

Investigative Research & Evolutionary Design on Sustainable Densification in Shanghai's Living Neighbourhood

Graduation P5 Presentation

Jian Yuan
4819772
jianyuan.kk@outlook.com
Design for Urban Fabrics
Prof.ir. Rients.J.Dijkstra (1st Mentor)
Dipl.ing. Ulf Hackauf (2nd Mentor)

2020.7.2

Prof.ir. Rients.J.Dijkstra (1st Mentor)
Dipl.ing. Ulf Hackauf (2nd Mentor)

Presentation Timeline

Presentation Timeline

Project

Context

Analysis

Design

Context

Lilong (里弄)

Lilong Buildings

Inside Lilong

Xiaoqu Towers

Inside Xiaoqu

1. Take a plot

Xiaoqu Towers

Inside Xiaoqu

Xiaoqu Towers

Inside Xiaoqu

1. Take a plot

2. Add 10 layer big building to achieve FSI(FAR) 10.0

3. Transform to slab accroding to building code 40% density

Xiaoqu Towers

Inside Xiaoqu

1. Take a plot

2. Add 10 layer big building to achieve FSI(FAR) 10.0

3. Transform to slab accroding to building code 40% density

Xiaoqu Towers

4. Transform to 4 towers to keep fire prevention space

Inside Xiaoqu

1. Take a plot

2. Add 10 layer big building to achieve FSI(FAR) 10.0

3. Transform to slab accroding to building code 40% density

Xiaoqu Towers

4. Transform to 4 towers to keep fire prevention space

5. Change indoor layout to gain maximum sunlight

Inside Xiaoqu

1. Take a plot

2. Add 10 layer big building to achieve FSI(FAR) 10.0

3. Transform to slab accroding to building code 40% density

4. Transform to 4 towers to keep fire prevention space

5. Change indoor layout to gain maximum sunlight

Adapt to optimised building density and height

Xiaoqu Towers

Inside Xiaoqu

2km

1. Typical Lilong, FSI: 1.2

Residential Com P

1. Typical Lilong, FSI: 1.2

2. Typical Xiaoqu, FSI: 6.0

Residential

Com P

1. Typical Lilong, FSI: 1.2

Residential*Com P**

2. Typical Xiaoqu, FSI: 6.0

Residential Com P

3. Commercial Apartment, FSI: 5.0 (综合体)
Residential Commercial Office P

1. Typical Lilong, FSI: 1.2
Residential Com P

2. Typical Xiaoqu, FSI: 6.0
Residential Com P

3. Commercial Apartment, FSI: 5.0 (综合体)
Residential Commercial Office P

4. Planning MixCity, FSI: 5.0
Residential Commercial Office Public

Problem

Green Shortage

Low FSI

Pedestrian-unfriendly

Bike-unfriendly

Homogenous

Single Function

Problem

Short-term Profit-driven Urbanism

Vision

How to achieve sustainable living neighborhoods rather than introducing Xiaoqu in the old Lilong area in Shanghai's densification Process?

Sustainability

For People For Profit For Planet

Sustainability

For People

Pedestrian-friendly

Diversity

For Profit

High FSI

Mix-use

For Planet

Bike-friendly

Ecology

Sustainability

For People

Pedestrian-friendly

Pedestrian-unfriendly

Diversity
Homogenous

For Profit

High FSI
Low FSI

Mix-use
Single Function

For Planet

Bike-friendly

Bike-unfriendly

Ecology Green Shortage

Evaluation

Analysis

Sustainability for People

Human Scale Street

City Major Road

Designed for cars, too spacious for pedestrian

Xiaoqu Surrounding Road Closed by fence, exclusive for pedestrian

Lilong Main Road Human scale feeling, friendly for people and bikes

Lilong Lane Cozy, a bit too narrow for both cars and pedestrian

Human Scale Street

Accessibility

Accessibility

Program Mix

source: 500px.com

Program Mix

*Program Data Based on Baidu Streetview

Low Mix Level

Site Area: 43,000 m2 FSI: 3.9

150,000 m 15,000 m²

0 m²

0 m²

Site Area: 18,000 m² FSI: 3.2 0 m²

15,000 m² 43,000 m² 0 m^2

Site Area: 32,000 m2 FSI: 2.1

51,000 m² 15,000 m² 2,000 m² 0 m

Site Area: 17,000 m2 FSI: 1.4 22,000 m²

2,000 m² 0 m² 0 m²

Site Area: 50,000 m² FSI: 1.9

58,000 m² 34,000 m² $0 \, \mathrm{m}^2$

0 m²

Site Area: 15,000 m² FSI: 4.0

0 m² 19,000 m² 16,000 m²

Site Area: 24,000 m2 FSI: 4.2

42,000 m² 0 m²

Site Area: 19,000 m2 FSI: 1.7

28,000 m² 3,000 m² 0 m² 0 m²

Site Area: 41,000 m2 FSI: 2.5

38,000 111 26,000 m² 36,000 m² 0 m²

Site Area: 20,000 m² FSI: 3.0

0 m² 60,000 m² 0 m² 0 m²

Site Area: 30,000 m^a FSI: 2.2

21,000 m² 44,000 m² 0 m² 0 m²

Site Area: 17,000 m² FSI: 4.1 0 m² 6,000 m² 63,000 m²

0 m²

Site Area: 40,000 m² FSL 2.0

50,000 m² 14,000 m² 15,000 m² 0 m²

Site Area: 22,000 m² PSI: 3.0 24,000 m²

Site Area: 15,000 m²

Site Area: 25,000 m²

63,000 m²

PSI: 3.6

6,000 m²

0 m²

21,000 m²

PSI: 3.0

0 m²

9,000 m²

16,000 m²

19,000 m^a

4,000 m² 36,000 m² 0 m²

PSI: 1.9 27,000 m² 7,000 m²

0 m² 18,000 m²

Site Area: 28,000 m2 FSI: 1.8 42,000 m^a

8,000 m² 0 m² 0 m⁴

Site Area: 31,000 m²

11,000 m² 3,000 m² 70,000 m² 0 m²

Site Area: 8,000 m' FSI: 4.9

0 m² D m² 40,000 m² 0 m²

Site Area: 13,000 m2 FSI: 2.0 4,000 m² 1,000 m²

0 m²

21,000 m²

Sife Area: 30,000 m² FSI: 1.2 2:000 m² 1,000 m² 35,000 m²

0 m²

41

Low Mix Level

Sustainability for Profit

Sufficient Housing Capacity

Sufficient Housing Capacity

Spacemate

FSI (Floor Space Index) The FSI expresses the built intensity of an area. FSI = gross floor area / plan area

GSI (Gross Space Index) GSI, or coverage, demonstrates the relationship between built and non-built space.

OSR The variable OSR, or spaciousness, is a measure of the amount of non-built space at ground level per square meter of gross floor area.

Average number of floors.

All dutch samples in Spacemate, (Meta.B, 2010)

Diverse Building & Public Space: TypologyMaker

Different Building Typologies in Same Density Index

Sustainability for Planet

Green Space in SH

source: 500px.com

Green Transportation

source: bbs.voc.com.cn 1980s

Shanghai 2015, source: dfic.cn

Now

Forbidden Cycleway Map

source: sohu.com

source: dicj.com

Design

Site

200m

Site

Design Test

Design Test

Criteria	Judgement
Accessibility Step 2	Quite good grid streets, need to connect surrounding roads.
Human Scale Step 3	Trangular space near streets can nosiy.
Mix Step 6	Poor function mix, can mix function slong streets, like public service or commercial
FSI Step 4	Low FSI level, need to add towers to increase total area. (GSI is already quite high)
+ Others	Space is too homogenousSunlight condition is great

Design Test

Lift Building

Secondary Level Public Space

Stepped Towers

Design Action

for Weaved Slabs

Mix in Weaved Slabs

Transform Slabs

Various Green

Collective Bio Garden

Open Greenland

"Private" Sky Garden

Design Action for Weaved Slabs

Bike-friendly Pedestrian-friendly Building along Main Path Intimate Street Postive Courtyard Garden Lift Building Secondary Level Public Space Open Door Highrise Collective Space Add Sky Path Step Back Slabs Centralised Accessible Space Bike/Walk First Path Series Courtyards

65

Ecology

Evaluation

1 Weaved Slabs

2 Connect City Roads

3 Adapt Site

4 Add Towers

5 Spilt, Lift Slab

6 Transform Slab

7 Transform Tower

8 Mix Program

9 Various Green

Design Evolution

Design

Context

Analysis

Design

Context

Analysis

Design

1. Context

4. Analysis

D

Α

A

D

Α

D

D

9. Design Evolution

- 1. Context
- 2. Theory Chapter
- 3. 1st Design
 - 4. Analysis Of Quality
- 5. "Xiaoqu" Study
 - 6. 2nd Design Test
 - 7. Site Analysis
- 8. 3rd Design Test
 - 9. Design Evolution
- 10. Reflection

D

Design in Many Rounds

- 1. Context
- 2. Theory Chapter
- 3. 1st Design
 - 4. Analysis Of Quality
 - 5. "Xiaoqu" Study
 - 6. 2nd Design Test
 - 7. Site Analysis
 - 8. 3rd Design Test
 - 9. Design Evolution
- 10. Reflection

D

Design in Many Rounds

Full Content
In P5 Report

- 1. Context
 - 2. Theory Chapter
- 3. 1st Design

D

- 4. Analysis Of Quality
 - 5. "Xiaoqu" Study
- 6. 2nd Design Test
- 7. Site Analysis
- 8. 3rd Design Test
- 9. Design Evolution
 - 10. Reflection

Project Reflection

Reflection On Project

Reflection On What I have learned in past two years

THE DUTCH APPROACH

Study Notes From Jian Yuan

(2018–2020)

jianyuan.kk@outlook.com

Structure

Design

Research

Presentation

Structure

Structure First

The most effective way of doing complicated things is to build its structure first.

Sketch an outline before writing long articles, scratch a draft before serious drawing, arrange tasks in Calendar before doing them...

There is various form of structure to different things. Be creative in building free forms of structure that is adaptive to its context.

Structure First

A-D-P Loop

Design Mantra:
"The Dutch Approach"

Present 📈

A-D-P Loop

Design Mantra:
"The Dutch Approach"

A-D-P-A-D-P-A-D-P

Evolutionary Idea Tree

20 Sketch First Idea

Evolutionary Idea Tree

Sketch Modeling
First Idea Selected Idea

Evolutionary Idea Tree

20 8 3
Sketch Modeling Refined
First Idea Selected Idea Options

Evolutionary Idea Tree

Simultaneity Workflow

Simultaneity Workflow

Project Structure

O5
Project
Structure

Project Structure

Project Structure

Project Structure

Research by Design Housing in China: FAR vs. Sunlight

Design: Sketch for Solutions

Research by Design Housing in China: FAR vs. Sunlight

Design: Sketch for Solutions

1. Building with Slope

Research by Design Housing in China: FAR vs. Sunlight

Design: Sketch for Solutions

1. Building with Slope

2. Higher layer in North-South

3. Higherise Building in North

Research by Design

Housing in China: FAR vs. Sunlight

Design: Sketch for Solutions

1. Building with Slope

2. Higher layer in North-South

3. Higherise Building in North

4. Gapped Layout

5. Efficient Layout (indoor)

Design by Research Housing in China: FAR vs. Sunlight

Research on:

Design by Research Housing in China: FAR vs. Sunlight

Research on:

1. Specific Policy

- How long sun light required a day?
- Various in cities?
- Special situation? Rewards?

Design by Research

Housing in China: FAR vs. Sunlight

Research on:

1. Specific Policy

- How long sun light required a day?
- Various in cities?
- Special situation? Rewards?

2. How Do Others Do?

- Hongkong? (two system in one country)
- Singapore? (Chinese Culture, like sunlight)
- Netherlands? (high population density)

Design by Research

Housing in China: FAR vs. Sunlight

Research on:

1. Specific Policy

- How long sun light required a day?
- Various in cities?
- Special situation? Rewards?

2. How Do Others Do?

- Hongkong? (two system in one country)
- Singapore? (Chinese Culture, like sunlight)
- Netherlands? (high population density)

3. Other Solutions?

- Mix in low level?
- Distinguish "house" and "apartment"?
- Special indoor layout?

Design

Criteria	Judgement
Accessibility	Quite good grid streets, need to connect surrounding roads.
Human Scale	Trangular space near streets can be nosiy.
Mix	Poor function mix, can mix function slong streets, like public service or commercial
FSI	Low FSI level, need to add tow- ers to increase total area. (GSI is already quite high)
+ Others	Space is too homogenousSunlight condition is great

Criteria	Judgement
Accessibility	Quite good grid streets, need to connect surrounding roads.
Human Scale	Trangular space near streets can be nosiy.
Mix	Poor function mix, can mix function slong streets, like public service or commercial
FSI	Low FSI level, need to add tow- ers to increase total area. (GSI is already quite high)
+ Others	Space is too homogenousSunlight condition is great

Sketch First

How to make a booklet about The Dutch Approach?

131

Sketch First

Design Option Tests

Be Clear,
Be Distinctive,
Be Sharp

"Draw conclusion, not information."

— Teake Bouma

Do Experimental Drawings

Low Tech Hand Drawing: Possible Linkage in Rail Area

High Tech Algorithm: Possible Routes for New Path

Think Out of Box

Interact with Environment

Design from The Eye Level

"Think how people look from their streets and windows"

— Ulf Hackauf

Research

Investigative Research

"Mine most information before intervene, define the greatest potential or biggest problem to inform design decisions."

— Bjarke Ingels

Post Research Questions

Think of scenarios.

Find Ideas

Build Idea Bank as Toolbox

Evaluation & Assessment

"The quality we want to achieve should be regarded as evaluation tool for later design."

— Ulf Hackauf

Evaluation & Assessment

"The quality we want to achieve should be regarded as evaluation tool for later design."

— Ulf Hackauf

24
Volume
Study

Site Area: 48,000 m² Required FAR: 2.5

25 Layers Tower

24 Volume Study

25
Scale
Comparison

25 Scale Comparison

26 Typology Study

PlotTypology

Lilong

e o e d High Residential High Office

Slab

Big Building

+ + Low Density

"4 Types of Drawings"

Water in Shanghai

Communication

"4 Types of Drawings"

Water in Shanghai

Interpretation

"4 Types of Drawings"

Water in Shanghai

Interpretation

"4 Types of Drawings"

Water in Shanghai

Technology Serve Humanity

Presentation

Presentation Preparation

Presentation Preparation

Presentation Preparation

"Build a story"

"There is no objective truth in design, only good or bad stories."

— Rients Dijkstra

"Build a story"

"There is no objective truth in design, only good or bad stories."

— Rients Dijkstra

"Build a story"

"There is no objective truth in design, only good or bad stories."

— Rients Dijkstra

"Build Trust"

— Rients Dijkstra

Step Story

"Play with The Expectation"

Preface

Slides from Rients Dijkstra, 2018

_			
	į.		

Thank you!

MixCity

Investigative Research & Evolutionary Design on Mixed Densification in Shanghai's Living Neighbourhood

Graduation P5 Presentation

Jian Yuan
4819772
jianyuan.kk@outlook.com
Design for Urban Fabrics
Prof.ir. Rients.J.Dijkstra (1st Mentor)
Dipl.ing. Ulf Hackauf (2nd Mentor)

2020.7.2