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a b s t r a c t 

We report numerical evidence for neutrality of thin fibers to a prescribed uniform stress field in a fiber- 

reinforced composite. Elastic finite element analyses of fiber-reinforced composites are carried out with 

a conventional fully-resolved model and a novel dimensionally-reduced fiber model.The two modeling 

approaches are compared in the analysis of mechanical properties and matrix-fiber slip profiles. An anal- 

ysis of the effectiveness of various fiber orientations with respect to the loading direction shows that the 

notion of inclusion neutrality, originally formulated for rigid line inclusions by Wang et al. [Journal of Ap- 

plied Mechanics, 52(4), 814–822, 1985], holds also for linear elastic thin fibers with imperfect interface. 

© 2018 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Apart from fiber shape, surface treatment, and volume frac-

tion, fiber spatial orientation is an important characteristic con-

trolling load-transmission mechanisms in fiber-reinforced compos-

ites ( Kang and Gao, 2002 ). Although the effect of fiber orientation

can be accurately assessed by means of computational homoge-

nization techniques ( Berger et al., 2005; Xia et al., 2003; Mortazavi

et al., 2013; Sheng et al., 2004; Lusti and Gusev, 2004 ), the gener-

ation of a conformal finite element mesh for composites with thin

fibers is a tedious and time-consuming task. Embedded reinforce-

ment techniques, in which fiber discretization is independent from

the discretization of the composite domain, can be effectively used

for this class of problems. Here we assess the validity of a novel

embedded formulation and employ it to show inherent character-

istics of composites reinforced with thin fibers. 

Generally speaking, two classes of methods are available for the

micro-mechanical study of fiber-reinforced composites: mean-field

and direct numerical methods. Although mean-field methods such

as Eshelby-based two-step homogenization schemes ( Pierard et al.,

2004; Tian et al., 2016 ) are fast and cost-effective, finite element

(FE) averaging methods have gained popularity for their accurate
∗ Corresponding author. 
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eometrical representation of the composite micro-structure. A se-

ious drawback of classical FE-based homogenization is the con-

ormal mesh generation process for composites with many fibers.

hen the number of fibers is relatively low, the composite can

till be discretized using classical conformal approaches as shown

y Lusti and Gusev (2004) and Tian et al. (2016) : in Lusti and

usev (2004 , Fig. 1) the discretization for a composite with 350

anotubes of aspect ratio 200 at a volume fraction of 0.5% con-

ists of 3.5 × 10 6 nodes tessellated into 21 × 10 6 tetrahedral ele-

ents; in Tian et al. (2016) , the authors show that they can gen-

rate a discretization for a composite fiber volume fractions up to

0% considering 600 fibers (using therefore fibers with a relatively

arge diameter). Obviously, the study of composites with thousands

r tens of thousands of fibers with volume fractions around 20%

typical of nanocomposites Andrews et al. (2002) ) would be un-

easible with conformal approaches. Advanced discretization ap-

roaches such as embedded reinforcement methods ( Balakrishnan

nd Murray, 1986; Elwi and Hrudey, 1989; Hartl, 2002; Barzegar

nd Maddipudi, 1997; Nini ́c et al., 2014; Radtke et al., 2010 ) facili-

ate the discretization of high aspect ratio fibers by allowing their

esh-independent representation. In the literature, these methods

ave been applied to curved inclusions ( Elwi and Hrudey, 1989 ),

liding fibers ( Barzegar and Maddipudi, 1997; Hartl, 2002; Radtke

t al., 2010 ), and to describe the interaction between pile founda-

ions and the surrounding soil ( Nini ́c et al., 2014 ). In the simula-
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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ion in Section 5 we have used up to around 220 0 0 fibers with

elatively coarse discretizations. 

To lift the conformal meshing requirements of standard FE

ethods, two key assumptions are made in embedded formula-

ions: (i) high aspect ratio fibers are described as one-dimensional

ar or beam elements; and (ii) the fiber kinematics is introduced

y means of a displacement gap between matrix and fiber while

reserving the continuity of the underlying matrix displacement

eld across the fiber. Relaxing the second assumption in an em-

edded formulation requires the use of special enriched approx-

mations ( Pike and Oskay, 2016 ) that would significantly reduce

he cost-effectiveness of the method and increase its complex-

ty. For the analysis of composites with many fibers we prefer

o adopt the most convenient approach from the computational

oint of view. In Section 2 we therefore propose a novel embed-

ed reinforced technique, which is compared to a fully-resolved

hree-dimensional fiber-reinforced model in Section 3 . The nu-

erical formulation proposed in this paper is superior to existing

mbedded reinforcement models in that it uses totally indepen-

ent finite element meshes for fiber and matrix. This will elimi-

ate the need for calculating intersections between fiber and ma-

rix elements, which may require complex algorithms especially

or curved fibers ( Durand et al., 2015 ). Even if the computational

etup is very simple, the one-to-one comparison between a fully-

esolved and a dimensionally-reduced fiber model allows us to as-

ess the accuracy of the dimensionally-reduced model in terms of

lobal (homogenized effective stiffness) and local (matrix-fiber slip

rofiles) quantities. To the author’s knowledge, this type of com-

arison has not been reported in previous studies and validates the

se of dimensionally-reduced models for fibers with sufficiently

mall diameters. 

Numerical homogenization studies of fiber orientation ef-

ects ( Tian et al., 2016; 2014; Kang and Gao, 2002 ) show that the

omposite stiffness is very sensitive to fiber misalignments. In a

umerical study, Tian et al. (2016 , Fig. 7b) showed that the ef-

ective Young’s modulus along the loading direction in a carbon

ber composite decreases rather quickly when the fibers are mis-

ligned with respect to the loading direction and reaches its min-

mum value, with a decrease of ≈ 25% from its maximum, when

he fibers are inclined at 60 ° to the loading direction. Although the

uthors did not establish a correlation between elastic properties

nd geometrical properties such as fiber orientation and diameter,

heir results can be related, mutatis mutandis, to those obtained

or zero-thickness rigid inclusions (or rigid line inclusions, RLIs)

roblems ( Wang et al., 1985 ). In RLI problems, the solution fields

how a strong dependence on the inclusion orientation and matrix

oisson’s contraction effects, with the limit case of the inclusion

eing neutral (this, e.g., means that the stress field is not perturbed

or certain inclusion orientations). In the literature, inclusion neu-

rality has been demonstrated only for perfectly bonded RLIs and

or in-plane states in experiments ( Noselli et al., 2010 ), theoreti-

al studies ( Wang et al., 1985; Dal Corso et al., 2016 ), and simula-

ions ( Barbieri and Pugno, 2015 ). In this contribution we demon-

trate for the first time the validity of the concept of inclusion

eutrality for high aspect ratio fibers in a three-dimensional vol-

me. In Section 4 , we show various forms of inclusion neutrality

n a fiber-reinforced composite with linear elastic thin fibers with

erfect and imperfect matrix-fiber interface using fully-resolved

nd dimensionally-reduced fiber models. Results are reported in

erms of Young’s moduli, shear moduli and Poisson’s ratios. To

emonstrate the applicability of the dimensionally-reduced model

o composites with many fibers, Section 5 reports a detailed micro-

echanical study. Results, including some observations on fiber

eutrality with respect to the effective Poisson’s ratio of the com-

osite, are compared with rule-of-mixtures predictions, while the

imitations of the latter are pointed out. 
. Method 

.1. Weak form of the governing equations 

With reference to the principle of virtual work for a small dis-

lacement elastostatics problem, the weak form of the governing

quations for a fiber-reinforced composite without body forces is 
 

�m 

σm 

: ∇ 

s δu m 

d�m 

+ 

∫ 
�f 

σf : ∇ 

s δu f d�f + 

∫ 
�int 

t c · δw d�int 

−
∫ 
�t 

t̄ · δu m 

d �t = 0 , (1) 

here ∇ 

s is the symmetric-gradient operator, and the integral over

he total volume � = �m 

∪ �f is subdivided into matrix and fiber

ontributions. The virtual displacement vectors δu m 

and δu f and

he corresponding stress tensors σm 

and σf are defined over ma-

rix (m) and fiber (f) regions. The contribution along the matrix-

ber interface �int represents the virtual mechanical work done

y the interface tractions t c for the local virtual opening (sliding)

ector δw across (between) the two sides of the interface. The in-

erface integral is evaluated over the interface surface �int of the

mbedded fibers and, for convenience, is expressed in a coordinate

ystem local to each fiber. The last term in (1) is the work done by

he external tractions t̄ over the external surface �t . 

.2. Discretized weak form 

In the context of the finite element method, the domain �

s discretized into matrix and fiber finite elements, each with its

wn set of degrees of freedom. To introduce fiber and matrix-fiber

nterface contributions (second and third terms in (1) ), reference

s made to two fiber discretizations: a conformal approach and a

esh-independent approach. While the approximation of the fiber

isplacement vector u f and the opening/sliding vector w , later re-

erred to as the interface gap vector, is specific to each scheme,

he final discretized form of the governing equations is very sim-

lar for both techniques. Next, the discretization of matrix, fiber,

nd matrix-fiber interface is discussed in detail. 

.2.1. Matrix 

The matrix displacement field u m 

is approximated at the ele-

ent level as 

u m 

(x ) ≈ u 

h 
m 

(x ) = 

n ∑ 

i =1 

N i (x ) u i = N u d, (2) 

here N i ( x ) and u i are the standard Lagrange shape function and

isplacement vectors defined at node i , respectively, the number of

odes in an element is n , the matrix N u contains elemental shape

unctions, and d is the nodal displacement vector. Stiffness matrix

K 

e 
m 

= 

∫ 
�e 

m 

B 

T 
u D m 

B u d�m 

(3) 

nd external force vector 

f e ext = 

∫ 
�e 

t 

N 

T 
u ̄t d�, (4) 

ith D m 

the matrix of elastic constants and B u the matrix of shape

unction derivatives, are obtained following standard procedures

pplied to the first and last terms in (1) . 

.2.2. Solid fiber model 

A reference computational model is developed by meshing the

xact geometry of the fiber in �f with solid-type elements and by

sing a conformal discretization at the matrix-fiber interface. Al-

hough highly accurate, this approach requires the construction of
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a conformal discretization, a tedious operation for many practical

problems. Here, both matrix and fiber regions are discretized using

conventional non-structured linear tetrahedral elements as shown

in Fig. 1 a for an inclined cylindrical fiber. 

Using the counterpart of (2) for the fiber displacement field, the

stiffness contribution related to the second term in (1) is 

K 

e 
f = 

∫ 
�e 

f 

B 

T 
u D f B u d�f , (5)

where D f is the matrix of elastic constants of the fiber material. 

To discretize the interface gap vector w , zero-thickness confor-

mal interface elements are included between matrix and fiber. This

requires finding all matrix elements sharing at least one node with

fiber elements (shaded in red in Fig. 1 a); shared nodes are then

duplicated and zero-thickness interface elements are embedded

between matrix and fiber as depicted in Fig. 1 b. The discretized

interface gap vector, 

w 

h = RN int d int , (6)

is expressed in a coordinate system local to the interface. Without

loss of generality and by making reference to the node number-

ing in Fig. 1 b, this is achieved by defining the rotation matrix R

from the global to the local coordinate system, the interface shape

functions matrix 

N int = 

[
N 

f 
int 

| N 

m 

int 

]
= 

[
N 1 I N 2 I N 3 I | −N 4 I −N 5 I −N 6 I 

]
(7)

expressed in terms of isoparametric coordinates for the zero-

thickness interface element, and the interface nodal displacement

vector 

d int = 

[
u f1 u f2 u f3 | u m4 u m5 u m6 

]T 
, (8)

where I is the identity matrix of size three, and u f i (i =1 , 2 , 3) and

u m i (i =4 , 5 , 6) indicate the displacement vectors for fiber and matrix,

respectively, in the global coordinate system. 

Following standard procedures, the interface stiffness contribu-

tion 

K 

e 
int = 

∫ 
�int 

N 

T 
int R 

T D b RN int d �int (9)

is obtained on substituting (6) into the third term in (1) and with

the interface constitutive matrix D b = 

∂t c 
∂w 

= diag ( K bt , K bn1 , K bn2 )
for a linear elastic interface. The constants K bn1 and K bn2 repre-

sent the stiffnesses of the interface in the direction normal to the

interface surface and perpendicular to it and to the fiber axis, re-

spectively, and K bt represents the stiffness of the interface in the

direction tangential to the fiber axis. In this work, we only allow

fiber slip in the direction tangential to the fiber axis by constrain-

ing the normal displacement gaps by means of penalty augmenta-

tion of the interface stiffnesses K bn1 and K bn2 . Additionally, inter-

face elements are not introduced at the fiber endpoints where we

assume no adhesion between fiber and matrix. 
Expansion of the interface stiffness contribution (9) , considering

that the interface gap vector (6) is a function of both matrix and
fiber displacements, results in 

K 

e 
int = 

[
K 

mm 

int 
K 

mf 
int 

K 

fm 

int 
K 

ff 
int 

]

= 

[∫ 
�int 

N 

m 

int 
T R 

T D b R N 

m 

int 
d �int 

∫ 
�int 

N 

m 

int 
T R 

T D b R N 

f 
int 

d �int ∫ 
�int 

N 

f 
int 

T 
R 

T D b R N 

m 

int 
d �int 

∫ 
�int 

N 

f 
int 

T 
R 

T D b R N 

f 
int 

d �int 

]
. (10)

2.2.3. Dimensionally-reduced fiber model 

When modeling high aspect ratio fibers, the conforming finite

element model described in the previous section can be replaced

by a mesh-independent dimensionally-reduced model with a dras-

tic reduction of the computational cost. 
In the proposed model, inspired by embedded reinforcement

echniques ( Balakrishnan and Murray, 1986; Elwi and Hrudey,

989; Barzegar and Maddipudi, 1997 ), fibers are idealized as one-

imensional objects that respond to axial deformation only. This

s a reasonable assumption when dealing with high aspect ra-

io fibers. A fiber discretization independent from the matrix dis-

retization and consisting of linear one-dimensional Lagrange ele-

ents is used to represent embedded fibers. Fig. 2 shows the case

f a single embedded fiber although there are no limitations on the

umber of fibers that can cross a matrix element. Worth noticing

s the independence of the two discretizations: fiber nodes do not

oincide with intersection points between fiber axis and element

aces. While any structured or unstructured fiber discretization can

e used, in the numerical simulations in this paper fiber nodes are

niformly distributed for convenience. 

To simplify the generation of the stiffness matrix for elements

hat are intersected by one-dimensional fibers, stiffness matrix (3) ,

ith the integration performed over the total volume �e of the

lement, is used for the matrix contribution. This however requires

he use of an effective Young’s modulus for the fibers to cancel out

he already considered matrix contribution in the fiber region. The

ontribution of the k th fiber element (with endpoints a and b for

he red fiber element in Fig. 2 ) is identical to the stiffness matrix

f a one-dimensional standard truss element in three-dimensional

pace and is written as 

 

k 
f = 

(E k 
f 

− E m 

) A 

k 

L k 

[
T k −T k 

−T k T k 

]
, (11)

here E m 

and E k 
f 

are the matrix and fiber Young’s moduli, respec-

ively, A 

k is the cross sectional area ( A 

k = πd 2 
f 
/ 4 with d f the fiber

iameter), and L k is the fiber element length. The fiber orientation

atrix 

 

k = 

⎡ 

⎣ 

e k x e 
k 
x e k x e 

k 
y e k x e 

k 
z 

e k x e 
k 
y e k y e 

k 
y e k y e 

k 
z 

e k x e 
k 
z e k y e 

k 
z e k z e 

k 
z 

⎤ 

⎦ (12)

ith 

 

k 
x = 

x k 
b 
− x k a 

L k 
, e k y = 

y k 
b 
− y k a 

L k 
, e k z = 

z k 
b 
− z k a 

L k 
, (13)

here ( x a , y a , z a ) and ( x b , y b , z b ) indicate the coordinates of the

ber element ends (e.g., nodes a and b for the red fiber element in

ig. 2 ). 

Consequently, the matrix-fiber interface is reduced to an equiv-

lent line object, with interface gap vector (6) and stiffness matrix

ontribution (9) evaluated along it. The interface gap vector (6) is

efined with 

 int = 

[
N 

f 
int 

| N 

m 

int 

]
= 

[
N 

f 
a I N 

f 
b 

I | −N 

m 

1 I · · · −N 

m 

n I 
]

(14)

nd 

 int = 

[
u 

f 
a u 

f 
b 

| u 

m 

1 · · · u 

m 

n 

]T 
, (15)

here N 

f 
a and N 

f 
b 

are the one-dimensional Lagrange shape func-

ions at nodes a and b defined in an isoparametric coordinate sys-

em local to the fiber, and the shape function N 

m 

i 
at node i of the

arent matrix element is also defined in an isoparametric coordi-

ate system. 

In a small deformation setting, the interface gap vector is eval-

ated in the undeformed configuration at integration points within

ber elements (e.g., at a and b for the red fiber element in

ig. 2 since we consider a two-point Gauss–Lobatto quadrature

cheme). This implies that once the local coordinates of an inte-

ration point along a fiber element are defined, they are expressed

nto the global coordinate system and used to identify its parent

atrix element by means of an octree structure ( Duflot, 2006 , Sec-

ion 9.1) that is constructed prior to the analysis. 
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Fig. 1. (a) Reference conformal finite element model with a cylindrical fiber that 

is discretized using tetrahedral finite elements. (b) Zero-thickness conformal inter- 

face elements are placed between fiber (blue region) and surrounding matrix (red 

region) to allow fiber slip. It is assumed that no adhesion exists between the end- 

points of the fiber and the matrix. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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The fiber shape function in (14) are directly evaluated at the

ntegration point in an isoparametric coordinate system local to

he fiber. The shape function of the matrix element are also evalu-

ted at the same point now expressed in the isoparametric coordi-

ate system related to the matrix element and obtained through

n inverse mapping procedure starting from its position in the

lobal coordinate system. Matrix and fiber elements are connected

hrough so-called bond elements that are defined with reference to

he two fiber element nodes and the nodes of the matrix element

n which the fiber element nodes are located (the discretization is

herefore conforming on the side of the fiber and not conforming

n the side of the matrix, and a fiber element can have nodes in

wo distinct matrix elements). 

The interface contribution (9) related to the k th fiber element

ecomes 

K 

k 
int = C k f 

∫ 
L k 

N 

T 
int R 

T D b RN int d s, (16) 

ith C k 
f 

= πd f the circumference of the fiber, L k the length of fiber-

atrix bond element, and s the local coordinate along the bond

lement. Thus, for a system with n f fibers each subdivided into n s 
ine elements, as shown in Fig. 2 , the total number of fiber and in-

erface element contributions is equal to 2 × n f × n s . Similar to (10) ,

he interface contribution is shared between matrix and fiber de-

rees of freedom in the assembly of the corresponding stiffness

atrix. 

.2.4. Global system of equations 

The n f × n s fiber element contributions and n f × n s matrix-fiber

nterface element contributions to the global stiffness matrix are

ssembled separately from those of the matrix elements. Irrespec-

ive of the fiber discretization scheme, the general form of global

ystem of equations is 
 

 

 

 

 

 

K mm 

K mf 1 K mf 2 . . . K mf n f 
K f 1 m 

K f 1 f 1 0 . . . 0 

K f 2 m 
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, (17) 

here m and f i (i = 1 , ..., n f ) are vectors containing matrix and in-

ividual fiber displacements, respectively. The submatrices in the

lobal stiffness matrix in (17) are assembled by applying standard

rocedures to elemental stiffness contributions of matrix, fiber and

atrix-fiber interface. In this framework, matrix and fiber stiff-

esses lead to block diagonal terms while, as shown in (10) , inter-

ace contributions ensuring the coupling between matrix and fibers

ead to both block diagonal and block off-diagonal terms. 

Throughout this study, linear elastic behavior is assumed for the

onstitutive models of matrix, fiber, and matrix-fiber interface. 

. Validity of the dimensionally-reduced approach 

The influence of the one-dimensional reduction of the fiber ge-

metry on the mechanical response of a fiber-reinforced compos-

te is studied. The geometrical reduction is performed over the

ber diameter d f , with fixed fiber length l f . The validation of the

imensionally-reduced fiber model is performed against the solid

ber model described in Section 2.2.2 assuming the ratio between

ber diameter and domain size L as the characterizing parameter.

o reduce the complexity of the discretization procedures due to

he generation of a conforming mesh, only one fiber is considered

n the configuration shown in Fig. 1 a for the reference model. Un-

ess stated otherwise, in all the simulations in this paper we have

ssumed that matrix Young’s modulus E m 

and Poisson’s ratio νm 

re equal to 100 MPa and 0.4, respectively, and that in the solid
ber model, matrix and fiber have the same Poisson’s ratio. Fur-

her, the effective mechanical properties of the composite are esti-

ated through the procedure described in Appendix A . 

.1. Perfect bond: Effective mechanical properties 

We now determine the range of fiber diameters over which

he predictions of the dimensionally-reduced fiber model are valid.

o this end, we compute the values of the effective longitudinal

oung’s modulus E c x of a composite with one fiber aligned with

he x -axis ( θz = 0 ◦ in Fig. 3 ) and compare them to the correspond-

ng values obtained with the solid fiber model. It should be men-

ioned that this orientation is chosen among all orientations in the

y plane because it yields the largest increase in E c x . Computations

re done with two different fiber lengths ( l f = 0 . 4 L and l f = 0 . 8 L ). A

arge value of the interface tangential stiffness K bt is used to mimic

 perfectly bonded interface (hereafter referred to as perfect inter-

ace). Fig. 4 shows the effective composite Young’s modulus E c x for

arious values of the fiber Young’s modulus E f , both normalized by

he matrix Young’s modulus E m 

. By reducing the ratio d f / L , the re-

ponses of the numerical models converge to the same value. For

 f / L < 0.01 a very good agreement between them holds, and a one-

imensional representation of the fiber can be justified. 

.2. Imperfect bond: Matrix-fiber slip 

Next, we study how the slip profiles between matrix and fiber

ompare for the reduced model and the solid fiber model when

 linear elastic traction separation law is employed. While the

imensionally-reduced fiber model obviously generates one slip

rofile, an infinite number of slip profiles can be sampled with

he solid-fiber model. To obtain a visually meaningful representa-

ion of the results, we have considered a very weak interface ( K bt =
00 N / mm 

3 ), hereafter referred to as imperfect interface. The sim-

lation box is deformed in the horizontal direction through the im-

osition of a periodic strain ( ε xx = 0 . 1 ) as discussed in Appendix A .

his computational setup eliminates the influence of the domain

ize L from the results. Fig. 5 a ( 5 b) shows the resulting normal-

zed fiber slip profiles for a fiber aligned with the loading direc-

ion ( θz = 0 ◦) and fiber diameter d f = 0 . 03 L (0.005 L ). With refer-

nce to the solid fiber model, in this special case the points sur-

ounding the fiber at the same horizontal coordinate experience

he same displacement with respect to the corresponding fiber

oints. A unique slip profile is therefore generated which is found

o be in a remarkably good agreement with the slip profile gen-

rated by the dimensionally-reduced fiber model. In contrast, as

hown in Figs. 5 c and d, an inclined fiber ( θz ≈ 28 . 6 ◦(= 0 . 5 rad ) )
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Fig. 2. A dimensionally-reduced fiber intersects a solid matrix element: (a) three-dimensional view, (b) top view. The fiber can be placed within the solid element region 

and can be discretized independently from it. Discretized fiber elements are shown in blue, separated by nodes. The figure shows also a fiber element, in red, between nodes 

a and b . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. An L × L × L ( L = 1 mm) periodic simulation box with a fiber of length l f in 

the middle aligned along the x axis. In the fiber orientation study ( Section 4.1 ), the 

fiber can rotate around the z axis by an angle θ z in the xy plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g  

t  

d  

s  

b  

i  

i  

t  

e  

a

4

 

s  

i  

a  

t  

s  

m  

f  

F  

u  

b  

f  

p  

c  

c  

i

 

w  

t  

o  

t  

e  

t  

n  

d  

t

 

t  

Y  

r  

(  

s  

a  

c  
does not slide uniformly with respect to the surrounding mate-

rial. The gray shaded region represents all the fiber slip profiles

sampled over the lateral surface in directions parallel to the fiber

axis. These displacement slip profiles cannot be predicted by the

reduced model where, instead, a single slip profile is predicted

(dashed lines), which is however in good agreement with the av-

erage slip profile of the solid fiber model. 

As shown in Figs. 5 c and d, the width of the shaded region

decreases by reducing the fiber diameter indicating that the dif-

ference between the upper and lower interface displacement gap

vectors becomes smaller. This means that the results obtained

with the solid fiber model converge to those of the dimensionally-

reduced fiber model as the fiber diameter decreases. To generalize

the relation between fiber diameter and interfacial displacement

gaps for inclined fibers, the normalized area A e of the shaded re-

gion, referred to as normalized gap area, is plotted against the nor-

malized fiber diameter in Fig. 6 . Results are shown in Fig. 6 a for

different values of the fiber Young’s modulus E f and fiber length l f .

Irrespective of fiber length and material properties, the normalized

gap area decreases with decreasing fiber diameter, and its value is

obviously a function of fiber orientation, decreasing with decreas-

ing fiber orientation angle as illustrated in Fig. 6 b. 

4. Fiber neutrality 

According to previous studies on planar reinforcements,

perfectly bonded rigid inclusions become mechanically neu-

tral under specific circumstances—mechanically neutral inclusions

do not influence the mechanical response of the composite.

Wang et al. (1985) have derived the analytical solution for a zero-

thickness RLI subjected to an inclined loading at infinity; for a
iven in-plane problem (plane stress/plane strain), the angle be-

ween the loading direction and the RLI at which the inclusion

oes not influence the stress field depends only on the Pois-

on’s ratio of the matrix material. A similar property has not yet

een reported in fiber-reinforced composites despite various stud-

es on the role of fiber orientation in their homogenized mechan-

cal properties ( Tian et al., 2016; 2014; Kang and Gao, 2002 ). Mo-

ivated by these observations, we perform a study on orientation

ffects and stress neutrality properties for linear elastic thin (high

spect ratio) fibers with imperfect matrix-fiber interface. 

.1. Neutrality in the dimensionally-reduced model 

Neutral orientations are determined for effective Young’s and

hear moduli and Poisson’s ratios. For the sake of illustration, spec-

mens with fiber volume fraction υf = 1 . 0% (1300 aligned fibers)

re considered. Length and diameter of the fibers, discretized with

he dimensionally-reduced model, are set to 0.2 L and 0.007 L , re-

pectively. The results have been obtained with the numerical ho-

ogenization procedure described in Appendix A . Numerical ef-

ective properties of the homogenized composite are reported in

ig. 7 a for fiber orientations θ z ranging from 0 ° to 90 °. In the sim-

lations, the ratio E f / E m 

is set to 100 and an imperfect interface

etween fiber and matrix is assumed. Although we present results

or this specific set of material properties, their validity for other

arameter sets, also including the case of a rigid interface, was

onfirmed with simulations whose results are not reported here. A

omparison with analytical micromechanical estimates is provided

n Section 5 . 

As expected, the highest effective Young’s modulus is obtained

hen fibers are aligned with the loading direction. Contrary to

he general understanding that fibers always increase the stiffness

f a fiber-reinforced composite, corroborated also by results ob-

ained with two-step mean-field homogenization procedures (see,

.g., Pierard et al. (2004 , Fig. 3) and Tian et al. (2016 , [Figs. 7–10]),

he minimum composite stiffness corresponds to a state of fiber

eutrality. It is additionally implied from Fig. 7 a that fibers perpen-

icular to the loading direction ( θz = 90 ◦) can, in general, increase

he effective Young’s modulus of the composite. 

Fiber orientations corresponding to a neutral situation (i.e., neu-

ral orientations θn at which fibers have no influence on the

oung’s modulus of the composite) are function of the Poisson’s

atio νm 

of the matrix material only and are reported in Fig. 7 b

blue-filled circles). In the same figure we report values for plane

tates corresponding to the cases of unperturbed stress fields

round a zero-thickness perfectly-bonded rigid planar inclusion ac-

ording to the analytical solution by Wang et al. (1985) . It is inter-
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sting to notice that dimensionally-reduced fibers are mechanically

eutral at the neutral orientations valid for RLIs in a plane stress

tate. 

As shown in Fig. 8 , neutrality is observed in terms of the

ffective shear modulus G 

c 
xy of the composite as well. In this

ase, neutral orientations are 0 ° and 90 °. A similar stress neu-

rality has been reported in RLIs under uniform shear loading by

oselli et al. (2010) using photoelasticity in a two-dimensional ex-

erimental study. Finally, various cases of neutrality in terms of the

ffective anisotropic Poisson’s ratios can be identified in Fig. 9 . 

These results confirm that linear elastic thin fibers share the

eutrality feature of zero-thickness RLIs (i.e., the neutrality angle

epends only on the matrix Poisson’s ratio). As already mentioned,

eutrality holds irrespective of fiber-matrix interface parameter.

his is at variance with previously known cases of neutrality of

rbitrary shaped inhomogeneities ( Ru, 1998; Benveniste and Miloh,

999 ) in which neutrality is achieved by designing non-ideal or im-

erfect interfaces between inclusion and matrix. 

.1.1. Fiber compression under tensile loading 

At neutral orientations θn shown in Fig. 7 b, a fiber does not ex-

erience deformation. This implies a sign shift in the fiber strain

nd slip. Fig. 10 shows the slip and strain profiles in the fiber of

he one-fiber composite depicted in Fig. 3 under tensile loading

long the x -axis at various orientations (neutral angle θn ≈ 55 °).
esults are shown for the case of a nearly incompressible matrix

ith νm 

= 0 . 49 ; the values of all other properties are taken from

he example in the previous section. A similar set of results can be

btained for other matrix Poisson’s ratios. 

A shift in sign when θ z exceeds the neutrality angle θn can be

etected in both fiber slips and strain profiles. Tensile strains occur

n fibers with orientations below θn while for orientations exceed-

ng θn the sign reverses and compressive strains along the fiber

xis are generated. This behavior could trigger composite failure in

he form of fiber micro-buckling ( Budiansky and Fleck, 1993 ), even

ith externally applied tensile forces. 

.2. Neutrality and fiber diameter in the solid fiber model with 

erfect interface 

In the previous section we have shown, using the

imensionally-reduced fiber model, that linear elastic thin fibers

ith imperfect matrix-fiber interface are neutral under specific

ircumstances. We now investigate how the fiber diameter in-

uences this property considering a perfectly bonded solid fiber.

he case of an imperfect matrix-fiber interface is discussed in the

ext section. The results are obtained using the simulation box

n Fig. 3 with one perfectly bonded fiber (length l f = 0 . 8 L ) that is

iscretized using the solid and the dimensionally-reduced fiber

odels. 

To investigate the relation between fiber diameter and the oc-

urrence of fiber neutrality, the fiber is oriented along the neu-

ral orientation that was determined for the dimensionally-reduced

ber model ( θz = θn ≈ 57 ◦ from Fig. 7 b, for a matrix with Poisson’s

atio νm 

= 0 . 4 ). The normalized effective Young’s modulus E c x is re-

orted in Fig. 11 at different fiber diameters and stiffnesses. For the

ake of comparison with the longitudinal Young’s modulus, which

ives the maximum achievable effective stiffness, solid fiber model

esults for the case with θz = 0 ◦ are also included in the plots. 

As shown in Fig. 11 , the dimensionally-reduced model predicts

eutrality at all fiber diameters when θ z ≈ 57 ° (black curves in

ig. 11 ). Since the fiber is described as a line object, this is at-

ributed to the fact that the diameter is not geometrically incor-

orated in an explicit manner but is considered as a parameter in

he fiber and interface contributions to the stiffness matrix. How-

ver, when the exact geometry of the fiber is taken into account
sing the solid fiber model (blue curves in Fig. 11 ), neutrality holds

nly for relatively small fiber diameters ( d f / L < 0.01). For d f / L > 0.01

he increase of the effective Young’s modulus is modest and is not

ignificantly influenced by the fiber stiffness unlike the effective

ongitudinal Young’s modulus (red curves). 

Analogous observations hold for the effective shear modu-

us G 

c 
xy . Fig. 12 shows a comparison of the two fiber models at

z = 0 ◦ (according to Fig. 8 , neutrality in terms of G 

c 
xy occurs at

z = 0 ◦). Results are now accompanied by the solid fiber model

redictions for a fiber orientation ( θz = 45 ◦) that yields the max-

mum effective shear stiffness. 

These observations are somehow in agreement with previ-

us numerical studies of fiber orientation in short fiber-reinforced

etal matrix composites ( Kang and Gao, 2002; Tian et al., 2016 ).

n these studies a modest increase of the effective Young’s and

hear moduli was found for fibers inclined at θz = 60 ◦ and θz =
 

◦ in short carbon fiber composites (fiber with aspect ratio 15,

 f ≈ 0.03 L ). In contrast, in the results shown in Figs. 11 and 12 , neu-

rality of fibers is expected at smaller diameters, and the effective

tiffness of the composite will not change compared to the matrix

tiffness computed at the orientations shown in Fig. 7 b. 

.3. Neutrality and imperfect interface 

Neutrality was already discussed in Section 4.1 under imper-

ect interface conditions with the analysis restricted to the single-

nterface assumption of the dimensionally-reduced fiber model. In

his section, we discuss how neutrality can change considering the

ctual interface in a three-dimensional composite with a solid fiber

nd a two-dimensional planar composite with a thin inclusion. 

.3.1. Solid fibers in a three-dimensional composite 

An imperfect interface leads to partial load transfer, with dis-

lacement jumps occurring between fiber and matrix. According

o the non-uniqueness of the slip profile for an inclined fiber as

iscussed in Section 3.2 , displacement differences between fiber

dges (e.g., the top and bottom edges shown in Fig. 5 c and d) can

ccur. For relatively small fiber diameters, however, displacement

ifferences between edges become small and the slip profiles can

e approximated by a unique curve. Here we further assess this

pproximation and the significance of the different slip profiles by

mphasizing their effect on the development of stress neutrality. 

Similar to Section 4.2 , a composite with one fiber oriented at

he neutral orientation ( θz = θn ≈ 57 ◦ from Fig. 7 b, νm 

= 0 . 4 ) is

iscretized using the solid fiber model. Values of Young’s mod-

lus E c x are plotted as a function of fiber diameter in Fig. 13 for

oth perfect and imperfect interfaces. For the sake of comparison,

he Young’s moduli obtained with the solid fiber model with

z = 0 ◦ (black lines) are also included in the plot for both interface

onditions. Compared to the perfect interface case (solid lines), an

mperfect interface (dashed lines) leads in general to lower values

f the effective longitudinal Young’s modulus E c x . More specifically,

hen the angle θ z ≈ 57 °, the reduction is only pronounced at rel-

tively large fiber diameters; at small fiber diameters ( d f / L < 0.01)

he longitudinal Young’s modulus of the composite converges to

he value of the Young’s modulus of the matrix and, with a perfect

r imperfect interface, a neutral state is predicted. When θz = 0 ◦

 reduced stiffness is detectable even at small fiber diameters (see

nset in Fig. 13 ). 

To summarize, irrespective of the interface type, a fiber with

 small diameter compared to the characteristic dimension of the

omain is not strained when inclined at θz = θn ≈ 57 ◦ (neutral ori-

ntation for νm 

= 0 . 4 ) and has therefore a null effect on the stiff-

ess of the composite. 



20 M. Goudarzi, A. Simone / International Journal of Solids and Structures 156–157 (2019) 14–28 

Fig. 4. Normalized effective com posite Young’s modulus as a function of fiber diameter for a fiber with aspect ratio between 4 and 266. Predictions of both models agree 

for small fiber diameters relative to the domain size. 

Fig. 5. Normalized fiber slip s for a single embedded fiber with imperfect interface with E f / E m = 10 and l f = 0 . 8 L . (a,b) A unique slip profile can be identified for a fiber 

aligned with the loading direction. (c,d) The slip profile is not unique for an inclined fiber. The dimensionally-reduced model produces a unique slip profile that agrees with 

the average slip of the solid fiber model (dashed line). Refer to Fig. 1 a for the nomenclature used for the solid fiber model. 
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4.3.2. Dimensionally-reduced inclusion in a two-dimensional 

composite 

The two-dimensional conformal model in Fig. 14 , obtained as

a limit case of the previously discussed solid fiber model, can ade-

quately model certain types of two-dimensional composites ( Sheng

et al., 2004; Hall et al., 2008 ). The model is employed to investigate

the occurrence of neutral states (reported in Wang et al. (1985) for

perfectly-bonded two-dimensional planar inclusions) under imper-

fect interface conditions. In this computational setting, two in-
erface surfaces can be identified when the inclusion is not per-

ectly bonded to the matrix: one at each side of the inclusion

nd physically disconnected from each other. Depending on the

ut of plane shape of the inclusion, different assum ptions can be

ade regarding the continuity of the displacement field across it.

or a situation with platelet inclusions, as in clay nanocompos-

tes ( Sheng et al., 2004 ), displacement jumps across the platelet

dequately represent the expected kinematics even for platelets

f small thickness. As soon as the inclusion out-of-plane dimen-
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Fig. 6. Effect of fiber diameter on the normalized gap area for a fiber with aspect ratio between 2 and 160. (a) Normalized gap area for fibers with different properties and 

θ z ≈ 28.6 ° ( = 0 . 5 rad). (b) Normalized gap area for different fiber rotations θ z . 

Fig. 7. (a) Normalized effective Young’s modulus E c x calculated at various fiber orientations θ z and matrix Poisson’s ratios νm . (b) The neutral orientation θn is the orientation 

corresponding to fibers experiencing no deformation under the applied load. Results obtained with E f /E m = 100 , K bt = 500 N / mm 

3 
, and υf = 1% (1300 aligned fibers with 

d f = 0 . 007 L and l f = 0 . 2 L ). Plane stress and plane strain results are from Wang et al. (1985) . (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 8. Normalized effective shear modulus G xy calculated at various fiber ori- 

entations θ z and matrix Poisson’s ratios νm . Results obtained with E f /E m = 100 , 

K bt = 500 N / mm 

3 
, and υf = 1% (1300 aligned fibers with d f = 0 . 007 L and l f = 0 . 2 L ). 
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n bt 
ion decreases and the inclusion represents a fiber, as in fiber

etworks in ordinary paper sheets or buckypaper ( Hall et al.,

008 ), the double-interface model is not representative anymore,

nd a traditional single-interface model of the type described in

ection 2.2.3 is to be preferred. 

In the double-interface model shown in Fig. 14 , conceptually

imilar to the model by Pike et al. (2015) , zero-thickness interface

lements are placed at each side of the inclusion to allow the oc-

urrence of relative displacements between inclusion and matrix

n both sides of the inclusion. In this situation, upper and lower

nterfaces move relative to each other. To describe this kinematics,

he interface shape function matrix (7) is rewritten as 

 

t / b 
int 

= 

[
N 

i 
1 0 N 

i 
2 0 −N 

t / b 
1 

0 −N 

t / b 
2 

0 

0 N 

i 
1 0 N 

i 
2 0 −N 

t / b 
1 

0 −N 

t / b 
2 

]
, 

(18) 
here N 

i 
1 

and N 

i 
2 

are one-dimensional Lagrange shape functions

valuated at the inclusion end points 1 and 2, respectively. Sim-

larly, N 

t / b 
1 

and N 

t / b 
2 

are the matrix nodal shape functions evalu-

ted at points 1 and 2, and superscripts t and b denote top and

ottom interfaces, respectively. The simpler single-interface model,

hich does not account for a discontinuous matrix displacement

eld, can be recovered by constraining the top and bottom nodes

o experience the same displacement ( u 

t = u 

b ). 

Figs. 15 a–c show the effective mechanical properties of the

 mm × 1 mm periodic plate with a centered 0.5 mm long in-

lined inclusion as a function of the inclusion orientation θ z . Me-

hanical properties are extracted using the procedure described

n Appendix A . In the analyses we used two values of the interfa-

ial tangential stiffness K bt (500 N/mm 

2 and 1000 N/mm 

2 ), and we

ssumed a unit thickness for the plate in the out-of-plane dimen-

ion. The relatively low values shown in Fig. 15 are a consequence

f the choice of the parameters and the modest mechanical effect

f a single fiber. 

Fig. 15 a shows that in the double-interface model the angle θ z 

hat corresponds to the minimum effective Young’s modulus of the

omposite (marked in the figure) is a function of the interfacial

angential stiffness K bt : the value of the angle increases with in-

reasing values of K bt and tends to ≈ 50.7 °. For the single-interface

odel, the value of K bt has no effect on the angle at which E c x is

t a minimum: this angle is equal to ≈ 50.7 ° and corresponds to

he neutral orientation previously discussed (in this specific case,

n ≈ 50.7 ° for νm 

= 0 . 4 under plane strain as shown in Fig. 7 b).

his means that in the range of validity of the dimensionally-

educed model, E c x will assume its minimum value, corresponding

o a situation of fiber neutrality, at the same inclusion angle shown

n Fig. 7 b, irrespective of the value of the interfacial tangential stiff-

ess K . 
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Fig. 9. Normalized effective Poisson’s ratio calculated at various fiber orientations θ z and matrix Poisson’s ratios νm . Results obtained with E f /E m = 100 , K bt = 500 N / mm 

3 
, 

and υf = 3% (1300 aligned fibers with d f = 0 . 007 L and l f = 0 . 2 L ). 

Fig. 10. A one-fiber composite with a nearly incompressible matrix material ( νm = 0 . 49 ) under the action of a horizontal external load. Fiber slip s (a) and fiber axial 

strains εf (b) are strongly influenced by the fiber orientation θ z . Results obtained with E f /E m = 100 , K bt = 500 N / mm 

3 
, d f = 0 . 007 L and l f = 0 . 8 L . 

Fig. 11. Normalized effective Young’s modulus of the one-fiber composite (with l f = 0 . 8 L ) as a function of fiber diameter for solid and dimensionally-reduced models at 

neutral orientation ( Fig. 7 b: θ z ≈ 57 ° for νm = 0 . 4 ) of the dimensionally-reduced model for a fiber with aspect ratio between 8 and 266. The longitudinal Young’s modulus 

of a composite with a horizontal fiber ( θz = 0 ◦) obtained with the solid fiber model (previously reported in Fig. 4 , second row) is also included. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 12. Normalized effective shear modulus of the one-fiber composite (with l f = 0 . 8 L ) as a function of fiber diameter for solid and dimensionally-reduced models at 

neutral orientation ( θz = 0 ◦ from Fig. 8 , irrespective of νm ) of the dimensionally-reduced model for a fiber with aspect ratio between 8 and 266. The maximum shear 

modulus obtained with the solid fiber model for a fiber inclined at θz = 45 ◦ is also included. 

Fig. 13. Normalized Effective Young’s modulus of a composite with one fiber ori- 

ented at the neutral orientation obtained with the dimensionally-reduced fiber 

model ( θ z ≈ 57 ° from Fig. 7 b, νm = 0 . 4 ) and discretized using the solid fiber model 

under perfect and imperfect interface conditions for a fiber with aspect ratio be- 

tween 8 and 266. The longitudinal Young’s moduli obtained with the solid fiber 

model (previously reported in Fig. 4 , second row and second column) are also in- 

cluded. Both perfect and imperfect interface conditions are under a neutral state 

at small fiber diameters with θz = θn ≈ 57 ◦ . Results obtained with E f /E m = 100 , 

K bt = 500 N / mm 

3 and l f = 0 . 8 L . 

Fig. 14. Single conforming inclusion with elastic imperfect interface. Interface ele- 

ments are placed at each side of the inclusion. For illustrative purposes, both nor- 

mal and tangential displacement jumps are depicted. 
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In the single-interface model the angle corresponding to the

inimum value of E c x indicates a situation of inclusion neutrality.

n the double-interface model however we observe that i) the com-

osite Young’s modulus can be lower than that of the matrix for a

ide range of inclusion angles (stiffness degradation), and ii) the

mplitude of the range decreases with increasing K bt values. Simi-

ar considerations can be drawn for the shear modulus in Fig. 15 b

lthough neutrality is only observed for the single-interface model

t θ equal to 0 ° or 90 °. 
Under shear loading, relative movements between edges of the

nclusion occur and, as shown in Fig. 15 b, a similar reduction in

he value of the effective shear modulus to a value lower than the

atrix shear modulus is obtained with the double-interface model.

dditionally, maximum shear modulus is achieved for θz = 45 ◦,
here predictions of single- and double-interface models are the

ame. 

As for the Poisson’s ratio in Fig. 15 c, the double-interface model

ields an increase of the composite effective Poisson’s ratios νxy 

or all orientations compared to the single-interface model. For θ
qual to 0 ° (90 °), interfacial jumps ( Fig. 15 d) are absent and the

ffective Young’s modulus and Poisson’s ratio values are equal in

oth models. 

Degradation is attributed to the crack-like features of the in-

erface and is not expected when a single-interface model is used

r under a perfect interface condition. In these situations, inclu-

ion neutrality is expected at the previously defined neutral ori-

ntations. Moreover, the minimum angles for the double-interface

odel, indicated by red marks in Fig. 15 a, and the degradation

ange are not only a function of the interface stiffness values, but

re also affected by geometrical properties (e.g., fiber length, num-

er of fibers, and their spatial arrangements). 

. Micromechanical analysis 

Mesh-independent fiber models are a necessary tool for the

odeling and simulation of composites with many fibers ( Fig. 16 ).

o this end, a detailed analysis, taking into account the fiber vol-

me fraction as a variable, is presented in this concluding section.

stimates obtained from commonly used micro-mechanical models

ummarized in Appendix B are contrasted to results obtained with

he dimensionally-reduced model. The occurrence of fiber neutral-

ty is also investigated. 

We consider equally-shaped fibers with length l f = 0 . 2 L and di-

meter d f = 0 . 007 L that are n times stiffer than the matrix ma-

erial ( n = 10 , 10 0 , 50 0 ). To compare the numerical results with

hose obtained with analytical micromechanical models, fibers and

atrix are perfectly bonded. The simulation box is discretized us-

ng a uniform grid of 31 × 31 × 31 trilinear hexahedral elements,

nd each fiber is subdivided into 20 equally-spaced segments. The

esh-convergence study in Fig. 17 confirms that the employed

iscretization is sufficiently accurate. As mentioned in the intro-

uction, discontinuities in the stress field across a fiber are ne-

lected in dimensionally-reduced models to favor numerical effi-

iency. The error introduced with this approximation is not negligi-

le for high stiffness contrast values n and large fiber volume frac-

ions υf . In such cases a slower convergence is observed ( Fig. 17 c).

istributions of homogeneously dispersed periodic fibers are ob-

ained with a random sequential adsorption algorithm described

n Appendix C . In the simulations, fiber volume fractions up to 15%

approximately 220 0 0 fibers) are considered. Two sample distribu-

ions with approximately 4700 aligned and randomly distributed

iscrete fibers are shown in Fig. 16 yielding composites with trans-

ersely isotropic and nearly isotropic mechanical responses. 
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Fig. 15. Effective (a) Young’s modulus, (b) shear modulus and (c) Poisson’s ratios of a two-dimensional composite with imperfect interface ( K bt1 = 10 0 0 N / mm 

2 
, K bt2 = 

500 N / mm 

2 
, E f /E m = 10 and νm = 0 . 4 in plane strain). The single-interface model shows neutrality for θ = θn ( θn ≈ 50.7 ° from Fig. 7 b), while the double-interface model 

predicts degraded effective mechanical properties compared with intact matrix properties. (d) Fiber interfacial slips for θ = θn using the double-interface model. (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 16. Two realizations of a composite with approximately 4700 fiber (length l f = 0 . 2 L and diameter d f = 0 . 007 L ) in an L × L × L ( L = 1 mm) periodic simulation box resulting 

in a fiber volume fraction υf = 3% : (a) aligned and (b) randomly distributed fibers. 

Fig. 17. Effective Young’s modulus along the x -axis for a transversely isotropic composite with aligned fibers for different mesh densities ( nn indicates the number of mesh 

nodes) and fiber volume fractions υf . In the calculations reported in Section 5 ( d f = 0 . 007 L and l f = 0 . 2 L ), the finest discretization with 31 × 31 × 31 trilinear hexahedral 

elements and 32768 nodes has been used. 
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Fig. 18. Effective Young’s modulus along the x -axis for a transversely isotropic composite with aligned fibers (a-c) and a nearly isotropic composite with randomly distributed 

fibers (d-f) at different fiber volume fractions υf ( d f = 0 . 007 L and l f = 0 . 2 L ). 

Fig. 19. Effective transverse Young’s moduli ( E c y = E c z ) for a transversely isotropic composite with aligned fibers at different volume fractions υf ( d f = 0 . 007 L and l f = 0 . 2 L ). 
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oung’s moduli. Fig. 18 shows the homogenized Young’s modulus

 

c 
x as a function of the fiber volume fraction υf for different mate-

ial properties and distributions of fibers; in the figure, numerical

esults are compared with rule-of-mixtures (RoM) and Halpin–Tsai

stimates. As shown in Figs. 18 a–c for a transversely isotropic com-

osite, due to the slenderness of the fibers (aspect ratio l f / d f ≈ 30),

umerical results are generally in better agreement with RoM pre-

ictions especially for fibers with relatively low Young’s modulus.

he longitudinal Young’s modulus increases with the fiber volume

raction υf and is hardly influenced by the matrix Poisson’s ra-

io νm 

. Although a similar pattern is observed in Figs. 18 d–f for

andomly distributed fibers, the resulting Young’s moduli are sig-

ificantly lower due to fiber orientation with respect to the load-

ng direction and are in good agreement with the simple modified

oigt estimate provided by Pan (1996) . 

In a transversely isotropic composite similar to that in Fig. 16 a,

oung’s moduli E c y and E c z ( = E c y ) are also enhanced for a ma-

rix material with non-zero Poisson’s ratio. However, as shown in

ig. 19 , the value of the transverse Young’s modulus does not gen-

rally agree with RoM estimates and this is attributed to the un-

ealistic uniform stress assumption and the absence of Poisson’s

ν

ontraction effects ( Hull and Clyne, 1996 ). For a nearly incompress-

ble matrix, RoM predictions clearly underestimate the transverse

oung’s moduli of the transversely isotropic composite. 

oisson’s ratios. Fig. 20 shows the effective Poisson’s ratios of the

ransversely isotropic composite for various fiber volume fractions.

imilar to the transverse Young’s moduli, Poisson’s ratio νc 
zy (= νc 

yz )

hows an increasing trend and a considerable dependence on the

atrix Poisson’s ratio. This dependence however is not predicted

y RoM estimates, which clearly overestimates the numerical re-

ults. Conversely, νc 
yx (= νc 

zx ) decreases, in good agreement with

oM, and the results are not influenced by the matrix Poisson’s ra-

io. Finally, as shown in Fig. 20 c (and already reported in Fig. 9 c for

 fixed volume fraction with θz = 0 ◦), νc 
xy ( = νc 

xz ) remains equal to

he matrix Poisson’s ratio irrespective of fiber density, a property

hich is not predicted by RoM estimates ( Eq. (B.5) ). 

Figs. 21 and 22 show results for the homogenized effective Pois-

on’s ratio of the nearly isotropic composite as a function of νm 

nd υf . Values of the effective Poisson’s ratio 

c 
iso = 

λc 

2(μc + λc ) 
, (19) 
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Fig. 20. Effective Poisson’s ratios of a transversely isotropic composite with aligned fibers for different volume fractions ( E f /E m = 100 , d f = 0 . 007 L and l f = 0 . 2 L ). 

Fig. 21. Effective Poisson’s ratios νc 
iso 

of a nearly isotropic composite with randomly 

distributed fibers for different volume fractions υf (matrix Poisson’s ratios νm , 

E f /E m = 100 , d f = 0 . 007 L and l f = 0 . 2 L ). 
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where λc and μc are the effective Lamé parameters averaged in

the three directions, are computed assuming an isotropic behav-

ior of the composite ( Nemat-Nasser and Hori, 1998 ). From Fig. 21 ,

it is interesting to notice that for a matrix with Poisson’s ratio

νm 

≈ 0.25, the effective Poisson’s ratio νc 
iso 

of the homogenized

composite is insensitive to the fiber volume fraction (the inclu-

sions are neutral in terms of Poisson’s ratio). For νm 

< 0.25, an
Fig. 22. Effective Poisson’s ratio of a nearly isotropic composite with randomly distribute

d f = 0 . 007 L and l f = 0 . 2 L . 
ncreased incompressibility of the composite is observed; for a

atrix with νm 

> 0.25, an increased compressibility, although less

ronounced than the increase in incompressibility, is observed. In

oth cases, values of the effective Poisson’s ratio tends toward the

alue 0.25 by increasing the fiber volume fraction υf . As shown

n Fig. 22 for different fiber stiffnesses, a similar observation can

e made in terms of the mean anisotropic Poisson’s ratios νc 
a (av-

raged over anisotropic Poisson’s ratios νxy , νxz , νyx , νzx , νzy and

yz , from Eq. (A.2) ). Due to the random distribution of the fibers,

nisotropic Poisson’s ratios only slightly deviate from the mean

alue. These observations are in agreement with previous findings

y Das and MacKintosh (2010) who used a mean-field approach

or the theoretical investigation of the micromechanics of isotropic

omposites consisting of randomly distributed stiff fibers. By taking

nto account the reinforcing effect of individual fibers, the current

umerical homogenization procedure validates averaging theories

nd neutrality in terms of Poisson’s ratio for a composite with ran-

omly distributed linear elastic fibers embedded in a matrix with

oisson’s ratio νm 

= 0 . 25 or a nearly incompressible matrix with

m 

≈ 0.5. 

Unlike mean-field homogenization, embedded reinforcement

ethods are not limited to composites with perfect matrix-fiber
d fibers at two volume fractions υf and different matrix Poisson’s ratios νm , with 
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nterfaces. Various distribution of fibers with arbitrary shapes and

nterface properties can be considered for the evaluation of the

omposite homogenized mechanical properties. 

. Concluding remarks 

It is well known that fiber orientation plays an important role

n the mechanical response of composites. The common under-

tanding is that fibers improve the mechanical properties of the

atrix in which they are embedded, and that certain fiber orien-

ations are better than others in some measure. This is not correct.

he most unfavorable fiber orientation represents a state of fiber

eutrality, a situation in which a fiber does not perturb the stress

eld and therefore has no influence on the mechanical properties

f the composite. Fiber neutrality can be seen as the generalization

f the concept of inclusion neutrality that was introduced for zero-

hickness rigid inclusions by Wang et al. (1985) . Here, we have

emonstrated that inclusion neutrality holds also for thin linear

lastic fibers with imperfect matrix-fiber interfaces, with an im-

ediate generalization to the perfect interface case. 

Similar to rigid line inclusions, slenderness is a fundamental

ngredient for the occurrence of neutrality. Neutral fibers are in

act not reported in existing studies where composites with rel-

tively large fiber diameters were studied. In these cases the ef-

ective stiffness of the composite increases even though fibers are

riented at the most unfavorable angle—this angle would result in

ber neutrality if the fiber were thin. 
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ppendix A. Computation of effective properties 

To extract the effective elastic coefficients of the fiber-reinforced

omposite, we employ the computational homogenization scheme

escribed by Berger et al. (2005) . As suggested by Xia et al. (2003) ,

omogeneous boundary conditions lead to over-constrained pre-

ictions of the effective properties. Instead, the periodic boundary

onditions 

 

k 
i − u 

l 
i = ε̄ i j L j , (A.1)

rescribed at the boundary of the simulation box with ε̄ i j (i, j =
, y, z) the components of the applied strain tensor, yield more ac-

urate estimations. Edge indexes k and l correspond to two op-

osite edges of the simulation box where periodic strains are im-

osed, and L j is the size of the domain in the j th direction. In all

he numerical results presented in this paper, a unit cube simula-

ion box is adopted ( Fig. 3 ). 

Although 21 independent constants are defined for the general

nisotropic case ( Nemat-Nasser and Hori, 1998 ), here only the spe-

ific engineering constants in each direction are of interest. Three

oung’s moduli ( E c x , E c y , E c z ) relating tensile stresses and strains,

hree shear moduli ( G 

c 
xy , G 

c 
yz , G 

c 
xz ) relating shearing stresses and

trains, and six Poisson’s ratios νc 
i j 

( νc 
xy , νc 

xz , νc 
yx , νc 

yz , νc 
zx , νc 

zy )

epresenting contraction in the j -direction after the application of

 tensile load in the i -direction can be extracted. These quantities

ay be expressed in terms of the coefficients of the compliance

onstants matrix as 

E c x = 

1 

C 11 

, E c y = 

1 

C 22 

, E c z = 

1 

C 33 

, 

 

c 
xy = 

1 

C 44 

, G 

c 
yz = 

1 

C 55 

, G 

c 
xz = 

1 

C 66 

, 
νc 
xy = −C 21 

C 11 

, νc 
xz = −C 31 

C 11 

, 

νc 
yx = −C 12 

C 22 

, νc 
yz = −C 32 

C 22 

, 

νc 
zx = −C 13 

C 33 

, νc 
zy = −C 23 

C 33 

. (A.2) 

he compliance constants matrix C is evaluated by inverting the

lastic coefficient matrix D as described in Malagù et al. (2017) . 

ppendix B. Analytical micromechanical models 

For the special case of a transversely isotropic composite with

ligned fibers of the type shown in Fig. 16 a, simple analytical mi-

romechanical models are available. 

The well known rule of mixtures is widely used to predict the

echanical properties of elastic composites. The composite stiff-

ess is approximated as a weighted mean of the moduli of two

omponents ( Hull and Clyne, 1996 ). The rule of mixtures does not

onsider geometrical details such as the fiber aspect ratio. With

eference to the case of a composite with fibers that are aligned

ith the global x -axis, the effective longitudinal Young’s modulus

 

c 
x = (1 − υf ) E m 

+ υf E f (B.1)

s expressed as a function of the fiber volume fraction υf , where

t is assumed that strains in the direction of the fibers are equal

n the matrix and the fiber (this assumption is valid for perfectly

onded fibers with high aspect ratio). Eq. (B.1) is referred to as

he upper bound modulus (Voigt model). 

Using the inverse rule of mixtures and assuming that stresses

n the direction normal to the fibers are equal in the matrix and

he fiber, the transverse Young’s moduli 

 

c 
y = E c z = 

[ υ f 

E f 
+ 

1 − υf 

E m 

] −1 

. (B.2)

his expression is known as the lower-bound modulus (Reuss

odel). 

According to the semi-empirical estimate of the Young’s modu-

us proposed by Halpin (1969) , 

 

c 
x = E m 

1 + ξηυf 

1 − ηυf 

(B.3) 

ith 

= 

E f /E m 

− 1 

E f /E m 

+ ξ
and ξ = 2 l f /d f . (B.4)

his expression is suitable for short fibers and takes into account

he non-uniform distribution of strains and stresses in the compos-

te. Predictions of Eq. (B.3) lie within the range of the lower and

pper bound moduli. 

Similar formulas can be derived for the Poisson’s ra-

ios ( Hull and Clyne, 1996 ): 

c 
xy = (1 − υf ) νm 

+ υf νf , 

c 
yx = [ (1 − υf ) νm 

+ υf νf ] 
E y 

E x 
, and 

νc 
yz = 1 − νyx − E y 

3 K 

with K = 

[ υ f 

K f 

+ 

1 − υf 

K m 

] −1 

, (B.5) 

here K m 

and K f are the bulk moduli of the constituents. 

For a composite with randomly distributed fibers with isotropic

ehavior, the simple rule of mixtures estimate yields 

 

c 
x,y,z = 

(
1 − υf 

2 π

)
E m 

+ 

υf 

2 π
E f , (B.6)

here a probability density function is used to specify the random

ber orientation as proposed by Pan (1996) . 

https://doi.org/10.13039/100011199
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Appendix C. Generation of periodic simulation box 

For the generation of periodic fiber distributions in the simula-

tion box, the random sequential adsorption algorithm ( Kari et al.,

2007 ) was implemented. Starting with a box of certain dimen-

sions and knowing the volume fraction, length and diameter of

the fibers, for each fiber the coordinates of one end point is deter-

mined using the Matlab ® rand function. Orientation of the fiber is

fixed for aligned fibers, while for the randomly distributed fibers,

the orientation is determined using the rand function. Having the

fiber orientation and coordinates of one fiber end point, the coor-

dinates of the second point are determined. If the new point lies

outside the simulation box, the out of box segment of the fiber is

cut and moved to the opposite boundary to preserve periodicity.

This process is repeated for all fibers consecutively until the de-

sired volume fraction is achieved. 

References 

Andrews, R. , Jacques, D. , Minot, M. , Rantell, T. , 2002. Fabrication of carbon multiwall
nanotube/polymer composites by shear mixing. Macromol. Mater. Eng. 287 (6),

395–403 . 

Balakrishnan, S. , Murray, D.W. , 1986. Finite element prediction of reinforced con-
crete behavior. Structural Engineering Report No. 138. Department of Civil En-

gineering, University of Alberta, Edmonton, Alberta, Canada . 
Barbieri, E. , Pugno, N.M. , 2015. A computational model for large deformations of

composites with a 2D soft matrix and 1D anticracks. Int. J. Solids Struct. 77,
1–14 . 

Barzegar, F. , Maddipudi, S. , 1997. Three-dimensional modeling of concrete structures.

II: reinforced concrete. J. Struct. Eng. 123 (10), 1347–1356 . 
Benveniste, Y. , Miloh, T. , 1999. Neutral inhomogeneities in conduction phenomena.

J. Mech. Phys. Solids 47 (9), 1873–1892 . 
Berger, H. , Kari, S. , Gabbert, U. , Rodriguez-Ramos, R. , Guinovart, R. , Otero, J.A. , Bravo–

Castillero, J. , 2005. An analytical and numerical approach for calculating effec-
tive material coefficients of piezoelectric fiber composites. Int. J. Solids Struct.

42 (21), 5692–5714 . 

Budiansky, B. , Fleck, N.A. , 1993. Compressive failure of fibre composites. J. Mech.
Phys. Solids 41 (1), 183–211 . 

Dal Corso, F. , Shahzad, S. , Bigoni, D. , 2016. Isotoxal star-shaped polygonal voids and
rigid inclusions in nonuniform antiplane shear fields. Part II: Singularities, an-

nihilation and invisibility. Int. J. Solids Struct. 85, 76–88 . 
Das, M. , MacKintosh, F.C. , 2010. Poisson’s ratio in composite elastic media with rigid

rods. Phys. Rev. Lett. 105 (13), 138102 . 

Duflot, M. , 2006. A meshless method with enriched weight functions for three-di-
mensional crack propagation. Int. J. Numer. Methods Eng. 65 (12), 1970–2006 . 

Durand, R. , Farias, M.M. , Pedroso, D.M. , 2015. Computing intersections between
non-compatible curves and finite elements. Comput. Mech. 56 (3), 463–475 . 

Elwi, A.E. , Hrudey, T.M. , 1989. Finite element model for curved embedded reinforce-
ment. J. Eng. Mech. 115 (4), 740–754 . 

Hall, L.J. , Coluci, V.R. , Galvão, D.S. , Kozlov, M.E. , Zhang, M. , Dantas, S.O. , Baugh-

man, R.H. , 2008. Sign change of Poisson’s ratio for carbon nanotube sheets. Sci-
ence 320 (5875), 504–507 . 

Halpin, J.C. , 1969. Effects of Environmental Factors on Composite Materials. Techni-
cal Report. AFML-TR 67-423 . 
artl, H. , 2002. Development of a Continuum-Mechanics-Based Tool for 3D Finite
Element Analysis of Reinforced Concrete Structures and Application to Problems

of Soil-Structure Interaction. Graz University of Technology, Austria (PhD thesis) .
ull, D. , Clyne, T.W. , 1996. An Introduction to Composite Materials. Cambridge Uni-

versity Press . 
ang, G.Z. , Gao, Q. , 2002. Tensile properties of randomly oriented short δ−Al 2 O 3 

fiber reinforced aluminum alloy composites: II. Finite element analysis for
stress transfer, elastic modulus and stress-strain curve. Compos. Part A 33 (5),

657–667 . 

ari, S. , Berger, H. , Gabbert, U. , 2007. Numerical evaluation of effective material
properties of randomly distributed short cylindrical fibre composites. Comput.

Mater. Sci. 39 (1), 198–204 . 
usti, H.R. , Gusev, A .A . , 2004. Finite element predictions for the thermoelastic prop-

erties of nanotube reinforced polymers. Modell. Simul. Mater. Sci. Eng. 12 (3),
S107 . 

alagù, M. , Goudarzi, M. , Lyulin, A. , Benvenuti, E. , Simone, A. , 2017. Diameter-de-

pendent elastic properties of carbon nanotube-polymer composites: Emergence
of size effects from atomistic-scale simulations. Compos. Part B 131, 260–281 . 

Mortazavi, B. , Baniassadi, M. , Bardon, J. , Ahzi, S. , 2013. Modeling of two-phase ran-
dom composite materials by finite element, Mori–Tanaka and strong contrast

methods. Compos. Part B 45 (1), 1117–1125 . 
emat-Nasser, S. , Hori, M. , 1998. Micromechanics: Overall Properties of Heteroge-

neous Materials. Elsevier . 

Nini ́c, J. , Stascheit, J. , Meschke, G. , 2014. Beam-solid contact formulation for finite
element analysis of pile-soil interaction with arbitrary discretization. Int. J. Nu-

mer. Anal. Methods Geomech. 38 (14), 1453–1476 . 
oselli, G. , Dal Corso, F. , Bigoni, D. , 2010. The stress intensity near a stiffener dis-

closed by photoelasticity. Int. J. Fract. 166 (1), 91–103 . 
an, N. , 1996. The elastic constants of randomly oriented fiber composites: A new

approach to prediction. Sci. Eng. Compos. Mater. 5, 63–72 . 

ierard, O. , Friebel, C. , Doghri, I. , 2004. Mean-field homogenization of multi-phase
thermo-elastic composites: A general framework and its validation. Compos. Sci.

Technol. 64 (10-11), 1587–1603 . 
Pike, M.G. , Hickman, M.A. , Oskay, C. , 2015. Interactions between multiple enrich-

ments in extended finite element analysis of short fiber reinforced composites.
Int. J. Multiscale Comput. Eng. 13 (6), 507–531 . 

ike, M.G. , Oskay, C. , 2016. Three-dimensional modeling of short fiber-reinforced

composites with extended finite-element method. J. Eng. Mech. 142 (11),
04016087 . 

adtke, F.K.F. , Simone, A. , Sluys, L.J. , 2010. A partition of unity finite element method
for obtaining elastic properties of continua with embedded thin fibres. Int. J.

Numer. Methods Eng. 84 (6), 708–732 . 
u, C.Q. , 1998. Interface design of neutral elastic inclusions. Int. J. Solids Struct. 35

(7–8), 559–572 . 

heng, N. , Boyce, M.C. , Parks, D.M. , Rutledge, G.C. , Abes, J.I. , Cohen, R.E. , 2004. Mul-
tiscale micromechanical modeling of polymer/clay nanocomposites and the ef-

fective clay particle. Polymer 45 (2), 487–506 . 
ian, W. , Qi, L. , Su, C. , Zhou, J. , Jing, Z. , 2016. Numerical simulation on elastic prop-

erties of short-fiber-reinforced metal matrix composites: Effect of fiber orienta-
tion. Compos. Struct. 152, 408–417 . 

ian, W. , Qi, L. , Zhou, J. , Guan, J. , 2014. Effects of the fiber orientation and fiber
aspect ratio on the tensile strength of C sf /Mg composites. Comput. Mater. Sci.

89, 6–11 . 

ang, Z.Y. , Zhang, H.T. , Chou, Y.T. , 1985. Characteristics of the elastic field of a rigid
line inhomogeneity. J. Appl. Mech. 52 (4), 818–822 . 

ia, Z. , Zhang, Y. , Ellyin, F. , 2003. A unified periodical boundary conditions for rep-
resentative volume elements of composites and applications. Int. J. Solids Struct.

40 (8), 1907–1921 . 

http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0001
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0001
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0001
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0001
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0001
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0002
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0002
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0002
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0003
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0003
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0003
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0004
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0004
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0004
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0005
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0005
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0005
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0006
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0006
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0006
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0006
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0006
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0006
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0006
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0006
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0007
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0007
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0007
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0008
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0008
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0008
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0008
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0009
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0009
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0009
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0010
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0010
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0011
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0011
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0011
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0011
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0012
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0012
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0012
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0013
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0013
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0013
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0013
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0013
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0013
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0013
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0013
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0014
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0014
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0015
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0015
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0016
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0016
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0016
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0017
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0017
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0017
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0018
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0018
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0018
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0018
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0019
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0019
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0019
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0020
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0020
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0020
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0020
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0020
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0020
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0021
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0021
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0021
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0021
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0021
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0022
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0022
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0022
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0023
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0023
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0023
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0023
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0024
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0024
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0024
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0024
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0025
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0025
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0026
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0026
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0026
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0026
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0027
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0027
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0027
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0027
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0028
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0028
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0028
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0029
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0029
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0029
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0029
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0030
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0030
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0031
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0031
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0031
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0031
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0031
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0031
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0031
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0032
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0032
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0032
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0032
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0032
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0032
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0033
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0033
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0033
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0033
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0033
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0034
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0034
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0034
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0034
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0035
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0035
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0035
http://refhub.elsevier.com/S0020-7683(18)30306-8/sbref0035

	Fiber neutrality in fiber-reinforced composites: Evidence from a computational study
	1 Introduction
	2 Method
	2.1 Weak form of the governing equations
	2.2 Discretized weak form
	2.2.1 Matrix
	2.2.2 Solid fiber model
	2.2.3 Dimensionally-reduced fiber model
	2.2.4 Global system of equations


	3 Validity of the dimensionally-reduced approach
	3.1 Perfect bond: Effective mechanical properties
	3.2 Imperfect bond: Matrix-fiber slip

	4 Fiber neutrality
	4.1 Neutrality in the dimensionally-reduced model
	4.1.1 Fiber compression under tensile loading

	4.2 Neutrality and fiber diameter in the solid fiber model with perfect interface
	4.3 Neutrality and imperfect interface
	4.3.1 Solid fibers in a three-dimensional composite
	4.3.2 Dimensionally-reduced inclusion in a two-dimensional composite


	5 Micromechanical analysis
	6 Concluding remarks
	 Acknowledgments
	Appendix A Computation of effective properties
	Appendix B Analytical micromechanical models
	Appendix C Generation of periodic simulation box
	 References


