
Accelerating aircraft de-
sign using automated
process generation
An experimental architecture for
aircraft design software
M.A.Y. Ramakers

Te
ch
ni
sc
he
U
ni
ve
rs
ite
it
D
el
ft

Accelerating aircraft design using
automated process generation

An experimental architecture for aircraft design
software

by

M.A.Y. Ramakers

in partial fulfillment of the requirements for the degree of

Master of Science
in Aerospace Engineering

at the Delft University of Technology
to be defended publicly on Tuesday Oktober 20, 2015 at 13:00.

Student number: 1507613
Thesis number: 053#15#MT#FPP

Supervisor: Dr. R. Vos TU Delft
Thesis committee: Prof. L. Veldhuis (chair) TU Delft

Ir. M. F. M. Hoogreef TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements

This master thesis is written as the final part of the Master Program in Flight Performance and Propulsion
at the Faculty of Aerospace Engineering of Delft University of Technology. It marks the culmination of
my time at this faculty and of my time as a student in Delft.

Since I spend over 9 months on this research I would like to thank those who supported me. First I
would like to thank dr. ir. Roelof Vos and ir. Maurice Hoogreef for guiding me through this final part of
my masters. I enjoyed our brainstorm sessions and talks on aircraft design. I would also like to thank
prof. dr. ir. Leo Veldhuis for chairing my graduation committee.

Secondly I would like to thank my friends and colleagues for their interest in my work and their
support during my thesis research. Special thanks go to my fellow students from ’Kamertje 1’, for mak-
ing my thesis time even more enjoyable. Thanks to my family for their continuous support throughout
my education. Finally thanks to my girlfriend Pauline, for her loving support, endless patience and for
keeping me motivated throughout my thesis.

M.A.Y. Ramakers
Delft, Oktober 2015

iii

Abstract

The aircraft industry has seen many evolutionary changes in the past decades. Since the Boeing 707
however, the general shape and configuration of transport aircraft have remained similar and so has
the aircraft design process. Since the aviation community is about to face a revolutionary breakthrough
featuring new aircraft concepts like blended-wing body aircraft and Prandtl planes it is time to adapt
the design process as well. The aircraft design process may have been extended by computational
novelties and has been largely computerized, but the fundamental design process is still similar to
what is used for conventional aircraft. This research investigates the effect of the design process on
the design outcome and strives to find a method of automatically generating an aircraft design process
given a set of computational modules, initial values and design goals.

A software architecture based on a strict separation of components and process modelling approach
is proposed. A framework based on this architecture is developed in which design parameters and
computational modules are modelled as nodes in a graph. A subset of the conceptual aircraft design
process is simplified and implemented. Twelve Algorithms are proposed to perform the automated
ordering of the computational modules. The ordering is based on the module run time, estimated
impact of the module on the design or the current state of the aircraft design, among others. The
design process used in the Initiator aircraft design software is used as a benchmark. Two test cases
are formulated, representing Class I and Class II design problems. Two additional Class II test cases
are formulated to rule out the impact of the scheduling overhead by simulating the module runtime of
fully-featured modules. Each test case is then solved by the proposed algorithms.

The result is a system capable of generating a feasible (but sub-optimal) design process out of a
set of stand-alone computational modules. This is achieved with no prior knowledge on the design
process. From the test cases it can be concluded that the design outcome is not affected by the design
process order that is employed, if the used set of modules is not changed. It is also concluded that the
classical, fixed design process outperforms the design processes generated by any of the algorithms
for Class I and Class II design problems by 20-40%. From the designed algorithms, the algorithm that
orders modules based on the expected change of re-evaluating the module versus the expected run
time of the module, performs best for the complex (Class II) design case. The impact of the scheduling
overhead is shown to be negligible. Since the system is capable of generating feasible, but sub-optimal
design processes, it is recommended that it be used as a tool to generate new design processes for
unconventional aircraft configurations. Finally it is recommended that the process modelling based and
separation of components based software structure that is presented is adopted for a next version of
the Initiator.

v

Contents

Acknowledgements iii

Abstract v

List of Figures ix

Nomenclature xi

1 Introduction 1
1.1 Aircraft Design . 1
1.2 TUDLR Aircraft design software . 1
1.3 Initiator requirements . 4
1.4 Research Question and Thesis goal . 5
1.5 Report structure . 6

2 Background information 7
2.1 Conceptual aircraft design software . 7

2.1.1 Initiator alternatives . 7
2.1.2 Design software properties . 7

2.2 Process modelling . 10
2.2.1 Process modelling techniques . 10
2.2.2 The significance of automated process modelling for conceptual aircraft

design . 14
2.3 Scientific computational frameworks . 15

3 Methodology 17
3.1 Initiator software architecture . 17

3.1.1 Philosophy . 17
3.1.2 Structure . 17
3.1.3 Programming environment . 19

3.2 Program Structure . 21
3.2.1 Concepts . 21
3.2.2 Components. 23
3.2.3 Program Operation . 25

3.3 Solving Algorithms . 33
3.3.1 Basic algorithms . 33
3.3.2 Pre-run ordering of modules . 35
3.3.3 Dynamic ordering of modules . 37
3.3.4 Fixed module sequence . 39

4 Experiments 41
4.1 Goals . 41
4.2 Test setup . 41

4.2.1 Key Performance Indicators. 41
4.2.2 Sample size . 42
4.2.3 Initial values . 42
4.2.4 Test system . 43

4.3 Test cases . 44
4.3.1 Class I . 44
4.3.2 Class II . 44
4.3.3 Class II - simulated module runtime, Type I 45
4.3.4 Class II - simulated module runtime, Type II 46

vii

viii Contents

5 Results & analyses 47
5.1 Results . 47

5.1.1 Class I . 47
5.1.2 Class II . 48
5.1.3 Class II - simulated module runtime, type I 48
5.1.4 Class II - simulated module runtime, type II. 49
5.1.5 Resulting design processes . 50

5.2 Analyses . 50

6 Conclusions 53

7 Recommendations 55

A Listings 57
A.1 Module implementation example . 57

B Implemented parameters & modules 59
B.1 Parameters . 59
B.2 Modules . 61

C Resulting design processes 65
C.1 Fixed module sequence . 65
C.2 Expected change based sequence . 69
C.3 Dynamic input error based sequence . 73

Bibliography 79

List of Figures

1.1 The architecture of the Design and Engineering Engine (DEE) [1] 2
1.2 The Initiator design process [2] . 3

2.1 Graphical dependency tracking in VampZero [3] . 8
2.2 Example of a design structure matrix (DSM)[4] . 11
2.3 Example of an extended design structure matrix (XDSM) [5] 12
2.4 Example visualization of a directed graph [6] . 13
2.5 Relationship of the number of possible graphs (a) and graph size (b) between the MCG,

FPG and PSG [6] . 14

3.1 Overview of the architecture of the new Initiator . 20
3.2 Overview of the implemented part of the new Initiator architecture 22
3.3 Sequence diagram of the typical operation of the graphController object 27
3.4 Flowchart of the composing of the Maximum Connectivity Graph (MCG). 28
3.5 An example Maximum Connectivity Graph (MCG) given a limited set of modules (red)

an parameters (black). The mission fuel flow (”FF-Mission”) is highlighted as a example
design goal in green. 29

3.6 Flowchart of the compososition process of the Fundamental Problem Graph (FPG). . . 30
3.7 An example Fundamental Problem Graph (FPG) generated from an MCG 3.5 given a

design goal (”FF-mission”), using the algorithm illustrated by figure 3.6. 30
3.8 Sequence diagram of the GCTestcase suite, indicating the chronological communication

and data-flow between components of the testcase suite. 32

C.1 Resulting design process of the class II test case, using the fixed module sequence
algorithm (part 1 of 3) . 66

C.2 Resulting design process of the class II test case, using the fixed module sequence
algorithm (part 2 of 3) . 67

C.3 Resulting design process of the class II test case, using the fixed module sequence
algorithm (part 3 of 3) . 68

C.4 Resulting design process of the class II test case, using the expected change based
sequence algorithm (part 1 of 3) . 70

C.5 Resulting design process of the class II test case, using the expected change based
sequence algorithm (part 2 of 3) . 71

C.6 Resulting design process of the class II test case, using the expected change based
sequence algorithm (part 3 of 3) . 72

C.7 Resulting design process of the class II test case, using the dynamic input error based
algorithm (part 1 of 4) . 74

C.8 Resulting design process of the class II test case, using the dynamic input error based
(part 2 of 4) . 75

C.9 Resulting design process of the class II test case, using the dynamic input error based
(part 3 of 4) . 76

C.10 Resulting design process of the class II test case, using the dynamic input error based
(part 4 of 4) . 77

ix

Nomenclature

List of symbols

Symbol Units Description
𝑛 - number of samples/parameters/etc.
𝜇 − Sample mean
𝜎 - Sample standard deviation
𝑧ᎎ/ኼ -
𝑡 s time
𝑝 - priority
𝑓 - number of function evaluations
𝐸 - margin of error

Abbreviations

Abbreviation Expansion
DEE Design and Engineering Engine
DSM Design Structure Matrix
xDSM eXtended Design Structure Matrix
FDT Functional Dependency Table
REMS Reconfigurable Multidisciplinary Synthesis
MMG Multi-Model Generator
XSD XML Schema Definition
XML eXtensible Markup Language
JSON JavaScript Object Notation
CPACS Common Parametric Aircraft Configuration Schema
VLM Vortex Lattice Method
CFD Computational Fluid Dynamics
MDO Multidisciplinary Design Optimization
KBE Knowledge Based Engineering
MCG Maximum Connectivity Graph
FPG Fundamental Problem Graph
PSG Problem Solution Graph
DoE Design of Experiments
KPI Key Performance Indicators
IDE Integrated Development Environment
MTOW Maximum Take-off Weight
FPP Flight Performance and Propulsion
TUDLR Technische Universiteit Delft, Lucht- en Ruimtevaart Techniek

xi

1
Introduction

In this chapter an introduction to the topic of this thesis is given. An overview of the aircraft design
software developed and designed by TUDLR is also given. The research question and thesis goal are
presented. Finally an overview of the report structure is given.

1.1. Aircraft Design
The aviation industry has come a long way since the Boeing 707 entered service in 1958. And although
aviation technology has improved significantly since then the most recent commercial jet airlines are
still tube-and-wing aircraft. In recent years several radically different aircraft configurations have been
proposed (like Blended Wing Body aircraft or Prandtl planes). Consequentially the way aircraft are
being designed is gradually changing. For a long time aircraft design has relied on empirical methods
(Roskam, Raymer and Toorenbeek), based on experience with designing similar aircraft. Since the
proposed aircraft configurations are new and no experience exists, empirical methods are less relevant.
Therefor several initiatives exist (TUDLR Initiator [2] and DLR vampZero [3], among others) to move
away from the empirical methods (Roskam [7], Raymer [8] and Torenbeek [9]) towards computational,
physics-based methods.

What has not changed is the aircraft design process. Although physics-based methods have been
included in conceptual aircraft design, the procedure to perform the design has remained the same. It
is suggested that the process influences the design outcome and that the classical, fixed aircraft design
procedure is not the most efficient design process. Therefor this thesis research focuses on the aircraft
conceptual design process.

1.2. TUDLR Aircraft design software
Design & Engineering Engine The Design and Engineering Engine (DEE) concept is a hypothetical
framework which was proposed by La Rocca [1]. The concept embodies a Knowledge Based Engineer-
ing (KBE) approach to support aircraft design. The DEE consists of computational design and analysis
tools from different disciplines and enables data exchange through a multi-model generator (MMG).
The purpose of the framework is to automate non-creative and repetitive design tasks. The DEE is
focussed on improving the quality of the preliminary design phases but embodies a conceptual design
tool called the Initiator. An overview fo the DEE is given by the diagram in figure 1.1.

Initiator The initiator is a conceptual aircraft sizing software tool that provides an initial set of values
for the DEE. The initiator contains a vast number of design and analysis methods that are chained in a
fixed iterative process to deliver a feasible design. This software is currently under heavy development
at the FPP department from TUDLR. The current state boasts a semi-empirical/semi-physics-based
structural weight estimation as its most distinguished feature. This feature makes it more suitable for
the design of unconventional aircraft configurations.

The Initiator uses a fixed design process based on an automated, iterative implementation of
Raymer/Torenbeek sizing and design modules extended by a number of physics based sizing and

1

2 1. Introduction

Figure 1.1: The architecture of the Design and Engineering Engine (DEE) [1]

1.2. TUDLR Aircraft design software 3

Figure 1.2: The Initiator design process [2]

analysis methods. A global overview of the design process is best illustrated by the flowchart given in
figure 1.2.

The Initiator has a number of shortcoming that have been identified. These shortcomings are listed
here and explained briefly.

• Dependency tracking - The Initiator treats only inter-module dependencies: before a module can
be used a predefined set of preceding modules should be run. There is no registration however
of the usage of specific design variables in modules. Therefor there is not possible to trace the
influence of a module on the design.

• Data model - The initiator uses the initiator XSD-schema as its data-model. Although suitable for
current applications, the data-model is modified ad-hoc whenever required which obscures the
availability of information. Although this makes the data model extremely flexible, the data model
is not fully known before run time. Therefor it is not feasible to reliably interface between modules
or with third party software. Additionally the initiator XSD-schema does not comfirm to the CPACS
data format that is rapidly becoming the standard format for interchanging data between aircraft
design software. Basic conversion to CPACS is possible but not fully implemented.

• Fixed design process - The design process in the initiator is fixed. Modules are chained by
means of a prerequisites list. Adding a module to the design process is done by modifying
the prerequisites to include the new module. The fixed design process also means that the same
design process is used for different types of aircraft irrespective of the design process being
optimal or even suitable for the aircraft type. Therefor it is suggested that the design process,
and specifically the ordering of the design steps in the design process might be of influence on
the design outcome.

Another downside of a fixed process is that computational resources are potentially wasted in the
iterative convergence process. In a case where only in a single iteration only minor changes occur
to a limited number of design variables, all the process steps are executed without considering if
individual steps are effected by the changes that occurred.

This is best illustrated by two examples: consider the flowchart given in figure 1.2. At some point
in the design, the wing material properties are changed in the module ’Preliminary Sizing’. The
wing shape however is not altered. Following the successive steps in the design process, first the
’Class II Weight Estimation’ is performed (which is valid, since the weight is directly affected by
the material properties) and secondly the ’Aerodynamic Analysis’ is done. Since the wing shape
did not change the input to the aerodynamic analysis is the same in this and the previous iteration

4 1. Introduction

and the result is the same too. Therefor this evaluation of the ’Aerodynamic Analysis’ module is
redundant and a waste of computational effort. It is suggested that an increase in computational
efficiency can be achieved by dynamically modifying the process during the execution of the
design process, based on the current state of the design and the state history.

Consider the flowchart in figure 1.2 again for another example. The flowchart shows a conver-
gence loop on the aircraft weight (Class II.V and Class II weight). The module ’Class II.V Weight
Estimation’ is in internally an iterative process. Thereby it is computationally rather expensive. If
after the first iteration in this module it becomes clear that there exists a large difference between
the class II and class II.V weight estimation, it is most probably a wasted effort to complete the
expensive Class II.V iteration. Perhaps it would be more useful to return to the next iteration
of the weight convergence loop after a single Class II.V evaluation. The aircraft model is then
updated and both Class II and Class II.V weight estimation are then performed with updated,
more feasible aircraft.

1.3. Initiator requirements
The Initiator has been used with success in quite some research. However, since the software does
have clear shortcomings an improvement is desirable. Following from the working/developing experi-
ence with the current Initiator version and the shortcomings of the software explained in 1.2 a set of
requirements was created. The requirements are listed and explained in the paragraphs below.

Workflow: Flexible design sequence& Stand-alone debugging To develop new aircraft design
procedures and design methods for new aircraft configurations, it is desirable that the design sequence
is not fixed. Multiple design workflows should be supported and developing a new workflow in order
to develop or implement a new design method should be allowed. The ability to experiment with
new workflows induces that a workflow can be devised encompassing a single simulation module or
computation. This ability greatly simplifies debugging of such module and eases the implementation
of new analysis tools.

Data Structure: Coherent, pre-defined, documented, multi-fidelity and unambiguous To
anticipate the integration of new or third-party tools and to ease the integration progress it is recom-
mended to have a clear, pre-defined aircraft data structure. A pre-defined data structure allows all tool
components to communicate in a predefined way, easing tool inter-compatibility. Proper documenta-
tion of the data structure is also required to provide clarity about the data structure to users integrating
new components. Additionally, it seems appropriate to have a single data-structure that is usable by
both conceptual and preliminary design. This is necessary in order to reduce the effort in transferring
data between the design phases, or remove the need to transferring data all together. Ultimately this
might remove the distinction between conceptual and preliminary design all together. Finally it is vital
that the data structure supports any configuration, as exploring new configurations is an important
goal.

Dependency: Dependency tracking of variables and values Dependencies in the aircraft de-
sign can be of great importance for all users. For the design engineer knowing the dependencies during
the aircraft design can reveal opportunities for improvement of the design. For research and devel-
opment on new design methods, design dependencies may be very helpful in improving the design
process and working towards new configurations.

Multi-fidelity: Multi- and variable-fidelity analysis A great way to improve the knowledge
about the design in the conceptual design phase is to use higher-order analysis methods. Models
which are generally used in later design phases. Therefore it is required that using the tool, one can
vary the analysis model used to adapt the design process to the current situation.

Management of running third-party tools As mentioned the integration of third party tools is es-
sential for both the professional designer and the academic researcher. When performing (automated)
design iterations, countless calls might be made to those tools. Proper thought should be given to the

1.4. Research Question and Thesis goal 5

management of the third party tool processes to ensure the following occurs efficiently: Running a
third party tool is often accompanied by a huge overhead caused by creating a new instance of the tool
and removing it when done; On certain computer systems it might be very beneficial to run processes
in parallel. Though possible, measures must be taken that allow having multiple instances of a (third
party) tool avoiding conflicts between instances.

Advanced input capabilities Conceptual design is about turning the engineers’ creative ideas into
an initial aircraft design and about discovering whether or not the idea can be realised. Therefore it is
desirable that engineers can transfer their ideas to aircraft design software, resembling their idea as
closely as possible. To allow this a new way of facilitating this transfer should be devised.

Accuracy/Error quantification of analysis methods When developing scientific analysis/simu-
lation methods, apart from software-testing, scientific validation & verification is also very important.
Therefore it is suggested that a method is devised for automated/enhanced quantification of the accu-
racy of analysis methods. This information can then be used during selection

Technology evaluation Whenever new technologies arise the aircraft design engineer is interested
whether or not the application of said technologies improves his design. Additionally new technologies
may enable new configurations or concepts that were infeasible to become feasible. Therefore an
aircraft design tool should allow the evaluation of a given configuration with selected technologies.
Alternatively, the tool should allow the design of several instances of the same configuration, but with
different technologies applied. This feature would be of great interest to all potential users.

Debugging Special attention should be paid to debugging features of the tools development envi-
ronment as well as to the tool itself.

Versioning A tool under constant development should be published using a versioning system, to
ensure that current development does not interfere with current usage of existing features.

Testing It is evident that modification during development will/can have effect on unforeseen aspects
of the tool. Proper software-testing mechanisms should be implemented to cope with this issue.

Documentation An aircraft design tool for academic research purposes is most likely to be modified
intensively after release. Therefore proper documentation on the design tool, but more importantly,
on the mechanics of the framework is of vital importance to prevent duplicate efforts and to maximize
usability. Next to extensive documentation of the tool functioning, proper written instructions are
required to encourage and simplify the further development of the tool. Additionally guidelines for
further development should be proposed. These guidelines should instruct future developers on coding
practices in the framework, as well as guidance in coding style and documentation behaviour striving
for consistency throughout the tool.

Maintenance The extensive modifications and development that is expected for the design tool
it is important that the maintenance of the tool is taken seriously. To ensure that the tools is kept
in functioning state, that developers/researches adhere to the tools structure and confirm with the
guidelines that have to be defined it is recommended that maintenance responsibility is well defined.
Variable approaches to software maintenance can be chosen, ranging from making the software open-
source to appointing an in-house employee to the job. Without proper maintenance the software-
project is likely to become a mess.

1.4. Research Question and Thesis goal
In section 1.1 it is stated that the design process is of influence on the resulting design and that the
efficiency of the design process might be improved. In section 1.2 the shortcomings of the Initiator
are summarized and the desire for a more flexible and adaptive design process is expressed. Therefor
the research question is formulated to be:

6 1. Introduction

What is the influence of the conceptual aircraft design process on the resulting design
and can the performance of the design process be improved?

In support of the research question a new aircraft design framework needs to be developed that
adheres to the functional requirements expressed in section 1.3. The design of the architecture of this
framework as well as the use of the framework to answer the research question are the goals of this
thesis. It can be formulated as follows:

1. Develop the architecture of a next-generation aircraft design tool fundamentally based
on a process modelling approach

• Design the software architecture of a conceptual aircraft design framework

• Development of the framework;

• Implementation of an aircraft design sequence in the framework.

• Implement dynamic, automated design process generation

Due to the limited time available for the proposed thesis research, it is infeasible to implement the
entire software architecture that will be designed. Therefore when time is limiting, only the minimum
functionality that is required to perform the second objective, will be implemented.

1.5. Report structure
In this chapter a general introduction to the topic is given. In chapter 2 background information
concerning aircraft design software and process modelling is given. Then in Chapter 3 the methodology
that was used in the thesis is presented. Chapters 4 and 5 contain the experimental setup and the
results. Finally the conclusions and recommendations are presented in chapters 6 and 7 respectively.

2
Background information

In this chapter some background information is presented and its relevance to the research question
is indicated. The information presented considers the topics of conceptual aircraft design software
(section 2.1) and process modelling (section2.2). Also the an overview of some scientific computational
frameworks is given in section 2.3.

2.1. Conceptual aircraft design software
To evaluate the current state-of-the-art for conceptual aircraft design software a survey was performed
on the currently avaialble software packages. In chapter 1 the software from the department of Flight
Performance and Propulsion (FPP) at the faculty of aerospace engineering at the TU Delft (TUDLR)
was introduced. In this section a discussion of the most prominent features of available alternatives is
presented.

2.1.1. Initiator alternatives
Many alternatives to the initiator are available, ranging from out-dated, empirical design tools to pre-
liminary design tools relying on higher-order methods. These tools have been considered and their key
aspects will be discussed in the consecutive sections:

• DEE [1];

• CAESIOM [10];

• VAMPzero [3];

• Prado [11];

• Pacelab APD [12];

• ACSYNT [13];

• Piano [14];

• RAGE [15];

• openVSP [16];

• MICADO [17]

2.1.2. Design software properties
Each of the conceptual design software packages listed in section 2.1.1 has its own unique set of
features. The most striking features are discussed in this section.

7

8 2. Background information

Figure 2.1: Graphical dependency tracking in VampZero [3]

Physic-based conceptual design
When designing unconventional configurations for which no empirical data is available it is essential to
use physics-based analysis models to evaluate the design. Physics based models are used extensively
in preliminary design tools and occasionally in conceptual design. Simple aerodynamic models like
lifting-line theory or vortex-lattice methods are mostly preferred because of their short run-time. The
Initiator is unique in the use of a class II.V weight estimation, which combines analytical analysis of the
wing and fuselage structure and empirical data. Therefore this weight estimation is potentially very well
suited for unconventional configurations, however this capability has not yet been implemented. Other
tools like CAESIOM and Prado almost exclusively use physics based analysis. These are preliminary
design codes where the use of such models is both essential and customary.

Modularity
For further development it is important that it is possible to add or modify analysis and design modules.
For most design tools, being closed source, this is not possible. The Initiator, the DEE and VAMPzero
allow extension of their toolkit. Adding modules however is not as trivial as would be desired.

Dependency tracking
An aircraft designer is naturally interested in what drives the resulting design: the driving factor provides
valuable insight in the design. Room for improvement can easily be identified when the design drivers
are known. A simple way to back-trace how the resulting design emerged is dependency tracking: what
values are related to how they influence one another. VAMPzero lets the user track the dependencies
for each design variable. This is presented visually as a mind map, as shown in Figure 2.1. This feature
is a unique aspect of VAMPzero and not found in a similar way in other tools.

Variable order analysis
Variable order analysis is the use of models of different order during the same design process. For
example: an initial estimate can be made based on empirical data, during the next stage a VLM model
is used and finally a CFD analysis is performed. This example can be achieved using CAESIOM. Often
the current state of the design and the required accuracy are driving the decision for the model to
be used. In ACSYNT an interesting approach to this problem is taken. Several zones in an angle-of-
attack vs. Mach number diagram are defined. Each zone is associated with an analysis model that is
suited for aerodynamic analysis under the conditions of the zone. This idea is illustrated by Figure 2.

2.1. Conceptual aircraft design software 9

The downside of this approach though, is that discontinuities appear at the edges of the aerodynamic
zones.

Another approach is used in VAMPzero. The tool interchanges modules of variable order based
on the data that is available in the current aircraft model, thereby letting the tools order increase as
the design progresses. VAMPzero itself is not capable of performing high order analysis like CFD. It is
however possible to perform a higher-order analysis using any tool and store the results in the CPACS
file-format used by VAMPzero. VAMPzero can then use the higher-order results replacing its lower-order
analysis methods.

Formal, consistent data structure
A formal and consistent data structure is beneficial when integrating new or third party tools. It also
helps preventing double work or redundant storage of data when it is clear what data should be stored
where. VAMPzero is an excellent example of a consistent way of storing data: the CPACS format is
formally defined in an XSD schema. This allows for storing aircraft geometry as well as performance
parameters. An aircraft in CPACS can evolve from basic parameters to containing high-order results
and detailed geometry. In VAMPzero the CPACS data model, or an extract of it, is exchanged be-
tween modules. An alternative approach, taken by the DEE and Prado, is to convert the central model
into a generated set of sub models. These disciplinary specific models are then exchanged with the
disciplinary analysis tools. In MICADO a strictly defined aircraft ontology is used and stored in their pro-
prietary AiX file. The file functions as a central model for all modules in a way analogue to VAMPzeros’
approach.

Data Storage In the previous paragraph data structuring of some aircraft design software is dis-
cussed. In this paragraph three technical approaches to storing data are discussed.

• In-Memory - Store data in the memory currently allocated to the software. This method is advised
for short-lived data that is accessed frequently. Access to this data is lost after closing the software
and not transferable between sessions/instances. In-Memory storage is implemented by having a
data-model of the data and instancing the data-model. The data-model is then directly accessible
from software. Since the memory allocated is limited by the available amount of Random Access
Memory in a system, In-Memory can only be used for relatively small amounts of data.

• Database - A structured way of storing and accessing data for extended periods of time. The
data is persistent between sessions and can be transferred between instances. The data can not
be directly communicated efficiently to third parties or other systems. Database storage is imple-
mented by setting up a database and running a database instance. Programming environments
provide wrappers for accessing databases in a fast, efficient way. Traditional, SQL databases pro-
vide a fast mechanism to store and access structured data. For storage of less- or unstructured
data NOSQL document databases are recommended.

• File storage - File storage is extremely slow compared to database/in-memory storage. File
storage finds its application in data transmission between systems. Additionally it does not require
the overhead of running a database instance and can therefor be preferred over a database for the
sake of simplicity when speed is not of the essence. It is advised to adopt a standard document
format such as JSON or XML to provide a structured way of storing data in a file.

Rapid geometry modelling
For quick evaluation of creative ideas for new aircraft concepts it can be a great advance to visually
model the concept. After modelling the concept it can then be designed and analysed and the concepts
feasibility can be evaluated. OpenVSP is an open-source parametric aircraft geometry modeller by
NASA. The resulting model can be exported to a number of formats for further use. As OpenVSP is open
source and integration of OpenVSP is welcomed, using OpenVSP in in-house design tools is possible.
Another aircraft geometry modeller is RAGE by Desktop Aeronautics, where a solid parametric model
is generated using a concise textual input file. The capabilities are comparable to the aforementioned
OpenVSP. RAGE however, is commercial software and therefore not available for free.

10 2. Background information

Advanced design capabilities
The tools in Section 2.2.2 are all capable of producing a converged design. Some tools however are
capable of optimizing the aircraft for a specific goal. ADS for example, allows optimization using 1
moving parameter. A different technique is available in VAMPzero. Parameters can be frozen/fixed
during the design. Using this feature, parts of the aircraft can be kept constant. This allows for
evaluating the influence of a certain part of the aircraft on the overall aircraft performance. ACSYNT
employs a parallel design routine, compared to the default sequential design. Geometry, trajectory
analysis and weight computation are evaluated in parallel. This gives the possibility of a large speed
increase for the design routine to complete.

Modules
All tools mentioned in Section 2.2.2 contain at least the minimum toolset required to perform aircraft
design. Some tools however incorporate additional analysis modules that provide more information
about the design. An example is the IR analysis module in ACSYNT. This module is capable of analysing
the IR footprint of an aircraft which can be vital in the design of stealth aircraft like fighters or bombers.
Although not essential, this is a distinctive feature that gives ACSYNT the upper edge considering the
design of stealth aircraft. CAESIOM contains an aero-elastics module. For certain aircraft aero-elastic
effects can be driving and must be taken into account while performing the design. For all other aircraft,
aero elastic behaviour must be checked and therefore this capability is critical in performing a valid
design. Environmental aspects are becoming increasingly important. Lissys stresses the environmental
emissions analysis as a unique feature of their aircraft design tool ‘Piano’. Emissions might be driving the
design during projects where reducing emissions is a goal. For all other designs emission data should
not be omitted. Thus this module is a great asset to any tool. Both emission and noise capabilities are
incorporated in MICADO.

Control system design
Control system design of conventional aircraft is a rather well-known process. Mostly a single solution
exists and controls are allocated and sized easily. For unconventional aircraft like a three-surface
aircraft, control allocation is trickier: due to the additional control surface infinitely many solutions
exist for the allocation of control surfaces. When considering blended-wing body (BWB) aircraft, it
becomes more complex: the concept often lacks a vertical and horizontal tail and the stability and
control aspect might render the concept infeasible. AAA boasts excellent stability and control analysis
for conventional aircraft. The analysis is based the use of an empirical database based on conventional
aircraft and is therefore possibly not suited for the design of e.g. a BWB. The developers of CAESIOM
have recognized the significance of control system design for new configurations. In CAESIOM special
attention is paid to flight control system design for new configuration and it is incorporated early in the
design sequence. This makes CAESIOM stand out considering the design of i.e. blended wing body
aircraft.

2.2. Process modelling
In this section several approaches to modelling of the design process (or any process) are presented.
The approaches are of interest when developing a new design strategy, in this case a new conceptual
aircraft design process. Modelling of the design process also provides significant insight to the process
itself: it allows for identification of bottlenecks or flaws in the process and may be helpful in the
optimization of the process.

Most of the techniques presented here are often used to model processes and some have been
used to model the aircraft design process. There are no design tools though which are fundamentally
based on any process modelling approach.

2.2.1. Process modelling techniques
In this section several process modelling techniques are discussed, as is the relevance of the techniques
to the goal of this thesis. The techniques that are being discussed are the (extended) Design Struc-
ture Matrix (xDSM), Graph Theory, Functional Dependency Table and Reconfigurable Multidisciplinary
Synthesis (REMS).

2.2. Process modelling 11

Figure 2.2: Example of a design structure matrix (DSM)[4]

Design structure matrix
A Design Structure Matrix (DSM) is a compact visualisation of a system and shows the interrelations
that exist within the system. The approach was proposed by Steward in 1981 and has successfully been
used since [4]. In Figure 2.2 an example of a DSM (left) is given, representing the process flowchart
(right). A DSM is similar to an adjacency matrix known from graph theory. A DSM has the following
useful properties:

• It is a compact visualization, also for a large number of processes/relationships;

• Because of the nature of its matrix representation, matrix-based techniques can be used to anal-
yse and optimize the process;

• Clearly indicates feed-back and feed-forward relationships;

Extended Design Structure Matrix
The Extended Design Structure Matrix (XDSM) is an extension on the DSM discussed in the previous
section. XDSM was developed by Lambe et al [5]. The XDSM is used for representing software architec-
tures, where next to the data and processes represented by a DSM, also the process flow determined
by the software architecture is shown. This is achieved using a numbering system and lines. An exam-
ple is given in Figure 2.3. Additionally, optimization specific features like the objectives and constraints
are included in the formulation, as well as special nodes for solvers and optimizers. This allows for a
complete description of the software architecture.

12 2. Background information

Figure 2.3: Example of an extended design structure matrix (XDSM) [5]

Functional Dependency Table
A drawback of a DSM is that a DSM contains no information on the goal or constraints that are active.
This is required when performing optimization. To tackle this problem the Functional Dependency
Table (FDT) was proposed by Wagner et al [18]. A FDT embodies the relationships between functions,
including objectives and constraints. A drawback of the FDT is that the relations are unidirectional.
Therefore the data-dependencies between modules are not captured. Therefore an FDT alone is not
sufficient in describing the data-flow of a system.

REMS
Reconfigurable Multidisciplinary Synthesis (REMS) is a formal, abstract language for formatting MDO
processes. REMS was proposed by Alexandrov and Lewis as a way of reasoning about an MDO problem
at hand before solving the problem itself [19]. The concept is based on formulating the inputs and
outputs of disciplinary modules while not considering the multi-disciplinary problem, separating the
development of analysis modules and solving of the MDO problem. A directed graph based description
of the data and functions of the problem, modelling both as nodes and using vertices to represent the
data flow. Alexandrov and Lewis focus on the development of the abstract language that is proposed
to describe the data and functions in a formal way. REMS allows for incorporating objectives and
constrains as they can be modelled in a similar manner to analysis tools. It is portrayed by Pate et al
as a combination of DSM and FDT. They also identify a major drawback of REMS: REMS is envisioned
for the use in MDO, however it does not allow for inclusion of specific solvers or optimizers in the graph
representation. Therefore specific solutions to specific problems cannot be described in full detail,
forcing Pate to propose the graph based approach described in the previous section.

Graph Theory
Graph theory describes the mathematical subject of graphs. Graphs are a structured way to model
relations between objects. Graphs exist of vertices (relations) and nodes (objects). Mathematical
graphs are used extensively to model networks of data, communication or traffic. Many well-established
methods and algorithms exist to perform operations on graphs, like finding the shortest path between
two nodes or finding nodes related to a node. Additional functionality can be added to graphs by
introducing the concepts of:

• Weighted graphs – assignment of weights to certain nodes/vertices

• Directed graphs – one-way relations

2.2. Process modelling 13

• Properties – additional semantics added to nodes/vertices

A simple example of a directed graph is shown in Figure 2.4.

Figure 2.4: Example visualization of a directed graph [6]

Graphs can be a useful substitute of the commonly used DSM in representing a design process.
Graph theory can then be used to find dependencies in a system, which can be used to select or define
the appropriate design approach that has to be taken given a certain system state. To model a design
system and all its modules Pate et al model both the modules and parameters in the design process as
nodes in a graph. The following concepts are defined by Pate et al [6]:

• Maximal Connectivity Graph (MCG) – The graph containing all nodes (modules and param-
eters) and edges in the system. Because all nodes are contained all possible paths are present in
the MCG. The MCG is the starting point for process analysis. It is also useful for finding so-called
holes in the graph: required module input that is not available;

• Fundamental Problem Graph (FPG) – The graph that contains a minimal set of nodes and
edges that are required to solve a problem. Unnecessary or redundant nodes are removed from
the MCG until a minimal set of nodes remains;

• Problem Solution Graph (PSG) – The graph that contains both the FPG and solution strategy
that is required to solve the problem. The PSG is a representation of the design process and
shows the actual design steps that have to be taken.

The MCG is large by nature: Since every module, parameter and input/output relation is captured
by the MCG only a single graph is possible. Depending on the structure of the MCG, one or more
solutions exist for the FPG. In case of an MCG where no conflicting modules exist (modules related to
the same output-parameter, i.e. modules on the same domain with different fidelity), only a single FPG
is possible. In cases were modules conflict, multiple FPG scenarios are possible. The graph size of the
FPG however is smallest: only the bare minimum number of modules is present to solve a problem.
From the FPG a PSG is created. The PSG is the actual order of execution of the modules present in the
FPG. A number of modules can be ordered in a fixed number of ways. If the FPG contains feedback
however, the solution becomes of an iterative nature. The convergence speed of an iterative process
depends on the process order: some ordering might prove to be more/less effective then others. Since
theoretically inefficient process ordering can lead to a convergence speed that approaches zero, the
number of iterations can be infinite (e.g. the iteration does not converge). Hence the number of
possible PSGs is infinite (of course for every problem, one ore more optimal solutions exist). The graph
size of the PSG is directly related to the number of iterations/module evaluations. Since it was stated
that if the iteration does not converge the number of iterations can be infinite, the graph size can

14 2. Background information

be infinite. The minimal size of the PSG is the FPG: in case a FPG with no competing modules and
feedback, the PSG is equal to the PSG. A visualization of relation of the graph size and number of
possible graph between the MCG, FPG and PSG is available in figure 2.5.

Visualizing the MCG and the FPG is rather straightforward: the graph can be directly visualized
as in figure 2.4. The visualization of a PSG is, in many cases, less straightforward. In cases where
feedback is absent the PSG resembles the FPG and a visualization confirming to the style of figure 2.4
is valid. In a case where feedback is present and therefor an iterative approach is used a xDSM might
be employed. However, this visualization approach fails if a more dynamic module ordering is applied:
an xDSM only facilitates the visualization of loops of which the order does not change. If the order of
modules in a loop, or the order of different loops, change, the process becomes much more dynamic
and one can no longer speak of a purely ’iterative’ approach. No meaning full visualization exists for a
process of such a dynamic nature. Since this situation applies to most cases present in this research
proper visualization of PSGs is lacking.

Figure 2.5: Relationship of the number of possible graphs (a) and graph size (b) between the MCG, FPG and PSG [6]

Pate et al conclude that the graph-based approach is, in comparison with other process modelling
methods, very well suited for algorithmic analysis and manipulation. Additionally, graph theory contains
many standard algorithms for feedback cycle detection, (minimum) spanning trees and shortest path
problems. Since the goal of this thesis is to develop automatic process scheduling algorithms, graph
theory is selected as the process modeling technique because of being well suited for algorithmic
manipulation and analysis.

2.2.2. The significance of automated process modelling for conceptual air-
craft design

As becomes clear while discussing the many modelling approaches in the previous sections, process
modelling is a challenging subject and much research is spent on new approaches. Even though the
design process is of great influence on conceptual aircraft design, it seems undesirable that the aircraft
designer has to deal configuring the process. By automating the composition of the design process,

2.3. Scientific computational frameworks 15

the aircraft designer can focus on the creative tasks and is no longer bothered with the composition
of the design process. Automated process modelling may also be of great influence to the design of
new aircraft configurations. Currently many aircraft design software employs a fixed design routine,
based on design of the conventional aircraft configuration. This process might not be optimal, suited
or even valid for new aircraft concepts. Different configurations may require a different design process
or the use of different analysis modules. To get insight into the validity of the design process for
unconventional aircraft configurations, automated process modelling can play an important role. It
can be used to identify missing links or analysis tools. Additionally process modelling can provide
guidance and direction for further development of design and analysis tools, such that unconventional
configurations can be designed successfully and with confidence. Finally, having a detailed model of
the design process, including all functions and data, great deals of potential advantages arise. For
example, having detailed models of all input-output relations in the analysis modules makes storage
of those results simple. This simplifies construction of surrogate models or estimation of derivatives,
which might be useful in organizing the design process.

As mentioned before, no attempt has been made to fundamentally base an aircraft design tool on
a process modelling approach, even though it is shown to have many potential advantages. Therefore
a process modelling based approach might be very beneficial in the development of a new design tool.

2.3. Scientific computational frameworks
The scientific community has produced a vast amount of computational frameworks for scientific usage.
These frameworks are meant to simplify linking different tools, performing optimization or facilitating
distributed computation. The significance of these frameworks to this thesis is that they may provide
a framework to support the development of a new design tool.

Many features are common in such frameworks (frameworks like openMDAO [20], Dassault iSight
[21], Optimus [22], ModelCenter [23] and Dakota [24]). Among the most common features in such
frameworks are:

• Workflow management, the functionality to set up custom workflows between interacting tools.
The advantage of this feature is that data can be transferred between analysis tools;

• Optimization, Design of experiments and surrogate modelling. The frameworks provide function-
ality which make it trivial to set up these advanced design methods;

• Post-processing of the results. Visualization and plotting results in a convenient matter;

• Automated execution of simulation. A simulation work-flow that has been properly set up can be
executed automatically, possible multiple times for varying input, without user intervention.

Some useful functionality is only implemented in specific frameworks. For example, ModelCenter
comes with a rich analysis library. This can potentially reduce a lot of work when the content of this
library is applicable to the project at hand. ModelCenter also provides integration with several CAD/CAE
tools, useful in preliminary and detailed design. In the Dakota software uncertainty quantification is
implemented out of the box. This is a valuable tool when developing new analysis tools and performing
aircraft design using new tools.

Due to the closed source nature of most frameworks extending the frameworks features and im-
plementing the planned aircraft design tool is non-trivial. Therefore they are not suited for the next-
generation design tool we are considering, which leaves the open-source frameworks Dakota and open-
MDAO. Whether or not using one of these frameworks is wise will lead from the software architecture
for the aircraft design tool, which is explained in detail in chapter 3.

3
Methodology

In this chapter the approach and methodology used in this thesis are explained. First the design philos-
ophy for the software architecture of the Initiator is presented followed by the resulting architecture.
Then the structure of the Python implementation is given. Finally the operation of the software is
explained and the automatic module ordering algorithms are explained.

3.1. Initiator software architecture
First a preliminary design of the initiator software architecture is presented. The architecture is based
on the requirements presented in [25].

3.1.1. Philosophy
The software architecture of the Initiator is design to comply with the functional requirements formu-
lated in chapter 1. Two main concepts are adopted for designing the architecture: a separation of
program components and a process modelling approach. The next two paragraphs are dedicated to
explain this philosophy in more detail.

Separation of components The strict separation of components as presented in this section shows
several advantages. The first is that it provides a great overview of the functionality and responsibilities
of the different components. Secondly each component can be developed and tested as a stand-alone
element. The input component for example can be developed without considering the internal func-
tioning of analyses modules and the controller, among others. Because of clearly defined interfaces and
stand-alone operation Unit-testing and regression-testing [26] can be used to guarantee and maintain
quality.

Third, the current version of the Initiator is under heavy development my multiple TUDLR graduate
students and staff. The separation of components eases the development of the software by multiple
individuals simultaneously. By correctly using version control [27] like Git/SVN this process is further
simplified.

Process modelling approach In section 2.2.2 the significance of process modelling in conceptual
aircraft design is explained. Because of the advantages presented in that section a process modelling
approach is adopted for this research. Consider the design process as a network of parameters and
(computational) modules. Each module takes one or several parameters as its input and each module
updates values for one or more parameters. In the network both parameters and modules are rep-
resented as nodes. A parameter that is input to a module is represented by a directional vertex from
the parameter node to the module node. A parameter that is output of a module is represented by a
directional vertex from module node to the parameter node.

3.1.2. Structure
The architecture of the Initiator should satisfy the requirements as specified in section 1.3 in a way
that confirms the philosophy given in section 3.1.1. The Facade Design pattern as advocated by Zlobin

17

18 3. Methodology

[28] is well suited for achieving a modular architecture in which there is little interdependence between
different program components. According to Zlobin, the facade pattern:

• makes software easier to use and tests;

• reduces dependencies in the code;

• complicated subsystems are wrapped by a simple interface.

Thereby the pattern supports the philosophy of separation of components and is suitable for this
application.

Components
To facilitate the separation of components the functionality of the framework is divided over different
components. An overview of the program structure, containing the components listed below an their
relations, is provided in figure 3.1. The figure clearly shows the separation of components that is so
desired for reasons given in section 3.1.1. The following components can be distinguished:

• Controller component - The component that controls the operation of the initiator. The controller
houses all other components and facilitates the connection and data passing between them.

• Driver component - The hearth of the Initiator. This is the component that takes input from the
input component, load the analysis modules, communicates the output to the output component
executes the design process.

• Input component - Component that takes input from the user and presents the input to the driver.

• Output component - Component that takes data from the driver and presents it. Presentation can
be textual, visual or in any format, such as: console output, latex writer, graphs, plots, 2D/3D
aircraft, CPACS XML, etc.

• Analysis/Design tool - The component that performs computations. This component is either
internal or third party. It is wrapped by the module-component which is responsible for translating
the data returned by the analysis tool to the format required by the driver. An example of this
component is i.e. XFoil [29]. An analysis tool that has multiple modes of running it can be
wrapped in different modules, each tuned for a specific run mode.

• Module component - The module component is a wrapper for an analysis or design module.
This component translates input and output from the Initiators’ format (required by the driver
component) to the format required by the analysis tool. The wrapper also stores information
about the computational result of the wrapped analysis tool such that it can be used at a later
stage. A separate wrapper is intended for each different run mode of a analysis tool. This is done
to ensure that the behaviour of the module is uniform, as well as the data gathered from running
it.

• Instance manager component - The instance manager a component meant for managing in-
stances of third party software. The overhead related to starting/stopping third party software is
often substantial and sometimes dominant over the effective computational time. By keeping the
instance alive after it has been used can reduce this overhead drastically for subsequent usage.
The instance manager is also use full in managing the parallel execution of analysis modules
when required. The component manages the different input and output files for each module
such that no conflicts arise in concurrent existence of multiple instances of the same analysis
tool.

• Meta-module component - The meta-module is meant for performing meta-modelling/surrogate
modelling. These kinds of modelling techniques possibly reduce computational time by replacing
a complex model by a simpler, statistical model, based on the complex models’ stored input-output
behaviour. These statistical method may vary from linear regression to Kriging. [30]

• Technology factor component - The technology factor component is a component that handles
the impact of a technology factor on a parameter in the design of an aircraft.

3.1. Initiator software architecture 19

• Algorithm component - The algorithm component embodies the design process algorithm. The
component performs the scheduling of execution of modules for the controller to execute. For
that the component receives module information for the applicable modules from the controller
and present the execution schedule to the controller as a result.

3.1.3. Programming environment
Computational framework
In section 2.3 a brief overview of computational frameworks is presented. It is stated that the choice of
a framework or the decision of building a proprietary framework leads from the software architecture
of the design tool. The software architecture presented in section 3.1.2 does not conform to the
structure used by the frameworks Dakota and openMDAO. Both frameworks are not sufficiently flexible
to implement the suggested structure in the framework. Therefor it is suggested that no existing
framework is used and that a new, proprietary framework implementing the given architecture is build.

Python
Several programming languages and environments were considered. Python [31] was selected for its
large user-base in the scientific community. Python, being an interpreted language is easy to learn
and can be executed in an interactive mode. Because it is interpreted the language is relatively slow
compared to compiled languages like C++ and FORTRAN. Speed however, is not of the essence for the
development of the framework itself: the computational modules are expected to be the performance
bottle-neck, and the system will be set up such that these modules can be programmed in a high-
performance language when required. Python is excellent for interfacing with other languages and
therefor well suited for connecting modules in different languages.

Python supports modern programming paradigms and has a inherently modular setup, allowing to
keep a large code-base manageable. Additionally there are plenty of packages available for performing
all kinds of tasks, such as scientific an numerical programming or interfaces with third party software.

Finally Python is the programming language currently taught at TUDLR and therefor the learning
curve for subsequent development is decreased significantly.

NetworkX
NetworkX [32] is a graph package for Python. The library features graph creation and manipulation.
The package is open-source and therefor all algorithms and included functionality is accessible. Many
default algorithms for i.e. path-finding, shortest-route and cycle detection are included in NetworkX.

The free availability, well-tested and easy integration of the package make NetworkX well suited for
this study and is therefor used here.

Miscellaneous libraries
In addition to NetworkX, a number of other libraries were used. The libraries are not fundamental to
the research and framework and are therefor not elaborated on any further. They are however listed
below for the sake of completeness:

• pyGraphviz - Graph visualization

• Pint - Sciencitic unit framework

• Matplotlib - Plotting toolbox

• PrettyTable - Table printing to console and latex

• Unittest - Pythons internal unit testing framework

Data storage
On three occasions data storage occurs in the structure shown by figure 3.1: the aircraft data, module
results/behaviour and for communication to third parties. For each type of data there is a preferred
way of storage, based on the theory given in chapter 2:

• Aircraft data - The aircraft data is accessed continuously throughout the operation of the program.
Considering the options presented in section 2.1.2 In-Memory storage is recommended.

20 3. Methodology

Input

Program Structure Diagram

Output

Driver

Module (wrapper)

Surrogate Model

Analysis/Design
Tool

calls

results

store result

output

request input type

input

input type

calls

may call

module data

load data

update/request

 input specification

data updated
plot request

Instance
Manager

Text

Module manager

Module
results

reads database

module data

Design
Processes

Aircraft

storage

relation

External Input

link to variables

Technology Factors

enabled tech

available technologies

new technologies

Aircraft data,
Reports,

Graphs, etc.

Algorithm

Figure 3.1: Overview of the architecture of the new Initiator

3.2. Program Structure 21

• Module results - Module results are high in volume but access occurs less frequently than ac-
cessing aircraft data. A database is advised for storing module results. Since a wide variety of
module result formats is possible a documents database is advised in contrast to the structure
SQL database.

• Communication to third parties - Given the portability of files compared to in-memory and databases
explained in section 2.1.2 file storage is preferred to other options. The JSON document format
is recommended because of its readability and small overhead compared to the XML format.

3.2. Program Structure
The software program that was developed for this research is a subset of the Initiator architecture that
was presented in section 3.1. Because this research is focused on automated process modelling, the
basic building blocks required to experiment with scheduling algorithms has been implemented. These
essential building blocks are the driver component, algorithm component and the module component.
This limited subset is represented by the diagram in figure 3.2.

This section explains basic concepts used in the implementation as well as a description of all the
implemented components and design/analysis tools.

3.2.1. Concepts
To understand the terminology used in the subsequent sections some basic concepts must be introduced
first.

• Graphs - A graph is an abstract way of modelling a network of arbitrary things (nodes) and their
interconnections (vertexes).

• Module - A wrapper of computational design/analysis tool that is represented in the graph as a
module-node.

• Parameter - A node representation in a graph of a variable in the design process. A parameter
can be both input, output or a design goal of the design process.

• Module error - The difference of the sum of the normalized differences of a modules’ output
parameters’ values of two consecutive evaluations of a module.

• Input error - The difference of the sum of the normalized differences of a modules’ input pa-
rameters’ values of two consecutive evaluations of a module.

• System error - The sum of the module errors’ of the modules present in the FPG.

• Module tolerance - The maximum module error at which a module is deemed to be converged.

• System tolerance - The maximum system error at which the system (FPG) is deemed to be
converged.

• Convergence - The process of approaching the system state where the system error has de-
creased to a value lower than the system tolerance.

• Fixed parameter - A parameter whose value can not be changed. Modules that have the pa-
rameter as an output are therefor not to be used: when used the constant value of the parameter
is no longer guaranteed.

• Holes (MCG) - A hole in the MCG is a missing node. More specifically a hole is a missing
parameter that is input to a module. This happens because the parameter is not defined but
does occur as a input parameter of a module. The hole needs to be filled (e.g. the parameter
needs to be defined) for MCG to be used.

• Holes (FPG) - A hole in a FPG is a parameter that is not set by any module and therefor can not
be computed. An initial value needs to be set in order to solve the FPG.

• Conflicting modules - Conflicting modules are modules that share output parameters. Since
multiple modules can set the value of the same parameter it is non-trivial to handle such a
situation in generation an FPG.

22 3. Methodology

Implemented Program Structure Diagram

Driver Module (wrapper)

Surrogate Model

Analysis/Design
Toolresults

store result

output

input

calls

may call
module data

Module manager

Module
results

reads database
module data

Algorithm

input

Figure 3.2: Overview of the implemented part of the new Initiator architecture

3.2. Program Structure 23

3.2.2. Components
In this section the implementation of the components in figure 3.2 is explained.

GraphController
The Graph Controller is the main component of the program. The graphController is an implementation
of the ’driver’ component as described in section 3.1.2. The graphController is responsible for loading
parameters and modules, creating and maintaining the graph and running modules. Additionally the
execution of a solving algorithm to perform the scheduling of modules is performed by the controller.

Nodes
The nodes are the basic elements of the graph. Both parameters as modules are modelled as nodes
in the graph. Nodes are identified in the graph by their ’tag’, a short abbreviation of their name.

Parameters A parameter is a design variable. A parameter has the following properties:

• tag

• name

• description

• unit

• value

Although the preferred way of storing parameter definitions is in a database (as advised in section
3.1.3, the overhead of setting up and running a database outweighs the speed advantage in this case,
as speed is not of the essence in our test case. Hence parameters are defined in JSON format and
stored in a file. As an example the definition of the gravitational acceleration parameter is given in
listing 3.1.

Listing 3.1: Parameter definition example

{
”tag” : ”g” ,
”name” : ”Gravitational Acceleration g” ,
”unit” : ”m/s^2” ,
”description” : ”Gravitational pull, usually 9.81 m/s^2”

}

The module definition file is read by the graphController and for each defined parameter a parameter-
node is created in the graph. A parameter keeps track of the history of its value. A complete list of
implemented parameters is available in Appendix B.

Modules The module class defines the base class from which all module-components derive. The
module class has the following data (and functionality to manipulate that data):

• Pointers to input/output parameters

• Run-time history

• Module state history

• Regression models of module behaviour

• Priority

The implementation of analysis/design tools is done by extending the module base class and im-
plementing the mandatory init and runModule methods. In the init method the modules properties
(name, description, input-output parameter tags) are defined. In runModule the execution of the anal-
ysis/design tool is performed as well as the mapping of input and output values to the analysis and
design tool.

24 3. Methodology

Implemented modules To experiment with automated process scheduling it is necessary to have
a vast amount of different modules. Because ultimately the methods used in the current Initiator
(version 2.7) are to be used in the next version, for which this framework is the base, it was chosen to
replicate the methods in the current software. Due to time constraints however, it was not feasible to
implement all modules present from the current Initiator. To have both a representative as a feasible
set of modules with enough modules, the decision has been made to select the following design steps
and split them up in smaller modules. The following design steps are implemented:

• Class I initial sizing / weight estimation

• Class I drag polar

• Design point selection

– Thrust/weight ratio

– Wing loading

• Class I configuration design - planform design

• Class II weight estimation

The design steps are split up in small modules. An exhaustive list of actual modules is available in
Appendix B.

The underlying methods used in these modules are based on a combination of Toorenbeek and
Roskam methods. Severe simplifications were made to speed up the development process. More
information on the specifics of these methods can be found in the respective literature or in the docu-
mentation of the Initiator. Because these specifics are not relevant for this research no more discussion
on the topic is given here.

To illustrate the code implementation of a module a brief example is given in listing 3.2. A more
detailed example is the implementation code of class II wing weight estimation as by Toorenbeek. This
example is given in appendix A.

Listing 3.2: Module implementation example

c l a s s r oo t_ t i p_ th i c kne s s (Module) :
Ca l cu l a t e the root th i ckness of a wing based on
the th icknessዅtoዅchord r a t i o (cons idered a constant) and the
root chord of the wing .

def __ i n i t __ (s e l f) :
Module i n i t i a l i z e r . Use t h i s i n i t method to set bas i c module p rope r t i e s

l i k e tag , name, de s c r i p t i o n and inዅ and outputዅtags .
tag = s e l f . __c lass__ . __name__
name = ” Est imate root and t i p th i ckness of wing ”
de s c r i p t i o n = ” Est imate root and t i p th i ckness of wing ”
s e l f . inputTags = [” t_over_c ” , ” chord_root ”]
s e l f . outputTags = [” th i ckness_ roo t ”]

super (roo t_ t i p_ th i c kness , s e l f) . __ i n i t __ (tag , name, desc r i p t i on , s e l f .
inputTags , s e l f . outputTags)

def runModule (s e l f) :
#Over loading of the mandatory runModule method spe c i f i e d i n base c l a s s (

Module)

Ca l c u l a t i o n of root th i ckness
roo t_ th i ckness = s e l f . i npu t s [” chord_root ”] . va lue* s e l f . i npu t s [” t_over_c ”] .

va lue

Mapping of computed value to the output parameter
s e l f . outputs [” th i ckness_ roo t ”] . setVa lue (roo t_ th i ckness)

3.2. Program Structure 25

GCTestcase
To perform experiments on using the new architecture the GraphController component needs to be set
up and run in a controllable fashion. Therefor a suit of test case classes is designed that facilitates this
need.

The GCTestcase, GCTestCaseCollection, GCTestCaseAlgorithmCollection and GCTestCaseRunner classes
are designed to automate the initialization and running of (sets of) graphController objects. The Col-
lection classes house a set of multiple GCTestcases in order to achieve statistically relevant sample
size. Additionally the GCTestCaseReporter class is designed to perform a statistical analysis on the test
results and report the results of a test-case collection. It is important to note that only a GCTestCase
directly interacts with the GraphController. All other classes interact witht the GCTestCase and do not
manipulate the GraphController directly.

GCTestcase The GCTestcase class was designed to generate, setup and run GraphController objects.
A testcase contains a GraphController object and takes a list of initial values, goals and an algorithms
for setting up the GraphController. The testcase can then run the graphController to solve for the
defined goals and collect the results (goal values, run times and function evaluation).

GCTestCaseCollection The GCTestCaseCollection is a generator class that adheres to the factory
design pattern as by by Zlobin [28]. Given a list of initial values for some paramters and bounds
concerning these parameters, a given number of GCTestcase objects is generated. The purpose of this
is to test the GraphController on varying initial values. Additionally it is meant to train the learning
algorithms (detailed in the next section) by means of Design of Experiments (DOE).

GCTestCaseAlgorithmCollection The GCTestCaseAlgorithmCollection is a generator class like the
regular GCTestCaseCollection class. The purpose of this class is to, given a list of algorithms and a
sample size, generate and run a number of GCTestCases for each given algorithm. The results can
then be collected to analyze them. A single sample per algorithm is not statistically relevant as only
few algorithms produce a consistent result.

GCTestCaseRunner The GCTestCaseRunner is a helper class that manages the execution of a test
case. The class has functions for running both a single testcase as well as an (algorithm) test case
collection. A collection is run by treating each contained testcase as a single testcase that is run
separately.

GCTestCaseReporter The GCTestCaseReporter class has the functionality to derive the relevant
information from a GCTestCaseCollection and produce a readable result.

3.2.3. Program Operation
The implemented structure of the software program is presented in chapter 3.2. In this section, the
chronological operation of the software is presented. Special attention is given to the communication
between the software components and between the software and the user.

GraphController operation To clarify the operation chronology of the GraphController a sequence
diagram of the typical operation of the GraphController (of which the structure and purpose is available
in section 3.2) is given by figure 3.3. After instantiation the following steps are performed:

1. The Maximum Connectivity Graph (MCG) is composed from the defined modules (in code as
illustrated in listing 3.2) and the defined parameters (in the parameters definition file, illustrated
by listing 3.1).

2. After composing the MCG, the user is asked to identify the design goals. Alternatively these goals
can also be specified by calling the GraphController object directly.

3. With the design goals set, the next step is to compose the Fundamental Problem Graph (FPG).
The FPG is the minimal set of modules and parameters that are required to solve for the design
goals.

26 3. Methodology

4. The user is asked to specify the solving algorithm that is to be used to determine the module
execution order. Again, alternatively this can be specified by calling the GraphController object
directly.

5. The holes (’dead ends’ in the graph) in the FPG are identified: these represent parameters which
values can not be computed because there is no module available that has the parameter as an
output. Therefor these values need to be set manually and can be considered the initial design
values. The user is asked to enter values for every hole in the FPG.

6. The design problem is solved by executing the modules in the FPG until convergence is achieved.
The graphController communicates with the ordering algorithm, which determines the module ex-
ecution order. The exact implementation of the solving process heavily depends on the algorithm
used. Some examples are presented in consecutive paragraphs.

3.2. Program Structure 27

GraphController
(Driver)

User

ask user for design goals (which parameters)

design goals

ask user to set solving algorithm

algorithm

find holes in FPG
ask for initial values

initial values

Compose the
FPG

Compose the
MCG

solve design
problem

what module should be run?

module

Algorithm

Figure 3.3: Sequence diagram of the typical operation of the graphController object

28 3. Methodology

MCG composition In figure 3.3 the composition of the MCG is show as a key process in the Graph-
Controller operation. The composition of the MCG is further explained by the flowchart in Figure 3.4.
The following steps are taken:

1. Load parameters from parameter definition file

2. Load modules from code

3. Instantiate parameter/module objects from the loaded definitions. Add the instantiated objects
as nodes to the graph

4. For every input/output parameter of every module, add a directed vertex from the parameter to
the module (input) or from the module to the parameter (output) to the graph.

5. If a input/output parameter of a module is not defined in the parameter definition file, indicate
this to the user and stop the program.

6. If all parameters are correctly defined then the MCG is complete.

As explained in chapter 2 the MCG is a graph network containing every possible connection between
all nodes (parameters and modules). An example MCG is given in figure 3.5. Parameters are in black,
modules in red and a possible design goal is highlighted in green. Note that a design goal is not
strictly part of an MCG, but it is indicated to clarify the difference between a MCG and a FPG (discussed
subsequently). Also note that only a arbitrary, yet limited number of modules is incorporated in this
MCG to enhance the clarity of the graph. Hence not all modules listed in appendix B are present.
Finally note that this network has no feedback/self-loops. The figure is generated automatically from
an actual graph.

Load Modules
from code

Add
modules/parameters

to graph (MCG)

Add input/output
of modules as

vertices to graph

Parameters
missing?

Ask user
to fill holesYesNo

Build the MCG

Load Parameters
from JSON file

MCG complete

Start

Figure 3.4: Flowchart of the composing of the Maximum Connectivity Graph (MCG).

3.2. Program Structure 29

get_loiter_FF_wrapper

FF-loiter

get_total_FF_wrapper

L_over_D_cruise

get_mission_FF_wrapper

FF-mission

divertRange

get_divert_FF_wrapper

FF-divert

FF-reserve

M_cruise

BuffetOnsetBoundary

C_L_max_cruise

get_Isp

Isp

range_Harmonic

SFC_cruise LHV_kerosene

get_H_g

H_g

V_cruise

FF-total

n_engine

loiterTime

g

range alt_cruise

Figure 3.5: An example Maximum Connectivity Graph (MCG) given a limited set of modules (red) an parameters (black). The
mission fuel flow (”FF-Mission”) is highlighted as a example design goal in green.

FPG composition In a fashion comparable to the MCG, the FPG composition is an important process
included in figure 3.3. The composition of the FPG is further explained by the flowchart in Figure 3.6.
The following steps are taken:

1. Instantiate empty graph (FPG)

2. For every goal:

(a) Add goal to the graph (FPG)

(b) Recursively find all preceding nodes of the goal in the MCG and add those nodes to the FPG

3. The FPG is complete

By applying the method described by these steps and figure 3.6 given the design goal ”FF-mission”
and the MCG in figure 3.5, an example FPG is generated. This automatically generated FPG is presented
in figure 3.7. It is immediately clear that only the nodes necessary to compute the design goal remain
and that the FPG is smaller than the MCG, as predicted in section 2.2.1. Also note that the FPG is a
special case in in which there are no self-loops (obviously, as there are none in the MCG).

30 3. Methodology

add goal to
graph (FPG)

Build the FPG

goal node yes
add

preceding
node to FPG

does
node have

predecessors in
MCG?

preceding node

no

node

goals
left?

yes

NoFPG complete

first goal
node

Figure 3.6: Flowchart of the compososition process of the Fundamental Problem Graph (FPG).

V_cruise

get_mission_FF_wrapper

FF-mission

L_over_D_cruise

get_H_g

H_g

M_cruise

n_engineg

SFC_cruise

LHV_kerosene

range alt_cruise

Figure 3.7: An example Fundamental Problem Graph (FPG) generated from an MCG 3.5 given a design goal (”FF-mission”), using
the algorithm illustrated by figure 3.6.

3.2. Program Structure 31

GCTestcase operation In section 3.2.2 the overall structure of the GCTestcase class and related
classes were given. The operation of the testcase suite is visualized in figure 3.8, indicating the chrono-
logical communication and data-flow between components of the testcase suite.

1. A GCTestcase Collection is instantiated

2. The user gives initial values, sample size and the algorithms to be used

3. The initial values and sample size(𝑛) are presented to the testcase generator

4. 𝑛 GCTestcases are instantiated given the initial values

5. For each GCTestcase, a graphController is instantiated given The intitial values and algorithm

6. The testcase collection is complete

7. Each GCTestcase in the GCTestcaseCollection is given to the GCTestcase Runner

8. The GCTestcase is executed: the graphController is asked to solve the design problem

9. The results are passed back to the GCTestcase (collection)

10. The results are passed to the GCTestcase Reporter

11. The GCTestcase Report performs a statistical analysis on the results and presents the results and
the statistics to the user

32 3. Methodology

GCTestcase
Collection

GCTestcase GraphController User

input?

initial values, algorithms, sample size

GCTestcase
Generator

values

testcase
collection

values

testcase

values

graph

testcase

results

GCTestcase
Reporter

GCTestcase
Runner

run
run

results
results

results
results,
statistics

Figure 3.8: Sequence diagram of the GCTestcase suite, indicating the chronological communication and data-flow between
components of the testcase suite.

3.3. Solving Algorithms 33

3.3. Solving Algorithms
In section 3.2.3 the basic operation of the program was explained. A sequence diagram of the typical
operation of a GraphController was presented in figure 3.3. Although details were presented on the
composition of the MCG and the FPG no elaboration was given on solving the design problem (also:
generating the PSG). This is the subject of this section.

To perform the automated scheduling of module execution several algorithms were developed with
varying levels of sophistication. A base class (GraphAlgorithm) was made containing the basic logic of
using an algorithm to schedule the module execution.

The algorithms listed in this section are display in an evolutionary order: the first algorithm contains
the most basic functionality and was developed first. Development of the algorithms provided new
insights and these have been incorporated in the development of subsequent algorithms.

3.3.1. Basic algorithms
Algorithm 1: Random order execution Modules are executed in a random order. This algorithm
was developed to test the basic functionality of using an algorithm to determine the execution order.
The goal is to reach a consistent, converged system. This approach uses a list of solved and a list of
unsolved methods. Every module in the unsolved list is solved in a random order. If the change in
value of the output parameters is significant, all modules depending on the output parameter are put
back in the list of unsolved module and re-evaluated later. Because of the randomness of this algorithm
it is expected that the algorithm performs terrible and scales very bad.

Algorithm 1: Randomly ordered modules
Data: FPG
Data: list of all modules that need to be solved
Data: list of modules that have been solved

for the first module in the list of modules that needs to be solved do
if module can be solved then

solve module;
move module to list of solved modules;
if (module error ! tolerance OR first module run) AND module has predecessors then

move all dependant modules of current module from solved list to unsolved list;
else

move module to the end of the list;

Algorithm 2: Random order execution with filtering of duplicate module execution This
algorithm is an improvement of Algorithm 1 by adding filtering of the duplicate execution of modules.
A major waste of computational time in Algorithm 1 occurs when a module is chosen to be executed
but the values of the input parameters have not changed since the module was last executed. This
behaviour is avoided by not executing the module and skipping to the next (randomly selected) method.

Algorithm 2: Randomly ordered modules with filtering of redundant module execution
Data: FPG
Data: list of all modules that need to be solved
Data: list of modules that have been solved

for the first module in the list of modules that needs to be solved do
if module can be solved then

solve module;
move module to list of solved modules;
if (module error ! tolerance OR first module run) AND module has predecessors then

move all dependant modules of current module from solved list to unsolved list;

else
move module to the end of the list;

34 3. Methodology

Algorithm 3: Prioritizing cycles This algorithm is based on the assumption that convergence is
reached faster when first all modules present in feedback loops (cycles) are considered first. Therefor
after each module execution, for all cycles it is checked if they can be solved (meaning that there are
no unset parameters in the cycle). If a cycle can be solved, the modules in the cycle are iterated upon
until convergence is reached for the cycle. Then the next (solvable) cycle is considered.

Using the algorithm discovers that within the FPG there are many different cycles, as each cycle
often contains multiple subcycles. This is because the parameters are also modelled as nodes in the
graph. If there are 2 output parameters (C and D) of Module A in a cycle which are both input to Module
B in the same cycle, this is counted as 2 cycles: 1 containing parameter C, 1 containing parameter D.
Therefor a great many number of cycles must be converged upon, which leads to a sub-optimal result.

Algorithm 3: Prioritizing cycles
Data: prepare FPG
Data: list of all modules that need to be solved
Data: list of modules that have been solved
Data: list of all cycles that need to be consistent
Data: list of cycles that are consistent

if a cycle can be converged then
for the first cycle in the list of cycles that needs to be solved do

if cycle can be converged then
solve cycle;
move cycle to list of solved cycles;
if cycle error ! tolerance OR first cycle run then

move all cycles with modules that are also in current cycle to unsolved cycle list;

else
move cycle to the end of the list;

else
for the first module in the list of modules that needs to be solved do

if module can be solved then
solve module;
move module to list of solved module;
if module error ! tolerance OR first module run then

move all dependant modules of current module from solved list to unsolved list;

else
move module to the end of the list;

Algorithm 4: Prioritizing a selection of cycles This algorithm is an improvement on algorithm
3. That algorithm suffered from bad performance because of too many algorithms being present. A
solution for this issue is to filter the circles that will be used in the algorithm. This filtering is performed
as noted in algorithm 4.

The result of this filtering is that the number of cycles is reduced significantly, in the order of 80%-
99%. As the number of duplicate cycles increases with number of nodes, the performance improvement

3.3. Solving Algorithms 35

will increase with increasing number of nodes.

Algorithm 4: Prioritizing filtered set of cycles
Data: list of cycles

for cycle in cycles do
remove parameters from cycle;

for cycle in cycles do
if cycle is subcycle of other cycles then

remove cycle from cycles;

do algorithm 3 with filtered cycles list;

3.3.2. Pre-run ordering of modules

The subsequent algorithms all apply the ordering of modules based on some criteria. The ordering
occurs before the solving-process is performed. The problem solving process is then performed as in
algorithm 2.

Algorithm 5: Pre-run, cycle-based ordering of modules It is assumed that the number of
occurrences of a module in feedback cycles is an indication of the influence of that module on the
design. By prioritizing the module with the highest number of occurrences the convergence speed is
increased. Therefor this algorithm orders the modules based on the number of occurrences in the
graphs cycles. The complete algorithm is given in algorithm 5.

Algorithm 5: Pre-run, cycle-based ordering of modules
Data: FPG
Data: list of all modules that need to be solved
Data: list of modules that have been solved

ordered list <- ordered by number of occurrences in FPG cycles

for the first module in the ordered list of modules that needs to be solved do
if module can be solved then

solve module;
move module to list of solved modules;
if (module error ! tolerance OR first module run) AND module has predecessors then

move all dependant modules of current module from solved list to unsolved list;

else
move module to the end of the list;

Algorithm 6: Pre-run, average distance-to-goals based ordering The assumption is made
that the distance from a module to the goal(s) is a indicator for the impact of the module on the design.
The reasoning is that a change in a modules’ output propagates through consecutive modules. Therefor
the impact on the total system is considered to be bigger for a module that has many succeeding
modules (ergo: has a longer distance to the goal(s)). The distance from a module to a goal is computed

36 3. Methodology

using Dijkstras’ algorithm [33]. The calculation of the average distance is included in algorithm 6.

Algorithm 6: Pre-run, average distance-to-goals based ordering
Data: FPG
Data: list of all modules that need to be solved
Data: list of modules that have been solved

Data: totalPathLength = 0
Data: counter = 0

for goal in goals do
if path from module to goal exists then

totalPathLength += shortest path from module to goal;
counter += 1;

average distance = totalPathLength/counter;

ordered list <- modules ordered by average distance of module to goal:

for the first module in the ordered list of modules that needs to be solved do
if module can be solved then

solve module;
move module to list of solved modules;
if (module error ! tolerance OR first module run) AND module has predecessors then

move all dependant modules of current module from solved list to unsolved list;

else
move module to the end of the list;

Algorithm 7: Pre-run, serial distance-to-goal based ordering This algorithm is a slight vari-
ation on algorithm 6 3.3.2. Instead of the average distance to multiple goals, the serial distance to
the goals is use. The distance to each goal is stored separately: then sorting occurs first on the first
goal, second on the second goal, etc. The full algorithm including the distance calculation is explained
by algorithm 7. Note that this algorithm only varies from algorithm 3.3.2 in situations where there are
multiple design goals defined.

Algorithm 7: Pre-run, serial distance-to-goal based ordering
Data: FPG
Data: list of all modules that need to be solved
Data: list of modules that have been solved

Data: totalPathLength = 0
Data: counter = 0

for goal in goals do
if path from module to goal exists then

distance[counter] += shortest path from module to goal;

order on distance[0] first, then distance[1], etc.

ordered list = ordered by sequential distance of module to goals:

for the first module in the ordered list of modules that needs to be solved do
if module can be solved then

solve module;
move module to list of solved modules;
if (module error ! tolerance OR first module run) AND module has predecessors then

move all dependant modules of current module from solved list to unsolved list;

else
move module to the end of the list;

3.3. Solving Algorithms 37

3.3.3. Dynamic ordering of modules
The following set of algorithms uses what was called ’Dynamic’ ordering. In stead of determining the
module run-sequence once, the sequence is determined after every evaluation. Basically only the first
item of that sequence will actually be executed, after which a new order will be determined.

Algorithm 8: Dynamic, module error based ordering This algorithm implements the dynamic
ordering as explained in section 3.3.3. It is suggested that the magnitude of the module error indicates
the improvement in consistency of the system that can be achieved by re-evaluating the module.
Therefor in this algorithm the ordering is based on the module error. The procedure is given by
algorithm 8.

Algorithm 8: Dynamic, module error based ordering
Data: FPG
Data: list of all modules that need to be solved
Data: list of modules that have been solved

for system error ! system tolerance do
order unsolved modules on: module error
solve first module;
move module to list of solved modules;
if (module error ! tolerance OR first module run) AND module has predecessors then

move all dependant modules of current module from solved list to unsolved list;

Algorithm 9: Dynamic, input parameters error based ordering A similar explanation as for in
section 3.3.3 holds for this algorithm: the normalized change (error) in input parameter values since
the last evaluation of a module indicates the effect re-evaluation of the module will have. Therefor this
algorithm orders modules based on the module input error. The procedure is given by algorithm 9.

Algorithm 9: Dynamic, input parameters error based ordering
Data: FPG
Data: list of all modules that need to be solved
Data: list of modules that have been solved

for system error ! system tolerance do
for module in unsolved modules do

for input parameter of module do
input error += input parameter[k]-input parameter[k-1]

return input error

order unsolved modules on: input error

solve first module;
move module to list of solved modules;
if (module error ! tolerance OR first module run) AND module has predecessors then

move all dependant modules of current module from solved list to unsolved list;

Algorithm 10: Dynamic, run time based ordering It is suggested that the biggest gain in com-
putational time is achieved by prioritizing fast modules with a short run time above those that take more
time. Hence it is reasoned that by following this approach the computationally expensive modules are
only executed when the computationally cheap modules are consistent. Thereby the evaluation of
expensive modules is reduced to a minimum. Therefor in this algorithm the modules are ordered by

38 3. Methodology

their average run time. The algorithm is presented in algorithm 10.

Algorithm 10: Dynamic, run time based ordering
Data: FPG
Data: list of all modules that need to be solved
Data: list of modules that have been solved
Data: runtime history of modules

for system error ! system tolerance do
for module in unsolved modules do

load runtime history;
return average runtime

order unsolved modules on: average runtime

solve first module;
move module to list of solved modules;
if (module error ! tolerance OR first module run) AND module has predecessors then

move all dependant modules of current module from solved list to unsolved list;

Algorithm 11: Dynamic, expected impact based ordering In this algorithm the effect of re-
running a module on the module output parameters is estimated. It is suggested that the module which
re-evaluation has the largest expected impact, should be prioritized because of its potential snowballing
effect on consecutive modules.

The computation of the impact is based on a linear least squares estimate of the modules behaviour
using the current input parameter values. The algorithm including the calculation of the impact is
explained by algorithm 11.

Algorithm 11: Dynamic, expected impact based ordering
Data: FPG
Data: list of all modules that need to be solved
Data: list of modules that have been solved
Data: least squares model
Data: current input values

for system error ! system tolerance do
for module in unsolved modules do

for parameter in output parameters do
if Least squares model exists for parameter then

least squares estimate using current input values;
change = |current parameter value - estimated parameter value|;
normalized change = change / current value;

else
skip to next output parameter;

return ∑normalized change of output parameters

order unsolved modules on: ∑normalized change of output parameters

solve first module;
move module to list of solved modules;
if (module error ! tolerance OR first module run) AND module has predecessors then

move all dependant modules of current module from solved list to unsolved list;

3.3. Solving Algorithms 39

Algorithm 12: Dynamic, expected profit based ordering This algorithm is a combination of
algorithms 10 and 11 presented in section 3.3.3 and 3.3.3. The expected impact is divided by the
average run time: the result is called the expected profit. This algorithm orders the modules based on
this expected profit. The algorithm including the calculation of the estimated profit is given in algorithm
12.

Algorithm 12: Dynamic, expected profit based ordering
Data: FPG
Data: list of all modules that need to be solved
Data: list of modules that have been solved
Data: runtime history of modules
Data: least squares model
Data: current input values

for system error ! system tolerance do
for module in unsolved modules do

for parameter in output parameters do
if Least squares model exists for parameter then

least squares estimate using current input values;
change = |current parameter value - estimated parameter value|;
normalized change = change / current value;

else
skip to next output parameter;

load runtime history;
return expected profit = ∑normalized change of output parameters / average runtime

order unsolved modules on: expected profit

solve first module;
move module to list of solved modules;
if (module error ! tolerance OR first module run) AND module has predecessors then

move all dependant modules of current module from solved list to unsolved list;

3.3.4. Fixed module sequence

Algorithm 13: Fixed module sequence Finally a fixed, pre-specified module sequence is imple-
mented. This algorithm takes a pre-defined list of modules that can be run once or iterated until the
set is consistent. The algorithm serves two purposes: first it provides a means to replicate the classical
design process present in the current Initiator. Therefor it can serve as a benchmark for the other
algorithms. The second purpose is to facilitate the storage of the resulting module sequences from
other algorithms. By storing a sequence as in the format of the fixed module sequence, the stored
sequence can be loaded as one and replicated exactly. The algorithm for executing a pre-defined

40 3. Methodology

module sequence is given in algorithm 13.

Algorithm 13: Algorithm 13: Fixed module sequence
Data: runOnce, list of modules to run once
Data: iterate, list of modules to iterate

for module in runOnce do
if module can be solved then

solve module;
else

stop: the order is not feasible;

Data: i = 0
while i<2 || system error ! system tolerance do

for module in runOnce do

if module can be solved then
solve module;

else
stop: the order is not feasible;

4
Experiments

In chapter 3 thirteen algorithms were presented for ordering modules in the new framework. This
chapter contains a set of experiments that are required to compare the different algorithms based on
their performance. First the goal of these experiments will be presented in section 4.1. Then the test
setup is established in section 4.2. Finally the test cases are established in section 4.3.

4.1. Goals
The research question as given in 1.4 questions the influence of the design process on the design result
and whether the performance of the design process can be improved. The following questions can be
formulated to support the research questions:

• Is the classical design process the best?

• Which approach is the best in which situation?

• Does the process influence the result?

• What behaviour is expected for the full initiator?

Therefor the goals of this experiment is to:

• show the effect of different design processes (by different algorithms) on the design result (goal
values);

• quantify the performance of the different design processes.

4.2. Test setup
The experiment to answer to the goals set in section 4.1 is a computer simulation experiment. The
different algorithms discusses in section 3 are compared. Some test cases are established first: a set
of initial values and a design goal, as well as a benchmark fixed design sequence. Then each test case
is given to each algorithm and the performance is recorded for comparison with other algorithms. In
the oncoming section the details on the performance quantification, the initial values and the test cases
is given.

4.2.1. Key Performance Indicators
In order to quantify the performance of a design process some Key Performance Indicators (KPIs)
are declared that allow comparison of the different algorithms. The performance of an algorithm is
quantified by the the following values:

• Runtime

– Total runtime

41

42 4. Experiments

– Modules time

– Overhead time

• Number of function evaluations

• Design goal value

Because there are multiple factors influencing the runtime of a module evaluation (and thus the
runtime of solving a system), a number of samples will be taken and the values averaged. The following
statistical quantities are calculated for the KPIs to assess the consistency of the different algorithms.

• Mean

• Standard deviation / Variance

• Margin of error

4.2.2. Sample size
Not all algorithms produce a consistent result each time they are used. Therefor the experiment is
repeated a number of times to achieve a statistically valid sample size. The sample size for the experi-
ments presented here is determined using equation 4.1 [34]. In the equation 𝑛 is the minimum sample
size for the experiment to be statistically relevant. 𝑧ᎎ/ኼ is the z-value belonging to the confidence inter-
val, 𝜎 is the standard deviation and 𝐸 is the margin of error. For this experiment a confidence interval
of 95% is assumed to be sufficient, giving 𝑧ᎎ/ኼ = 1.96. To determine 𝐸 and 𝜎, some knowledge of
what results are to be expected is required. Since repeating the experiment is not time-consuming it is
chosen to make and educated guess of the standard deviation and the margin of error. The resulting
sample size is then used in the experiment. After the experiment, equation 4.1 is used to verify that
the sample size was statistically valid. If not the case, a new guess can be made using the data of
the experiment after which the experiment and the check of the validity of the sample size can be
repeated.

From test runs during development the expected value (number of function evaluations) of the
experiment is guessed to be 100. Two types of observations are to be made: how do algorithms
compare Considering this value, a margin of error is accepted of 3%: if the values are withing 3%
the difference in algorithm performance is considered to be negligible. On a value of 100, a standard
deviation of 20 is guess to be reasonable. Using equation 4.1 and rounding the value up a sample size
of 43 is calculated in equation 4.2.

𝑛 = (
𝑧ᎎ/ኼ ⋅ 𝜎
𝐸)

ኼ
(4.1)

𝑛 = ⌈(1.96 ⋅ 103)
ኼ
⌉ = ⌈42.7⌉ = 43 (4.2)

4.2.3. Initial values
The initial values are a minimal set of design variables that are required to be able to eventually
evaluate all required modules. The values that will be used are estimated values for the Boeing 737-
800 aircraft as used in the current Initiator. This aircraft is chosen because it was also used as a
testing configuration for the current Initiator. Note that the initial values are not particularly relevant
for this study since we are mainly interested in the design process. The resulting design is less relevant
and strongly affected by the many assumptions and simplifications made in the implementation of the
design modules. Nonetheless the initial values are tabulated in table 4.1.

Two other settings are important for this experiment. The first is the choice of design goal. An
arbitrary parameter that is within the main FPG feedback cycle is taken. The parameter that is chosen
is the parameter wing area (tag: wing_area). Because the solving algorithms strive for consistence of
the entire system of parameters and modules, it is rather irrelevant which specific parameter is chosen
as long as they are in the same feedback cycle in the FPG. To ensure maximum usage of the modules
that were defined the main feedback cycle was identified and the parameter wing area was chosen

4.2. Test setup 43

from it. The second setting is the tolerance set on the system error. The effect of this tolerance is out
of the scope of this experiment. A system tolerance of 0.01% is chosen.

Table 4.1: Initial values for design parameters used in the test cases of the experiments.

Parameter Value Unit
V_cruise 233.1 m/s
alt_cruise 11000 m
SFC_cruise 14.16 g/s/kN
FF-taxi 0.01 dimensionless
fuselage_nose_fineness_ratio 1.5 dimensionless
g 10 𝑚/𝑠ኼ
range_Harmonic 2500000 m
loiterTime 1800 s
LHV_kerosene 43500000 MJ/kilogram
n_engine 2 dimensionless
PAX 160 dimensionless
PAX_luggage_weight 1 kg
W_payload 18597 kg
range 2500000 m
FF-startup 0.01 dimensionless
divertRange 500000 m
rho_SL 1.23 𝑘𝑔/𝑚ኽ
rho_cruise 0.25 𝑘𝑔/𝑚ኽ
AR 9.45 dimensionless
maxLandingDistance 1600 m
maxTakeoffDistance 2000 m
n_max_cruise 1.3 dimensionless

4.2.4. Test system
The computer system on which the tests are run is a key to obtaining relevant timing results. Therefor
the same system is used for all test cases. The test system is a Macbook Pro Late 2011 edition equipped
with a 2.4Ghz Core i5 processor, 10GB of RAM and a Crucial MX100 250GB SSD drive. An attempt is
made to run each test case at comparable circumstances, by taking the following measures:

• All other applications apart from the IDE are closed during the testcase evaluation.

• The computer will be run at a 100% battery level, whilst the charger is connected.

• The tests will be executed as shortly after booting the computer system as possible.

• To ensure a ’warm start’ of the computer system and the runtime environment of Python, each
experiment will be run twice. Only the results of the second evaluation are used for further
analysis.

Nonetheless the computer system is not completely controllable and variations might be introduced
by unknown artifacts. Therefor only the results obtained within the same session (test case) should
be compared. Comparing the results of different sessions introduces an unknown uncertainty and is
therefor not recommended.

44 4. Experiments

4.3. Test cases
In this section more details on the test cases that are evaluated are given. Three test cases exist: Class
I, Class II and Class II with extended run time. Each test case is explained below in detail.

4.3.1. Class I
The first test case is a class I design loop. This is the simplest feedback situation possible given the
current modules. In the Class I module set there is no competition between modules: every parameter
has only one module that can set its value. The benchmark situation is a fixed module sequence as
shown in listing 4.1. The design goal is the maximum take-off weight. The test case is to be applied
to all algorithms presented in section 3.3.

Listing 4.1: Class I fixed module sequence

”modules” : {
”runOnce” : [] ,
”iterate” : [
Class I
”get_H_g” ,
”get_divert_FF_wrapper” ,
”get_mission_FF_wrapper” ,
”get_loiter_FF_wrapper” ,
”get_total_FF_wrapper” ,
”get_MTOW_wrapper” ,
”BuffetOnsetBoundary” ,
”design_point_selection” ,
”calc_wing_area” ,
”wing_span_class_I” ,
”wing_sweep_class_I” ,
”wing_taper_class_I” ,
”root_and_tip_chord” ,
”fuselage_size_estimate” ,
”fuselage_wetted_area_estimate” ,
”wing_exposed_area_estimate” ,
”wing_wetted_area_estimate” ,
”aircraft_wetted_area_estimate” ,
”equiv_parasite_area” ,
”drag_coef_incompressible” ,
”get_L_over_D_max”

]
}

4.3.2. Class II
The second test case is a class II design loop. The class II element of this test case is the class
II weight estimation. The module sequence can be read in listing 4.2. Note that this sequence
does include competing modules. The class I get_MTOW_wrapper which determines the MTOW
based on fuel fractions and an aircraft database. The competing module is the class II method
class_II_aircraft_weight_estimation in which the MTOW is computed from the class II wing weight
and the aircraft weight without the wing. The ordering algorithms handle this competition by a manu-
ally set priority indicator: for each module a priority can be set (an integer number). At each instant,
the module with the highest priority that can be evaluated is used and the modules with a lower priority
discarded. In this case the priority of the class I module is 1 and the priority of the class II module is 2.
The design goal is the maximum take-off weight. Initially the class II experiment was to be applied to
all algorithms described in section 3.3. Development of the test cases however, lead to new insights:
algorithms 1-8 are not capable of coping with competing modules in a successful way and can therefor
not complete the class II experiment. Therefor the only algorithms 9-13 are subjected to the class II
test case.

Listing 4.2: Class II fixed module sequence

”modules” : {
”runOnce” : [

Class I

4.3. Test cases 45

”get_H_g” ,
”get_divert_FF_wrapper” ,
”get_mission_FF_wrapper” ,
”get_loiter_FF_wrapper” ,
”get_total_FF_wrapper” ,
”get_MTOW_wrapper”

] ,
”iterate” : [
Class I
”BuffetOnsetBoundary” ,
”design_point_selection” ,
”calc_wing_area” ,
”wing_span_class_I” ,
”wing_sweep_class_I” ,
”wing_taper_class_I” ,
”root_and_tip_chord” ,
”fuselage_size_estimate” ,
”fuselage_wetted_area_estimate” ,
”wing_exposed_area_estimate” ,
”wing_wetted_area_estimate” ,
”aircraft_wetted_area_estimate” ,
”equiv_parasite_area” ,
”drag_coef_incompressible” ,
”get_L_over_D_max” ,

Class I I
”get_Empirical_Mass_Estimates” ,
”w_mzf_estimation” ,
”root_tip_thickness” ,
”wing_weight_estimation” ,
”class_II_aircraft_weight_estimation”

]
}

4.3.3. Class II - simulated module runtime, Type I
During test runs of the first two test-cases the issue arose that run time of the algorithms was dominated
by the overhead time. This is mainly due to the shear simplicity of the implemented modules. Many
assumptions were made to speed up development and that resulted in very simple and fast modules.
Additionally the Initiator modules have been subdivided into smaller modules to arrive at a substantial
number of modules. This does not correctly represent the state of the current Initiator and its modules.
Where the modules in the current Initiator take anywhere from 0.1 to 20 seconds (on average) their
simplified counterparts take less than 0.1 seconds.

The dominance of the overhead distorts the results: algorithms that have a significant overhead
may produce a design process with a better performance, but the increase in performance does not
show in the result because it is negligible compared to the algorithm overhead. Therefor a third
test case was made. The third test case used the same module sequence as the Class II test case
(listing 4.2). Each module evaluation however, is appended by a Python wait command to delay the
completion of the evaluation. The delay has can be arbitrary but has to be constant for a given module
such that it does not change between runs. The number of input/output parameters of a module is
taken as a indicator for the numerical complexity of a module. Two different distributions of wait time
will be used: one based on the number of input parameters (Type I), one based on the number of
output parameters (Type II). Another measure of estimating the dummy wait time is the priority of the
module. As explained the priority of a module is used facilitate the decision which competing module
to execute. It is estimated that the number of input/output parameters to the power of the priority
(𝑝) gives a reasonable distribution of the wait time among modules. To reduce the total run time of
the experiment, the resulting wait time is scaled linearly. A reduction by a factor of 30 is estimated to
result in a run time where the overhead time is no longer dominant and the run time of the experiment
is reasonable. This results in the equation 4.3 for the Type I experiment.

𝑡፰ፚ።፭ =
(𝑛።፧፩፮፭)

፩Ꮄ

30.0 (4.3)

In section 4.3.2 it was explained that progressive insights gained during development of the test

46 4. Experiments

cases lead to restricting the tested algorithms for the class II test case. The same analogy holds for this
test case. This test case is further restricted: additional insights showed that algorithm 10 performs
an order of magnitude slower than algorithms 9, 11-13. Because of the long runtime this algorithm is
not suitable for this test case, where further scaling of the run time is simulated. Therefor algorithm
10 is excluded from the test case and only algorithms 9 and 11-13 are subjected to the class II test
case with simulated run time.

4.3.4. Class II - simulated module runtime, Type II
In section 4.3.3 a test case with simulated runtime was presented and motivated. It was explained
that the simulated (dummy) runtime is distributed according to equation 4.3. Following that line of
thought another test case is devised to asses the influence of the dummy runtime distribution. Therefor
this test case is identical in almost every way to test case Class II - simulated module runtime, Type
I. The difference is in the distribution of the dummy runtime among the modules. Instead of basing
the dummy runtime on the number input parameters the dummy runtime is based on the number of
output parameters of a module. This results in equation 4.4 for the Type II experiment.

𝑡፰ፚ።፭ =
(𝑛፨፮፭፩፮፭)

፩Ꮄ

30.0 (4.4)

5
Results & analyses

In this chapter the results from the experiments explained in 4 are presented. Following the result
a short analysis and interpretation of the results is given. The conclusions can are drawn from these
results are given in chapter 6.

5.1. Results
5.1.1. Class I
The Class I experiment represents an iterative, Class I design sequence. In section 4.3.1 the details
concerning the experiment are given. The results of the Class I test case are tabulated in table 5.1.

Table 5.1: Class I test case results (n = 50)

Algorithm ፭̄ᑣᑦᑟ (s) ᎙ᑗ ᑗ ፭̄ᑔᑠᑞᑡ (s) ፭̄ᑠᑧᑖᑣᑙᑖᑒᑕ (s) E (%)

1 Bruteforce 0.48 213 71.1 0.17 0.31 9 %
2 Bruteforce No Wasted Evals 0.42 302 60.5 0.17 0.25 6 %
3 Bruteforce Cycles 0.58 374 69.9 0.22 0.36 5 %
4 Bruteforce Selective Cycles 0.5 452 79.1 0.18 0.31 5 %
5 Ordered Cycle Based 0.44 333 70.5 0.17 0.27 6 %
6 Order Avg Distance To Goal 0.16 108 0.5 0.06 0.1 0 %
7 Ordered Serial Distance To Goals 0.16 108 0.5 0.06 0.1 0 %
8 Dynamic Error Based 0.45 201 5.6 0.06 0.39 1 %
9 Dynamic Input Error Based 0.3 134 0 0.07 0.23 0 %
10 Dynamic Time Based 0.37 113 0.9 0.04 0.33 0 %
11 Expected Change Based 0.22 108 0 0.06 0.16 0 %
12 Expected Profit Based 0.24 108 0 0.06 0.18 0 %
13 Fixed Module Sequence 0.17 126 0 0.06 0.11 0 %

The first observation that can be made is that the modal goal value is equal for all algorithms. It
should also be noted that out of 12, only 5 algorithms are consistent in their goal value. This inherently
means that the generated design process is not equal at each simulation. Both artifacts are highly
undesirable. The number of occurrences of the modal number of function evaluations shows the same
trend, confirming that the design process is varies with the same test setup.

The table shows the run time, computational time and overhead time. What is instantly clear is that
for the Class I case performance is marginally increased by the expected change/profit and pre-run

47

48 5. Results & analyses

ordering algorithms. Another observation is that the overhead is roughly half of the total run time.
This confirms the expected distorting influence of the overhead time as was explained in chapter 4.

It is also indicated by the results that the lowest overhead is found for operations that perform
the scheduling of the modules pre-run. This is obvious since this reduces the number of scheduling
operations to a minimum.

The experiment also showed that the algorithm, and therefor the design process, has no influence
on the design outcome: a value of 145 𝑚ኼ for the wing area was found by every algorithm. In the
description of the experiment in chapter 4 a margin of error of 3% was selected. The difference in
number of function evaluations between algorithms 1-5 and 9-13 though, is considerably larger than
3%. Hence it is valid to state that the number of function evaluations (50) is sufficient.

5.1.2. Class II
The Class II experiments represents a simplified version of the process used in the current Initiator.
The benchmark in this experiment the fixed module sequence replicated from the Initiator. The details
of this experiment are available in section 4.3.3 and the results are available in table 5.2.

From the results it shows that just the run times of algorithms 9 and 11 are within the error margin
of 3%. Therefor nothing can be said about the difference in run time between the two. The other test
results are outside the margin of error and are further analyzed below.

Table 5.2: Class II test case results (n = 50)

Algorithm ፭̄ᑣᑦᑟ (s) ᎙ᑗ ᑗ ፭̄ᑔᑠᑞᑡ (s) ፭̄ᑠᑧᑖᑣᑙᑖᑒᑕ (s) E (%)

9 Dynamic Input Error Based 0.41 156 0 0.06 0.35 0 %
10 Dynamic Time Based 2.83 936 61.3 0.07 2.75 2 %
11 Expected Change Based 0.41 195 14.7 0.07 0.33 2 %
12 Expected Profit Based 0.38 156 0.5 0.06 0.32 0 %
13 Fixed Module Sequence 0.19 126 0 0.05 0.14 0 %

First note that only 2 algorithms are consistent (standard deviation = 0) and that other algorithms
do not consistently find the same process. From the results it is immediately clear that the fixed
module sequence outperforms the other algorithms. Although the difference in computational time is
marginal (20-40%) the number of function evaluations is significantly lower for the fixed sequence.
When compared to i.e. the Dynamic Time Based algorithm it clearly shows how a preference of fast
modules leads to a high number of functions evaluations (936) vs. the number of 126 evaluations for
the fixed sequence.

The most striking observations regarding the results is the dominance of the overhead time in the
total runtime. The share of overhead ranges from 71% to 97%. Therefor the assumption made in
section 4.3.3 that the overhead dominates the results is thereby confirmed and the class II experiments
with simulated runtime are required to remove the dominance of the overhead time.

The experiment again showed that the algorithm, and therefor the design process, has no influence
on the design outcome: a value of 162 𝑚ኼ for the wing area was found by every algorithm. Note that
the wing area is different from the Class I wing area. That is no surprise, since the module set is not
the same.

5.1.3. Class II - simulated module runtime, type I
The Class II experiments with simulated module run time represents a more practical situation where
the module runtime is longer and where the total runtime is not dominated by the overhead. The
experiment is further explained in 4.3.3. The results can be found in table 5.3.

From the results of the type I experiment (table 5.3) it shows that the overhead times of algorithms

5.1. Results 49

9 and 12 are within the error margin of 3%. Therefor no statements are made about the difference
in overhead time between algorithms 9 and 12. The other test results are outside the margin of error
and are further analyzed below.

Table 5.3: Class II with simulate run time test case results, type I (n = 50)

Algorithm ፭̄ᑣᑦᑟ (s) ᎙ᑗ ᑗ ፭̄ᑔᑠᑞᑡ (s) ፭̄ᑠᑧᑖᑣᑙᑖᑒᑕ (s) E (%)

9 Dynamic Input Error Based 26.54 156 0 26.14 0.40 0 %
11 Expected Change Based 29.06 195 19.23 28.67 0.38 3 %
12 Expected Profit Based 24.88 157 0.55 24.48 0.40 0 %
13 Fixed Module Sequence 16.96 126 0 16.10 0.86 0 %

The first thing to consider for this experiment is the ratio between the computational time and
overhead: the largest percentage of overhead occurs for the fixed module sequence (5,3%). Thereby
the overhead no longer dominates the timing results as found in the results in tables 5.2 and 5.1.

Again it is found that just 2 algorithms produce a consistent result: the fixed module sequence and
the dynamic input-error based algorithm. From the table it is also clear that the fix module sequence
is at least 34% faster than the best performing algorithm.

Finally it is remarkable that the overhead time of the fixed module sequence has increased with
respect to the results in table 5.2. Since not much logic is present in the fixed module sequence
algorithm, overhead is expected to be minimal as was seen in tables 5.1 and 5.2. The overhead has
however increased by 514% whereas the number of operations that contribute tot the overhead (one
scheduling operation for each function evaluation) is constant. One reason for this is that overhead
(and run times in general) are highly dependant on the state of the computer system: available memory
and other background processes. As was stated in chapter 4 measures were taken to ensure a constant
computer state. Complete control over the state however, is not possible and therefor variations might
be introduced between sessions (and therefor, between test cases). This does not explain however
why the overhead of algorithm 13 is approximately twice the overhead of algorithm 9,11 and 12.

5.1.4. Class II - simulated module runtime, type II
As explained in section 4.3.3 two different distributions of module run time are tested. The results can
be found in table 5.4.

From the results of the type II experiment (table 5.4) it shows that just the overhead times of
algorithms 9, 11 and 12 are within the error margin of 3%. Therefor nothing can be said about the
difference in overhead time between the three. The other test results are outside the margin of error
and are further analyzed below.

Table 5.4: Class II with simulate runtime test case results, type II (n = 50)

Algorithm ፭̄ᑣᑦᑟ (s) ᎙ᑗ ᑗ ፭̄ᑔᑠᑞᑡ (s) ፭̄ᑠᑧᑖᑣᑙᑖᑒᑕ (s) E (%)

9 DynamicInputErrorBasedConvergence 10.362 156 0 9.72 0.63 0 %
11 ExpectedChangeBased 11.35 195 15.147 10.731 0.624 2 %
12 ExpectedProfitBased 9.40 156 0.503 8.78 0.623 0 %
13 FixedModuleSequenceClassII 7.32 126 0 6.87 0.45 0 %

50 5. Results & analyses

The results in table 5.4 of the Type II test case show the same trend as the Type I test: algorithm
13 performs best, followed by algorithm 12 and 9. Algorithm 11 performs the worst. This shows that
the distribution of dummy runtime has no noteworthy effect on the result. The overhead does not
dominate the total run time.

5.1.5. Resulting design processes
In sections 5.1.1-5.1.4 the timing results were given related to the test cases defined in chapter 4.
In this section the resulting design processes are considered. The resulting design processes are
presented in a graphical way that resembles a punch-card. The presented results are from the class II
test case and the following algorithms:

• Algorithm 13: Fixed module sequence: figures C.1-C.3, appendix C;

• Algorithm 11: Dynamic Expected change based: figures C.4-C.9, appendix C;

• Algorithm 9: Dynamic input error based: figures C.7-C.10, appendix C.

Note that the results of Algorithm 12 are not presented in appendix C. From table 5.4 it is clear that
algorithms 9 and 12 produce process that has the same number of function evaluations. Inspection of
the resulting process yields that both processes are identical. Therefor the process of algorithm 9 is
included, 12 is omitted.

The process resulting form Algorithm 13 is obvious: an iterative pattern, repeating modules in the
same fixed order until convergence is reached. Obviously the six leftmost modules in figure C.1 are
run only once: it was instructed as is clear from listing 4.2. The resulting processes of algorithms
9 and 11 show a trend that somewhat resembles the trend of algorithm 13. Where they differ from
algorithm 13, the difference can be expected from their nature. Algorithm 11 seems to prefer modules
with many output parameters that are in the feedback cycle. This logically follows from its purpose:
prefer modules with greater impact on the design. Therefor algorithm 11 shows a behaviour that can
be expected.

In both algorithms a trend is visual: the diagonal ’line’ that defines the process of algorithm 13 is
partially present in algorithms 9 and 11. Since algorithm 13 follows a logical flow through the FPG it is
obvious that algorithms 9 and 11 resemble this trend in some way.

What is key to the timed performance of algorithms 9 and 11 is that the minimum amount of
function evaluations for a module not in a feedback loop is 6 (equiv_parasite_area). Apart from this
module, the minimum is 7: equal to the number of iterations required for algorithm 13. Little is gained
by evaluating modules not affected by feedback (fuselage_wetted_area_estimate) only twice whereas
this module is included in the feedback loop of algorithm 13.

5.2. Analyses
In this section an interpretation of and a reflection on the results presented in section 5.1 is given.

In chapter 4, a set of 4 questions was formulated in support of the research question. These
questions are repeated here for convenience:

• Is the classical design process the best?

• Which approach is the best in which situation?

• Does the process influence the result?

• What behaviour is expected for the full initiator?

From the results we can clearly see that the fixed module sequence, based on the classical design
process used in the current initiator, outperforms the other algorithms in all test-cases. This shows that
the classical design sequence is well optimised for the given design case. However, no formal proof
exists to conclude that the classical design approach is the best. The results show that in each test case
the same mean goal value is achieved. Therefor it is concluded that for the tested cases the design
process has no influence on the outcome of the design. It does however show that the design process
is of great influence on the computational time. The fixed, optimized case is much faster and requires

5.2. Analyses 51

less function evaluations than the other algorithms. The result that the generated design processes
are inferior to the fixed design routine shows that there is room for significant improvement of the
algorithms.

For the full initiator, two options can be pointed out. The first is that the fixed design sequence
will then implement an optimal sequence as is the case for the class I and II test case. Therefor the
other algorithms will again be outperformed. However, the selection of class I and II implemented
here are the most well-tested and well documented design methods and therefor more likely to be
close to the optimal design sequence. For the full initiator however, many more modules are added to
the system. The number of possible processes increases exponentially and the chance of the current
Initiator process of being the optimal one becomes significantly smaller. Therefor second option is that
the possibility exists that the new algorithms will perform much better for the full design case.

Lets consider what has been done: a system has been designed in which modules can be individually
defined without any knowledge of the design process. Using the algorithms specified in 3 the system is
capable of generating a (sub-optimal) design process without any prior domain knowledge. Although
an optimal solution is not found, the system is expected to perform similarly given any other set
of modules and test case. If it were presented with computational modules for, lets say, satellite
design, it is expected to also generate a feasible design sequence. Consider the design of new aircraft
configurations: Blended wing bodies and Prandtl planes. Although relatively similar, their different
configuration might require a new design method/sequence to efficiently design such aircraft. It is
expected that the system designed in this thesis can generate this design method (given sufficient,
applicable computational modules).

Finally another remarkable advantage of this thesis’ system must be highlighted. During the current
development of the Initiator new computational modules are added continuously. The process of adding
a module is rather crude: it is placed in the design sequence based on a best guess of the module
developer. Using the result of this research a new module can be automatically integrated in the design
sequence, placed feasibly by one of the algorithms. Although the results show this might not provide
an optimal design process it certainly provides a guideline for designing an optimal process.

6
Conclusions

The goal of this research is to investigate the influence of the conceptual aircraft design process on the
resulting design and to see if the performance of the design process can be improved. To answer to
this goal, the software architecture of a next generation aircraft design tool has been formatted. From
the results presented in chapter 5 is can be concluded that:

• The designed system is capable of generating a feasible (sub-optimal) design process out of
stand-alone computational modules;

• The classical conceptual, fixed design process, implemented as specified in chapter 4, out-
performs the design sequences generated by the algorithms given in section 3.3 by:

– 20-40% for the Class II test case;

– at least 34% for the Class II test case with simulated, extended module runtime.

– if the used set of modules is equal, the order of the design process does not influence the
result.

• Out of the algorithms presented in section 3.3:

– only the dynamic input error based algorithm is consequently consistent;

– the algorithms that perform ordering of the modules perform the best for the simple design
case with no conflicting modules (class I test case);

– the expected profit based and dynamic input error based algorithms perform best for the
more complex design case with conflicting modules (class II test case);

– the expected profit based algorithm performs best for the design case were long module
run times were simulated;

It also must be concluded that the implemented set of modules does not provide an representative
situation for the entire conceptual design process of the Initiator. The set that was implemented is
well tested and coherent: therefor the fixed design process performs very well and outperforms the
ordering algorithms.

Finally it is concluded that the performance of the fixed design processes used in the test cases can
not be improved by the algorithms that were developed for this thesis.

53

7
Recommendations

Following from the conclusions from section 6 a number of recommendations can be made. The first
recommendation is related to the current applicability of the system. The system designed in this thesis
can be used as a tool to investigate feasible design processes for unconventional aircraft configura-
tions. Although the algorithms produce sub-optimal design processes, a functional, converging design
process is generated that can be a useful first start when designing a process.

Secondly it is recommended that a larger part of the current initiator is implemented(preferably all
modules). As was explained in section 5.2 the implemented part of the initiator is well tested and
optimized. Hence the fixed module sequence outperforms the design processes generated by the al-
gorithms. It is expected that the algorithms that were developed yield better results for a more complex
system, such as the full initiator.

Third, more test cases with a bigger variety of input values should be used to verify the behaviour
of the system. It was assumed that the system tolerance, the initial values and the design goal have
no influence on the results of the experiments. This however, is not verified. Therefor test cases with
different initial values, system tolerances and design goals should be set up to asses the validity of this
assumption.

A fourth recommendation is to implement modules for design of an unconventional aircraft, prefer-
ably physics based: a situation for which no proven, well-tested design process exists. This system
was designed for such a situation and is expected to be a great help in designing such a process.
Therefor the modules and test case to facilitate this situation should be implemented and tested.

A fifth recommendation is related to the syntax and practical use of the software. The syntax of
defining parameters and modules is rather verbose in the current setup. This causes a lack of overview
during development, caused by the fact that modules were split into smaller modules. That approach
is very reasonable given that a complex network of modules was to be developed in a short time span.
When implementing the full initiator however, this approach is no longer valid: the amount of boil-
erplate code would dominate the source code and the desired clarity and overview while developing
modules would be lost. Therefor special attention should be paid to how much functionality should be
contained in a ’module’. It is recommended to group code based on domain and functionality. It is
expected that this creates a balance between overview and functionality.

Another recommendation is that a structured data model is designed for the software. The process
modelling approach ensures that knowledge on all parameters is available at any time. The data model
is flexible, but can not be modified ad-hoc: both features are desirable. In this thesis the aircraft
data model is a loose collection of parameters. Considering the relatively small amount of parameters
(50-100) this approach is feasible. The Initiator however has thousands of design variables. These
need to be ordered in a structured manner in order to maintain an overview. It is suggested that a
hierarchy is developed that is inspired by a common aircraft data format, such that transferring data

55

56 7. Recommendations

from the aircraft model to third party systems is simplified.

A sixth recommendation is to develop a simple GUI for the software. Although not discussed in this
thesis, the GUI should facilitate the inspection of processes, parameters and modules. It should be
aimed in providing developers/researches with information about the current state/capabilities that are
implemented in the system. The information can reduce conflicts and reduce duplicate effort during
development: a feat that is common when multiple entities develop a system together. The GUI should
also include a simple parameter-manager to facilitate creating and editing parameters.

It is also recommended that the collection of ordering algorithms is extended. One of the aims of
this research is to benefit from the suitability of graph theory for algorithmic analysis and manipula-
tion. In the algorithms however, only use a limited amount of the capabilities of graph theory is used.
Therefor it is suggested that new algorithms are defined that exploit graph theory more. An example is
Dijkstras’ shortest path algorithm: if proper weights (i.e. estimated impact of a module) are assigned
to vertices in the graph, the shortest path algorithm could be used to estimate the snowballing effect
of consecutive module impacts. This might yield an algorithm that does not take the impact of a single
module into account, but the impact of chain of modules. Another example is to apply an optimization
to the currently employed fixed-module sequence. This sequence could be taken as a starting point,
adding or removing modules from the sequence when required (based on some analysis).

The final recommendation of this thesis is that the philosophy and software structure presented in
chapter 3 be used for a next version of the Initiator. The architecture as presented in section 3.2 sup-
ports the requirements posed in section 1.3. The architecture employs clear separation of functionality
and responsibilities and is based on a process modelling based approach. Hereby the approach pro-
vides a maintainable, testable architecture well suited for the simultaneous development by different
researchers. The process modelling approach allows for the analysis of existing and generation of new
design processes and has the potential to improve the design capability/efficiency of the Initiator.

A
Listings

A.1. Module implementation example
Example implementation of a module component. The example shown here is the (Class II) wing
weight estimation module.

Listing A.1: Module implementation example

c l a s s wing_weight_est imat ion (Module) :
” ” ” C lass I I wing weight es t imat ion ” ” ”

def __ i n i t __ (s e l f) :
” ” ” Module i n i t i a l i z e r . Use t h i s i n i t method
to set bas i c module p rope r t i e s l i k e tag , name,
de s c r i p t i o n and inዅ and outputዅtags . ” ” ”

tag = s e l f . __c lass__ . __name__
name = ” Est imate wing weight ”
de s c r i p t i o n = ” Ca l cu l a t e wings weight ”
s e l f . inputTags = [”wing_sweep ” , ”W_MZF” , ”wing_span ” ,

” wing_area ” , ” n_u l t imate ” , ” th i ckness_ roo t ”]
s e l f . outputTags = [” wing_weight ”]

super (wing_weight_est imat ion , s e l f) . __ i n i t __ (tag , name,
desc r i p t i on , s e l f . inputTags , s e l f . outputTags)

def runModule (s e l f) :
” ” ” Mandatory runModule method . Th is method i s c a l l e d to execute
the ana l y s i s / design t oo l wrapped by the module . ” ” ”

i = s e l f . i npu t s

#mapping of input parameters to python va r i a b l e s
wing_sweep = i [”wing_sweep ”] . va lue
W_MZF = i [”W_MZF”] . va lue
b = i [”wing_span ”] . va lue
wing_area = i [” wing_area ”] . va lue
n_u l t imate = i [” n_u l t imate ”] . va lue
th i ckness_ roo t = i [” th i ckness_ roo t ”] . va lue

Torenbeek method fo r commercial t r a i n s p o r t A i rp l anes as
i n Roskam par t V , p .69 eq . 5.7 and 5.8
wing_weight = s e l f . getWingWeight (wing_sweep , W_MZF ,b ,

wing_area , n_ul t imate , th i ckness_ roo t)

mapping ana l y s i s t o o l output to parameter
s e l f . outputs [” wing_weight ”] . setVa lue (wing_weight)

@staticmethod
def getWingWeight (wing_sweep , W_MZF ,b , wing_area ,

n_ul t imate , th i ckness_ roo t) :

57

58 A. Listings

” ” ”
Toorenbeek method fo r commercial t r a i n s p o r t A i r p l anes

as i n Roskam par t V , p .69 eq . 5.7 and 5.8

: param wing_sweep : lead ing edge wing sweep in degrees
: param W_MZF: Maximum zero f u e l weight
: param b : Wing span in meters
: param wing_area : Wing area in square meters
: param n_u l t imate : U l t imate load f a c t o r (u sua l l y 1 .5)
: param th i ckness_ roo t : Root th i ckness (m)
: re tu rn : wing weight : wing weight as by Toorenbeek
” ” ”
re tu rn 0.0018 * W_MZF * (b / math . cos (wing_sweep) **0.75

* (1 + (6.3 * math . cos (wing_sweep) / b) **0.5)
* n_u l t imate **0.55 * (b * wing_area /
(th i ckness_ roo t * W_MZF * math . cos (wing_sweep))) **0.30)

B
Implemented parameters & modules

B.1. Parameters
In this section the parameters that were implemented are given. The parameters are tabulated in table
B.1.

Table B.1: Table of all parameters that are implemented

Tag Name
altitude Altitude
S_over_S_wet Area ratio
C_L lift coefficient
C_L_max_cruise Maximum lift coefficient during cruise
C_L_max_TO Maximum lift coefficient during take-off
C_L_max_L Maximum lift coefficient during landing
C_l Section lift coefficient
H_g Calorific value of fuel / g
crewMember_weight Crew member weight
W_crew Crew weight of aircraft
L_over_D_cruise Cruise Lift-to-drag ratio
M_cruise Cruise Mach Number
V_cruise Cruise Velocity
alt_cruise Cruise altitude
SFC_cruise Cruise specific fuel consumption
V_cruise Cruise velocity
W_DL Design Landing Weight
distance Distance
FF-divert Divert Fuel Fraction
divert_range Divert Range
E Endurance
FF-taxi FF-taxi
FF-total FF-total
FF-cruise Fuel Fraction for cruise-segment
FF-loiter Fuel Fraction for loiter-segment
FF-mission Fuel Fraction for mission
FF-other Fuel Fraction for other segments
W_fuel Fuel weight
g Gravitational Acceleration g
range_Harmonic Harmonic Range
loiterTime Loiter Time
V_loiter Loiter velocity

59

60 B. Implemented parameters & modules

LHV_kerosene Lower Heating Value
L_over_D_max Maximum Lift-to-drag ratio
W_ML Maximum landing weight
W_MTO Maximum take-off weight
W_MZF Maximum zero fuel weight
W_fuel_mission Mission Fuel Weight
n_engine Number of engines
PAX Number of passengers
W_OE Operative Empty weight of aircraft
PAX_luggage_weight Passenger luggage weight
PAX_weight Passenger weight
W_payload Payload weight of aircraft
W_ramp Ramp Weight
range Range
FF-reserve Reserve Fuel Fraction
W_fuel_reserve Reserve fuel weight
Isp Specific Impulse
FF-startup Startup Fuel Fraction
S Surface area
S_wet Wetted area of a part
W_ZF Zero Fuel Weight
divertRange divertRange
rho_SL Air density at sea level
rho_cruise Air density at cruise level
AR Aspect ratio
ThrustLoading Thrust Loading
WingLoading Wing Loading
maxLandingDistance Maximum landing distance
maxTakeoffDistance Maximum take-off distance
n_max_cruise Maximum load factor in cruise
Thrust_total Total thrust force
Thrust_per_engine Thrust force per engine
wing_area Wing area
PAX_per_Area Number of passengers per area
wing_span Wing span
wing_sweep Wing sweep angle
wing_taper Wing taper ratio
chord_root Wing root chord
chord_mean_geometric Wing mean geometric chord
chord_tip Wing tip chord
MAC Mean Aerodynamic Chord (MAC)
t_over_c Thickness to chord ratio of the wing
wing_exposed_area Wing exposed area
wing_wetted_area Wing wetted area
fuselage_nose_length Fuselage nose length
fuselage_tail_length Fuselage tail length
fuselage_diameter Fuselage diameter
fuselage_center_length Fuselage center length
fuselage_wetted_area Fuselage wetted area
aircraft_wetted_area Aircraft wetted area
fuselage_tail_fineness_ratio Fuselage aft fineness ratio
fuselage_nose_fineness_ratio Fuselage nose fineness ratio
c_f c_f: parasite friction drag coefficent

B.2. Modules 61

aircraft_eq_parasite_area Aircraft equivalent parasite area
C_D_0_incompressible Zero lift incompressible drag coefficient
oswald_factor Oswald factor
thickness_root Wing root thickness
n_ultimate Maximum load factor
wing_weight Wing weight
W_A-W Aircraft without wing weight

B.2. Modules
In this section the modules that were implemented are given. The parameters are tabulated in table
B.1.

Table B.2: All parameters that are implemented in the system.

Module tag Module name Input parameters Output parame-
ters

get_W_payload_wrapper Compute air-
craft payload
weight

PAX,
PAX_luggage_weight,
PAX_weight

W_payload

get_MTOW_wrapper Class I AC
weight estimate

W_payload, FF-total,
range

W_MTO, W_OE,
W_A-W

get_Empirical_Mass_Estimates Initial mass esti-
mates

FF-mission, FF-
reserve, FF-total,
FF-startup, FF-taxi,
W_MTO, range

W_fuel,
W_ZF, W_ML,
W_ramp, W_DL,
W_fuel_mission,
W_fuel_reserve

get_H_g Compute H_g LHV_kerosene, g H_g

get_mission_FF_wrapper Mission Fuel
fraction

range, H_g, n_engine,
L_over_D_cruise,
M_cruise, SFC_cruise,
alt_cruise, V_cruise

FF-mission

get_divert_FF_wrapper Divert Fuel frac-
tion

range, divertRange FF-divert

get_loiter_FF_wrapper Loiter Fuel frac-
tion

loiterTime, FF-mission,
range_Harmonic, H_g

FF-loiter

get_total_FF_wrapper Total Fuel frac-
tion

FF-loiter, FF-mission,
FF-divert

FF-total, FF-
reserve

get_Range_Brequet_wrapper Brequet Range W_MTO,
W_fuel_mission,
L_over_D_cruise,
V_cruise, Isp,
SFC_cruise

range

get_Isp Isp from SFC SFC_cruise Isp

62 B. Implemented parameters & modules

design_point_selection Get the design
point (T/W,
W/S)

maxTakeoffDistance,
maxLandingDis-
tance, W_MTO, AR,
rho_cruise, rho_SL,
V_cruise, n_engine,
C_L_max_cruise,
C_L_max_L,
C_L_max_TO, g,
n_max_cruise

WingLoading,
ThrustLoading

BuffetOnsetBoundary Get the buffe-
tOnsetBoundary
Cl from Mach
number

M_cruise C_L_max_cruise

engine_estimate Estimate the
thrust of the re-
quired engines

ThrustLoading,
W_MTO, n_engine

Thrust_total,
Thrust_per_engine

calc_wing_area Calculate the
wing area

WingLoading,
W_MTO, g

wing_area

fuselage_estimate Estimate the
fuselage size
and weight

PAX_per_Area, PAX,
W_MTO, n_engine

Thrust_total,
Thrust_per_engine

wing_span_class_I Calculate the
wing span

wing_area, AR wing_span

wing_sweep_class_I Estimation the
wing sweep

M_cruise wing_sweep

wing_taper_class_I Estimation the
wing taper

wing_sweep wing_taper

root_and_tip_chord Calculate wing
chords

wing_area,
wing_span,
wing_taper

chord_root,
chord_mean _geo-
metric, chord_tip

mean_aerodynamic_chord Calculate wing
MAC

chord_root,
wing_taper

MAC

fuselage_size_estimate Estimate fuse-
lage_size

PAX, fuselage_tail_
fineness_ratio, fuse-
lage_nose_ fine-
ness_ratio

fuselage_nose_
length, fuse-
lage_tail_length,
fuselage_diameter,
fuse-
lage_center_length

wing_exposed_area_estimate Estimate wing
exposed area

wing_area, fuse-
lage_diameter,
chord_root

wing_exposed_area

wing_wetted_area_estimate Estimate wing
wetted area

t_over_c,
wing_exposed_area

wing_wetted_area

fuselage_wetted_area_estimate Estimate fuse-
lage wetted
area

fuselage_nose_
length, fuse-
lage_tail_length, fuse-
lage_diameter, fuse-
lage_center_length

fuselage_wetted_
area

B.2. Modules 63

aircraft_wetted_area_estimate Estimate aircraft
wetted area

fuselage_wetted_
area,
wing_wetted_area

aircraft_wetted_area

equiv_parasite_area Calculate equiv-
alent parasite
area (f)

c_f, air-
craft_wetted_area

aircraft_eq_ para-
site_area

drag_coef_incompressible Calculate in-
compressible
drag coefficient

wing_area, air-
craft_eq_ para-
site_area

C_D_0_ incom-
pressible

get_L_over_D_max Calculate L over
D max

AR, oswald_factor,
C_D_0_incompressible

L_over_D_cruise

w_mzf_estimation Estimate maxi-
mum zero fuel
weight

W_fuel, W_MTO W_MZF

root_tip_thickness Estimate root
and tip thick-
ness of wing

t_over_c, chord_root thickness_root

wing_weight_estimation Estimate wing
weight

wing_sweep,
W_MZF, wing_span,
wing_area,
n_ultimate, thick-
ness_root

wing_weight

class_II_aircraft_
weight_estimation

Class II AC
weight estimate

W_A-W, wing_weight W_MTO

C
Resulting design processes

In this appendix the design processes (PSGs) resulting from the class II test case are presented. A
graphical format was devised based on the idea of a punch-card chart. Every column represents a
module (placed in the order of the fixed module sequence). Every row represents a module execution,
placed in the order of execution. Therefor the chart gives a chronological overview overview of the
module execution sequence. It allows for visual pattern recognition, enabling the viewer to identify
recurring sequences in the process.

C.1. Fixed module sequence
The resulting fixed module sequence (which obviously matches the pre-defined sequence) is displayed
in figures C.1-C.3.

65

66 C. Resulting design processes

FixedModuleSequenceClassII ge
t_
H_

g	
ge
t_
di
ve
rt
_F
F_
w
ra
pp

er
	

ge
t_
m
iss
io
n_

FF
_w

ra
pp

er
	

ge
t_
lo
ite

r_
FF
_w

ra
pp

er
	

ge
t_
to
ta
l_
FF
_w

ra
pp

er
	

ge
t_
M
TO

W
_w

ra
pp

er
	

Bu
ffe

tO
ns
et
Bo

un
da
ry
	

de
sig

n_
po

in
t_
se
le
ct
io
n	

ca
lc
_w

in
g_
ar
ea
	

w
in
g_
sp
an
_c
la
ss
_I
	

w
in
g_
sw

ee
p_

cl
as
s_
I	

w
in
g_
ta
pe

r_
cl
as
s_
I	

ro
ot
_a
nd

_t
ip
_c
ho

rd
	

fu
se
la
ge
_s
ize

_e
st
im

at
e	

fu
se
la
ge
_w

et
te
d_

ar
ea
_e
st
im

at
e	

w
in
g_
ex
po

se
d_

ar
ea
_e
st
im

at
e	

w
in
g_
w
et
te
d_

ar
ea
_e
st
im

at
e	

ai
rc
ra
ft
_w

et
te
d_

ar
ea
_e
st
im

at
e	

eq
ui
v_
pa
ra
sit
e_
ar
ea
	

dr
ag
_c
oe

f_
in
co
m
pr
es
sib

le
	

ge
t_
L_
ov
er
_D

_m
ax
	

ge
t_
Em

pi
ric
al
_M

as
s_
Es
tim

at
es
	

w
_m

zf
_e
st
im

at
io
n	

ro
ot
_t
ip
_t
hi
ck
ne

ss
	

w
in
g_
w
ei
gh
t_
es
tim

at
io
n	

cl
as
s_
II_
ai
rc
ra
ft
_w

ei
gh
t_
es
tim

at
io
n	

1 get_H_g	 1 0

2 get_divert_FF_wrapper	 0 1 0

3 get_mission_FF_wrapper	 0 0 1 0

4 get_loiter_FF_wrapper	 0 0 0 1 0

5 get_total_FF_wrapper	 0 0 0 0 1 0

6 get_MTOW_wrapper	 0 0 0 0 0 1 0

7 BuffetOnsetBoundary	 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 wing_sweep_class_I	 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 wing_taper_class_I	 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

14 fuselage_size_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

15 fuselage_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

16 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

17 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

18 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

19 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

20 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

21 get_L_over_D_max	 0 1 0 0 0 0 0

22 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

23 w_mzf_estimation	 0 1 0 0 0

24 root_tip_thickness	 0 1 0 0

25 wing_weight_estimation	 0 1 0

26 class_II_aircraft_weight_estimation	 0 1

27 BuffetOnsetBoundary	 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 wing_sweep_class_I	 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 wing_taper_class_I	 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

34 fuselage_size_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

35 fuselage_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

36 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

37 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

38 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

39 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

40 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

41 get_L_over_D_max	 0 1 0 0 0 0 0

Figure C.1: Resulting design process of the class II test case, using the fixed module sequence algorithm (part 1 of 3)

C.1. Fixed module sequence 67

42 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

43 w_mzf_estimation	 0 1 0 0 0

44 root_tip_thickness	 0 1 0 0

45 wing_weight_estimation	 0 1 0

46 class_II_aircraft_weight_estimation	 0 1

47 BuffetOnsetBoundary	 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

48 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

51 wing_sweep_class_I	 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

52 wing_taper_class_I	 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

53 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

54 fuselage_size_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

55 fuselage_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

56 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

57 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

58 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

59 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

60 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

61 get_L_over_D_max	 0 1 0 0 0 0 0

62 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

63 w_mzf_estimation	 0 1 0 0 0

64 root_tip_thickness	 0 1 0 0

65 wing_weight_estimation	 0 1 0

66 class_II_aircraft_weight_estimation	 0 1

67 BuffetOnsetBoundary	 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

68 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

69 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

71 wing_sweep_class_I	 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

72 wing_taper_class_I	 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

73 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

74 fuselage_size_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

75 fuselage_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

76 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

77 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

78 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

79 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

80 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

81 get_L_over_D_max	 0 1 0 0 0 0 0

82 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

83 w_mzf_estimation	 0 1 0 0 0

84 root_tip_thickness	 0 1 0 0

85 wing_weight_estimation	 0 1 0

86 class_II_aircraft_weight_estimation	 0 1

87 BuffetOnsetBoundary	 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

88 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

89 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

91 wing_sweep_class_I	 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 wing_taper_class_I	 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

93 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure C.2: Resulting design process of the class II test case, using the fixed module sequence algorithm (part 2 of 3)

68 C. Resulting design processes

94 fuselage_size_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

95 fuselage_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

96 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

97 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

98 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

99 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

100 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

101 get_L_over_D_max	 0 1 0 0 0 0 0

102 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

103 w_mzf_estimation	 0 1 0 0 0

104 root_tip_thickness	 0 1 0 0

105 wing_weight_estimation	 0 1 0

106 class_II_aircraft_weight_estimation	 0 1

107 BuffetOnsetBoundary	 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

108 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

109 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

110 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

111 wing_sweep_class_I	 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

112 wing_taper_class_I	 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

113 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

114 fuselage_size_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

115 fuselage_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

116 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

117 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

118 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

119 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

120 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

121 get_L_over_D_max	 0 1 0 0 0 0 0

122 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

123 w_mzf_estimation	 0 1 0 0 0

124 root_tip_thickness	 0 1 0 0

125 wing_weight_estimation	 0 1 0

126 class_II_aircraft_weight_estimation	 0 1

Figure C.3: Resulting design process of the class II test case, using the fixed module sequence algorithm (part 3 of 3)

C.2. Expected change based sequence 69

C.2. Expected change based sequence
The resulting expected change based sequence is displayed in figures C.4-C.6.

70 C. Resulting design processes

	 ExpectedChangeBased ge
t_
H_

g	
ge
t_
di
ve
rt
_F
F_
w
ra
pp

er
	

ge
t_
m
iss
io
n_

FF
_w

ra
pp

er
	

ge
t_
lo
ite

r_
FF
_w

ra
pp

er
	

ge
t_
to
ta
l_
FF
_w

ra
pp

er
	

ge
t_
M
TO

W
_w

ra
pp

er
	

Bu
ffe

tO
ns
et
Bo

un
da
ry
	

de
sig

n_
po

in
t_
se
le
ct
io
n	

ca
lc
_w

in
g_
ar
ea
	

w
in
g_
sp
an
_c
la
ss
_I
	

w
in
g_
sw

ee
p_

cl
as
s_
I	

w
in
g_
ta
pe

r_
cl
as
s_
I	

ro
ot
_a
nd

_t
ip
_c
ho

rd
	

fu
se
la
ge
_s
ize

_e
st
im

at
e	

fu
se
la
ge
_w

et
te
d_

ar
ea
_e
st
im

at
e	

w
in
g_
ex
po

se
d_

ar
ea
_e
st
im

at
e	

w
in
g_
w
et
te
d_

ar
ea
_e
st
im

at
e	

ai
rc
ra
ft
_w

et
te
d_

ar
ea
_e
st
im

at
e	

eq
ui
v_
pa
ra
sit
e_
ar
ea
	

dr
ag
_c
oe

f_
in
co
m
pr
es
sib

le
	

ge
t_
L_
ov
er
_D

_m
ax
	

ge
t_
Em

pi
ric
al
_M

as
s_
Es
tim

at
es
	

w
_m

zf
_e
st
im

at
io
n	

ro
ot
_t
ip
_t
hi
ck
ne

ss
	

w
in
g_
w
ei
gh
t_
es
tim

at
io
n	

cl
as
s_
II_
ai
rc
ra
ft
_w

ei
gh
t_
es
tim

at
io
n	

1 BuffetOnsetBoundary	 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 get_divert_FF_wrapper	 0 1 0

3 get_H_g	 1 0

4 wing_sweep_class_I	 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 wing_taper_class_I	 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 fuselage_size_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

7 fuselage_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

8 get_mission_FF_wrapper	 0 0 1 0

9 get_loiter_FF_wrapper	 0 0 0 1 0

10 get_total_FF_wrapper	 0 0 0 0 1 0

11 get_MTOW_wrapper	 0 0 0 0 0 1 0

12 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

14 w_mzf_estimation	 0 1 0 0 0

15 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

18 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

19 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

20 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

21 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

22 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

23 get_L_over_D_max	 0 1 0 0 0 0 0

24 root_tip_thickness	 0 1 0 0

25 wing_weight_estimation	 0 1 0

26 class_II_aircraft_weight_estimation	 0 1

27 get_mission_FF_wrapper	 0 0 1 0

28 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

29 get_loiter_FF_wrapper	 0 0 0 1 0

30 get_total_FF_wrapper	 0 0 0 0 1 0

31 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

32 w_mzf_estimation	 0 1 0 0 0

33 wing_weight_estimation	 0 1 0

34 class_II_aircraft_weight_estimation	 0 1

35 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

37 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

38 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

39 wing_weight_estimation	 0 1 0

40 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

41 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

42 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

43 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

44 get_L_over_D_max	 0 1 0 0 0 0 0

45 class_II_aircraft_weight_estimation	 0 1

46 get_mission_FF_wrapper	 0 0 1 0

Figure C.4: Resulting design process of the class II test case, using the expected change based sequence algorithm (part 1 of
3)

C.2. Expected change based sequence 71

47 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

48 root_tip_thickness	 0 1 0 0

49 wing_weight_estimation	 0 1 0

50 w_mzf_estimation	 0 1 0 0 0

51 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

52 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

53 get_L_over_D_max	 0 1 0 0 0 0 0

54 get_loiter_FF_wrapper	 0 0 0 1 0

55 get_total_FF_wrapper	 0 0 0 0 1 0

56 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

57 w_mzf_estimation	 0 1 0 0 0

58 get_mission_FF_wrapper	 0 0 1 0

59 get_loiter_FF_wrapper	 0 0 0 1 0

60 get_total_FF_wrapper	 0 0 0 0 1 0

61 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

62 w_mzf_estimation	 0 1 0 0 0

63 wing_weight_estimation	 0 1 0

64 class_II_aircraft_weight_estimation	 0 1

65 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

66 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

67 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

68 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

69 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

70 wing_weight_estimation	 0 1 0

71 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

72 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

73 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

74 get_L_over_D_max	 0 1 0 0 0 0 0

75 class_II_aircraft_weight_estimation	 0 1

76 root_tip_thickness	 0 1 0 0

77 wing_weight_estimation	 0 1 0

78 get_mission_FF_wrapper	 0 0 1 0

79 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

80 w_mzf_estimation	 0 1 0 0 0

81 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

82 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

83 get_L_over_D_max	 0 1 0 0 0 0 0

84 get_loiter_FF_wrapper	 0 0 0 1 0

85 get_total_FF_wrapper	 0 0 0 0 1 0

86 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

87 w_mzf_estimation	 0 1 0 0 0

88 wing_weight_estimation	 0 1 0

89 class_II_aircraft_weight_estimation	 0 1

90 get_mission_FF_wrapper	 0 0 1 0

91 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

92 get_loiter_FF_wrapper	 0 0 0 1 0

93 get_total_FF_wrapper	 0 0 0 0 1 0

94 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

95 w_mzf_estimation	 0 1 0 0 0

96 wing_weight_estimation	 0 1 0

97 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

99 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

100 wing_weight_estimation	 0 1 0

101 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

102 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

103 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Figure C.5: Resulting design process of the class II test case, using the expected change based sequence algorithm (part 2 of
3)

72 C. Resulting design processes

104 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

105 get_L_over_D_max	 0 1 0 0 0 0 0

106 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

107 get_mission_FF_wrapper	 0 0 1 0

108 root_tip_thickness	 0 1 0 0

109 wing_weight_estimation	 0 1 0

110 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

111 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

112 get_L_over_D_max	 0 1 0 0 0 0 0

113 get_loiter_FF_wrapper	 0 0 0 1 0

114 get_total_FF_wrapper	 0 0 0 0 1 0

115 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

116 w_mzf_estimation	 0 1 0 0 0

117 class_II_aircraft_weight_estimation	 0 1

118 get_mission_FF_wrapper	 0 0 1 0

119 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

120 get_loiter_FF_wrapper	 0 0 0 1 0

121 get_total_FF_wrapper	 0 0 0 0 1 0

122 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

123 w_mzf_estimation	 0 1 0 0 0

124 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

125 wing_weight_estimation	 0 1 0

126 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

127 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

128 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

129 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

130 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

131 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

132 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

133 get_L_over_D_max	 0 1 0 0 0 0 0

134 get_mission_FF_wrapper	 0 0 1 0

135 root_tip_thickness	 0 1 0 0

136 wing_weight_estimation	 0 1 0

137 class_II_aircraft_weight_estimation	 0 1

138 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

139 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

140 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

141 get_L_over_D_max	 0 1 0 0 0 0 0

142 get_loiter_FF_wrapper	 0 0 0 1 0

143 get_total_FF_wrapper	 0 0 0 0 1 0

144 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

145 w_mzf_estimation	 0 1 0 0 0

146 get_mission_FF_wrapper	 0 0 1 0

147 wing_weight_estimation	 0 1 0

148 class_II_aircraft_weight_estimation	 0 1

149 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

150 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

151 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

152 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

153 root_tip_thickness	 0 1 0 0

154 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

155 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

156 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Figure C.6: Resulting design process of the class II test case, using the expected change based sequence algorithm (part 3 of
3)

C.3. Dynamic input error based sequence 73

C.3. Dynamic input error based sequence
The resulting dynamic input error based sequence is displayed in figures C.7-C.10.

74 C. Resulting design processes

	 DynamicInputErrorBasedConvergence ge
t_
H_

g	
ge
t_
di
ve
rt
_F
F_
w
ra
pp

er
	

ge
t_
m
iss
io
n_

FF
_w

ra
pp

er
	

ge
t_
lo
ite

r_
FF
_w

ra
pp

er
	

ge
t_
to
ta
l_
FF
_w

ra
pp

er
	

ge
t_
M
TO

W
_w

ra
pp

er
	

Bu
ffe

tO
ns
et
Bo

un
da
ry
	

de
sig

n_
po

in
t_
se
le
ct
io
n	

ca
lc
_w

in
g_
ar
ea
	

w
in
g_
sp
an
_c
la
ss
_I
	

w
in
g_
sw

ee
p_

cl
as
s_
I	

w
in
g_
ta
pe

r_
cl
as
s_
I	

ro
ot
_a
nd

_t
ip
_c
ho

rd
	

fu
se
la
ge
_s
ize

_e
st
im

at
e	

fu
se
la
ge
_w

et
te
d_

ar
ea
_e
st
im

at
e	

w
in
g_
ex
po

se
d_

ar
ea
_e
st
im

at
e	

w
in
g_
w
et
te
d_

ar
ea
_e
st
im

at
e	

ai
rc
ra
ft
_w

et
te
d_

ar
ea
_e
st
im

at
e	

eq
ui
v_
pa
ra
sit
e_
ar
ea
	

dr
ag
_c
oe

f_
in
co
m
pr
es
sib

le
	

ge
t_
L_
ov
er
_D

_m
ax
	

ge
t_
Em

pi
ric
al
_M

as
s_
Es
tim

at
es
	

w
_m

zf
_e
st
im

at
io
n	

ro
ot
_t
ip
_t
hi
ck
ne

ss
	

w
in
g_
w
ei
gh
t_
es
tim

at
io
n	

cl
as
s_
II_
ai
rc
ra
ft
_w

ei
gh
t_
es
tim

at
io
n	

1 BuffetOnsetBoundary	 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 get_divert_FF_wrapper	 0 1 0

3 get_H_g	 1 0

4 fuselage_size_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

5 wing_sweep_class_I	 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 wing_taper_class_I	 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 get_mission_FF_wrapper	 0 0 1 0

8 get_loiter_FF_wrapper	 0 0 0 1 0

9 fuselage_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

10 get_total_FF_wrapper	 0 0 0 0 1 0

11 get_MTOW_wrapper	 0 0 0 0 0 1 0

12 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

14 w_mzf_estimation	 0 1 0 0 0

15 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

18 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

19 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

20 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

21 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

22 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

23 get_L_over_D_max	 0 1 0 0 0 0 0

24 get_mission_FF_wrapper	 0 0 1 0

25 get_total_FF_wrapper	 0 0 0 0 1 0

26 root_tip_thickness	 0 1 0 0

27 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

28 w_mzf_estimation	 0 1 0 0 0

29 wing_weight_estimation	 0 1 0

30 class_II_aircraft_weight_estimation	 0 1

31 get_loiter_FF_wrapper	 0 0 0 1 0

32 get_total_FF_wrapper	 0 0 0 0 1 0

33 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

36 w_mzf_estimation	 0 1 0 0 0

37 wing_weight_estimation	 0 1 0

38 class_II_aircraft_weight_estimation	 0 1

39 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

41 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

42 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

43 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Figure C.7: Resulting design process of the class II test case, using the dynamic input error based algorithm (part 1 of 4)

C.3. Dynamic input error based sequence 75

44 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

45 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

46 get_L_over_D_max	 0 1 0 0 0 0 0

47 get_mission_FF_wrapper	 0 0 1 0

48 get_total_FF_wrapper	 0 0 0 0 1 0

49 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 root_tip_thickness	 0 1 0 0

51 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

52 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

53 w_mzf_estimation	 0 1 0 0 0

54 wing_weight_estimation	 0 1 0

55 class_II_aircraft_weight_estimation	 0 1

56 get_loiter_FF_wrapper	 0 0 0 1 0

57 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

58 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

59 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

60 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

61 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

62 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

63 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

64 get_L_over_D_max	 0 1 0 0 0 0 0

65 get_mission_FF_wrapper	 0 0 1 0

66 get_total_FF_wrapper	 0 0 0 0 1 0

67 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

68 root_tip_thickness	 0 1 0 0

69 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

70 w_mzf_estimation	 0 1 0 0 0

71 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

72 wing_weight_estimation	 0 1 0

73 class_II_aircraft_weight_estimation	 0 1

74 get_loiter_FF_wrapper	 0 0 0 1 0

75 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

76 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

77 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

78 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

79 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

80 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

81 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

82 get_L_over_D_max	 0 1 0 0 0 0 0

83 get_mission_FF_wrapper	 0 0 1 0

84 get_total_FF_wrapper	 0 0 0 0 1 0

85 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

86 root_tip_thickness	 0 1 0 0

87 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

88 w_mzf_estimation	 0 1 0 0 0

89 wing_weight_estimation	 0 1 0

90 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

91 class_II_aircraft_weight_estimation	 0 1

92 get_loiter_FF_wrapper	 0 0 0 1 0

93 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

95 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

96 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Figure C.8: Resulting design process of the class II test case, using the dynamic input error based (part 2 of 4)

76 C. Resulting design processes

97 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

98 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

99 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

100 get_L_over_D_max	 0 1 0 0 0 0 0

101 get_mission_FF_wrapper	 0 0 1 0

102 get_total_FF_wrapper	 0 0 0 0 1 0

103 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

104 root_tip_thickness	 0 1 0 0

105 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

106 w_mzf_estimation	 0 1 0 0 0

107 wing_weight_estimation	 0 1 0

108 class_II_aircraft_weight_estimation	 0 1

109 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

110 get_loiter_FF_wrapper	 0 0 0 1 0

111 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

112 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

113 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

114 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

115 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

116 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

117 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

118 get_L_over_D_max	 0 1 0 0 0 0 0

119 get_mission_FF_wrapper	 0 0 1 0

120 get_total_FF_wrapper	 0 0 0 0 1 0

121 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

122 root_tip_thickness	 0 1 0 0

123 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

124 w_mzf_estimation	 0 1 0 0 0

125 wing_weight_estimation	 0 1 0

126 class_II_aircraft_weight_estimation	 0 1

127 get_loiter_FF_wrapper	 0 0 0 1 0

128 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

129 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

130 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

131 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

132 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

133 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

134 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

135 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

136 get_L_over_D_max	 0 1 0 0 0 0 0

137 get_mission_FF_wrapper	 0 0 1 0

138 get_total_FF_wrapper	 0 0 0 0 1 0

139 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

140 root_tip_thickness	 0 1 0 0

141 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

142 w_mzf_estimation	 0 1 0 0 0

143 wing_weight_estimation	 0 1 0

144 class_II_aircraft_weight_estimation	 0 1

145 get_loiter_FF_wrapper	 0 0 0 1 0

146 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

147 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

148 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

149 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Figure C.9: Resulting design process of the class II test case, using the dynamic input error based (part 3 of 4)

C.3. Dynamic input error based sequence 77

150 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

151 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

152 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

153 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

154 get_L_over_D_max	 0 1 0 0 0 0 0

155 get_mission_FF_wrapper	 0 0 1 0

156 get_total_FF_wrapper	 0 0 0 0 1 0

157 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

158 root_tip_thickness	 0 1 0 0

159 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

160 w_mzf_estimation	 0 1 0 0 0

161 wing_weight_estimation	 0 1 0

162 class_II_aircraft_weight_estimation	 0 1

163 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

164 get_loiter_FF_wrapper	 0 0 0 1 0

165 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

166 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

167 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

168 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

169 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

170 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

171 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

172 get_L_over_D_max	 0 1 0 0 0 0 0

173 get_mission_FF_wrapper	 0 0 1 0

174 get_total_FF_wrapper	 0 0 0 0 1 0

175 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

176 root_tip_thickness	 0 1 0 0

177 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

178 w_mzf_estimation	 0 1 0 0 0

179 wing_weight_estimation	 0 1 0

180 root_and_tip_chord	 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

181 class_II_aircraft_weight_estimation	 0 1

182 get_loiter_FF_wrapper	 0 0 0 1 0

183 wing_span_class_I	 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

184 wing_exposed_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

185 design_point_selection	 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

186 wing_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

187 get_Empirical_Mass_Estimates	 0 1 0 0 0 0

188 calc_wing_area	 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

189 root_tip_thickness	 0 1 0 0

190 aircraft_wetted_area_estimate	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

191 equiv_parasite_area	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

192 drag_coef_incompressible	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

193 get_L_over_D_max	 0 1 0 0 0 0 0

194 get_mission_FF_wrapper	 0 0 1 0

195 get_total_FF_wrapper	 0 0 0 0 1 0

Figure C.10: Resulting design process of the class II test case, using the dynamic input error based (part 4 of 4)

Bibliography

[1] G. La Rocca and M. van Tooren, Knowledge-based engineering approach to support aircraft mul-
tidisciplinary design and optimization, Journal of Aircraft , 1875 (2009).

[2] R. Elmendorp, Synthesis of novel aircraft concepts for future air travel, (2014).

[3] N. B. Böhnke, D. and V. Gollnick, An approach to multi-fidelity in con- ceptual aircraft design in
distributed de- sign environments, IEEE Aerospace Con- ference (2011).

[4] D. Steward, The design structure system: A method for managing the design of complex systems,
IEEE Transactions on Engineering Management , 71 (1981).

[5] A. Lambe and J. Martins, Extensions to the design structure matrix for the description of multidisci-
plinary design, analysis, and optimization processes, Structural and Multidisciplinary Optimization
46(2) , 273 (2012).

[6] D. J. Pate, J. Gray, and B. J. German, A graph theoretic approach to problem formulation for
multidisciplinary design analysis and optimization, Structrual and Multidisciplinary Optimization
20(2) (2013).

[7] J. Roskam, Airplane Design Parts I through VII (v. 1-7), 2nd Edition (DARCorporation, 2006).

[8] D. Raymer, Aircraft Design: A Conceptual Approach (5th Edition), Aiaa Education Series (Amer
Inst of Aeronautics & 5 edition, 2012).

[9] E. Toorenbeek, Synthesis of Subsonic Airplane Design (Springer Science & Business Media, 1982).

[10] D. Engineering, Caesiom, http://www.ceasiom.com, accessed: 27-1-2015.

[11] L. Salavin, Structure and function of the aircraft design program PrADO, Tech. Rep. (Hamburg,
2008).

[12] Pacelab, Pacelab apd, http://www.pace.de/products/preliminary-design/pacelab-apd.html, ac-
cessed: 27-1-2015.

[13] S. Jayaram and A. Myklebust, Acsynt - a standards-based system for parametric, computer aided
conceptual design of aircraft, (Aerospace Design Conference, Irvine, CA, 1992).

[14] L. Ltd., Piano, http://www.piano.aero, accessed: 27-1-2015.

[15] D. Rodriguez and P. Sturdza, A Rapig Geometry Engine for Preliminary Aircraft Design, Tech. Rep.
(Reno, Nevada, 2006).

[16] G. G. J.D.P., A rapid geometry modeler for conceptual aircarft, Tech. Rep. (2015).

[17] R. Perez, H. Liu, and K. Behdinan, Multidisciplinary Design Optimization of Aerospace Systems,
Tech. Rep. (Toronto, ON, Canada, 2005).

[18] T. C. Wagner and P. Papalambros, A general framework work for decomposition analysis in optimal
design, Advances in Design Automation, Vol. 2 , 315 (1993).

[19] N. M. Alexandrov and R. M. Lewis, Reconfigurability in mdo problem synthesis, part 1,
(AIAA/ISSMO, Albany, New York, 2004).

[20] K. T. Moore, The development of an open-source framework for multidisciplinary analysis and
optimization, 10th aiaa/issmo multidisciplinary analysis and optimization conference (2008).

[21] 10th aiaa/issmo multidisciplinary analysis and optimization conference (2008).

79

80 Bibliography

[22] Noesis, Optimus is a robust design optimization and multi objective optimization software that
minimizes the time required to engineer new products, http://www.noesissolutions.com/Noesis/,
accessed: 27-1-2015.

[23] P. Integration, Phx modelcenter | desktop trade studies, http://www.phoenix-
int.com/software/phx-modelcenter.php, accessed: 27-1-2015.

[24] S. N. Laboratories, Dakota | helping analysts & decision-makers understand outcomes of predictive
simulations, http://www.phoenix-int.com/software/phx-modelcenter.php, accessed: 27-1-2015.

[25] M. Ramakers, Next-generation conceptual aircraft design tool, Tech. Rep. (2015).

[26] R. Patton, Software Testing (2nd Edition) (Sams Publishing, 2005).

[27] C. Pilato, Version Control with Subversion (O’Reilly Media, 2008).

[28] G. Zlobin, Learning Python Design Patterns (PACKT Publishing, 2013).

[29] M. Drela, Xfoil: An analysis and design system for low reynolds number airfoils, Volume 54 of the
series Lecture Notes in Engineering , 1 (1989).

[30] D. Gorissen, A surrogate modeling and adaptive sampling toolbox for computer based design,
Journal of Machine Learning Research , 2051 (2010).

[31] G. van Rossum, Python tutorial, Technical Report CS-R9526, Tech. Rep. (1995).

[32] D. A. S. Aric A. Hagberg and P. J. Swart, Exploring network structure, dynamics, and function
using networkx, Proceedings of the 7th Python in Science Conference (SciPy2008) , 11 (1995).

[33] J. Kleinberg, Algorithm Design (Pearson New International Edition, 2014).

[34] statisticslectures.com, Statistics lectures, http://www.statisticslectures.com, accessed: 27-1-
2015.

	Acknowledgements
	Abstract
	List of Figures
	Nomenclature
	Introduction
	Aircraft Design
	TUDLR Aircraft design software
	Initiator requirements
	Research Question and Thesis goal
	Report structure

	Background information
	Conceptual aircraft design software
	Initiator alternatives
	Design software properties

	Process modelling
	Process modelling techniques
	The significance of automated process modelling for conceptual aircraft design

	Scientific computational frameworks

	Methodology
	Initiator software architecture
	Philosophy
	Structure
	Programming environment

	Program Structure
	Concepts
	Components
	Program Operation

	Solving Algorithms
	Basic algorithms
	Pre-run ordering of modules
	Dynamic ordering of modules
	Fixed module sequence

	Experiments
	Goals
	Test setup
	Key Performance Indicators
	Sample size
	Initial values
	Test system

	Test cases
	Class I
	Class II
	Class II - simulated module runtime, Type I
	Class II - simulated module runtime, Type II

	Results & analyses
	Results
	Class I
	Class II
	Class II - simulated module runtime, type I
	Class II - simulated module runtime, type II
	Resulting design processes

	Analyses

	Conclusions
	Recommendations
	Listings
	Module implementation example

	Implemented parameters & modules
	Parameters
	Modules

	Resulting design processes
	Fixed module sequence
	Expected change based sequence
	Dynamic input error based sequence

	Bibliography

