the energy emulator is the low noise TPS7A87 [135] I⃝ linear regulator. The
regulator generates the adjustable supply rail to the DUT J⃝. Power consumption by the
DUT is measured by two INA186 current sense amplifiers [136] H⃝. The first amplifier with
a 5.6Ω sense resistor measures large currents without imposing a high burden voltage.
The second amplifier with a 1000Ω sense resistor measures low currents and is able to be
bypassed at large currents preventing high burden voltages. Two analog switches [133]
allow for quickly disabling the output and discharging the output through a 47Ω resistor.
The emulator is controlled by a STM32F373 [279] MCU G⃝. With its on-board DAC DIPS
is able to adjust the linear regulator and samples the output voltage and the output of the
current sense amplifiers (each using one of its dedicated on-board Sigma Delta ADCs).
The energy emulator connects to the PC with USB F⃝.

3.4. DIPS EVALUATION

We now proceed with the evaluation of DIPS. The evaluation is split in three parts. First,
we characterise DIPS. Second, we perform user studies aiding in finding whether DIPS
is a useful (and better then state of the art) tool for debugging battery free systems.
Finally, we show how DIPS can be used to find bugs in recently presented battery-free
intermittently-powered systems.

3

54 3. BATTERY-FREE DEBUGGING

Table 3.3: DIPS energy emulator specification. Measurements were performed with a Keithley 2450 Source
Measurement Unit [154] and a Saleae Logic Pro 8 [256].

Feature Parameter Specification

Replay Resolution 1 ms
Sampling rate Voltage 50 kHz

Current 50 kHz
Range Voltage 0.1 V–3.6 V

Current 1µA–20 mA
Accuracy Voltage ±50 mV

Current (1µA–100µA) 5 % ±1µA
Current (100µA–20 mA) 5 %

Rise Time 0–3 V (Switch) 28µs
0.1–3 V (Adjust) 836µs

3.4.1. DIPS CHARACTERIZATION

To evaluate DIPS we conduct several measurements to evaluate the performance of our
debugger. These measurements are divided into two categories: (i) the specification of
the energy emulator and (ii) characterization of the hardware debugger.

Energy Emulator Characterization. In Table 3.3 a specification of DIPS’ energy emulator
is provided. Notable attributes are the fast sample rate, wide current measurement range
capability and quick rise time. These attributes enable DIPS to accurately emulate the
simplified buck-boost converter behaviour using real-world energy traces as input; the
1 ms resolution enables dynamic scenarios emulating abrupt energy changes at DUT.
For other synthetic operation modes such as sawtooth or square wave, voltage accuracy
is crucial to trigger voltage-based thresholds for the DUT.

Hardware Debugger Characterization. An overhead of DIPS’ hardware debugger op-
erating in attached mode is the requirement of establishing a connection to the debug
hardware of the DUT. This can occur prior to starting execution after a reboot, or when
the system is running. When the hardware debugger connects whilst the device is run-
ning, early breakpoints might be missed. When this is unacceptable, DIPS_ATTACH can
be placed at the start of the program. The hardware debugger then connects prior to any
code execution at the cost of a slight delay. The time required to establish a connection is
listed in Table 3.4.

3.4.2. DIPS USER EXPERIENCE STUDY

To assess the effectiveness of bug finding in code written for intermittently-powered
systems, we have designed a user experience study. In this study, participants were asked
to experiment with DIPS and EDB [49]—the state-of-the-art debugger for intermittently-
powered systems. In particular, we asked to search for three bugs in a single simple
program consisting of multiple files (written separately for both debugging platforms,
containing bugs of similar complexity—DIPS and EDB) using two respective debuggers.
After the bug search process participants were asked to assess their debugging experience

3.4. DIPS EVALUATION

3

55

Table 3.4: DIPS debugger characterization: tinit (initial connection time) and trec (re-connection time) while
connected to different devices. Data points were collected using a Saleae Logic Pro 8 [256], and averaged over
ten measurements.

Device Under Test tinit (ms) trec (ms)

nRF52 [Arm-M4] [217] 311.1 72.7
SAM4L8 [Arm-M4] [201] 324.7 75.8

MKL05Z [Arm-M0+] [224] 309.6 105.8
STM32F3 [Arm M4] [279] 318.6 68.2

Apollo 3 [Arm M4] [277] 331.1 95.6

with each platform through an anonymous survey. The study was approved by the human
ethics committee of the institution the authors of this work are associated with.

We have performed two versions of experience studies: (i) a pre-study (denoted as
Study 1) with small number of participants, with limited time given to find bugs in each
program and (ii) main study (denoted as Study 2), with twice the size of the user pool of
the Study 2 and with double the time allowed to find bugs in each program.

USER EXPERIENCE STUDY PARTICIPANTS

We have invited seven participants to Study 1 and 16 participants to Study 2. Participants
were recruited through professional mailing lists and personal contacts. Special care was
taken of not recruiting people that are in a current or former relation with the responsible
persons for this study.

Based on the anonymous post-study online self-assessment survey, among all study
participants the following information was found: Study 1’s participants included six
men and one woman and for Study 2 fourteen men and two women. The median age of
participants was 26 (youngest: 23, oldest: 44) for Study 1, and 26,5 (youngest: 20, oldest:
36) for Study 2. The most comfortable programming language in which participants code
was C/C++ (four participants in both studies) followed by Python (three participants
in Study 1 and four participants in Study 2). All participants in Study 1 and all but one
in Study 2 have used an IDE before when developing their applications and all but one
participant from Study 1 and five out of 16 participants from Study 2 preferred to develop
their applications using an IDE. In Study 1 and Study 2, respectively: four and three
participants self-assessed themselves as having a lot embedded programming skills,
two and six—some experience, one and five—little experience, and none and two—no
experience. Large majority (i.e. five) participants used hardware-based debuggers for
their embedded project (such as Segger J-link [263]) among Study 1 participants, while
only 5 out of 16 for Study 2.

All participants used at least one of the following debugging techniques while debug-
ging an embedded system, such as breakpoints, watchpoints, memory views, peripheral
views, etc. of Study 1, while for Study 2 11 out of 16 participants were exposed to these
debugging techniques. The most used debugging techniques by participants were break-
points (six and ten participants of Study 1 and Study 2, respectively), printf (mentioned
by six participants of Study 1 and six participants of Study 2), single step (three partici-
pants of Study 1 and nine participants of Study 2) and memory inspection (mentioned by

3

56 3. BATTERY-FREE DEBUGGING

three participants of Study 1 and three participants of Study 2) and ‘measuring voltage‘
(mentioned by one participant of Study 1).

Only two participants did not hear about battery-free intermittently powered systems
before the start of Study 1, while only two out of 16 participants of Study 2 heard about
such systems, while just one participant of Study 2 programmed them before. Based on a
Likert scale, the question ‘how difficult is the application development for battery-free
intermittently-powered systems?’ gave the following responses: five participants of the
Study 1 and 13 of Study 2 answered ‘somewhat difficult’ and two participants of Study 1
and three of Study 2 answered ‘similar to battery-powered embedded systems’. For the
record, nobody found them either ‘very difficult’, ‘easy’ or ‘very easy’ to program.

Based on the above information we can conclude that user experience study partici-
pants were skilled (considering their background and experience) and well informed to
take part in this user experience study.

USER EXPERIENCE STUDY SETUP

We asked each participant to enter a room with two pre-configured PCs. One PC was
connected to DIPS that in turn connected to a Nordic Semiconductors NRF52 devel-
opment kit [217]. Another PC was connected to EDB, where EDB was connected to a
Wireless Identification and Sensing Platform (WISP) [257] (version 5.1). Both platforms
were powered from a DIPS emulator configured either as constant voltage or square
wave supply simulating intermittency. This emulation was not part of the user study but
required in order to power the devices under test. Both PCs had VSCode [55] as a code
editor and all requisite tooling to compile and use the debuggers installed. The PC with
DIPS-only had the IDE open, while the other PC also displayed a console environment
with the EDB program and means to recompile the code.

Before the debugging session started each participant was requested to read a short
description on intermittently-powered systems and to read an instruction how to use
DIPS and EDB.1 After reading the instruction, the participant was asked to debug a
piece of code for one of the systems (with which debugger system the user starts the
study was randomly determined for each participant). After 15 minutes of debugging
in case of Study 1 and 30 minutes in the case of Study 2 the participant was asked to
fill-in the survey with a questionnaire regarding the debugging experience. This survey
section was enabled only when the participant asked for a password—this reduced the
chance that the participant would answer survey questions without first debugging
with the system. The same process (bug finding and password-protected survey fill-
in) was repeated for the second debugger. During the survey neither DIPS nor EDB
was mentioned and both PCs were referred to as ‘System A‘ and ‘System B‘ with name
cards attached to the PC’s monitor—to remove any bias in assessing both systems and
not reveal which system originates from the institution with which all experience study
participants were associated with. We note that the questions in the questionnaire were
given as comparative (i.e. how system A performed against system B).

1The exact text given to the participants, with the code given for debugging for both systems, together with the
user experience study results, is available as part of the open-source repository of DIPS [73].

3.4. DIPS EVALUATION

3

57

I would use it

I am familiar with it

Intuitive to use

Easy to use

14.3%

14.3%

28.6%

42.9%

14.3%

42.9%

28.6%

85.7%

57.1%

14.3%

14.3%

42.9%

EDB Both DIPS Neither

(a) Study 1, i.e pre-study

I would use it

I am familiar with it

Intuitive to use

Easy to use

12.5%

6.2%

6.2%

6.2%

87.5%

81.2%

87.5%

93.8%

12.5%

6.2%

EDB Both DIPS Neither

(b) Study 2, i.e main study

Figure 3.6: Responses to questions given to user experience study participants after the completion of bug
finding sessions for DIPS and EDB. Note that numbers in this figure and in Figure 3.7 are rounded to the nearest
decimal digit.

USER EXPERIENCE STUDY RESULTS—PRE-STUDY

The first result of the user experience pre-study (Study 1) is presented in Figure 3.6a. We
see that more users would use DIPS than EDB. Moreover, a large majority of users found
DIPS more intuitive to use than EDB. Only a small minority of participants would use
EDB instead of DIPS. No participants stated that they are only familiar with the way that
the EDB debugging process works—the majority of them are familiar with the ‘regular’
way programs are debugged. All these results hint that DIPS suits debugging tasks of
intermittently-powered devices better than the state-of-the-art system.

The results of the bug session finding are presented in Figure 3.7a. One surprising
result is that nobody was able to find any bug with EDB, while majority the participants
were able to localise at least one bug with DIPS. We speculate that such extremely low
bug finding rate for EDB (and inability to localize two or more bugs with DIPS) was due
to insufficient time allocated to find all bugs in a session. On the other hand, a short time
for bug finding was a stress test for both systems, suggesting that DIPS is more useful
in code debugging compared to EDB (even for complex and still unexplored systems
such as intermittently-powered devices). With the main study (Study 2), with more time
allocated to debugging, we shall find whether this extra time would result in significantly
better perception of EDB. The results are presented in the next section.

USER EXPERIENCE STUDY RESULTS—MAIN STUDY

The results of the main study (Study 2) are presented in Figure 3.6b and Figure 3.7b.
Comparing them with Figure 3.6a and Figure 3.7a, respectively, we can conclude that the
increased time to find bugs, from 15 minutes to 30 minutes per debugging session, did
not significantly affect the perception of which system is better (Figure 3.6b). Actually,
the main study shows that participants are more positive about DIPS than about EDB,

3

58 3. BATTERY-FREE DEBUGGING

Bugs found with EDB

Bugs found with DIPS

100.0%

28.6% 71.4%

Zero One Two Three

(a) Study 1, i.e pre-study

Bugs found with EDB

Bugs found with DIPS

81.2%

12.5%

18.8%

56.2% 25.0% 6.2%

Zero One Two Three

(b) Study 2, i.e. main study

Figure 3.7: Number of bugs found by users participating in both studies, categorized per debugger system.

as less participants were pointing to EDB or pointing to both debugging systems (Fig-
ure 3.6b). Most importantly, however, the additional time assigned to the participants of
the user study resulted in more bugs to be found with EDB, but also more bugs with DIPS
(Figure 3.7b).

GENERIC OBSERVATIONS BY STUDY PARTICIPANTS

In addition to closed questions given to the participants, which results are presented
in Figure 3.6a and Figure 3.7a for Study 1 and in Figure 3.6b and Figure 3.7b for Study
2, we have asked four open-ended questions asking to specify positive and negative
aspects of DIPS and EDB, respectively. Considering EDB, the positive aspects listed were
as follows: it suits those developers better who prefer terminals over GUIs allowing for
scripting and automation (which, on the other hand, other study participants found as
negative for developers used to GUI-driven development2); one person found ability to
set breakpoints and seeing the capacitor voltage as valuable. The negative aspects of
EDB listed were as follows: not intuitive as a whole and having non-intuitive commands;
forcing to re-flash code for breakpoints; being erroneous when debugging and has no
ability to resolve symbols. Conflicting points were listed however—one person described
EDB as ‘programmer friendly’ while other found no positive aspects of EDB.

Considering DIPS, the positive aspects listed were: very similar to existing debuggers—
“people will have an easier time learning how to use [it]”—being able to use already-
accustomed GUI debugging buttons; being “tightly integrated to IDE” and being able
to “set breakpoints in editor”; no need to compile code for every debug session. The
negative aspects of DIPS listed: two users were expecting even more user-friendly system
(not requiring to “switching between tabs for building/loading” whereas “restart button
doesn’t seem to function correctly”); one user still found DIPS difficult to use (who nota
bene made the same remark about the EDB).

As an overarching conclusion stemming from all questions posed to the participants—
users found DIPS easier to use, more intuitive and more familiar than EDB.

2We speculate that due to the setup of the user study participants thought that DIPS was developed to be
integrated only with IDE. However, we note that DIPS can also be used as stand-alone debugger in the console.

3.4. DIPS EVALUATION

3

59

Figure 3.8: DIPS connected to BFree [164] aiding in finding BFree’s peripheral bug. The bug causes the
background of the E-Ink display to be almost completely faded.

3.4.3. SOFTWARE TESTING WITH DIPS
Next, we show how DIPS helps in finding bugs in existing intermittently powered systems.
We will demonstrate this ability of finding bugs using DIPS and its features based on two
case studies.

CASE STUDY: BFREE—PERIPHERAL BUG

Experimental Setup. We start with a state-of-the-art intermittently powered system,
BFree [164], as the selected DUT with the E-Ink application programmed. We have
connected DIPS to the DUT, as shown in Figure 3.8 and powered the system using DIPS’s
energy emulator in a square wave mode.

Symptoms. When inducing frequent power failures to the BFree, the background of the
E-Ink display fades. This fading seems to occur when BFree experiences a power failure
during an update of the screen.

Diagnosis. First to rule out any obvious issues we ran DIPS’s software testing memory
restoration script for 15 minutes. During testing no discrepancy was detected between
BFree’s volatile memory prior to checkpointing and after restoration. The peripheral
state script of DIPS also did not find any related mismatches in BFree’s peripheral register
configuration.

In Listing 3.2 the BFree code is shown that partially updates the display. Checkpoints
are temporarily disabled during the execution of this function (see line 5 and 12 in
Listing 3.2), meaning the code has to be executed in full without any power failures.
However, if a power failure would occur in-between line 5 and 12, the peripheral could be

3

60 3. BATTERY-FREE DEBUGGING

Listing 3.2 BFree code snippet partially updating E-Ink display.

1 void epd_draw_temp(uint8_t temp) {
2 uint8_t unit = temp % 10;
3 uint8_t tens = (temp/10) % 10;
4

5 checkpoint_disable();
6

7 epd_init_temp();
8 epd_font_show(0, 2, unit);
9 epd_font_show(0, 1, tens);

10 epd_deep_sleep();
11

12 checkpoint_enable();
13 }

left with an unknown state. When BFree restarts, BFree will resume at the last checkpoint
and the code will be executed again from that checkpoint.

By single stepping through this code of BFree using the DIPS debugger and forcing
a power failure at each code line, we discovered that this partial execution causes the
fading of the display. That is, if a power failure occurs between epd_font_show() and
epd_deep_sleep(), the state of the display is not “locked” and remains in a high voltage
state causing the fading, potentially damaging the E-Ink display over time. This issue
could be resolved by for example, checking if enough energy is present before starting the
screen update or to gracefully power down the BFree peripherals when a power failure is
immanent.

In this case study DIPS assisted by quickly finding a major problem with the DUT,
i.e. a peripheral-related bug3. Using the ability of DIPS to single step through code and
the ability to generate power failure patterns using DIPS’s energy emulator, we quickly
identified the underlying issue within BFree.

CASE STUDY: ENGAGE—MEMORY RESTORATION BUG

Experimental Setup. As a second case study we chose Engage, the system used in
the Battery-Free Game Boy [66]—a battery-free intermittently-powered handheld gam-
ing console, as the selected DUT. Engage uses an optimized version of checkpoining,
where only the memory regions that were changed since the last checkpoint (denoted as
patches) are stored in a non-volatile memory at each new checkpoint. We have connected
DIPS to the DUT, as shown in Figure 3.9 and powered Engage using the energy emulator
of DIPS in square wave mode.

Symptoms. After an extended period of time when power failures are induced frequently
to Engage, no game content is displayed on the screen when powered and Engage appears

3DIPS’ software testing scripts do not test the state of external peripherals connected to the DUT—only the
configuration of the MCU’s peripherals of the DUT.

3.4. DIPS EVALUATION

3

61

Figure 3.9: DIPS connected to Engage [66] aiding in finding a memory restoration bug. After a certain time
of continuous intermittent execution a checkpoint of Engage is corrupted, resulting in the handheld console
failing to start.

not being able to start (i.e., only black screen is seen instead of game content). After this
failure has occurred—even when continuous power is supplied to Engage—Engage fails
to start the game it was intended to play.

Diagnosis. The symptoms hint at a memory restoration issue, where either Engage’s
memory gets corrupted or something is preventing the Engage to boot. First, we ran
our software testing memory restoration script for 15 minutes, verifying that the volatile
memory is correctly checkpointed and restored. Whilst running the test we did not detect
any discrepancies in Engage’s memory. Then, by running the peripheral state script for
another 15 minutes we ruled out any inconsistencies between peripheral configuration
that could prevent Engage from, for example, accessing the external non-volatile FRAM
where the checkpoints are stored.

As these 15 minute long tests were unable to reproduce the symptoms we have ex-
tended the testing time. After extended testing using the memory restoration script, DIPS
paused code execution. This pause was triggered as no checkpoint has occurred within
the predefined time window of five minutes, hinting that most likely no forward progress
has been made. At this point Engage exhibited the previously mentioned symptoms.

Engage’s execution was paused by the hardware debugger of DIPS at the moment of
the restoration process, i.e. where memory is restored from a chain of memory patches.
By further manual investigation with DIPS by breakpoints and stepping through the code
we deduced that the process of applying the patches could not finish and formed an
infinite loop preventing the system from starting.

In this case study DIPS assisted by quickly ruling out major problems. The description
of the process (from unsuccessful 15 minute tests to a successful automated test) shows
the usefulness of DIPS in directly pointing the developer to the issue (which preventing
Engage from starting).

3

62 3. BATTERY-FREE DEBUGGING

3.5. LIMITATIONS AND FUTURE WORK
Despite the advantages DIPS is bringing in debugging intermittently-powered systems,
the research on debugging platforms for such intermittently-powered systems is not over.
We list the most important limitations of DIPS, with its current study below.

Support for non-ARM MCU Architectures. DIPS does not yet support of debugging of
non-ARM MCU architectures, refer again to Table 3.1. One particular MCU series that
requires immediate support from DIPS is Texas Instruments’ MSP430 MCUs [296]—used
in numerous previous projects on intermittently-powered systems, including [325, 189,
113]. Luckily there are no technical limitations that would disallow to support MSP430 by
DIPS. DIPS’ support for MSP430 and its implementation is further described in [73, DIPS
Support for MSP430].

Per-Line Code Inspection. What DIPS currently cannot do is to point to the exact code
line that caused the program error. Such per-line code inspection for intermittently-
powered systems was presented in [192], where WAR dependencies are found using
code analysis. Then at each of these dependencies a power interrupt was emulated and
memory regions were inspected for any inconsistencies. With additional scripting, DIPS
could single step through the code and generate a power failure at every potential WAR,
this method however, will be significantly slower than simulation based methods.

Further Development of DIPS. The overarching aim of the DIPS project is to be useful to
the developers working on intermittently-powered systems. This can only be achieved by
the introduction of new functionalities and support for new platforms, such as including
MSP430 MCUs [296] support as mentioned above. Since we make DIPS available to
the wider community, additional features, further improvements and evaluation can be
contributed to the project by the community itself.

3.6. RELATED WORK
The field of testing intermittently-powered embedded systems can be categorised into (i)
energy trace generation—for harvested energy trace replay and synthesis, (ii) testbeds—
for controllable performance assessment of battery-free systems, and (iii) debugging
systems (both hardware and software)—for finding individual errors in the code. For the
record, a high-level introduction to embedded systems testing (thus also conventional
battery-based systems) can be found in [23].

Energy Trace Generation. Considering the first category, Ekho [112] is a platform capable
of replaying pre-recorded current/voltage traces that targets energy-harvesting devices.
Such platforms aid in providing repeatable conditions during testing and could operate
as a stress test by feeding different power supply traces to the DUT, e.g. to see at which
conditions DUT stops working. Energy trace generation is also an integral feature of
DIPS.

Battery-Free Systems Testbeds. Considering the second category, Shepherd [96] is the
first (and the only one, to the best of our knowledge) complete battery-free intermittently-
powered testbed4. It extends the energy trace recording and replay features introduced by

4For the record, the first idea of such testbed in a preliminary form was presented in [1].

3.7. CONCLUSIONS

3

63

Ekho [112], allowing to replay energy traces simultaneously and in synchrony for different
spatially-separated sensors.

Hardware and Software Debugging Systems. Considering the third category, the refer-
ence point for DIPS (and the only available debugger for intermittently-powered systems)
is EDB [49], which has already been discussed extensively in this chapter. To the best
of our knowledge, the systems that target software-only techniques of bug finding in
intermittently-powered systems are [192, 285]. Please note however that [192] does not
work on a real embedded system, so memory region and peripheral inspection of the
actual DUT is impossible. Then, work of [285] considered the problem of bugs caused
by I/O operations of intermittently-powered devices, which was addressed by the static
code analysis and dynamic information flow tracking to detect bugs at runtime. However,
the bug detection of [285] needs (i) code instrumentation, (ii) targets a specific frame-
work for intermittently-powered systems (i.e. task-based system [189]), and (iii) requires
complete code compilation for each new memory inspection. Another example of static
analysis tool for task-based programs is CleanCut [52]. CleanCut optimizes placing of
task boundaries to reduce task-specific bugs, i.e. non-terminating tasks due to too few
task boundaries. Still, unlike DIPS, CleanCut does not allow for real code debugging of
the resulting transformed code.

3.7. CONCLUSIONS
We have presented DIPS, a new debugging platform for intermittently powered battery-
free devices. Making it easier to debug and test intermittently-powered devices, address-
ing the debugging and testing challenge. It closely couples a hardware debugger for
embedded systems capable of debugging intermittent systems and an energy emulator
allowing to replay real-life and synthesised energy traces. The close interaction of the de-
bugger and emulator allows for seamless pausing of emulation during debugging actions
(such as a breakpoints) whilst keeping the Device Under Test (DUT) powered and re-
sumes emulation as the DUT continues operation. DIPS’ software testing scripts allow for
automatic verification of memory/peripheral restoration during intermittent operation.
User experience studies have shown that DIPS enables debugging of intermittently-
powered devices the same way as one would debug battery-powered embedded devices.
Moreover, as a case study, using DIPS we were able to identify bugs in state-of-the-art
intermittently-powered battery-free computing systems such as ENGAGE presented in
Chapter 2.

CHAPTER 4
BATTERY-FREE TIMEKEEPING

This chapter is based on:
Jasper de Winkel, Carlo Delle Donne, Kasım Sinan Yıldırım,

Przemysław Pawełczak, and Josiah Hester (2020).
Reliable Timekeeping for Intermittent Computing

Proceedings of the 25th International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, Lausanne, Switzerland, 53–67.

4

66 4. BATTERY-FREE TIMEKEEPING

4.1. INTRODUCTION
In previous chapters, we demonstrated the feasibility of interactive battery-free de-
vices and how battery-free devices can be debugged and tested. However, the need
for infrastructure-less wireless connectivity on battery-free devices remains unaddressed.
Before we can address the challenge of wireless networking to enable interactive and
connected applications, we first need to address a fundamental feature of traditional
battery-powered systems, that is robust timekeeping. The ability to keep track of time
undergirds a multitude of computing and networking primitives, such as synchronization
and networking, data collection, and real-time operation.

Problem Statement. Having access to an accurate, continuous notion of time has
always been taken for granted in embedded system development. Timeouts and times-
tamps constitute the backbone of embedded applications, particularly those targeting
sensing, communication and actuation. The intermittent operation of ultra-low-energy
batteryless devices makes it impossible to track time solely relying on on-chip digital
timers, as they are not available during a power outage, as shown in Figure 4.1. Even
dedicated ultra-low-power real-time clocks are not a good fit for intermittent operation,
as they require very long start-up times1 and a high initial energy deposit after each power
outage.

Importantly, real-time clocks and other embedded systems timekeeping standards
are statically provisioned with energy, usually conservatively to cover the longest possible
outage likely to be encountered. The problem with this approach is that the timekeeper’s
energy buffer (usually, its internal capacitor) is always over-provisioned to measure the
longest expected outage, even if short outages are the common occurrence. This wastes
energy maintaining the large energy buffer.

As of now it is impossible to dynamically set timekeeping granularity, energy cost, and
start-up time of an embedded timekeeper. Exploiting reconfigurability in software for
intermittently-powered runtimes would be aided by a flexible timekeeper. Having power-
failure-resilient and adaptive timekeeping would enable new applications, including
reliable intermittently-powered radio communication (since intermittently-powered
embedded nodes require methods for synchronizing local clocks to align wake-up times),
timestamped data collection and real-time scheduling.

1For instance, more than a second for Abracon AB18X5 [200] ultra-low-power real-time clock.

Sense Compute Compute Transmit Transmit

Off time (how long?) Off time (how long?)

Turn off threshold

Turn on threshold

St
or

ed
 e

ne
rg

y

Figure 4.1: Energy-harvesting batteryless sensors operate intermittently, with power failures of unpredictable
duration. These off times are hard to measure with existing timekeepers such as real-time clocks.

4.1. INTRODUCTION

4

67

Figure 4.2: Botoks platform. The front (left) contains radio, antenna, solar panel and MCU. On the back side
(right) is the Cascaded Hierarchical Remanence Timekeeper. The board dimensions are 1"×1".

Contributions. This chapter seeks to provide hardware and software kernel support to
enable continuous timekeeping that is resilient against repeated power failures incurred
by batteryless devices operating intermittently and adaptive to the dynamic constraints
of intermittent computing. The hardware layer is inspired by the concept of remanence
timekeepers [245, 117] to keep track of time even when the device is depleted of energy.
Remanence timekeepers work by discharging a small capacitor over a large resistor
during execution and off-time, and measuring the voltage once power returns to estimate
the time elapsed between two reboots. However, as the measured time increases, the
resolution of the remanence timekeeper decreases (due to the exponential energy decay
of an RC circuit), making it difficult to design a timekeeper that has millisecond resolution
and multi-second longevity. Our observation is that cascading multiple of these cheap
RC circuits of different sizes together, arranged hierarchically, can result in both high
resolution and long timekeeping range, with low energy cost, low cold-boot time, and
small area. The software layer abstracts the remanence timekeepers and makes them
ready to use in any existing or future runtime for intermittently-powered sensor nodes.
The contributions of this work are as follows:

1. Timekeeping architecture resilient to power failures. We present a timekeeping ar-
chitecture, denoted as Cascaded Hierarchical Remanence Timekeeper (CHRT), that
enables continuous tracking of time across repeated power failures. With the CHRT,
multiple cascaded remanence timekeepers (each with different capacitors sizes)
enable any software runtime supporting batteryless (and intermittent) operation
to select desired timekeeping resolution and range.

2. Runtime CHRT support. A kernel software module accompanies our CHRT archi-
tecture to abstract its complexity and to expose a simple and effective API to the
programmer. The hardware abstraction layer provides accurate millisecond-scale
timekeeping information, and minimizes energy consumption of the CHRT based
on run-time energy harvesting conditions.

3. Batteryless timekeeping sensor. With the aim to allow developers to experiment
with the CHRT and its kernel module, we design and build a hardware platform
named Botoks, featuring an energy harvester, an CHRT and an ultra-low-power
active radio (see Figure 4.2) ready to be used to prototype complete timekeeping
batteryless applications.

4

68 4. BATTERY-FREE TIMEKEEPING

Table 4.1: Comparison of selected ultra-low-power RTCs. Note that all commercial off-the-shelf RTCs have
large start-up times and do not support one millisecond resolution.

Start-up time Current
RTC Model Resolution Nominal Worst draw

NXP PCF85263A [266] 10 ms 200 ms 2 s 320 nA
Abracon AB18X5 [200] 10 ms 900 ms 21.5 s 55 nA

ST M41T62 [282] 10 ms <1000 ms 1 s 350 nA
Maxim DS139X [138] 10 ms <1000 ms N/A 500 nA

The timekeeping architecture embedded in Botoks2 is first characterized indepen-
dently, and then evaluated inside two case-study applications, emphasizing the impor-
tance of timestamps and network synchronization.

4.2. MOTIVATION
Low-power timekeeping solutions of today present challenges for intermittent operation:
either they are not designed for fast restarting and short execution bursts—like real-
time clocks—or they rely on signals coming from external infrastructure or the ambient,
like light- or RF-based synchronization architectures [323, 118, 97]. Real-time clocks
(RTCs) rarely time sub-second intervals, and critically have excessively long cold-boot
times (tens of seconds for some low power models if power fails, as in Table 4.1). This
excessive boot time is tolerable for the battery-powered devices RTCs were made for,
where power failures were rare and failure time generally short, while operation time
after failure was orders of magnitude longer. RTC developers traded off cold-boot time
for lower power operation and smaller footprint. This trade-off, however, is a killer
for intermittently-powered devices, where power-down failures are usually longer than
operational time. These devices lose power even tens of times per second [246, 289],
meaning that an RTC on a intermittently-powered device could still be in a cold-boot
state when the energy runs out, wasting energy and losing timekeeping accuracy. In
addition to cold-boot problems, on-reboot SPI/I2C configuration of these devices wastes
valuable energy and time. Network-level sources of time, or sensed signals like visible
light communication, power line noise [176], or RF carrier are not always viable, as these
sources are not guaranteed to be present in a particular deployment and are susceptible
to noise or interference.

4.2.1. REMANENCE TIMEKEEPERS
Remanence timekeeper, introduced in Mayfly [116], was the most promising attempt at
intermittency-safe, infrastructure-free local timekeeping. A remanence timekeeper is
essentially a capacitor discharging through a resistor (RC circuit), whose voltage level is
sampled on reboot to get an estimate of the time that has elapsed while the device was
powered off. As the voltage decay can be easily modeled and can happen while the MCU
is off, the timekeeping accuracy was good enough to enable real-time sensing.

2Phonetic transcription of BTKS: Batteryless Timekeeping Sensor.

4.2. MOTIVATION

4

69

10−4 10−2 100 102
0

1

2

Time [s]

Vo
lta

ge
[V

]

220 nF
22 nF
2.2 nF

(a) Off time measurement increases with capaci-
tance.

0 2 4 6 8 10
0

10

20

30
E = CV 2

2

Capacitor size [µF]

E
ne

rg
y

co
st

[µ
J]

(b) Larger timekeepers cost more energy.

Figure 4.3: Partial design space for Remanence Timekeepers.

Trade-Offs. To use a remanence timekeeper the developer is presented with a complex
trade-off space between application timing requirements, resolution, and available en-
ergy. Tuning the size of capacitor and resistor of a remanence timekeeper is the primary
means of controlling the trade-off between timekeeping resolution, range and energy
consumption. For instance, larger capacitors take longer to discharge over a resistor
of the same size, which means that longer outages can be timed (Figure 4.3a). How-
ever, charging a larger capacitor costs more energy at each reboot and more time to
charge (Figure 4.3b), and reduces the resolution of measurements because the discharg-
ing profile is less steep as compared to smaller capacitors (i.e., the change in voltage
is indistinguishable for a 12-bit analog-to-digital-converter). It becomes arduous to
find a configuration that can satisfy different needs of an application, balancing and
anticipating all these trade-offs at design time.

Timekeeping Rigidity. Beyond the physical constraints, application behaviors with
time-varying timekeeping requirements mean that a single remanence timekeeper tuned
to a specific outage length is not useful for outages of a different length. For example,
synchronizing radio transmissions needs millisecond-level timekeeping, while a humidity
sampling task only needs minutes or hours. A single remanence timekeeper sized to
time outages measured in milliseconds with high precision cannot give any idea of the
passing of time at the minute level. Time accuracy, resolution, and precision needs are
application-dependent and dynamic. Static remanence timekeepers are too rigid.

Cost, Size, Complexity. Despite the large trade-off space, remanence timekeepers offer
attractive benefits due to the simplicity of the circuit, allowing for ultra small size and cost.
While most RTCs can be upwards of one US dollar even at scale, the discrete components
of a remanence timekeeper can be purchased for less than a penny, and even less when
built into a modern CMOS process.

4

70 4. BATTERY-FREE TIMEKEEPING

Table 4.2: Comparison of selected low-power sensing platforms of the past two decades. Botoks, and its
timekeeper (CHRT), are resilient to intermittent operation, and do not depend on external infrastructure.

Platform Intermittent-
safe

Infrastructure-
independent

Time-aware

Hamilton [160] ✗ ✓ ✗
WISP [276] ✓ ✗ ✗

BLISP [126] ✓ ✗ ✗
Capybara [51] ✓ ✓ ✗

Flicker [114] ✓ ✓ ✗
Botoks ✓ ✓ ✓

4.3. SYSTEM OVERVIEW
In light of the shortcomings of single remanence timekeepers and RTCs, in this chapter
we argue for a different approach where multiple remanence timekeepers of increasing
capacitance are chained together. Depleted tiers automatically activate the next smallest
tier. For short time intervals the smaller tiers provide higher resolution and consume less
energy, while the larger energy-expensive tiers time longer intervals. From this key idea,
we explore the complex design space of multi-tier remanence timekeeping with the CHRT,
an intermittency-safe timekeeping architecture, and build Botoks, an energy-harvesting
device with an on-board CHRT. The benefits of using CHRT are summarized below.

Consistent Time Resolution. Compared to single-tier designs, the multi-tier timekeeper
does not suffer from loss of resolution as the discharge curve flattens, meaning that high
resolution can still be leveraged after relatively long outages.

Reduced Boot Time/Energy. Boot time for the CHRT is bounded only by the size of the
capacitor, unlike for RTCs, where the capacitor must be filled, then the RTC must stabilize,
then the RTC registers must be configured. With nearly-instant boot-up and energy only
dedicated to timekeeping, the CHRT enables time tracking through short outages.

Lower Energy Consumption. RTCs and single remanence timekeepers are provisioned
with a specific amount of energy at design time, tuned to the best guess of the maximum
power failure time. A CHRT can be provisioned at run-time so that the smallest tier that
can time the likely length of the next outage is used. In this way the device avoids wasting
energy on charging up unnecessarily large capacitors for timing short outages.

Overall Goals. Looking at Table 4.2, compared to existing low-power platforms, Botoks
features intermittency-safe, infrastructure-independent timekeeping, effectively enabling
time-critical intermittent applications. Botoks embeds an ultra-low-power radio as well,
ready to be used in combination with the CHRT for infrastructure-less intermittent
networking applications.

The primary goal of this work is infrastructure-free, high-resolution and high-accuracy
timekeeping for intermittently-powered devices. To ensure applicability to a broad range
of applications, we develop a software layer around the hardware architecture and plat-
form. This allows developers to use the timekeeping functionality without having to delve

4.4. CHRT: HIERARCHICAL TIMEKEEPING

4

71

MCU

H
AR

D
W

AR
E

KE
R

N
EL

AP
PL

IC
AT

IO
N

int	data[10];
sample_sensor(data);
set_expire(data,	50);

if	(!expired(data))	{
	

				send(data,	10);
	

}

After some
reboots

CHRTEnergy harvester Radio

Communication
stack

Timekeeping subsystemIntermittency
management CHRT SW

interface
MCU
timer

Figure 4.4: Botoks high-level architecture. The runtime kernel keeps track of time using the CHRT. Applications
are instrumented with CHRT functions to infer on the elapsed time despite power outages.

into the underlying physics of capacitor discharge. This hardware abstraction software
layer allows for integration into any intermittency-management runtime like InK [325]
or Chinchilla [190]. In Section 4.4 and Section 4.5 we delve into the design aspects of
the timekeeping hardware and its accompanying software support, respectively. Both
hardware and software layers are integrated into Botoks, as portrayed in Figure 4.4 and
described in Section 4.6, which will be used to evaluate our design (refer to Section 4.7).

In summary, our goals are: (1) enable accurate and consistent timekeeping, (2) allow
runtime provisioning of CHRT tiers to enable energy savings, and (3) provide software
constructs for easy usage of the timekeeper in any runtime system.

4.4. CHRT: HIERARCHICAL TIMEKEEPING

The limitations of ultra-low-power timekeepers for batteryless and intermittently-powered
systems listed in Section 4.2 motivate our new timekeeping architecture. The main idea
is to combine multiple capacitive timekeepers of different sizes into a Cascaded Hier-
archical Remanence Timekeeper (CHRT). The various tiers of the CHRT can be used to
minimize cold-boot time and energy consumption, and maximize resolution and time-
keeping range at run-time. The tiers are linked together, from smallest to largest, so
that a depleted tier can automatically activate the next tier, therefore increasing the total
timing range, whilst maintaining the best possible resolution. For short time intervals,
the smaller tiers provide higher resolution and consume less energy. The larger tiers are
used to time longer intervals, but have lower resolution and need more charging energy.
To be able to use the CHRT, the cascaded tiers have to be pre-charged at each reboot. Our
hardware abstraction layer (Section 4.5), can be configured to minimize energy consump-
tion depending on the needs of an application and the expectations of energy availability
of the environment, by specifying how many tiers should be pre-charged at each reboot.

4

72 4. BATTERY-FREE TIMEKEEPING

VCH

C1

A1

R1

CS1 DS1 VCH

C2

A2

R2

CS2

DS2

CEN

−

+

VR

A1

VCH

CN

AN

RN

CSN

DSN

CEN

−

+

VR

AN−1

Figure 4.5: Cascaded Hierarchical Remanence Timekeeper. The left-most stage is activated first, while the
subsequent stages are activated in a cascaded manner. VCH: regulated output that charges the timekeepers;
CSi : charge signal of tier i ; Ai : voltage sampling point of tier i ; DSi : discharge signal of tier i ; CEN: cascaded
mode enable signal; VR: comparator reference voltage.

4.4.1. CHRT CIRCUIT

A schematic of the CHRT circuit is shown in Figure 4.5 (only the first two tiers and the
last tier are shown). The stable charging voltage VCH is provided by a ultra low power
regulator, not shown in the figure. The switches allow the MCU to recharge the capacitors
and then to let them discharge through the resistor. The comparator is used to trigger the
various stages of the cascade, i.e., a CHRT tier is activated when the voltage across the
preceding tier drops below the reference of the comparator (VR). The control signal CEN
can be used to bypass the cascaded behavior and use any of the tiers as an independent
timekeeper. Using the tiers independently, programmers can map tiers to particular
functions based on the timing granularity required.

4.4.2. CHRT RANGE HEURISTICS

To determine the number of CHRT tiers and their size, timekeeping requirements need
to be extracted. These range heuristics can be partially inferred from the application
itself. If data is of no use 10 seconds after it was gathered, then there is little reason to
have a timekeeper that can capture periods longer than 10 seconds. Application code for
embedded systems is usually full of timing requirements baked into the program. Often
these are explicit: many task-based programming models have data timing requirements
stored on the edges of the task graph [116]. We also imagine that empirical programming
methods could use annotations or assertions to define the timekeeping requirements.
Beyond application information, such requirements could be extracted from predictions
about the environment. For particularly energy-sparse environments, larger tiers may be
required to sustain through interruptions.

Once the time requirements have been extracted (for example, expiration time of
data, synchronization granularity of communication), one can decide on the number of
tiers and their size by examining the total range required, and the granularity. Since each
tier can only cover a portion of the final timing range, we can use simple RC calculations
to find these ranges.

Tier’s Range. Assume a resolution of δt is required, using an N -bit ADC, a resistor R and a
capacitor C , and during calibration and usage the capacitor is charged at V0 (which is also
the maximum value the ADC can measure). We want to find the maximum time interval
∆t max such that, for all ∆tx <∆t max and ∆ty =∆tx +δt ≤∆t max, the difference between
the ADC values corresponding to ∆tx and ∆ty is at least K integers. Larger values of K

4.5. CHRT SOFTWARE LAYER

4

73

yield better robustness against noise, but reduce the timekeeping range of a capacitor.
Assume that Vx is the voltage associated to ∆tx , and Vy is associated to ∆ty (∆tx <

∆ty ⇒Vx >Vy). Then, we want

Vx −Vy ≥ K
V0

2N
, (4.1)

and, by applying the RC circuit discharge model, that is, t =−RC ln(V /V0), to (4.1), we
obtain

∆ty ≤ RC ln

(
2N

K

(
exp

(
δt

RC

)
−1

))
≜∆t max. (4.2)

Equation (4.2) can be used to obtain the maximum timing range of an arbitrary tier. A
negative value means that the specific RC circuit cannot be used with a resolution δt .

Number of Tiers. Applications have a variety of accuracy and range requirements. In a
critical software section a data sample might expire within a few milliseconds, non-critical
data samples within 100 ms and the output might be timestamped with the accuracy of
one second. This requires a range of different tiers to maintain the accuracy restrictions.
Given a set of timekeeping requirements, expressed in terms of resolution and maximum
time-able interval, (4.2) can be used multiple times to compute the number of CHRT tiers
required and their size. We have implemented this heuristic in a script [69] that suggests
a CHRT configuration based on the timing requirements3. However, we note that for
many applications the default configuration used in Botoks is likely to be suitable (see
Section 4.6). This configuration allows for timing outages up to 100 s with a resolution up
to 1 ms.

4.5. CHRT SOFTWARE LAYER
The CHRT architecture presented in Section 4.4 is complemented by a software layer,
whose aim is twofold: (1) make the best usage of the available tiers to maximize energy
efficiency and timekeeping resolution and range, and (2) abstract the complexity of the
CHRT to provide a user-friendly API. More specifically, the software layer exposes (1) a
raw interface, which can be used to directly request the CHRT hardware to charge the
tiers and retrieve elapsed time on reboot, and (2) a high-level interface, which uses the
CHRT in combination with a digital timer to provide higher-level functionalities, like
timestamp generation and data expiration. Additionally, the software is responsible for a
one-time factory circuit calibration that must be performed before using the CHRT, as in
the case of RTCs.

4.5.1. CHRT HARDWARE ABSTRACTION LAYER
The raw CHRT interface is a hardware abstraction layer (HAL) of the underlying time-
keeping hardware functionality, to be used for low-level control of the CHRT. It is mostly
intended as a building block for more advanced timekeeping duties to be exposed by the
runtime or kernel that has knowledge of the user tasks and operations, but can be used
at the application level as well by the user. Upon reboot, the runtime calls a function
to retrieve the time elapsed since the previous reboot, and then another function to

3Details on this heuristic are also presented in [63, Section 4.2.1].

4

74 4. BATTERY-FREE TIMEKEEPING

recharge the tiers. A non-goal of the HAL is to make the CHRT fully invisible to its user
(for instance, the recharging procedure has to be explicitly called). The intermittency-
management kernel (like InK [325] or Chinchilla [190]) can use the raw API to define
its custom timekeeping functions, or just pass the high-level CHRT interface up to the
application layer.

Elapsed Time Retrieval. Upon reboot, chrt_get_time() must be called to get the
elapsed time of the power failure that was just recovered from. This function returns a
16-bit unsigned integer representing the elapsed time, and a scaling factor. The scaling
factor times the elapsed time gives a time value in milliseconds.

Dynamic Tier Recharge. After retrieving elapsed time, chrt_charge() must be invoked
to recharge the CHRT tiers. This function provides a means to specify how many tiers
are charged on each reboot, to reduce energy consumption and cold-boot time while
still preserving the required timekeeping resolution and range. This function is useful
for setting the dynamism of tier recharge to adapt the timekeeping energy expended
based on application or environmental properties. Programmers and intermittent kernel
designers can choose to be either conservative or adaptive with tier recharging.

Adaptive timekeeper provisioning is useful when energy environments and applica-
tion behavior are somewhat predictable or continuous (for example, solar environments).
The basic idea of adaptive tier recharge is to choose only the smallest tier that can still
satisfy the timing requirements. Specifically, assume that the CHRT is composed of N
tiers T0,T1, . . . ,TN−1, chosen as suggested in Section 4.4.2, and that Ri =

[
t min

i , t max
i

)
is

the optimal timekeeping range of tier Ti , again, determined as given in Section 4.4.2. We
call target tier Tx the tier whose optimal timekeeping range Rx contains the elapsed time
retrieved on reboot. Suppose that the CHRT is configured to only charge one tier, the
target tier, on reboot. Then, if tier Tx is charged on reboot j , and the time t retrieved on
reboot j +1 is not in Rx , the target tier to be charged on reboot j +1 would be Tx+1 (if it
exists) in case t ≥ t max

x , or Tx−1 (if it exists) in case t < t min
x . The adaptive method saves

energy since overcharging the timekeeper when the kernel is only timing a short outage
is wasteful.

When the reboot frequency is variable the kernel may choose to be conservative in
timekeeper provisioning (tier recharging), as retrieved times are more likely to be outside
the timekeeping range of the current target tier. For better robustness against variable
reboot frequency, the user can request the CHRT to charge more than just the current
target tier. Specifically, the two function parameters KL and KR are used to tell the CHRT
software layer to charge all tiers in

[
Tx−KL ,Tx+KR

]
, given that Tx is the current target tier.

For instance, if KL = KR = 1, tiers Tx−1, Tx and Tx+1 would be recharged on reboot, and
the discharge would start from tier Tx−1, and continue with the larger tiers in a cascaded
fashion. The parameters KL and KR control the trade-off between timekeeping robustness
and energy consumption, as charging more tiers requires more energy. In particular, KR

has a higher impact on energy consumption, as larger tiers consume more energy.

4.5.2. CHRT HIGH-LEVEL API
The CHRT HAL described previously exposes the most basic functions to control the
CHRT. The high-level CHRT interface enhances raw functionalities to provide higher-

4.5. CHRT SOFTWARE LAYER

4

75

void	compute()	{

		if	(!has_expired(data))	{

				process_data(data);

				next_task(send);

		}	else	{

				next_task(sense);

		}

}

void	send()	{

		if	(!has_expired(data))	{

				send(data,	timestamp);

				next_task(log);

		}	else	{

				next_task(sense);

		}

}

#define	EXP_MS	200

void	sense()	{

		sample_data(data);

		set_expiration(data,	EXP_MS);

		timestamp	=	get_timestamp();

		next_task(compute);

}

data has expired

Figure 4.6: Example usage of the high-level CHRT API. The program is a typical sensing routine, and the API is
used to specify that the elapsed time between sensing and transmission of some data must not exceed 200 ms
of absolute time (on and off), as well as to get a timestamp to be sent together with the data.

level timekeeping tools to be used in real-world batteryless applications for intermittent
devices. Fundamentally, this is implemented combining CHRT functionalities with an
on-board MCU digital timer to maintain an always-available system time. The system
time is incremented at each reboot using the raw chrt_get_time() function. When
queried during on-time, the system time is combined with timing information retrieved
from the digital timer running in the background. The system time is used to generate
timestamps and to set expiration timers for data and functions. Figure 4.6 demonstrates
the usage of this high-level API.

Timestamp Generation. get_timestamp(): a high-level API function, uses the afore-
mentioned system time to generate a timestamp when the application requires it. In
particular, the returned timestamp is a 32-bit unsigned integer representing system time
in milliseconds. When get_timestamp() is invoked, the value of the MCU timer is
added to the CHRT-powered system time to return a fine-grained timing value that can
be used to annotate data.

Expiration Timers. The high-level API exposes two more functions to keep track of aging
data, and discard it when it is deemed expired. The function set_expiration() can be
used to set an expiration time for some data, or for a complete function/task. The user
passes a tag (of type void pointer), representing the object (data or function pointer) to
be assigned an expiration time, and an exp_time (of type uint32_t), to set an expiration
time in milliseconds. Then, the API function has_expired() can be called, passing a
tag, to check at any point if some object has expired.

Timekeeping Subsystem. The API can be integrated by a kernel runtime to implement a
full timekeeping subsystem for the application layer to use. The runtime must only imple-
ment a timekeeper_init() function to call during initialization, where the system time
is updated (using chrt_get_time()) and the CHRT is recharged (with chrt_charge()).

4.5.3. CHRT SOFTWARE CALIBRATION
Ideally, the RC circuit discharge model, t =−RC ln(V /V0), could be used to estimate the
elapsed time t . In actuality, capacitance C and resistance R never match their nominal
values, and other parasitic capacitors and resistors are spread through the circuit. To re-
solve this issue, a software calibration routine, to be performed before CHRT deployment,

4

76 4. BATTERY-FREE TIMEKEEPING

was implemented, to obtain better precision and accuracy of the timekeeper. During
calibration, all the tiers of the CHRT are repeatedly charged and discharged, and their
discharging profile is sampled over time to obtain a realistic physical model for each tier.
This way, an interpolated version of the RC circuit discharge model is built and stored in
the form of a lookup table. At run-time, the voltage across the target tier is used to look
up the table and retrieve the corresponding elapsed time.

4.6. SYSTEM IMPLEMENTATION
This section lists and briefly discusses the parameters we used for the implementation
of CHRT hardware and software, and describes in more detail the components of the
integrated Botoks demonstration platform. All hardware, software, and tools, as well as
documentation for CHRT and Botoks, are open-sourced [69].

4.6.1. CHRT PLATFORM

The four-tier CHRT was implemented (1) as a system peripheral integrated into Botoks,
built with off-the-shelf SMD components (Figure 4.2), (2) as a stand-alone development
board, featuring the same components as on Botoks, and (3) as an integrated version.

CHRT Tier Settings. Following the practical guidelines given in Section 4.4.2, we imple-
mented an instance of CHRT targeting a variety of general timekeeping requirements
found in sensing and real-time devices. To begin with, the value of the discharge resistor
was fixed at 22 MΩ for all the tiers, as such resistors are cheap (less than a tenth of a
USD cent per unit) and guarantee a good balance between long discharge time of the
RC circuit and electrical noise. Larger resistors would allow for even wider timekeeping
ranges, but the incurred noise would become detrimental to the accuracy and the pre-
cision of the CHRT. As for the capacitors, we mixed different sizes to obtain a variety of
resolutions and timekeeping ranges, to cover the needs of various applications. Precisely,
we chose to cascade four tiers of increasing size: 2 nF, 22 nF, 220 nF and 2200 nF. The best
resolution achievable with such configuration is 1 ms, when using the smallest tier, which
is guaranteed for capturing time intervals up to 100 ms. The longest time-able interval is
100 s, measurable using the largest tier, for which a resolution of 1 s is guaranteed.

CHRT with SMD Components. We built the CHRT with off-the-shelf components on a
custom PCB as a proof of concept. Other than the four RC circuits, the CHRT includes
other important components. Each capacitor is readable via a trace to an ADC channel
on the MCU. Ultra-low-power D-type Flip Flops (SN74AUP2G79 [128]) protect the input
signals after the MCU dies. TS3A4751 [130] switches are used to gate power to the
capacitors. For the cascaded effect, TLV3691 [129] comparators are set to enable the
discharge of a tier when the voltage on the previous tier drops below 0.25 V. The stand-
alone CHRT includes jumpers to enable or disable individual tiers.

CHRT Integrated Design. The proof-of-concept PCB is not what we envision will be
eventually deployed in the battery-free IoT, an integrated circuit design scales better and
is more cost effective in volume. We have also implemented the CHRT in a TSMC 0.18µm
mixed-signal process [286], and simulated the circuit with Cadence Virtuoso [37] in order
to extract power consumption estimates of the integrated version of our architecture.

4.7. EVALUATION

4

77

The integrated design is significantly lower power and ultra tiny, enabling integration
alongside batteryless enabled microcontrollers for low cost instead of expensive crystal
centered RTCs. We report the power consumption numbers in Section 4.7.3.

4.6.2. BOTOKS PLATFORM

Our batteryless sensor, Botoks, is meant to be used as a complete development board to
evaluate and experiment with the CHRT, therefore it also includes an ultra-low-power
MCU, an energy harvester and an ultra-low-power radio. Specifically, the device is
centered on a Texas Instruments ultra-low-power FRAM-enabled MSP430FR5994 micro-
controller [132], with 256 kB FRAM and 8 kB SRAM. By default, energy is harvested via
the small solar cell on the back of the PCB, and is routed into the 100µF main storage
capacitor. A MIC841 [127] comparator with hysteresis lets the MCU turn on only when
sufficient charge is available. The ultra-low-power active radio transceiver is built around
the Microsemi ZL70550 [54] chip and a monopole antenna. The complete fabricated
device is shown in Figure 4.2. We expect this platform to enable other researchers and
practitioners interested in battery-free devices.

4.6.3. SOFTWARE

The code of the CHRT software layer described in Section 4.5 is split into two sub-
components, a platform-independent layer and a port layer, to give the option to port
our software module to other embedded MCU architectures. Our port is written for the
target MCU, that is MSP430FR5994. In addition to the CHRT abstraction layer, we also
implemented the necessary drivers to use the ZL70550 [54] radio transceiver. All the code
is written in C and can be compiled with the MSP430 GCC compiler [131].

4.7. EVALUATION

To quantify the performance of our system, we first characterize the behavior of the
CHRT in terms of accuracy, precision and power consumption. Then, we evaluate it in
the context of two case study applications implemented for Botoks, to demonstrate the
usefulness of a time-aware intermittently-powered device. In summary we found that the
CHRT is accurate and precise at high resolutions (1 ms) and for long ranges (hundreds of
seconds), has two orders of magnitude lower startup time than a RTC, and has an ultra
low power consumption, especially in the integrated design.

4.7.1. EXPERIMENTAL SETUP

Botoks and its on-board CHRT were used throughout all the experiments. To evaluate tim-
ing performance the platform was connected to a continuously-powered microcontroller
(a TI MSP430FR5994) that was used as a simulated intermittent power source, in order
to control power-on and power-off times. For the case studies, solar, radio frequency
and magnetic energy sources were used, as detailed in Section 4.7.4 and Section 4.7.5.
To sample digital and analog traces, a Saleae Logic Pro 16 logic analyzer [255] was used.
Finally, for power consumption measurements we used the STM32 Power Shield [281].

4

78 4. BATTERY-FREE TIMEKEEPING

4.7.2. EVALUATION METHODOLOGY
Our timekeeping architecture is benchmarked both on a fine-grained scale and on an
application scale. The fine-grained benchmarks targets performance metrics such as
timekeeping accuracy and precision, energy consumption and initialization time. The
case-study benchmarks (applications) showcase the performance of the CHRT when used
in real-world scenarios.

We build a bike speedometer using CHRT by capturing elapsed time between consec-
utive events (revolutions of the wheel). For this type of applications, timekeeping ability
and accuracy is necessary to provide reliable readings of the bike speed. However, the
constraints on accuracy are not as tight as other real time systems.

The second application is a message passing protocol that aligns radio communica-
tion of two intermittently-powered devices. In this case, robust timekeeping is a stricter
requirement, since active radio transmission and reception consume a lot of energy, thus
it is crucial for networked nodes to know exactly when to turn on their radio to minimize
packet loss and energy waste.

4.7.3. CHRT MICROBENCHMARK
In order to characterize the isolated performance of the CHRT, a Botoks node was pow-
ered by a controlled source that was physically cutting power to the node under test at
predefined frequencies. All four tiers of the on-board CHRT were tested extensively across
various time ranges and at various resolutions. The smallest tier (2.2 nF) was tested in the
range 1 ms to 100 ms, with steps equal to its resolution of 1 ms. Similarly, the other three
tiers (22 nF, 220 nF and 2200 nF) where tested in the ranges 10 ms to 1000 ms, 100 ms to
10000 ms and 1 s to 100 s, respectively, with steps equal to each tier’s resolution (10 ms,
100 ms and 1 s, respectively).

CHRT Accuracy. Figure 4.7 presents the accuracy of the smallest tier and the largest tier
of Botoks’s on-board CHRT. Figures 4.7a and 4.7b show the average reported time of
the two tiers, for their optimal timing ranges, where every data point is the average of
10 measurements. The accuracy of a single-tier remanence timekeeper (of 220 nF) is
also presented, to show the need for flexible multi-tier remanence timekeepers. If the
designer selects only a single tier a compromise between resolution and timekeeping
range is required. Single tiers have poor results for time ranges longer than what the RC
circuit can sustain (the single-tier saturates to around 20 s when trying to capture time
intervals larger than that), therefore motivating our multi-tier CHRT.

Error Distribution. The same raw measurements were used to generate Figures 4.7c
and 4.7d, in which the error distribution of the two tiers is shown. As reported in the
plot, the two tiers have a maximum absolute error equal to their respective resolution,
which is the case for the other two tiers as well. The error distribution is well centered on
zero, and it is very narrow, demonstrating that the CHRT is accurate and precise at high
resolutions (1 ms) and for long ranges (hundreds of seconds). The error distribution of a
single-tier remanence timekeeper operating outside its optimal timekeeping range has a
much higher standard deviation, which is the reason why it was not plotted at all.

Energy Consumption. The static current consumption of the four-tier CHRT amounts
to 0.958µA for the SMD version (the one embedded in Botoks), and to 37.335 nA for the

4.7. EVALUATION

4

79

0 50 100
0

50

100

Real time [ms]

A
ve

ra
ge

m
ea

su
re

d
tim

e
[m

s]

Ideal
RT (220 nF)
CHRT

(a) Tier 0 (2.2 nF) average measured time.

0 50 100
0

50

100

Real time [s]

A
ve

ra
ge

m
ea

su
re

d
tim

e
[s

]

Ideal
RT (220 nF)
CHRT

(b) Tier 3 (2200 nF) average measured time.

-2 -1 0 1 2
0

20

40

60

80

100

Error [ms]

D
is

tr
ib

ut
io

n
[%

]

(c) Tier 0 (2.2 nF) error.

-2 -1 0 1 2
0

20

40

60

80

100

Error [s]

D
is

tr
ib

ut
io

n
[%

]

(d) Tier 3 (2200 nF) error.

Figure 4.7: CHRT average measured time (top) and error distribution (bottom) for time measurements in the
intervals 1 ms to 100 ms (tier 0, resolution of 1 ms) and 1 s to 100 s (tier 3, resolution of 1 s).

integrated version4, at 2.2 V. We also measured the energy required to charge the tiers at
each reboot, as reported in Table 4.3. In Figure 4.8 the energy required to measure time is
reported over the whole time measurement range. Not only CHRT measures with much
higher accuracy than state-of-the-art RTCs, but also the required energy to measure time
is comparable or lower, even disregarding configuration time of RTCs.

Initialization Time. Initializing the CHRT boils down to recharging the depleted tiers.
The start-up time for each of the tiers embedded in Botoks is reported in Table 4.3. Even
when all the four tiers have to be recharged, the initialization time of the CHRT (≈ 5 ms)
is orders of magnitude smaller than for any available RTC (refer to Table 4.1).

Chip Area. The estimated footprint of the integrated four-tier CHRT is less than 1 mm2

(excluding packaging), proving its suitability for ultra-small embedded systems.

4Integrated design: NAND gate, G , consumes 15 pA, comparator, M , 7.43 nA, and the oscillator driving the
comparator, S, 15 nA; all values were measured at 1 kHz oscillator frequency. Therefore, for N -tier CHRT the
total static current draw is (N −1)× (G +M)+S. Current draw of switches was below 15 nA and therefore
removed from the calculation.

4

80 4. BATTERY-FREE TIMEKEEPING

Table 4.3: CHRT dynamic energy consumption, i.e. energy to charge each tier, and charging times. The CHRT
has much lower lower start-up time than any state-of-the-art RTC.

Charge energy (µJ) Start-up
Timekeeper Theoretical Measured time (ms)

CHRT Tier 0 0.00529 0.010† 0.3114
CHRT Tier 1 0.05819 0.110† 0.5053
CHRT Tier 2 0.58190 1.295† 0.913
CHRT Tier 3 5.81900 5.434 3.125

CHRT Total 6.46438 6.636 4.893

10−3 10−2 10−1 100 101 102

10−2

100

102

Measured time [s]

E
ne

rg
y

co
st

[µ
J]

AB18X5 PCF85263A CHRT

Figure 4.8: Comparison between CHRT and two RTCs from Table 4.1 of the total energy required to time a
period. The CHRT allows for millisecond timing whilst requiring less or similar energy compared to the lowest
power RTC.

4.7.4. APPLICATION 1: BICYCLE ANALYTICS

For the bike speedometer application, Botoks’s energy harvester was replaced with an
off-the-shelf magnetic energy harvester, extracted from a bike light [247], to collect
electro-magnetic energy induced by two magnets placed on the rear wheel of a bike. The
CHRT is used to time each revolution of the wheel, as Botoks wakes up every time one of
the magnets comes close to the harvester. The stored energy is used to charge and sample
the CHRT, send a packet containing the calculated speed using Botoks’s ULP radio, and
power the LEDs on the bike light PCB for the remaining time.

Outcome. The run-time calculated speed, sent by Botoks over the radio and collected
by a continuously-powered base station, was compared to the ground truth, measured
with a logic analyzer connected to Botoks’s power pin. As shown in Figure 4.9, the speed
estimated using the CHRT follows very closely the expected result. The figure also shows
which of the CHRT tiers is used for different time ranges. Higher speeds, measured with
the smallest tier, have better resolution, resulting in a smoother curve in the graph. While
the figure only shows a single run lasting 60 s, the same experiment was run five times in
total, with a total average RMS error of 0.5 kmh−1.

4.7. EVALUATION

4

81

0 20 40 60
10

20

30

40

Tier 1

Tier 0

Time [s]

Sp
ee

d
[k

m
/

h]

CHRT Ground truth

Figure 4.9: Calculated speed of the bicycle, in kmh−1, over a period of 60 s. The result obtained with Botoks
and its embedded CHRT is compared to the ground truth. As shown, the two smallest tiers of the CHRT are
dynamically used through the experiment.

4.7.5. APPLICATION 2: INTERMITTENT COMMUNICATION

The second embedded application uses the CHRT to align transmission and reception
schedules of two intermittently-powered wireless Botoks nodes communicating via active
radios. We have established a point-to-point link with two nodes powered by solar
energy, in one experiment, and radio-frequency energy, in another experiment. The
solar energy was generated by two independent light bulbs placed in two closed boxes
and collected by Botoks’s solar panel. The radio-frequency energy was provided by a
Powercast transmitter [240] and harvested by a Powercast receiver [241] connected to
Botoks’s power supply (in place of the solar cell).

In the application, the transmitting node would wake up to send one packet of data,
using its buffered energy, eventually incurring a power failure, proceeding then to harvest
energy and finally recharge and wake up again. Similarly, the receiving node would
wake up and start listening until receiving a packet, or until a power outage. Each of the
20-B packets contained preamble, average on time measured with the CHRT, a dummy
payload and 16-bit CRC, and was sent at a data rate of 200 kbit/s.

The baseline for the experiment is a scheme in which the receiver wakes up and
turns on its radio as soon as possible, trying to catch a packet sent by the transmitter.
This baseline is compared to the case in which a simple CHRT-powered synchronization
protocol allows the receiver to align its listening activity to the transmitter5. Specifically,
the receiver uses the average transmission period contained in each packet to alter its
listening schedule and align to the transmitter.

Packet reception rates were measured for the synchronized CHRT-powered protocol
and for the non-synchronized baseline, for different energy harvesting conditions, as
summarized in Table 4.4. Each experiment was run for 10 min.

Outcome. We note that this is the first successful case of two intermittently powered de-
vices with active radios passing messages consistently. Figure 4.10 shows the percentage
of received packets (the complementary of lost packets). As it stands out, our CHRT-based
synchronization algorithm yields an improvement over the non-synchronized message
passing scheme, resulting in a best-case increase in received packets of 3.77 times for

5Details on this network synchronization protocol are also presented in [76].

4

82 4. BATTERY-FREE TIMEKEEPING

Table 4.4: Description of scenarios described in Figure 4.10. S1, S2, and S3, refer to using solar as energy source
and RF1, RF2, and RF3 refer to radio-frequency energy harvesting. For solar energy harvesting the amount of
Lux is measured at the solar panel; for radio-frequency energy harvesting the distance to the transmitter is
listed. RPS: reboots per second.

TX RX TX RX
Lux RPS Lux RPS d RPS d RPS

S1 11k 6.6 33k 12.5 RF1 0.6 m 12.5 0.6 m 17.3
S2 26k 9.5 26k 9.6 RF2 0.8 m 12.9 0.8 m 16.4
S3 26k 10.4 11k 5.9 RF3 1 m 11.6 1 m 12.6

S1 S2 S3 RF1 RF2 RF3
0

20
40
60
80

100

Pa
ck

et
re

ce
pt

io
n

[%
]

No sync Sync

Figure 4.10: Percentage of received packets for a point-to-point link between two Botoks devices, measured
in six different energy harvesting conditions described in Table 4.4. The percentage of packets received using
the CHRT-powered synchronization algorithm is compared to the baseline case—with no synchronization.
Note that for S3 and RF3 the maximum packet reception available is 50 %, as the receiving node does not have
enough energy to wake up as fast as the transmitting node.

RF and 23.75 times for solar. Inspecting the difference between energy sources, solar
performed better than RF due to a more consistent wake-up period. The Powercast
transmitter transmits a ID every 10ms causing an inconsistent wake-up period.

4.8. RELATED WORK
Numerous papers in intermittent computing have promised to revolutionize the use of
small sensing devices for diversity of application. We place CHRT (and Botoks) in the
context of the state of the art.

Batteryless Systems and Sensing. Batteries [232] are an obstacle for long-term embedded
sensing. In response to this challenge many battery-less sensing platforms have been
proposed in the last decade, which we summarized in Table 4.2. Botoks does not require
central coordination and energy provision point, contrary to e.g. backscatter-based
nodes [276] or visible light nodes [118].

Batteryless Timekeeping. The foundational work is [117] where two timekeeping tech-
niques, TARDIS and CusTARD, were proposed to keep track of time across power failures
in batteryless platforms. Both approaches exploit the decay of charge in physical compo-
nents, SRAM and capacitor respectively, to generate a continuous notion of time. TARDIS
is difficult to handle, has high memory overhead, and yields poor accuracy. CusTARD, that
is also a foundation of Mayfly [116], has all the limitations of capacitive timekeepers listed

4.9. DISCUSSION AND FUTURE WORK

4

83

in Section 4.4. A similar discussion on Mayfly’s timekeeping limitations was presented
in [77]. As only very few of the checkpoint- and task-based programming models support
time-sensitive data processing, we note that as the CHRT can be integrated into any
runtime: task- or checkpoint-based. Enabling time-sensitive intermittent computation
and sensing using the CHRT language constructs.

Energy Harvesting Sensor Networks. Batteryless sensors obtain energy for operation
from the ambient. Since energy harvesting patterns arriving at these wireless sensor
nodes fluctuate in time and are not easily predictable [183, 271], asynchronous network
protocols, such as [213], are used in coordinating communication—proposed primarily
for battery-powered wireless sensor networks. Another approach to deal with unpre-
dictable energy harvesting patterns is to keep all nodes in the so-called energy neutral
operation mode [86, 168], meaning that the consumed energy is always less than the har-
vested energy (thus power never fails). Our proposal diverges from aforementioned prior
works targeted for energy harvesting systems. We propose a synchronized duty-cycling
scheme based on batteryless timekeeping, which aligns nodes’ schedules across power
failures, similar to [98] but operating intermittently.

Network Time Synchronization. IoT nodes’ clocks are generally sourced by cheap oscilla-
tors that are prone to significant, unpredictable instabilities. Due to these drifts, the local
clocks of each node diverges over time. Consequently, it is mandatory to perform periodic
time synchronization to ensure that nodes are able to acquire a common notion of time
and perform coordinated actions [187]. Naturally, there is a considerable amount of work
dedicated to wireless IoT sensors’ time synchronization, such as [170, 180, 324]. The goal
of these works is to build a network-wide notion of time. Unfortunately, all these works
do not consider very frequent power failures and, in turn, the loss of synchronization
state—a common phenomenon among batteryless platforms.

4.9. DISCUSSION AND FUTURE WORK
We discuss future directions enabled by Botoks and CHRT.

General Application. While the CHRT concept is particularly useful for intermittent
computing, where power failures and energy constraints force designers to rethink time-
keeping; the CHRT can be applicable to all embedded systems that need timekeeping
through power failures. Using our CHRT language constructs, time-sensitive intermittent
computation and sensing can be integrated into any intermittent computing runtime:
task- or checkpoint-based.

Tool Support for CHRT. Beyond intermittently-powered networking, there is a dearth of
tools for intermittent computing past EDB [49] and Ekho [112]. As complexity increases
of the programming models, hardware, and runtime systems, the tradeoff space grows
larger. A tool for exploring the tradeoff space of CHRT would be useful for VLSI design as
well as prototyping with off-the-shelf components.

Complex Intermittently-powered Networks. Further exploration is needed on how to ex-
pand point-to-point Botoks link into a full-fledged network. To achieve this, coordinated
compute, voting strategies, etc., must be made robust to intermittent power failures.
That said, the techniques shown here could form the basis for some of these protocols.

4

84 4. BATTERY-FREE TIMEKEEPING

Improvements to our synchronization algorithm are required that integrate collisions
and increase time accuracy.

Further Evaluation of CHRT. Naturally, we have not explored all possible corner cases of
CHRT operation. A crucial measurement considers CHRT use in varying temperatures.

4.10. CONCLUSIONS
We have presented a new battery-less timekeeping mechanism enabling reliable battery-
less sensing and computation, the Cascaded Hierarchical Remanence Timekeeper (CHRT),
and presented two application instantiations useful for intermittent computing: time-
critical sensing and intermittent communication, addressing the timekeeping challenge.
The CHRT is based on the idea of a hierarchy of remanence timekeepers which combine
accuracy/resolution, have short cold-start, and allow timing long periods of power failure.
Combining the CHRT architecture into one hardware and software platform we presented
the design and implementation of Botoks—a new batteryless sensor. With Botoks, and
its accompanying CHRT, intermittent computing can enter a new phase and explore new
applications not possible so far.

CHAPTER 5
BATTERY-FREE WIRELESS

NETWORKING

This chapter is based on:
Jasper de Winkel, Haozhe Tang, and Przemysław Pawełczak (2022).

Intermittently-Powered Bluetooth That Works
Proceedings of the 20th Annual International Conference on Mobile Systems,

Applications and Services. ACM, Portland, OR, USA, 287–301.

5

86 5. BATTERY-FREE WIRELESS NETWORKING

5.1. INTRODUCTION

In this chapter, we address the most prominent challenge with battery-free devices that
undergirds practical deployments, that is wireless networking. As our demonstration
of basic communication with a battery-free device, as shown in Chapter 4, does not
integrate seamlessly into widely adopted wireless networks, it does not fully address
the networking challenge. In this chapter, we set out to provide a generic architecture
enabling wireless communication on battery-free devices compatible with pre-existing
wireless networking protocols. Using this new architecture, we develop a battery-free
smartwatch as shown in Figure 5.1, demonstrating the feasibility of connected interactive
battery-free IoT devices.

Problem Statement. An IoT sensor requires a wireless link to communicate. This link
needs to be ➊ low-power—to operate as long as possible on a single energy charge, ➋
belonging to one of the mainstream wireless standards—to be backward compatible
with already deployed networks, ➌ independent from specific infrastructure, such as RF
carrier wave generators to backscatter on—to be flexibly deployable, and ➍ bi-directional,
as opposed to backscatter IoT tag-to-infrastructure links only—to enable remote mainte-
nance and firmware updates [13, 25] as already-deployed IoT devices are severely limited
without the ability to reconfigure it wirelessly. To address requirements ➊ and ➋ plenty
of research has been dedicated to enabling ultra-low-power communication for popu-
lar wireless communication standards—leading to battery-free operation—through the
backscatter principle. Recent examples of such wireless standard-compliant backscatter-
based transmitters include LoRa [151], BLE [333] and Long Term Evolution (LTE) [45].
These wireless systems however do not address requirement ➌. A related approach based
on a wake-up radio [239] is also not viable for the same reason. Therefore the only solu-
tion to battery-free IoT that addresses requirement ➌ is an ultra-low-power active radio.
However, intermittent operation of a battery-free active radio, i.e., non-backscatter, IoT
node implies that the active radio communication also becomes intermittent. Unless
steps are taken to sustain the protocol state despite a power interrupt, even a single

Figure 5.1: First battery-free open-source [73] smartwatch with FreeBie: intermittently-powered bi-directional
BLE link.

5.1. INTRODUCTION

5

87

System on

CI
CT

N
or

m
al

sy

st
em

Pr
op

os
ed

sy

st
em

System O�
St

or
ed

en

er
gy

Time

State
lost RX TX

TXRE
S

CK
PTRX TXRE
S

CK
PTRX TXRE
S

CK
PTRX TXRE
S

CK
PTRX

TXRX TXRX TXRX TXRX

Power failure

Figure 5.2: Intermittently-powered device operation. In a non-protected system even a single power failure
causes the network state to be lost, requiring unnecessary new handshakes. In our proposed system the network
state is stored and restored to/from non-volatile memory enabling to sustain connections. CI: connection
interval, CT: connection timeout, RES: state restore, CKPT: state checkpoint, RX/TX: reception/transmission.
region denotes the period of devices on time.

one will cause a connection drop, see Figure 5.2, forcing connection re-establishment
which itself consumes time and energy of a battery-free system. Therefore, a design
of a truly bi-directional (connection-based) wireless active link for a battery-free IoT
sensor—addressing requirement ➍—needs to sustain already established connections
despite frequent power interrupts. Unfortunately, all battery-free intermittently-powered
state-of-the-art active radio platforms available are connection-less, or require the sys-
tem to reconnect after each power failure. This includes broadcast-only (best-effort)
BLE communication [97]. Simply, classical techniques to prolong IoT life based on duty
cycling do not apply: intermittent power supply takes away the guarantee that the energy
will be available at the scheduled wake-up times of the device [97, Section 7.1]. Custom
protocol approaches such as [98] do not satisfy requirement ➋, as they are not backwards
compatible with mainstream wireless standards. All this results in wireless communica-
tion being one of the unsolved challenges in the intermittent computing domain [275,
Section 4(b)]. This challenge has not been tackled yet due to complexity of the problem:
system designer needs to simultaneously consider network protocol specification con-
straints, application needs, energy demands and energy use. Also, the most common
way of dealing with power interrupts: checkpoining system state and restoring it as the
energy returns [184, Section 3.2], has never been applied to wireless network protocols.
Checkpoints restoration have usually random duration and have to be placed at a precise
point in time not to break the protocol timing. Therefore, a battery-free IoT that is useful,
i.e., that addresses requirements ➊, ➋, ➌, and ➍, has yet to be achieved.

Contributions. Addressing the above problem we provide the following contributions:

Contribution 1: New intermittently-powered wireless systems architecture. Our
core novelty is a new battery-free networked IoT device state checkpointing system operat-
ing on a process level. Each core class of IoT device processes—application, network and
Operating System (OS)—are checkpointed and stored in non-volatile memory individu-

5

88 5. BATTERY-FREE WIRELESS NETWORKING

ally. Checkpoints are triggered by the process scheduler based on real-time requirements
of incoming processes. By triggering checkpoints in the scheduler we protect the network
protocol state timing from unnecessary in-between checkpoints. This checkpointing ap-
proach enables keeping track of network protocol state in-between power interrupts and
resuming already established communication when energy conditions allow. In addition,
our device architecture allows the MCU to switch-off whenever possible and seamlessly
resume, saving power when compared to sleeping. Both architectural novelties give rise
to a new peripheral abstraction layer: the original network software stack never sees that
the radio is powered off even when the storage capacitor is fully depleted.

Contribution 2: Implementation of bi-directional active wireless link powered
intermittently. We pick one of the most ubiquitous IoT wireless system: Bluetooth,
and in particular its low energy configuration BLE [32], and build a BLE system powered
intermittently, called FreeBie, with its hardware and software released as open-source [73].
With our architecture, a battery-free BLE node can communicate bi-directionally with
any BLE host and can sustain an already established bi-directional BLE link—even after
multiple power outages at the battery-free BLE node.1

Contribution 3: New battery-free IoT applications. Our novel architecture enables
never before seen IoT applications, in particular BLE firmware updates performed battery-
free on an intermittent power and a fully-functional battery-free smartwatch, shown in
Figure 5.1. Our architecture provides a foundation to connect and communicate bi-
directionally for the next generation of battery-free IoT devices.

5.2. BACKGROUND, CHALLENGES AND KEY INSIGHTS
Taking a recent example, long-term experiments with a commercial-grade battery-free
BLE node of [59] demonstrated that time of the day, orientation, and deployment location
can affect the duration of continuous operation: from almost constant operation to
few transmission activities throughout the day only [159]. Therefore, necessary system
support for intermittently-powered devices is needed that takes care of [184] (i) control
flow—to guarantee that the device will start from the state right before the last power
failure, (ii) data consistency—to guarantee that the system will restore correctly from
power failure, (iii) environmental consistency—to guarantee that the time-sensitive data
will be handled correctly when data becomes outdated after restoring from power failure,
(iv) concurrency—to enable execution of multiple active applications, and (v) undisrupted
communication—to enable wireless communication between (intermittently-powered)
devices and guarantee synchronisation despite power interrupts.

While there are plenty of frameworks available that aim at attaining points (i)–(iv), see
Table 5.1 and Section 5.7 later on, sustaining a communication of a radio link powered by
an intermittent source, i.e., attaining point (v), is far from being solved.

Infeasible solutions for ‘intermittent’ communication. Increasing capacitor size or
energy harvesting efficiency, is a typical solution to improve battery-free systems. Sadly, a
large capacitor/energy harvester increases the device’s size and increases charge times.
So all active radio intermittently-powered devices trade-off capacitor and/or harvester

1A comparison of battery-free BLE platforms is given in Table 5.5.

5.2. BACKGROUND, CHALLENGES AND KEY INSIGHTS

5

89

Table 5.1: Comparison of relevant existing software support systems for intermittently-powered devices. Colour
scheme: denotes non-desired or limiting features from the perspective of wireless communication protocol
and denotes the desired features.

InK
[325]

TICS
[166]

Coala
[193]

Capy-
bara
[51]

MPatch
[66]

Empire
[3]

This
work

Checkpoint trigger Task
end

In-code
check-
point

Task
end

Task
end

Voltage
level

Voltage
level

Process
end

Checkpoint type Task Check-
point

Task Task Check-
point

Task Process

Requires code instrumentation Yes No Yes Yes No Yes No
Time-deterministic restoration No No No No No No Yes
ARM-based processor architec-
ture

No No No Yes Yes No Yes

Dynamic memory allocation No No No No No No Yes
Interrupt support Yes Yes No No Yes No Yes
Peripheral support No No No Yes No Yes Yes
Preemptive scheduling Yes No No No No No Yes

size for communication functionality, sending connection-less data, such as beacons
in case of BLE, e.g. [147, 273]. Simply, when the device powers off mid-transmission,
the device will restart and re-send the beacon again. This however is not feasible for
connection/handshake-oriented protocols, especially if they require strict timing to
establish and sustain a connection. Lastly, reconnection costs packet transmissions.
For example, for our smartwatch’s BLE link each reconnection would require about 70
packets to be sent by the BLE client, taking more than 43 s to reconnect at low (200 lx)
ambient light. These packets include connection establishment, negotiation of con-
nection parameters, service discovery and notification configuration. Apart from the
above-mentioned connection re-establishment overhead, if the BLE device needs to re-
establish the already-existing connection, one would have to build much more complex
application. Such application would have to take care of storing authentication informa-
tion, tracking network status, or transfer progress information—all causing processing
overhead, i.e. taking extra time before the existing connection is re-established.

Other techniques, such as ‘classical’ duty cycling [40] and transmission power con-
trol [88], are also infeasible. Duty cycling is problematic, as the main capacitor may
get depleted within the sleep period resetting connection state, while duty cycling it-
self consumes energy during sleep, e.g. for the NRF52840 BLE module sleep current is
3.16µA at 3 V [220]. Needless to say, it is impossible to turn the system off completely and
then wake up: some components like the RTC need to remain powered to wake up the
system from sleep. In the case of transmission power control, additional coordination
between the sender and receiver would be required to avoid dropping packets and possi-
bly the connection when adjusting transmission power. When considering adaptation of
transmitted packet lengths: reducing packet length would not scale linearly with energy
expenditure, as overhead such as the crystal ramp-up time and pre- and post-processing
remain constant [221]. Thus, the goal is to create a framework that enables unobstructed
communication on intermittently-powered budget.

5

90 5. BATTERY-FREE WIRELESS NETWORKING

Table 5.2: C/C++ lines of code of different network protocol implementations. Compared to the orders of
magnitude smaller codebase of software support systems for intermittent operation, e.g. [193, Table 3], the
cognitive burden to analyze and instrument protocol code is unprecedented.

Protocol type Implementation Lines of code1

Bluetooth Packetcraft [16] 397200
TCP/IP LWIP [91] 88100
Thread OpenThread [104] 250500

1 Measured with cloc [61] (rounded to 100 lines).

Framework Requirement 1: Time-aware Checkpoints and Real-time Restoration.
We postulate that if the duration of power failures is within the allowed connection time-
out (see again Figure 5.2), the transmitter and the receiver should resume the connection
without the need to restart. This resumption must be supported by a framework respon-
sible for copying of the protocol state, i.e., volatile MCU registers and volatile memory to
a non-volatile memory before the power interrupt, and restoring the last saved state back
to the respective volatile registers.

There exist two classes of frameworks that optimise the amount of memory to store
and resume: task-based, e.g. [193] and checkpoint-based, e.g. [166]. A task is a section
of code with defined input and output of non-volatile variables. Tasks are connected
through these variables to form a state machine. Sadly, automatic/compiler-based trans-
formation of a wireless protocol implementation code into tasks is not feasible due to
the large and complex codebase, see Table 5.2. This means that the developer would
have to do this by hand—a daunting task to achieve [166, Section 5.4]. A conceptual
counterpart to a task is a checkpoint, i.e., a function inserted manually or automatically
at compile time (to the original codebase) that stores the program’s state until that check-
point. Sadly, both tasks and checkpoints introduce a computation penalty—the store and
restore operation. In other words, checkpoints or tasks will break the protocol’s timing
nullifying their use for wireless networking. Fortunately, state saving and restoration can
be triggered not only by the end of a task or a checkpoint, but also by the internal timer or
the capacitor voltage monitor. However, the timer would have to follow the protocol state
timing precisely, while the voltage-based trigger does not follow any timing. Finally, the
restoration time from the checkpoint must be constant and time-bounded. Otherwise,
the real-time requirement of the wireless protocol state machine will be violated.

To summarize, the key challenge is that existing checkpoint and restoration methods,
see Table 5.1, are not suitable for wireless networking support. Our key insight to solve
the challenge is that the system state checkpoint can be triggered by the end of the wireless
protocol process, i.e., the only atomic operation that must be executed without interrup-
tions. This way no code instrumentation, fixed checkpoint timers, and voltage monitors
are needed.

Framework Requirement 2: Virtualisation of time and peripherals. Time and pe-
ripheral state would be disrupted by intermittent operation. Thus, dedicated software
abstraction layer to mask (virtualize) time and peripherals to network protocol is needed.
The key challenge is that, referring again to Table 5.1, no software framework is able to
support peripherals and time (required for time-deterministic restoration).

5.3. INTERMITTENTLY-POWERED WIRELESS SYSTEM

5

91

Our key insight to solve the challenge is to maintain a continuous notion of time despite
intermittent operation and to develop a software abstraction layer that offsets on-board
peripherals such as timers according to the continuous notion of time, masking the
effects of intermittency. The continuous notion of time can be enabled by both a CHRT
(Chapter 4) or by using a over provisioned RTC that is powered for as long as possible.
The current draw of modern low-power timekeepers is in the order of nA [9]. As the sleep
mode consumption reaches µA levels, only keeping the timekeeper on is about ten times
more energy efficient than sleeping.

Framework Requirement 3: Dynamic handling of network connections. A frame-
work must adapt connection parameters to available harvested energy. The framework
must prioritize an already-established connection or focus on sustaining on-device com-
putation and sensing. The system must support preemptive scheduling (to prioritise
network processes over application or OS processes). The key challenge is that these
features are also not supported by existing systems except for InK [325] (although InK
would require manual code transformation), refer to Table 5.1. Our key insight to solve
the challenge is that network protocols allow adjustment of the Connection Interval (CI),
this and other parameters can be used as a foundation for connection adaptation.

5.3. INTERMITTENTLY-POWERED WIRELESS SYSTEM

Driven by Framework Requirements 1, 2 and 3, we propose an architecture that sustains
wireless protocol communication for intermittently-powered devices, see Figure 5.3.

5.3.1. TARGET NETWORK AND DEVICE ARCHITECTURE

Network Topology and Device Capabilities. We consider a star network topology fol-
lowing a Connection Interval (CI)-oriented Connection Timeout (CT)-driven wireless
communication protocol of choice, as exemplified in Figure 5.2. The host is tethered or
battery-based. The end device, on the contrary, is battery-free and intermittently-powered
(by energy harvester). We assume that both devices do not share a common signal that
can be used to synchronise them, as in e.g., [97]. As with most network protocols, the end
device has to announce its presence to a host for a connection to be established.

End Device Hardware. We propose a battery-free end device logically separated into two
power domains, see Figure 5.3: (i) processor (MCU) power domain and (ii) “always-on”
ultra-low-power domain—charging on-board capacitors through onboard solar panels,
through which both domains are powered. The multi-power domain architecture allows
for either a RTC (through overprovisioning of power) or the CHRT (Chapter 4) in order
to keep a continuous notion of time. The (external) timekeeper is able to switch the
processor power domain off completely, as proposed in [153]. In this chapter, we specifi-
cally chose to use a RTC to show that even with only typical IoT device components, that
intermittent operation whilst maintaining wireless communication is possible and can
even save power. This choice results in additional overhead due the limited resolution
and the continuous power requirements of RTCs. An extended CHRT with the ability to
turn on the processor power domain serves a alternative with a lower start-up time.

5

92 5. BATTERY-FREE WIRELESS NETWORKING

Real-time
Scheduler

Real-time Virtualization

Real-time
Sync

Operating
System

Power Control

Processor Power Domain

Ultra-Low Power Domain

DNH: Network
Recovery

Networking
Process

DNH: Dynamic
 Adaptation

Dynamic
Restoration

App-A

App-N

Sleep

Power
OFF

Ext
RTC

SoC RTC SoC Timer SoC RadioNormal
IoT Device

Double Bu�ered

Fast Non-
volatile Memory

Time-aware
Checkpointing

Real-time
Restoration

Energy
Harvesting

TDC

Figure 5.3: Proposed architecture for intermittently-powered battery-free wireless communication systems.

5.3.2. SYSTEM COMPONENTS

TIME-AWARE CHECKPOINTS AND REAL-TIME RESTORATION

We propose Time-Deterministic Checkpoint (TDC): a time-aware checkpoints and real-
time restoration system for intermittently-powered wireless networking protocols. TDC,
addressing Framework Requirement 1, is built as follows.

Process as Atomic Data Structure Checkpoint. We categorize processes in three groups:
(i) network, (ii) OS and (iii) application (with one process per concurrently-running
application). Implementation-wise, a process is a hand-picked file/directory part of a
source code. Each process can be classified as requiring real-time operation or not. Per
default the processes network and OS are real-time processes, the application process(es)
can be real-time or non-real-time.

Process Separation and Memory Structure. The memory separation for all processes is
performed by the linker at the code compilation stage. The developer splits the source
code of a complete system into code directories—one per process. Static memory de-
clared in the source files of each directory is allocated in separate regions as shown in
Figure 5.4. The registers, stack and heap are included in the OS process checkpoint.

We assume that the memory from a non-restored process cannot be read or written
to. This can be enforced by a Memory Protection Unit (MPU), preventing writes and
reads to unrestored memory. Communication between processes occurs through the OS
using Inter-Process Communication (IPC) with dynamically allocated messages. Finally,
we note that the developer can specify variables (such as a buffer for logging) that do
not need to be checkpointed and restored. For this case, a dedicated region in volatile
memory is allocated; see Figure 5.4.

5.3. INTERMITTENTLY-POWERED WIRELESS SYSTEM

5

93

Volatile Memory

Fast Non-volatile Memory

CKPT
Stack

CKPT
Logic

OS 0
DATA
BSS

Stack
Heap

DATA
BSS

Network 0

App-A
DATA
BSS

App-N
DATA
BSS

No Restore
DATA
BSS

DATA
BSS

Network OS
DATA
BSS

Stack
Heap

App-A 0
DATA
BSS

App-A 1
App-N 0

DATA
BSS

App-N 1 OS 1Network 1

Figure 5.4: Memory map of intermittently-powered wireless networking device. Numbers 0 and 1 for App-
x, Network and OS process denote buffer numbers of double buffered memory. Colours match respective
processes in Figure 5.3.

Process Checkpoint Scheduling. In modern network protocol stacks, each networking
process, at the end of its execution, provides information to the device OS when the next
networking process, e.g., beginning of a next connection interval as shown in Figure 5.2,
occurs. Therefore the core component of our architecture is a process scheduler handled
by the battery-free device’s OS. The scheduler using the virtualisation layer (defined in
Section 5.3.2) decides on the next moment in time when the battery-free device powers
on again. The power-on moment is determined by the process with the earliest deadline
in the scheduler’s queue. If more than one process has the same deadline, than these are
served as first-come first-served. Each running application shares the same priority and
is queued through a scheduling queue, while the network process (through an interrupt)
can preempt the application process residing in the queue’s head.

Considering what processes are at the top positions of the scheduler queue pending
execution three combinations of processes that occur during a power-on cycle exist.
These are: (i) application only, (ii) network only, and (iii) combined application and
network. In case (i) and (ii) respectively, the network process or application process does
not have to be checkpointed and restored. Case (iii) occurs when the application process
is scheduled for execution close to a network process, or when the network process
triggers the application to run. In this case, the application is dynamically restored by
the scheduler. When there is no process awaiting execution, the MCU is placed either
into sleep mode or the processor power domain is switched off. The decision of whether
to switch off the processor power domain or to sleep is based on the duration of the
checkpoint and restoration process. In our architecture, we switch off the processor
power domain if the next process event is scheduled to start later than TminOff, i.e., as a
minimum the combined time of checkpoint and restoration. Otherwise, the MCU is set
into sleep mode. Depending on the implementation TminOff can be set to the break-even
point between additional energy cost of checkpointing and restoring and the power saved
by turning the processor domain off. Then, the processor domain only switches off when
it is energy-wise beneficial to do so, at the cost of less frequent checkpoints.

Prior to switching off, the state of the system has to be checkpointed. First, the next
power-on time is determined—that particular step is performed by the time and peripher-

5

94 5. BATTERY-FREE WIRELESS NETWORKING

Re
st

or
e

N
et

w
or

k

Re
st

or
e

O
S

Sleep Sleep

RX

Ch
ec

kp
oi

nt

N
et

w
or

k

Ch
ec

kp
oi

nt

O
S

Time

A

B

C
D

E

B

Po
w

er
 c

on
su

m
pt

io
n

TI
FS TX

Figure 5.5: System events in one network-only cycle (power consumption levels marked as A⃝– E⃝); TIFS: Time
Inter-Frame Space, Tsync: RTC time synchronisation moment.

als virtualisation layer described in Section 5.3.2. Next, based on the scheduler queue, the
real-time processes that need to be restored during the next cycle are determined. This
information is stored in the next OS checkpoint. Then, any process combination—either
(i), (ii) or (iii)—that has been executed during the current power-on cycle is checkpointed,
followed by the OS checkpoint. Finally, the device is switched off. An illustration of a
power cycle consisting of only the networking process is presented in Figure 5.5.

Process Checkpoining. Application and network process checkpoints are always com-
mitted with an OS process checkpoint. This protects from a situation where memory
can be dynamically allocated within an application or network process and then lost
due to an incomplete OS checkpoint. In order to make the system incorruptible each
checkpoint is double-buffered, with two dedicated memory regions allocated for each
process, as shown in Figure 5.4. The OS process checkpoint must be restored after the
scheduled wake-up from power-off as it includes the processor registers, stack, heap,
scheduler, OS functionality (such as timers, queues and IPC), and the peripheral state.

Process Restoration. Processes can be restored either as non-real-time or real-time.
Non-real-time processes are loaded dynamically prior to execution by the scheduler. For
non-real-time checkpoints the restoration time is neither monitored nor compensated.

Unlike non-real-time processes, real-time processes are restored in advance prior
to the scheduler resuming operation. As process checkpoint sizes may vary, we add a
margin on top of the processes restore time. The allocated time for restoration, including
the margin, is denoted as Trestore.

Upon resuming from the power-off state, the system begins process restoration, as
shown in Figure 5.6. With a checkpoint present, the OS process is restored together
with the network processes and real-time application processes as determined by the
scheduler in advance. Once the virtualisation layer compensates for the power-off time
the system synchronises with the external time source (refer to Section 5.3.2) and the
device resumes operation as normal, i.e., moving to sleep mode and then executing the
networking process or other application processes. If the device is unable to power back
up at the desired time after switching off, or if the time synchronisation was unsuccessful,
a recovery process is instantiated driven by Dynamic Network Handling (DNH), as ex-
plained in Section 5.3.2. During the first boot, the system is synchronised to the external
time source and starts operation.

5.3. INTERMITTENTLY-POWERED WIRELESS SYSTEM

5

95

No
check-
pointPower

OFF Sleep
Success

Timeout

Sync

Network/Combined
CycleRestore

OS
Restore

Network

Recovery

Dynamic
Restore

Connection recoveredConnection timeout

Execute
Network

App only cycle

Checkpoint

Execute
Application

Check-
point

present

Start

Figure 5.6: Restoration of a process after power off.

VIRTUALISATION OF TIME AND PERIPHERALS

We propose a time and peripheral virtualisation layer, addressing Framework Require-
ment 2. The virtualization layer is placed logically between the peripherals and the
pre-existing network software stack (see Figure 5.3).

Our architecture needs a method to synchronise to external RTC time for our system
to deterministically execute real-time processes. This synchronisation step needs to
occur after real-time process restoration and prior to the scheduler resuming operation
and is performed as follows. When power is reapplied to the processor power domain,
the MCU starts up and the boot time of the MCU, denoted as TstartUp, is considered
consistent. Next, the real-time processes are restored, as described in Section 5.3.2
(Process Restoration paragraph). Finally the system awaits a synchronisation pulse at
Tsync, where Tsync ≤ TnextEvent and TnextEvent is the starting time of the upcoming process
event. Tsync is the point in time that synchronises the system to the external time and
marks the resumption of real-time operation and scheduling. Tsync should be as close as
possible to TnextEvent as allowed by the external RTC resolution to avoid overhead. The
next wake-up time is given as TwakeUp = Tsync−TstartUp−Trestore. Since Tsync is known prior
to turning off, this value is stored as part of the OS checkpoint and used as a reference
starting value for the MCU timing peripherals during the next power-on cycle.

DYNAMIC HANDLING OF NETWORK CONNECTIONS

Addressing Framework Requirement 3, we introduce DNH—a final component of our
architecture. DNH is responsible for: (i) network recovery and (ii) dynamic network
adaptation. Network recovery is needed when the device does not turn off according to
the schedule but turns off unexpectedly due to a power failure. As most wireless network
protocols operate based on Connection Timeouts (CT), when a connection has been
established but no packets are received within the CT window, the connection is dropped
(see Figure 5.2). In our architecture, if the device after a power failure can harvest enough
energy to turn on before CT is exceeded, connection recovery is executed when the
device powers back up before resuming operation. That is, missed connection events are
skipped and the network process is scheduled for the next connection event. Dynamic

5

96 5. BATTERY-FREE WIRELESS NETWORKING

A

B

C

D

G

J

H

I

E

F

Figure 5.7: FreeBie mote. A total size is 1”×1”. Components marked as A⃝– J⃝ are explained in Section 5.4.

network adaptation further improves the performance of our system, by monitoring the
available amount of energy. The Connection Interval (CI) is decreased in the case of
abundant energy and increased when little energy is available. This method allows the
system to adapt to changing energy conditions whilst keeping the connection alive and
increases responsiveness in the case of abundant energy.

5.4. SYSTEM IMPLEMENTATION: FREEBIE
We proceed with the implementation. As a case study we select BLE and denote its
intermittently-powered version as FreeBie.

5.4.1. FREEBIE HARDWARE
A fabricated FreeBie is shown in Figure 5.7, with hardware and software open-sourced [73].
Its main blocks are as follows.

Wireless Connectivity and Storage. FreeBie is built with a wireless module [56] contain-
ing a nRF52840 BLE ARM-based MCU [220] (A⃝ in Figure 5.7). To store the state of the
system in-between power failures, MB85RS4MT fast non-volatile Ferroelectric Random
Access Memory (FRAM) [92] (G⃝ in Figure 5.7) is chosen.

Timekeeping. The AM1815 RTC [9] is chosen (B⃝ in Figure 5.7) for its 10 ms resolution
and low power consumption, i.e., 55 nA at 3 V. We did not use hardware timer like the
TPL5111 [298] used by [141] due to their inability to sustain the clock accuracy of the BLE
specification [32, CS 5.3].

On-board Sensors. FreeBie contains two external sensors: an OPT3004 luminosity
sensor [297] (C⃝ in Figure 5.7) and a BMA400 accelerometer [33] (D⃝ in Figure 5.7). Both
sensors are powered through the MCU only when required. These sensors are included
in FreeBie to enable the community to build new applications on top of the FreeBie mote.

Energy Management. FreeBie is solely powered by harvested solar energy using a
BQ25570 energy harvester [299] (E⃝ in Figure 5.7). Its boost converter boosts the voltage

5.4. SYSTEM IMPLEMENTATION: FREEBIE

5

97

generated by two EXL2-1V50 solar panels [179], as seen in Figure 5.1. The harvested
energy is stored in two parallel 7.5 mF capacitors [264] (F⃝ in Figure 5.7). The chosen
storage size is dictated by the compatibility with an Android [103] OS, used as one of the
BLE hosts (see Section 5.5). Android initialises a BLE connection with a CI of 45 ms. The
chosen storage must sustain this CI until new connection parameters can be applied.

The processor domain is powered by energy harvester’s internal buck converter
configured to generate an 1.8 V supply. This output is switched on when the voltage
of the storage capacitors reaches 2.6 V and is switched off when it drops below 2.05 V.
With the external power switch [309] (H⃝ in Figure 5.7), the external RTC is able to switch
off/on power to the processor power domain. In order to protect the MCU while it is off,
logic/switches prevent always-on signals from reaching the processor (J⃝ in Figure 5.7).

Display. We added the option to connect a display to the FreeBie mote. Specifically, a
Sharp 1.28” LCD-TFT [269], connected through SPI to the MCU (both connectors for
the solar panels and display are present at the back of FreeBie). The display is used in
a smartwatch application and is powered from the main energy storage. Power to the
display is controlled by the MCU and the state is maintained using a SN74AUP2G79
flip-flop [128] allowing the display to stay on when the MCU is off (I⃝ in Figure 5.7).

5.4.2. FREEBIE SOFTWARE
The Packetcraft BLE stack [231] was chosen as the basis to implement FreeBie’s system
architecture. Packetcraft implements all the required Bluetooth standard layers—from
layers that configure the MCU’s registers to high level layers (such as Attribute Protocol
(ATT) profiles).2

With our architecture only relatively simple modifications are required to run the BLE
networking stack intermittently. First, the code source files needs to be separated into
application, network and OS processes, allowing for easy checkpointing and restoration.
Second, the scheduler needs to be modified to allow the system to switch off when idle
and compensate for the power-off time of the device upon restoration. Finally, dynamic
connection handling is build on top of standard BLE features. The implementation is
described in detail below.

TIME-AWARE CHECKPOINTS/REAL-TIME RESTORATION

Process Separation Implementation. Process separation described in Section 5.3.2 is
implemented as follows. Thanks to Packetcraft’s logical separation between OS layer
(called Wireless Software Foundation (WSF) with its underlying components—Platform
Abstraction Layer (PAL) and the MCU peripheral drivers) and networking layer, manual
source file separation is straightforward—WSF together with its underlying components
form the OS process source files. The rest of Packetcraft source files are considered to
belong to the network process. Applications are considered as a separate third group
of process source files. With the separation of the code into processes, the network,
application and OS volatile memory is split per process. These processes encompass all

2We are aware of other open-source implementations of BLE, namely Apache Nimble [11], and Zephyr [330].
From these implementations only Packetcraft supports BLE 5.2, can be deployed on Nordic nRF52 series
MCUs, and can be built with the standard GCC toolchain [15].

5

98 5. BATTERY-FREE WIRELESS NETWORKING

volatile memory associated with the process except for dynamically allocated memory
that is contained within the OS process.

Process Checkpoint Scheduling Implementation. The proposed scheduler, introduced
in Section 5.3.2 (Process Checkpoint Scheduling paragraph), is implemented as follows,
taking the WSF scheduler as basis. Normally when the OS scheduler is idle, the func-
tion PalSysSleep() is called and the system sleeps until the next process event. This
function is extended to allow the system to checkpoint and turn off per the proposed
scheduler criteria. In our implementation TminOff = 20 ms is experimentally determined,
and the type of next on power cycle is determined through the scheduling queues and
MCU’s RTC compare registers. When the system is able to turn off, first the next power-on
time is determined by the virtualisation layer (its implementation will be described in
Section 5.4.2). Then, real-time processes to be executed are marked for restoration in the
next OS checkpoint. Finally, the currently restored/active processes are checkpointed,
followed by the OS checkpoint, after which the processor power domain is switched-off
through the virtualisation layer.

Secondly, we introduce a major change to the OS scheduler — the notion of restored
and non-restored processes. Non-real-time processes are scheduled in a different queue
than real-time processes, and each process possesses a state variable that indicates if the
process has been restored or not. When a non-real-time process has not been restored
prior to execution, the process is first restored, then marked as restored and finally
executed. If the process has already been restored, the process is simply executed. Since
all real-time processes for the next power-on cycle are identified in advance (and restored
prior to the scheduler resuming operation), they are not tracked during operation since
these processes (due to their real-time requirements) cannot be loaded on demand.

Process Checkpointing Implementation. The checkpointing framework checkpoints
the uniquely defined memory sections of each process in volatile SRAM and stores the
checkpoints in external FRAM. For the OS checkpoint, the stack size is determined using
the stack pointer register and the heap size is determined by tracking the total size of
the dynamically allocated memory, only the utilised portions of the reserved space for
the stack and heap are checkpointed. As described in Section 5.3.2 (Process Restoration
paragraph), due to Trestore, variations in checkpoint size and thus restoration time of the
real-time checkpoints are compensated for.

Process Restoration Implementation. When the MCU powers up, first the external RTC
is configured for the synchronisation point as defined in Section 5.4.2. The time of this
point has been pre-selected before the MCU switches off as defined in Section 5.3.2. Next,
the relevant process checkpoints are restored from FRAM to SRAM. Directly reading from
external memory is not possible since it is slower than reading from internal SRAM and
thus would influence the timing of the BLE stack. The restore time Trestore is set to 10 ms.

VIRTUALISATION OF TIME AND PERIPHERALS

The real-time virtualisation presented in Section 5.3.2 is implemented as follows. Due
to the choice of external RTC, we are limited by a resolution of 10 ms. Since 10 ms is
not an integer multiple of 32.678 kHz tics, i.e., the frequency of our external RTC, the
10 ms tics source induces additional jitter (in addition to the jitter of the crystal itself).

5.4. SYSTEM IMPLEMENTATION: FREEBIE

5

99

Due to our strict timekeeping requirements (500 ppm) this is not acceptable. Hence for
synchronisation of the system to the external RTC time we synchronise to 250 ms intervals
as synchronisation points, as this is the smallest integer multiple of 32.678 kHz tics
possible with 10 ms resolution. We note that although the resolution of the external RTC
is only 10 ms, on integer multiples, such as 250 ms, the timing is mainly only influenced
by the jitter of the crystal itself.

The synchronisation point itself is a hardware signal sent from the external RTC to
the MCU that, in turn, instantly starts the enabled MCU’s timing peripherals such as the
on-board RTC. Since the synchronisation point is a known moment in time, reads and/or
writes to the on-board MCU’s timing peripherals such as the RTC (as it starts from zero,
and the state is lost during power-off) are compensated through the virtualisation layer
by applying Tsync as an offset. Any read to the RTC time register through the virtualized
peripheral API returns the compensated time instead of the raw time. Hereby the effects
of intermittency are masked to the running processes.

Using the definition in Section 5.3.2, the start-up time is computed relative to the
nearest synchronisation point. The value of TstartUp = 10 ms is experimentally found. By
setting the alarm in the external RTC to TwakeUp prior to switching off, the system will
turn on at the alarm, as the external RTC can control the processor domain power via the
external power switch. Finally, after the wake-up alarm is set, using the external RTC, the
processor power domain is switched off.

DYNAMIC HANDLING OF NETWORK CONNECTIONS

The design presented in Section 5.3.2 is implemented as follows. In the Bluetooth pro-
tocol, the host dictates the initial connection parameters. For intermittently-powered
devices these parameters, depending on the available energy, might not be suitable.
Hence after a connection establishment we automatically request favourable connection
parameters corresponding to the energy available in the system. If the BLE host forces a
connection update, we will immediately request new connection parameters if the ones
chosen by the BLE host are unsuitable.

During the restoration process we sample the voltage of the storage capacitors to
determine how much energy is available to FreeBie. For simplicity, we define quantized
energy levels as given in Table 5.3. According to the Bluetooth Core Specification [32,
CS 5.3 (page 2255)] (i) CI shall be a multiple of 1.25 ms in the range 7.5 ms to 4 s and (ii)
Supervision Timeout (ST) (referred previously as CT) shall be a multiple of 10 ms in the
range 100 ms to 32 s and it shall be larger than (1 + SL) × CI × 2, where Slave Latency (SL)
specifies how many connection events may be skipped by the end device, i.e., with CI
of 4 s and SL of 3 allows FreeBie to stay off for almost 16 seconds). At the low energy
level we use the maximal allowed parameters to let FreeBie stay powered off as long as
possible. As more energy becomes available, FreeBie harvests more energy so we increase
CI and decrease SL accordingly. Table 5.3 lists the requested connection parameters
corresponding to these energy levels. We note that since connection update requests are
not instantly applied, if the update is granted—they are applied at a later (specified by
the host) connection event.

If during the restoration no synchronisation pulse is received at the expected time,
recovery is executed. After reading and synchronising to external time, the decision is

5

100 5. BATTERY-FREE WIRELESS NETWORKING

Table 5.3: Requested FreeBie connection parameters. CI: Connection Interval, SL: Slave Latency, ST: Supervi-
sion Timeout.

Energy level Luminosity CI SL ST

Very low (dark)/low (dimmed) 200 lx/300 lx 4 s1 3 32 s
Medium (bright) 600 lx 2 s 1 32 s
High (overcast) 10 klx 1 s 0 32 s

1 Real value is 3.99875 s as reference BLE stack [216] forbids a 4 s CI.

made based on the current connection settings if the connection is recoverable. If this
is the case, the next connection event is scheduled and the state of the network stack is
passed on to the future state. The network stack reattempts transmission of lost packets
scheduled during the power failure. During the restore, prior to synchronisation, all
real-time processes are restored.

5.4.3. FREEBIE APPLICATIONS

Benefiting Applications. Our architecture is of most benefit to ultra low power systems
requiring bi-directional communication. We note that most devices require some form
of connectivity not only to send data (like sensor samples), but also for configuration
and firmware updates. Our architecture enables bi-directional communication on these
severely energy-restricted devices and allows the MCU to switch off completely during
idle periods, further reducing power consumption. Examples of such devices include
hybrid (classical/smart) watches, IoT devices or on-body sensors—all operating on har-
vested energy. We chose two applications demonstrating our architecture capabilities:
(i) a smartwatch using multiple BLE services to interact with the host; and (ii) firmware
updates. Specifically, in the case of firmware updates, as the end device must request
and receive firmware fragments from the host while the host transmits the firmware
fragments and waits for reception confirmation—the firmware update is a stress-test of
bi-directional BLE communication.

Battery-Free Smartwatch. We have developed a battery-free smartwatch based on two
BLE services, (i) the Current Time Service (CTS) [31] and (ii) the Alert Notification Service
(ANS) [30], operating on top of FreeBie hardware.

The smartwatch, see Figure 5.1, works as the ATT client [32, CS 5.3] of those two
services. For the BLE host we have developed an application for the Android 11 OS [103]
working as the ATT server of those two services. Once a connection is established, service
discovery is executed to find the CTS and the ANS on the BLE host. Once successful,
the smartwatch enables all notifications of both services. Then, the BLE host sends the
current time to the smartwatch, which is later on updated independently of the host
through the application process that runs every minute to increment time. In addition,
the BLE host sends unread email notifications to the smartwatch which activates its
on-screen email icon.

Firmware Update. We have also implemented the first battery-free active-radio over-the-
air firmware update. Although successful demonstrations of battery-free over-the-air

5.5. FREEBIE EVALUATION

5

101

reprogramming were done for backscatter-based nodes [289, 2], battery-free active-radio
firmware updates (to the best of our knowledge) have never been demonstrated.3

We designed a custom BLE service for our firmware update application where FreeBie
works as the ATT server of that service. Once connected, the BLE host should first send the
firmware length and then initiate the update. Once initiated, FreeBie starts requesting a
firmware section by sending the index of the section. Once FreeBie receives the requested
firmware section, it writes this section to the corresponding address in the inactive
firmware region. This process repeats until FreeBie obtains the complete firmware.

5.5. FREEBIE EVALUATION

5.5.1. EVALUATION SETUP
We evaluated both FreeBie applications at four light conditions in a controlled envi-
ronment, 200 lx, 300 lx, 600 lx, 10 klx representing, respectively, (i) dark indoor light, (ii)
dimmed indoor light, (iii) bright indoor light, and (iv) overcast day.

BLE Host Hardware and Software. For smartwatch, an Android application was built
running on Google Pixel 3a [102] with Android 11 OS [103] acting as BLE host. For
firmware update, a nRF52840 [218] development kit using SoftDevice [216] acts as BLE
host. FreeBie is compared to Packetcraft [231] and SoftDevice [216]; comparison with
checkpoint-based systems, e.g. [166], is impossible as they do not work, see Section 5.2
and Table 5.1.

BLE Advertising and Connection Parameters. The advertising interval of FreeBie is fixed
at 2 s. For the hosts, per default Android 11 starts with a Connection Interval (CI) of 45 ms
and 5 s Supervision Timeout (ST). For the firmware update host, we selected an initial 2 s
CI and 32 s ST.

Controlled Test Environment. We put FreeBie at the bottom of a closed light box. A
wirelessly-controlled LED bulb [163] was installed at the top of the box to create repeat-
able and controlled light source. A luminosity meter [302] was placed next to FreeBie
mote to measure the exact luminosity projecting onto FreeBie’s solar panels.

Long-term Evaluation. For a day-long evaluation we have collected luminosity values
from a modern commercial smartwatch [82] worn on a wrist. Data was collected when
the user4 was performing (mostly outdoor) daily activities. The luminosity trace was then
recreated in the controlled test environment described above.

Power Consumption Measurements. Connection event and sleep power consumption
for Packetcraft [231], SoftDevice [216] and FreeBie’s were measured with the X-NUCLEO-
LPM01A [283] power consumption measurement board. FreeBie’s power consumption
whilst the processor domain is off was measured with the Keithley 2450 SMU [154]. Power
consumption of Packetcraft and SoftDevice is measured on the NRF52840 development
kit [218]; FreeBie power measurements are measured on the FreeBie mote. Further details
of the evaluation setup are given in the artifact [73].

3The case study aims not to create a novel firmware update application [13, 25] but to evaluate FreeBie.
4The data collection was approved by the human ethics committee of the institution with which the authors of

this study are affiliated with.

5

102 5. BATTERY-FREE WIRELESS NETWORKING

2.0

2.2

2.4

2.6

St
or

ag
e

(V
)

FreeBie
Packetcraft

0 200 400 600 800 1000 1200 1400

Time (s)

Sy
st

em
O

pe
ra

tio
n

Figure 5.8: Example BLE connection retention on FreeBie hardware at 200 lx compared against Packetcraft [231].
The system operation bars (bar colour matches system on the ‘Storage’ plot) indicate when the system is on.

2.0

2.2

2.4

2.6

St
or

ag
e

(V
)

0 5 10 15 20 25 30

Time (s)

Master
FreeBie

Figure 5.9: FreeBie power failure recovery. Despite missing several BLE packets FreeBie can recover the
connection. : BLE network activity by the host, : FreeBie network activity, : FreeBie is actively powered, :
FreeBie power failure.

5.5.2. FREEBIE EVALUATION RESULTS

BLE Connection Retention. First, to demonstrate that our system can sustain a BLE
connection at intermittent power, we run a basic ≈30 min-long BLE connection. The
result is presented in Figure 5.8. We clearly see that our system consumes less power
operating intermittently and maintains the connection, while the default Packetcraft
network stack [231] powers off below ≈2 V and never resumes the connection.

BLE Connection Recovery. To show that FreeBie can recover from power failures, we
powered FreeBie from a stable power supply during a BLE connection. Then we turn off
the power supply until FreeBie runs out of power. Then the power supply is resumed
again, triggering the connection recovery. A snapshot of this process is presented in
Figure 5.9. We clearly see that FreeBie can recover before the 32 s ST is reached.

Checkpoint and Restoration Overhead. First we measured code size for both FreeBie
applications, split per process. The results are presented in Table 5.4. Our firmware
application is small, therefore little is gained during a network-only power cycle by not
restoring the application. During an application-only cycle, however, where the network
process does not have to be restored, on average restoration is 21.30% faster compared to

5.5. FREEBIE EVALUATION

5

103

Table 5.4: Code size of the FreeBie applications (in bytes).

Smartwatch Firmware update

Process Data BSS Text Data BSS Text

Application 0 2368 0 12
Network 376 5668 320 5168

OS 292 2392 244 2452
Total 668 10428 230120 564 7632 204797

Firmware update Smartwatch
0

2

4

6

8

Ch
ec

kp
oi

nt
 ti

m
e

(m
s) OS

Network
Application

Figure 5.10: Average checkpoint time of each process for the two considered applications.

a naive checkpointing implementation where everything is restored. Due to the reduced
overhead, with a more significant application—such as the smartwatch—not only the
application-only cycles are 21.39% faster, but also the network-only cycles (by 7.76%)
compared to the naive implementation. The average checkpointing times are depicted in
Figure 5.10.

Smartwatch Evaluation. Figure 5.11 shows a 2.5 min long trace of smartwatch operation
at each luminosity (except 200 lx, as the screen consumed to much power) from the initial
connection establishment. Note that the operating times of FreeBie are very short, shown
as a very thin green bar. Nonetheless we see that at each luminosity, FreeBie works despite
long power-off intervals. The more energy is available—the smaller the off intervals—the
bigger the responsiveness. Zooming in, the execution starts when the storage capacitor
voltage reaches 2.6 V. When the system switches on, the voltage drops sharply due to the
inrush current and the workload of initialisation but recovers afterwards.

After one round of advertising, FreeBie is connected with the Android BLE host. Note
that since the connection was established, FreeBie was turned on continuously for a
relatively long time (see ‘On/Off’ plots underneath the storage plot) and the voltage
also dropped significantly. This is caused by Android’s initial connection parameters
preventing FreeBie from turning off. When the requested connection parameters are
applied, FreeBie can start operating intermittently and turn off. For both 300 lx and
600 lx after 50 s and 25 s respectively, when all ATT services were configured and both
BLE peripheral and BLE host started sending empty packets, SL is applied which further
increases the off time.

5

104 5. BATTERY-FREE WIRELESS NETWORKING

2.00

2.25

2.50

St
or

ag
e

(V
)

0 20 40 60 80 100 120 140
On/Off

2.00

2.25

2.50

St
or

ag
e

(V
)

0 20 40 60 80 100 120 140
On/Off

2.00

2.25

2.50

St
or

ag
e

(V
)

0 20 40 60 80 100 120 140

Time (s)

On/Off

Figure 5.11: FreeBie smartwatch operation at three luminosities (top to bottom figure: 300 lx, 600 lx, 10 klx).
Connection parameters for each luminosity are given in Table 5.3.

Firmware Update Evaluation. Figure 5.12 shows the execution of firmware update at
600 lx. Comparing this figure with Figure 5.11 (center) (smartwatch evaluation at the
same luminosity) FreeBie starts more favourably due to the different initial connection
parameters set by the host (as defined in Section 5.5.1), hence it can keep a higher storage
voltage from the start. As expected, in an application-only cycle (A), no network process
is restored or checkpointed. In network-only cycle (B) no application process is executed
nor restored. In the combined cycle (C) after the network process execution, the system
detects the application process pending execution in the near future. Hence the system
sleeps until the scheduled time of the application execution, then dynamically loads the
application and executes it, after which no processes are scheduled in the near future so
the system checkpoints and turns off.

Power Consumption. We characterise FreeBie network-only cycles and compare the
power consumption of FreeBie to (i) Packetcraft with low-frequency clock enabled and
logging disabled, and to (ii) the proprietary Nordic Semiconductor’s BLE stack, i.e., Soft-
Device [216], at one CI value and four values of SL, i.e., 0, 1, 2, and 3. The results are
presented in Figure 5.13.

Thanks to FreeBie’s low power consumption when the processor domain is switched
off (0.8352µW) it is 9.5 times more efficient compared to sleep mode (8.0172µW with
SoftDevice). FreeBie benefits from long connection intervals. Compared to Packetcraft,

5.5. FREEBIE EVALUATION

5

105

2.00

2.25

2.50
St

or
ag

e
(V

)

0 20 40 60 80 100 120 140 160 180

Time (s)

O
n/

O
ff

(C)(B) (A) - Update Finished

144.82 144.83 144.84 144.85 144.86

(A) Application Only

Sy
st

em
O

pe
ra

tio
n

64.82 64.83 64.84 64.85 64.86

(B) Network Only
174.82 174.83 174.84 174.85 174.86

(C) Combined

Figure 5.12: Evaluation of firmware update at 600 lx. Colour scheme: OS restore and checkpoint; on time;
application restore and checkpoint; network restore and checkpoint; synchronisation point; network

activity.

CI 4s SL 0 CI 4s SL 1 CI 4s SL 2 CI 4s SL 3

Connection parameters

0

200

400

600

800

1000

En
er

gy
 c

on
su

m
ed

 (u
J) Softdevice

Packetcraft
FreeBie
FreeBie-C

Figure 5.13: Consumed energy during one Connection Interval (CI), as shown in Figure 5.5, for four different
Slave Latency (SL) values. FreeBie is compared against Packetcraft [231], SoftDevice [216] and a modified
version of FreeBie (FreeBie-C) with external memory overhead excluded.

with a SL of 0 FreeBie’s overhead of additional power consumption due to checkpointing
and restoration is larger than the power saved by switching the MCU off. However, as
the SL increases FreeBie starts to outperform Packetcraft. At a SL of 1 FreeBie already
consumes less power compared to Packetcraft. Already with a SL of 3 we are 2.46 times
more energy efficient than the default Packetcraft stack.

On the other hand, due to FRAM store and restore overhead and FreeBie’s requirement
to synchronise with the external RTC, FreeBie is not able to compete with SoftDevice’s
power consumption. Simply, utilising external FRAM consumes large amounts of power
and is also slower than even a lower-clocked MCU with on-chip FRAM [296]. Ideally
a MCU with on-board FRAM or MRAM and a ultra-low power RTC, e.g. the upcoming
Ambiq Apollo 4 Blue [8], would remove this overhead almost completely. Therefore to
make this comparison we have removed the external memory overhead from FreeBie
traces denoting it as FreeBie-C, outperforming SoftDevice starting at a SL of 2.

Finally, we report the power consumption at each part of the network cycle, including
checkpointing and restoration, as shown in Figure 5.5: FRAM read (restore checkpoint)
(A⃝) is 10.26 mW, MCU sleep current (B⃝) is 2.41 mW, RX current (C⃝) is 18.86 mW, TX
current (D⃝) is 19.35 mW, and FRAM write (checkpoint) (E⃝) is 12.03 mW.

5

106 5. BATTERY-FREE WIRELESS NETWORKING

0
100

101

102

103

104

105

Lu
m

in
es

ce
nc

e
(L

ux
) minimum viable

11:00 14:00 17:00 20:00 23:00 02:00 05:00 08:00

On/Off

Figure 5.14: 24 hour-long operation of the FreeBie smartwatch.

Long-term Execution. Figure 5.14 shows 24-hour operation of the FreeBie smartwatch.
We see that FreeBie is able to sustain a connection despite power interrupts for extended
period of time (see ‘On/Off‘ trace representing FreeBie activity, in particular between
11:00 and 17:00). Moreover, FreeBie is able to sustain a connection in varying energy
availability: during the whole experiment the BLE link only had to reconnect seven
times. If FreeBie receives more than 300 lx (minimum viable luminosity with the FreeBie
LCD powered on) FreeBie is almost always on, only disconnecting when insufficient
energy is provided for extended time. Note, if a full day operation of FreeBie is required
then increasing the surface area of the solar panels would decrease the minimum viable
luminosity threshold, see Figure 5.14 (top)—increasing the on time of the smartwatch.

5.6. DISCUSSION AND FUTURE WORK

Hardware Improvements. As shown in Figure 5.13, external FRAM and RTC limit the
benefits of our architecture (both in terms of price, size and energy consumption). The
next step is a FreeBie version build with next-generation System on Chip (SoC) such as [8]
with on-chip MRAM, reducing FreeBie cost/size. More energy-efficient harvesters, such
as [222], as part of a complete SoC would make FreeBie not only more efficient but also
potentially cheaper than battery-based systems.

Battery-free Host. In our architecture only the end device is battery-free and intermit-
tently-powered. The next research goal is an intermittently-powered host. The main
research challenge would be integrating a synchronisation mechanism such as [97] into
a fully battery-free architecture and efficient wake-up scheduling for end devices.

Delay-tolerant Networks. One might propose a delay-tolerant network as a solution
to the wireless link intermittency problem [174, 143]. Sadly, considering point-to-point
links, protocols such as BLE have strict timing requirements and do not allow any delay
beyond what is specified by the standard.

5.7. RELATED WORK

5

107

Table 5.5: Comparison of relevant state-of-the-art BLE platforms.

[59] [314] [181] [273] [84] [51] [334] FreeBie2

Size 25 (�)
×

5.5 mm

4 ×
4 cm

20 mm
(�) 7

35 ×
53 mm

1 ×
≈1.5 cm4

≈70 ×
55 mm

5

— 2.54 ×
2.54
mm

Capactitor size 0.2 F Unknown 50 mF 8 200µF N/A3 1 F 6 N/A 15 mF
Radio chipset CYBLE

[60]
X-less
radio

nRF51822
[219]

CC2650
[294]

Custom CC2650
[294]

Custom nRF52840
[220]

Minimum lu-
minosity

100 lx N/A N/A 150 lx N/A Not re-
ported

N/A 200 lx

Backscatter-
based

No No No No Yes No Yes No

Battery-free Yes1 Yes Yes Yes Yes3 Yes No 3 Yes
Intermittent No1 Yes No No No Yes No Yes
Advertising
only

No No No No Yes — Yes No

Resumes con-
nections

No No No No No No No Yes

1 Supercapacitor; 2 This work; 3 Actual implementation was continuously powered;
4 Modulator only, logic driven by signal generator; 5 Size inferred from [51, Figure 7]: comparable in size
to Arduino Uno board; 6 Maximum value of capacitor bank taken; 7 Excluding Powercast receiver [241];
8 Unreported in the paper; a smallest value from Powercast receiver assumed.

5.7. RELATED WORK

Semi Battery-Free Wireless Networking. Augmenting battery-based IoT with backscatter
tags was advocated in [237]. Such systems include [126, 249, 122, 94]. All these networks
still need (i) a battery and (ii) a carrier generation source. A separate class of nodes are
based on wake-up radios [239]. Wake-up radios still consume power when listening
(which increases with receiver sensitivity [239, Figure 12]) and require the same infras-
tructure investment as backscatter-based radios. An example of battery-free sensors
based on proprietary low-power wake-up radio technology is [85].

Battery-Free Bluetooth. All of the battery-free BLE nodes we are aware of do not operate
intermittently when considering the BLE protocol itself. In each of such nodes one
connection-less beacon transmission can be sent within a single capacitor charge from
harvested energy; the recent examples of non-backscatter versions of such a systems
are [39, 101, 90, 258, 147, 291] (academia) and [83, 59] (industry). Another (but less
popular) approach for battery-free BLE is based on providing power wirelessly to the
BLE nodes [181]. Except for our work no studies on intermittenly-powered BLE are
presented beyond general calls for such system. A battery-free BLE node of similar
hardware architecture to ours, i.e., an RTC-driven MCU with external FRAM, has been
presented in [273]. The fundamental difference, however, is that [273] does not allow
for state retention of the intermediate state of the BLE protocol (and other applications).
Commercial implementations of battery-free BLE include [314]. Refer to Table 5.5 where
a comparison of battery-free BLE platforms is given.

Battery-Free Wireless Networking. Battery-free networks include backscatter-based
LoRa [151] and LTE [45]. An alternative approach focuses on active radios and includes [3,

5

108 5. BATTERY-FREE WIRELESS NETWORKING

97, 98, 250]. Yet another approach is to perform transformations of already existing
protocols to have them failure-resilient [248]. Therein however it was assumed that a
node with a power-off had its all memory flushed and needs to initialise from zero. The
mathematical analysis of the channel capacity of a intermittent communication point-
to-point link is given in [158]. Another way of providing energy to battery-free systems is
based on wireless power transfer, recent examples include [204, 140].

Initial studies of duty-cycled bi-directional communication on intermittent power
for IEEE 802.15.4-compliant (i.e., non-Bluetooth) CC2420 radio [293] has been proposed
in [322]. The same work also proposed to use low-power timing circuit to wake up
system to exchange data with a neighbour [322, Figure 3]. Idea of custom protocol state
preservation in FRAM has been presented in [38].

Intermittently-Powered Systems Software Frameworks. Software supporting inter-
mittently-powered operation have already been comparatively presented in Table 5.1.
Naturally, the list of such systems is only partial and we refer to extensive surveys pre-
sented in [21, Table 1], [325, Table 1].

5.8. CONCLUSIONS
We presented a new architecture enabling battery-free operation of a wireless communi-
cation protocol. Using this architecture and our real-time checkpointing mechanism we
are able to sustain already established wireless connections despite power interruptions.
The proposed architecture was used in developing FreeBie: the first truly intermittently-
powered active Bluetooth Low Energy (BLE) system that is not based on connection-less
transmissions, demonstrating sustained bi-directional communication and thus address-
ing the wireless networking challenge. The strength of our architecture is articulated
by FreeBie consuming at least 9.5 times less power during device inactivity periods by
switching-off when compared to sleep mode.

CHAPTER 6
CONCLUSION

6

110 6. CONCLUSION

The projected billions and trillions of IoT devices can form a significant burden to society
in terms of e-waste. As most IoT devices are currently powered by batteries, these batteries
need to be monitored and eventually properly recycled. Hence, the potential impact of
battery-free devices on society is significant, especially since batteries are often the part
with the lowest lifetime of any IoT device. Replacing the battery with energy harvested
from ambient sources forms a more sustainable alternative, and can potentially lead to
perpetual operation.

In this dissertation, we have addressed key challenges hindering adoption of battery-
free devices such as: the design of interactive systems, debugging and testing of these
systems, timekeeping and infrastructure-less wireless networking. We demonstrated the
feasibility of battery-free devices through practical applications such as the battery-free
smartwatch (Chapter 5) and the battery-free game console (Chapter 2). Throughout
this dissertation we develop the required physical hardware and software to evaluate
the performance of our contributions in practical real-world demonstrations. Next,
we address the different challenges presented in this dissertation individually before
addressing the overarching research question.

Ï Interactive devices. Human interaction with battery-free devices has largely remained
an unexplored subject. Key questions such as are these user-facing systems even fea-
sible or how to mitigate the effects of intermittency in user interaction still need to be
addressed. In Chapter 2, we introduced the first intermittently-powered battery-free
mobile gaming platform. Powered by ambient solar energy and by the interaction with
the user itself using our multimodal energy harvesting mechanism. Beyond a fun toy, it
demonstrates that battery-free interactive systems are possible. Due to intermittency,
user input is ignored when the system is off, and the system can feel unresponsive. Hence
fast start-up times and minimal overhead are crucial to pose a minimal burden to the user.
To maintain progress efficiently despite intermittent power, we developed a new kind of
checkpointing mechanism named MPatch. MPatch only stores the modified memory
regions in between checkpoints, allowing for efficient checkpoints. We achieve this by
tracking the modified memory regions using the MCUs onboard MPU. Checkpoints
are triggered in a Just-In-Time fashion when the stored energy reaches a low threshold,
and then checkpoints occur periodically. A double-buffered approach ensures that the
system can always recover its state when power is lost, even if a checkpoint fails. Unlike
traditional game saves, the entire system state is stored before a power failure, allowing
the system to be restored to an identical state when power resumes.

ÏDebugging and testing. Our debugger DIPS as presented in Chapter 3 enables debug-
ging of intermittent devices just like any normal embedded system. The debugger not
only features standard hardware debugging functions such as breakpoints but can also
emulate power traces to the Device Under Test (DUT). Unlike traditional debuggers, dur-
ing regular operation, we automatically reconnect and restore debugging features such
as breakpoints when power is re-established on the intermittent device. This mechanism
allows for continuous debugging sessions in similar fashion to continuously-powered
embedded systems. In detached debugging mode, the system will only connect when
prompted, intended for when minimal interference by the debugger is desired. The

6

111

emulator not only has the ability to power the DUT through modes such as a square wave
but also has the ability to simulate common intermittent device architectures featuring a
boost-buck converter using its onboard measurement capability. On top of this platform,
we build a testing framework. The framework is capable of automatically testing for com-
mon intermittent device problems such as lack of forward progress, memory consistency
and peripheral restoration issues. Using the testing framework, we found bugs in state-of-
the-art intermittent systems. In addition, user study participants found DIPS easier to use,
more intuitive and more familiar when compared to the state-of-the-art. Demonstrating
both DIPS’ ease of use and the need for its debugging and testing functionality.

ÏKeeping track of time. Traditionally simple concepts such as keeping track of time
pose challenges on intermittent systems. As timekeeping is a primitive to many IoT
device functionalities including networking and scheduling, it is of crucial importance in
any system. In Chapter 4 we presented a new kind of timekeeping mechanism, the Cas-
caded Hierarchical Remanence Timekeeper (CHRT). The mechanism utilizes cascaded
RC circuits. These RC circuits can be quickly charged, reducing the start-up time com-
pared to Real Time Clocks. Configurations with smaller capacitance allow for accurate
short-term timekeeping with a granularity of milliseconds. Larger RC combinations keep
track of time for longer durations at reduced accuracy. The mechanisms cascaded archi-
tecture automatically activates the next RC circuit when the active RC timekeeping circuit
runs out, allowing the system to keep a continuous notion of time—enabling dynamic
short-term and longer-term timekeeping requirements. Using the new timekeeper, we
demonstrated a point-to-point wireless communication link between two intermittently
powered nodes.

ÏWireless networking. Integration into pre-existing wireless networks is crucial for
battery-free devices to form a viable alternative to their battery-powered counterparts. In
Chapter 5 we presented a new architecture enabling battery-free operation of wireless
communication protocols, allowing the MCU to switch-off and seamlessly resume any
connection when restored despite intermittent power. Central to the architecture is a
real-time checkpointing mechanism that separates processes into individual checkpoints.
Improving restoration and checkpointing times by avoiding restoration and checkpoint-
ing of unused process dependencies. The mechanism extends the real-time operating
system scheduler, allowing it to checkpoint and switch the MCU off when idle. Due
to this scheduler extension and our process based approach, pre-existing networking
software stacks can easily be adapted to intermittent devices with little modification. We
have demonstrated this by developing a battery-free smartwatch that can maintain a BLE
connection with a smartphone despite just being powered by only solar energy. Not only
does our mechanism maintain bi-directional BLE connections but it also saves power
as idle power consumption is drastically reduced by switching off. Our choice for BLE
is motivated by the fact that it is one of the most widely adopted low-power networking
technologies. However, our architecture and mechanisms can also be applied to other
wireless networks. Offering a lower power consumption and the benefits of using active
radios such as longer range and infrastructure-less operation to battery-free devices.

6

112 6. CONCLUSION

RESEARCH QUESTION
Having addressed these challenges leads us back to the central research question:

What mechanisms must be developed and deployed in battery-free networked systems to
enable connected and interactive IoT applications?

In this dissertation, we have shown that battery-free devices form a viable counterpart
to their battery-based IoT devices. We have shown demonstrations of battery-free speed
monitoring on a bike, interactive gaming consoles, and even a Bluetooth smartwatch.
Through novel mechanisms, we have enabled the development and deployment of
these devices, addressing critical challenges of intermittently-powered systems such as
interactivity, debugging, timekeeping and networking.

The fundamental mechanisms that enabled these interactive and connected appli-
cations include: ➊ Our multimodal interactive energy harvesting and efficient check-
pointing mechanisms, which enabled the development of the first intermittent gaming
console. ➋ The debugging and testing mechanisms that allow for convenient debugging
and testing of intermittent systems. ➌ Our timekeeping mechanisms which form an
alternative to RTCs with faster start-up times and low power consumption, measuring
time when the MCU is off. Finally, ➍ the real-time checkpointing mechanisms that save
power and enable wireless connectivity within widely adopted networks such as BLE on
intermittently-powered devices. Not only can the individual mechanisms be used on
their own, but they can also be combined, allowing developers to choose mechanisms
based on the application’s requirements.

Our mechanisms not only enable the applications demonstrated in this disserta-
tion but can be applied to turn a wide range of currently battery-powered IoT devices
battery-free. Our ➊ interactive and ➍ connectivity mechanisms enable connected and in-
teractive applications such as smart doorbells and scheduling panels for meeting rooms.
➍ Infrastructure-less connectivity and ➌ accurate timing are essential for easily deploy-
able IoT sensing applications. Examples of these sensing applications include occupancy
sensors, industrial machine fault monitors, asset trackers and crop monitors. However,
all battery-free applications need to be ➋ debugged and tested during development.

We note that all of the demonstrations presented in this dissertation are based on
real-world measurements of physically deployed devices and that everything required to
reproduce the results presented in this dissertation is available to the community through
artifacts [70, 71, 75, 74]. By improving the feasibility of battery-free devices, we hope to
reduce the environmental impact of the future billions of IoT devices.

FUTURE WORK
In this section, we discuss future work in the context of the challenges. More specific
discussion can be found in each of the corresponding chapters of this dissertation.

Ï Interactive devices. We see our work in Chapter 2 as a starting point for future re-
search into interactive battery-free devices. In essence, interactive battery-free devices
are challenging due to the intermittent nature of these systems, as they require (some-
times) continuous user interaction. In a society where everything executes and responds
immediately and any delay between action and reaction is generally received negatively,

6

113

this is very noticeable with screen-based devices where a direct response is expected. In
a game button presses should result in action immediately. Different applications could
result in drastically different user experiences. Nudging the user to generate more energy
by e.g. pressing buttons, could also result in a better user experience. Especially when
incentivized with rewards, in the context of gaming this could be a power-up or extra
lives. Hence, nudging techniques, interactive system architectures, suitable applications
and user acceptance of intermittency all warrant further research.

ÏDebugging and testing. Testing and debugging of intermittent systems can be im-
proved by expansion of our debugging/testing platform (Chapter 3). Even though our
platform is able to detect when no forward progress is being made, it currently only
prompts the user that an issue has occurred for the user to investigate. Further testing
techniques common in software development can now be applied to intermittently-
powered systems, e.g. using fuzzing to test for unintended behaviour. As intermittently-
powered systems are closely tied to the power supply with JIT based systems, fuzzing
techniques could also be used to modify the input power to the system itself.

ÏKeeping track of time. The topic of keeping track of time on intermittent systems also
warrants additional research beyond integration of the Cascaded Hierarchical Remanence
Timekeeper architecture (Chapter 4) into a chip. The architecture still lacks the ability for
the MCU to remain powered off. The addition of ultra-low power circuitry to sample and
to create a configurable wake-up signal to the processor would be a valuable addition.

ÏWireless networking. Although our wireless networking architecture and mechanisms
from Chapter 5 can be applied to other wireless networks such as Openthread, some key
challenges still exist. The BLE Central is still continuously powered in our work. When
considering a fully battery-less star network communicating using BLE, synchronization
between the edge nodes and the central is of key importance as with power restrictions,
continuous receiving on the central node is often not an option. Synchronization through
environmental signals could drastically improve efficiency as the time with the radio
on receiving to catch the advertisement to establish a connection is reduced. Alterna-
tively, ultra-low power wake-up radios could form a solution for this problem. However,
currently often the wake-up signal itself still requires significant power to generate.

ÏOther mechanisms. So far, we have discussed future work within the scope of this
dissertation; when we broaden our scope, we can speculate on other mechanisms that
could improve battery-free systems. Mechanisms such as more efficient energy harvest-
ing, even lower power consuming MCUs and radios. Efforts in hardware consolidation
could drastically reduce the size of current battery-free systems, enabling even more
applications such as tiny battery-free smart pills, implantables or even tooth-mounted
health monitors and earables. We envision that most battery-free system components
can be consolidated in a single chip through the development of an energy harvesting
fully non-volatile MCU where both the processor and the peripheral state is stored and
restored in hardware.

ACKNOWLEDGEMENTS

This dissertation would not be possible without the support of many, which I would like
to thank. First, I want to thank my mother, father and uncle, Tanja, Marcel and Albert,
for their unconditional support. The results of my elementary school final exam ranked
my chances of even reaching university between zero and three percent. Thanks to your
faith in me and your support, I climbed my way up from a Bachelor’s degree cum laude
to a Master’s degree cum laude and now my academic journey has culminated with this
PhD dissertation. You have inspired and enabled me to pursue my dreams and overcome
the many challenges on my way. For this, I will be forever grateful.

When I started my Master’s thesis with my now promotor and supervisor, Przemysław,
my work quickly became a foundation for a paper targeting a top academic venue. One
issue, the deadline was in less than two months, and almost everything was still a concept
at that time. Przemysław, your passion for research and work ethic is to be admired;
it allowed us to meet this and many other (sometimes ambitious) deadlines. During
my time at TU Delft, you gave me the freedom to work on my own ideas and you have
inspired and enabled me to target the best venues. As writing always has been a challenge
for me, by tirelessly reviewing my penmanship, you have tremendously improved my
writing. Throughout my PhD you taught me how publish and present my research, both
within academia and to the wider world, shaping me into the researcher I am today.

Koen, as my promotor, I always tremendously appreciated your feedback. I could
pitch an idea to you, and based on your response, I knew almost instantly how the wider
systems community would receive the idea. Secondly, your feedback on my dissertation
turned my work into the book it is today. Unfortunately, we did not get around to writing
that paper together, but you always made time for me when it mattered.

Next, I thank all my co-authors: Vito, Carlo, Abu, Bashima, Saad, Tom, Boris and
Haozhe; it was a honour working with you. Josiah, thank you for your collaboration
and all the in-depth brainstorming discussions and feedback. These brainstorming
sessions with sometimes seemingly outlandish ideas have turned into amazing projects
and papers. Sinan, it was a pleasure collaborating with you. I want to thank Fred from
VodafoneZiggo and everyone from academia and industry involved with the ZERO P1
project for the valuable feedback on my research. In addition, I would like to extend my
gratitude to Simon, Omar and André from NOWI, and Oren, Charlene and Mariusz from
Ambiq for assisting in my research.

During my time at TU Delft I had the pleasure to share offices with James, Nikos,
Vito and Vivian. Quickly we developed office traditions in the form of celebrating when
our papers got accepted however, over the years this expanded into many occasions
to celebrate. Life is short, hence there is always a reason to celebrate. Our technical,
non-technical and water cooler conversations always were enjoyable. You provided me

115

116 ACKNOWLEDGEMENTS

with a sounding board and often by just listening would help me in finding a way to solve
pressing issues.

During the COVID-19 pandemic, Jorik and Vito introduced me to Counter-Strike. Even
though everyone was locked indoors, our gaming endeavours (with Belma occasionally
joining) always lifted my spirits. At the outset, I was terrible at the game; hence we often
joked about reaching the highest rank in the game. I am happy to report that this year
not only did Jorik and I achieve this goal, but our lively discussions in the process made
my PhD much more enjoyable. Over time our gaming group evolved with the addition of
Chenxing and Adrian, and with Fei and Selina occasionally joining our events. Chenxing
and Fei, thank you for hosting most of our events and for the privilege of naming Tiptoe.
All events, from games and dinner to birthdays, are always a blast thanks to all of you,
Adrian, Belma, Chenxing, Fei, Jorik, Selina and Vito.

As my research spans both software and hardware, over the years I have submitted
countless purchase orders for components. Thanks to our secretaries, Kim and Minaksie,
for tirelessly approving all of these orders.

Finally, I would like to express my gratitude to all my colleagues at the Embedded and
Networked Systems groups. You have made my time at TU Delft even more enjoyable.

CURRICULUM VITÆ

Jasper DE WINKEL

Jasper de Winkel was born in Wageningen, the Nether-
lands, on the 29th of April 1994. From a young age, he was
passionate about technology and this passion further re-
fined into his interest in embedded systems. Following this
passion, he completed the shortened track of the Bachelor
Embedded Systems Engineering (2014-2017) cum laude
at the HAN University of Applied Sciences. Followed by
the Master Embedded Systems (2017-2019), specialising
in Software and Networking at the Delft University of Tech-
nology. During his time in Delft, he was introduced to the
concept of battery-free and intermittently-powered sys-
tems that led to his Master’s thesis and completing the
Master’s degree cum laude.

His MSc research led to a PhD position in the Embed-
ded Systems Group at the Delft University of Technology, sponsored by NWO within
the ZERO P1 project. He focused on reducing the environmental impact of the Internet
of Things by operating solely on harvested energy without batteries, leading towards
the next generation of more sustainable IoT devices. Within the domain of battery-free
systems, he explored novel device architectures and ultra-low-power wireless networking,
connecting software and hardware into novel systems and architectures. His research
received the distinguished paper award at Ubicomp/IMWUT, was a candidate for the
best paper award at SenSys and was covered by international media, including the Wall
Street Journal, The Independent, The Verge, Hackaday and CNET.

117

LIST OF PUBLICATIONS

7. Abu Bakar, Rishabh Goel, Jasper de Winkel, Jason Huang, Saad Ahmed, Bashima Islam,
Przemysław Pawełczak, Kasım Sinan Yıldırım, and Josiah Hester. 2023. Protean: Adaptive
Hardware-Accelerated Intermittent Computing. ACM GetMobile: Mobile Comp. and Comm.
27, 1 (March 2023), 5–10 [20]

6. Abu Bakar, Rishabh Goel, Jasper de Winkel, Jason Huang, Saad Ahmed, Bashima Islam,
Przemysław Pawełczak, Kasım Sinan Yıldırım, and Josiah Hester. 2022. Protean: An Energy-
Efficient and Heterogeneous Platform for Adaptive and Hardware-Accelerated Battery-free
Computing. In Proc. SenSys. ACM, Boston, MA, USA, 207–221 [19]

5. Jasper de Winkel, Tom Hoefnagel, Boris Blokland, and Przemysław Pawełczak. 2022. DIPS:
Debug Intermittently-Powered Systems Like Any Embedded System. In Proc. SenSys. ACM,
Boston, MA, USA, 222–235 [65] (Best Paper Candidate)

4. Jasper de Winkel, Haozhe Tang, and Przemysław Pawełczak. 2022. Intermittently-Powered
Bluetooth That Works. In Proc. MobiSys. ACM, Portland, OR, USA, 287–301 [68]

3. Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Przemysław Pawełczak. 2021. Battery-
Free Game Boy: Sustainable Interactive Devices. ACM GetMobile: Mobile Comp. and Comm.
25, 2 (June 2021), 22–26 [67]

2. Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Przemysław Pawełczak. 2020. Battery-
Free Game Boy. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 3 (September 2020),
111:1–111:34 [66] (Distinguished Paper Award)

1. Jasper de Winkel, Carlo Delle Donne, Kasım Sinan Yıldırım, Przemysław Pawełczak, and

Josiah Hester. 2020. Reliable Timekeeping for Intermittent Computing. In Proc. ASPLOS.

ACM, Lausanne, Switzerland, 53–67 [64]

119

REFERENCES

[1] Henko Aantjes, Amjad Y. Majid, and Przemysław Pawełczak. 2016. A Testbed for
Transiently Powered Computers. https://arxiv.org/abs/1606.07623.

[2] Henko Aantjes, Amjad Y. Majid, Przemysław Pawełczak, Jethro Tan, Aaron Parks,
and Joshua R. Smith. 2017. Fast downstream to many (computational) RFIDs.
In Proc. INFOCOM. IEEE, Atlanta, GA, USA, 1–9. https://doi.org/10.1109/
INFOCOM.2017.8056987.

[3] Mikhail Afanasov, Naveed Anwar Bhatti, Dennis Campagna, Giacomo Caslini,
Fabio Massimo Centonze, Koustabh Dolui, Andrea Maioli, Erica Barone, Muham-
mad Hamad Alizai, Junaid Haroon Siddiqui, and Luca Mottola. 2020. Battery-
Less Zero-Maintenance Embedded Sensing at the MithræUm of Circus Max-
imus. In Proc. SenSys. ACM, Virtual Event, 368–381. https://doi.org/10.1145/
3384419.3430722.

[4] Saad Ahmed, Muhammad Hamad Alizai, Junaid Haroon Siddiqui, Naveed Anwar
Bhatti, and Luca Mottola. 2018. Poster Abstract: Towards Smaller Checkpoints for
Better Intermittent Computing. In Proc. IPSN (November 11–13). ACM/IEEE, Porto,
Portugal, 132–133. https://doi.org/10.1109/IPSN.2018.00029.

[5] Saad Ahmed, Naveed Anwar Bhatti, Muhammad Hamad Alizai, Junaid Haroon
Siddiqui, and Luca Mottola. 2019. Effient Intermittent Computing with Differential
Checkpointing. In Proc. LCTES. ACM, Phoenix, AZ, USA, 70–81. https://doi.org/
10.1145/3316482.3326357.

[6] Sultan A. Alharthi, Olaa Alsaedi, Zachary O. Toups, Joshua Tanenbaum, and Jessica
Hammer. 2018. Playing to Wait: A Taxonomy of Idle Games. In Proc. CHI (April
21–26). ACM, Montréal, QC, Canada, 210:1–210:13. https://doi.org/10.1145/
3173574.3174195.

[7] Ambiq Micro Inc. 2018. Apollo3 Blue Ultra-Low Power Mi-
crocontroller. https://ambiqmicro.com/static/mcu/files/
Apollo3_Blue_MCU_Data_Sheet_v0_11_0.pdf. Last accessed: Apr. 25,
2020.

[8] Ambiq Micro, Inc. 2018. Apollo4 Blue Ultra-Low Power Microcontroller. https:
//ambiq.com/apollo4-blue/. Last accessed: Sep. 8, 2021.

[9] Ambiq Micro, Inc. 2021. Artasie AM1815 Real-Time Clock. https://ambiq.com/
artasie-am1815. Last accessed: Sep. 8, 2021.

121

https://arxiv.org/abs/1606.07623
https://doi.org/10.1109/INFOCOM.2017.8056987
https://doi.org/10.1109/INFOCOM.2017.8056987
https://doi.org/10.1145/3384419.3430722
https://doi.org/10.1145/3384419.3430722
https://doi.org/10.1109/IPSN.2018.00029
https://doi.org/10.1145/3316482.3326357
https://doi.org/10.1145/3316482.3326357
https://doi.org/10.1145/3173574.3174195
https://doi.org/10.1145/3173574.3174195
https://ambiqmicro.com/static/mcu/files/Apollo3_Blue_MCU_Data_Sheet_v0_11_0.pdf
https://ambiqmicro.com/static/mcu/files/Apollo3_Blue_MCU_Data_Sheet_v0_11_0.pdf
https://ambiq.com/apollo4-blue/
https://ambiq.com/apollo4-blue/
https://ambiq.com/artasie-am1815
https://ambiq.com/artasie-am1815

122 REFERENCES

[10] Brian Amos. 2020. Hands-On RTOS with Microcontrollers: Building Real-Time
Embedded Systems using FreeRTOS, STM32 MCUs, and SEGGER Debug Tools. Packt
Publishing Limited, Birmingham, United Kingdom.

[11] Apache Software Foundation. 2021. Apache Mynewt Operating System Bluetooth
Stack Source Code Repository. https://github.com/apache/mynewt-nimble.
Last accessed: Aug. 5, 2021.

[12] Apple Inc. 2023. Apple Watch Series 8. https://www.apple.com/apple-watch-
series-8/. Last accessed: January 24, 2023.

[13] Konstantinos Arakadakis, Pavlos Charalampidis, Antonis Makrogiannakis, and
Alexandros Fragkiadakis. 2022. Firmware Over-the-Air Programming Techniques
for IoT networks - A Survey. ACM Comput. Surv. 54, 9 (October 2022), 1–36. https:
//doi.org/10.1145/3472292.

[14] Rauf Arif. 2021. With An Economic Potential Of $11 Trillion, Inter-
net Of Things Is Here To Revolutionize Global Economy. Forbes,
https://www.forbes.com/sites/raufarif/2021/06/05/with-an-economic-
potential-of-11-trillion-internet-of-things-is-here-to-revolutionize-global-
economy. Last accessed: Jul. 6, 2021.

[15] Arm Limited. 2020. GNU Arm Embedded Toolchain. https://
developer.arm.com/tools-and-software/open-source-software/
developer-tools/gnu-toolchain/gnu-rm/downloads. Last accessed:
Aug. 19, 2021.

[16] Arm Limited. 2021. Mbed Cordio BLE Solution Official Website. https://
os.mbed.com/docs/mbed-cordio. Last accessed: Aug. 5, 2021.

[17] Nivedita Arora, Steven L. Zhang, Fereshteh Shahmiri, Diego Osorio, Yicheng Wang,
Mohit Gupta, Zhengjun Wang, Thad Eugene Starner, Zhonglin Wang, and Gre-
gory D. Abowd. 2018. SATURN: A Thin and Flexible Self-powered Microphone
Leveraging Triboelectric Nanogenerator. ACM Interact. Mob. Wearable Ubiquitous
Technol. 2, 2 (June 2018), 60:1–60:28. https://doi.org/10.1145/3214263.

[18] Alberto Rodriguez Arreola, Domenico Balsamo, Geoff V. Merrett, and Alex S.
Weddell. 2018. RESTOP: Retaining External Peripheral State in Intermittently-
powered Sensor Systems. Sensors 18, 1 (2018), 172. https://doi.org/10.3390/
s18010172.

[19] Abu Bakar, Rishabh Goel, Jasper de Winkel, Jason Huang, Saad Ahmed, Bashima
Islam, Przemysław Pawełczak, Kasım Sinan Yıldırım, and Josiah Hester. 2022. Pro-
tean: An Energy-Efficient and Heterogeneous Platform for Adaptive and Hardware-
Accelerated Battery-free Computing. In Proc. SenSys. ACM, Boston, MA, USA, 207–
221. https://doi.org/10.1145/3560905.3568561.

[20] Abu Bakar, Rishabh Goel, Jasper de Winkel, Jason Huang, Saad Ahmed, Bashima
Islam, Przemysław Pawełczak, Kasım Sinan Yıldırım, and Josiah Hester. 2023.

https://github.com/apache/mynewt-nimble
https://www.apple.com/apple-watch-series-8/
https://www.apple.com/apple-watch-series-8/
https://doi.org/10.1145/3472292
https://doi.org/10.1145/3472292
https://www.forbes.com/sites/raufarif/2021/06/05/with-an-economic-potential-of-11-trillion-internet-of-things-is-here-to-revolutionize-global-economy
https://www.forbes.com/sites/raufarif/2021/06/05/with-an-economic-potential-of-11-trillion-internet-of-things-is-here-to-revolutionize-global-economy
https://www.forbes.com/sites/raufarif/2021/06/05/with-an-economic-potential-of-11-trillion-internet-of-things-is-here-to-revolutionize-global-economy
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://os.mbed.com/docs/mbed-cordio
https://os.mbed.com/docs/mbed-cordio
https://doi.org/10.1145/3214263
https://doi.org/10.3390/s18010172
https://doi.org/10.3390/s18010172
https://doi.org/10.1145/3560905.3568561

REFERENCES 123

Protean: Adaptive Hardware-Accelerated Intermittent Computing. GetMobile:
Mobile Comp. and Comm. 27, 1 (May 2023), 5–10. https://doi.org/10.1145/
3599184.3599186.

[21] Abu Bakar, Alexander G. Ross, Kasım Sinan Yıldırım, and Josiah Hester. 2021. RE-
HASH: A Flexible, Developer Focused, Heuristic Adaptation Platform for Intermit-
tently Powered Computing. ACM Interact. Mob. Wearable Ubiquitous Technol. 5, 3
(September 2021), 87:1–87:42. https://doi.org/10.1145/3478077.

[22] Domenico Balsamo, Alex S. Weddell, Anup Das, Alberto Rodriguez Arreola, Davide
Brunelli, Bashir M. Al-Hashimi, Geoff V. Merrett, and Luca Benini. 2016. Hiber-
nus++: a Self-calibrating and Adaptive System for Transiently-powered Embedded
Devices. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 35, 12 (2016),
1968–1980. https://doi.org/10.1109/TCAD.2016.2547919.

[23] Abhijeet Banerjee, Sudipta Chattopadhyay, and Abhik Roychoudhury. 2016. On
Testing Embedded Software. Advances in Computers 101 (2016), 121–153. https:
//doi.org/10.1016/bs.adcom.2015.11.005.

[24] Soumya C. Barathi, Daniel J. Finnegan, Matthew Farrow, Alexander Whaley, Pippa
Heath, Jude Buckley, Peter W. Dowrick, Burkhard C. Wünsche, James L. J. Bilzon,
Eamonn O’Neill, and Christof Lutteroth. 2018. Interactive Feedforward for Im-
proving Performance and Maintaining Intrinsic Motivation in VR Exergaming.
In Proc. CHI (April 21–26). ACM, Montréal, QC, Canada, 408:1–408:14. https:
//doi.org/10.1145/3173574.3173982.

[25] Jan Bauwens, Peter Ruckebusch, Spilios Giannoulis, Ingrid Moerman, and Eli
De Poorter. 2020. Over-the-Air Software Updates in the Internet of Things: An
Overview of Key Principles. IEEE Commun. Mag. 58, 2 (February 2020), 35–41.
https://doi.org/10.1109/MCOM.001.1900125.

[26] Uwe Becker. 2017. Gameboy-Emulator per STM32F746 (in German). https:
//mikrocontroller.bplaced.net/wordpress/?page_id=1290. Last accessed:
May 5, 2020.

[27] Anil Bhaskar. 2022. How IoT Is Transforming The Manufacturing Indus-
try. Forbes, https://www.forbes.com/sites/forbestechcouncil/2022/09/
28/how-iot-is-transforming-the-manufacturing-industry/. Last ac-
cessed: Jan. 24, 2023.

[28] Naveed Bhatti and Luca Mottola. 2017. HarvOS: Efficient Code Instrumentation for
Transiently-powered Embedded Devices. In Proc. IPSN (April 18–20). ACM/IEEE,
Pittsburgh, PA, USA, 209–219. https://doi.org/10.1145/3055031.3055082.

[29] Eli Blevis. 2007. Sustainable Interaction Design: Invention & Disposal, Renewal &
Reuse. In Proc. CHI (April 28 – May 3). ACM, San Jose, CA, USA, 503–512. https:
//doi.org/10.1145/1240624.1240705.

https://doi.org/10.1145/3599184.3599186
https://doi.org/10.1145/3599184.3599186
https://doi.org/10.1145/3478077
https://doi.org/10.1109/TCAD.2016.2547919
https://doi.org/10.1016/bs.adcom.2015.11.005
https://doi.org/10.1016/bs.adcom.2015.11.005
https://doi.org/10.1145/3173574.3173982
https://doi.org/10.1145/3173574.3173982
https://doi.org/10.1109/MCOM.001.1900125
https://mikrocontroller.bplaced.net/wordpress/?page_id=1290
https://mikrocontroller.bplaced.net/wordpress/?page_id=1290
https://www.forbes.com/sites/forbestechcouncil/2022/09/28/how-iot-is-transforming-the-manufacturing-industry/
https://www.forbes.com/sites/forbestechcouncil/2022/09/28/how-iot-is-transforming-the-manufacturing-industry/
https://doi.org/10.1145/3055031.3055082
https://doi.org/10.1145/1240624.1240705
https://doi.org/10.1145/1240624.1240705

124 REFERENCES

[30] Bluetooth Special Interest Group, Inc. 2021. Bluetooth Alert Notifica-
tion Service. https://www.bluetooth.com/specifications/specs/alert-
notification-service-1-0/. Last accessed: Sept. 14, 2021.

[31] Bluetooth Special Interest Group, Inc. 2021. Bluetooth Current Time Ser-
vice. https://www.bluetooth.com/specifications/specs/current-time-
service-1-1/. Last accessed: Sept. 14, 2021.

[32] Bluetooth Special Interest Group, Inc. 2021. Bluetooth Specifications List. https:
//www.bluetooth.com/specifications/specs. Last accessed: Aug. 8, 2021.

[33] Bosch Sensortec. 2021. BMA400 Triaxial Ultra-low Power Acceleration
Sensor. https://www.bosch-sensortec.com/products/motion-sensors/
accelerometers/bma400. Last accessed: Sep. 9, 2021.

[34] Adriano Branco, Luca Mottola, Muhammad Hamad Alizai, and Junaid Haroon
Siddiqui. 2019. Intermittent Asynchronous Peripheral Operations. In Proc. SenSys
(November 10–13). ACM, New York City, NY, USA, 55–67. https://doi.org/
10.1145/3356250.3360033.

[35] Rodney Brooks. 2021. The Battery Revolution Is Just Getting Started.
IEEE Spectrum, https://spectrum.ieee.org/energy/batteries-storage/
the-battery-revolution-is-just-getting-started.

[36] Lars Büthe, Michael Hardegger, Patrick Brulisauer, and Gerhard Tröster. 2014.
RFID-Die: Battery-free Orientation Sensing Using an Array of Passive Tilt Switches.
In Proc. UbiComp Adjunct. ACM, Seattle, WA, USA, 215–218. https://doi.org/
10.1145/2638728.2638733.

[37] Cadence Design Systems, Inc. 2016. Cadence Circuit Design. https:
//www.cadence.com/content/cadence-www/global/en_US/home/tools/
custom-ic-analog-rf-design/circuit-design.html. Last accessed: Jan. 19,
2020.

[38] Bradford Campbell, Meghan Clark, Samuel DeBruin, Branden Ghena, Neal Jackson,
Ye-Sheng Kuo, and Prabal Dutta. 2016. Perpetual Sensing for the Built Environment.
https://doi.org/10.1109/mprv.2016.66. Pervasive Computing 15, 4 (Oct.–Dec.
2016), 45–55.

[39] Carlo Signer. 2017. Batteryless Bluetooth Low Energy Communication. Bachelor’s
Thesis. ETHZ, Switzerland. https://pub.tik.ee.ethz.ch/students/2017-FS/
BA-2017-03.pdf.

[40] Ricardo C. Carrano, Diego Passos, Luiz C. S. Magalhães, and Célio V. N. Albu-
querque. 2014. Survey and Taxonomy of Duty Cycling Mechanisms in Wireless
Sensor Networks. IEEE Commun. Surv. Tutorials 16, 1 (First Quarter 2014), 181–194.
https://doi.org/10.1109/SURV.2013.052213.00116.

[41] CD Projekt. 2020. European Union Projects. https://www.cdprojekt.com/en/
capital-group/eu-projects. Last accessed: Apr. 28, 2020.

https://www.bluetooth.com/specifications/specs/alert-notification-service-1-0/
https://www.bluetooth.com/specifications/specs/alert-notification-service-1-0/
https://www.bluetooth.com/specifications/specs/current-time-service-1-1/
https://www.bluetooth.com/specifications/specs/current-time-service-1-1/
https://www.bluetooth.com/specifications/specs
https://www.bluetooth.com/specifications/specs
https://www.bosch-sensortec.com/products/motion-sensors/accelerometers/bma400
https://www.bosch-sensortec.com/products/motion-sensors/accelerometers/bma400
https://doi.org/10.1145/3356250.3360033
https://doi.org/10.1145/3356250.3360033
https://spectrum.ieee.org/energy/batteries-storage/the-battery-revolution-is-just-getting-started
https://spectrum.ieee.org/energy/batteries-storage/the-battery-revolution-is-just-getting-started
https://doi.org/10.1145/2638728.2638733
https://doi.org/10.1145/2638728.2638733
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/custom-ic-analog-rf-design/circuit-design.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/custom-ic-analog-rf-design/circuit-design.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/custom-ic-analog-rf-design/circuit-design.html
https://doi.org/10.1109/mprv.2016.66
https://pub.tik.ee.ethz.ch/students/2017-FS/BA-2017-03.pdf
https://pub.tik.ee.ethz.ch/students/2017-FS/BA-2017-03.pdf
https://doi.org/10.1109/SURV.2013.052213.00116
https://www.cdprojekt.com/en/capital-group/eu-projects
https://www.cdprojekt.com/en/capital-group/eu-projects

REFERENCES 125

[42] Arunkumar Chandrasekhar, Gaurav Khandelwa, Nagamalleswara Rao Alluri,
Venkateswaran Vivekananthan, and Sang-Jae Kim. 2018. Battery-Free Electronic
Smart Toys: A Step toward the Commercialization of Sustainable Triboelectric
Nanogenerators. Sustainable Chemistry and Engineering 6, 5 (April 2018), 6110–
6116. https://doi.org/10.1021/acssuschemeng.7b04769.

[43] Arunkumar Chandrasekhar, Gaurav Khandelwal, Nagamalleswara Rao Alluri,
Venkateswaran Vivekananthan, and Sang-Jae Kim. 2017. Sustainable Biomechan-
ical Energy Scavenger toward Self-Reliant Kids’ Interactive Battery-Free Smart
Puzzle. Sustainable Chemistry and Engineering 5, 8 (June 2017), 7310–7316.
https://doi.org/10.1021/acssuschemeng.7b01561.

[44] Tzuwen Chang, Neng-Hao Yu, Sung-Sheng Tsai, Mike Y. Chen, and Yi Ping Hung.
2012. Clip-on Gadgets: Expandable Tactile Controls For Multi-touch Devices.
In Proc. MobileHCI (September 21–24). ACM, San Francisco, CA, USA, 163–166.
https://doi.org/10.1145/2371664.2371699.

[45] Zicheng Chi, Xin Liua, Wei Wang, Yao Yao, and Ting Zhu. 2020. Leveraging Ambient
LTE Traffic for Ubiquitous Passive Communication. In Proc. SIGCOMM. ACM,
Virtual Event, 172–185. https://doi.org/10.1145/3387514.3405861.

[46] Jongouk Choi, Hyunwoo Joe, Yongjoo Kim, and Changhee Jung. 2019. Achieving
Stagnation-Free Intermittent Computation with Boundary-Free Adaptive Execu-
tion. In Proc. RTAS. IEEE, Montréal, QC, Canada, 331–344. https://doi.org/
10.1109/RTAS.2019.00035.

[47] Jongouk Choi, Qingrui Liu, and Changhee Jung. 2019. CoSpec: Compiler Directed
Speculative Intermittent Computation. In Proc. MICRO. ACM, Columbus, OH, USA,
399–412. https://doi.org/10.1145/3352460.3358279.

[48] Yohan Chon, Gwangmin Lee, Rhan Ha, and Hojung Cha. 2016. Crowdsensing-
based Smartphone Use Guide for Battery Life Extension. In Proc. UbiComp. ACM,
Heidelberg, Germany, 958–969. https://doi.org/10.1145/2971648.2971728.

[49] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson Sample. 2016. An
Energy-interference-free Hardware/Software Debugger for Intermittent Energy-
harvesting Systems. In Proc. ASPLOS. ACM, Atlanta, GA, USA, 577–589. https:
//doi.org/10.1145/2980024.2872409.

[50] Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels for Reliable
Intermittent Programs. In Proc. OOPSLA (Oct. 30 – Nov. 4). ACM, Amsterdam, The
Netherlands, 514–530. https://doi.org/10.1145/2983990.2983995.

[51] Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A Reconfigurable Energy Stor-
age Architecture for Energy-harvesting Devices. In Proc. ASPLOS. ACM, Williams-
burg, VA, USA, 767–781. https://doi.org/10.1145/3173162.3173210.

[52] Alexei Collin and Brandon Lucia. 2018. Termination Checking and Task Decompo-
sition for Task-Based Intermittent Programs. In Proc. CC (February 24–25). ACM,
Vienna, Austria, 183:1–183:31. https://dl.acm.org/doi/10.1145/3360609.

https://doi.org/10.1021/acssuschemeng.7b04769
https://doi.org/10.1021/acssuschemeng.7b01561
https://doi.org/10.1145/2371664.2371699
https://doi.org/10.1145/3387514.3405861
https://doi.org/10.1109/RTAS.2019.00035
https://doi.org/10.1109/RTAS.2019.00035
https://doi.org/10.1145/3352460.3358279
https://doi.org/10.1145/2971648.2971728
https://doi.org/10.1145/2980024.2872409
https://doi.org/10.1145/2980024.2872409
https://doi.org/10.1145/2983990.2983995
https://doi.org/10.1145/3173162.3173210
https://dl.acm.org/doi/10.1145/3360609

126 REFERENCES

[53] Rodrigo Copetti. 2019. Architecture of Consoles: GameBoy. https://
copetti.org/projects/consoles/game-boy. Last accessed: May 3, 2020.

[54] Microsemi Corp. 2019. ZL70550 Ultra-Low-Power Sub-GHz RF Transceiver.
www.microsemi.com/product-directory/sub-ghz-radio-transceivers/
3928-zl70550. Last accessed: Apr. 10, 2019.

[55] Microsoft Corp. 2022. Visual Studio Code. https://code.visualstudio.com.

[56] Taiyo Yuden Corp. 2021. EYSKBNZWB BLE Wireless Module.
https://www.yuden.co.jp/eu/product/category/module/bluetooth/
EYSKBNZWB.html. Last accessed: Sep. 9, 2021.

[57] Corporate Knights. 2020. 2020 Global 100 Ranking: Index of the World’s Most Sus-
tainable Corporations. https://www.corporateknights.com/reports/2020-
global-100. Last accessed: Apr. 30, 2020.

[58] Bandai Corporation. 1982. LCD Solarpower Handheld Electronic Games Series.
https://en.wikipedia.org/wiki/Bandai_LCD_Solarpower. Last accessed:
Sep. 22, 2020.

[59] Cypress Semiconductor Corp. 2020. CYALKIT-E02 Solar-Powered BLE Sensor
Beacon Reference Design Kit. https://www.cypress.com/documentation/
development-kitsboards/cyalkit-e02-solar-powered-ble-sensor-
beacon-reference-design. Last accessed: Aug. 4, 2021.

[60] Cypress Semiconductor Corp. 2021. CYBLE-022001-00 BLE Module.
https://www.cypress.com/documentation/datasheets/cyble-022001-
00-ez-ble-creator-module. Last accessed: Aug. 10, 2021.

[61] Al Danial. 2021. cloc - Count Lines of Code Source Code Repository. https:
//github.com/AlDanial/cloc. Last accessed: Aug. 10, 2021.

[62] Marc de Kruijf and Karthikeyan Sankaralingam. 2013. Idempotent Code Generation:
Implementation, Analysis, and Evaluation. In Proc. CGO. ACM/IEEE, Shenzhen,
China, 1–12. https://doi.org/10.1109/CGO.2013.6495002.

[63] Jasper de Winkel. 2019. Keeping Track of Time on Energy Harvesting Systems.
Master’s thesis. Delft University of Technology, Delft, The Netherlands. http:
//resolver.tudelft.nl/uuid:3ed18e0b-03a2-4496-a761-af65d191e135.

[64] Jasper de Winkel, Carlo Delle Donne, Kasım Sinan Yıldırım, Przemysław Pawełczak,
and Josiah Hester. 2020. Reliable Timekeeping for Intermittent Computing. In
Proc. ASPLOS. ACM, Lausanne, Switzerland, 53–67. https://doi.org/10.1145/
3373376.3378464.

[65] Jasper de Winkel, Tom Hoefnagel, Boris Blokland, and Przemysław Pawełczak.
2022. DIPS: Debug Intermittently-Powered Systems Like Any Embedded System.
In Proc. SenSys. ACM, Boston, MA, USA, 222–235. https://doi.org/10.1145/
3560905.3568543.

https://copetti.org/projects/consoles/game-boy
https://copetti.org/projects/consoles/game-boy
www.microsemi.com/product-directory/sub-ghz-radio-transceivers/3928-zl70550
www.microsemi.com/product-directory/sub-ghz-radio-transceivers/3928-zl70550
https://code.visualstudio.com
https://www.yuden.co.jp/eu/product/category/module/bluetooth/EYSKBNZWB.html
https://www.yuden.co.jp/eu/product/category/module/bluetooth/EYSKBNZWB.html
https://www.corporateknights.com/reports/2020-global-100
https://www.corporateknights.com/reports/2020-global-100
https://en.wikipedia.org/wiki/Bandai_LCD_Solarpower
https://www.cypress.com/documentation/development-kitsboards/cyalkit-e02-solar-powered-ble-sensor-beacon-reference-design
https://www.cypress.com/documentation/development-kitsboards/cyalkit-e02-solar-powered-ble-sensor-beacon-reference-design
https://www.cypress.com/documentation/development-kitsboards/cyalkit-e02-solar-powered-ble-sensor-beacon-reference-design
https://www.cypress.com/documentation/datasheets/cyble-022001-00-ez-ble-creator-module
https://www.cypress.com/documentation/datasheets/cyble-022001-00-ez-ble-creator-module
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://doi.org/10.1109/CGO.2013.6495002
http://resolver.tudelft.nl/uuid:3ed18e0b-03a2-4496-a761-af65d191e135
http://resolver.tudelft.nl/uuid:3ed18e0b-03a2-4496-a761-af65d191e135
https://doi.org/10.1145/3373376.3378464
https://doi.org/10.1145/3373376.3378464
https://doi.org/10.1145/3560905.3568543
https://doi.org/10.1145/3560905.3568543

REFERENCES 127

[66] Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Przemysław Pawełczak. 2020.
Battery-Free Game Boy. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 3
(September 2020), 111:1–111:34. https://doi.org/10.1145/3411839.

[67] Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Przemysław Pawełczak. 2021.
Battery-Free Game Boy: Sustainable Interactive Devices. GetMobile: Mobile
Comp. and Comm. 25, 2 (September 2021), 22–26. https://doi.org/10.1145/
3486880.3486888.

[68] Jasper de Winkel, Haozhe Tang, and Przemysław Pawełczak. 2022. Intermittently-
Powered Bluetooth That Works. In Proc. MobiSys. ACM, Portland, OR, USA, 287–301.
https://doi.org/10.1145/3498361.3538934.

[69] Delft University of Technology Sustainable Systems Lab. 2019. Botoks and CHRT
Source Code Repository and Website. https://github.com/tudssl/botoks.
Last accessed: Jan. 18, 2020.

[70] Delft University of Technology Sustainable Systems Lab. 2020. Botoks and CHRT
Artifact. https://doi.org/10.5281/zenodo.3612619. Last accessed: Mar. 9,
2023.

[71] Delft University of Technology Sustainable Systems Lab. 2020. ENGAGE Artifact.
https://doi.org/10.5281/zenodo.7684869. Last accessed: Mar. 9, 2023.

[72] Delft University of Technology Sustainable Systems Lab. 2020. ENGAGE Open
Source Repository. https://github.com/tudssl/engage. Last accessed: Jul. 22,
2020.

[73] Delft University of Technology Sustainable Systems Lab. 2021. FreeBie Source Code
Repository: Hardware and Software. https://github.com/tudssl/FreeBie.
Last accessed: Apr. 26, 2022.

[74] Delft University of Technology Sustainable Systems Lab. 2022. DIPS Artifact. https:
//doi.org/10.5281/zenodo.7938463. Last accessed: Mar. 9, 2023.

[75] Delft University of Technology Sustainable Systems Lab. 2022. FreeBie Artifact.
https://doi.org/10.5281/zenodo.6583724. Last accessed: Mar. 9, 2023.

[76] Carlo Delle Donne. 2018. Wake-Up Alignment for Batteryless Sensors with
Zero-Energy Timekeeping. Master’s thesis. Delft University of Technology, Delft,
The Netherlands. http://resolver.tudelft.nl/uuid:e871f33e-7ed2-452b-
a962-1de2af9a2906.

[77] Carlo Delle Donne, Kasım Sinan Yıldırım, Amjad Yousef Majid, Josiah Hester, and
Przemysław Pawełczak. 2018. Backing Out of Backscatter for Intermittent Wireless
Networks. In Proc. ENSsys (November 3). ACM, Shenzhen, China, 38–40. https:
//doi.org/10.1145/3279755.3279758.

https://doi.org/10.1145/3411839
https://doi.org/10.1145/3486880.3486888
https://doi.org/10.1145/3486880.3486888
https://doi.org/10.1145/3498361.3538934
https://github.com/tudssl/botoks
https://doi.org/10.5281/zenodo.3612619
https://doi.org/10.5281/zenodo.7684869
https://github.com/tudssl/engage
https://github.com/tudssl/FreeBie
https://doi.org/10.5281/zenodo.7938463
https://doi.org/10.5281/zenodo.7938463
https://doi.org/10.5281/zenodo.6583724
http://resolver.tudelft.nl/uuid:e871f33e-7ed2-452b-a962-1de2af9a2906
http://resolver.tudelft.nl/uuid:e871f33e-7ed2-452b-a962-1de2af9a2906
https://doi.org/10.1145/3279755.3279758
https://doi.org/10.1145/3279755.3279758

128 REFERENCES

[78] Maurizio Di Paolo Emilio and Roy Anirban. 2021. Macro Environmental Effect
of Micro Energy Harvesting. https://www.powerelectronicsnews.com/macro-
environmental-effect-of-micro-energy-harvesting. Last accessed: Jul.
27, 2021.

[79] Christine Dierk, Molly Jane Pearce Nicholas, and Eric Paulos. 2018. AlterWear:
Battery-Free Wearable Displays for Opportunistic Interactions. In Proc. CHI (April
21–26). ACM, Montréal, QC, Canada, 210:1–210:13. https://doi.org/10.1145/
3173574.3173794.

[80] Economist Intelligence Unit. 2020. The IoT Business Index 2020: a Step Change
in Adoption. https://learn.arm.com/rs/714-XIJ-402/images/economist-
iot-business-index-2020-arm.pdf. Last accessed: May 7, 2020.

[81] Kristina Edström (Executive Publisher). 2020. Horizon 2020 EU Program Battery
2030+: Inventing the Sustainable Batteries of the Future: Research Needs and Fu-
ture Actions. https://battery2030.eu/digitalAssets/861/c_861350-l_1-
k_roadmap-27-march.pdf. Last accessed: Jul. 7, 2021.

[82] Samsung Electronics. 2021. Galaxy Watch4 Smartwatch. https://
www.samsung.com/us/watches/galaxy-watch4/. Last accessed: Dec. 14, 2021.

[83] EnOcean GmbH. 2020. STM 550B Multisensor Module (BLE) with NFC Interface.
https://www.enocean.com/en/products/enocean_modules_24ghz_ble/
stm-550b-multisensor-module. Last accessed: Aug. 4, 2021.

[84] Joshua F. Ensworth and Matthew S. Reynolds. 2015. Every Smart Phone is a
Backscatter Reader: Modulated Backscatter Compatibility with Bluetooth 4.0
Low Energy (BLE) Devices. In Proc. RFID. IEEE, San Diego, CA, USA, 78–85.
https://doi.org/10.1109/RFID.2015.7113076.

[85] Everactive. 2021. Batteryless Eversensors. https://everactive.com/
batteryless-technology. Last accessed: Aug. 5, 2021.

[86] Xenofon Fafoutis and Nicola Dragoni. 2011. ODMAC: An on-demand MAC Protocol
for Energy Harvesting-Wireless Sensor Networks. In Proc. PE-WASUN (November 3–
4). ACM, Miami, FL, USA, 49–56. https://doi.org/10.1145/2069063.2069072.

[87] Xiaoran Fan, Han Ding, Sugang Li, Michael Sanzari, Yanyong Zhang, Wade Trappe,
Zhu Han, and Richard E. Howard. 2018. Energy-Ball: Wireless Power Transfer for
Batteryless Internet of Things through Distributed Beamforming. ACM Interact.
Mob. Wearable Ubiquitous Technol. 2, 2 (June 2018), 65:1–65:22. https://doi.org/
10.1145/3214268.

[88] Duarte Fernandes, André G. Ferreira, Reza Abrishambaf, José Mendes, and Jorge
Cabral. 2018. Survey and Taxonomy of Transmissions Power Control Mechanisms
for Wireless Body Area Networks. IEEE Commun. Surv. Tutorials 20, 2 (Second
Quarter 2018), 1292–1328. https://doi.org/10.1109/COMST.2017.2782666.

https://www.powerelectronicsnews.com/macro-environmental-effect-of-micro-energy-harvesting
https://www.powerelectronicsnews.com/macro-environmental-effect-of-micro-energy-harvesting
https://doi.org/10.1145/3173574.3173794
https://doi.org/10.1145/3173574.3173794
https://learn.arm.com/rs/714-XIJ-402/images/economist-iot-business-index-2020-arm.pdf
https://learn.arm.com/rs/714-XIJ-402/images/economist-iot-business-index-2020-arm.pdf
https://battery2030.eu/digitalAssets/861/c_861350-l_1-k_roadmap-27-march.pdf
https://battery2030.eu/digitalAssets/861/c_861350-l_1-k_roadmap-27-march.pdf
https://www.samsung.com/us/watches/galaxy-watch4/
https://www.samsung.com/us/watches/galaxy-watch4/
https://www.enocean.com/en/products/enocean_modules_24ghz_ble/stm-550b-multisensor-module
https://www.enocean.com/en/products/enocean_modules_24ghz_ble/stm-550b-multisensor-module
https://doi.org/10.1109/RFID.2015.7113076
https://everactive.com/batteryless-technology
https://everactive.com/batteryless-technology
https://doi.org/10.1145/2069063.2069072
https://doi.org/10.1145/3214268
https://doi.org/10.1145/3214268
https://doi.org/10.1109/COMST.2017.2782666

REFERENCES 129

[89] Fluke. 2020. Fluke 87V Industrial Multimeter. https://www.fluke.com/en-us/
product/electrical-testing/digital-multimeters/fluke-87v. Last ac-
cessed: Jun. 22, 2020.

[90] Francesco Fraternali, Bharathan Balaji, Yuvraj Agarwal, Luca Benini, and Rajesh K.
Gupta. 2018. Pible: Battery-Free Mote for Perpetual Indoor BLE Applications.
In Proc. BuildSys. ACM, Shenzen, China, 168–171. https://doi.org/10.1145/
3276774.3282822.

[91] Free Software Foundation, Inc. 2021. lwIP - A Lightweight TCP/IP stack Website.
https://savannah.nongnu.org/projects/lwip. Last accessed: Aug. 10, 2021.

[92] Fujitsu Semiconductor Limited. 2018. MB85RS4MT 4 MB FRAM Memory with
SPI Interface. https://www.fujitsu.com/global/documents/products/
devices/semiconductor/fram/lineup/MB85RS4MT-DS501-00053-1v0-
E.pdf. Last accessed: Jun. 13, 2021.

[93] Fujitsu Semiconductor Ltd. 2018. MB85RS4MT 512 KB SPI FRAM. https://
www.fujitsu.com/uk/Images/MB85RS4MT.pdf. Last accessed: Apr. 25, 2020.

[94] Ander Galisteo, Ambuj Varshney, and Domenico Giustiniano. 2020. Two to
Tango: Hybrid Light and Backscatter Networks for Next Billion Devices. In
Proc. MobiSys. ACM, Toronto, ON, Canada, 80–93. https://doi.org/10.1145/
3386901.3388918.

[95] Karthik Ganesan, Joshua San Miguel, and Natalie Enright Jerger. 2019. The What’s
Next Intermittent Computing Architecture. In Proc. HPCA. IEEE, Washington, DC,
USA, 211–223. https://doi.org/10.1109/HPCA.2019.00039.

[96] Kai Geissdoerfer, Mikołaj Chwalisz, and Marco Zimmerling. 2019. Shepherd: a
Portable Testbed for the Batteryless IoT. In Proc. SenSys. ACM, New York, NY, USA,
83–95. https://doi.org/10.1145/3356250.3360042.

[97] Kai Geissdoerfer and Marco Zimmerling. 2021. Bootstrapping Battery-free Wire-
less Networks: Efficient Neighbor Discovery and Synchronization in the Face
of Intermittency. In Proc. NSDI. USENIX, Virtual Event, 439–455. https://
www.usenix.org/system/files/nsdi21-geissdoerfer.pdf.

[98] Kai Geissdoerfer and Marco Zimmerling. 2022. Learning to Communicate Ef-
fectively Between Battery-free Devices. In Proc. NSDI. USENIX, Renton, WA,
USA, 419–435. https://www.usenix.org/system/files/nsdi22-paper-
geissdoerfer.pdf.

[99] German Federal Minister for the Environment, Nature Conservation,
and Nuclear Safety. 2020. Umweltpolitische Digitalagenda (in Ger-
man). https://www.bmu.de/fileadmin/Daten_BMU/Pools/Broschueren/
broschuere_digitalagenda_bf.pdf. Last accessed: Apr. 28, 2020.

https://www.fluke.com/en-us/product/electrical-testing/digital-multimeters/fluke-87v
https://www.fluke.com/en-us/product/electrical-testing/digital-multimeters/fluke-87v
https://doi.org/10.1145/3276774.3282822
https://doi.org/10.1145/3276774.3282822
https://savannah.nongnu.org/projects/lwip
https://www.fujitsu.com/global/documents/products/devices/semiconductor/fram/lineup/MB85RS4MT-DS501-00053-1v0-E.pdf
https://www.fujitsu.com/global/documents/products/devices/semiconductor/fram/lineup/MB85RS4MT-DS501-00053-1v0-E.pdf
https://www.fujitsu.com/global/documents/products/devices/semiconductor/fram/lineup/MB85RS4MT-DS501-00053-1v0-E.pdf
https://www.fujitsu.com/uk/Images/MB85RS4MT.pdf
https://www.fujitsu.com/uk/Images/MB85RS4MT.pdf
https://doi.org/10.1145/3386901.3388918
https://doi.org/10.1145/3386901.3388918
https://doi.org/10.1109/HPCA.2019.00039
https://doi.org/10.1145/3356250.3360042
https://www.usenix.org/system/files/nsdi21-geissdoerfer.pdf
https://www.usenix.org/system/files/nsdi21-geissdoerfer.pdf
https://www.usenix.org/system/files/nsdi22-paper-geissdoerfer.pdf
https://www.usenix.org/system/files/nsdi22-paper-geissdoerfer.pdf
https://www.bmu.de/fileadmin/Daten_BMU/Pools/Broschueren/broschuere_digitalagenda_bf.pdf
https://www.bmu.de/fileadmin/Daten_BMU/Pools/Broschueren/broschuere_digitalagenda_bf.pdf

130 REFERENCES

[100] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. 2019. Intelligence
Beyond the Edge: Inference on Intermittent Embedded Systems. In Proc. AS-
PLOS. ACM, Providence, RI, USA, 199–213. https://doi.org/10.1145/
3297858.3304011.

[101] Andres Gomez. 2020. Demo Abstract: On-Demand Communication with the
Batteryless MiroCard. In Proc. SenSys. ACM, Virtual Event, 629–630. https://
doi.org/10.1145/3384419.3430440.

[102] Google, LLC. 2019. Google Pixel 3a. https://support.google.com/pixelphone/
answer/7158570. Last accessed: May 19, 2022.

[103] Google, LLC. 2021. Android 11 Mobile Operating System. https://
www.android.com/android-11. Last accessed: Aug. 8, 2021.

[104] Google, LLC. 2021. OpenThread Source Code Repository. https://github.com/
openthread/openthread. Last accessed: Aug. 10, 2021.

[105] Google, LLC. 2022. Protocol buffers for Serializing Structured Data Product Website.
https://developers.google.com/protocol-buffers. Last accessed: Oct. 15,
2022.

[106] Google, LLC. 2023. Google Nest Learning Thermostat. https://
store.google.com/nl/product/nest_learning_thermostat_3rd_gen.
Last accessed: January 24, 2023.

[107] Lewis Gordon. 2019. The Environmental Impact of a PlayStation 4.
https://www.theverge.com/2019/12/5/20985330/ps4-sony-playstation-
environmental-impact-carbon-footprint-manufacturing-25-anniversary. Last
accessed: Apr. 28, 2020.

[108] Green Electronics Council. 2020. Electronic Product Environmental Assessment
Tool. https://epeat.net. Last accessed: Apr. 30, 2020.

[109] Manoj Gulati, Farshid Salemi Parizi, Eric Whitmire, Sidhant Gupta, Shobha Sundar
Ram, Amarjeet Singh, and Shwetak N. Patel. 2018. CapHarvester: A Stick-on
Capacitive Energy Harvester Using Stray Electric Field from AC Power Lines. ACM
Interact. Mob. Wearable Ubiquitous Technol. 2, 3 (September 2018), 110:1–110:20.
https://doi.org/10.1145/3264920.

[110] Mike Hayes, Giorgos Fagas, Julie Donnelly, Raphaël Salot, Guillaume Savelli, Pe-
ter Spies, Gerd vom Boegel, Mario Konijnenburg, David Stenzel, Aldo Romani,
Claudio Gerbaldi, Francesco Cottone, and Alex Weddell. 2021. Research Infrastruc-
ture to Power the Internet of Things. https://www.tyndall.ie/contentfiles/
EnABLES_Research_Infrastructure_Position_Paper.pdf. Last accessed:
Aug. 3, 2021.

[111] Mehrdad Hessar, Ali Najafi, and Shyamnath Gollakota. 2019. NetScatter: Enabling
Large-Scale Backscatter Networks. In Proc. NSDI. USENIX, Boston, MA, USA, 271–
283. https://www.usenix.org/system/files/nsdi19-hessar.pdf.

https://doi.org/10.1145/3297858.3304011
https://doi.org/10.1145/3297858.3304011
https://doi.org/10.1145/3384419.3430440
https://doi.org/10.1145/3384419.3430440
https://support.google.com/pixelphone/answer/7158570
https://support.google.com/pixelphone/answer/7158570
https://www.android.com/android-11
https://www.android.com/android-11
https://github.com/openthread/openthread
https://github.com/openthread/openthread
https://developers.google.com/protocol-buffers
https://store.google.com/nl/product/nest_learning_thermostat_3rd_gen
https://store.google.com/nl/product/nest_learning_thermostat_3rd_gen
https://www.theverge.com/2019/12/5/20985330/ps4-sony-playstation-environmental-impact-carbon-footprint-manufacturing-25-anniversary
https://www.theverge.com/2019/12/5/20985330/ps4-sony-playstation-environmental-impact-carbon-footprint-manufacturing-25-anniversary
https://epeat.net
https://doi.org/10.1145/3264920
https://www.tyndall.ie/contentfiles/EnABLES_Research_Infrastructure_Position_Paper.pdf
https://www.tyndall.ie/contentfiles/EnABLES_Research_Infrastructure_Position_Paper.pdf
https://www.usenix.org/system/files/nsdi19-hessar.pdf

REFERENCES 131

[112] Josiah Hester, Timothy Scott, and Jacob Sorber. 2014. Ekho: Realistic and Re-
peatable Experimentation for Tiny Energy-Harvesting Sensors. In Proc. SenSys
(November 3–5). ACM, Memphis, TN, USA, 1–15. https://doi.org/10.1145/
2668332.2668336.

[113] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. 2015. Tragedy of the Coulombs:
Federating Energy Storage for Tiny, Intermittently-Powered Sensors. In Proc. SenSys
(November 1–4). ACM, Seoul, South Korea, 5–16. https://doi.org/10.1145/
2809695.2809707.

[114] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for the Batteryless
Internet-of-Things. In Proc. SenSys (November 6–8). ACM, Delft, The Netherlands,
19:1–19:13. https://doi.org/10.1145/3131672.3131674.

[115] Josiah Hester and Jacob Sorber. 2017. The Future of Sensing is Batteryless, Inter-
mittent, and Awesome. In Proc. SenSys. ACM, Delft, The Netherlands, 21:1–21:6.
https://doi.org/10.1145/3131672.3131699.

[116] Josiah Hester, Kevin Storer, and Jacob Sorber. 2017. Timely Execution on Intermit-
tently Powered Batteryless Sensors. In Proc. SenSys (November 6–8). ACM, Delft,
The Netherlands, 17:1–17:13. https://doi.org/10.1145/3131672.3131673.

[117] Josiah Hester, Nicole Tobias, Amir Rahmati, Lanny Sitanayah, Daniel Holcomb,
Kevin Fu, Wayne P. Burleson, and Jacob Sorber. 2016. Persistent Clocks for Bat-
teryless Sensing Devices. ACM Trans. Embed. Comput. Syst. 15, 4 (August 2016),
77:1–77:28. https://doi.org/10.1145/2903140.

[118] Kasun Hewage, Ambuj Varshney, Abdalah Hilmia, and Thiemo Voigt. 2016. mod-
bulb: A Modular Light Bulb for Visible Light Communication. In Proc. VCLS (Oc-
tober 3–7). ACM, New York City, NY, USA, 13–18. https://doi.org/10.1145/
2981548.2981559.

[119] Matthew Hicks. 2017. Clank: Architectural Support for Intermittent Computa-
tion. In Proc. ISCA (June 24–28). IEEE, Toronto, ON, Canada, 228–240. https:
//doi.org/10.1145/3079856.3080238.

[120] Meng-Ju Hsieh, Jr-Ling Guo, Chin-Yuan Lu, Han-Wei Hsieh, Rong-Hao Liang,
and Bing-Yu Chen. 2019. RFTouchPads: Batteryless and Wireless Modular Touch
Sensor Pads Based on RFID. In Proc. UIST. ACM, New Orleans, LA, US, 999–1011.
https://doi.org/10.1145/3332165.3347910.

[121] Meng-Ju Hsieh, Rong-Hao Liang, Da-Yuan Huang, Jheng-You Ke, and Bing-Yu
Chen. 2018. RFIBricks: Interactive Building Blocks Based on RFID. In Proc. CHI
(April 21–26). ACM, Montréal, QC, Canada, 1–10. https://doi.org/10.1145/
3173574.3173763.

[122] Pan Hu, Pengyu Zhang, Mohammad Rostami, and Deepak Ganesan. 2016. Braidio:
An Integrated Active-Passive Radio for Mobile Devices with Asymmetric Energy
Budgets. In Proc. SIGCOMM. ACM, Florianopolis, Brazil, 384–397. https://
doi.org/10.1145/2934872.2934902.

https://doi.org/10.1145/2668332.2668336
https://doi.org/10.1145/2668332.2668336
https://doi.org/10.1145/2809695.2809707
https://doi.org/10.1145/2809695.2809707
https://doi.org/10.1145/3131672.3131674
https://doi.org/10.1145/3131672.3131699
https://doi.org/10.1145/3131672.3131673
https://doi.org/10.1145/2903140
https://doi.org/10.1145/2981548.2981559
https://doi.org/10.1145/2981548.2981559
https://doi.org/10.1145/3079856.3080238
https://doi.org/10.1145/3079856.3080238
https://doi.org/10.1145/3332165.3347910
https://doi.org/10.1145/3173574.3173763
https://doi.org/10.1145/3173574.3173763
https://doi.org/10.1145/2934872.2934902
https://doi.org/10.1145/2934872.2934902

132 REFERENCES

[123] Nick Huber. 2020. Internet of Things: Smart Cities Pick up the Pace. https:
//www.ft.com/content/140ae3f0-1b6f-11ea-81f0-0c253907d3e0. Last ac-
cessed: May 7, 2020.

[124] Chanyou Hwang, Saumay Pushp, Changyoung Koh, Jungpil Yoon, Yunxin Liu,
Seungpyo Choi, and Junehwa Song. 2017. RAVEN: Perception-aware Optimization
of Power Consumption for Mobile Games. In Proc. MobiCom. ACM, Snowbird, UT,
USA, 422–434. https://doi.org/10.1145/3117811.3117841.

[125] Kaori Ikematsu, Masaaki Fukumoto, and Itiro Siio. 2019. Ohmic-Sticker: Force-
to-Motion Type Input Device for Capacitive Touch Surface. In Proc. CHI (May
4–9). ACM, Glasgow, Scotland, UK, LBW0223:1–LBW0223:6. https://doi.org/
10.1145/3332165.3347903.

[126] Ivar in ’t Veen, Qingzhi Liu, Przemysław Pawełczak, Aaron Parks, and Joshua R.
Smith. 2016. BLISP: Enhancing Backscatter Radio with Active Radio for Compu-
tational RFIDs. In Proc. RFID. IEEE, Orlando, FL, USA, 1–4. https://doi.org/
10.1109/RFID.2016.7488010.

[127] Microchip Technology Inc. 2017. MIC841 Comparator with 1.25% Reference and Ad-
justable Hysteresis. http://ww1.microchip.com/downloads/en/DeviceDoc/
20005758A.pdf. Last accessed: Jan. 19, 2020.

[128] TI Inc. 2012. SN74AUP2G79 Low-Power Dual Positive Edge-Triggered D-Type Flip-
Flop. http://www.ti.com/lit/ds/symlink/sn74aup2g79.pdf. Last accessed:
Jan. 19, 2020.

[129] TI Inc. 2015. TLV3691 Nanopower Comparator. http://www.ti.com/lit/ds/
symlink/tlv3691.pdf. Last accessed: Jan. 19, 2020.

[130] TI Inc. 2015. TS3A4751 0.9Ω Low-voltage, single-supply, 4-channel SPST analog
switch. http://www.ti.com/lit/ds/symlink/ts3a4751.pdf. Last accessed:
Apr. 10, 2019.

[131] TI Inc. 2016. MSP430 GCC Compiler. http://www.ti.com/tool/MSP430-GCC-
OPENSOURCE. Last accessed: Jan. 19, 2020.

[132] TI Inc. 2018. MSP430FR5994 16 MHz Ultra-Low-Power MCU. www.ti.com/lit/
gpn/msp430fr5994. Last accessed: Jan. 19, 2020.

[133] Texas Instruments Inc. 2005. TS5A23159 1-Ohm 2-Channel SPDT Analog Switch
5-V / 3.3-V 2-Channel 2:1 Multiplexer / Demultiplexer. ttps://www.ti.com/lit/
ds/symlink/ts5a23159.pdf. Last accessed: May 9, 2022.

[134] Texas Instruments. 2015. OPAx192, Precision, Low Input Bias Current Op Amp.
https://www.ti.com/lit/ds/symlink/opa192.pdf. Last accessed: May 9,
2022.

https://www.ft.com/content/140ae3f0-1b6f-11ea-81f0-0c253907d3e0
https://www.ft.com/content/140ae3f0-1b6f-11ea-81f0-0c253907d3e0
https://doi.org/10.1145/3117811.3117841
https://doi.org/10.1145/3332165.3347903
https://doi.org/10.1145/3332165.3347903
https://doi.org/10.1109/RFID.2016.7488010
https://doi.org/10.1109/RFID.2016.7488010
http://ww1.microchip.com/downloads/en/DeviceDoc/20005758A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/20005758A.pdf
http://www.ti.com/lit/ds/symlink/sn74aup2g79.pdf
http://www.ti.com/lit/ds/symlink/tlv3691.pdf
http://www.ti.com/lit/ds/symlink/tlv3691.pdf
http://www.ti.com/lit/ds/symlink/ts3a4751.pdf
http://www.ti.com/tool/MSP430-GCC-OPENSOURCE
http://www.ti.com/tool/MSP430-GCC-OPENSOURCE
www.ti.com/lit/gpn/msp430fr5994
www.ti.com/lit/gpn/msp430fr5994
ttps://www.ti.com/lit/ds/symlink/ts5a23159.pdf
ttps://www.ti.com/lit/ds/symlink/ts5a23159.pdf
https://www.ti.com/lit/ds/symlink/opa192.pdf

REFERENCES 133

[135] Texas Instruments. 2016. TPS7A87 Dual, 500-mA, Low-Noise, LDO Voltage Regu-
lator. https://www.ti.com/lit/ds/symlink/tps7a87.pdf. Last accessed: May
9, 2022.

[136] Texas Instruments. 2021. INA186, Current-Sense Amplifier. https://www.ti.com/
lit/ds/symlink/ina186.pdf. Last accessed: May 9, 2022.

[137] Jittrapol Intarasirisawat, Cheesiang Ang, Christos Efstratiou, Luke William Feidhlim
Dickens, and Rupert Page. 2019. Exploring the Touch and Motion Features in Game-
Based Cognitive Assessments. ACM Interact. Mob. Wearable Ubiquitous Technol. 3,
3 (September 2019), 87:1–87:25. https://doi.org/10.1145/3351245.

[138] Maxim Integrated. 2019. Low-Voltage SPI/3-Wire RTCs with Trickle Charger. https:
//datasheets.maximintegrated.com/en/ds/DS1390-DS1394.pdf. Last ac-
cessed: Jan. 19, 2020.

[139] Christos Ioannou, Patrick Archard, Eamonn O’Neill, and Christof Lutteroth. 2019.
Virtual Performance Augmentation in an Immersive Jump & Run Exergame. In Proc.
CHI (May 4–9). ACM, Glasgow, Scotland, UK, 158:1–158:15. https://doi.org/
10.1145/3290605.3300388.

[140] Vikram Iyer, Elyas Bayati, Rajalakshmi Nandakumar, Arka Majumdar, and Shyam
Gollakota. 2017. Charging a Smartphone Across a Room Using Lasers. ACM Interact.
Mob. Wearable Ubiquitous Technol. 1, 4 (December 2017), 143:1–143:21. https:
//doi.org/10.1145/3161163.

[141] Vikram Iyer, Maruchi Kim, Shirley Xue, Anran Wang, and Shyamnath Gollakota.
2020. Airdropping Sensor Networks from Drones and Insects. In Proc. Mobi-
Com. ACM, London, United Kingdom, 813–826. https://doi.org/10.1145/
3372224.3419981.

[142] Ravi Jain and John Wullert II. 2002. Challenges: Environmental Design for Pervasive
Computing Systems. In Proc. MobiCom (September 23–28). ACM, Atlanta, GA, USA,
263–270. https://doi.org/10.1145/570645.570678.

[143] Sushant Jain, Michael Demmer, Rabin Patra, and Kevin Fall. 2005. Using Redun-
dancy to Cope with Failures in a Delay Tolerant Network. In Proc. SIGCOMM. ACM,
Philadelphia, PA, USA, 109–120. https://doi.org/10.1145/1080091.1080106.

[144] Japan Display Inc. 2016. LPM013M126A 1.28” MIP Reflective Color
LTPS TFT LCD. https://www.j-display.com/product/pdf/Datasheet/
4LPM013M126A_specification_Ver02.pdf. Last accessed: Apr. 25, 2020.

[145] Hrishikesh Jayakumar, Arnab Raha, Woo Suk Lee, and Vijay Raghunathan. 2015.
Quickrecall: A HW/SW Approach for Computing Across Power Cycles in Transiently
Powered Computers. J. Emerg. Technol. Comput. Syst. 12, 1 (July 2015), 8:1–8:19.
https://doi.org/10.1145/2700249.

https://www.ti.com/lit/ds/symlink/tps7a87.pdf
https://www.ti.com/lit/ds/symlink/ina186.pdf
https://www.ti.com/lit/ds/symlink/ina186.pdf
https://doi.org/10.1145/3351245
https://datasheets.maximintegrated.com/en/ds/DS1390-DS1394.pdf
https://datasheets.maximintegrated.com/en/ds/DS1390-DS1394.pdf
https://doi.org/10.1145/3290605.3300388
https://doi.org/10.1145/3290605.3300388
https://doi.org/10.1145/3161163
https://doi.org/10.1145/3161163
https://doi.org/10.1145/3372224.3419981
https://doi.org/10.1145/3372224.3419981
https://doi.org/10.1145/570645.570678
https://doi.org/10.1145/1080091.1080106
https://www.j-display.com/product/pdf/Datasheet/4LPM013M126A_specification_Ver02.pdf
https://www.j-display.com/product/pdf/Datasheet/4LPM013M126A_specification_Ver02.pdf
https://doi.org/10.1145/2700249

134 REFERENCES

[146] Asangi Jayatilaka, Quoc Hung Dang, Shengjian Jammy Chen, Renuka Visvanathan,
Christophe Fumeaux, and Damith C. Ranasinghe. 2019. Designing Batteryless
Wearables for Hospitalized Older People. In Proc. ISWC. ACM, London, UK, 91–95.
https://doi.org/10.1145/3341163.3347740.

[147] Kang Eun Jeon, James She, Jason Xue, Sang-Ha Kim, and Soochang Park. 2019.
LuXbeacon—A Batteryless Beacon for Green IoT: Design, Modeling, and Field Tests.
IEEE Internet Things J. 6, 3 (June 2019), 5001–5012. https://doi.org/10.1109/
JIOT.2019.2894798.

[148] Haojian Jin, Jingxian Wang, Zhijian Yang, Swarun Kumar, and Jason Hong.
2018. WiSh: Towards a Wireless Shape-aware World using Passive RFIDs. In
Proc. MobiSys. ACM, Munich, Germany, 428–441. https://doi.org/10.1145/
3210240.3210328.

[149] Kumara Kahatapitiya, Chamod Weerasinghe, Jinal Jayawardhana, Hiranya Ku-
ruppu, Kanchana Thilakarathna, and Dileeka Dias. 2018. Low-power Step
Counting Paired with Electromagnetic Energy Harvesting for Wearables. In Proc.
ISWC (October 8–12). ACM, Singapore, 218–219. https://doi.org/10.1145/
3267242.3267291.

[150] Mustafa Emre Karagozler, Ivan Poupyrev, Gary K. Fedder, and Yuri Suzuki.
2013. Paper Generators: Harvesting Energy from Touching, Rubbing and Slid-
ing. In Proc. UIST. ACM, St. Andrews, UK, 23–30. https://doi.org/10.1145/
2501988.2502054.

[151] Mohamad Katanbaf, Anthony Weinand, and Vamsi Talla. 2021. Simplifying
Backscatter Deployment: Full-Duplex LoRa Backscatter. In Proc. NSDI. USENIX, Vir-
tual Event, 955–972. https://www.usenix.org/system/files/nsdi21spring-
katanbaf.pdf.

[152] Keiko Katsuragawa, Ju Wang, Ziyang Shan, Ningshan Ouyang, Omid Abari, and
Daniel Vogel. 2019. Tip-Tap: Battery-free Discrete 2D Fingertip Input. In Proc.
UIST. ACM, New Orleans, LA, US, 1045–1057. https://doi.org/10.1145/
3332165.3347907.

[153] Giannis Kazdaridis, Nikos Sidiropoulos, Ioannis Zografopoulos, Polychronis Syme-
onidis, and Thanasis Korakis. 2020. Nano-things: Pushing Sleep Current Con-
sumption to the Limits in IoT Platforms. In Proc. IoT. ACM, Malmö, Sweden, 1–8.
https://doi.org/10.1145/3410992.3410998.

[154] Keithley Instruments, LLC. 2021. 2450 SourceMeter Source Measure-
ment Unit Instrument. https://download.tek.com/datasheet/1KW-60904-
2_2450_Datasheet_072021.pdf. Last accessed: Sep. 11, 2021.

[155] Bryce Kellogg, Aaron Parks, Shyamnath Gollakota, Joshua R. Smith, and David
Wetherall. 2014. Wi-Fi Backscatter: Internet Connectivity for RF-Powered Devices.
In Proc. SIGCOMM. ACM, Chicago, IL, USA, 607–618. https://doi.org/10.1145/
2740070.2626319.

https://doi.org/10.1145/3341163.3347740
https://doi.org/10.1109/JIOT.2019.2894798
https://doi.org/10.1109/JIOT.2019.2894798
https://doi.org/10.1145/3210240.3210328
https://doi.org/10.1145/3210240.3210328
https://doi.org/10.1145/3267242.3267291
https://doi.org/10.1145/3267242.3267291
https://doi.org/10.1145/2501988.2502054
https://doi.org/10.1145/2501988.2502054
 https://www.usenix.org/system/files/nsdi21spring-katanbaf.pdf
 https://www.usenix.org/system/files/nsdi21spring-katanbaf.pdf
https://doi.org/10.1145/3332165.3347907
https://doi.org/10.1145/3332165.3347907
https://doi.org/10.1145/3410992.3410998
https://download.tek.com/datasheet/1KW-60904-2_2450_Datasheet_072021.pdf
https://download.tek.com/datasheet/1KW-60904-2_2450_Datasheet_072021.pdf
https://doi.org/10.1145/2740070.2626319
https://doi.org/10.1145/2740070.2626319

REFERENCES 135

[156] Ben Kenwright. 2012. Fast Efficient Fixed-Size Memory Pool: No Loops and No
Overhead. In Proc. Computation Tools. IARIA, Nice, France, 1–6.

[157] Azam Khan. 2011. Swimming Upstream in Sustainable Design. Interactions 18, 5
(September 2011), 12—-14. https://doi.org/10.1145/2008176.2008181.

[158] Mostafa Khoshnevisan and J. Nicholas Laneman. 2017. Intermittent Communi-
cation. IEEE Trans. Inf. Theory 63, 7 (July 2017), 4089–4102. https://doi.org/
10.1109/TIT.2017.2692239.

[159] Daeyong Kim, Junick Ahn, Jun Shin, and Hojung Cha. 2021. Ray Tracing-based Light
Energy Prediction for Indoor Batteryless Sensors. ACM Interact. Mob. Wearable
Ubiquitous Technol. 5, 1 (March 2021), 17:1–17:27. https://doi.org/10.1145/
3448086.

[160] Hyung-Sin Kim, Michael P. Andersen, Kaifei Chen, Sam Kumar, William J. Zhao,
Kevin Ma, and David E. Culler. 2018. System Architecture Directions for Post-
SoC/32-bit Networked Sensors. In Proc. SenSys (November 4–7,). ACM, Shenzhen,
China, 264–277. https://doi.org/10.1145/3274783.3274839.

[161] Yoojung Kim, Arpita Bhattacharya, Julie A. Kientz, and Jin Ha Lee. 2020. “It Should
Be a Game for Fun, Not Exercise”: Tensions in Designing Health-Related Features
for Pokémon GO. In Proc. CHI (April 25–30). ACM, Honolulu, HI, USA, 1–13. https:
//doi.org/10.1145/3313831.3376830.

[162] Bran Knowles, Lynne Blair, Mike Hazas, and Stuart Walker. 2013. Exploring Sus-
tainability Research in Computing: Where we Are and Where we go Next. In
Proc. UbiComp (September 8–12). ACM, Zurich, Switzerland, 305–314. https:
//doi.org/10.1145/2493432.2493474.

[163] Koninklijke Philips N.V. 2021. Hue Smart Light Bulb White Ambiance E27.
https://www.philips-hue.com/en-gb/p/hue-white-ambiance-1-pack-
e27/8718699673147. Last accessed: Aug. 19, 2021.

[164] Vito Kortbeek, Abu Bakar, Stefany Cruz Kasım Sinan Yıldırım, Przemysław
Pawełczak, and Josiah Hester. 2020. BFree: Enabling Battery-free Sensor Prototyp-
ing with Python. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 4 (December
2020), 135:1–111:39. https://doi.org/10.1145/3432191.

[165] Vito Kortbeek, Souradip Ghosh, Josiah Hester, Simone Campanoni, and Prze-
mysław Pawełczak. 2022. WARio: Efficient Code Generation for Intermittent
Computing. In Proc. PLDI (June 13–17). ACM, San Diego, CA, USA, 777–791.
https://doi.org/10.1145/3519939.3523454.

[166] Vito Kortbeek, Kasım Sinan Yıldırım, Abu Bakar, Jacob Sorber, Josiah Hester,
and Przemysław Pawełczak. 2020. Time-sensitive Intermittent Computing Meets
Legacy Software. In Proc. ASPLOS. ACM, Lausanne, Switzerland, 85–99. https:
//doi.org/10.1145/3373376.3378476.

https://doi.org/10.1145/2008176.2008181
https://doi.org/10.1109/TIT.2017.2692239
https://doi.org/10.1109/TIT.2017.2692239
https://doi.org/10.1145/3448086
https://doi.org/10.1145/3448086
https://doi.org/10.1145/3274783.3274839
https://doi.org/10.1145/3313831.3376830
https://doi.org/10.1145/3313831.3376830
https://doi.org/10.1145/2493432.2493474
https://doi.org/10.1145/2493432.2493474
https://www.philips-hue.com/en-gb/p/hue-white-ambiance-1-pack-e27/8718699673147
https://www.philips-hue.com/en-gb/p/hue-white-ambiance-1-pack-e27/8718699673147
https://doi.org/10.1145/3432191
https://doi.org/10.1145/3519939.3523454
https://doi.org/10.1145/3373376.3378476
https://doi.org/10.1145/3373376.3378476

136 REFERENCES

[167] Andre Lam, Ivan Talev, and Jennifer Kim. 2020. Design life-Cycle: University of
California, Davis, CA, USA, Department of Design’s Undergraduate Students Project
Designed by Christina Cogdell. http://www.designlife-cycle.com/nintendo-
switch. Last accessed: Apr. 30, 2020.

[168] Trong Nhan Le, Alain Pegatoquet, Olivier Berder, and Olivier Sentieys. 2015. Energy-
Efficient Power Manager and MAC Protocol for Multi-Hop Wireless Sensor Net-
works Powered by Periodic Energy Harvesting Sources. IEEE Sensors J. 15, 12
(December 2015), 7208–7220. https://doi.org/10.1109/JSEN.2015.2472566.

[169] Seulki Lee, Bashima Islam, Yubo Luo, and Shahriar Nirjon. 2019. Intermittent
Learning: On-Device Machine Learning on Intermittently Powered System. ACM
Interact. Mob. Wearable Ubiquitous Technol. 3, 4 (December 2019), 141:1–141:30.
https://doi.org/10.1145/3369837.

[170] Christoph Lenzen, Philipp Sommer, and Roger Wattenhofer. 2015. PulseSync: An
Efficient and Scalable Clock Synchronization Protocol. IEEE/ACM Trans. Netw. 23,
3 (June 2015), 717–727. https://doi.org/10.1109/TNET.2014.2309805.

[171] Dong Li, Feng Ding, Qian Zhang, Run Zhao, Jinshi Zhang, and Dong Wang. 2017.
TagController: A Universal Wireless and Battery-free Remote Controller using
Passive RFID Tags. In Proc. MobiQuitous. ACM, Melbourne, VIC, Australia, 166–175.
https://doi.org/10.1145/3144457.3144498.

[172] Hanchuan Li, Eric Brockmeyer, Elizabeth J. Carter, Josh Fromm, Scott E. Hudson,
Shwetak N. Patel, and Alanson Sample. 2016. PaperID: A Technique for Drawing
Functional Battery-Free Wireless Interfaces on Paper. In Proc. CHI (May 7–12). ACM,
San Jose, CA, USA, 5885–5896. https://doi.org/10.1145/2858036.2858249.

[173] Tianxing Li and Xia Zhou. 2018. Battery-Free Eye Tracker on Glasses. In Proc.
MobiCom (October 29 — November 2). ACM, New Delhi, India, 67–82. https:
//doi.org/10.1145/3241539.3241578.

[174] Yong Li, Pan Hui, Depeng Jin, and Sheng Chen. 2015. Delay-Tolerant Network Pro-
tocol Testing and Evaluation. https://doi.org/10.1109/MCOM.2015.7010543.
IEEE Communications Magazine 53, 1 (January 2015), 258–266.

[175] Yichen Li, Tianxing Li, Xing-Dong Yang Ruchir A. Patel, and Xia Zhou. 2018. Self-
Powered Gesture Recognition with Ambient Light. In Proc. UIST. ACM, Berlin,
Germany, 595–608. https://doi.org/10.1145/3242587.3242635.

[176] Yang Li, Rui Tan, and David K. Y. Yau. 2017. Natural Timestamping using Powerline
Electromagnetic Radiation. In Proc. IPSN (April 18–20). ACM/IEEE, Pittsburgh, PA,
USA, 55–66. https://doi.org/10.1145/3055031.3055075.

[177] Zhuying Li, Yan Wang, Wei Wang, Weikang Chen, Ti Hoang, Stefan Greuter, and Flo-
rian ‘Floyd’ Mueller. 2019. HeatCraft: Designing Playful Experiences with Ingestible
Sensors via Localized Thermal Stimuli. In Proc. CHI (May 4–9). ACM, Glasgow,
Scotland, UK, 576:1–576:12. https://doi.org/10.1145/3290605.3300806.

http://www.designlife-cycle.com/nintendo-switch
http://www.designlife-cycle.com/nintendo-switch
https://doi.org/10.1109/JSEN.2015.2472566
https://doi.org/10.1145/3369837
https://doi.org/10.1109/TNET.2014.2309805
https://doi.org/10.1145/3144457.3144498
https://doi.org/10.1145/2858036.2858249
https://doi.org/10.1145/3241539.3241578
https://doi.org/10.1145/3241539.3241578
https://doi.org/10.1109/MCOM.2015.7010543
https://doi.org/10.1145/3242587.3242635
https://doi.org/10.1145/3055031.3055075
https://doi.org/10.1145/3290605.3300806

REFERENCES 137

[178] Rong-Hao Liang, Meng-Ju Hsieh, Jheng-You Ke, Jr-Ling Guo, and Bing-Yu Chen.
2018. RFIMatch: Distributed Batteryless Near-Field Identification Using RFID-
Tagged Magnet-Biased Reed Switches. In Proc. UIST. ACM, Berlin, Germany, 473–
483. https://doi.org/10.1145/3242587.3242620.

[179] Lightricity Limited. 2021. EXL2-1V50 Solar Panel Module. https://
lightricity.co.uk/excelllight-exl2-1v50-1. Last accessed: Sep. 9, 2021.

[180] Roman Lim, Balz Maag, and Lothar Thiele. 2016. Time-of-Flight Aware Time
Synchronization for Wireless Embedded Systems. In Proc. EWSN (Graz, Austria,
February 15–17). ACM, Graz, Austria, 149–158.

[181] Qingzhi Liu, Wieger IJntema, Anass Drif, Przemysław Pawełczak, Marco Zuniga,
and Kasım Sinan Yıldırım. 2021. Perpetual Bluetooth Communications for the
IoT. IEEE Sens. J. 21, 1 (January 2021), 829–837. https://doi.org/10.1109/
JSEN.2020.3012814.

[182] Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gollakota, David Wetherall,
and Joshua R. Smith. 2013. Ambient Backscatter: Wireless Communication out
of Thin Air. In Proc. SIGCOMM (August 12–16). ACM, Hong Kong, China, 39–50.
https://doi.org/10.1145/2486001.2486015.

[183] Xiao Lu, Ping Wang, Dusit Niyato, Dong In Kim, and Zhu Han. 2015. Wireless Net-
works with RF Energy Harvesting: A Contemporary Survey. IEEE Commun. Surveys
Tuts. 17, 2 (2015), 757–789. https://doi.org/10.1109/COMST.2014.2368999.

[184] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel.
2017. Intermittent Computing: Challenges and Opportunities. In Proc. SNAPL.
Schloss Dagstuhl, Alisomar, CA, USA, 8:1–8:14. https://drops.dagstuhl.de/
opus/volltexte/2017/7131/pdf/LIPIcs-SNAPL-2017-8.pdf.

[185] Brandon Lucia and Benjamin Ransford. 2015. A simpler, Safer Programming and
Execution Model for Intermittent Systems. In Proc. PLDI (August 13–17). ACM,
Portland, OR, USA, 575–585. https://doi.org/10.1145/2737924.2737978.

[186] Dong Ma, Guohao Lan, Mahbub Hassan, Wen Hu, Mushfika Baishakhi Upama,
Ashraf Uddin, and Moustafa Youssef. 2019. SolarGest: Ubiquitous and Battery-free
Gesture Recognition using Solar Cells. In Proc. MobiCom (April 21–25). ACM, Los
Cabos, Mexico, 12:1–12:15. https://doi.org/10.1145/3300061.3300129.

[187] Junchao Ma, Wei Lou, Yanwei Wu, Xiang-Yang Li, and Guihai Chen. 2009. Energy
Efficient TDMA Sleep Scheduling in Wireless Sensor Networks. In Proc. INFOCOM
(April 19–25,). IEEE, Rio de Janeiro, Brazil, 630–638. https://doi.org/10.1109/
INFCOM.2009.5061970.

[188] Yunfei Ma, Nicholas Selby, and Fadel Adib. 2017. Drone Relays for Battery-Free
Networks. In Proc. SIGCOMM (August 21–25). ACM, Los Angeles, CA, USA, 335—-
347. https://doi.org/10.1145/3098822.3098847.

https://doi.org/10.1145/3242587.3242620
https://lightricity.co.uk/excelllight-exl2-1v50-1
https://lightricity.co.uk/excelllight-exl2-1v50-1
https://doi.org/10.1109/JSEN.2020.3012814
https://doi.org/10.1109/JSEN.2020.3012814
https://doi.org/10.1145/2486001.2486015
https://doi.org/10.1109/COMST.2014.2368999
https://drops.dagstuhl.de/opus/volltexte/2017/7131/pdf/LIPIcs-SNAPL-2017-8.pdf
https://drops.dagstuhl.de/opus/volltexte/2017/7131/pdf/LIPIcs-SNAPL-2017-8.pdf
https://doi.org/10.1145/2737924.2737978
https://doi.org/10.1145/3300061.3300129
https://doi.org/10.1109/INFCOM.2009.5061970
https://doi.org/10.1109/INFCOM.2009.5061970
https://doi.org/10.1145/3098822.3098847

138 REFERENCES

[189] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Intermittent Execu-
tion without Checkpoints. In Proc. OOPSLA (October 22–27). ACM, Vancouver, BC,
Canada, 96:1–96:30. https://doi.org/10.1145/3133920.

[190] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2018. Adaptive Dynamic Check-
pointing for Safe Efficient Intermittent Computing. In Proc. OSDI (October 8–10).
USENIX, Carlsbad, CA, USA, 129–144. https://www.usenix.org/system/files/
osdi18-maeng.pdf.

[191] Kiwan Maeng and Brandon Lucia. 2019. Supporting Peripherals in Intermittent
Systems with Just-in-time Checkpoints. In Proc. PLDI. ACM, Phoenix, AZ, USA,
1101–1116. https://doi.org/10.1145/3314221.3314613.

[192] Andrea Maioli, Luca Mottola, Muhammad Hamad Alizai, and Junaid Haroon
Siddiqui. 2021. Discovering the Hidden Anomalies of Intermittent Computing.
https://www.ewsn.org/file-repository/ewsn2021/Article1.pdf. In Proc.
EWSN (February 17–19). ACM, Delft, The Netherlands, 1–12.

[193] Amjad Yousef Majid, Carlo Delle Donne, Kiwan Maeng, Alexei Colin, Kasım Sinan
Yıldırım, Brandon Lucia, and Przemysław Pawełczak. 2020. Dynamic Task-based
Intermittent Execution for Energy-harvesting Devices. ACM Trans. Sens. Netw. 16,
1 (February 2020), 5:1–5:24. https://doi.org/10.1145/3360285.

[194] Amjad Yousef Majid, Michel Jansen, Guillermo Ortas Ortas, Kasım Sinan Yıldırım,
and Przemysław Pawełczak. 2019. Multi-hop Backscatter Tag-to-Tag Network.
In Proc. INFOCOM. IEEE, Paris, France, 721–729. https://doi.org/10.1109/
INFOCOM.2019.8737551.

[195] Jennifer C. Mankoff, Eli Blevis, Alan Borning, Batya Friedman, Susan R. Fussell, Jay
Hasbrouck, Allison Woodruff, and Phoebe Sengers. 2007. Environmental Sustain-
ability and Interaction. In Proc. CHI (April 28 – May 3). ACM, San Jose, CA, USA,
2121–2124. https://doi.org/10.1145/1240866.1240963.

[196] Gaia Maselli, Mauro Piva, Giorgia Ramponi, and Deepak Ganesan. 2016. Demo:
JoyTag: a battery-less videogame controller exploiting RFID backscattering. In Proc.
MobiCom. ACM, New York City, NY, USA, 515–516. https://doi.org/10.1145/
2973750.2985628.

[197] Yogesh Kumar Meena, Krishna Seunarine, Deepak Ranjan Sahoo, Simon Robin-
son, Jennifer Pearson, Chi Zhang, Matt Carnie, Adam Pockett, Andrew Prescott,
Suzanne K. Thomas, Harrison Ka Hin Lee, and Matt Jones. 2020. PV-Tiles: Towards
Closely-Coupled Photovoltaic and Digital Materials for Useful, Beautiful and Sus-
tainable Interactive Surfaces. In Proc. CHI (April 25–30). ACM, Honolulu, HI, USA,
1–12. https://doi.org/10.1145/3313831.3376368.

[198] Hashan Roshantha Mendis and Pi-Cheng Hsiu. 2019. Accumulative Display Updat-
ing for Intermittent Systems. ACM Transactions on Embedded Computing Systems
18, 5s (October 2019), 72:1–72:22. https://doi.org/10.1145/3358190.

https://doi.org/10.1145/3133920
https://www.usenix.org/system/files/osdi18-maeng.pdf
https://www.usenix.org/system/files/osdi18-maeng.pdf
https://doi.org/10.1145/3314221.3314613
https://www.ewsn.org/file-repository/ewsn2021/Article1.pdf
https://doi.org/10.1145/3360285
https://doi.org/10.1109/INFOCOM.2019.8737551
https://doi.org/10.1109/INFOCOM.2019.8737551
https://doi.org/10.1145/1240866.1240963
https://doi.org/10.1145/2973750.2985628
https://doi.org/10.1145/2973750.2985628
https://doi.org/10.1145/3313831.3376368
https://doi.org/10.1145/3358190

REFERENCES 139

[199] Geoff V. Merrett and Bashir M. Al-Hashimi. 2017. Energy-Driven Computing: Re-
thinking the Design of Energy Harvesting Systems. In Proc. DATE. IEEE, Lausanne,
Switzerland, 960–965. https://doi.org/10.23919/DATE.2017.7927130.

[200] Ambiq Micro. 2019. AM18xx Family Ultra-Low Power RTCs
Data Sheet. https://www.ambiqmicro.com/static/rtc/files/
AM18X5_Data_Sheet_DS0003V1p3.pdf. Last accessed: Jan. 19, 2020.

[201] Microchip Technology Inc. 2016. SAM4L8 Xplained Pro Evaluation Kit. https:
//www.microchip.com/en-us/development-tool/ATSAM4L8-XPRO. Last ac-
cessed: Jun. 16, 2022.

[202] Evan Mills, Norman Bourassa, Leo Rainer, Jimmy Mai, Arman Shehabi, and
Nathaniel Mills. 2019. Toward Greener Gaming: Estimating National Energy Use
and Energy Efficiency Potential. The Computer Games Journal 8 (October 2019),
157–178. https://doi.org/10.1007/s40869-019-00084-2.

[203] Neeru Mittal, Alazne Ojanguren, Markus Niederberger, and Erlantz Lizundia. 2021.
Degradation Behavior, Biocompatibility, Electrochemical Performance, and Cir-
cularity Potential of Transient Batteries. Advanced Science 8, 2004814 (May 2021),
1–26. https://doi.org/10.1002/ADVS.202004814.

[204] Noor Mohammed, Rui Wang, Robert W. Jackson, Yeonsik Noh, Jeremy Gummeson,
and Sunghoon Ivan Lee. 2021. ShaZam: Charge-Free Wearable Devices via Intra-
Body Power Transfer from Everyday Objects. ACM Interact. Mob. Wearable Ubiqui-
tous Technol. 5, 2 (June 2021), 75:1–75:25. https://doi.org/10.1145/3463505.

[205] Florian ‘Floyd’ Mueller, Richard Byrne, Josh Andres, and Rakesh Patibanda. 2018.
Experiencing the Body as Play. In Proc. CHI (April 21–26). ACM, Montréal, QC,
Canada, 210:1–210:13. https://doi.org/10.1145/3173574.3173784.

[206] Saman Naderiparizi, Mehrdad Hessar, Vamsi Talla, Shyamnath Gollakota, and
Joshua R. Smith. 2018. Towards Battery-Free HD Video Streaming. In Proc. NSDI
(April 9–11). USENIX, Renton, WA, USA, 233–247. https://www.usenix.org/
system/files/conference/nsdi18/nsdi18-naderiparizi.pdf.

[207] Saman Naderiparizi, Aaron N. Parks, Zerina Kapetanovic, Benjamin Ransford,
and Joshua R. Smith. 2015. WISPCam: A Battery-Free RFID Camera. In Proc.
IEEE RFID. IEEE, San Diego, CA, USA, 166–173. https://doi.org/10.1109/
RFID.2015.7113088.

[208] Saman Naderiparizi, Yi Zhao, James Youngquist, Alanson P. Sample, and Joshua R.
Smith. 2015. Self-Localizing Battery-Free Cameras. In Proc. UbiComp. ACM, Osaka,
Japan, 445–449. https://doi.org/10.1145/2750858.2805846.

[209] Yuji Nakamura. 2019. Peak Video Game? Top Analyst Sees Industry Slump-
ing in 2019. https://www.bloomberg.com/news/articles/2019-01-23/peak-
video-game-top-analyst-sees-industry-slumping-in-2019. Last ac-
cessed: Jan. 7, 2020.

https://doi.org/10.23919/DATE.2017.7927130
https://www.ambiqmicro.com/static/rtc/files/AM18X5_Data_Sheet_DS0003V1p3.pdf
https://www.ambiqmicro.com/static/rtc/files/AM18X5_Data_Sheet_DS0003V1p3.pdf
https://www.microchip.com/en-us/development-tool/ATSAM4L8-XPRO
https://www.microchip.com/en-us/development-tool/ATSAM4L8-XPRO
https://doi.org/10.1007/s40869-019-00084-2
https://doi.org/10.1002/ADVS.202004814
https://doi.org/10.1145/3463505
https://doi.org/10.1145/3173574.3173784
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-naderiparizi.pdf
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-naderiparizi.pdf
https://doi.org/10.1109/RFID.2015.7113088
https://doi.org/10.1109/RFID.2015.7113088
https://doi.org/10.1145/2750858.2805846
https://www.bloomberg.com/news/articles/2019-01-23/peak-video-game-top-analyst-sees-industry-slumping-in-2019
https://www.bloomberg.com/news/articles/2019-01-23/peak-video-game-top-analyst-sees-industry-slumping-in-2019

140 REFERENCES

[210] Matteo Nardello, Harsh Desai, Davide Brunelli, and Brandon Lucia. 2019.
Camaroptera: a Batteryless Long-Range Remote Visual Sensing System. In
Proc. ENSsys. ACM, New York, NY, USA, 8–14. https://doi.org/10.1145/
3362053.3363491.

[211] Nexperia. 2021. 74LVC2T45; 74LVCH2T45 Dual Supply Translating
Transceiver; 3-state. https://assets.nexperia.com/documents/data-
sheet/74LVC_LVCH2T45.pdf. Last accessed: May 9, 2022.

[212] Phuc Nguyen, Ufuk Muncuk, Ashwin Ashok, Kaushik Roy Chowdhury, Marco
Gruteser, and Tam Vu. 2016. Battery-Free Identification Token for Touch Sensing
Devices. In Proc. SenSys. ACM, Stanford, CA, USA, 109–122. https://doi.org/
10.1145/2994551.2994566.

[213] Thien D. Nguyen, Jamil Y. Khan, and Duy T. Ngo. 2016. An adaptive MAC Pro-
tocol for RF Energy Harvesting Wireless Sensor Networks. In Proc. GLOBECOM
(December 4–8). IEEE, Washington, DC, USA, 1–6. https://doi.org/10.1109/
GLOCOM.2016.7841577.

[214] Nintendo Co., Ltd. 2019. Dedicated Video Game Sales Units. https://
www.nintendo.co.jp/ir/en/finance/hard_soft/index.html. Last accessed:
Apr. 30, 2020.

[215] Nintendo Co., Ltd. 2020. Nintendo Game Boy. https://en.wikipedia.org/wiki/
Game_Boy. Last accessed: Jul. 23, 2020.

[216] Nordic Semiconductor ASA. 2019. S140 BLE protocol stack (SoftDevice)
for the nRF52811, nRF52820, nRF52833 and nRF52840 SoCs. https://
www.nordicsemi.com/Products/Development-software/s140. Last accessed:
Sep. 9, 2021.

[217] Nordic Semiconductor ASA. 2020. nRF52 DK BLE and Bluetooth Mesh Sin-
gle Board Development Kit for the nRF52810 and nRF52832 SoCs. https://
www.nordicsemi.com/Products/Development-hardware/nRF52-DK. Last ac-
cessed: Sep. 9, 2021.

[218] Nordic Semiconductor ASA. 2020. nRF52840 DK BLE, Bluetooth Mesh, Near-
Field Communication (NFC), Thread and Zigbee Single Board Development Kit
for the nRF52840 SoC. https://www.nordicsemi.com/Products/Development-
hardware/nRF52840-DK. Last accessed: Sep. 9, 2021.

[219] Nordic Semiconductor ASA. 2021. nRF51822 BLE and 2.4 GHz SoC. https://
infocenter.nordicsemi.com/topic/struct_nrf51/struct/nrf51822.html.
Last accessed: Sep. 9, 2021.

[220] Nordic Semiconductor ASA. 2021. nRF52840 Multiprotocol Bluetooth 5.2
SoC supporting BLE, Bluetooth mesh, NFC, Thread and Zigbee. https://
www.nordicsemi.com/Products/nRF52840. Last accessed: Dec. 5, 2021.

https://doi.org/10.1145/3362053.3363491
https://doi.org/10.1145/3362053.3363491
https://assets.nexperia.com/documents/data-sheet/74LVC_LVCH2T45.pdf
https://assets.nexperia.com/documents/data-sheet/74LVC_LVCH2T45.pdf
https://doi.org/10.1145/2994551.2994566
https://doi.org/10.1145/2994551.2994566
https://doi.org/10.1109/GLOCOM.2016.7841577
https://doi.org/10.1109/GLOCOM.2016.7841577
https://www.nintendo.co.jp/ir/en/finance/hard_soft/index.html
https://www.nintendo.co.jp/ir/en/finance/hard_soft/index.html
https://en.wikipedia.org/wiki/Game_Boy
https://en.wikipedia.org/wiki/Game_Boy
https://www.nordicsemi.com/Products/Development-software/s140
https://www.nordicsemi.com/Products/Development-software/s140
https://www.nordicsemi.com/Products/Development-hardware/nRF52-DK
https://www.nordicsemi.com/Products/Development-hardware/nRF52-DK
https://www.nordicsemi.com/Products/Development-hardware/nRF52840-DK
https://www.nordicsemi.com/Products/Development-hardware/nRF52840-DK
https://infocenter.nordicsemi.com/topic/struct_nrf51/struct/nrf51822.html
https://infocenter.nordicsemi.com/topic/struct_nrf51/struct/nrf51822.html
https://www.nordicsemi.com/Products/nRF52840
https://www.nordicsemi.com/Products/nRF52840

REFERENCES 141

[221] Nordic Semiconductor ASA. 2021. Online Power Profiler for Bluetooth
LE. https://devzone.nordicsemi.com/power/w/opp/2/online-power-
profiler-for-bluetooth-le. Last accessed: Dec. 5, 2021.

[222] NOWI B.V. 2021. NH2D0245 Energy Harvesting Power Management Integrated
Circuit. https://www.nowi-energy.com/products-nh2. Last accessed: Sep. 9,
2021.

[223] Sam Nussey and Christopher Cushing. 2020. Nintendo Seen Extending Profit
Streak as Housebound Consumers Switch On. https://www.reuters.com/article/us-
nintendo-results-preview/nintendo-seen-extending-profit-streak-as-
housebound-consumers-switch-on-idUSKBN22C0B4. Last accessed: May
15, 2020.

[224] NXP Semiconductors N.V. 2013. Freedom Development Platform for the Kinetis
KL05 and KL04 MCUs. https://www.nxp.com/design/development-boards/
freedom-development-boards/mcu-boards/freedom-development-
platform-for-the-kinetis-kl05-and-kl04-mcus:FRDM-KL05Z. Last
accessed: Sep. 11, 2021.

[225] Netta Ofer, Idan David, Hadas Erel, and Oren Zuckerman. 2019. Coding for
Outdoor Play: A Coding Platform for Children to Invent and Enhance Outdoor
Play Experiences. In Proc. CHI (May 4–9). ACM, Glasgow, Scotland, UK, 1–12.
https://doi.org/10.1145/3290605.3300394.

[226] Kazuya Oharada, Buntarou Shizuki, and Shin Takahashi. 2017. AccelTag: A Passive
Smart ID Tag With an Acceleration Sensor for Interactive Applications. In Proc.
UIST Adjunct. ACM, Québec City, Canada, 63–64. https://doi.org/10.1145/
3131785.3131808.

[227] Open Source Community Contributors. 2021. Unicorn: a Lightweight, Multi-
platform, Multi-architecture Central Processing Unit (CPU) Emulator Framework
based on QEMU. https://github.com/unicorn-engine/unicorn. Last ac-
cessed: May 19, 2022.

[228] Open Source Community Developers. 2022. Black Magic Debug Repository. https:
//github.com/blackmagic-debug. Last accessed: May 9, 2022.

[229] Open Source Community Developers. 2022. GDB: The GNU Project Debugger
Repository. https://sourceware.org/git/binutils-gdb.git. Last accessed:
May 10, 2022.

[230] Charalampos Orfanidis, Konstantinos Dimitrakopoulos, Xenofon Fafoutis, and
Martin Jacobsson. 2019. Towards Battery-Free LPWAN Wearables. In Proc. ENSsys.
ACM, New York, NY, USA, 52–53. https://doi.org/10.1145/3362053.3363488.

[231] Packetcraft, Inc. 2021. Packetcraft Protocol Software Source Code Repository.
https://github.com/packetcraft-inc/stacks. Last accessed: Aug. 5, 2021.

https://devzone.nordicsemi.com/power/w/opp/2/online-power-profiler-for-bluetooth-le
https://devzone.nordicsemi.com/power/w/opp/2/online-power-profiler-for-bluetooth-le
https://www.nowi-energy.com/products-nh2
https://www.reuters.com/article/us-nintendo-results-preview/nintendo-seen-extending-profit-streak-as-housebound-consumers-switch-on-idUSKBN22C0B4
https://www.reuters.com/article/us-nintendo-results-preview/nintendo-seen-extending-profit-streak-as-housebound-consumers-switch-on-idUSKBN22C0B4
https://www.reuters.com/article/us-nintendo-results-preview/nintendo-seen-extending-profit-streak-as-housebound-consumers-switch-on-idUSKBN22C0B4
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-the-kinetis-kl05-and-kl04-mcus:FRDM-KL05Z
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-the-kinetis-kl05-and-kl04-mcus:FRDM-KL05Z
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-the-kinetis-kl05-and-kl04-mcus:FRDM-KL05Z
https://doi.org/10.1145/3290605.3300394
https://doi.org/10.1145/3131785.3131808
https://doi.org/10.1145/3131785.3131808
https://github.com/unicorn-engine/unicorn
https://github.com/blackmagic-debug
https://github.com/blackmagic-debug
https://sourceware.org/git/binutils-gdb.git
https://doi.org/10.1145/3362053.3363488
https://github.com/packetcraft-inc/stacks

142 REFERENCES

[232] M. R. Palacín and A. de Guibert. 2016. Why do Batteries Fail? Science 351, 6273
(2016), 1–7. https://doi.org/10.1126/science.1253292.

[233] Panasonic Electric Works Europe AG. 2019. AM-1417CA Amorphous Silicon
Solar Cell. https://www.panasonic-electric-works.com/cps/rde/xbcr/
pew_eu_en/ca_amorton_solar_cells_en.pdf. Last accessed: Apr. 25, 2020.

[234] Panic Inc. 2020. Playdate Console Home Page. https://play.date. Last accessed:
May 2, 2020.

[235] Arielle Pardes. 2020. The WIRED Guide to the Internet of Things. WIRED, https:
//www.wired.com/story/wired-guide-internet-of-things. Last accessed:
Jul. 6, 2021.

[236] Aaron N. Parks, Angli Liu, Shyamnath Gollakota, and Joshua R. Smith. 2014.
Turbocharging Ambient Backscatter Communication. In Proc. SIGCOMM. ACM,
Chicago, IL, USA, 619–630. https://doi.org/10.1145/2740070.2626312.

[237] Carlos Perez-Penichet, Fredrick Hermans, Ambuj Varshney, and Thiemo Voigt.
2016. Augmenting IoT Networks with Backscatter-Enabled Passive Sensor Tags.
In Proc. HotWireless. ACM, New York City, NY, USA, 23–27. https://doi.org/
10.1145/2980115.2980132.

[238] Matthai Philipose, Joshua R. Smith, Bing Jiang, Alexander Mamishev, Sumit Roy,
and Kishor Sundara-Rajan. 2005. Battery-Free Wireless Identification and Sensing.
IEEE Pervasive Comput. 4, 1 (Jan.–Mar. 2005), 37–45. https://doi.org/10.1109/
MPRV.2005.7.

[239] Rajeev Piyare, Amy L. Murphy, Csaba Kiraly, Pietro Tosato, and Davide Brunell.
2017. Ultra Low Power Wake-Up Radios: A Hardware and Networking Survey.
IEEE Commun. Surv. Tutorials 19, 4 (Fourth Quarter 2017), 2117–2157. https:
//doi.org/10.1109/COMST.2017.2728092.

[240] Powercast Co. 2016. TX91501 Powercaster Transmitter. www.powercastco.com/wp-
content/uploads/2016/11/User-Manual-TX-915-01-Rev-A-4.pdf. Last ac-
cessed: Jan. 19, 2020.

[241] Powercast Corp. 2018. P2110 Powerharvester Evaluation Board. https://
www.powercastco.com/products/development-kits/#P2110-EVB. Last ac-
cessed: Aug. 10, 2021.

[242] R. Venkatesha Prasad, Shruti Devasenapathy, Vijay S. Rao, and Javad Vazife-
hdan. 2014. Reincarnation in the Ambiance: Devices and Networks with En-
ergy Harvesting. IEEE Commun. Surveys Tuts. 11, 1 (First Quarter 2014), 195–213.
https://doi.org/10.1109/SURV.2013.062613.00235.

[243] United Nations Environment Programme. 2020. Playing for the Planet Consortium.
https://playing4theplanet.org. Last accessed: Apr. 28, 2020.

https://doi.org/10.1126/science.1253292
https://www.panasonic-electric-works.com/cps/rde/xbcr/pew_eu_en/ca_amorton_solar_cells_en.pdf
https://www.panasonic-electric-works.com/cps/rde/xbcr/pew_eu_en/ca_amorton_solar_cells_en.pdf
https://play.date
https://www.wired.com/story/wired-guide-internet-of-things
https://www.wired.com/story/wired-guide-internet-of-things
https://doi.org/10.1145/2740070.2626312
https://doi.org/10.1145/2980115.2980132
https://doi.org/10.1145/2980115.2980132
https://doi.org/10.1109/MPRV.2005.7
https://doi.org/10.1109/MPRV.2005.7
https://doi.org/10.1109/COMST.2017.2728092
https://doi.org/10.1109/COMST.2017.2728092
www.powercastco.com/wp-content/uploads/2016/11/User-Manual-TX-915-01-Rev-A-4.pdf
www.powercastco.com/wp-content/uploads/2016/11/User-Manual-TX-915-01-Rev-A-4.pdf
https://www.powercastco.com/products/development-kits/#P2110-EVB
https://www.powercastco.com/products/development-kits/#P2110-EVB
https://doi.org/10.1109/SURV.2013.062613.00235
https://playing4theplanet.org

REFERENCES 143

[244] Qt Group. 2022. Qt Software Development Framework Product Website. https:
//www.qt.io/product/framework. Last accessed: Oct. 15, 2022.

[245] Amir Rahmat, Mastooreh Salajegheh, Dan Holcomb, Jacob Sorber, Wayne P.
Burleson, and Kevin Fu. 2012. TARDIS: Time and Remanence Decay in SRAM to
Implement Secure Protocols on Embedded Devices without Clocks. In Proc. Secu-
rity (August 8–10). USENIX, Bellevue, WA, USA, 1–16. https://www.usenix.org/
system/files/conference/usenixsecurity12/sec12-final71.pdf.

[246] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System Sup-
port for Long-running Computation on RFID-scale Devices. https://doi.org/
10.1145/1950365.1950386. In Proc. ASPLOS. ACM, Newport Beach, CA, USA, 159–
170.

[247] Reelight. 2011. SL150 Hub Lights. https://www.reelight.com/products/hub-
lights. Last accessed: Jan. 19, 2020.

[248] David Richardson, Arshad Jhumka, and Luca Mottola. 2021. Protocol Transforma-
tion for Transiently Powered Wireless Sensor Networks. In Proc. SAC. ACM, Virtual
Event, 1112–1121. https://doi.org/10.1145/3412841.3441985.

[249] Mohammad Rostami, Jeremy Gummeson, Ali Kiaghadi, and Deepak Ganesan.
2018. Polymorphic Radios: A New Design Paradigm for Ultra-low Power Com-
munication. In Proc. SIGCOMM. ACM, Budapest, Hungary, 446–460. https:
//doi.org/10.1145/3230543.3230571.

[250] Michel Rotteluthner, Thomas C. Schmidt, and Matthias Wählisch. 2021. Sense
Your Power: The ECO Approach to Energy Awareness for IoT Devices. ACM Trans.
Embed. Comput. Syst. 20, 3 (March 2021), 24:1–14:23. https://dl.acm.org/doi/
10.1145/3441643.

[251] Emily Ruppel and Brandon Lucia. 2019. Transactional Concurrency Control for
Intermittent, Energy-Harvesting Computing Systems. In Proc. PLDI. ACM, Phoenix,
AZ, USA, 1085–1100. https://doi.org/10.1145/3314221.3314583.

[252] Kimiko Ryokai, Peiqi Su, Eungchan Kim, and Bob Rollins. 2014. EnergyBugs: Energy
Harvesting Wearables for Children. In Proc. CHI (Apr. 26 – May 1). ACM, Toronto,
ON, Canada, 1039–1048. https://doi.org/10.1145/2556288.2557225.

[253] Ali Saffari, Mehrdad Hessar, Saman Naderiparizi, and Joshua R. Smith. 2019.
Battery-Free Wireless Video Streaming Camera System. In Proc. RFID. IEEE,
Phoenix, AZ, USA, 1–8. https://doi.org/10.1109/RFID.2019.8719264.

[254] Ali Saffari, Sin Yong Tan, Mohamad Katanbaf, Homagni Saha, Joshua R. Smith,
and Soumik Sarkar. 2021. Battery-Free Camera Occupancy Detection System.
In Proc. EMDL. ACM, Virtual, WI, USA, 13–18. https://doi.org/10.1145/
3469116.3470013.

https://www.qt.io/product/framework
https://www.qt.io/product/framework
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final71.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final71.pdf
https://doi.org/10.1145/1950365.1950386
https://doi.org/10.1145/1950365.1950386
https://www.reelight.com/products/hub-lights
https://www.reelight.com/products/hub-lights
https://doi.org/10.1145/3412841.3441985
https://doi.org/10.1145/3230543.3230571
https://doi.org/10.1145/3230543.3230571
https://dl.acm.org/doi/10.1145/3441643
https://dl.acm.org/doi/10.1145/3441643
https://doi.org/10.1145/3314221.3314583
https://doi.org/10.1145/2556288.2557225
https://doi.org/10.1109/RFID.2019.8719264
https://doi.org/10.1145/3469116.3470013
https://doi.org/10.1145/3469116.3470013

144 REFERENCES

[255] Saleae, Inc. 2021. Logic Pro 16 USB Logic Analyzer. http://
downloads.saleae.com/specs/Logic+Pro+16+Product+Fact+Sheet.pdf.
Last accessed: Aug. 19, 2021.

[256] Saleae Inc. 2021. Logic Pro 8 USB Logic Analyzer. http://
downloads.saleae.com/specs/Logic+Pro+8+Product+Fact+Sheet.pdf.
Last accessed: Jun. 16, 2022.

[257] Alanson P. Sample, Daniel J. Yeager, Pauline S. Powledge, Alexander V. Mamishev,
and Joshua R. Smith. 2008. Design of an RFID-based battery-free programmable
sensing platform. IEEE Trans. Instrum. Meas. 57, 11 (November 2008), 2608–2615.
https://doi.org/10.1109/TIM.2008.925019.

[258] Nurani Saoda and Bradford Campbell. 2019. No Batteries Needed: Providing
Physical Context with Energy-Harvesting Beacons. In Proc. ENSSys. ACM, New York,
NY, USA, 15–21. https://doi.org/10.1145/3362053.3363489.

[259] Takuya Sasatani, Chouchang Jack Yang, Matthew J. Chabalko, Yoshihiro Kawahara,
and Alanson P. Sample. 2018. Room-Wide Wireless Charging and Load-Modulation
Communication via Quasistatic Cavity Resonance. ACM Interact. Mob. Wearable
Ubiquitous Technol. 2, 4 (December 2018), 188:1–188:23. https://doi.org/
10.1145/3287066.

[260] Seth Schiesel. 2020. For the Uninitiated and Bored, an Introduction to
the World of Gaming. https://www.nytimes.com/2020/04/01/arts/gaming-
introduction-basics-quarantine-coronavirus.html. Last accessed: Apr.
28, 2020.

[261] Oliver Schneider, Jotaro Shigeyama, Robert Kovacs, Thijs Roumen, Sebastian Mar-
wecki, Nico Boeckhoff, Daniel Amadeus Gloeckner, Jonas Bounama, and Patrick
Baudisch. 2018. DualPanto: A Haptic Device that Enables Blind Users to Continu-
ously Interact with Virtual Worlds. In Proc. UIST. ACM, Berlin, Germany, 877–887.
https://doi.org/10.1145/3242587.3242604.

[262] Jason Schreier. 2020. Gaming Sales Are Up, but Production Is Down.
https://www.nytimes.com/2020/04/21/technology/personaltech/
coronavirus-video-game-production.html. Last accessed: Apr. 29, 2020.

[263] SEGGER Microcontroller GmbH. 2021. J-Link Educational Debug Probe. https:
//www.segger.com/products/debug-probes/j-link/models/j-link-edu.
Last accessed: Sep. 9, 2021.

[264] Seiko Instruments Inc. 2021. CPX3225A752D Chip-type Electric Double Layer
Capacitor. https://www.sii.co.jp/en/me/datasheets/chip-capacitor/
cpx3225a752d. Last accessed: Sep. 9, 2021.

[265] Semiconductor Components Industries LLC. 2017. NSR1030QMUTWG Schottky
Full Diode Bridge. https://www.onsemi.com/pub/Collateral/NSR1030QMU-
D.PDF. Last accessed: Apr. 25, 2020.

http://downloads.saleae.com/specs/Logic+Pro+16+Product+Fact+Sheet.pdf
http://downloads.saleae.com/specs/Logic+Pro+16+Product+Fact+Sheet.pdf
http://downloads.saleae.com/specs/Logic+Pro+8+Product+Fact+Sheet.pdf
http://downloads.saleae.com/specs/Logic+Pro+8+Product+Fact+Sheet.pdf
https://doi.org/10.1109/TIM.2008.925019
https://doi.org/10.1145/3362053.3363489
https://doi.org/10.1145/3287066
https://doi.org/10.1145/3287066
https://www.nytimes.com/2020/04/01/arts/gaming-introduction-basics-quarantine-coronavirus.html
https://www.nytimes.com/2020/04/01/arts/gaming-introduction-basics-quarantine-coronavirus.html
https://doi.org/10.1145/3242587.3242604
https://www.nytimes.com/2020/04/21/technology/personaltech/coronavirus-video-game-production.html
https://www.nytimes.com/2020/04/21/technology/personaltech/coronavirus-video-game-production.html
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu
https://www.sii.co.jp/en/me/datasheets/chip-capacitor/cpx3225a752d
https://www.sii.co.jp/en/me/datasheets/chip-capacitor/cpx3225a752d
https://www.onsemi.com/pub/Collateral/NSR1030QMU-D.PDF
https://www.onsemi.com/pub/Collateral/NSR1030QMU-D.PDF

REFERENCES 145

[266] NXP Semiconductors. 2015. PCF85263 Tiny Real-Time Clock Data Sheet. https:
//www.nxp.com/docs/en/data-sheet/PCF85263A.pdf. Last accessed: Apr. 10,
2019.

[267] Semtech. 2012. SX1503 4/8/16 Channel Low Voltage GPIO with NINT and NRE-
SET. https://www.semtech.com/products/smart-sensing/io-expanders/
sx1503. Last accessed: Apr. 25, 2020.

[268] Uvis Senkans, Domenico Balsamo, Theodoros D. Verykios, and Geoff V. Merrett.
2017. Applications of Energy-Driven Computing: A Transiently-Powered Wireless
Cycle Computer. In Proc. ENSsys (Delft, The Netherlands). ACM, New York, NY,
USA, 1–7. https://doi.org/10.1145/3142992.3142993.

[269] Sharp Corporation. 2016. LS013B7DH03 1.28” TFT-LCD Module.
https://www.sharpsde.com/fileadmin/products/Displays/Specs/
LS013B7DH03_25Apr16_Spec_LD-28410A.pdf. Last accessed: Sep. 8, 2021.

[270] Esther Shein. 2021. A Battery-Free Internet of Things. Commun. ACM 64, 7 (2021),
16–18. https://doi.org/10.1145/3464937.

[271] Hafiz Husnain Raza Sherazi, Luigi Alfredo Grieco, and Gennaro Boggia. 2018. A
Comprehensive Review on Energy Harvesting MAC protocols in WSNs: Challenges
and Tradeoffs. Ad Hoc Networks 71 (2018), 117–134. https://doi.org/10.1016/
j.adhoc.2018.01.004.

[272] Rishi Shukla, Neev Kiran, Rui Wang, Jeremy Gummeson, and Sunghoon Ivan Lee.
2019. SkinnyPower: Enabling Batteryless Wearable Sensors via Intra-Body Power
Transfer. In Proc. SenSys (November 10–13). ACM, New York City, NY, USA, 55–67.
https://doi.org/10.1145/3356250.3360034.

[273] Lukas Sigrist, Rehan Ahmed, Andres Gomez, and Lothar Thiele. 2020. Harvesting-
Aware Optimal Communication Scheme for Infrastructure-Less Sensing. ACM
Trans. Internet Things 1, 4 (October 2020), 22:1–22:26. https://doi.org/10.1145/
3395928.

[274] Patrice Simon, Yury Gogotsi, and Bruce Dunn. 2014. Where Do Batteries End
and Supercapacitors Begin? Science 343, 6176 (March 2014), 1210–1211. https:
//doi.org/10.1126/science.1249625.

[275] Sivert T. Sliper, Oktay Cetinkaya, Alex S. Weddell, Bashir Al-Hashimi, and Geoff V.
Merrett. 2020. Energy-driven Computing. Phil. Trans. R. Soc. A. 378, 2164 (February
2020), 1–18. https://doi.org/10.1098/rsta.2019.0158.

[276] Joshua R. Smith, Alanson P. Sample, Pauline S. Powledge, Sumit Roy, and Alexander
Mamishev. 2006. A Wirelessly-Powered Platform for Sensing and Computation.
In Proc. UbiComp (September 17–21). ACM, Orange County, CA, USA, 495–506.
https://doi.org/10.1007/11853565_29.

[277] SparkFun Electronics. 2019. RedBoard Artemis ATP. https://www.sparkfun.com/
products/15442. Last accessed: Jun 16, 2022.

https://www.nxp.com/docs/en/data-sheet/PCF85263A.pdf
https://www.nxp.com/docs/en/data-sheet/PCF85263A.pdf
https://www.semtech.com/products/smart-sensing/io-expanders/sx1503
https://www.semtech.com/products/smart-sensing/io-expanders/sx1503
https://doi.org/10.1145/3142992.3142993
https://www.sharpsde.com/fileadmin/products/Displays/Specs/LS013B7DH03_25Apr16_Spec_LD-28410A.pdf
https://www.sharpsde.com/fileadmin/products/Displays/Specs/LS013B7DH03_25Apr16_Spec_LD-28410A.pdf
https://doi.org/10.1145/3464937
https://doi.org/10.1016/j.adhoc.2018.01.004
https://doi.org/10.1016/j.adhoc.2018.01.004
https://doi.org/10.1145/3356250.3360034
https://doi.org/10.1145/3395928
https://doi.org/10.1145/3395928
https://doi.org/10.1126/science.1249625
https://doi.org/10.1126/science.1249625
https://doi.org/10.1098/rsta.2019.0158
https://doi.org/10.1007/11853565_29
https://www.sparkfun.com/products/15442
https://www.sparkfun.com/products/15442

146 REFERENCES

[278] Richard Stallman, Roland H. Pesch, and Stan Shebs. 2011. Debugging with GDB:
The GNU Source-Level Debugger, V 7.3.1. Free Software Foundation, Boston, MA,
USA.

[279] STMicroelectronics. 2016. Mainstream Mixed signals MCUs Arm Cortex-M4
core with DSP and FPU, 256KB of Flash memory, 72MHz CPU, MPU, 16-
bit SDADC. https://www.st.com/en/microcontrollers-microprocessors/
stm32f373cc.html. Last accessed: May 9, 2022.

[280] STMicroelectronics. 2018. Mainstream Performance Line, Arm Cortex-M3
MCU with 512KB of Flash memory, 72MHz CPU, Motor control, USB
and CAN. https://www.st.com/en/microcontrollers-microprocessors/
stm32f103re.html. Last accessed: May 9, 2022.

[281] STMicroelectronics. 2018. X-NUCLEO-LPM01A Nucleo Expansion Board for Power
Consumption Measurement. https://www.st.com/en/evaluation-tools/x-
nucleo-lpm01a.html. Last accessed: Jan. 19, 2020.

[282] STMicroelectronics. 2019. ST M41T62 Low-power Serial Real-time Clock Data
Sheet. https://www.st.com/resource/en/datasheet/m41t62.pdf. Last ac-
cessed: Jan. 19, 2020.

[283] STMicroelectronics N.V. 2018. X-NUCLEO-LPM01A 1.8 V to 3. V Programmable
Power Supply Source. https://www.st.com/en/evaluation-tools/x-nucleo-
lpm01a.html. Last accessed: Sep. 11, 2021.

[284] Kazunobu Sumiya, Takuya Sasatani, Yuki Nishizawa, Kenji Tsushio, Yoshiaki
Narusue, and Yoshihiro Kawahara. 2019. Alvus: A Reconfigurable 2-D Wireless
Charging System. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 2 (June
2019), 68:1–68:29. https://doi.org/10.1145/3332533.

[285] Miljana Surbatovich, Limin Lia, and Brandon Lucia. 2019. I/O Dependent Idem-
potence Bugs in Intermittent Systems. In Proc. OOPSLA (October 23–25). ACM,
Athens, Greece, 183:1–183:31. https://dl.acm.org/doi/10.1145/3360609.

[286] Taiwan Semiconductor Manufacturing Company, Ltd. 2019. 0.18-micron Tech-
nology. https://www.tsmc.com/english/dedicatedFoundry/technology/
0.18um.htm. Last accessed: Jan. 19, 2020.

[287] Vamsi Talla, Mehrdad Hassar, Bryce Kellogg, Ali Najafi, Joshua R. Smith, and Shyam
Gollakota. 2017. LoRa Backscatter: Enabling the Vision of Ubiquitous Connectivity.
ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 3 (September 2017), 105:1–
105:24. https://doi.org/10.1145/3130970.

[288] Vamsi Talla, Bryce Kellogg, Shyamnath Gollakota, and Joshua R Smith. 2017.
Battery-free Cellphone. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 2
(June 2017), 25:1–25:19. https://doi.org/10.1145/3090090.

https://www.st.com/en/microcontrollers-microprocessors/stm32f373cc.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f373cc.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f103re.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f103re.html
https://www.st.com/en/evaluation-tools/x-nucleo-lpm01a.html
https://www.st.com/en/evaluation-tools/x-nucleo-lpm01a.html
https://www.st.com/resource/en/datasheet/m41t62.pdf
https://www.st.com/en/evaluation-tools/x-nucleo-lpm01a.html
https://www.st.com/en/evaluation-tools/x-nucleo-lpm01a.html
https://doi.org/10.1145/3332533
https://dl.acm.org/doi/10.1145/3360609
https://www.tsmc.com/english/dedicatedFoundry/technology/0.18um.htm
https://www.tsmc.com/english/dedicatedFoundry/technology/0.18um.htm
https://doi.org/10.1145/3130970
https://doi.org/10.1145/3090090

REFERENCES 147

[289] Jethro Tan, Przemysław Pawełczak, Aaron Parks, and Joshua R. Smith. 2016. Wisent:
Robust Downstream Communication and Storage for Computational RFIDs. In
Proc. INFOCOM. IEEE, San Francisco, CA, USA, 1–9. https://doi.org/10.1109/
INFOCOM.2016.7524574.

[290] Haydn Taylor. 2020. COVID-19: The State of the Games Industry.
https://www.gamesindustry.biz/articles/2020-04-09-covid-19-the-
state-of-the-games-industry. Last accessed: Apr. 28, 2020.

[291] Pietro Tedeschi, Kang Eun Jeon, James She, Simon Wong, Spiridon Bakiras, and
Roberto Di Pietro. 2021. Privacy-Preserving and Sustainable Contact Tracing Using
Batteryless BLE Beacons. https://arxiv.org/pdf/2103.06221.pdf.

[292] Texas Instruments Inc. 2013. BQ25570 Ultra Low power Harvester power Man-
agement IC with Boost Charger, and Nanopower Buck Converter. https://
www.ti.com/lit/ds/symlink/bq25570.pdf. Last accessed: Jun. 19, 2022.

[293] Texas Instruments, Inc. 2013. CC2420 Single-Chip 2.4GHz IEEE 802.15.4 Compli-
ant and ZigBee Ready RF Transceiver. https://www.ti.com/lit/ds/symlink/
cc2420.pdf. Last accessed: May 19, 2022.

[294] Texas Instruments, Inc. 2016. CC2650 32-bit Arm Cortex-M3 Multiprotocol 2.4 GHz
wireless MCU with 128 kB Flash. https://www.ti.com/product/CC2650. Last
accessed: Aug. 10, 2021.

[295] Texas Instruments Inc. 2016. TPS61099 0.7 Vin Synchronous Boost Converter with
800 nA Ultra-Low Quiescent Current. http://www.ti.com/lit/ds/symlink/
tps61099.pdf. Last accessed: Apr. 25, 2020.

[296] Texas Instruments, Inc. 2017. MSP430FR59xx Mixed-Signal Microcontrollers (Rev.
F). http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf. Last accessed:
Sep. 13, 2021.

[297] Texas Instruments, Inc. 2018. OPT3004 Digital Ambient Light Sensor with Increased
angular IR Rejection. https://www.ti.com/product/OPT3004. Last accessed:
Sep. 9, 2021.

[298] Texas Instruments, Inc. 2018. TPL5111 Ultra Low Power System Timer (35 nA)
for Power Gating in Duty Cycled Applications. https://www.ti.com/product/
TPL5111. Last accessed: Sep. 9, 2021.

[299] Texas Instruments, Inc. 2021. BQ25570 Ultra Low Power Harvester power Man-
agement IC with Boost Charger and Nanopower Buck Converter. https://
www.ti.com/product/BQ25570. Last accessed: Sep. 9, 2021.

[300] Bill Tomlinson, M. Six Silberman, Don Patterson, Yue Pan, and Eli Blevis. 2012.
Collapse Informatics: Augmenting the Sustainability & ICT4D Discourse in HCI.
In Proc. CHI. ACM, Austin, TX, USA, 655–664. https://doi.org/10.1145/
2207676.2207770.

https://doi.org/10.1109/INFOCOM.2016.7524574
https://doi.org/10.1109/INFOCOM.2016.7524574
https://www.gamesindustry.biz/articles/2020-04-09-covid-19-the-state-of-the-games-industry
https://www.gamesindustry.biz/articles/2020-04-09-covid-19-the-state-of-the-games-industry
https://arxiv.org/pdf/2103.06221.pdf
https://www.ti.com/lit/ds/symlink/bq25570.pdf
https://www.ti.com/lit/ds/symlink/bq25570.pdf
https://www.ti.com/lit/ds/symlink/cc2420.pdf
https://www.ti.com/lit/ds/symlink/cc2420.pdf
https://www.ti.com/product/CC2650
http://www.ti.com/lit/ds/symlink/tps61099.pdf
http://www.ti.com/lit/ds/symlink/tps61099.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf
https://www.ti.com/product/OPT3004
https://www.ti.com/product/TPL5111
https://www.ti.com/product/TPL5111
https://www.ti.com/product/BQ25570
https://www.ti.com/product/BQ25570
https://doi.org/10.1145/2207676.2207770
https://doi.org/10.1145/2207676.2207770

148 REFERENCES

[301] Hoang Truong, Shuo Zhang, Ufuk Muncuk, Phuc Nguyen, Nam Bui, Anh Nguyen,
Qin Lv, Kaushik Chowdhury, Thang Dinh, and Tam Vu. 2018. CapBand: Battery-
free Successive Capacitance Sensing Wristband for Hand Gesture Recognition. In
Proc. SenSys (November 4–7). ACM, Shenzhen, China, 54–67. https://doi.org/
10.1145/3274783.3274854.

[302] Uni-Trend Technology Co. Limited. 2020. UT383 Mini Light Me-
ter. https://www.uni-trend.com/html/product/Environmental/
Environmental_Tester/Mini/UT383.html. Last accessed: Aug. 19, 2021.

[303] University of Michigan, MI, USA. 2011. UMich Moo GitHub Page. https://
github.com/spqr/umichmoo. Last accessed: Apr. 19, 2020.

[304] University of Washington, Seattle, WA, USA. 2010. Wireless Identification and
Sensing Platform GitHub Page. https://github.com/wisp. Last accessed: Apr.
19, 2020.

[305] Valve Inc. 2020. Source 3D Game Engine. https://
developer.valvesoftware.com/wiki/source. Last accessed: May 2, 2020.

[306] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent Computation Without
Hardware Support or Programmer Intervention. In Proc. OSDI (November 2–4).
ACM, Savannah, GA, USA, 17–32. https://www.usenix.org/system/files/
conference/osdi16/osdi16-van-der-woude.pdf.

[307] Virag Varga, Gergely Vakulya, Alanson Sample, and Thomas R. Gross. 2017. En-
abling Interactive Infrastructure with Body Channel Communication. ACM In-
teract. Mob. Wearable Ubiquitous Technol. 1, 4 (December 2017), 169:1–169:.
https://dl.acm.org/doi/10.1145/3161180.

[308] Virag Varga, Gergely Vakulya, Alanson Sample, and Thomas R. Gross. 2017.
Playful Interactions with Body Channel Communication: Conquer it!. In Proc.
UIST Adjunct. ACM, Québec City, Canada, 81–82. https://doi.org/10.1145/
3131785.3131798.

[309] Vishay Siliconix. 2020. SIP32432 Ultra Low Leakage and Quiescent Current and
Load Switch with Reverse Blocking. https://www.vishay.com/docs/66597/
sip32431.pdf. Last accessed: Sep. 9, 2021.

[310] Anandghan Waghmare, Qiuyue Xue, Dingtian Zhang, Yuhui Zhao, Shivan Mittal,
Nivedita Arora, Ceara Byrne, Thad Starner, and Gregory D. Abowd. 2020. Ubiqui-
Touch: Self Sustaining Ubiquitous Touch Interfaces. ACM Interact. Mob. Wearable
Ubiquitous Technol. 4, 1 (March 2020), 27:1–27:22. https://doi.org/10.1145/
3380989.

[311] Ju Wang, Liqiong Chang, Omid Abari, and Srinivasan Keshav. 2019. Are RFID
Sensing Systems Ready for the Real World?. In Proc. MobiSys. ACM, Seoul, Korea,
366–377. https://doi.org/10.1145/3307334.3326084.

https://doi.org/10.1145/3274783.3274854
https://doi.org/10.1145/3274783.3274854
https://www.uni-trend.com/html/product/Environmental/Environmental_Tester/Mini/UT383.html
https://www.uni-trend.com/html/product/Environmental/Environmental_Tester/Mini/UT383.html
https://github.com/spqr/umichmoo
https://github.com/spqr/umichmoo
https://github.com/wisp
https://developer.valvesoftware.com/wiki/source
https://developer.valvesoftware.com/wiki/source
https://www.usenix.org/system/files/conference/osdi16/osdi16-van-der-woude.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-van-der-woude.pdf
https://dl.acm.org/doi/10.1145/3161180
https://doi.org/10.1145/3131785.3131798
https://doi.org/10.1145/3131785.3131798
https://www.vishay.com/docs/66597/sip32431.pdf
https://www.vishay.com/docs/66597/sip32431.pdf
https://doi.org/10.1145/3380989
https://doi.org/10.1145/3380989
https://doi.org/10.1145/3307334.3326084

REFERENCES 149

[312] Jingxian Wang, Chengfeng Pan, Haojian Jin, Vaibhav Singh, Yash Jain, Jason Hong,
Carmel Majidi, and Swarun Kumar. 2019. RFID Tattoo: A Wireless Platform for
Speech Recognition. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 4 (De-
cember 2019), 155:1–155:24. https://doi.org/10.1145/3369812.

[313] Katelyn Wiley, Sarah Vedress, and Regan Mandryk. 2020. How Points and Theme
Affect Performance and Experience in a Gamified Cognitive Task. In Proc. CHI
(April 25–30). ACM, Honolulu, HI, USA, 1—-15. https://doi.org/10.1145/
3313831.3376697.

[314] Wiliot. 2021. Wiliot Battery Free IoT Pixel BLE Tags. https://www.wiliot.com/
product/iot-pixel. Last accessed: Jul. 22, 2021.

[315] Harrison Williams, Xun Jian, and Matthew Hicks. 2020. Forget Failure: Exploiting
SRAM Data Remanence for Low-overhead Intermittent Computation. In Proc.
ASPLOS (March 16–20). ACM, Lausanne, Switzerland, 53—-67. https://doi.org/
10.1145/3373376.3378478.

[316] Allison Woodruff, Jay Hasbrouck, and Sally Augustin. 2008. A Bright Green Per-
spective on Sustainable Choices. In Proc. CHI. ACM, Florence, Italy, 313–322.
https://doi.org/10.1145/1357054.1357109.

[317] Chenren Xu, Lei Yang, and Pengyu Zhang. 2018. Practical Backscatter Communica-
tion Systems for Battery-Free Internet of Things. IEEE Signal Process. Mag. 35, 5
(September 2018), 16–27. https://doi.org/10.1109/MSP.2018.2848361.

[318] Jian Xu, Suwen Zhu, Aruna Balasubramanian, Xiaojun Bi, and Roy Shilkrot. 2018.
Ultra-Low-Power Mode for Screenless Mobile Interaction. In Proc. UIST. ACM,
Berlin, Germany, 557–568. https://doi.org/10.1145/3242587.3242614.

[319] Xieyang Xu, Yang Shen, Junrui Yang, Chenren Xu, Guobin Shen, Guojun Chen, and
Yunzhe Ni. 2017. PassiveVLC: Enabling Practical Visible Light Backscatter Commu-
nication for Battery-free IoT Applications. In Proc. MobiCom (October 16–20). ACM,
Snowbird, UT, USA, 180–192. https://doi.org/10.1145/3117811.3117843.

[320] Wataru Yamada, Hiroyuki Manabe, and Daizo Ikeda. 2018. CamTrackPoint:
Camera-Based Pointing Stick Using Transmitted Light through Finger. In Proc. UIST.
ACM, Berlin, Germany, 313–320. https://doi.org/10.1145/3242587.3242641.

[321] Fan Yang, Ashok Samraj Thangarajan, Sam Michiels, Wouter Joosen, and Danny
Hughes. 2021. Morphy: Software Defined Charge Storage for the IoT. In
Proc. SenSys. ACM, Coimbra, Portugal, 248–260. https://doi.org/10.1145/
3485730.3485947.

[322] Lohit Yerva, Brad Campbell, Apoorva Bansal, Thomas Schmid, and Prabal Dutta.
2012. Grafting Energy-Harvesting Leaves onto the Sensornet Tree. https://
doi.org/10.1145/2185677.2185733. In Proc. IPSN. ACM, Beijing, China, 197–
208.

https://doi.org/10.1145/3369812
https://doi.org/10.1145/3313831.3376697
https://doi.org/10.1145/3313831.3376697
https://www.wiliot.com/product/iot-pixel
https://www.wiliot.com/product/iot-pixel
https://doi.org/10.1145/3373376.3378478
https://doi.org/10.1145/3373376.3378478
https://doi.org/10.1145/1357054.1357109
https://doi.org/10.1109/MSP.2018.2848361
https://doi.org/10.1145/3242587.3242614
https://doi.org/10.1145/3117811.3117843
https://doi.org/10.1145/3242587.3242641
https://doi.org/10.1145/3485730.3485947
https://doi.org/10.1145/3485730.3485947
https://doi.org/10.1145/2185677.2185733
https://doi.org/10.1145/2185677.2185733

150 REFERENCES

[323] Kasım Sinan Yıldırım, Henko Aantjes, Przemysław Pawełczak, and Amjad Yousef
Majid. 2018. On the Synchronization of Computational RFIDs. IEEE Trans. Mo-
bile Comput. 18, 9 (September 2018), 2147–2159. https://doi.org/10.1109/
TMC.2018.2869873.

[324] Kasım Sinan Yıldırım, Ruggero Carli, and Luca Schenato. 2018. Adaptive
Proportional–Integral Clock Synchronization in Wireless Sensor Networks. IEEE
Trans. Control Syst. Technol. 26, 2 (March 2018), 610–623. https://doi.org/
10.1109/TCST.2017.2692720.

[325] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris Patoukas, Koen Schaper,
Przemysław Pawełczak, and Josiah Hester. 2018. InK: Reactive Kernel for Tiny
Batteryless Sensors. In Proc. SenSys. ACM, Shenzhen, China, 41–53. https:
//doi.org/10.1145/3274783.3274837.

[326] Eren Yıldız, Lijun Chen, and Kasım Sinan Yıldırım. 2022. Immortal Threads:
Multithreaded Event-driven Intermittent Computing on Ultra-Low-Power Mi-
crocontrollers. In Proc. OSDI (July 11–13). USENIX, Carlsbad, CA, USA, 339–355.
https://www.usenix.org/system/files/osdi22-yildiz.pdf.

[327] Neng-Hao Yu, Sung-Sheng Tsai, I-Chun Hsiao, Dian-Je Tsai, Meng-Han Lee, Mike Y.
Chen, and Yi-Ping Hung. 2011. Clip-on Gadgets: Expanding Multi-touch Interac-
tion Area with Unpowered Tactile Controls. In Proc. UIST (October 16–19). ACM,
Santa Barbara, CA, USA, 367–371. https://doi.org/10.1145/2047196.2047243.

[328] G. Pascal Zachary. 2016. The Search for a Better Battery. IEEE Spec-
trum, https://spectrum.ieee.org/at-work/innovation/the-search-for-
a-better-battery. Last accessed: Jul. 7, 2021.

[329] Tom Zeller Jr. 2010. Green Guide to Electronics Is Disputed, but Influential.
https://www.nytimes.com/2010/01/11/business/energy-environment/
11green.html. Last accessed: Apr. 30, 2020.

[330] Zephyr Project. 2021. Zephyr Real-Time Operating System Source Code Repository.
https://github.com/zephyrproject-rtos/zephyr. Last accessed: Aug. 5,
2021.

[331] ZF Friedrichshafen AG. 2015. AFIG-0007 Energy Harvesting Genera-
tor. https://switches-sensors.zf.com/us/wp-content/uploads/
sites/7/2019/11/19_10_16-TS_AFIG-0007.pdf [specification], https:
//switches-sensors.zf.com/product/energy-harvesting-generators/
[summary]. Last accessed: Apr. 25, 2020.

[332] Chi Zhang, Sidharth Kumar, and Dinesh Bharadia. 2019. Capttery: Scalable Battery-
like Room-level Wireless Power. In Proc. MobiSys. ACM, Seoul, Korea, 1–13. https:
//doi.org/10.1145/3307334.3326077.

[333] Maolin Zhang, Si Chen, Jia Zhao, and Wei Gong. 2021. Commodity-Level BLE
Backscatter. In Proc. MobiSys. ACM, Virtual Event, 402–414. https://doi.org/
10.1145/3458864.3466865.

https://doi.org/10.1109/TMC.2018.2869873
https://doi.org/10.1109/TMC.2018.2869873
https://doi.org/10.1109/TCST.2017.2692720
https://doi.org/10.1109/TCST.2017.2692720
https://doi.org/10.1145/3274783.3274837
https://doi.org/10.1145/3274783.3274837
https://www.usenix.org/system/files/osdi22-yildiz.pdf
https://doi.org/10.1145/2047196.2047243
https://spectrum.ieee.org/at-work/innovation/the-search-for-a-better-battery
https://spectrum.ieee.org/at-work/innovation/the-search-for-a-better-battery
https://www.nytimes.com/2010/01/11/business/energy-environment/11green.html
https://www.nytimes.com/2010/01/11/business/energy-environment/11green.html
https://github.com/zephyrproject-rtos/zephyr
https://switches-sensors.zf.com/us/wp-content/uploads/sites/7/2019/11/19_10_16-TS_AFIG-0007.pdf
https://switches-sensors.zf.com/us/wp-content/uploads/sites/7/2019/11/19_10_16-TS_AFIG-0007.pdf
https://switches-sensors.zf.com/product/energy-harvesting-generators/
https://switches-sensors.zf.com/product/energy-harvesting-generators/
https://doi.org/10.1145/3307334.3326077
https://doi.org/10.1145/3307334.3326077
https://doi.org/10.1145/3458864.3466865
https://doi.org/10.1145/3458864.3466865

REFERENCES 151

[334] Pengyu Zhang, Mohammad Rostami, Pan Hu, and Deepak Ganesan. 2016. En-
abling Practical Backscatter Communication for On-body Sensors. In Proc. SIG-
COMM. ACM, Florianopolis, Brazil, 370–381. https://doi.org/10.1145/
2934872.2934901.

[335] Yang Zhang, Yasha Iravantchi, Haojian Jin, Swarun Kumar, and Chris Harrison.
2019. Sozu: Self-Powered Radio Tags for Building-Scale Activity Sensing. In
Proc. UIST. ACM, New Orleans, LA, USA, 973–985. https://doi.org/10.1145/
3332165.3347952.

[336] Chen Zhao, Sam Yisrael, Joshua R. Smith, and Shwetak N. Patel. 2014. Power-
ing Wireless Sensor Nodes with Ambient Temperature Changes. In Proc. Ubi-
Comp (September 13–17). ACM, Seattle, WA, USA, 383––387. https://doi.org/
10.1145/2632048.2632066.

https://doi.org/10.1145/2934872.2934901
https://doi.org/10.1145/2934872.2934901
https://doi.org/10.1145/3332165.3347952
https://doi.org/10.1145/3332165.3347952
https://doi.org/10.1145/2632048.2632066
https://doi.org/10.1145/2632048.2632066

	Summary
	Samenvatting
	Introduction
	Saving the State of Battery-Free Systems
	Design of Battery-free Systems
	Energy Harvesting and Storage
	Networking
	Applications

	Problem Statement
	Challenges and Outline

	Battery-Free Interactive Devices
	Introduction
	Challenges
	Battery-free Handheld Gaming
	Key Ideas
	ENGAGE Full System Nintendo Game Boy Emulator
	Gaming Through Power Failures

	ENGAGE Implementation
	ENGAGE Hardware
	ENGAGE Emulator Implementation
	MPatch Implementation

	ENGAGE Evaluation
	End-to-End ENGAGE Performance
	ENGAGE Power Consumption and Energy Generation
	MPatch Performance

	Discussion and Future Work
	Limitations, Alternatives and Future Work
	Gaming and the Environment

	Related Work
	Conclusions

	Battery-Free Debugging
	Introduction
	Debugging Intermittently-Powered Systems
	Bugs Type Classification
	Why Debugging Intermittently-Powered Systems is Hard

	Debugger for Intermittently-Powered Systems
	DIPS Hardware Debugger
	DIPS Energy Emulator
	DIPS Automated Software Testing
	DIPS Hardware Implementation

	DIPS Evaluation
	DIPS Characterization
	DIPS User Experience Study
	Software Testing with DIPS

	Limitations and Future Work
	Related Work
	Conclusions

	Battery-Free Timekeeping
	Introduction
	Motivation
	Remanence Timekeepers

	System Overview
	CHRT: Hierarchical Timekeeping
	CHRT Circuit
	CHRT Range Heuristics

	CHRT Software Layer
	CHRT Hardware Abstraction Layer
	CHRT High-Level API
	CHRT Software Calibration

	System Implementation
	CHRT Platform
	Botoks Platform
	Software

	Evaluation
	Experimental Setup
	Evaluation Methodology
	CHRT Microbenchmark
	Application 1: Bicycle Analytics
	Application 2: Intermittent Communication

	Related Work
	Discussion and Future Work
	Conclusions

	Battery-Free Wireless Networking
	Introduction
	Background, Challenges and Key Insights
	Intermittently-Powered Wireless System
	Target Network and Device Architecture
	System Components

	System Implementation: FreeBie
	FreeBie Hardware
	FreeBie Software
	FreeBie Applications

	FreeBie Evaluation
	Evaluation Setup
	FreeBie Evaluation Results

	Discussion and Future Work
	Related Work
	Conclusions

	Conclusion
	Acknowledgements
	Curriculum Vitæ
	List of Publications
	References

