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Abstract

The estimation of optical flow, which determines the movement of objects in a visual scene, is a crucial

problem in computer vision. It is essential for applications such as autonomous navigation, where precise

motion estimation is critical for performance and safety.

Frame-based cameras capture sequences of still images at regular intervals, from which optical flow

is traditionally extracted using optimization-based or learning-based methods. Recently, event-based

cameras, which detect changes in pixel brightness asynchronously, have gained traction due to their high

temporal resolution and robustness to motion blur, and many algorithms have been developed to estimate

optical flow from this data. IDNet is a learning-based approach that achieves state-of-the-art performance.

However, IDNet and similar models face two major challenges: they require labeled ground-truth data for

training, which is scarce and difficult to collect, and they rely on recurrent neural networks (RNNs) with a

fixed number of refinement iterations. This fixed iteration scheme does not adapt to scene complexity,

limiting accuracy for complex flows and increasing computational effort for simpler patterns.

The aim of this project is to explore, implement, and evaluate potential methods to address these two

mentioned limitations and enhance the capabilities of models like IDNet.

To remove the need for ground-truth data, a self-supervised learning paradigm was implemented by

introducing a novel contrast maximization loss that assesses the blur present when accumulating raw

events for a certain time interval and compensating it with the predicted flow. To assess the effectiveness

of this method, models were trained on the benchmark MVSEC dataset, showing improved results over

previous methods with up to 15% on some sequences and an 8% improvement on average. Based on

these experiments and results, further research directions were proposed.

As for the problem of the current fixed iteration scheme, Deep Equilibrium Models were found to provide

a promising pathway to solving it. These novel models reformulate their iterative structure into a root-finding

problem and utilize traditional solvers to find a solution based on some tolerance, providing a trade-off

between speed and accuracy. Moreover, they allow for direct differentiation through the network using

only their final estimate, compared to previous methods that keep track of their state through all iterations,

leading to a O(1) memory consumption. Utilizing these and some additional ideas, the trained DEQ IDNet

model reached competitive performance on DSEC while consuming 15% less memory. Yet, further work

is needed to close the gap and achieve state-of-the-art performance.
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1
Introduction

1.1. Background
The estimation of optical flow is a fundamental problem in computer vision that deals with determining the

movement of objects in a visual scene. This concept is vital in many applications such as object detection

and segmentation [1] as well as autonomous navigation [2], where precise motion estimation is crucial for

optimal performance and safety.

Frame-based cameras capture entire images at regular intervals, known as frames, creating a sequence

of still images over time. Optical flow can then be extracted from these frames using optimization-based [3,

4] or learning-based methods [5, 6]. More recently, event-based cameras [7], which capture changes in

pixel brightness asynchronously, have gained traction in the scientific community. This is due to their high

temporal resolution, wide dynamic range, and motion blur robustness.

This data format is specifically well-posed for the problem of optical flow determination due to the continuous

nature of the data. And many algorithms that tackle the estimation of optical flow from event-based cameras

have already been developed [8, 9]. IDNet [10] is a learning-based model that relies on inductive priors

to extract optical flow directly from the motion traces of the events, allowing it to achieve state-of-the-art

performance. However, IDNet and other similar models suffer from two major drawbacks. Firstly, they rely

on labeled ground-truth data during training, which is scarce and very hard to collect, preventing them

from scaling and improving their accuracy further. Moreover, these models are centered around recurrent

neural networks (RNN) that refine their prediction a fixed number of times. This fixed iteration scheme does

not adapt to the complexity of the scene, which prevents it from estimating complex flow fields accurately

and also from saving computational effort on simple flow patterns.

1.2. Research Formulation
The goal of this project is to research, implement, and assess possible methods for dealing with these

two aforementioned limitations and expanding the capabilities of models such as IDNet. Therefore, the

research objective can be briefly summarized as:

Expand the capabilities of IDNet by removing its dependency on labeled data and reforming its

refinement scheme.

Research Objective

Since the two problems are orthogonal to each other, subdividing them allows for independent research in

both directions. As such, the first research question that will be investigated is:

Can a self-supervised training paradigm be applied to IDNet?

Research Question 1
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As for the direction of the second problem, which concerns the refinement scheme of IDNet, the research

question can be formulated as follows:

Can the fixed-iteration refinement structure employed by IDNet be replaced by an adaptive one?

Research Question 2

1.3. Structure of the Report
This report will be separated into two main sections:

1. Part I will present the scientific paper that summarizes all the key findings of this research project.

2. Part II includes all the preliminary steps that were taken to define the direction of this project, which

are further subdivided into the following. Chapter 3 presents the literature review that was carried

out to investigate the principles of optical flow estimation and event-based cameras as well as

self-supervised learning paradigms and adaptive inference mechanisms. Chapter 4 showcases

the experiments that were carried out to investigate the different applications of self-supervised

learning and the results obtained. Finally, Chapter 5 gives a conclusion to this report, and Chapter 6

summarizes the recommendations for further research.
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Abstract—Current state-of-the-art methods for event-based op-
tical flow estimation rely on learning-based models trained
on massive amounts of labeled data. However, the process of
generating such data demands extensive labor and is prone to
errors. Moreover, these methods are usually based on recurrent
models that perform a fixed number of L iterations to refine
their flow estimate, which has huge requirements in terms of
computation and memory. As such, they also cannot adapt to
the complexity of scenes, which may require fewer iterations to
converge. We propose two improvements over these methods to
deal with these aforementioned problems. Firstly, we introduce
a self-supervised training framework that requires only event
data during training and removes the need for costly ground-
truth. Secondly, we adopt a deep equilibrium (DEQ) formu-
lation that directly solves for the ”equilibrium” flow, allowing
models to adaptively change the number of iterations based on
the flow complexity while decreasing the memory complexity
from O(L) to O(1) during training. We also introduce a novel
tolerance scheduling algorithm that allows our DEQ models
to adapt their solver tolerance, allowing them to progressively
converge to better solutions. We train and test our methods on
the DSEC and MVSEC datasets and compare them to current
state-of-the-art models, showcasing better estimation accuracy
by 8% on average for our self-supervised model and a 15%
reduction in memory consumption for our DEQ model while
providing competative performance.

1. Introduction

Optical flow is a fundamental concept in computer vision
that refers to the pattern of apparent motion of pixels,
objects, surfaces, and edges in a visual scene as recorded
by a camera or other optical sensor. Formally, it assigns a
velocity vector, described by a direction and a magnitude,
for each pixel in an image. In simpler terms, it tries to
describe the movement of objects in an image from one
frame to the next.

As such, optical flow plays a critical role in many real-
world applications ranging from object detection and seg-
mentation [1] to the navigation of aerial robots [2]. However,
achieving high accuracy requires sophisticated algorithms

Figure 1: A visual representation of the IDNet DEQ ar-
chitecture, which computes the ”equilibrium” flow directly
from the raw events by utilizing a black-box solver such
Anderson’s or Newton’s method.

that can handle real-world imperfections such as brightness
changes across scenes and sensor noise. When extracted
from frame-based cameras, optical flow has traditionally
been estimated using optimization-based methods [3], [4]
algorithms, while more recently, with the advancement of
deep neural networks, learning-based methods [5], [6], [7],
[8] have also been successfully applied to the problem. How-
ever, these methods still struggle to deal with the inherent
problems of frame-based cameras, such as motion blur and
over-saturation.

Instead of capturing frames at a specific framerate,
event-based cameras detect changes in luminance asyn-
chronously at the pixel level, generating ”events” only when
a significant change occurs [9]. Consequently, event-based
cameras boast exceptional temporal resolution, operating
within the microsecond range, granting improved robustness
to motion blur. Additionally, their remarkable dynamic range
enables them to capture scenes characterized by substantial
variations in brightness and illumination.

Due to these qualities, event-based cameras hold an
enormous potential to revolutionize the field of computer vi-
sion, especially related to the problem of determining optical
flow since the trajectory of pixels is continuously encoded
in the data instead of discretely between two frames. How-
ever, their novel data format renders traditional estimation
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methods that operate on frames obsolete. Therefore, there
has been a significant push to develop new algorithms that
exploit the structure and inherent benefits of event-based
data to estimate optical flow.

Learning-based methods that utilize convolutional net-
works [10] have cemented themselves as the standard ap-
proach for estimating optical flow from event-based data.
Building on that, recent works [11] make use of recurrent
structures to enhance their estimations. These models com-
monly utilize a Gated Recurrent Unit (GRU) to improve
their optical flow estimate iteratively, drawing inspiration
from conventional optimization-based techniques [3], [4].

One such example is IDNet [12], which builds on the
observation that by accumulating events onto an image, the
motion of objects can be directly extracted from the blur
present in that image, which can better understood visually
through Figure 2. By integrating the idea of motion com-
pensation [13], IDNet also refines its estimate of the optical
flow by iteratively ”deblurring” the event representations
and processing them using a recurrent unit, allowing it to
achieve state-of-the-art performance on the both DSEC [14]
and MVSEC [15].

However, the current training paradigm still requires vast
amounts of labeled data to achieve such performance. In
reality, collecting ground truth optical flow is a process
that requires immense effort and time, especially in the
presence of occlusions, motion discontinuities, or non-rigid
deformations. These factors can lead to ambiguities in flow
estimation and make it difficult to obtain accurate ground
truth. This reliance on labeled data currently stands as
a bottleneck because it not only hinders the training of
bigger models but also limits the generalizability of existing
ones. Moreover, in its current configuration, IDNet uses a
predefined fixed amount of L iterations to refine its optical
flow estimate, regardless of the complexity of the scene and
the amount of motion present. This also involves training via
the backpropagation-through-time (BPTT) algorithm [16],
which needs to keep track of all L iterations during training.
This brings a significant computational burden, setting a
limit on the model size and refinement iterations. Ideally,
having a mechanism that adaptively changes the number of
iterations required to converge to a flow estimate could lead
to reduced latency, which is critical when considering real-
time applications, but could also improve the accuracy on
scenes with complex flow fields.

In this work, we propose two advancements over the
original IDNet architecture, which aim to push its perfor-
mance to new heights. Firstly, removing its dependency on
ground truth optical flow by converting to a self-supervised
training paradigm that utilizes a contrast maximization
framework [17], [18] at its core and allowing the network to
learn directly from the raw event data. Secondly, the fixed-
step recurrent update architecture is replaced by a Deep
Equilibrium (DEQ) estimator that integrates recent progress
in implicit deep learning [19], [20], [21]. This step brings
two substantial benefits to IDNet. Namely, it allows the
network to adaptively change the number of iteration steps
needed to converge to the final flow estimate, improving

both speed and accuracy. On top of that, it removes the need
for the costly BPTT, which not only significantly reduces the
memory requirements during training, but also significantly
speeds up the computation of the backward pass.

Following this section, in section 2 the literature in-
vestigation that was carried out to build a theoretical base
for this research will be presented. section 3 will describe
the methods that were developed to achieve our research
objective. Next in section 4, information will be given about
the experiments that were conducted as well as the results
obtained from them. Finally, section 5 will conclude this
article, summarizing the most important findings and giving
recommendations for future work.

2. Related Work

Optical Flow Estimation

The estimation of optical flow stands as a cornerstone
problem in computer vision, spanning multiple decades of
investigation. In the early 1980s, the pioneering work of
Horn and Schunck [4] laid the groundwork for what has
been the standard algorithm for determining optical flow.
Their seminal paper introduced a method that computed
optical flow by minimizing an energy function based on
two fundamental assumptions:

1) Brightness constancy: the brightness intensity of
pixels remains constant over time.

2) Spatial smoothness: neighboring pixels tend to
have similar motion patterns.

which are used to formulate the terms in the energy
function. This energy function is then minimized through
iterative procedures such as gradient descent to produce a
dense optical flow field, representing the motion vectors for
each pixel in the image. While the Horn-Schunck method
was groundbreaking, it had limitations, particularly in han-
dling large displacements, occlusions, and complex mo-
tion patterns. Therefore, in the following years, researchers
explored various approaches to address these limitations,
such as using pyramidal structures [22], enabling them to
handle different levels of detail and motion intricacies. Still,
the added complexity significantly increased the latency of
computing flow using that approach, limiting its use in real-
time applications.

More recently, learning methods [5], [6] have taken over
and replaced traditional methods partly by mimicking their
operation. PWC-Net [7] borrows the ideas of pyramidal
structures, warping, and cost volumes to outperform its
predecessors at a fraction of the network size. RAFT [8]
introduces a new paradigm of employing a recurrent neural
network (RNN). At its core, it builds cost volumes contain-
ing correlations between all pairs of pixels, which are then
fed through the recurrent unit to update the flow estimate in-
crementally. By iteratively refining flow estimation through
recurrent updates, it encourages the model to generate flow
fields that are consistent across time steps. This leads to

2



smoother and more temporally coherent flow predictions,
allowing the architecture to outperform its predecessors
substantially.

Due to the promising advantages of event-based cameras
and the advent of publicly available datasets [14], [15],
learning-based methods have also been used to tackle the
problem of estimating optical flow from event data. [17]
propose an encoder-decoder architecture that utilizes a novel
event representation, which temporally discretizes events
into bins and processes them to arrive at a flow estimate. E-
RAFT [11] employs the same strategy as RAFT [8] to con-
struct correlation volumes, treating the event representations
as frames. These representations are again fed through an
RNN to refine the final prediction progressively. [23] builds
on these ideas and introduces an additional attention module
to emphasize motion patterns that are consistent with each
other, outperforming E-RAFT. However, the computation
and storage of the correlation volumes used by both models
greatly increase their memory consumption and inference
time, diminishing the possibility of deploying the architec-
tures on real-time platforms. IDNet [12] targets this problem
by directly eliminating the correlation volumes and instead
observing that the motion of objects is directly encoded in
the blur present in the raw events. Moreover, IDNet itera-
tively refines its optical flow estimate by ”deblurring” the
event representations and processing them using a recurrent
unit, reaching state-of-the-art performance.

Self-Supervised Learning

Despite the success of these methods in utilizing the
novel event data format to obtain accurate predictions of
optical flow, most of them still require substantial amounts
of annotated ground truth data to train their underlying
neural networks. Unfortunately, creating such datasets is
extremely laborious, subject to errors, and time-consuming;
therefore, eliminating it is greatly beneficial to creating even
bigger datasets that would allow for the training of more
complex models.

EV-FlowNet [10] formulates the training regime as a
self-supervised problem using only event data and a set of
corresponding grayscale images, corresponding to the begin-
ning and end of the optical flow interval. It then warps the
second image back to the first one with the idea that as the
optical flow prediction converges to the true optical flow, the
warped and the original images will become identical. The
photometric loss between the warped and original images is
computed to measure their dissimilarity, and a smoothness
term is added. The method, while successful, still requires
a set of corresponding grayscale images on top of the event
data to generate the supervisory signal, which is suboptimal
since the latency of the frame-based camera is usually much
higher than that of the event-based camera. Zhu et al. [17]
remove the dependency on images by minimizing the per-
pixel, per-polarity average timestamp of the warped events.
This is also known as contrast maximization since the better
the flow estimate is, the higher the alignment or ”contrast”
of the warped events is. Hagenaars et al. [18] improve on

that by scaling the loss by the sum of pixels with at least one
warped event to convexify the metric and improve training
performance.

Deep Equilibrium Models

Traditional optical flow estimation methods [4] rely on
an energy minimization principle that is optimized until
a stable flow field is produced. Recurrent networks such
as IDNet mimic this principle by iteratively refining their
estimate. A drawback of this method is that the iteration is
carried out for a fixed number of steps, regardless of the
flow quality. But what if this iterative procedure could be
replaced with an architecture that can adaptively converge
to a stable solution, and without the need for BPTT?

This is exactly the idea behind Deep Equilibrium [19]
models. By re-formulating the architecture as an infinitely
deep implicit layer, the outputs of the model become the
fixed points of this new implicit layer, which can be solved
by using any traditional root-finding method. The quality of
the converged solution depends on the tolerance used by the
solver, which allows the network to adaptively change the
number of iterations needed, closely resembling traditional
optimization-based methods. Moreover, by making use of
the Implicit Function Theorem (IFT) [19], differentiating
such a network requires no knowledge about the intermedi-
ate iterations but only about the final fixed point, allowing
for constant memory training, regardless of the number of
iterations performed.

Bai et all. [20] apply this implicit layer approach to the
RAFT [8] architecture, achieving faster flow convergence
and improved accuracy while using 4-6 times less training
memory. The authors also explore the questions of DEQ
stability and training efficiency, successfully integrating pre-
vious [21] and new ideas to address them.

3. Methodology

Preliminaries

The problem of optical flow estimation is characterized
by mapping a sequence of events within an interval [tbegin,
tend] to an optical flow vector (u, v), belonging to every
pixel. Each event comprises a timestamp t, denoting when
it was triggered, pixel coordinates x and y, and binary
polarity p. IDNet [12] utilizes the event representation intro-
duced by [17], which temporally discretizes a set of events
ei = (ti xi yi pi) into B bins by linearly interpolating each
event into its two adjacent bins weighted by polarity and
timestamp. This allows to create the event representation
E ∈ RB×H×W using:

t∗i = (B − 1) (ti − tbegin) / (tbegin − tend) (1)

E(B, x, y) =
∑

i|xi=x,yi=y

pi max (0, 1− |B − t∗i |) (2)

3



The results of this interpolation process generate a voxel
grid tensor, allowing each bin to be treated as a separate 2D
image.

Self-Supervised Learning

To convert the supervised training scheme used by IDNet
to a self-supervised one that requires no ground truth, we uti-
lize the contrast maximization framework described by [17],
[18], with the idea of learning the optical flow directly from
the event stream. This optimization framework operates
on the principle that optical flow information is contained
within the spatial and temporal discrepancies among events
generated by a moving edge, or more obviously - the blur
in the accumulated raw events. To access this information,
we apply motion compensation to the raw events [13], by
transporting each event using the predicted optical flow.
Having an estimate of the flow u(x) = (u, v)T , the events
with coordinates xi = (xi, yi) can be propagated to a
reference time tref using:(

x′
i

y′i

)
=

(
xi

yi

)
+ (tref − ti)

(
u (xi, yi)
v (xi, yi)

)
(3)

Under perfect optical flow estimation, transporting these
events would have the effect of eliminating the motion blur
as presented in Figure 2.

Figure 2: Showcasing the effect of motion compensating
a set of accumulated raw events(left) using a good flow
estimate(right), generating a set of events with minimal blur
present(bottom).

To measure the quality of this deblurring process, [18]
propose calculating the per-pixel and per-polarity average
timestamp of the image of warped events (IWE), which
is generated by motion-compensating the raw events and
accumulating them onto an image. The lower the value of
this metric, the better the flow predictions are. To compute it,

we create an image where each pixel represents the average
timestamp for each polarity T+, T−.

Tp′ (x;u | tref) =
∑

j κ
(
x− x′

j

)
κ
(
y − y′j

)
tj∑

j κ
(
x− x′

j

)
κ
(
y − y′j

)
+ ϵ

(4)

κ(a) = max(0, 1− |a|) (5)

During the training process, [17] use the sum of the two
images squared as a loss metric. However, [18] note that
it exhibits non-convex behavior, which is undesirable, and
therefore, they scale it by the sum of pixels with at least
one warped event to convexify it, resulting in:

Lcontrast (tref ) =

∑
x T+ (x;u | tref)2 + T− (x;u | tref)2∑

x [n (x′) > 0] + ϵ
(6)

where n(x′) counts the per-pixel events in the IWE. Another
problem that arises with this formulation is that transporting
to a single reference time introduces a scaling challenge, as
the output flows u and v are influenced by the scale factor
(tref − ti). Consequently, during backpropagation, gradients
are weighted more heavily towards events with timestamps
farther from tref , while events occurring very close to it are
effectively disregarded. To fix that, we warp the events to
t0 and tN−1, allowing all events to contribute equally.

Lcontrast = Lcontrast(t0) + Lcontrast(tN−1) (7)

Since optimizing this term directly could lead to non-
physical solutions, a regularizing term is usually used to
enforce this physicality. The Charbonnier smoothness term
aims to do exactly so by forcing the assumption that
neighboring pixels should have similar flow magnitudes and
directions. It is computed using:

ℓsmoothness =
∑
x,y

∑
i,j∈N (x,y)

ρ(u(x, y)−u(i, j))+ρ(v(x, y)−v(i, j))

(8)

ρ(x) =
√
x2 + ϵ2 (9)

where ϵ is a small constant added to prevent division by
zero and improve numerical stability. Finally, the total loss
used for optimization is:

Lflow = Lcontrast + λLsmoothness (10)

where λ is a coefficient used to weigh the smoothness term.

Deep Equilibrium Flow

The next step in this research was to convert the fixed-
iteration scheme of IDNet to an adaptive DEQ formulation.
For more details about its original architecture, refer to [12].
Looking at the internal workings of IDNet, we start by
initializing the RNN at its core (h0) as well as the flow
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Figure 3: Figure showcasing the reduction of iterations needed during training for convergence on each successive sample
from a sequence.

estimate (f0), setting their values to zero. What follows is an
iteration process where the voxel bins containing the event
information are deblurred and processed by the RNN, which
is then used to refine the final flow. Additionally, we use a
warm-starting module (WSM) to update the memory of the
RNN. This defines a dynamical system of two states: 1)
the state of the RNN h, which is used to update the flow
as the bins are processed, and 2) the final flow estimate f .
Formally, the dynamics of this system are described by:

Edeblur,i+1 = Deblur(Edeblur,i; fi) (11)

fi+1 = fi +RNN(Encoder(Edeblur,i+1);hi) (12)

hi+1 = WSM(fi+1) (13)

This dynamical system can also be looked at as a fixed
point equation whose solution represents the equilibrium
point between the memory and flow states, characterized
by:

(h∗, f∗) = z∗ = fθ (z
∗,x) = fθ ((h

∗, f∗) ,x) (14)

where fθ are the model parameters. z∗ is the equilibrium
solution, which is defined as the state that would incur
no change even if we perform more steps of the fixed
point equation. One of the most important advantages of
this formulation is that compared to the traditional IDNet
formulation, which naively takes steps through this operator,

in this case, we can leverage the power of root-finding
solvers, which find the state for which the change in z is
zero, or in practice, below a certain tolerance. Advanced
methods such as Broyden’s method [24] or Anderson mixing
[25] also can guarantee much faster convergence and better
stability. Having obtained the equilibrium flow, we apply
supervised learning by computing the loss with respect to
the ground truth flow using an L1 loss:

L = ||fgt − f∗||1 (15)

Another big benefit of this formulation is that it allows us
to differentiate this network using only the final equilibrium
solution, disregarding any information about the trajectory,
using the Implicit Function Theorem (IFT) [19].

∂L
∂θ

=
∂L
∂z∗

(
I − ∂fθ

∂z∗

)−1
∂fθ (z

∗,x)

∂θ
(16)

Compared to the traditional method of training recurrent
networks via backpropagation-through-time (BPTT), which
requires O(L) memory where L is the number of refinement
iterations, the DEQ formulation requires O(1) memory,
leading to a theoretical memory reduction of a factor of
L.

Apart from that, the tools of implicit deep learning allow
us to improve the training procedure further by approxi-
mating the gradient update. Despite the memory reduction
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brought by the IFT, inverting the Jacobian term in Equa-
tion 16 can become too costly to compute as the input and
network sizes grow. Therefore, we follow recent efforts [20],
[21], [26] that have aimed at reducing that computational
burden even further by using an approximation of that
inverted Jacobian term, replacing it with the identity matrix
I as in Equation 17. In practice, we note that this grants an
almost free backward pass compared to the forward pass.

∂L
∂θ

≈ ∂L̂
∂θ

=
∂L
∂z∗

∂fθ (z
∗,x)

∂θ
(17)

Still, stability and convergence of DEQ models have tra-
ditionally been an open question. [19], [26], [27], [28] note
that DEQ models tend to experience an oscillatory behavior,
which prohibits proper convergence. This is problematic for
models that require significant time to perform even a single
pass through the network, especially during training, since
initially, the flow predictions are of low quality, and thus, a
great number of iterations are needed to reach convergence.
Therefore, we adopt the fixed-point correction scheme in-
troduced by [20], which aims to stabilize the convergence
by sampling the trajectory of the solver, which includes
all intermediate solutions, and computing a loss term with
respect to each of the solver states. The motivation behind
this idea is that converging to the true solution earlier would
result in a smaller final loss, thus stimulating faster and more
stable convergence. Starting with a convergence trajectory
(f [0], ..., f [i], ..., f∗) where f [0] and f∗ are the initial and final
flow estimates, we take N evenly-distributed samples from
that trajectory and compute a fixed-point correction term as
per:

Lcor = γ||f [i] − fgt||1 (18)

with γ being a hyperparameter. We note that this addition
greatly increases the training stability while adding no sig-
nificant computational cost.

And yet performing ten or twenty forward passes
through deep models such as IDNet [12] would still pose
a time-infeasibility problem. To alleviate that, we looked
at strategies to warm-start the solver, drawing inspiration
from traditional optimization approaches [4] and current
efforts [20]. Since the time interval for which events are
accumulated is very small, we note that there is a high
degree of similarity between adjacent event representations
and also between the ground truth flow corresponding to
these intervals. Therefore, using the prediction made at one
timestep as an initial guess for the following one allows us
to essentially recycle its information to warm-start our DEQ
model. Formally, considering the fixed-point solution z∗i at
timestamp ti, we apply it as an initial guess z

[0]
i+1 at ti+1.

This allows us to compute the full trajectory only for the
flow at t0 and subsequently warm-start the solver at every
following flow prediction, which dramatically reduces the
number of iterations needed. To allow for warm-starting
during training while still creating batches with random
samples, we formed sequence lists that contained batches
with samples that were shifted one time-interval ahead. For

example, sequence list 1 contained a batch with sample
indices 1, 10, and 20. The predictions from this sequence
were then used to warm-start the solver for sequence list
2, which contained a batch with sample indices 2, 11, and
21, and so on. The results from this process are shown in
Figure 3. As seen there, the average number of iterations for
samples with indices i, i+1, i+2, and i+3 reduced from
17 to 4, 3, and 3, respectively, showcasing the usefulness of
this addition.

Another problem that we came across experimentally
is that during training, initially, the solver would need to
perform a high number of iterations in order to reach
convergence. But as the network got better and better at
estimating the flow, that number would drastically decrease
and converge to 1-2 iterations at the end of the training
process since the solver would reach its fixed tolerance
almost instantly. While this behavior is expected, pushing
the solver to reach lower and lower tolerances would allow
it to produce better equilibrium points, improving the final
accuracy. Therefore, we applied a scheduling procedure
that would decrease the solver tolerance as the network
underwent training. For example, utilizing Anderson mixing
[25] with an initial ϵ = 1 ×10−2, we computed a moving
average of the number of iterations needed to pass that
tolerance, and if that number went below a set threshold of
K iterations, we reduced the tolerance by a factor of two,
and this process would continue until the end of training,
allowing us to improve the final performance of the network
substantially.

4. Experiments & Results

Self-Supervised Learning

On the MVSEC [15] dataset, we train the self-supervised
version of IDNet on the outdoor day2 sequence, providing
about 11 minutes of event data captured while driving on
public roads. To do so, we take partitions of 30000 events,
which are converted to the voxel grid defined in Equation 2
with B = 9, and center cropped to a resolution of 256 ×
256 pixels. To weigh the smoothness term in Equation 10, λ
is given a value of 0.1. During optimization, we used Adam
[29] paired with a onecycle learning scheduler [30] with a
maximum learning rate of 4 × 10−4 and a batch size of
10. We trained for 50 epochs and implemented the entire
training procedure in PyTorch [31].

We test the trained model on both the indoor flying
and outdoor flying sequences and generate optical flow
estimations that are scaled to the duration of 1 (dt = 1) and
4 (dt = 4) grayscale frames. This scaling is done using the
following:

(u′, v′) = (u, v)× dt/(tN − t0) (19)

We provide metrics, including the average endpoint error
(AEE) and the proportion of points where the AEE exceeds
3 pixels, specifically focusing on pixels with valid ground
truth flow and at least one event. We compare against
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outdoor day1 indoor flying1 indoor flying2 indoor flying3
dt = 1 frame AEE % Outlier AEE % Outlier AEE % Outlier AEE % Outlier

Ours 0.51 0.1 0.55 0.0 0.87 1.67 0.82 1.15
EV-FlowNet-CM 0.32 0.0 0.58 0.0 1.02 4.0 0.87 3.0
EV-FlowNet-PL 0.49 0.2 1.03 2.2 1.72 15.1 1.53 11.9

outdoor day1 indoor flying1 indoor flying2 indoor flying3
dt=4 frames AEE % Outlier AEE % Outlier AEE % Outlier AEE % Outlier

Ours 1.35 10.3 2.17 21.2 3.58 39.9 3.15 35.2
EV-FlowNet-CM 1.30 9.7 2.18 24.2 3.85 46.8 3.18 47.8
EV-FlowNet-PL 1.23 7.3 2.25 24.7 4.05 45.3 3.45 39.7

TABLE 1: Quantitative evaluation of our optical flow network compared to EV-FlowNet and UnFlow. For each sequence,
Average Endpoint Error (AEE) is computed in pixels, % Outlier is computed as the percent of points with AEE < 3 pixels.
dt=1 is computed with a time window between two successive grayscale frames, and dt=4 is between four grayscale frames.
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Figure 4: Comparison between ground truth optical flow(middle) and predicted optical flow(right) for one outdoor and one
indoor sequence from MVSEC, with raw events shown(left).

two self-supervised versions of the EV-FlowNet model, EV-
FlowNet-CM [17], which was training using the same con-
trast maximization framework as us, and EV-FlowNet-PL
[10], which was trained using a photometric loss computed
between the motion-compensated grayscale images. These
metrics can be seen below in Table 1.

Quantitatively, we note that our model outperforms both
EV-FlowNet-CM and EV-FlowNet-PL on all sequences ex-
cept outdoor day1 in terms of AEE and outliers for both
dt=1 and dt=4 frames. One problem that we came across
by inspecting the results qualitatively is that the model has
difficulty dealing with light sources such as street lamps,
which would explain the slight under-performance on out-
door sequences. Yet, this showcases that our model can
generalize to sequences with various motion complexities
and magnitudes, providing state-of-the-art performance.

As for the qualitative analysis, we present a sample from
an indoor and an outdoor sequence as shown in Figure 4.
We see that, overall, the model is able to capture the
magnitude and direction of the optical flow vectors well
when compared to the ground truth. As for the finer details,
the smooth transition of the flow from left to right is not as
preserved, especially when looking at the outdoor sequence.

Nevertheless, a lack of fine details is expected due to the
self-supervised nature of the training process. Additional
visualizations can be found in Appendix B.

Deep Equilibrium Flow

For the DEQ formulation of IDNet, we train on the
DSEC [14] training set, consisting of 7800 samples captured
while driving in day and night conditions. This time we
adopt an event representation comprising 15 bins for every
100 milliseconds of events, synchronized with the available
optical flow ground truth. We make use of the same op-
timization tools as previously; Adam [29] optimizer with
onecycle learning schedule with a maximum learning rate
of 1 × 10−4 and batch size of 4, and we train for 150
epochs. Additionally, we apply the fixed-point correction
scheme by taking N = 5 samples evenly-spaced samples
from the convergence trajectory, computing their loss with
respect to the ground truth, and weighing them with γ = 0.8.

We test the trained model on the DSEC test set, which
consists of 2100 samples. This time, we introduce the fol-
lowing additional metrics: AAE (Average Angular Error),
representing the mean angular error of the optical flow
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Figure 5: Qualitative results from evaluating the trained DEQ IDNet on the DSEC test set, showcasing snippets from two
different environments - a mountain road environment and an urban one.

vector in degrees, and nPE (n-pixel Outlier Percentage), in-
dicating the proportion of pixels with optical flow magnitude
error exceeding n pixels. We compare the results to non-
DEQ versions of IDNet [12]: IDNet(ID) and IDNet(TID),
as well as MultiCM [32] and E-RAFT [11], summarizing
the results in Table 2.

AEE AAE 1PE 2PE 3PE
MultiCM [32] 3.47 13.98 76.6 48.4 30.9
EV-FlowNet [10] 2.32 7.90 55.4 29.8 18.6
E-RAFT [11] 0.79 2.85 12.7 4.7 2.7
IDNet(ID) [12] 0.72 2.72 10.1 3.5 2.0
IDNet(TID) [12] 0.84 3.41 14.7 5.0 2.8
IDNet(DEQ) 0.92 3.68 16.1 5.5 3.1

TABLE 2: Quantitative evaluation of our DEQ network on
the DSEC [14] test set and comparison to the results of
similar models.

Quantitatively, the DEQ formulation of IDNet performs
competitively, placing fourth behind the ID and TID versions
of IDNet as well as E-Raft. Theoretically, a DEQ network
can directly compute the gradient during a backward pass
via the Implicit Function Theorem [19], regardless of the
trajectory of the solver. This means that a DEQ version
of IDNet should perform at least as well as a traditional
one as long as the number of iterations performed is equal.
Unfortunately, in practice, we find that this is not the case,
which can be partially attributed to the approximation of the
gradient as per [20], [21], [26]. This approximation degrades
the quality of the training, leading to worse convergence and
accuracy.

Qualitatively, we present four predictions taken out of
two sequences from the test set as seen in Figure 5 that
present two different scenarios: driving through mountain
roads as shown in interlaken 00 b and driving in an urban
environment as shown in zurich city 15 b. In the first
sequence, apart from smoothly capturing flow transitions
from the left to the right of the scene, our model is able
to restore sharp details, as evident in the car and road guard
rail captured. As for the second sequence, the model is

successfully able to pick up details in the foreground as
well as the background, as seen in the silhouettes of the car
and the minivan behind.

Ablation Study

In this section, we look more closely at the different
ideas that were integrated to change the performance of the
DEQ IDNet.

Warm-Starting. The warm-starting procedure was inte-
grated to speed-up the convergence of the fixed-point solver
and two strategies were considered. The first strategy, as
mentioned in section 3, was to reuse the fixed-point solution
from interval ti−1 as an initial guess at ti, due to the high
degree of correlation. This proved to work well, reducing
the number of iterations needed for convergence with an
order of magnitude. Another strategy, which was borrowed
from the TID version of IDNet [12], was to directly predict
the flow at the next time interval using a separate prediction
head. Unfortunately, during training this proved to be infea-
sible since initially the prediction head produced results that
were far off and were not suitable as an initial guess for the
solver, again requiring a large number of iterations to reach
convergence. Therefore, the first strategy was preferred.

Solver Tolerance. As for tolerance setting of the solver, we
noticed a diminishing return as it was decreased, specifically
below values of 1 × 10−3. The solver tolerance is a mea-
sure of the relative difference between subsequent solutions,
which represent the hidden state of the RNN - h, and the
predicted optical flow - f. In practice, we found that this
difference is mainly influenced by the predicted flow while
the difference i hidden state of the RNN reached much lower
values. This indicated that the relative differences below the
aforementioned threshold value did not have a big effect on
the fixed-point flow.
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5. Conclusion

Recent works such as IDNet [12] show that supervised
deep neural networks that utilize finite-step recurrent up-
dates to refine their optical flow estimates are the current
state-of-the-art in event-based optical flow estimation. In this
work we present two improvements over the original IDNet
architecture. Firstly, its supervised training procedure that
requires vast amounts of ground truth data is replaced by a
self-supervised framework that utilizes the idea of contrast
maximization [17], [18] at its core. That allows IDNet to
break free from its dependency on labeled data and train
using only the event stream, allowing it to be potentially
trained on more and more data. Moreover, we reformu-
late its finite-step recurrent unit using a deep equilibrium
(DEQ) model that adaptively changes the number of itera-
tions needed to arrive at a stable ”equilibrium flow” which
brings additional benefits in terms of memory consumption.
We train and test the self-supervised version of IDNet
on MVSEC [15], showcasing state-of-the-art performance
compared to similar methods in self-supervised optical flow
estimation. As for the DEQ reformulation, we train and
test on DSEC [14] and note improvements in memory con-
sumption by 15% while retaining competitive performance.
We note that the gradient approximation algorithm results
in non-optimal convergence, preventing us from reaching
SOTA performance, and is, therefore, an area where more
research is necessary. This indicates a promising avenue
for developing future flow models that are more efficient,
expansive, and precise.
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Appendix A

Optical Flow Coding Scheme

The visualizations of the optical flow used in the figures are created by mapping the magnitude and direction of optical
flow vectors into brightness and color hue, respectively, as shown in Figure 6.

Figure 6: Optical flow coding scheme where the magnitude of the optical flow is encoded in brightness and the direction
in color hue.

Appendix B

Additional Results on Self-Supervised Learning

Figure 7: Extracted from sequence indoor flying 1. Ground truth flow is on the left, and optical flow prediction is on the
right.
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Figure 8: Extracted from sequence indoor flying 1. Ground truth flow is on the left, and optical flow prediction is on the
right.

Figure 9: Extracted from sequence indoor flying 1. Ground truth flow is on the left, and optical flow prediction is on the
right.

Figure 10: Extracted from sequence indoor flying 2. Ground truth flow is on the left, and optical flow prediction is on the
right.
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Figure 11: Extracted from sequence indoor flying 2. Ground truth flow is on the left, and optical flow prediction is on the
right.

Figure 12: Extracted from sequence indoor flying 2. Ground truth flow is on the left, and optical flow prediction is on the
right.

Figure 13: Extracted from sequence indoor flying 3. Ground truth flow is on the left, and optical flow prediction is on the
right.
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Figure 14: Extracted from sequence indoor flying 3. Ground truth flow is on the left, and optical flow prediction is on the
right.

Figure 15: Extracted from sequence indoor flying 3. Ground truth flow is on the left, and optical flow prediction is on the
right.
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Part II
Preliminary Analysis
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3
Literature Review

This chapter comprises a review of prior research and literature relevant to the focal area of this study. Start-

ing with Section 3.1 where the working principles of event-based cameras are explained. An investigation

is also carried out to list the currently available event-based datasets. Following that is Section 3.2, which

covers the traditional frame-based optical flow estimation methods and delves into the current methods

for computing optical flow from event-based data. Section 3.3 gives an overview of how self-supervised

learning can be used to eradicate the need for ground truth labels and emergent methods of applying it to

the problem of event-based optical flow. Finally, Section 3.4 concludes the chapter with an investigation

into the working of Deep Equilibrium Models and their applicability to the problems touched by this research.

By exploring the landscape of existing work, we aim to contextualize our research, identify gaps, and

highlight the contributions and limitations of previous studies. This critical analysis not only provides a

solid foundation for our current investigation but also serves as a compass, guiding the trajectory of our

exploration within this field.

3.1. Event-Based Data
Event cameras represent a departure from the frame-based paradigm of conventional cameras, offering

advantages in terms of speed, efficiency, and adaptability to fast-changing environments. They’re partic-

ularly well-suited for applications where quick and precise visual information is crucial due to their high

dynamic range and robustness to motion blur.

Instead of capturing discrete frames at a certain frame rate, each pixel in an event camera operates

independently, recording light intensity and triggering an ”event” every time the change in intensity passes

a certain threshold. This event is usually defined as ek = (xk, yk, tk, pk)with xk and yk being the coordinates
of the pixel triggering the event, tk being the timestamp and pk being the signed intensity change or polarity.

3.1.1. Datasets
In order to develop and train algorithms that operate on this novel data format, vast amounts of data are

needed. This data needs to not only contain the event streams captured by the event cameras, but also

ground truth that can be used to train and evaluate these algorithms on problems such as object detection,

optical flow, and others.

Event-based Data for Pose Estimation, Visual Odometry, and SLAM
The Event-based Data for Pose Estimation, Visual Odometry, and SLAM is a work by Mueggler et al. [11].

It presents one of the first event-based datasets, consisting of multiple sequences of objects undergoing

simple translational and rotational movement captured by the DAVIS240C event camera with a resolution

of 240 by 180 pixels. This effort has allowed scientists to explore the possibilities of applying neural

networks to event-based data. The dataset also includes simultaneously captured grayscale frames of

the same resolution but lacks optical flow ground truth which limits the possibility of applying supervised

learning algorithms. Nevertheless, it can be used to provide useful qualitative metrics due to its simple

structure.
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MVSEC
The Multi Vehicle Stereo Event Camera [12] dataset is one of the first public datasets to provide event-

based data along with optical flow ground truth. Utilizing the DAVIS m346B event camera, it provides a

continuous event stream with a resolution of 346 by 260 pixels. Capturing event sequences in both indoor

and outdoor conditions during day and night settings, it fuses lidar, IMU, and GPS data to also provide

sparse ground truth labels for the optical flow

DSEC
The Stereo Event Camera Dataset for Driving Scenarios [13] is a more recent attempt at providing a

comprehensive event dataset, capturing streams from two event cameras in a stereo setup with a resolution

of 640 by 480 pixels. The effort consists of 53 driving sequences exposed to different varieties of illumination

while providing sparse but accurate ground truth for optical flow estimation.

BlinkFLow
Blinkflow [14] is one of the most recently released datasets. And it substantially deviates from the standard

procedure of collecting events using event cameras in real-world conditions. Instead, Blinkflow employs

an event data simulator, which is used to generate a large-scale, diverse dataset containing more than

3362 training sequences at a 640 by 480 pixels resolution. Having such an abundant dataset is key in the

exploration of the applicability of neural networks to event-based data.

3.2. Optical Flow Estimation
Frame-based Methods
The estimation of optical flow stands as a cornerstone problem in the area of computer vision, spanning

multiple decades of investigation. In the early 1980s, the pioneering work of Horn and Schunck [4] laid the

groundwork for what has been the standard algorithm for determining optical flow. Their seminal paper

introduced a method that computed optical flow by minimizing an energy function based on two critical

assumptions:

1. Brightness constancy: the brightness intensity of pixels remains constant over time.

2. Spatial smoothness: neighboring pixels tend to have similar motion patterns.

which are used to formulate the terms in the energy function. This energy function is then minimized

through iterative procedures such as gradient descent to produce a dense optical flow field, representing

the motion vectors for each pixel in the image.

While the Horn-Schunck method was groundbreaking, it had limitations, particularly in handling large

displacements, occlusions, and complex motion patterns. Therefore, in the following years, researchers

explored various approaches to address these limitations, such as the use of pyramidal structures [15]. The

concept involves creating a pyramid of images by successively downsampling the original image. Each

pyramid level represents the image at a different scale, where higher levels correspond to lower resolutions.

This pyramid allows optical flow algorithms to operate at multiple scales, enabling them to handle different

levels of detail and motion complexities within an image sequence. Still, the added complexity significantly

increased the latency of computing flow using that approach, limiting its use in real-time applications.

More recently, with the advent and rapid adoption of deep learning methods in the past decade, researchers

began investigating ways of applying neural networks to the problem of optical flow estimation. This posed

a paradigm shift from the traditional hand-crafted optimization framework by formulating it as an end-to-end

learning task with the network directly predicting the flow from a set of frames.

FlowNet [16] was the first to adopt the formulation of a supervised CNN capable of solving the optical flow

estimation problem. To do so, it employs three key principles:

1. Feature Extraction: The network extracts intricate details and hierarchical representations from the

frames through convolutional layers, capturing essential information for understanding motion.

2. Correlation Calculation: Using these extracted features, FlowNet computes correlations between

the feature maps, enabling the identification of matching patterns and potential motion across the

frames.
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3. Refinement: FlowNet utilizes ”upconvolutional” layers that upsample the low-resolution flow to

provide dense per-pixel predictions.

FlowNet [16] and its successor FlowNet 2.0 [17] achieved performance matching that of state-of-the-art

energy minimization methods while achieving much lower inference times, proving the potential of this

data-driven approach.

PWC-Net [5] further builds on these ideas by introducing three crucial improvements. Firstly, it employs

the pyramidal structures, common in traditional methods, allowing it to generate feature representation

at multiple scales. It also introduces a ”warping” layer, which warps one feature map towards the other

based on the predicted flow, helping with the alignment of corresponding pixels. Moreover, it constructs a

cost volume by comparing features between the two images at multiple scales. This volume represents

the similarity or dissimilarity between the features of corresponding pixels. Finally, based on the refined

cost volume information, the network predicts the optical flow, representing the motion between the two

input frames. Using these ideas, PWC-Net outperforms FlowNet2 while being 17 times smaller in size.

Another architecture that introduces a monumental shift is that of RAFT [6]. While networks such as

FlowNet [16] and PWC-Net [5] process their input in an entirely sequential fashion, RAFT makes use

of a recurrent unit to refine its flow predictions iteratively. To do so, it builds cost volumes containing

correlations between all pairs of pixels, which are then fed through the recurrent unit to update the flow

estimate incrementally. RAFT’s recurrent unit helps enforce temporal consistency. By iteratively refining

flow estimation through recurrent updates, it encourages themodel to generate flow fields that are consistent

across time steps. This leads to smoother and more temporally coherent flow predictions, allowing the

architecture to outperform its predecessors substantially.

Event-based Methods
Event-based cameras have brought a radical new way of capturing motion information through asyn-

chronous event streams. This format presents an untapped source of potential that could unlock many

new possibilities in many areas, such as computer vision and robotics, among many others. But this novel

format also poses an extraordinary challenge since both traditional and deep learning algorithms cannot

be directly applied. But thankfully, due to the traction that event cameras have created, substantial effort

has recently been put into developing algorithms that could deal with and exploit their data structure.

Zhu et al.[18] propose an encoder-decoder architecture that utilizes a novel event representation. The

purpose of this representation is to discretize the continuous event stream into a voxel grid that compresses

the spatial and temporal information of all events into a single representation that existing learning methods

can utilize.

Starting with a set of N events (xi, yi, ti, pi) where i ∈ [1, N ] and B bins to discretize the time-domain,

each event is bilinearly interpolated both temporally and spatially using Equation 3.2.

t∗i = (B − 1) (ti − t0) / (tN − t1) (3.1)

V (x, y, t) =
∑
i

pikb (x− xi) kb (y − yi) kb (t− t∗i ) (3.2)

kb(a) = max(0, 1− |a|) (3.3)

where kb(a) represents the bilinear kernel. The results of this interpolation process are then accumulated
into a voxel grid tensor of size BxHxW , allowing for each bin to be treated as a separate 2D image. The

produced bins are then fed through a convolutional encoder-decoder network to estimate the optical flow

encoded in the events.

E-RAFT [9] applies the RAFT [6] architecture on event data by utilizing the exact event representation

described by Zhu et al.[18]. The method achieves state-of-the-art performance, showcasing the superiority

of applying recurrent models on data with a strong temporal nature.

Liu et al. [19] further improve upon E-RAFT [9] by making use of three additional components in their

TMA (Temporal Motion Aggregation) architecture. Firstly, they introduce an event-splitting strategy that

divides an event stream into multiple segments that are encoded into feature maps, which are used to
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compute temporally dense correlation volumes. Secondly, these volumes, along with the corresponding

flow, are processed using a linear look-up module to encode motion features. Finally, instead of just

concatenating these motion features to produce a final estimate, an attention module is used to emphasize

motion patterns that are consistent with each other. This allows the method to outperform E-RAFT on the

DSEC [13] benchmark.

However, the computation and storage of the correlation volumes used by both E-RAFT and TMA greatly

increase their memory consumption and inference time, diminishing the possibility of deploying the

architectures on a real-time platform, especially as the input resolution increases.

IDNet [10] targets this problem by directly eliminating the correlation volumes and instead observing that

the motion of objects is directly encoded in the blur present in the raw events. By integrating the idea of

motion compensation [20], IDNet also refines its estimate of the optical flow by iteratively ”deblurring” the

event representations and processing them using a recurrent unit. This allows IDNet to achieve exceptional

results on the competitive DSEC [13] benchmark, indicating the power of introducing inductive bias when

designing neural network architectures.

3.3. Self-Supervised Learning
Despite the success of these methods in utilizing the novel event data format to obtain accurate predictions

of optical flow, most of them still require substantial amounts of annotated ground truth data in order to

train their underlying neural networks. Unfortunately, the process of creating such datasets is extremely

laborious, subject to errors, and time-consuming.

Supervised methods such as [19, 9, 10] have so far focused on the two benchmark datasets - MVSEC

[12] and DSEC [13], using the difference between their predictions and the ground truth optical flow as a

loss metric. However, both datasets have their optical flow ground truth as a sparse structure and are

provided at a low frequency, further aggravating the training process.

Another prominent method of training neural networks on computer vision tasks such as optical flow

estimation [21, 22] is via the use of self-supervised learning. Self-supervised learning is a machine

learning paradigm where a model learns to understand patterns, features, or representations from the

input data itself without relying on external labels or annotations. Instead of using manually labeled data,

self-supervised learning tasks generate labels or supervisory signals from the input data. As such, this

training paradigm holds enormous potential in not only removing the need for manual labeling but also

allowing models to be trained on much bigger datasets that do not contain ground truth data.

EV-FlowNet [8] formulates the training regime as a self-supervised problem using only event data and a

set of corresponding grayscale images generated from the same camera. To do so, it uses the predicted

optical flow and two grayscale images corresponding to the beginning and end of the optical flow interval.

It then warps the second image back to the first one with the idea that as the optical flow prediction

converges to the true optical flow, the warped and the original images will become identical. To measure

their dissimilarity, the photometric loss between the warped and original images is computed, which, along

with a smoothness term, is used as a supervisory signal.

The method, while successful, still requires a set of corresponding grayscale images on top of the event

data to generate the supervisory signal, which requires a complicated synchronization process. Therefore,

substantial research has been put into algorithms that employ only the raw event data to generate that

supervisory signal, and the most efficient framework that does so is that of contrast maximization, which

can be subdivided into two categories: spatial and temporal contrast maximization.

3.3.1. Spatial Contrast Maximization
Apart from the general requirement of differentiability, a loss function should, first and foremost, provide a

clear distinction between good and bad predictions made by the neural network. In the case of spatial

contrast maximization, this can be achieved by utilizing the concept of motion compensation as introduced

by [10, 20]. Starting with a set of events E = {xk yk tk pk} where k ∈ [1, N ], the predicted optical flow from

the model is used to warp the events to a reference time tref , generating a set of warped events E′ using

the following warp:

x′
kx
′
kx
′
k = xkxkxk + (tk − tref )v(xk)v(xk)v(xk) (3.4)
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where v(xk)v(xk)v(xk) is the predicted optical flow vector. The warped events are then aggregated to an image of

warped events (IWE) using

I(xxx) =

N∑
k=1

g(xxx− x′
kx
′
kx
′
k) (3.5)

with each pixel accumulating the warped events that fall within it using the function g. When the data

contains floating point coordinates, for example, when considering rectified coordinates, the function g
represents the bilinear kernel [10] while for integer coordinates, it can be replaced by a Dirac delta.

Under a perfect optical flow prediction, this IWE would have a perfect edge alignment, resulting in sharp

edges and no motion blur as seen in Figure 3.1.

Figure 3.1: Progression of event warping as the optical flow prediction improves[23].

Now, the question is how to robustly measure this alignment arises. Gallego et al. [23] propose a set of

twenty loss functions that aim to do just that. Starting with the IWE, they apply statistical measures as well

as image processing techniques and assess the performance of all of them.

The first of these functions is the variance of the IWE, also known as the contrast [23, 24], and is computed

using:

V ar(I(xxx))
.
=

1

Ω

∫
Ω

(I(xxx− µI))
2dxxx (3.6)

with µI being the mean of all the pixels in the IWE. In statistics, the variance quantifies the spread or

dispersion of a set of data points around their mean or average value, giving an idea of how much the

values in a dataset differ from the mean. Looking from the point of an image, a high variance in an image

implies that there are significant differences in pixel intensities, which often correspond to areas with sharp

transitions or edges. On the other hand, a low variance suggests more uniform regions or areas with less

contrast and fewer intensity variations. Therefore, by maximizing that metric, the alignment of edges is

also maximized.

The magnitude of the image gradient is another metric that is able to capture this effect [25], calculated via:

‖∇I‖2Ω
.
=

∫
Ω

‖∇I(x)‖2dx (3.7)

with ∇I = (Ix, Iy)
T being the gradient vector. It is often used to detect edges and boundaries within the

image. It identifies areas where there’s a significant change in intensity or color, which typically indicates an

edge or a transition between different objects or regions in the image. When that magnitude is maximized,

it indicates that edge alignment is also maximized.

The magnitude of the image Laplacian proves to be an efficient metric as well as noted by [23] and is

computed using:

‖∆I‖2Ω
.
= ‖Ixx + Iyy‖2Ω (3.8)
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The Laplacian operator highlights regions in the image where the intensity changes rapidly. It is particularly

effective in detecting edges and fine details that might not be easily discernible in the original image.

Maximizing this metric again leads to a positive effect in the alignment of edges in the IWE.

Despite the similarity between these metrics, they also exhibit different properties mathematically, which

could ease or deteriorate the process of learning how to correctly estimate the optical flow. Figure 3.2

presents the findings by Gallego et al. [23] regarding the aforementioned metrics along with two other.

It depicts a plot of the different losses with respect to the optical flow vector’s components. In this case,

the narrower the peak, the better that metric is at allowing the network to learn, with the magnitude and

variance of the Laplacian coming on top.

Figure 3.2: Loss metrics as a function of optical flow parameters, indicating that some metrics are better

suited for the estimation of optical flow [23]

Shiba et al. [25] note that when optimizing the variance of the IWE, strong overfitting behavior can be

observed, which prevents the network from learning actual patterns in the data that lead to correct and

physically possible flow. To prevent that, they introduce a multi-reference objective function, which warps

the IWE to multiple reference times, instead of just one, acting as a regularizing term.

3.3.2. Temporal Contrast Maximization
Temporal contrast maximization aims to achieve the same goal as the methods described previously but

by looking at the problem from a different standpoint. Zhu et al. [8] note that another way of maximizing the

contrast of the IWE is by minimizing its per-pixel, per-polarity average timestamp, which is summarized by:

Tp′ (x;u | tref) =
∑

j κ
(
x− x′

j

)
κ
(
y − y′j

)
tj∑

j κ
(
x− x′

j

)
κ
(
y − y′j

)
+ ε

(3.9)

κ(a) = max(0, 1− |a|) (3.10)

j = {i | pi = p′} , p′ ∈ {+,−}, ε ≈ 0 (3.11)

The loss is then computed by taking the sum of both images generated using positive and negative polarity

as in:
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Lcontrast (tref ) =
∑
x

∑
y

T+ (x, y | tref )2 + T− (x, y | tref )2 (3.12)

Unfortunately, with its current formulation, the method suffers from scaling problems, namely that by using

a single reference time for the warp, the events are scaled by (t′− ti). This leads to events with timestamps
closer to t′ having virtually no contribution while events further away from t′ have a disproportionately larger
contribution during backpropagation. To solve this problem, the authors compute the loss with respect to

both the beginning and the ending of the event sequence, denoted by timestamps t0 and tN−1 respectively,

leading to:

Lcontrast = Lcontrast (t0) + Lcontrast (tN−1) (3.13)

However, Hagenaars et al. [26] find that even using two reference times to compute the contrast maxi-

mization loss could lead to learning problems due to the non-convex nature of the function. To alleviate

this problem, they scale the loss described in Equation 3.14 by the sum of pixels with at least one warped

event to convexify the metric, resulting in:

Lcontrast (tref ) =

∑
x

∑
y T+ (x, y | tref )2 + T− (x, y | tref )2∑

x

∑
y n(x

′ > 0) + ε
(3.14)

with n(x′) counting the per-pixel events of the IWE.

In order to introduce a regularizing term that steers the estimated flow in a physically possible direction,

apart from the contrast maximization loss, a smoothing loss is also incorporated as suggested by [18, 26,

27, 28]. This smoothing term takes the form of:

Lsmooth =
∑
~x

∑
~y∈N (~x)

ρ(u(~x)− u(~y)) + ρ(v(~x)− v(~y)) (3.15)

ρ(x) =
√
x2 + ε2 (3.16)

with N (x, y) being the set of neighbors around (x, y) and ε is a small constant added to prevent division by
zero and/or numerical under or overflow.

3.4. Adaptive Inference
IDNet employs the idea of using iterative refinement to improve its optical flow estimation. It uses its current

optical flow estimation to deblur the event sequence used to generate it, which is then fed again into its

recurrent module to update the flow. But currently that iteration number is manually chosen and fixed,

which comes with negative consequences.

Firstly, the number of forward passes stays constant regardless of the complexity of the scene, which adds

undesired latency in cases where the motion patterns are simple to estimate. For example, considering a

scene with no motion, the output of the network would be a trivial zero flow field. Despite that, the network

would still have to go through all iterations to arrive at that result, wasting computing power and time.

On the other hand, it is also possible that the scene at hand contains various objects with different movement

directions and magnitudes. This would produce a complex optical flow map that might require a greater

number of iterations to converge to. Yet with the current schemes, the iterations will be cut short, leading

to worse predictions and decreased accuracy.

Therefore, adding a method of automatically adjusting the number of iterations performed by the network

that is dependent on the complexity of the motion field in the sequence of events can prove to be a great

improvement not only in the inference speed of IDNet but also in its accuracy. A promising way to look at

this problem is through the lens of Deep Equilibrium Models (DEQ) [29].
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3.4.1. Deep Equilibrium Models
Traditional optical flow estimation methods [4] rely on an energy minimization principle that is iteratively

optimized until a stable flow field is produced. While recurrent networks such as IDNet mimic this principle

by iteratively refining their estimate, this is only carried out for a certain number of steps, which also comes

with major drawbacks. Mainly that training such recurrent models involves back-propagation-through-time

(BPTT), which comes with a significant time and memory burden. But what if this iterative procedure could

be replaced with an architecture that can immediately compute this stable solution and without the need

for BPTT?

This is exactly the idea behind Deep Equilibrium Models. By re-formulating the architecture as an infinitely

deep implicit layer, the outputs of the model become the fixed points of this new implicit layer, which can

be directly solved for. To explain this principle, consider a recurrent unit of the form:

zi+1 = fθ(Wzi + Ux+ b) (3.17)

As the number of iterations goes to infinity, the output of this model could take one of three possible paths:

convergence, divergence, or instability in the form of oscillations. In the case where convergence occurs,

the output z∗ can be considered as the solution of a fixed-point iteration scheme as in:

z∗ = fθ(Wz∗ + Ux+ b) = fθ(z
∗, x) (3.18)

Therefore, to find that equilibrium state, a fixed-point solver such as Newton’s or Broyden’s method [29] can

be utilized. If you were to train a network using the current formulation, this would require backpropagating

through all the iterations of the fixed-point solver, which would leave us with the same problem that the

BPTT presented, showing no benefits to using this fixed-point formulation. Luckily, DEQ models can

compute derivatives directly through the final fixed point, z∗, making use of the Implicit Differentiation

Theorem [29]. This allows DEQs to compute the derivatives with respect to any parameter in the network

using the following equation [29]:

∂`

∂(·)
= − ∂`

∂z?

(
J−1
gθ

∣∣
z?

) ∂fθ (z
?;x)

∂(·)
= − ∂`

∂h

∂h

∂z?

(
J−1
gθ

∣∣
z?

) ∂fθ (z
?;x)

∂(·)
(3.19)

The most critical implication of this step is that the need to store intermediate hidden states, which is at the

heart of BPTT, is rendered obsolete. This allows DEQs to compute the gradient by using only the Jacobian

evaluated at the equilibrium point, which decreases the memory needed during training massively.

Bai et al. [30] apply this strategy directly to the problem of estimating optical flow. Since the technique is

not based on any specific model, it can be integrated into already existing networks such as RAFT [6]. The

authors note that training RAFT as a DEQ module allowed them to achieve superior results at the same

computational cost and at a fraction of the memory footprint, validating the efficacy of DEQ models.

Yet computing the gradient during backpropagation still requires the calculation of the expensive inverse

Jacobian matrix J−1
gθ

, which becomes intractable for bigger problems. Early works [29] suggest computing

this matrix iteratively by making use of Broyden’s method, which allows for more efficient computation,

especially when integrated with already existing automatic differentiation packages. Instead of relying on

this iterative method again, Nguyen et al. [31] approximate the matrix using the inverse Jacobian computed

during the forward pass. This allows for more than a 2x speed-up without sacrificing accuracy.
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Preliminary Results

This chapter will discuss the preliminary results of applying the self-supervised learning methods discussed

in Chapter 3. This will be done in Section 4.1 and Section 4.2, where the implementation and results of the

spatial and contrast maximization principles will be presented, respectively.

4.1. Spatial Contrast Maximization
The first step in implementing the spatial contrast maximization framework into IDNet starts with utilizing

the deblurred image of warped events that is already computed in the iterative structure of the network.

As mentioned in Chapter 3, under perfect estimation of the optical flow, the IWE’s contrast is maximized,

resulting in the recovery of sharp edges in the image. Experiments were conducted on the DSEC [13]

dataset and specifically on the zurich_city_01_a sequence to test the objective functions, keeping the

same model hyperparameters that IDNet uses during its supervised training regime - 15 bins collecting

events in an interval of 100 [ms]. Using that sequence, the model was trained until convergence using

Adam with a learning rate of 1× 10−4 and batch size of 5.

The first metric used to measure this alignment quantitatively is the variance of the IWE as described in

Equation 3.6. This metric aims to do so by measuring the difference in pixel intensities, with higher results

corresponding to bigger contrast. Therefore, minimizing the negative of that function results in IWEs with

higher contrast. By looking at the loss progression as presented in Figure 4.1, we can conclude that the

model is indeed learning.

Figure 4.1: Loss progression during training, using the Variance of the IWE.
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The loss monotonically decreases and plateaus towards the end, oscillating around an average value and

indicating convergence has occurred. This could lead to the belief that the model is indeed learning to

predict the optical flow correctly. However, the training loss does not tell the whole picture when using

self-supervised learning. Therefore, it is of utmost importance to verify the validity of the flow by directly

inspecting it, along with the image of warped events. These results are presented in Figure 4.2.

Figure 4.2: Optical flow prediction and corresponding IWE recorded during training when optimizing the

Variance of the IWE.

As seen in the figure, while the network is initially able to at least recognize patterns in the flow, the flow

predictions steadily devolve as the training progresses. This causes the formation of ”bubble”-like regions

that form similar patterns when used to produce the IWE. Naturally, the question of how these non-physical

patterns emerge in the flow arises. The answer to that lies precisely in the aforementioned bubble-like

regions. These regions present very abrupt changes in intensity compared to their surroundings, which

raises the variance of the whole image. Therefore, even though the estimated flow is not correct, it is

optimal according to the loss function. This can be considered as an example of overfitting where the

underlying model does not learn the correct patterns in the data, but instead blindly tries to decrease the

loss function as instructed.

The next loss that was tested is the magnitude of the gradient of the IWE as shown in Equation 3.7. The

idea behind it being that the more pronounced the edges are, the higher its value gets, thus maximizing

contrast. Its progression can be followed in Figure 4.3.

Figure 4.3: Loss progression during training, using the Gradient of the IWE.

Training IDNet using the gradient of the IWE as its supervisory signal takes more time to converge
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compared to using the variance of the IWE. One thing that is especially noticeable is that initially, the loss

oscillates without much improvement until it suddenly takes off around step 200. This could indicate that

the gradient loss poses a more complicated landscape containing multiple local minima, making it harder

for the optimization algorithm to optimize it. Nevertheless, it reaches convergence towards the end, hinting

that the network is learning again.

Figure 4.4: Optical flow prediction and corresponding IWE recorded during training when optimizing the

Gradient of the IWE.

But after inspecting the flow and corresponding IWEs in Figure 4.4, we are left at the same point as

previously, with a network that is able to optimize its loss without learning the true patterns in the flow. This

time, instead of producing the bubble-like structures present in Figure 4.2, the network generates patterns

of horizontal stripes with sharp transitions in contrast, which effectively maximize the gradient of the IWE

but produce inaccurate optical flow predictions.

The final loss that was investigated is the Laplacian of the IWE as shown in Equation 3.8. As mentioned in

Chapter 3, similarly to the gradient of the IWE, this loss aims to capture regions of high-intensity change,

which should in theory recover the edges that generate the events, leading to the IWE.

Figure 4.5: Loss progression during training, using the Laplacian of the IWE.

Despite undergoing similar trends, such as this initial region of no learning, the Laplacian of the IWE is

able to converge faster compared to the previously tested loss function. Unfortunately, this also leads to

the networks following the same trends when predicting optical flow as shown in Figure 4.6
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Figure 4.6: Optical flow prediction and corresponding IWE recorded during training when optimizing the

Laplacian of the IWE.

The horizontal stripe patterns present in Figure 4.4 are missing here, but the non-physical flow prediction

remains prominent.

In general, these results bring about an important finding regarding this self-supervised learning framework.

Namely, the spatial contrast maximization model that is based on these statistical measures of the IWE

tends to strongly overfit, transporting events to regions that maximize the contrast, but that do not abide

by the physical constraints of the flow as already noted by [25]. However, during these experiments, the

IWE was generated by deblurring the voxel grid that was produced by accumulating the event stream. In

contrast to that, [25, 23] produce the IWE by first deblurring the raw events and then accumulating them

to create the IWE. Therefore, additional research that utilizes that formulation is needed to assess the

applicability of the spatial contrast maximization framework to IDNet fully.

4.2. Temporal Contrast Maximization
While the idea that maximizing the edge alignment of the IWE produces the best flow estimate is key here

as well, the main observation that governs the operation of the temporal contrast maximization framework

is that this is best achieved by minimizing the per-pixel, per-polarity average timestamp of the warped

events, reflected in Equation 3.14.

Therefore, the loss formulation was implemented in IDNet’s training framework using the same training

settings described in Section 4.1 with the important difference that instead of using a fixed time frame of 100

[ms] to accumulate events, the samples were generated using a constant frame of 150000 events, which

allows for efficient batching and GPU utilization. Training IDNet using that configuration until converging

leads to the following loss progression, as seen in Figure 4.7
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Figure 4.7: Loss progression during training, using the the loss described in Equation 3.14.

Again, the loss progression looks promising. Despite experiencing some difficulty learning during the first

200 steps, it quickly picks up speed and gradually plateaus around step 1000, indicating convergence.

As shown before, the training loss is not the whole picture in the case of self-supervised learning, and

therefore, inspecting the flow progression is of even greater importance. This progression can be seen in

Figure 4.8.

Figure 4.8: Optical flow prediction and corresponding IWE recorded during training when optimizing

Equation 3.14.

While the first two columns representing epochs 1 and 11 look just as physically inconsistent as the previous

training attempts, the flow prediction from epoch 21 looks surprisingly much more accurate, which only

improves into epochs 36 and 50. Considering that the scenes present in zurich_city_01_a represent a car
driving forward, the flow patterns and colors match what the expected results should be.

Despite the lack of detail in the flow map, which could be attributed to the fact that the network was only

trained on a single sequence, the predictions seem to be consistent with the physical scenario, which

leaves a promising trail to integrating the temporal contrast maximization loss fully into IDNet.



5
Conclusion

The research objective formulated at the start of this research work was to expand the capabilities of

IDNet by removing its dependency on labeled data and reforming its refinement scheme. The process

started with an investigation into the existing literature surrounding the problems of event-based optical

flow, self-supervised learning, and adaptive inference mechanisms. Based on that investigation, the

methodology was then developed. This was a step that required many iterations and tests to converge to

a working solution.

Self-Supervised Learning
Regarding the problem of self-supervised learning, initially, spatial contrast maximization (SCM) methods

were implemented. These methods included maximizing the variance of the Image of Warped Events

(IWE), the gradient of the IWE, and the Laplacian of the IWE. All of these losses were found to lead to

strong overfitting behavior, which produced non-physical flow, even after convergence. This flow was

characterized by the formation of ”bubble”-like structures, which indeed led to higher contrast but were far

from the correct flow. Therefore, that direction was abandoned and more focused was paid to temporal

contrast maximization (TCM). Instead of computing spatial statistics such as the variance, TCM maximizes

the edge alignment of the IWE (and thus its contrast) by minimizing the per-pixel, per-polarity average

timestamp of the warped events. Initial experiments with this loss showed promising results, which led to

its full integration into the training pipeline of IDNet. After training on MVSEC, we notice improved results

over previous methods with up to 15% on some sequences and an 8% improvement on average.

Deep Equilibrium Models
To convert the fixed-iteration scheme of IDNet into an adaptive one, Deep Equilibrium Models (DEQ) was

the concept that showed the most potential. The idea behind it is to reformulate the internal architecture of

the network as an infinitely deep implicit layer whose outputs are the solutions of a fixed-point equation, and

precisely, these fixed points are the desired ”equilibrium” flow. This also allows for the utilization of traditional

root-finding methods such as Anderson’s method, which permits the network to adaptively change the

number of iterations based on a tolerance criteria set, closely resembling traditional optimization-based

techniques. Moreover, these solvers exhibit super-linear behavior, allowing for much faster convergence.

Another big benefit of that formulation was the application of the Implicit Function Theorem (IFT), which

allowed us to directly differentiate through the network using only the final fixed-point solution and without

any knowledge of previous iterations, which provided a theoretical reduction in memory from O(L) to
O(1), where L is the number of fixed iterations IDNet performs. We further alleviated the training costs

by approximating the Jacobian inversion present in the IFT, which, in practice, granted us an almost free

backward pass compared to the forward pass. To stabilize the convergence of this model, we also involved

a fixed-points correction scheme, which sampled the trajectory of the solver and computed a loss term with

respect to each of these samples, motivating early convergence. Warm-starting is another strategy we

used to speed up the training process by reutilizing previous solutions in order to give a better initial guess

for the fixed-point solver, dramatically decreasing the number of iterations needed on subsequent passes.

The final idea we integrated was that of tolerance scheduling. As the network got better at estimating

the flow, we noticed that the iterations needed abruptly dropped, which was a sign that the network was

not utilizing its full resources. Therefore, as that happened, we progressively decreased the tolerance
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of the solver to squeeze out extra performance. Having researched and implemented all of these ideas,

we trained and tested our DEQ model on the DSEC dataset. We found that our model was competitive,

placing fourth behind state-of-the-art models such as IDNet and E-RAFT while providing an improvement

in memory consumption of 15%. We theorize that this non-optimal performance could be attributed to the

gradient approximation and raise this as a direction for further research.



6
Recommendations

This chapter provides a brief overview of the primary recommendations for the future continuation of

this research project. These recommendations are split into two directions, covering the problems of

self-supervised learning and deep equilibrium models.

6.1. Self-Supervised Learning
Using larger datasets

Since, in this training paradigm, there is a complete absence of ground truth data, the learning process

occurs much more slowly. Therefore, more and more data is needed to allow the network to learn the

correct patterns. We recommend including more datasets such as DSEC [13] and BlinkFlow [14], which

include diverse sequences from urban and country-side environments captured in both day and night

conditions. This could allow the network to learn even more complex flow patterns, further improving its

performance.

Improving the loss
Utilizing the contrast maximization framework described in this report was proven to be an excellent

candidate for the task of learning optical flow without ground truth data. Still, there has been recent

research aiming at further improving it. Paredes-Valles et al. [27] build further on that framework by

introducing an iterative event warping module and a multi-timescale loss function to increase its robustness

to noise and non-linearities in the data. Therefore, integrating that into the current self-supervised learning

framework of IDNet could lead to even better results.

Spatial Contrast Maximization

Despite the strong overfitting behavior we experienced while utilizing spatial contrast maximization, theo-

retically, it is still a good candidate for the task of self-supervised learning. We propose further research

into regularizing mechanisms that would prevent that overfitting from occurring and allow the network to

truly learn optical flow patterns.

6.2. Deep Equilibrium Models
Gradient approximation

One of the potential reasons why our DEQ model did not reach state-of-the-art performance was attributed

to the gradient computation procedure, which approximated the Jacobian inversion. This could have led to

a substantial loss of information during training and prevented the network from utilizing its full potential.

Therefore, researching other ways of approximating that term is a research direction that could greatly

benefit the DEQ formulation.

Hyperparameter tuning

During our experiments with the DEQ formulation of IDNet, we found that it is quite sensitive to its

hyperparameters. Particularly, the tolerance of the solvers proved to be a critical parameter that dictated

the performance of the network. Therefore, further research and tuning of that variable could allow for

extra performance gains.

34



6.2. Deep Equilibrium Models 35

Testing different datasets
Another possibility as to why the DEQ formulation could not achieve SOTA results could lie in the data itself.

In order for the network to successfully learn, the architecture must be able to pick up enough information

from data in order to facilitate training. To investigate whether this is indeed a problem in this case, further

experiments have to be performed on different datasets. Potential candidates for that are again MVSEC,

which is a standard benchmark dataset in event-based vision [12], as well as the more recent BlinkFlow,

which provides a gigantic amount of labeled data [14].
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A
Appendix

Optical Flow Coding Scheme

Figure A.1: Optical flow coding scheme where the magnitude of the optical flow is encoded in brightness

and the direction in color hue.
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