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Abstract

This work presents an architecture capable of digitizing every channel of an ultrasound trans-
ducer array independently and simultaneously. This feature is achieved by exploiting the fre-
quency response of the piezoelectric transducer in order to save area and reduce to aminimum
the required building blocks of the ADC.

The transducer is used as an electro-mechanical resonator, which is embedded in a band-pass
continuous-time, multi-bit ΣΔ modulator. This converter relies entirely on the noise shaping
provided by the transducer, which proves to be sufficient to reach the required specifications.

Each converter only includes an inverter-based transimpedance amplifier, a variable gain am-
plifier for time-gain compensation and a 3-bit tracking quantizer, which comprises two com-
parators and two DACs.

A prototype chip has been fabricated in TSMC 0.18𝜇𝑚 technology, featuring 20 channels, with
one ADC per channel, and 20 parallel high-speed LVDS transmitters to convey the bitstreams
out to the measurement system.

The whole modulator, clocked at 200𝑀𝐻𝑧, achieves an area of 150𝜇𝑚 × 150𝜇𝑚, a power
consumption of 800𝜇𝑊 and an SNR of 47dB in a 75% bandwidth around a transmit frequency
of 5𝑀𝐻𝑧.

The measurements clearly show the desired noise shaping behaviour, thus proving that the
proposed concept is valid.

Keywords: Band-pass ΣΔ, Electro-mechanical Resonator, TrackingQuantizer, Inverter-based
OTA.
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1
Introduction

1.1. Application
In today’s world, many engineers and physicians are continuously striving to create innovations
to improve, enrich and lengthen our average life expectancy. Much progress has beenmade in
this direction during the last decades, however there is still room for development inmany fields
related to health care. Figure 1.1 shows the statistics associated with the causes of death,
the ultimate enemy to defeat. This data indicates that heart-related diseases are, and have
been, by far the most common cause of death. Therefore an improvement in any technique
aimed at curing, diagnosing or preventing such diseases can have a big impact on our average
life expectancy. These health issues are especially dangerous for the elderly and they make
up to almost 30% of their deaths [1]. Furthermore, it can be noticed that, unlike cancer, the
percentage of deaths caused by heart failure has been decreasing slowly but steadily from
the 1960s to today, especially in the last decades. This trend suggests that the innovations
to standard medicine practice introduced by the recent technology advancements have had
a big role in treating heart-related diseases, making it possible to discover and treat them
faster, more precisely and more effectively. Extending the same trend to the future, one could
conclude that, since there was such an improvement in the treatment of heart issues along
the years, it is worth investing time, energy and finances to go even further, as it does seem
possible.

One of the most popular diagnostic tools used in the context of heart-related diseases,
along with electrocardiogram (ECG), is ultrasound imaging. ECG is mainly used to detect
problems related with the generation and transmission of the electrical stimuli in the heart. As
such, it plays a very important role in cases of atrial or ventricular fibrillation and other issues
related with the heartbeat frequency. However, in order to have a better view of the mechan-
ical deformations leading to heart problems, ECG falls short as it does not provide enough
information to form an image, thus, ultrasound imaging is used instead. The vast majority of
people is familiar with the ultrasound-based procedure that allows the physicians to diagnose
congenital diseases or malformations in foetuses before they are born. The same technique
can be employed to render a real-time, 3D image of the heart.

The basic working principle behind this kind of imaging revolves around the ultrasound
transducer: at the beginning of each measurement, this element receives an electrical stim-
ulus (usually a pulse) and responds creating an acoustic wave, which will then travel across
the patient’s tissues. The wave generates a reflection when it crosses the boundary between
two different kind of tissues, e.g., the heart muscle and the atrium. By measuring the time
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4 1. Introduction

Figure 1.1: Age-adjusted death rates for selected leading causes of death: United States, 1958–2014 [1]

of flight of the forward and return path, the location of the boundary between tissues, an be
determined and processed to create an image.

Themost commonmedical procedure used for diagnostic ultrasound imaging is the transtho-
racic echocardiogram (TTE), which gives valuable information over the heart’s overall working
state. The advantage of the TTE approach is that it is completely non-invasive, however, be-
cause the signal has to cross through many layers of tissue, including the rib-cage, there is a
significant attenuation in the reflected signal’s amplitude. The attenuation is a function of the
distance between the source and the target, as well as of the wave’s frequency and the kind
of tissue it passes through. For soft tissues, the attenuation coefficient is roughly [5]:

𝛼 = 0.5 𝑑𝐵
𝑀𝐻𝑧 ⋅ 𝑐𝑚 (1.1)

Such an attenuation causes the output image to be noisy and thus its diagnostic power
can be compromised.

1.1.1. TEE Probes
In order to increase the image quality with respect to TTE based systems, transesophageal
echocardiogram (TEE) probes have been introduced. As the name suggests, these instru-
ments have to be inserted into the patient’s oesophagus. This allows for much clearer images,
as the distance between the oesophagus and the heart (especially the upper chambers and
valves) is drastically smaller than in TTE systems.
The design of such probes has proven to be a complex engineering challenge. The main
constraints introduced by TEE probes are dictated by the biologic environment in which they
have to operate:

• The probe’s outer material(s) have to be bio-compatible.

• The probe’s power consumption and consequent heating should not result in a temper-
ature increase of more than 1Ꮂ𝐶 of the surrounding biologic tissue [6]. This threshold
accounts for large engineering margins, and can be slightly exceeded without real risks
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Figure 1.2: Artist impression of the TEE probe’s working principle [2]

for the patient. However, it is a meaningful measure when dimensioning the power bud-
get for the probe.

• The probe’s girth has to be as small as possible, to avoid discomfort for the patient. This
directly translates into a limitation in terms of cable count through the shaft.

In case of passive probes, the number of transducer elements (see section 1.2) is strictly
linked to the cable count; therefore, for high resolution imaging (which requires a considerable
number of transducer elements) a thick shaft has to be employed, thus introducing, quite lit-
erally, a bottleneck in terms of number of transducers.
Active probes, on the other hand, make use of CMOS technology and the multiplexing tech-
nique to break this trade-off, allowing for both high resolution imaging as well as low cable
count.
Given the context, this work harnesses the properties of the ultrasound transducer to digitize
each channel’s output. This approach offers a robust digital communication between the TEE
probe and the imaging system, while having a limited number of cables. It promises to re-
duce the cross-talk among channels and introduces the possibility of (partial) on-chip image
compression and processing.

1.2. Transducer Characteristics & Models
A wide range of transducer elements have been employed in the ultrasound world, namely:
capacitive micro-machined ultrasound transducers (CMUT), piezoelectric micro-machined ul-
trasonic transducers (PMUT) and bulk piezoelectric transducers. This work will focus only on
the latter transducers. As the name states, these elements consist of two conductive layers
separated by a piezoelectric ceramic dielectric material. In this work, Lead-Zirconium-Titanate
(PZT) is employed, one of the most commonly used materials.
The resonant frequency and the transducer’s sensitivity to applied acoustic pressure also de-
pend on their geometry: the thickness must be tuned according to the wanted resonant fre-
quency, while the width and length (usually equal) should be small compared to the wave-
length.
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Many models have been developed with the purpose of mimicking with discrete electrical el-
ements the energy conversion between the electrical and the acoustic domain taking place in
the transducer. The most precise models are the ones which relate the conversion between
the two domains with a transmission matrix. However, the coefficients of such matrices often
do not have a clear physical relation, making them hard to estimate and treat. The Mason
model [7], shown in Figure 1.3 has been one of the most popular due to its lumped nature and
relative ease of use. The acoustic and electrical domains are neatly separated by an ideal
transformer, whereas the acoustic characteristics are modelled by ideal transmission lines.
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Acoustic 
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Figure 1.3: Two classical transducer models: Mason (left) and KLM (right)

Another version of Mason’s model, the KLMmodel [8] (shown in Figure 1.3) was proposed,
named after the three scientists who developed it, in this version, the negative capacitance
proposed by Mason, thought of as “unphysical”, is replaced with a time-variant admittance [9].

These two models provide an accurate electrical representation of the transducer by com-
paring it to a two-port network: the acoustic ports have as inputs/outputs velocity and force,
while the electrical port has voltage and current. The Mason and KLM models are somewhat
close to the physics of the device, but require an accurate estimation of parameters such
as plate stiffness and density, permittivity and elastic constants, which can be a rather time-
consuming task
The simpler “Butterworth-Van Dyke” model was chosen, shown in Figure 1.4, because of the
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Figure 1.4: Two near-resonance transducer models: low frequency (left) and high frequency (right)

limited time scope of this thesis, together with the fact that the modelling of the transducer’s
acoustic impedance and characteristics are not of great importance in the scope of this thesis.
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This model has been extensively used for electrical simulation and modelling, since it offers
a simple electrical representation of the transducer behavior near its resonance frequency.
As a matter of fact, this model can be derived from the previously discussed ones, taking into
account the acoustic terminations on both sides of the element (one terminated by the backing
and the other by the acoustic impedance of the chosen medium). However, this transducer
model cannot be deemed suitable for a wide bandwidth [10] and is only reliable around the
resonant frequency.
Figure 1.4 shows two versions of the Butterworth-Van Dyke model: the one on the right has
an additional resistance in series with the parasitic capacitance 𝐶ᑊ [11]. This was added to ac-
count for the very-high-frequency behaviour of the transducer. However, the value for this re-
sistor is not precisely known, as the available measurement set-up cannot provide impedance
estimations at such frequencies.

The chosen model is divided in two parts: the motional branch, which hosts the series
resonator and accounts for the transducer’s mechanical resonance mode, and the parasitic
capacitance branch, that models the actual capacitance between the transducer’s two conduc-
tive plates. This parameter, for which this design is centered, can be easily estimated with the
well-known capacitance formula, where 𝜖Ꮂ and 𝜖ᑣ are respectively the vacuum dielectric per-
mittivity and the relative one, 𝐴 is the area of the parallel plates and 𝑡 is the distance between
them:

𝐶ᑊ = 𝜖Ꮂ𝜖ᑣ
𝐴
𝑡 (1.2)
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Figure 1.5: Impedance measurement performed in water on a ዃ × ኻኼ transducer array.

The other parameters, concerning the motional branch, can be estimated from previous
measurements performed by the acoustics department in TU Delft, shown in Figure 1.5. The
measured data was fitted to the model in Figure 1.4 making use of the Z-View software pack-
age. For this fitting, up to two additional motional branches have been added to the model,
in order to account for the higher frequency resonance modes appearing in Figure 1.5. The
magnitude and phase responses of the fitted models are shown in Figures 1.6 and 1.7. For
simplicity and simulation time reasons, a single resonator has been chosen for the circuit sim-
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Figure 1.6: Magnitude fitting using Z-View
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Figure 1.7: Phase fitting using Z-view

ulations, therefore the impedance of the transducer can be written as:

𝑍(𝑠) = 𝐿𝐶𝑠Ꮄ + 𝑅𝐶𝑠 + 1
𝑠𝐶ᑊ(𝐿𝐶𝑠Ꮄ + 𝑅𝐶𝑠 + 1 +

ᐺ
ᐺᑊ
)

(1.3)

Where 𝑅 = 9448Ω, 𝐶 = 731𝑓𝐹 and 𝐿 = 1.6𝑚𝐻. These values, especially the resistance,
can be expected to vary significantly depending on the environment. For example, the plots
in Figure 1.5 are measurements in water, but performing the same measurement in air would
yield a significantly lower resistance (around 2𝑘Ω). This effect directly impacts two extremely
important aspects for this project: the intrinsic thermal noise added by the transducer and
the quality factor of the resonance. The first directly yields the required thermal noise perfor-
mance and the second, defined as 𝑄 = ᒞᎲᑃ

ᑉ = ᒞᎲ
ᐹᑒᑟᑕᑨᑚᑕᑥᑙ , determines the intrinsic bandwidth

of the system. The measurements in water, as opposed to those performed in air, were mostly
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taken into consideration for this project, as they are the closest to the actual application that
is being targeted. However, the system was designed such that it has some degree of ro-
bustness against the inevitable variability in the transducer’s frequency response, introduced
by fabrication tolerances and measurement limitations. Furthermore, this fitting gives a para-
sitic capacitance 𝐶ᑊ = 11𝑝𝐹 much larger than the expected value computed in Equation 1.7.
This is probably caused by an incomplete de-embedding of the measurement set-up’s added
capacitance. Such a large capacitance dominates the impedance curve also at resonance in
Figures 1.6, 1.7 and 1.5, while in the real case, with 𝐶ᑊ ≈ 2𝑝𝐹, the resistance in the motional
branch should prevail at the resonant frequency.

1.3. Proposal
The main novelty that this work wishes to introduce is the idea of exploiting the filtering proper-
ties of the ultrasound transducer in an attempt to reduce the hardware needed for the analog
to digital conversion of the acoustic input and thus making it possible to fit an entire oversam-
pled ADC underneath a standard transducer element. In particular, as explained in Section
2.1, the band-pass characteristic of the transducer will be used as the only noise shaping el-
ement of a Continuous-Time Band-Pass ΣΔ Modulator (CTBPSDM) specifically built around
the transducer.
Having one ADC per channel allows for high frequency data being available about all of the
transducers at the same time, without relying on multiplexing and reducing the functionality
that has to be implemented in the periphery of the chip to a minimum. The latter feature helps
to create very large transducer arrays, without being limited by the size and multiplexing speed
of the ADCs placed outside of the core array.
Another benefit that can be derived by this novelty is that the CTBPSDM’s loop filter is intrin-
sically matched to the frequency response of the transducer itself, without the need for centre
frequency tuning. Furthermore, given that the whole filtering is performed by the transducer
itself, the hardware required to implement the modulator can be kept simple, as will be dis-
cussed in Chapter 2. Many of these components are highly digital, therefore they can benefit
from technology scaling, achieving lower power and functionality per unit area.
In addition to these advantages, the beamforming operation may consume a lower power in
case oversampled ADCs are employed, as will be discussed in Section 1.5.1. Finally, the
proposed element-level analog to digital conversion will allow for a meaningful cable count re-
duction in future TEE probes, thanks to a heavy use of digital multiplexing. For an estimation
of the achievable cable reduction factor, some assumptions have to be made:

• A micro-coaxial cable (usually the cable of choice for the communication between the
probe and the ultrasound system) has a maximum data rate of 1ᐾᑊᑤ . This assumption is
rather conservative.

• A perfect decimation filter is employed, such that the final sampling frequency is exactly
twice the Nyquist frequency, for example 7.5𝑀𝐻𝑧

• The output SNR of the modulator is 45𝑑𝐵, therefore:

𝐸𝑁𝑂𝐵 = 𝑆𝑁𝑅 − 1.76
6.02 = 45 − 1.76

6.02 = 7.18𝑏𝑖𝑡𝑠 ≈ 7𝑏𝑖𝑡𝑠 (1.4)

From these assumptions, the cable reduction factor can be computed:

𝑛 = 𝐷𝑎𝑡𝑎 𝑟𝑎𝑡𝑒
2𝑓ᑅ ⋅ 𝐸𝑁𝑂𝐵

=
1ᐾᑊᑤ

2 ⋅ 7.5𝑀𝐻𝑧 ⋅ 7𝑏𝑖𝑡𝑠 = 10.57
𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠
𝑐𝑎𝑏𝑙𝑒 ≈ 10𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝑐𝑎𝑏𝑙𝑒 (1.5)
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Of course, perfect decimation is hard to achieve, but this calculation should provide a order-
of-magnitude estimation of the potential of this system, without even introducing beamforming
into the picture. Previous works, such as [12] do not reach such a high cable reduction fac-
tor as they rely on analog multiplexing, which is much less robust with respect to its digital
counterpart.

1.4. Derivation of Specifications
Now that the core principle has been explained, the design specifications for the system can
be derived.

• Area: The constraint that is easiest to formulate is the area in which the element-level ΣΔ
ADC should fit. This is directly derived from the transducer pitch, which in turn depends
on the chosen center frequency. In case of PZT elements tuned around 5𝑀𝐻𝑧, the
wavelength can be calculated as:

𝜆 = 𝑣
𝑓 =

1500ᑞᑤ
5𝑀𝐻𝑧 = 300𝜇𝑚 (1.6)

The element pitch should be ≤ ᒐ
Ꮄ = 150𝜇𝑚. However, the actual dimensions of the

PZT element also depend on the thickness of the dicing kerf used while building the
transducer array, which has a thickness of 30𝜇𝑚, thus the element will measure 120𝜇𝑚×
120𝜇𝑚. The size of the piezoelectric element also directly determines the expected
parasitic capacitance. In this case:

𝐶ᑊ = 𝜖Ꮂ𝜖ᑣ
𝐴
𝑡 = 8.85

𝑝𝐹
𝑚 ⋅ 3200120𝜇𝑚 ⋅ 120𝜇𝑚200𝜇𝑚 ≈ 2𝑝𝐹 (1.7)

• Power: The most limiting factor for the power consumption is the self-heating; the rules
provided by the FDA [6] state that the oesophagus’ tissue temperature should not in-
crease by more than 1ᑠ𝐶.
This translates into a total power consumption of the probe of 1𝑊; distributing this power
budget among 1000 channels (this is roughly the number of elements present in com-
mercial probes) yields 1 ᑞᑎ

ᑔᑙᑒᑟᑟᑖᑝ . The latter has to be divided once again between the
transmit and the receive circuitry: being that the one considered is a receive-only sys-
tem, its power budget per channel should be around 500 ᒑᑎ

ᑔᑙᑒᑟᑟᑖᑝ . However, as it can
be deduced by the way that the previous number has been reached, this is not a hard
boundary and there is quite some flexibility associated with it. In fact, many of the papers
cited in this thesis declare a power consumption per channel even orders of magnitude
higher with respect to this work’s target.

• Instantaneous Signal to Noise Ratio (SNR): This is a comparison between the noise
generated by the transducer-ADC system and the signal intensity at a given instant dur-
ing the receive phase of an ultrasound cycle (See Section 1.1). This parameter ultimately
determines the image quality obtainable by this system. It has been speculated [13] that
the SNR of the single ADC should be higher than 50dB. However, the overall SNR of the
image is influenced by the number of elements (𝑁) in the array, as the noise introduced
in any element is uncorrelated with that of others, while the signal is correlated [13]. The
improvement can be computed as:

𝑆𝑁𝑅ᑥᑠᑥᑒᑝ = 𝑆𝑁𝑅ᑖᑝᑖᑞᑖᑟᑥ + 3𝑑𝐵 ⋅ logᎴ(𝑁) (1.8)

Regardless, a requirement of 50𝑑𝐵 SNR for each channel separately was agreed upon.
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• Dynamic Range (DR): The DR is defined as the ratio in dB between the highest and
the lowest signals that the ADC can process. Unlike traditional systems, where the SNR
and DR are similar, in ultrasound systems the dynamic range can be very different from
the SNR. As a matter of fact, it is possible to exploit the fact that echoes reflected by
the nearest tissues will reach the transducers earlier and will face low attenuation (see
Equation 1.1), while the waves scattered back by the farthest tissues will be delayed and
weaker. Therefore the ADC needs to handle large inputs at the beginning of the receive
phase and small ones at its end. In order to take advantage of this information, ultra-
sound systems usually implement a Time-Gain Compensation (TGC), which increases
the gain of the analog front-end as time progresses during the receive phase. In order
to get an estimation of the system’s dynamic range, the gain range swept by the TGC
can be directly added to the instantaneous SNR at the end of the receive phase, as il-
lustrated in Figure 1.8. In this work, a range of around 20 to 30dB was agreed upon, so
as to prove the feasibility of this feature in this new kind of ultrasound ADC.
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Figure 1.8: Time-Gain Compensation graphical explanation.

• Bandwidth: Ideally, for ultrasound applications, it is desirable to have a −3𝑑𝐵 fractional
bandwidth (𝐹𝐵𝑊) of 100% around the center frequency (𝑓ᑔ), meaning that the range of
frequencies of interest is:

[𝑓ᑔ −
𝐹𝐵𝑊
100

𝑓ᑔ
2 , 𝑓ᑔ +

𝐹𝐵𝑊
100

𝑓ᑔ
2 ] (1.9)

However, in this case, the system bandwidth is intrinsically bounded to the frequency
response of the transducer, which can be computed in the case of transducers immersed
in water, as explained in Section 1.2:

𝐹𝐵𝑊 = 100
𝑄 = 100 ⋅ 𝑅

𝜔Ꮂ𝐿
= 100 ⋅ 9448Ω
2𝜋5𝑀𝐻𝑧 ⋅ 1.6𝑚𝐻 = 18% (1.10)

This parameter is heavily dependent on the acoustic environment around the transducer,
in fact, with the resistance value estimated in air (around 2𝑘Ω), the Q factor is much
higher and the fractional bandwidth is drastically reduced accordingly. Even in water,
an 18% bandwidth is quite poor for the target application, therefore a bandwidth of 75%
(from 3.125𝑀𝐻𝑧 to 6.875𝑀𝐻𝑧) was selected, considering the transducer’s intrinsic band-
width limitation.
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Table 1.1: Summary of the target specifications

Area 0.0225𝑚𝑚Ꮄ
Power 500𝜇𝑊
Centre Frequency 5𝑀𝐻𝑧
Instantaneous SNR 50𝑑𝐵
Dynamic Range 80𝑑𝐵
Bandwidth [3.125𝑀𝐻𝑧, 6.875𝑀𝐻𝑧]
Distortion (THD) 40𝑑𝐵
Technology TSMC 0.18𝜇𝑚
FOM 260 ᑗᑁ

ᑔᑠᑟᑧ.

• Distortion: This work focuses on fundamental imaging, meaning that only the reflected
waves at the transmit frequency will be considered, and harmonics will be disregarded.
For this reason, distortion is not the main concern in this project. Furthermore, the sec-
ond harmonic of the center frequency, provided that the latter is greater than 3.44𝑀𝐻𝑧,
falls outside of the bandwidth of interest. In order to keep the continuity with the previous
works from this group, a 𝑇𝐻𝐷 of 40𝑑𝐵 was chosen as an upper boundary.

• Technology: Finally, the two technologies made available for this project were 0.18𝜇𝑚
from XFAB and 0.18𝜇𝑚 from TSMC. The latter was chosen because it has a much more
reasonable turn-out time and more flexible and frequent tape-out dates, even though
technically inferior in terms of capacitor density and overall range of available compo-
nents.

The specifications hereby derived result in a Walden figure of merit, in the best possible sce-
nario, of:

𝐹𝑂𝑀ᑎᑒᑝᑕᑖᑟ =
𝑃𝑜𝑤𝑒𝑟

2𝐵𝑊 ⋅ 2ᐼᑅᑆᐹ =
500𝜇𝑊

2 ⋅ 0.75 ⋅ 5𝑀𝐻𝑧 ⋅ 2Ꮊ = 260
𝑓𝐽
𝑐𝑜𝑛𝑣. (1.11)

This theoretical result is in line with the other works in this area. Table 1.1 summarizes the
specifications discussed before.

1.5. Previous Art & Ultrasound ADCs
1.5.1. Ultrasound Sigma-Delta Modulators
There have been many publications in the ultrasound community dealing with ways to effec-
tively compress the information received by the transducers, in an attempt to obtain a number
of elements much larger than the number of cables needed for the data transmission between
the probe and the imaging system. This asymmetry is desirable for two reasons: first, a high
number of elements ensures a good spacial resolution and acoustic aperture; second, TEE
probes can be made thinner because of a low cable count.
A very common approach is beamforming: this procedure allows for a concise communication
between the chip/probe and the ultrasound system. The idea behind beamforming is combin-
ing the outputs of different transducers through a process of delay and sum in order to only
gain information about a certain spatial direction. This operation can be done in the analog
domain such as in [14]; however, doing the same in the digital domain can yield a higher
flexibility, together with lower power consumption and complexity, depending on the available
technology node. The advantage becomes even more evident in case of oversampled data
converters (see Figure 1.9), as they intrinsically have a high delay resolution [15]. For this
reason, together with other advantages of oversampled ADCs with respect to their traditional
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Nyquist counterpart, many ΣΔ modulators aimed at ultrasound applications were developed.
One of the first attempts to extend the 𝐵𝑃ΣΔ approach to the ultrasound field was proposed

Figure 1.9: Beamforming in an array of element-level ጐጂ ADCs [3]

in [16]. This modulator shows very similar specifications to the ones discussed in Section 1.4:
𝑓ᑤ = 160𝑀𝐻𝑧 𝐵𝑊 = 2.5𝑀𝐻𝑧 𝐷𝑅 = 84𝑑𝐵 𝑆𝑁𝑅 = 60𝑑𝐵, however the test chip, which was fab-
ricated using a 0.8𝜇𝑚 𝐵𝑖𝐶𝑀𝑂𝑆 technology and accommodates only one channel, is massive
(10𝑚𝑚Ꮄ) and consumes 1𝑊.
A more recent study, discussed in [17], shows a power consumption per channel (3.4𝑚𝑊)
close to this works’s target. They employ a conventional 3ᑣᑕ Order 𝐶𝑇𝐿𝑃ΣΔ𝑀, with almost ex-
actly the specifications described in Section 1.4, including the technology node. However, they
do not specify the area, and the higher SNR (60𝑑𝐵) is paid by a higher power consumption.
Additionally, in [18] a 3𝑚𝑊, a 4-bit 𝐶𝑇𝐿𝑃ΣΔ𝑀 is proposed to read out (previously amplified)
signals coming from a CMUT array, achieving an area of 0.177𝑚𝑚Ꮄ and an 𝐸𝑁𝑂𝐵 of 11.5 bits.

In the latest years, many groups around the world exploited the most recent deep sub-
micron technologies to achieve better ADC FOMs. For example, in [19], combining a 28𝑛𝑚
technology with a heavy use of digital electronics, a very high power efficiency is reached,
employing a 𝐶𝑇𝐿𝑃ΣΔ𝑀. However, even if the bandwidth and the dynamic range are superior
(𝐵𝑊 = 18𝑀𝐻𝑧 and 𝐷𝑅 = 78𝑑𝐵), the area and power consumption are still too high. Further-
more, the cost of such a technology is extremely high.
The same winning combination of factors was used in [3] (65𝑛𝑚 technology and highly digital
architecture in a 𝐶𝑇𝐿𝑃ΣΔ𝑀), very similar to the example that was just discussed. This chip is
specifically designed for ultrasound imaging and reaches superb specifications and efficiency,
but the downside is the extremely convoluted architecture and the consequently large area and
power consumption (0.16𝑚𝑚Ꮄ and 7𝑚𝑊).
Amongst the ADCs that can be found in literature, only a few are suitable, in terms of area, for
simultaneous digitization of all transducer elements. In particular, between 2015 and 2017,
five of such works were published.

• In [20], yet another 3ᑣᑕ Order, 1-bit 𝐶𝑇𝐿𝑃ΣΔ𝑀 was employed for ultrasound. In this
work, a 12-bit resolution was reached in a 10𝑀𝐻𝑧 bandwidth, however, the efficiency is
quite poor, as each modulator consumes 17𝑚𝑊 of power, mostly in the digital domain.
To this power consumption, one should also add that of the front-end (13.1𝑚𝑊) for fair
comparison. The high digital power consumption is a problem that has to be tackled
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Table 1.2: Performance comparison of this work with respect to similar designs.

This work [24] [23] [22] [21] [20]
Transducer Type PZT CMUT PA CMUT PA -
Technology [𝑛𝑚] 180 28 130 65 65 130
No. of Channels 20 16 64 - 8 128
Element Matched Yes (150𝜇𝑚) Yes (250𝜇𝑚) No No No No
Center Frequency [𝑀𝐻𝑧] 5 5 5 - 260 2.5
Bandwidth [𝑀𝐻𝑧] 3.125-6.875 10 8 10 20 10
Area/Channel [𝑚𝑚Ꮄ] 0.025 0.0625 0.1 0.0175 0.03 -
Power/Channel [𝑚𝑊] 0.5-1 17.5 6.32 0.59 13.1 30.1
SNR/Channel [𝑑𝐵] 50 60 48.5 45 54 65

also in this project, and arises from the combination of a high sampling rate with an older
technology (in [20] 480𝑀𝐻𝑧 and 0.13𝜇𝑚). The area of a single modulator is not stated.

• In [21] a 4ᑥᑙ Order 𝐶𝑇𝐵𝑃ΣΔ𝑀, with a 5-level quantizer is used for a phased array. In
order to stabilize such an architecture, three DACs and two delay elements clocked at
1.04𝐺𝐻𝑧 are necessary. Such a system would consume a prohibitive amount of power
in older technology nodes such as ours, but this work uses a 65𝑛𝑚 process. The SNDR
of the single modulator is 54𝑑𝐵 while the bandwidth is 20𝑀𝐻𝑧 around a carrier at ᑗᑤᎶ =260𝑀𝐻𝑧. The power consumption of each modulator is still quite high (12.1𝑚𝑊), but the
area is 0.03𝑚𝑚Ꮄ, which would be suitable for a transmit frequency of 5𝑀𝐻𝑧, such as in
this thesis.

• [22] is a simulation study which presents a 4ᑥᑙ Order, 1-bit 𝐶𝑇𝐿𝑃ΣΔ𝑀 for a portable
ultrasound scanner. This work bears significant similarities with the project discussed in
this thesis: The area, power and SNR (0.017𝑚𝑚Ꮄ, 0.587𝑚𝑊 and 45𝑑𝐵) are in the right
order of magnitude. The main differences are the technology node (here 65𝑛𝑚) and
the fact that the transducer is not used as (part of the) loop filter. However, translating
this design into older and cheaper technology processes may yield a degradation in
efficiency. Furthermore, this modulator is quantization noise-limited, which suggests
that it could be further optimized in order to become thermal noise-limited. The provided
figures are a result of post-layout simulations, no measurements on silicon have been
presented.

• [23] focuses mainly on the digital post processing of the acquired ultrasound data, but
it also shows an architecture with one analog front-end, including an ADC, per element.
A non-uniformely sampled asynchronous SAR ADC is used to save power. The area,
however is too high for a matrix integration (0.1𝑚𝑚Ꮄ) and the power of the front-end
(6.32 ᑞᑎ

ᑔᑙᑒᑟᑟᑖᑝ ) exceeds this thesis’ target specifications.

• Finally, in the very recent [24], the authors present a 250𝜇𝑚 pitch, 16-element array
of CMUTs with pixel-matched analog front-end and ADC. A 28𝑛𝑚 technology was em-
ployed to cram the whole receive chain, composed of a TIA, a LPF, a VGA and an ADC in
the confined space. The employed ADC is a 3ᑣᑕ order, single-bit 𝐷𝑇𝐿𝑃ΣΔ𝑀, clocked at
960MHz, with a peak SNR of 60dB and a bandwidth of 10𝑀𝐻𝑧. The power consumption
per channel, which includes the beamforming operation, is still too high (17.5 ᑞᑎ

ᑔᑙᑒᑟᑟᑖᑝ ).

Table 1.2 shows a comparison of the desired specifications with respect to those achieved
by similar designs.
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From the previous examples, it is clear that continuous-time ΣΔ modulators, both in the low-
pass and band-pass flavours, have been employed as ultrasound ADCs because of their
power and area efficiency, while at the same time providing sufficient image quality. How-
ever, in almost all cases these data converters are shared between multiple elements. This
brief literature review also shows how the available technology node heavily limits the achiev-
able specifications. In this work, however, making use of the transducer in a new way, an
acceptable power and area efficiency can be reached with an affordable standard 0.18𝜇𝑚
technology. Therefore, scaling further into deep sub-micron processes will surely allow for
even better figures of merit.

1.5.2. Physical Loop Filters
In literature, a few examples can be found where a ΣΔ modulator structure was created with-
out much added circuitry simply by using the available sensor’s frequency response to gain a
noise shaping characteristic.

• In [25] an electro-mechanical ΣΔ structure was built using two PVDF piezoelectric ele-
ments, one used as a sensor and the other as an actuator. The feedback is therefore
provided in the mechanical domain, thus creating a force balance loop, rather than in the
electrical domain. The downside of such a structure is that it relies on two elements, that
can be stacked vertically. This poses many technical and fabrication challenges which
ultimately decrease the yield. Furthermore, the sensor’s frequency response, modeled
with Mason’s model (See Section 1.2), is exploited for its low frequency behaviour (be-
fore the resonant frequency), therefore implementing a 𝐶𝑇𝐿𝑃ΣΔ𝑀, while the most inter-
esting part of the transducer’s frequency response is really around its resonance.

• Another 𝐶𝑇𝐿𝑃ΣΔ𝑀 was proposed in [26], built around an electrochemical sensor. The
“input signal” in this case is chemical, therefore extremely slow. This application makes
use of a high time constant already present in the system as an integrator for the mod-
ulator. The circuitry needed around the sensor is therefore highly digital and consumes
comparable power with respect to sensor systems with an analog output.

• [27] shows a smart wind sensor, which, in order to obtain a digital output, exploits a ther-
mal ΣΔ modulator, using the thermal capacitance of silicon as an integrator. Instead of
measuring the temperature gradient caused by the air flow, this system cancels it, using
resistive heaters as the feedback elements and thermopiles as sensors and summing
nodes.

• Finally, [28] proposes a 𝐶𝑇𝐵𝑃ΣΔ𝑀 where a mechanical SAW resonator was used as a
replacement for LC tank circuits in the loop filter, because of its superior Q factor at high
frequencies. This work is intended as a general purpose high-frequency ADC, therefore
the input is purely electrical. The resonator has two available nodes and can therefore
be easily included in a ΣΔ as a loop filter; on the contrary, in this work, only one node
is available (see Section 2.1). In their design process, the authors encountered similar
problems to the ones discussed in Section 2.4, and proposed similar solutions.





2
System-Level Design

In this Chapter, the various possible system architectures that were evaluated will be dis-
cussed. We will start from the transducer and follow a path that leads to the final architecture
that was brought to the next step: schematic-level design (Chapter 3). Along the way, the
major trade-offs and issues that were encountered will be highlighted.

2.1. Exploiting the Transducer
As previously discussed, in order to define an optimal system architecture for this ultrasound
ADC, one should start from the transducer, as it not only provides the input signal, but also
constitutes the loop filter of the ΣΔ modulator.
The electrical input signal, caused by the incident acoustic wave on the transducer, can be
modelled as an ideal voltage source in series with the resistor in the Butterworth-Van Dyke
model, or as an ideal current source in parallel to the same resistor. In those two electrically
identical representations, the input signal is strategically placed in the same position as the
system’s main noise source, which is the model’s resistor noise.
Ideally, it would be desirable to provide the modulator feedback signal in such a way that it can
be directly subtracted from the input signal, effectively implementing a summation node. For
this purpose, feedback in the form of an acoustic signal would be very desirable, but that would
require an additional piezoelectric actuator to implement the conversion from the modulator’s
electrical output to the acoustic feedback, which poses fabrication challenges [25] beyond the
scope of this thesis. Therefore, only feedback in the electrical domain can be provided, how-
ever the model’s internal nodes (for example the node between the voltage source and the
resistor) do not have a physical equivalent.
As a matter of fact, only one node is available for this purpose in the chosen transducer model,
even though the piezoelectric element itself is a two-terminal device. This is because one side
of the transducer is always connected to a ground foil that is in common among all the trans-
ducers in the array. The ground foil takes its name from the fact that it should be connected
to a fixed potential, which can be ground. This node being common for all of the transducers,
it cannot be used to provide a different feedback signal to each modulator. This situation is
highly unusual, as conventional loop filters have separate input and output nodes.
All things considered, there are three ways to use the only available node:

• Offer a high impedance to the node, read out the voltage and provide feedback in the
current domain

• Offer a low impedance to the node (through a virtual ground), read out the current and
provide feedback in the voltage domain

17
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• Offer an intermediate (possibly matched) impedance to the node.

The third alternative requires an explicit resistance, in series (in case of current read-out) or
in parallel (for voltage read-out) with the transducer. This resistance would contribute with as
much noise as the transducer, in case it is matched with that of the transducer, without yielding
any obvious advantage. For this reason, the third option was discarded. In Sections 2.2 and
2.3, an in-depth analysis of the first two options will be provided, together with the reason why
the second one was selected.

2.2. Current-feedback structure
In the current-feedback case, the parasitic capacitance 𝐶ᑤ (see Figure 1.4) would be exploited
as an integration element for the first stage of a low-pass ΣΔ converter. The voltage output
caused by the feedback current flowing into the transducer will be:

𝑉ᑥᑣᑒᑟᑤᑕᑦᑔᑖᑣ(𝑠) = 𝐼ᑗᑖᑖᑕᑓᑒᑔᑜ
𝐿𝐶𝑠Ꮄ + 𝑅𝐶𝑠 + 1

𝑠𝐶ᑤ(𝐿𝐶𝑠Ꮄ + 𝑅𝐶𝑠 + 1 +
ᐺ
ᐺᑤ
)

(2.1)

The numerator shows a resonant behaviour at the intended frequency, the first part of the
denominator (𝑠𝐶ᑤ) determines the desired integration and finally the second part of the de-
nominator (𝐿𝐶𝑠Ꮄ + 𝑅𝐶𝑠 + 1 + ᐺ

ᐺᑤ
) adds the anti-resonance at a slightly higher frequency with

respect to the resonant one. A system-level implementation of a complete modulator was sim-
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Figure 2.1: Transducer impedance around resonance

ulated, using the current-feedback solution. The electrical representation of the system and
the corresponding linear model are shown in Figure 2.2. A second stage was added in order
to reach the desired SQNR and, in order to keep the modulator stable, a feed-forward path
was introduced, together with a local resonator for optimal zero placement. The results ob-
tained from simulating the previously described system on Mathworks’ Simulink (using some
basic electrical components from the Simscape library) are shown in Figure 2.3. The blue line
shows the spectrum at the modulator’s digital output, highlighting the bandwidth of interest
and the main tone. The dashed line shows the behaviour that the linear model predicts for the
noise transfer function (NTF), while the dot-dash trace represents the signal transfer function
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(STF). The linear model is obtained by substituting the quantizer with an additive node, which
injects quantization noise, assumed white, in the system. This prediction is in agreement with
the system level simulation, up to around 40𝑀𝐻𝑧.
One can immediately notice how inconvenient the NTF looks; in fact, it seems that the quanti-
zation noise in the bandwidth of interest is not suppressed, therefore making it challenging to
reach the SQNR specifications.
This phenomenon is easily explained: the idea on which the current-feedback architecture is
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based is exploiting the large parasitic capacitor provided by the transducer as an integration
device. However, at resonance (where the impedances of 𝐿 and 𝐶 cancel each other), this
capacitor has an impedance of:

𝑍ᐺᑤ|ᑗᎾᎷᑄᐿᑫ =
1
𝑠𝐶ᑤ

= 1
2𝜋 ⋅ 5𝑀𝐻𝑧 ⋅ 2𝑝𝐹 ≈ 16𝑘Ω (2.2)

This impedance is too high with respect to the transducer’s intrinsic resistance (9448Ω), there-
fore one can conclude that the integrator behaviour for the first stage only shows itself at fre-
quencies higher than the bandwidth of interest, being that the integrator is too “leaky” around
resonance. In this case, most of the noise shaping comes from the second stage, therefore
exploiting the transducer this way does not guarantee many advantages over more traditional
architectures.
A way to compensate for this unwanted shape of the NTF is replacing the second stage with a
more complex filter, designed such that it cancels out the unwanted poles and zeroes added
by the transducer’s resonance. A resonant band-pass filter was chosen for this purpose, the
results are clearly visible in Figure 2.4: the quantization noise spectrum does not show any up-
wards peak around resonance, therefore the SQNR is drastically improved. However, building
such a resonant band-pass filter introduces many accuracy and matching constraints, which
are hard to meet in an area such as the one described in Section 1.4. To conclude, this archi-
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Figure 2.4: Spectrum of the compensated current-feedback structure

tecture does not seem to bear many advantages over traditional architectures: it saves some
area because of the “external” integration capacitance, but it yields a sub-optimal STF and
NTF, a complex modulator and a convoluted compensation scheme.

2.3. Voltage-feedback structure
As was argued in Section 2.2, around the resonant frequency, the dominant impedance offered
by the transducer is that of the 𝑅𝐿𝐶 branch. Therefore, naturally this would be the component
that should be used as a loop filter. In order for the voltage-feedback structure to work, a low
impedance node is needed to attract the current signal from the transducer, as well as the
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current that results from the voltage feedback divided by the transducer impedance.
The easiest and best known technique to create a low impedance node is using the virtual
ground of an amplifier in a negative feedback configuration. The feedback signal coming from
the DAC has to be directly interfaced with the transducer’s only available node; this can be
achieved in two ways, depicted in Figures 2.5 and 2.6. The first schematic seems simpler
at first, however it relies on a low impedance, floating voltage DAC, which is very hard to
implement using known circuit techniques.
On the other hand, the system in Figure 2.6 is more realistic in terms of implementation, as
the DAC in this case does not need to provide a low impedance and one of its terminals is
connected to ground. However, it does have some downsides:

• The DAC voltage has to be processed by the amplifier before it can reach the inverting
terminal. Since the amplifier has a limited bandwidth, the resulting signal at the inverting
terminal will experience delay at frequencies higher or lower than the amplifier’s band-
width.

• From the DAC’s point of view, the system resembles an OPAMP in a non-inverting con-
figuration, therefore, at the output of the amplifier, there will be an additional factor, which
corresponds to the DAC voltage, not shaped and not gained up. This factor, although
not necessary, acts as a local feedback, as it can be seen in Figure 2.6, improving the
modulator’s stability and tolerance to excess loop delay (ELD).
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Figure 2.5: Representation of the voltage-feedback structure (left) and corresponding linear model (right)

2.3.1. Design Challenges and Constraints
The chosen architecture, along with its many advantages, also introduces some unwanted
effects, which should be compensated for at system level. The most relevant issues derive
from the transducer’s parasitic capacitance 𝐶ᑤ:

• 𝐶ᑤ creates an unwanted “branch” in the loop filter of the modulator (see Figure 2.6),
which goes in parallel with the main noise-shaping transfer function. The additional path
adds a differentiated version of the feedback signal to the output of the amplifier. The
feedback signal looks like a staircase (as the outputs of many multi-bit DACs), therefore
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Figure 2.6: Representation of the voltage-feedback structure with a realistic position for the DAC (left) and corre-
sponding linear model (right)

its spectral content also includes very high frequencies. If this signal gets differentiated,
the result is a series of positive and negative spikes which will overlap with the desired
output of the amplifier.

• Let us examine the transfer function of the noise introduced by the amplifier and by the
DAC, after opening the ΣΔ loop (this situation is shown in Figure 2.7). The result is shown
in Figure 2.8: the transfer function converges to the specified value for 𝐴, the open-loop
amplifier gain. This is because, at high frequencies, the big capacitor 𝐶ᑤ behaves like a
short, effectively forcing the amplifier to work in an open-loop fashion. A high value for
the amplifier gain guarantees that the input impedance of the trans-impedance amplifier
is low and that the DAC voltage on the positive terminal is precisely copied at the negative
one, however, at the same time, it increases the thermal noise gain at high frequencies.
This noise, which should be the main noise contributor of the entire system, can end up
having an rms value much greater than that of the intended signal, thus it will dither the
quantizer, making its output only weakly dependent on the acoustic input signal.

An easy way to solve the second problem that was brought up is adding a low-pass filter
between the amplifier and the quantizer. However, by doing that, it is very easy to compro-
mise the modulator stability, as a low-pass filter shapes the quantization noise in an unwanted
manner. More importantly, the current spikes generated by 𝐶ᑤ and converted in voltage by the
feedback resistor will also have to go through this hypothetical low-pass filter. This causes
the output of the amplifier to contain a series of slow (depending on the cut-off) exponential
decays with a much higher swing than the small signal coming from the transducer.
Therefore, adding a low pass filter in order to attenuate the thermal noise of the amplifier and
the DAC, amplified by the relative transfer function, has to be combined with a way to eliminate
the previously discussed current spikes. This will be the main topic of the next Section.

2.4. Transducer’s Capacitance Compensation
2.4.1. Negative Capacitance Circuits
A way to compensate for the transducer’s parasitic capacitance is adding a “negative capac-
itance” of the same value in parallel with it. The resulting shunt impedance, in case of no
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mismatch, will be 𝑍ᑖᑢ = (𝑠𝐶ᑤ + 𝑠(−𝐶ᑤ))ᎽᎳ = ∞.
Of course, negative capacitances cannot be obtained using passive components, but a circuit
with a negative input capacitance can be achieved using positive feedback, as explained in
Figure 2.9. An auxiliary amplifier is added, in order to provide the loop gain needed for the pos-
itive feedback. The input impedance of such a configuration can be shown to be 𝑍ᑚᑟ = −

ᑉᎳ
ᑉᎴ

Ꮃ
ᑤᐺᑔ

.
The capacitance 𝐶ᑔ can therefore be scaled down, in order to save silicon area. This solution
automatically solves both the problems described in the previous section, however the price
to pay is too high: in fact, the auxiliary amplifier should be extremely fast, in order to source
the current needed to compensate the one that arises from the parasitic capacitance, before
it flows in the feedback of the first stage amplifier. This solution also requires good matching
between the parasitic capacitance and the corresponding negative capacitance: in case the
latter becomes bigger in absolute value than the former, even at a frequency that is out of the
bandwidth of interest, the modulator could become unstable.
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Figure 2.9: Schematic of the voltage-feedback structure with negative capacitance compensation.

2.4.2. Switched Feedback Configuration
Another way to address the problem of the current spikes is illustrated in Figure 2.10. Here,
the feedback resistor gets shorted when the DAC changes its value. In this case, the current
needed to charge up 𝐶ᑤ to the new level is still provided by the first stage amplifier, however,
it will not cause a voltage drop across the inverting input and the output of the amplifier. This
solution does not need any matched components. The main shortcoming for this configuration
is that the output of the first stage will not be continuous any more, as, at each clock cycle, the
output will be reset to the DAC voltage; in other words, the transimpedance gain becomes zero
for a certain time. This means that the amplifier’s 3𝑑𝐵 point needs to be significantly larger
than the clock frequency, in order to be able to guarantee an acceptable settling behaviour in a
fraction of the clock period. Such a speed (a bandwidth in the order of 1𝐺𝐻𝑧) is only reachable
by spending an unacceptable amount of power. Additionally, the amplifier needs to charge a
potentially large capacitance in a very short time, thus causing slew rate issues.

Furthermore, this switching scheme does not intrinsically solve the noise gain problem
and, in fact, only moves its solution further out of reach. Since the output of the first stage is
not continuous, its spectral content becomes much wider than that of the signal of interest,
therefore, also the low-pass filter needs to be switched, together with any additional circuitry
between the first stage and the quantizer. Thus, the resulting loop filter would show the disad-
vantages of both a continuous-time and a discrete-time modulator, as the sampling operation
happens at the input of the loop filter, rather than the output, like standard 𝐶𝑇ΣΔ𝑀.

2.4.3. Delayed Feedback Configuration
A delayed-feedback configuration (shown in Figure 2.11) was also taken into consideration
to address the previously stated problem. In this architecture, the feedback is not directly
provided to the first stage: instead, in 𝜙Ꮃ, the transducer is pre-charged to the new level
of the modulator’s feedback DAC, while in 𝜙Ꮄ the transducer is newly connected to the first
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Figure 2.10: Schematic of the voltage-feedback structure with time windowing compensation.

stage, while the latter also receives the new voltage level from the DAC. At the beginning
of 𝜙Ꮄ, the voltages at the input terminals of the amplifier will be equal, if one does not take
into consideration the non-idealities introduced by the switching operation. The benefit of this
structure is the fact that the first stage does not have to provide the current needed to charge
up the transducer’s capacitance, as that will be given by the DAC instead. However, the ᑜᑋ

ᐺ
noise associated with the three added switches will appear at the two most critical nodes of
the circuit: the input terminals of the amplifier.
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Figure 2.11: Schematic of the voltage-feedback structure with delayed feedback compensation.

2.4.4. Compensation Capacitance Configuration
The chosen way to compensate for the parasitic capacitance 𝐶ᑤ was adding another explicit
capacitance (𝐶ᑔᑠᑞᑡ in Figure 2.12), connected to 𝐶ᑤ on one side and to a second DAC, syn-
chronous but scaled with respect to the main one, on the other side. A similar “anti-resonance
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cancellation” technique was employed in [29]. The function of this added capacitance is to
provide the current needed for 𝐶ᑤ to be charged to the DAC’s new level. In this solution, this
current does not come from the amplifier, therefore it does not cause a voltage drop across
the feedback resistance. No switching is involved for this method, and no added noise either,
except for the second DAC’s noise, which can be kept low without a penalty in power con-
sumption.

In the right part of Figure 2.12, another version of the same solution is proposed: in this
case, the two DACs are combined into a single element, which will take care of providing the
feedback to the modulator, as well as performing the capacitance compensation as explained
above.
The modulator feedback is obtained by a simple capacitive divider between 𝐶ᑣᑖᑗ and 𝐶ᑔ, while
a copy of 𝐶ᑣᑖᑗ connected to the inverting input of the amplifier provides the compensation cur-
rent. This configuration is similar to the well-known Wheatstone bridge. The capacitance 𝐶ᑔ
should be tuned so that its value is the same as 𝐶ᑤ, this way, the bridge is balanced and the
two amplifier inputs will respond to the DAC signal moving together, thus avoiding to create a
differential signal that could reach the output. The tunability of 𝐶ᑔ and of the reference voltages
of the DAC provides enough flexibility to face the variability of the transducer characteristics.

Unfortunately, this compensation scheme does introduce some vulnerabilities: the DAC
voltage and the compensation capacitor need to be sized carefully. As a matter of fact, if the
additional compensation current is larger in absolute value than the one which it should can-
cel, the feedback becomes positive and the modulator will quickly become unstable. In other
words, if 𝐶ᑔ is larger than 𝐶ᑤ, when 𝐷𝐴𝐶 changes its value, the amplifier’s non-inverting input
will see a lower voltage variation with respect to the inverting input. This causes the amplifier
output to have an opposite polarity with respect to the 𝐷𝐴𝐶 voltage, which causes the positive
feedback.

Furthermore, this topology only solves the current spike issue that was discussed in Sec-
tion 2.3.1, but does not affect the noise issue related to the capacitance 𝐶ᑤ. As a matter of fact,
this effect will be exacerbated by adding 𝐶ᑣᑖᑗ, which effectively sits in parallel with 𝐶ᑤ. For this
reason, high frequency noise should be extrinsically filtered before reaching the quantizer.
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Figure 2.12: Schematic of the voltage-feedback structure with added compensation capacitance.
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2.5. Design Flow
As explained in the previous sections, the basic idea on which this project is based is rea-
sonably simple. Nonetheless, its implementation introduced many challenges to overcome
and many trade-offs to ponder. In particular, the peculiarities of this modulator make it unfit
for most of the techniques commonly used in order to derive and optimize the loop filter co-
efficients. The usual synthesis of a continuous-time, band-pass modulator follows the steps
described below:

• Choose the oversampling ratio and therefore the sampling frequency and the nature and
number of bits of the quantizer, so that the SQNR specification can be reached.

• Select one of the standard modulator topologies, such as feedforward and feedback.

• Synthesize an optimal NTF for the required specifications, in the form of a discrete-time,
low-pass transfer function.

• Convert the low-pass modulator into its respective band-pass version, using the well-
known transformation 𝑧 → −𝑧Ꮄ, which conserves many of the characteristics of the orig-
inal converter, most importantly stability and SQNR.

• Obtain the continuous-time implementation (in terms of loop filter coefficients), applying
the Impulse Invariant Transform, or equivalent, to the discrete-time transfer function.

The main reason why this procedure could not be applied is that the design space has many
intrinsic constraints that are forced by the transducer’s coefficients: as amatter of fact, the loop
filter transfer function will be dominated by that of the transducer, especially in the case of a
first-order modulator. These constraints are defined for a 𝐶𝑇𝐵𝑃ΣΔ𝑀, but should be somehow
accounted for at the beginning of the synthesis chain, in a discrete-time, low pass environ-
ment.
Furthermore, the 𝑧 → −𝑧Ꮄ transformation can only be applied if 𝑓ᑔ =

ᑗᑤ
Ꮆ , where 𝑓ᑔ is the center

frequency and 𝑓ᑤ the sampling rate. This requirement introduces a heavy limitation in the OSR
selection. In this work, 𝑓ᑔ and the desired bandwidth are specified by the application, as they
are related to the resonance frequency and the Q factor of the piezoelectric element. A sam-
pling frequency of 𝑓ᑤ = 4𝑓ᑔ = 20𝑀𝐻𝑧 would limit the OSR to 𝑂𝑆𝑅 = ᑗᑤ

Ꮄ⋅ᐹᑎ = ᎴᎲᑄᐿᑫ
Ꮄ⋅Ꮅ.ᎹᎷᑄᐿᑫ = 2.7,

which would leave no space in the frequency domain for the noise shaping to suppress quan-
tization noise.
Finally, the modelling of a tracking quantizer (see Section 2.5.4) in the 𝑍 domain can be quite
bothersome, as one has to account for the peculiar kind of non-linearity that is typical for this
quantizer.

For these reasons, a different, more generic design flow was chosen for the task of se-
lecting an architecture: the major trade-offs were evaluated one by one trying to implement a
working prototype on Matlab/Simulink for each situation and evaluating the obtained results
and the relative costs, mainly in terms of power and area. The parameter tuning, needed to
reach the best performance, was done through a simple genetic algorithm, which automatically
randomizes the variables of the system starting from the last best result obtained, seeking an
optimum set of parameters. Boundaries were added on the variables that define the critical
specifications of the system, such as power consumption and silicon area.
The rest of Section 2.5 will focus on the main arguments that were used in order to converge
towards a specific solution within a very wide design space: a continuous-time, first order,
3-bit band-pass ΣΔ modulator, employing a tracking quantizer.
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2.5.1. Bandpass vs. Low-pass Modulators
The reason why a band-pass architecture was preferred over a low-pass one is described in
detail in Section 2.3. In practice, this is the only implementation which allows us to advan-
tageously use the transducer as a loop filter. However, it is beneficial to briefly describe the
features of interest in a band-pass structure. Such a modulator, especially in its continuous-
time flavour, has been heavily featured as the converter of choice for the direct digitization
of RF signals in telecommunication applications ([30], [31]): in this field, converters require a
generally low bandwidth centered around a high frequency carrier. As a matter of fact, the
𝐵𝑃ΣΔ𝑀 is able to focus its performance on a specific band of interest. On the other hand,
Nyquist-rate ADCs and 𝐿𝑃ΣΔ𝑀𝑠 usually have a bandwidth that extends from 0𝐻𝑧 to the upper
edge of the band of interest, effectively wasting power over a bandwidth that does not contain
any desirable signal [32]. In this aspect, the ultrasound world is similar to that of telecommu-
nications, however, while in the latter the bandwidth is much lower than the center frequency,
in the ultrasound case these two frequencies are comparable, mitigating the advantage de-
scribed above.

2.5.2. Continuous-time vs. Discrete-time Modulators
Above all, the reason why a CT implementation was selected is that the filtering character-
istics of the transducer are naturally continuous-time. The arguments provided below also
prove that a CT modulator is the preferable candidate for this application. First of all, one of
the main advantages of CT architectures with respect to their DT counterparts is that, in many
cases, they do not require an anti-aliasing filter. This can be easily understood, considering
that, in case of CT modulators, the sampling operation only takes place once the signal has
reached the quantizer. Thus, the loop filter effectively acts as an anti-aliasing filter too. On
the contrary, DT loop filters rely on explicit anti-aliasing filtering to suppress out-of-band spuri-
ous components. This advantage becomes especially important for low OSR, high frequency
modulators, such as the one described in this thesis, because the requirements of an ade-
quate anti-aliasing filter would become very strict. [33] Additionally, the amplifiers needed for
the switched-capacitor circuits in DT modulators need to have a higher bandwidth with respect
to the clock frequency, so that they can safely settle within one clock period. This means that
these amplifiers will have to burn more current and, more importantly, that the noise bandwidth
of the system will be high compared to CT modulators, causing high frequency noise to fold
in the bandwidth of interest.

DT modulators, on the other hand, show an improved linearity performance, as they are
not limited by the intrinsic non-linearity of integrated resistors or 𝑔ᑞ stages used in CT loop
filters. However, linearity is not the most stringent specification to meet in this work.
Another desirable feature of DT modulators is the fact that their transfer function in the 𝑍 do-
main is independent of frequency, while in their CT counterpart, the design has to be centered
at a specific sampling frequency. The tolerance of DT modulators to delay in the feedback
path, as well as jitter, is also superior. Finally, the accuracy of the DT loop filter coefficients is
defined with a capacitance ratio, therefore they can be very precise. Unfortunately, the limiting
factor for the accuracy of the modulator coefficients in this design is that of the components in
the transducer’s electrical model.

2.5.3. Multi-bit vs. Single-bit Quantizers
A multi-bit quantizer was selected for this design, mainly because it helps in reducing the
quantization noise to be suppressed by the noise shaping, thus enabling the modulator to
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reach a higher SQNR. A multi-bit quantizer also yields many other advantages over a single-
bit comparator:

• The error signal that enters the modulator has a much lower root mean squared value,
as the LSB becomes exponentially smaller for every bit added to the quantizer: 𝜖ᑣᑞᑤ =

ᑍᑣᑖᑗ
(ᎴᑅᎽᎳ)√ᎳᎴ .

• Because of the reduced swing of the error signal, the implementation of the loop filter
becomes less constrained in terms of swing, and the distortion is limited.

• Themodulator behaves in a less chaotic manner, because themagnitude of the feedback
is proportional to that of the input of the quantizer, and not only to its polarity, therefore
it tracks more closely the modulator’s input.

• The quantizer gain is well defined and linear (if the modulator is not overloaded). This
feature improves the stability performance of the modulator, as it allows for a higher input
amplitude, compared to the DAC reference voltage(s).

• The jitter sensitivity is reduced [33], especially if combined with a Non-Return to Zero
DAC. This happens because the influence of each feedback step, and its timing, be-
comes less dominant in the modulator performance.

All of the advantages listed above have been exploited in this design: the swing of the internal
nodes of the modulator is kept low; the fact that the converter is less chaotic enables the use of
a tracking quantizer, saving area and power; the stability is less dependent on the parameters
of the input signal and on the transducer characteristics. Finally, the modulator is not very
sensitive to jitter, as shown in Section 2.6.3.
The advantages of single-bit architectures are mostly the reduced complexity and the inherent
linearity of a 2-level comparator and DAC. However, the ultrasound image quality is typically
not distortion-limited, therefore the use of a single-bit quantizer is not justified. The increased
complexity of a multi-bit quantizer has to be dealt with carefully, in order to avoid a proportional
increase in power dissipation and silicon area. This problem is discussed in detail in Section
2.5.4.

2.5.4. Tracking Quantizer
The obvious pitfall of introducing in any modulator a multi-bit quantizer is that the increase in
resolution must be paid with a higher power, area and complexity. The standard and most
used quantizer architecture for all kinds of oversampled ADCs is the flash topology. Their
popularity is due to the fact that ΣΔ modulators rely on a discrete-time feedback that must be
provided, when possible, immediately after the quantizer reaches a decision, with virtually no
delay. Flash ADCs only need one clock edge (plus the comparators’ delay) per conversion,
thus making them fit for this application. However, the power and area consumptions for such
converters are proportional to 2ᑅ, where N is the number of bits. Even a simple 3-bit flash
quantizer needs 7 comparators, clocked at every cycle. If the sampling frequency is high, the
power consumed by the comparators can be easily compared to that of the low-noise, high-
accuracy analog blocks in the modulator, which is undesirable at best.

A solution to this problem is employing SAR quantizers instead [34]. This allows for a
substantial reduction in area and power , together with superior scalability, but the downside
is that SAR ADCs lack in the most important feature for a quantizer embedded in a ΣΔ loop:
small latency. In fact, for each conversion they need a number of clock cycles equal to the
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converter’s number of bits. This means that, in order for the modulator to be stable, the SAR
quantizer should be clocked at a speed of 𝑁 times higher than the main ΣΔ loop. Such a
speed would not be practical, and it would yield serious implementation issues in a 0.18𝜇𝑚
technology. Furthermore, the comparator would be clocked three times per cycle, and should
have a very low propagation delay, thus a high power consumption; also the SAR logic, at the
speed in question, would have a far from negligible power consumption.

A way to achieve multi-bit quantization with a minimal increase in power consumption with
respect to a single comparator is by means of a tracking ADC ([35], [36], [37], [38]): this
converter architecture combines the advantages of the previously mentioned architectures. It
only needs one clock cycle per conversion and the number of comparators is fixed with respect
to 𝑁. The working principle of a tracking quantizer is based on the fact that each conversion
is to be interpreted with respect to the previous cycle, rather than in absolute terms, similarly
to Delta modulation. A practical way to achieve this is adding a feedback loop around the
comparators, through some DACs, which updates their references based on the last outputted
value.
In the specific implementation that was adopted in this design, captured in Figure 2.13, only
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Figure 2.13: Block diagram of the proposed tracking quantizer.

two comparators were employed: the purpose they serve is to keep the input signal between
an upper and a lower reference voltage, which get updated every cycle, as show in the top part
of Figure 2.14. After the comparators make their decision, if they are both low, the references
will not be updated. On the other hand, if the top comparator reaches a high value, it means
that the input voltage was determined to be higher than the upper reference. The opposite is
true for the bottom comparator. From the outputs of these two comparators (depicted on the
bottom half of Figure 2.14) it is possible to reconstruct the quantized input signal 𝑄, provided
that the input stays within the quantizer’s full scale range:

𝑄 =
ᑅ

∑
ᑟᎾᎳ

𝐼𝑁𝐶(𝑛) − 𝐷𝐸𝐶(𝑛) (2.3)

If this is not the case, a simple overrange protection circuit will make sure that 𝑂𝑈𝑇0 and 𝑂𝑈𝑇1
stay low after the quantizer has reached respectively the highest and the lowest values. A 3-
bit logic cell, similar to an up-down counter, calculates the multi-bit output of the modulator
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Figure 2.14: Visual explanation of the tracking quantizer principle and of Slope Overload Distortion.

(based on the comparators’ decision and the stored value of the previous cycle) which is then
fed back to the DACs and to the modulator’s input node. A careful eye could notice that the
second DAC in the figure is redundant, as its digital input is shared with the first and the output
is always one 𝐿𝑆𝐵 apart with respect to that of the first DAC. However, both DACs made the
final design, for the sake of simplicity and better matching.

Slope Overload Distorsion (SOD)
The price to pay for such an efficient modulator is that, in the way it is implemented in this
design, it can only tolerate a change in the input signal of one LSB per cycle. This poses
a limitation on the maximum slope that the input signal may have, and causes the output to
be distorted if this requirement is not met. This kind of distortion is called Slope Overload
Distortion, and its characteristic shape is shown on the right part of Figure 2.14. Of course,
increasing the number of bits without changing the sampling frequency will result in a slower
response, and SOD will happen at lower frequencies. In mathematical terms, the maximum
slope of the signal should be lower than the LSB divided by the sampling period:

max [ 𝑑𝑑𝑡𝐴 sin𝜔𝑡] <
𝐿𝑆𝐵
𝑡ᑤ

→ 𝜔𝐴 <
𝑉ᑣᑖᑗ

(2ᑅ − 1)𝑓ᑤ → 2
ᑅ < 𝑉ᐽᑊ𝑓ᑤ

2𝜋𝑓ᑞᑒᑩᑚᑟ 𝐴 + 1 (2.4)

Assuming the input amplitude to bemaximum, and equal to ᑍᐽᑊ
Ꮄ and𝑂𝑆𝑅 = ᑗᑤ

Ꮄᑗᑞᑒᑩᑚᑟ
this equation

can be further simplified into 2ᑅ < Ꮄ
ᒕ𝑂𝑆𝑅 + 1. This result further justifies the choice of a

tracking ADC as the quantizer in a ΣΔ loop, which is, by definition, oversampled. However,
the designer should choose an NTF that does not allow excessively chaotic behaviour, else
SOD will affect the noise shaping characteristic. In this design, system-level simulations of the
full modulator, including many imperfections, were performed with a standard flash quantizer
and with a tracking ADC. The results in terms of SNR were found to be the same, and the
probability of the flash quantizer to change its value of more than one step per cycle was
calculated to be 0.005%.
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Table 2.1: Possible design choices for similar resulting SQNR performance

Sampling Frequency (𝑓ᑤ) 200MHz 120MHz 170MHz 80MHz 350MHz 750MHz
Oversampling Ratio (𝑂𝑆𝑅) 26.6 16 22.6 10.7 46.6 100
Filter Order (𝐿) 1 1 2 2 1 1
Quantizer Bits (𝐵) 3 4 1 3 2 1
Estimated SQNR 56.3dB 56.2dB 56.6dB 57.2dB 56.2dB 56.6dB

2.5.5. Design Parameters
Input Amplitude
The modulator’s input amplitude can be derived from the noise associated with the resistance
in the electrical model of the transducer. As discussed in Section 1.4, the desired minimum
signal to noise ratio is 50𝑑𝐵 in a 3.75𝑀𝐻𝑧 bandwidth. Let us also assume that the total in-
put referred noise of the ADC should be equal to that of the resistor, so that, independently,
they would yield a 53𝑑𝐵 signal to noise ratio. The minimum input signal amplitude, modelled
as a sinusoidal voltage source in series with the transducer’s resistor (𝑅 = 9448Ω), can be
computed as:

𝐴ᑞᑚᑟᑚᑟ = 10
ᎷᎵᑕᐹ
ᎴᎲ 𝜎ᑟ√2 = 10

ᎷᎵᑕᐹ
ᎴᎲ √4𝑘ᐹ𝑇𝑅 ⋅ 𝐵𝑊√2 = 15.3𝑚𝑉 (2.5)

The maximum input amplitude that the modulator should be capable of processing is the min-
imum one multiplied by the TGC range, which is assumed to be 25𝑑𝐵:

𝐴ᑞᑒᑩᑚᑟ = 10
ᎴᎷᑕᐹ
ᎴᎲ 𝐴ᑞᑚᑟᑚᑟ = 272.5𝑚𝑉 (2.6)

Sampling Rate, Modulator Order and Quantizer Bits
In order to determine the oversampling ratio, and therefore the sampling frequency for the
modulator, a few assumptions have to be made. The signal to quantization noise ratio (𝑆𝑄𝑁𝑅)
should be between 5𝑑𝐵 and 10𝑑𝐵 greater than the target 𝑆𝑁𝑅, so that the resolution of the
modulator can be fully thermal-noise limited. In order to get a rough estimation of the 𝑆𝑄𝑁𝑅
that can be achieved with a specific set of design parameters, Equation 2.7 was used from
[39], where 𝐿 is the modulator order and 𝐵 is the number of bits for the quantizer.

𝑆𝑄𝑁𝑅 = 10 log (3(2
ᐹ − 1)Ꮄ(2𝐿 + 1)𝑂𝑆𝑅ᎴᑃᎼᎳ

2𝜋Ꮄᑃ ) (2.7)

In Table 2.1, a few sets of parameters, achieving an acceptable SQNR, are shown.
It is important to notice how the oversampling, independently of the additional noise shaping,
aids the SQNR. As a matter of fact, an ADC with only 3 bits and no noise shaping (such as
the quantizer in this design) sampled at 200𝑀𝐻𝑧 yields a theoretical SQNR of:

𝑆𝑄𝑁𝑅 = 6.02𝐵 + 1.76 + 10 log ( 𝑓ᑤ𝑓ᑅ
) = 6.02𝐵 + 1.76 + 10 log ( 200𝑀𝐻𝑧

2 ⋅ 3.75𝑀𝐻𝑧) = 34𝑑𝐵 (2.8)

This resolution is much higher than the 20𝑑𝐵 achieved by the same ADC clocked at Nyquist-
rate.

The last two columns of Table 2.1 have to be discarded as they require a very high sam-
pling frequency, which would make the quantizer (even if only composed of one comparator)
much more power hungry than the analog part of the modulator. The second column was
also not thoroughly investigated, as a 4-bit quantizer cannot be implemented with a tracking
ADC, because the constraint described by Equation 2.4 is not satisfied. We are left with three
possible implementations, which were carefully simulated at system level:
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1. First order, 3-bit with tracking quantizer, 200𝑀𝑆/𝑠

2. Second order, 3-bit, 80𝑀𝑆/𝑠.

3. Second order, 1-bit, 170𝑀𝑆/𝑠.

First of all, it is worth to notice that a second order 𝐶𝑇𝐵𝑃ΣΔ𝑀 would require the imple-
mentation of a second resonator, for example the one proposed in [40]. In order for it to be
effective, it needs to have a moderately high Q factor (5-10), so that it significantly lowers the
quantization noise in the bandwidth of interest. This requires high gain (40 − 50𝑑𝐵) around
the resonance frequency in the amplifier embedded in the resonator, which will therefore have
a UGBW above 500𝑀𝐻𝑧. This requires the amplifier’s 𝑔ᑞ to be big in order to accommodate
such a large bandwidth, therefore the second stage could consume more power than the first,
depending on the loading. For example, the resonators implemented in [40], for a modulator
with similar specs, consume over 1𝑚𝑊 each.
Stability should also be guaranteed in a second order system, which would require at least a
feed-forward path, a summation node just before the quantizer, and a feedback DAC around
the quantizer, as without the latter, the system does not tolerate any ELD. On the other hand,
a second stage would intrinsically filter out much of the high frequency noise added by the
first stage, therefore relaxing the noise specifications for it. However, this advantage does not
necessarily reduce the power consumption of the first stage, because its 𝑔ᑞ should be high
enough to reach its bandwidth requirements.

Let’s consider in particular case 2: here, the main advantage is a reduced output sample
rate, and therefore a lower digital power. However, in this case, a tracking quantizer should
not be employed, even if Equation 2.4 is almost met. This is because this converter does not
support a chaotic behaviour (see Section 2.5.4), as it cannot keep up with high frequency, high
amplitude changes in its input. This means that the quantization noise cannot be shaped up to
very high frequencies and instead the NTF will flatten a bit before the Nyquist frequency. Since
there is less than a decade between the resonance frequency and the Nyquist frequency, the
quantizer needs to be chaotic, i.e. toggle at almost every clock cycle. If this doesn’t hap-
pen, the predicted SQNR cannot be reached. An acceptable performance is achieved at
𝑓ᑤ = 150𝑀𝐻𝑧, but this sample rate is very similar to that of case 1), thus making the advan-
tage of the second stage negligible. Also, using a flash quantizer would yield a total data
rate comparable to case 1), as it would generate 3 bitstreams at 80𝑀𝐻𝑧 each, serializable to
240𝑀𝐻𝑧, against the 2 ”1.5 bit” bitstreams at 200𝑀𝐻𝑧 of 1). This is also the most expensive
option in terms of design time as it is the most complex to implement.

Let’s now consider case 3: The main advantage is having a single bit output. This makes
the DACs and the successive digital electronics easier to implement and reduces the digital
power significantly. Also, since there is only one threshold in the quantizer, the loop gain in
theory doesn’t need to be dynamically adjusted by the time-gain compensation mechanism,
although the system should be designed to be stable for a wide range of input amplitudes,
which is not trivial. We can also see this as the quantizer not having a defined gain. This gain
uncertainty, together with the phase uncertainty of a single bit quantizer and the low OSR re-
quires a sampling frequency that is higher than the predicted one in Table 2.1 in order to reach
the given SQNR. System level simulations suggest a sampling rate around 250𝑀𝐻𝑧. Again,
this is comparable to case 1) and requires a faster quantizer, instead of two slower ones. An-
other disadvantage is that having only one bit, the error signal entering the sigma-delta loop
has a high swing, as discussed in Section 2.5.3.
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Ultimately, solution 1 was selected and implemented in silicon. The high sampling fre-
quency is needed to reach the desired SQNR, however, since it is not a very chaotic system,
the digital output only changes on 37% of the clock cycles on average, therefore reducing
the digital power and adding space for some compression in future implementations. Further
power and area are saved as this solution does not require a second resonator. The main
disadvantage here is the extrinsic filtering that needs to be provided in order to attenuate the
thermal noise of the first stage. This filtering does not introduce any power or area penal-
ties, but it tames the naturally chaotic behaviour of the modulator, sacrificing SQNR. For this
reason, there is a direct trade-off between SNR and SQNR, as they cannot be optimized sep-
arately, thus the SQNR will be rarely discussed, in favour of its more realistic version, which
includes thermal noise. In this implementation, the noise shaping function is entirely up to
the transducer, making such a system intrinsically matched with the piezoelectric element’s
characteristics, but also basing the modulator’s performance, particularly its stability, on the
transducer modelling and on the repeatability of its fabrication steps. For these reasons, this
design has a high risk factor, and should be made as insensitive as possible to transducer
variations.

2.5.6. Architecture of Choice
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Figure 2.15: Simplified block-level schematic of the chosen architecture.

In this Section, more details will be given on the block-level implementation of the proposed
design, shown in Figure 2.15, before explaining the transistor-level topologies of each funda-
mental block in Chapter 3. The starting point is shown in Figure 2.12. The DAC is implemented
through a group of seven inverters: each one has two supplies, 𝑉ᑉᐼᐽᎼ and 𝑉ᑉᐼᐽᎽ, shared be-
tween all inverters and tunable from outside the chip. The advantage of this configuration is
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that it only requires two reference voltages, rather than one per level, making the routing of
the array much easier while still enabling multi-bit feedback. Furthermore, the linearity of such
a DAC, which determines the distortion performance of the entire modulator, is only limited
by mismatch in the capacitor banks. The inputs of the inverters are thermometer-coded 1.8V
logic signals coming from the quantizer. In order to size the capacitance 𝐶ᑣᑖᑗ one can assume
that when the logic level at the input of one inverter changes, the output will move from 𝑉ᑉᐼᐽᎼ
to 𝑉ᑉᐼᐽᎽ, or vice versa. As a response to that, the DAC voltage has to change by one LSB:

𝑉ᑃᑊᐹᐻᐸᐺ = (𝑉ᑉᐼᐽᎼ − 𝑉ᑉᐼᐽᎽ)
𝐶ᑣᑖᑗ

𝐶ᑤ + 7𝐶ᑣᑖᑗ
→ 𝐶ᑣᑖᑗ =

𝐶ᑤ
ᑍᑉᐼᐽᎼᎽᑍᑉᐼᐽᎽ

ᑍᑃᑊᐹᐻᐸᐺ
− 7

(2.9)

𝑉ᑃᑊᐹᐻᐸᐺ can also be written as Ꮄᐸᑚᑟᑜᐻᐸᐺ
ᎴᐹᎽᎳ , where 𝐴ᑚᑟ is the transducer’s input voltage, while 𝑘ᐻᐸᐺ

is a coefficient, between 1 and 2, which accounts for the fact that the feedback voltage of a ΣΔ
modulator should be slightly higher than its maximum input amplitude.

A tunable resistor 𝑅ᑔ was added in series with the tunable capacitor 𝐶ᑔ, in order to com-
pensate for the transducer’s high frequency behaviour (see Section 1.2).
The first stage has been implemented as an Operational Transconductance Amplifier (OTA), in
order to save the power needed for the output buffer of an OPAMP, as a low output impedance
or a superior driving capability is not required.
A feedback capacitor 𝐶ᐽ was connected in parallel with the already discussed 𝑅ᐽ. This is not
to be intended as an integration capacitance, as its impedance in the bandwidth of interest
is much higher with respect to 𝑅ᐽ; the main functions of 𝐶ᐽ are placing a known pole in the
transfer function of the first stage, while providing a low impedance path for the high frequency
currents that could arise from an imperfect capacitance compensation.
Furthermore, a second stage was cascaded after the first one. This stage serves multiple
purposes:

• It provides the first stage with a low input capacitance to drive.

• It filters the high frequency noise, in order to avoid the negative effects discussed in
Section 2.3.1.

• It adds a gain between the first stage and the quantizer, so that the latter may have a
manageable full scale range, even when the input signal is very small, effectively reduc-
ing the impact of the comparator noise on the modulator’s performance.

• It provides a variable gain, which can be tuned dynamically to accommodate for the
changes in the input signal’s amplitude during the receive phase, as explained in Section
1.4.

• Since the second stage provides much of the amplification needed before the quantizer,
the first stage can have a lower gain, therefore reaching a higher bandwidth for the same
power consumption.

Finally, the architecture now has a reset phase, where the common mode voltage 𝑉ᐺᑄ,
typically at ᑍᐻᐻᎴ is forced on the non inverting pin of the first stage, while both stages’ feedback
is shorted by a switch, configuring them as unity-gain buffers. The reset phase also disables
the clocks entering the tracking quantizer. This phase is needed to force the circuit in a known,
stable initial condition, with all the floating nodes charged at the correct voltage, before actually
starting the receive phase.
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Table 2.2: Design parameters

First Stage Second Stage 1ᑤᑥ Stage Feedback Sampling Modulator Feedback
𝑔ᑞ = 3

ᑞᐸ
ᑍ 𝑔ᑞ = 0.4

ᑞᐸ
ᑍ 𝑅ᐽ = 100𝑘Ω 𝑓ᑤ = 200𝑀𝐻𝑧 𝑘ᐻᐸᐺ = 1.05

𝑅ᑆᑌᑋ = 23𝑘Ω 𝑅ᑆᑌᑋ = 132𝑘Ω 𝐶ᐽ = 100𝑓𝐹 Bandwidth=75% 𝑉ᑉᐼᐽᎼ − 𝑉ᑉᐼᐽᎽ = 31𝑚𝑉
𝐶ᑆᑌᑋ = 250𝑓𝐹 𝐶ᑆᑌᑋ = 120𝑓𝐹 𝑓ᑔ = 4.98𝑀𝐻𝑧 𝐸𝐿𝐷 = Ꮃ

Ꮄᑗᑤ

2.6. System-Level Simulation Results
2.6.1. Signal and Noise Transfer Functions
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Figure 2.16: System-level Simulink simulation for the final architecture

A Simulink model of the system described in Figure 2.15 has been implemented and sim-
ulated (see Figure 2.16); in this representation, many non-ideal effects were introduced in
order to evaluate their effect on the performance of the modulator, such as ELD and noise
associated with 𝑅, 𝑅ᐽ, 𝑔ᑞᎳ and 𝑔ᑞᎴ. Furthermore, the highest gain setting was selected, in
order to consider the worst case scenario in terms of noise. The OTAs were modelled with a
finite 𝑔ᑞ and an output load formed by a shunt resistor and capacitor. The second stage in
this simulation is modelled as a simple open loop transconductance. The values used in this
simulation are shown in Table 2.2, and were found using the genetic algorithm described in
Section 2.5.

The band-pass characteristic is evident. One might also notice how the quantization noise
flattens, and actually starts to decrease, near ᑗᑤᎴ . This happens because the bandwidths of
the first and the second sages do not reach ᑗᑤ

Ꮄ as they would in a normal modulator. Also
the tracking quantizer introduces an additional bandwidth limitation, as discussed in Section
2.5.4. As Figure 2.16 depicts, the behaviour shown by the Simulink model of the modulator
in terms of noise transfer function matches quite well with the theoretical model extrapolated
using the linear approximation. It is also interesting to notice how the STF does not show the
narrow band-pass frequency response that is characteristic of ultrasound transducers (which
is highlighted by the NTF shape around resonance), as instead, it stays rather flat across the
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whole bandwidth of interest and further. This effect seems to suggest that the modulator’s
electrical feedback could modify the intrinsically narrow frequency response of the transducer
and widen its bandwidth, which is a very desirable feature in ultrasound systems. Another
way to see this effect is by realizing that the modulator works in order to minimize the voltage
drop (and therefore the current) across the 𝑅𝐿𝐶 branch by providing a quantized, discrete-time
version of the input signal on the other side of the 𝑅𝐿𝐶 branch. Pushing this to the extreme,
let us assume an infinite sampling frequency and resolution: in this case, there will never be
any voltage drop across the 𝑅𝐿𝐶 branch, so the narrow-band filtering of the input signal that
usually takes place will not happen any longer. This phenomenon considers the bandwidth
of the system as purely defined by electrical quantities. However, the real resonance occurs
in the mechanical domain, which is only partly coupled with the electrical one. Therefore, the
described effect could not be representative of the reality, because of the transducer model
limitations concerning the conversion between the two domains.

2.6.2. Step Response
Figure 2.17 shows a comparison between the step response of the transducer and that of the
complete system. Note that the vertical scale is different for the two charts. The modulator’s
step response is proposed in two representations: as the pure digital output, reconstructed
with a virtual DAC and its band-pass filtered version, using a FIR filter with 224 coefficients
and the same bandwidth as the modulator (3.125𝑀𝐻𝑧 − 6.875𝑀𝐻𝑧). Here, the transducer
response seems to take much longer to settle with respect to the full system, this can be
explained observing again Figure 2.16: the STF, which is the transfer function that the step
sees, is much broader than that of the pure transducer, thus the effective 𝑄 factor becomes
lower, the bandwidth higher and the oscillations will experience a stronger damping factor.
This effect can help telling apart echoes with similar arrival times, additionally, it reduces the
attenuation experienced by the harmonics of the main transmit frequency, enabling a better
SNR in case harmonic imaging is an application of interest.
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Figure 2.17: System-level Simulink simulation of the modulator’s step response, compared to that of the trans-
ducer.
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2.6.3. Jitter and ELD sensitivity
The implemented modulator shows a very low sensitivity to jitter, that is, the cycle-to-cycle
variation associated with the clock arrival time. As a matter of fact, the system can tolerate a
nominal jitter almost as high as 𝜎ᑛ =

Ꮃ
ᎳᎲᑗᑤ

= 500𝑝𝑠 without a significant performance drop, as
shown in Figure 2.18. The reason for this effect is that the target SNR is low, thus the noise
added by the jitter is almost insignificant with respect to the modulator quantization noise and
thermal noise. We can use an equation from [33] to estimate the in-band noise added by the
jitter in a ΣΔ modulator featuring a Non-Return-to-Zero, multi-bit DAC in the feedback path, as
in this case:

𝐼𝐵𝑁ᒗᑛ ≈
𝑉Ꮄᑣᑒᑟᑘᑖ
(2ᐹ − 1)Ꮄ(

𝜎ᑛ
𝑇ᑤ
)
Ꮄ 2
𝑂𝑆𝑅 (2.10)

Where 𝑉ᑣᑒᑟᑘᑖ is the full-scale range of the DAC and 𝐵 is the number of bits in the quantizer.
Assuming a full scale, sinusoidal input and plugging in the parameters of this specific modula-
tor, the allowed clock jitter can be estimated, which is roughly in line with the parameter obtain
by simulation:

𝜎ᑛ = √𝑂𝑆𝑅
2ᐹ − 1

2𝑓ᑤ10
ᑊᑅᑉ
ᎴᎲ

= 286𝑝𝑠 (2.11)

Again, Equation 2.10 shows how a multi-bit quantizer can help reducing the modulator’s sen-
sitivity to jitter, and in general to timing variations. The stability of the system also does not
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Figure 2.18: System-level Simulink simulation showing the SNR degradation caused by a jitter of ᎟ ዆ ኾኻኻ፩፬.

seem to be affected by Excess Loop Delay, up to a simulated propagation delay of 1.8𝑇ᑤ. Such
an extreme tolerance can be explained as such: the block diagrams in Figure 2.6 clearly show
a local feedback branch that goes from the quantizer output to its input, with a sign inversion
(without considering the “transparent” second stage, which does not affect the noise shaping
significantly). This technique is widely used to compensate for ELD [41], and in this design
it comes as a by-product of the selected feedback configuration. The theory behind this ELD
compensation method states that, in order to counter an instability caused by a high ELD, a
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high-speed feedback has to be added around the quantizer, such that it bypasses the loop-
filter at high frequencies. This way, even when the loop filter adds to the signal before the
quantizer a high phase-shift, the quantizer will still see some sort of feedback, thus keeping
its stability. In this work, although the limited bandwidths of the two stages reduce the effec-
tiveness of this high-speed path, the phase-shift caused by the transducer, which is the actual
loop-filter, is still bypassed.
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Figure 2.19: System-level Simulink simulation showing the SNR behaviour while varying the Excess Loop Delay
of the modulator.

2.6.4. Mismatch Effects
There are many parts of the proposed system that are prone to component variations, and
that can therefore possibly give rise to distortion or even instability. The most sensitive blocks
in terms of mismatch are:

1. The compensation capacitor 𝐶ᑔ and resistor 𝑅ᑔ, which have to match 𝐶ᑤ and 𝑅ᑤ as much
as possible, and thus are made tunable.

2. The capacitors 𝐶ᑣᑖᑗ which provide the modulator feedback and the capacitance com-
pensation function.

3. The DACs included in the tracking quantizer (see Figure 2.13).

4. The input differential pairs of the first and second stages, as well as those of the com-
parators.

The other parameters in the loop filter, such as 𝑅ᐽ, 𝐶ᐽ and the gain of the second stage
are not critical, and can accommodate for quite a large variation without compromising the
modulator performance. The matching requirement for 1. has been described in detail in
Section 2.4.4. The effect of a mismatch in 𝐶ᑔ is shown in Figure 2.20: from this chart one
can conclude that the best SNR performance is reached when 𝐶ᑔ is roughly within the interval
𝐶ᑤ − 200𝑓𝐹 < 𝐶ᑔ < 𝐶𝑠 + 50𝑓𝐹, where the nominal parasitic capacitance is assumed to be



40 2. System-Level Design

0.5 1 1.5 2 2.5 3

x 10
−12

0

5

10

15

20

25

30

35

40

45

50
Compensation Capacitance Mismatch Sensitivity

C
c
 [F]

S
N

R
 [d

B
]

 

 

C
s
=2pF

0.5 1 1.5 2 2.5 3

x 10
−12

45

46

47

48

49

50

51

52

Scaling of C
c
, C

s
 and C

ref

C
c
, C

s
 [F]

S
N

R
 [d

B
]

Figure 2.20: System-level Simulink simulation showing the SNR behaviour while varying the compensation ca-
pacitance ፂᑔ.

𝐶ᑤ = 2𝑝𝐹. On the left of this interval, the SNR performance gradually drops because of the
imperfect compensation. In this case, the compensation current is not sufficient to completely
cancel that which arises from 𝐶ᑤ, thus there will be an undesired voltage drop across 𝑅ᑗ in
addition to the intended one, which will reduce the SNR.
On the right of the allowed region of operation the situation is even worse, as the modulator
suddenly becomes unstable due to the now positive feedback path provided by 𝐶ᑔ (see Sec-
tion 2.4.4). This extreme sensitivity to variations in 𝐶ᑔ can be used in the measurement phase
to estimate the parasitic capacitance 𝐶ᑤ within the transducer.

The right part of Figure 2.20, shows how the SNR is affected by a change in 𝐶ᑤ; in this
simulation, 𝐶ᑔ was varied together with 𝐶ᑤ and the values for the feedback capacitors 𝐶ᑣᑖᑗ
were scaled in order to keep the capacitor ratio unchanged. With these assumptions, the
SNR variation is only due to a change in the thermal noise transfer function: a higher 𝐶ᑤ (and
consequently 𝐶ᑔ), will yield a higher thermal noise gain and thus reduce the modulator’s SNR
(see Section 2.3.1).

In the left part of Figure 2.21, the effect of the mismatch among the feedback capacitors
𝐶ᑣᑖᑗ, which implement the feedback DACs, is analysed. These components are likely the
ones that define the distortion performance of the ADC, as the effect of their mismatch is not
attenuated by the noise shaping. To first order, however, the distortion will not affect the in-
band SNDR, as the distortion peaks will fall outside of the bandwidth of interest, for a transmit
frequency of 5𝑀𝐻𝑧.
Nonetheless, if a large mismatch is present among the capacitors 𝐶ᑣᑖᑗ, the large-signal trans-
fer function of the loop filter can be jeopardized, or even lead to instability, and the effect of it
will be visible even in the bandwidth of interest. This seems to be happening when the mis-
match is higher than 1%. Luckily, the expected matching for most of the capacitors in CMOS
technology is better than 1%, thus the SNR performance of the modulator should not be lim-
ited by distortion.
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Figure 2.21: System-level Simulink simulation showing the SNDR variation when a mismatch is introduced in the
feedback DACs (left) and in the quantizer’s DACs (right)

The DACs embedded into the tracking quantizer show an impressive tolerance to mis-
match, as shown in the right part of Figure 2.21 (notice that the 𝑥 axis is scaled differently in
the two subplots): even a mismatch with a standard deviation of 10% does not seem to reduce
the achievable SNDR. The reason is that the distortion introduced by these DACs enters the
modulator at the same point as the quantization noise added by the quantizer, thus the NTF
will suppress its in-band components.
If hypothetically one would apply an input signal with a frequency such that its second-order
distortion is within the bandwidth (for example 3.3MHz), the SNDR will be reduced by the
in-band distortion peak(s) caused by either the feedback DACs or those within the tracking
quantizer, as shown in Figure 2.21.

Finally, the effect of amismatch in the input pairs of the first and second stage will only result
in a very small DC offset: the two stages are AC coupled, so that the offset of the first stage will
not influence the modulator output, while the second stage is periodically auto-zeroed. The
influence of the comparators’ offset will be discussed in detail in Chapter 3.

2.6.5. Time-Gain Compensation Implementation
This modulator should be able to face a large variation in the input voltage amplitude, as
discussed in Section 1.4. In order to accommodate for that, the system has to be adapted
dynamically as the input spans from its maximum to its minimum. First of all, the reference
voltages 𝑉ᑉᐼᐽᎼ and 𝑉ᑉᐼᐽᎽ, acting as the supplies for the inverters in Figure 2.15 need to be
scaled with the input signal. This means that, if the input amplitude follows an exponential,
because of the nature of the attenuation of the acoustic input wave, the reference voltages will
have to follow.
Additionally, the gain of the loop filter within the bandwidth of interest also needs to be scaled,
as it is desirable to have the same amplitude at the input of the quantizer, regardless of the
input signal. Thus, at the beginning of the receive phase, a high gain won’t be needed, while
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Figure 2.22: System-level Simulink simulation showing the time-domain waveforms of the modulator’s critical
nodes for continuous TGC.

at the end, the input signal will have to be amplified in order to take advantage of the complete
full-scale range of the quantizer. This functionality has been implemented with some capaci-
tors in the second stage feedback (visible in Figure 2.15) that can be disconnected during the
receive phase, thus increasing the second stage closed-loop gain.
Figure 2.22 shows the time-domain waveforms in case the input signal, the reference voltages
and the second stage gain are scaled according to the TGC. In particular, the voltages at the
inputs of the first stage track the decreasing input signal, the output of the first stage gets
smaller as time progresses, however, the second stage output and that of the quantizer do
not seem to be influenced by the variation in the input amplitude.
Another possibility would be dynamically scaling directly the tracking ADC’s full-scale, how-
ever, in this case, the comparator noise becomes increasingly significant as the signal gets
smaller, which, of course, is undesirable.

2.7. Conclusion
In this Chapter, all the steps that led to the final architecture were followed. The choice con-
verged on a continuous-time, band-pass, 3-bit ΣΔ modulator, clocked at 200𝑀𝐻𝑧 and featur-
ing a tracking quantizer. The issues associated with the transducer’s capacitance 𝐶ᑤ were
explained, together with a few possible solutions. Finally, an evaluation of the system’s sta-
bility and robustness was performed. In Chapter 3, implementation details concerning all the
blocks that were discussed in this Chapter, and more, will be provided.
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The previous Chapter converged on a block diagram, shown in Figure 2.15, which seems
to satisfy all the system-level specifications. In this Chapter, more details about the topology
choices and the schematics of the implemented blocks will be provided. We will try to focus on
the most critical decisions that were made, rather than extensively conveying all the simulation
results.

3.1. First Stage
3.1.1. Topology Choice
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Figure 3.1: Schematic of the first stage OTA.

The first stage is the most power consuming block in the whole system, as usual in the
field of analog design. The reason is that the noise introduced by the first stage ultimately
defines the total SNR of the system. Thus, a careful topology choice is due, in order to obtain
the desired noise performance without spending too much of the power budget.

The system is intrinsically single-ended, as only one node that interfaces with the trans-
ducer is available, however, the system-level design requires an input-differential first stage,

43
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therefore a differential input, single-ended output topology has to be selected. Undoubtedly,
one of the most efficient OTA implementations is the current-reuse amplifier. Its main ad-
vantage is the fact that it fully exploits the CMOS paradigm, as it is entirely complementary,
using both an NMOS and a PMOS, sharing the same bias current, to provide a voltage to
current conversion. Therefore, current-reuse amplifiers have the power to intrinsically double
the achievable 𝑔ᑞ without spending any additional current in doing so.

These kinds of OTAs have been implemented in many different ways, one that adapts
well to the first stage requirements is proposed in [42]. Here, a differential to single-ended,
current-reuse, self biased amplifier is proposed and referred to as CSDA. The perk of this
implementation is that it does not require a biasing circuit, as both the PMOS and NMOS cur-
rent sources are connected to the unused output of the amplifier, thus effectively creating a
common mode feedback structure.
Additionally, this topology only features one high impedance node, thus it intrinsically has a
dominant pole. However, this topology has two major problems: it has a poor power supply
rejection ratio (PSRR) and a low output swing. A way to partially solve these issues is provid-
ing local feedback on only one of the current sources (𝑉ᑃᐽᐹ), in this implementation the bottom
one (as the ground is thought to be more stable than 𝑉ᐻᐻ), as shown in Figure 3.1. Here,
the use of a current source biased by a local biasing block helps reduce the sensitivity of the
output to transients on the power supply.

3.1.2. Theoretical Behaviour
The differential, small-signal, open-loop DC gain is easily computed and is equal to:

𝐴ᐻᐺᑆᑃ = (𝑔ᑞ,ᑅ + 𝑔ᑞ,ᑇ)(𝑅ᑠᑦᑥ,ᑅ ∥ 𝑅ᑠᑦᑥ,ᑇ) (3.1)

The total input referred power spectral density, neglecting the contribution of the current sources,
is found to be:

𝑣ᑚᑟᑟ,ᑖᑢ = √
8𝑘ᐹ𝑇 ⋅ 𝐵𝑊
3𝑔ᑞ

(3.2)

A careful analysis of the high-frequency small-signal equivalent circuit was performed, which
accounts for the load capacitance 𝐶ᑝᑠᑒᑕ at the drain of the input transistors, 𝐶ᑘᑕ (the parasitic
feedback caps between the drains and the gates of the input transistors) and 𝑅ᑠᑦᑥ,ᑅ,ᑇ (respec-
tively the NMOS’ and the PMOS’ output resistance). 𝑀Ꮈ was assumed ideal, while 𝑀Ꮃ was
modeled by a transconductance 𝑔ᑞ,ᑔ. With these assumptions, the OTA has two zeroes and
two poles:

𝑝Ꮃ,Ꮄ =
1

(𝑅ᑠᑦᑥ,ᑅ ∥ 𝑅ᑠᑦᑥ,ᑇ)(𝐶ᑘᑕ + 𝐶ᑝᑠᑒᑕ)
;

𝑔ᑞ,ᑄᎳ
2(𝐶ᑘᑕ + 𝐶ᑝᑠᑒᑕ)

(3.3)

𝑧Ꮃ,Ꮄ =
𝑔ᑞ,ᑄᎳ

𝐶ᑘᑕ + 𝐶ᑝᑠᑒᑕ
; 2𝑔ᑞ

𝐶ᑘᑕ
(3.4)

The dominant pole is the first, which determines the OTA’s open-loop bandwidth. Interestingly
enough, the first zero is at exactly double the frequency of the second pole. Finally, the last
zero is positive, but it is normally located at very high frequencies.

3.1.3. Medium VT NMOS Input Pair
The required input common-mode swing has to be slightly higher than the maximum input
peak-to-peak amplitude expected from the transducer, which is derived in Equation 2.6. Thus,
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Figure 3.2: Transient simulation showing the operating point of ፌᎳ versus time.

the first stage OTA has to be able to handle an input common-mode swing of around 500𝑚𝑉.
This specification is in conflict with the desired region of operation for the bottom current source
𝑀Ꮃ: theoretically, 𝑉ᑃᐽᐹ should stay around the common-mode voltage of 900𝑚𝑉, however, this
brings the saturation voltage to 𝑉ᑊᐸᑋᐻᑊ ≈ 𝑉ᐾᑊ − 𝑉ᑋ = 900𝑚𝑉 − 490𝑚𝑉 = 410𝑚𝑉, which is very
high. Furthermore, the drain voltage has to be one 𝑉ᑋ lower than the input one, which can
reach voltages as low as 750𝑚𝑉. A standard NMOS has a 𝑉ᑋ ≈ 550𝑚𝑉, depending on the
body effect, thus placing the the drain of the current source at 200𝑚𝑉, far away from the sat-
uration region.
In order to solve this problem, 𝑉ᑃᐽᐹ was biased at 750𝑚𝑉 rather than 900𝑚𝑉, thus decreasing
the current source’s 𝑉ᑊᐸᑋᐻᑊ by the same amount. Additionally, medium 𝑉ᑋ devices were selected
for the input NMOS transistors, reducing the 𝑉ᑋ by more than 100𝑚𝑉. These transistors also
show a better current efficiency, but they lack in output impedance, which is only marginally
important in this work. The PMOS current source also faced a similar issue, which was solved
simply by connecting the bulk of the PMOS input transistors to their source, thus annulling the
𝑉ᑋ increase due to the body effect.

The result is shown in Figure 3.2: When 𝑉ᐻᑊ drops below 𝑉ᑊᐸᑋᐻᑊ , the NMOS goes out of
saturation and the 𝑔ᑞ lowers, together with the output resistance. This simulation was set up
using an input voltage higher than the maximum for which the system was designed. Thus
this situation should not occur in normal operation.

3.1.4. Simulation Results
The top part of Figure 3.3 shows the result of a post-layout Monte Carlo simulation of the
first stage open-loop gain, accounting for process variations. The 𝑔ᑞ of the input transis-
tors amounts to 1.53𝑚𝑆, while the total output resistance is 21𝑘Ω, thus the DC gain is 𝐴ᐻᐺᑆᑃ =
2𝑔ᑞ𝑅ᑆᑌᑋ = 65 = 36.3𝑑𝐵. The intrinsic output capacitance is 𝐶ᑝᑠᑒᑕ = 85𝑓𝐹, while the feed-
back capacitance is 𝐶ᑘᑕ = 125𝑓𝐹, therefore the first pole is at 𝑝Ꮃ =

Ꮃ
Ꮄᒕᑉᑆᑌᑋ(ᐺᑘᑕᎼᐺᑝᑠᑒᑕ)

=
35.6𝑀𝐻𝑧. The simulation results follow closely the theoretical model derived above (red
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Figure 3.3: Simulations of the first stage in open loop, closed loop and resistive feedback mode.
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Figure 3.4: Transimpedance gain of the first stage, while injecting a current at its input.

curve), up to roughly 200𝑀𝐻𝑧. The simulated unity-gain frequency is 800𝑀𝐻𝑧.

Let us close the loop with a resistive feedback, adding 𝑅ᐽ between the output and the in-
verting input, and a resistance equivalent to that in the transducer model between the inverting
input and the AC signal source. the closed-loop magnitude response is shown in the bottom-
left of Figure 3.3. The DC gain is slightly lower than the ideal: ᑉᐽᑉ = 10.5 = 20.4𝑑𝐵, because
of the finite DC gain. The first pole is defined by 𝑅ᐽ and 𝐶ᐽ, the latter of which is composed
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of an explicit capacitor of 35𝑓𝐹 and a parasitic 𝐶ᑘᑕ of 125𝑓𝐹. The pole can be computed as:
Ꮃ

Ꮄᒕᑉᐽᐺᐽ
= 10𝑀𝐻𝑧, which agrees with simulation. On the bottom right of Figure 3.3, the previ-

ous analysis was repeated, adding the reactive components in the transducer’s 𝑅𝐿𝐶 branch:
the two charts reach the same value (≈ 20𝑑𝐵) at resonance (4.6𝑀𝐻𝑧). The chart on the right
has an extra zero and two additional poles that are given by the transducer resonance.

Another way to see the AC behavior of the first stage is considering it as a transimpedance
amplifier, instead of a resonator. A current injected in the amplifier’s virtual ground sees the
transimpedance shown in Figure 3.4. The impedance is equal to the feedback resistance up
to the first pole (around 10𝑀𝐻𝑧), where the impedance of 𝐶ᐽ equals that of 𝑅ᐽ. After that, the
impedance drops at a constant rate up to very high frequencies.

The whole first stage draws 165𝜇𝐴 from the analog supply. The input MOSFETS operate
in weak inversion and achieve a transconductance of 1.53ᑞᐸᑍ . The resulting current efficiency
can be calculated as 𝐶𝐸 = ᑘᑞ

ᑀᐻ
= Ꮃ.Ꮇᑞᑊ

ᎳᎸᎷᒑᐸ/Ꮄ = 18. Since the NMOS and the PMOS at the inputs
share their bias current and both contribute to the effective transconductance, the current effi-
ciency is effectively doubled, amounting to 36. This is beyond the theoretical ᑘᑞᑀᐻ achievable in
this technology node (≈ 25) with a topology that does not employ the current-reuse technique.

Finally, the simulated post-layout input-referred integrated in-band noise is 6.97𝜇𝑉ᑣᑞᑤ. The
expected value from Equation 3.2 is 5.2𝜇𝑉ᑣᑞᑤ. The discrepancy can be explained by the con-
tribution of the current sources and of the flicker noise, which, although not dominant, still has
a small influence on the total input-referred noise.

3.2. Second Stage
The purpose of a second stage, in this design, is merely to provide the gain needed to adapt
the output amplitude of the first stage to the full-scale range of the quantizer. Thus, it is con-
figured as a simple amplifier, which has a flat gain in the bandwidth of interest and does not
provide any form of noise shaping. The gain that this amplifier should provide is not fixed, but
it varies during the receive phase according to the time-gain compensation scheme.

This gain stage is not constrained by many stringent system-level requirements: its noise
contribution will be attenuated by the gain of the first stage. Therefore, it does not require a
high bias current, its output swing should match the quantizer’s full-scale range (500𝑚𝑉ᑡᑡ)
and its maximum gain should be 33𝑑𝐵.
The bandwidth of the second stage was chosen so that it filters out the high-frequency noise
coming from the first stage, without adding excessive phase shift to the frequencies of interest.
However, this filtering action is only important at the highest gain configuration, as at lower
gains the input signal amplitude is supposed to largely overcome the thermal noise of both the
transducer and the first stage, so that the most limiting factor for the modulator’s SNR is its
quantization noise, which scales with the input amplitude.

3.2.1. Topology Choice
Even though the second stage gain does not have to be extremely precise, a feedback con-
figuration is still preferred over an open-loop one, because the gain switching can be easily
and precisely implemented by changing the elements in the feedback loop, rather than the
transconductance (or output impedance) of a 𝑔ᑞ stage.
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Figure 3.5: Schematic of the second stage OTA.

Capacitive feedback was preferred over a resistive one because the latter would allow any
offset in the OTA to be gained up and transferred to the output, which will not consume part of
the quantizer full-scale range. With capacitive feedback, since the receive phase is periodic,
an auto-zero mechanism is granted “for free”, drastically reducing the effect of any offset in
the loop filter. Also, resistive feedback would load the output of the OTA and reduce its output
impedance, making the use of cascodes futile and yielding a lower gain precision.

The chosen feedback unit capacitance is 11𝑓𝐹, slightly higher than the minimum capac-
itance of 9𝑓𝐹 achievable with standard MOM capacitors, using metal 1 to 4 for maximum
density. Implementing a gain of 33𝑑𝐵, equivalent to a linear gain of 44, means having a 𝐶Ꮃ
equal to 44 × 11𝑓𝐹 = 484𝑓𝐹. In case a single-ended, inverting configuration was chosen for
the amplifier, this large capacitance would be loading the first stage and limit its bandwidth,
which can lead to an unstable modulator. In order to avoid this loading effect, a non-inverting
configuration was selected instead, where the first stage only drives the gate capacitance of
the amplifier’s non-inverting input, rather than 𝐶Ꮃ.
The downside of a non-inverting configuration is that it can only have a differential input, thus
employing twice the current (as it will have two current branches), for the same performance
(bandwidth and noise). This shortcoming is tolerable, as the second stage will consume sig-
nificantly less power than the first one, and using a buffer between the two stages to drive the
input capacitance of the second one would burn roughly the same current as an additional
branch in this amplifier.

The chosen OTA topology, shown in Figure 3.5, is very similar to that of the first stage, but
the output impedance was augmented through the use of cascodes, so that the real gain of
the stage is closer to the ideal one set by the components in the feedback path.

3.2.2. Gain Derivation
In this Section, the implementation of the time-gain compensation scheme will be discussed
(see the dynamic range specification in Section 1.4).
The starting point is chosen to be the final, and highest gain needed to meet the specifications:
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Table 3.1: Time and gain settings of the implemented TGC steps.

Capacitor Ratio Gain [dB] Time [𝜇𝑠] Digital Code
Initial Step 40/27 8.5 0 11
Second Step 40/9 15.5 58 10
Third Step 40/3 24 103 01
Final Step 40/1 33.2 151 00

system-level simulations suggest that the second stage should have a gain of approximately
33𝑑𝐵 in order to reach the optimal SNR. The initial gain is derived by subtracting from the final
one the desired TGC range (in dB). The latter is initially designed to be 27𝑑𝐵, as it is a multiple
of 3, which is also the selected number of TGC steps after the first one.
We are left with four gain steps: 6𝑑𝐵, 15𝑑𝐵, 24𝑑𝐵 and 33𝑑𝐵. The step size is 9𝑑𝐵, which
is roughly equal to a factor 3 in linear scale, enabling an easy implementation of the gain
steps using capacitor ratios. However, this stage’s gain is ideally 𝐺 = 1 + ᐺᎳ

ᐺᎴ
, because a

non-inverting configuration was employed. In order to account for the factor 1+, instead of
changing the capacitance ratios, it was decided to adjust the time instants when the gains are
switched, as illustrated in Table 3.1 and Figure 3.6.

0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

140

Time [µs]

TGC Steps

G
ai

n 
[V

/V
]

 

 

Continuous Gain
Inverting Gains
Non−Inverting Gains

Figure 3.6: Gain settings of the TGC scheme and correspondent switching times.

3.2.3. Simulation Results
Figure 3.7 shows a post-layout Monte Carlo simulation of the second stage in the different
gain settings. As expected the spread is lower when the gain is small. With the highest gain,
the bandwidth is lower, this can be explained calculating the pole of the simplified system,
representing all the transistors as a single 𝑔ᑞ and assuming an infinite output impedance.
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Figure 3.7: ኼᑟᑕ stage frequency response (post-layout).

The 3𝑑𝐵 angular frequency is computed as follows:

𝜔ᑡ =
2𝑔ᑞ

𝐶Ꮃ + 𝐶ᑆᑌᑋ(1 +
ᐺᎳ
ᐺᎴ
)
= 2𝑔ᑞ
𝐶Ꮃ + 𝐶ᑆᑌᑋ𝐴ᐺᑃ

(3.5)

where 𝑔ᑞ is the transconductance of transistors 𝑀Ꮄ, 𝑀Ꮅ, 𝑀Ꮊ, 𝑀Ꮋ, 𝐶Ꮄ is the feedback capac-
itor, 𝐶Ꮃ is the shunt capacitor connected to the OTA’s inverting input and 𝐶ᑆᑌᑋ is the output
capacitance of the OTA. From this equation it is possible to notice how the bandwidth is lower
in case the closed-loop gain is higher. This effect is exacerbated by the increase of 𝐶ᑆᑌᑋ in
the low gain configurations, as 𝐶Ꮄ’s parasitic capacitance to ground goes in parallel with the
OTA’s output capacitance.
Figure 3.8 depicts the loop gain of the second stage for all the gain settings, including the
reset phase, when the loop gain is equal to the open-loop gain of the OTA. In the reset phase,
which is the most critical for stability, the 0𝑑𝐵 axis is reached at 100𝑀𝐻𝑧, where the phase is
only 75ᑠ, thus stability is guaranteed. This stage consumes 36𝜇𝐴 of current from the analog
supply, while the transconductance of each input transistor is around 270ᒑᐸᑍ . They all oper-
ate in weak inversion and achieve a current efficiency of 𝐶𝐸 = ᑘᑞ

ᑀᐻ
= ᎴᎹᎲᒑᑊ

ᎵᎸᑞᑦᐸ/Ꮄ = 15, which
doubles, accounting for the current-reuse structure.

3.3. Tracking Quantizer
3.3.1. Comparator
The twin comparators in each tracking quantizer are very important: they consume a significant
amount of power, their delay is in the feedback’s critical path and their output acts as the output
of the complete system. Additionally, their noise and offset should be kept low with respect to
the loop filter’s output noise and to the quantizer’s LSB.
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Figure 3.8: ኼᑟᑕ stage loop gain magnitude (post-layout)

V-

VOUT+

CLK

CLKCLK

V+

VOUT-

CLK

CLK CLK

Figure 3.9: Schematic of the proposed comparator.

Topology and Kickback Noise
A dynamic comparator was chosen for this design: this type of comparator consumes no
static power, while keeping the speed high. In particular, the topology discussed in [43] has
been selected as a starting point for its well-known performance and simplicity. Clocking this
comparator is rather easy: there is no need for an (i.e. non-overlapping) inverted clock, this
helps to save some power in the local clock buffers, which, as will be explained in Section
3.3.2
Early simulations of the entire system with such a comparator showed a kick-back noise with
an amplitude of several tens of millivolts. This effect can be dangerous, especially when one of
the inputs of the comparator is a floating node, or is driven by a capacitive-feedback amplifier:
both of these scenarios are true in this design.
In order to reduce kick-back noise, similarly to the solution proposed in [44], the NMOS switch
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underneath the input pair is split in two, and moved on top of them, as shown in Figure 3.9.
This technique lowers the kick-back noise because the switches disconnect the comparator
inputs from the latch, when this is reset.

Noise and Offset Estimation
Because of the dynamic nature of the comparator, traditional simulation tools prove to be in-
effective in the estimation of its input referred noise and offset. A common technique used for
this purpose employs statistical analysis. For a noise assessment, the comparator is given
a static voltage difference between its inputs and is run 𝑁 times in the presence of transient
noise. The voltage difference is swept within the range of interest ([−10𝑚𝑉−10𝑚𝑉]) and the
probability of the comparator making the expected decision is calculated. We can then plot the
probabilities versus the differential input voltage, as in the top part of Figure 3.11, and fit the
resulting curve with an error function. From the parameters of the obtained error function, the
standard deviation of the noise 𝜎ᑟ can be derived, shown on the bottom part of Figure 3.11.
A similar procedure can be used to estimate the comparator’s offset: instead of adding noise
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Figure 3.10: Comparator decision dynamics vs. common-mode voltage

to the simulation, one can model the transistor mismatch and run a Monte-Carlo analysis 𝑁
times for every input differential voltage. The results are processed exactly as above and
the result can be seen in Figure 3.12. From Figure 3.11 and 3.12 one can conclude that
with a higher input common-mode voltage, the comparator generally performs worse in terms
of both offset and noise. For the implemented tracking quantizer, the common-mode input
voltage for the comparators is not fixed, but is data dependent and it corresponds roughly
to the instantaneous level of the second stage output, assuming that the reference voltages
generated by the tracking quantizer DACs are always less than one 𝐿𝑆𝐵 away from the sec-
ond stage output. Therefore, the common-mode input voltage is included in the interval

𝑉ᑔᑠᑞᑡ.ᐺᑄ = [0.9 − ᐽᑊᑔᑠᑞᑡ.
Ꮄ ; 0.9 + ᐽᑊᑔᑠᑞᑡ.

Ꮄ ] = [0.65𝑉; 1.15𝑉].
With a higher common-mode voltage at the input of the comparator, the 𝑔ᑞ of the input differ-
ential pair becomes higher. For many analog blocks, this is desirable, however, in this case,
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Figure 3.12: Comparator offset simulation

it leads to a higher noise and offset.
This may seem counter-intuitive, but it can be explained with the following large signal analy-
sis. A higher 𝑔ᑞ grants additional speed, thus the comparator will make a decision sooner, as
shown in Figure 3.10. However, the voltage difference between the two terminals of the latch,
at the decision moment, will be the same. This means that the situation with the highest output
noise will be the most critical. The current noise added by the input pair to the desired output
current is directly proportional to 𝑔ᑞ: 𝑣Ꮄᑟ,ᑣᑞᑤ = 4𝑘ᐹ𝑇 ⋅ 𝐵𝑊𝑔ᑞ, which, in turn is proportional to
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the input common-mode. At the same time, the comparator noise bandwidth, which is also
defined by its transconductance, is larger for a higher input common-mode voltage.
Intuitively, this line of reasoning can be extended to mismatch, as a higher transconductance
on the input transistors will make the effect of any mismatch between them more dramatic.
It should be noted, however, that the result of the previously described procedure is the input
referred integrated noise over the whole bandwidth of the comparator, which ranges from 0
to a few Gigahertz and is defined primarily by the 𝑔ᑞ of the input pair and the parasitic ca-
pacitor at its drains. For this reason, this rms voltage cannot be directly compared with the
noise introduced by the analog circuitry, as the latter was evaluated only within the system’s
bandwidth [3.125𝑀𝐻𝑧 − 6.875𝑀𝐻𝑧].

The data dependency of the comparators’ common-mode level, and thus their noise and
offset, is certainly undesirable, however, as explained in Section 2.6.4, any non-ideality intro-
duced by the comparators does not directly yield a heavy performance loss for the modulator.

3.3.2. Digital Logic
Another block of fundamental importance that should be discussed is the logic required by
the tracking quantizer. As with the previously discussed building blocks, this one should also
consume a very low power and introduce a low delay in the modulator’s feedback path. The
complete structure is shown in Figure 3.13.
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Component Optimization

The design of the digital part of the system has as the main objective the minimization of the
number of sequential logic circuits, i.e. latches and flip-flops. Such circuits are, however,
necessary, since the concept of a tracking quantizer inherently requires a memory storage el-
ement to function. Furthermore, re-clocking the data between the comparators and the feed-
back DAC of a modulator is, in general, good practice to avoid distortion that could arise from
a data-dependent delay in the comparators.
For each flip-flop in series, the data is delayed by one clock cycle, assuming the same sam-
pling frequency for the comparators and the flip-flops. However, the feedback signal should
be ready within one clock period, so more than one flip-flop in series is not acceptable. The
minimum number of parallel flip-flops is three, as this is the number of bits for the quantizer,
assuming the flip-flops will store the data in binary form. These three flip-flops act as the start-
ing point for the design of the rest of the logic cells.

A state machine is introduced between the comparators and the flip-flops. It functions as
a look-up table, which determines the output code for every clock cycle, based on both the
comparator’s decision and on the previous cycle’s stored value. The state machine was writ-
ten in Verilog, synthesized and mapped into strictly combinational standard cells. The layout
was also generated automatically in Encounter. The synthesized schematic has a maximum
of four logic gates in series for any input signal, keeping the maximum delay of the block low.

After the state machine reaches the intended value, the flip-flops are clocked by 𝐶𝐿𝐾2 (a
delayed version of the comparators’ clock 𝐶𝐿𝐾), so that the output of the state machine is
latched and available for the next cycle. Note that the state machine has to be able to work
within a precise time-frame: between the two clock edges of 𝐶𝐿𝐾 and 𝐶𝐿𝐾2. In particular, the
time between the two clock edges has to be between 1.5𝑛𝑠 and 2.5𝑛𝑠.

Next, a 3 to 7 decoder was designed and synthesized to adapt the flip-flops’ binary out-
put to the thermometer-coded feedback DACs of both the tracking quantizer and the whole
modulator. Again, the delay of this block should be kept low, thus, the maximum number of
gates in series is two. For this block, it’s also important to keep the driving capabilities of the
output gates rather constant, so that all the 7 bits of the DACs will change simultaneously.
Additionally, an effort should be made to reduce glitches in the decoder as much as possible:
a high glitch amplitude might trigger the feedback inverters of the modulator and lead to an
unwanted feedback pulse injected at the input of the modulator.

An overload protection circuit was added (on the top right of Figure 3.13), which converts
the comparators’ outputs into the final outputs of the modulator: these four gates make sure
that if the output code had reached its extremes (code=000 or 111) any further pulses on the
𝐷𝐸𝐶 and 𝐼𝑁𝐶 lines respectively will be suppressed, as the state machine’s output will not
change as a result of them. This block also provides additional driving capabilities, as it has
to drive lines up to 400𝜇𝑚 long.

Finally, every element has a built-in clock driver, which can be enabled or disabled locally
by a bit in the shift register (see Section 4.4) for testing purposes. This driver consumes a
fair amount of power because its output toggles every clock cycle, even when the tracking
quantizer does not change its output.
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Table 3.2: Current consumption and maximum delay over corners for every block in the tracking quantizer.

Current Maximum Delay
Comparators 72.5𝜇𝐴 390𝑝𝑠
Flip-Flops 21.7𝜇𝐴 250𝑝𝑠 (from clock)
State Machine 9.7𝜇𝐴 250𝑝𝑠
Decoder 3.3𝜇𝐴 150𝑝𝑠
Overload Protection 4.4𝜇𝐴 200𝑝𝑠
Local Clock Buffers 18.2𝜇𝐴 240𝑝𝑠

RST

VDAC+
VDAC-

VOUT+

VOUT-

Q0 Q1 Q2 Q3 Q4 Q5 Q6

Cu Cu Cu Cu Cu Cu Cu

Cshunt

Figure 3.14: Schematic representation of the tracking quantizer’s DACs

3.3.3. DAC
The tracking quantizer’s DACs were implemented in a very straight-forward manner (see Fig-
ure 3.14): the thermometer outputs of the 3-to-7 decoder were directly connected to two sets
of capacitive dividers, much like the global DAC’s topology. The floating nodes that act as the
DACs’ outputs are initialized to a known value (𝑉ᐻᐸᐺᎼ and 𝑉ᐻᐸᐺᎽ) during the reset phase, while
the step size is defined by the digital core supply voltage and the capacitive divider ratio.
The DACs were designed so that the step size is 𝑉ᑃᑊᐹ = ᐽᑊ

ᎴᑅᎽᎳ =
ᎷᎲᎲᑞᑍ
Ꮉ = 71.4𝑚𝑉 when

𝑉𝐷𝐷𝐶𝑂𝑅𝐸 = 1.8𝑉. The unit capacitance is the minimum allowed value for MOM capacitors
(9𝑓𝐹), as the modulator has a very high tolerance to any mismatch in these DACs (see Section
2.6.4). The shunt capacitance is calculated using the following formula:

𝐶ᑤᑙᑦᑟᑥ = 𝐶ᑦ(
𝑉𝐷𝐷𝐶𝑂𝑅𝐸
𝑉ᑃᑊᐹ

− 7) = 163𝑓𝐹 (3.6)

The actual value for 𝐶ᑤᑙᑦᑟᑥ also accounts for the parasitic capacitance to ground of all the
capacitors. The power consumption for these DACs is nearly negligible, and is included in the
current drawn by the decoder, indicated in Table 3.2.

3.3.4. Simulation Results
In Figure 3.15, a post-layout simulation of the tracking ADC performance across corners is
shown. Accounting for the expected delay, the full-scale, 5𝑀𝐻𝑧 input signal is kept between
the two references by the quantizer’s internal feedback. A mismatch in the comparators could
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lead to a rather non-linear characteristic (not shown in Figure 3.15), however, as explained
in Section 2.6.4, any non-linearity in the tracking quantizer does not influence the converter’s
performance significantly.
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Figure 3.15: Tracking quantizer transient response (post-layout, over corners)

3.4. Other Blocks
Here, the few blocks left that complete the converter architecture will be discussed, before
moving to the design and simulation of the pixel as a whole.

3.4.1. Biasing Block
In this design, each pixel was provided with its dedicated bias block, even though its area is
quite large (around 12% of the pixel). This is inevitable, as wiring each pixel to a bias block
placed outside of the array would lead to an unmanageable number of connections, while
distributing voltages throughout the array leads to a very high sensitivity to any mismatch
in the local current sources. Furthermore, any local disturbance on the supply line will be
common to the amplifiers and the bias block, thus improving the PSRR of the system.
The implementation of the bias circuitry, shown in Figure 3.16, uses a known constant 𝑔ᑞ
biasing technique [45] as the core bias current generation block. This topology was chosen
because it is theoretically insensitive to changes in the supply voltage and in the transistor
parameters. In fact, the transconductance of the current sources is only dependent on the
ratio between the aspect ratios of the two NMOS current sources (𝑘) and the resistor value 𝑅:

𝑔ᑞ =
2
𝑅(1 −

1
√𝑘
) (3.7)

In order to reach the desired mode of operation, this block requires a start-up circuit, which
lifts the NMOS gate voltage above ground, while lowering the PMOS gate potential.

The main current (1𝜇𝐴) generated by the constant 𝑔ᑞ block is then mirrored, with the
due ratios, and connected to the diode-connected MOSFETs within the amplifiers. Three bias
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Figure 3.16: In-pixel constant-Gm biasing block.

currents are needed for the second stage, and only one for the first one. In particular, the latter
can be tuned, so that it is possible to control the noise introduced by the amplifier. All current
sources are cascoded, in order to boost their output impedance. This block consumes 21𝜇𝐴
from the analog supply, including the current mirrors. A static supply voltage change will result
in a variation in the main current, with a sensitivity of 13ᑟᐸᑍ .

3.4.2. Tunable Compensation RC

C
TR

IM
0

RTRIM0

RTRIM1

RTRIM2

RTRIM3

8
0

0
Ω

4
0

0
Ω

2
0

0
Ω

1
0

0
Ω

RTRIM4

C
TR

IM
1

C
TR

IM
2

C
TR

IM
3

C
TR

IM
4

C
TR

IM
5

OUT
5

0
fF

1
0

0
fF

2
0

0
fF

4
0

0
fF

8
0

0
fF

1
6

0
0

fF

Figure 3.17: Schematic of the tunable capacitor ፂᑔ and resistor ፑᑔ.

The tunable 𝐶ᑔ and 𝑅ᑔ (see Figure 2.15) have been implemented as in Figure 3.17. In
the in-pixel shift register (see Section 4.1) 6 bits were reserved for 𝐶ᑤ, so that the full-scale is
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3.15𝑝𝐹, which limits the maximum allowable parasitic capacitance 𝐶ᑤ to this value. The LSB is
50𝑓𝐹, which is roughly half of the width of the stable interval in Figure 2.20. Such a resolution
should allow us to always find an optimum configuration where 𝐶ᑤ is almost perfectly compen-
sated for. The on resistance of the NMOS switches is kept low by using a large aspect ratio,
additionally, it is likely that more than one capacitor will be selected, thus further reducing the
equivalent resistance of the switches by having several in parallel. A binary weighted scale
was chosen for its ease of control as linearity is not a concern in this case.

For the tunable resistor 𝑅ᑔ, 5 bits were chosen. The first four bits (𝑅𝑇𝑅𝐼𝑀ᎲᎽᎵ) implement a
binary weighted RDAC with an LSB of 100Ω and a full-scale of 1500Ω. The LSB was chosen
after measuring the effect of a mismatch between 𝑅ᑤ and 𝑅ᑔ on the SNR. The full-scale is kept
in the order of the 𝑘Ω as the influence of 𝑅ᑤ was not visible in the available impedance mea-
surements, which had a maximum frequency of less than 10𝑀𝐻𝑧. This suggests a cut-off fre-
quency of at least a decade further, and a resistor value of 𝑅ᑤ <

Ꮃ
ᎴᒕᑗᑔᑦᑥᎽᑠᑗᑗᐺᑤ

= Ꮃ
ᎴᒕᎳᎲᎲᑄᐿᑫ⋅Ꮄᑡᐽ ≈

800Ω.
𝑅𝑇𝑅𝐼𝑀Ꮆ is used to drastically lower the on resistance of the other NMOS switches, in case
they are all selected, since these resistances, even if designed to be very low, can become
relevant if there are four in series.

3.5. Pixel-Level Design
In this Section, the overall simulation results of the pixel as a whole will be presented.
The estimated current consumption is illustrated in Figure 3.18. The total post-layout current
drawn by the supplies is 458𝜇𝐴, which yields a total power of 824𝜇𝑊. In the post-layout pie
chart, the analog current includes that of the two stages and the biasing, while the digital cur-
rent comprises that of the core digital blocks as well as the local clock buffers.
Figure 3.19 shows the spectra estimated by taking the FFT of the time-domain modulator’s
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Figure 3.18: Pie chart representing the current consumption in ᎙ፀ for every block in the pixel.

digital output (post-layout), with and without transient noise. The spectra are very similar to
the one obtained from system-level simulations (Figure 2.16), however the SQNR and con-
sequently the SNR are slightly lower. Some harmonic distortion components are also visible,
because of the first and second stage non-linearities. Figure 3.20 shows the AC behaviour of
the loop filter; in particular, the transfer function from the voltage source internal to the trans-
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Figure 3.19: Spectra of the post-layout pixel-level simulations, without and with transient noise.

ducer model to the outputs of each stage are plotted when the gain is maximum (TGC=00).
As expected, the first stage gain at resonance is roughly ᑉᐽ

ᑉ = 20𝑑𝐵, while the output of the
second stage lies above that of the first by ≈ 33𝑑𝐵, which is the maximum gain for the second
stage. Above 15𝑀𝐻𝑧, the pole of the second stage starts closing the gap between the two
curves. The phase response for both curves starts from −90ᑠ, as the stage is inverting and
there is a zero in the origin, and it passes through −180ᑠ at resonance, where the transducer
does not contribute with any phase-shift. The phase then drops to −270ᑠ because of the two
resonant poles provided by the transducer. After that, because of the poles of the two stages,
the phase drops further.

In Table 3.3, the contribution of the main sources of noise is provided. In particular, the
noise at the output of the loop-filter, integrated in the bandwidth [3.125𝑀𝐻𝑧 − 6.875𝑀𝐻𝑧] has
been computed. The resistor 𝑅 within the transducer model contributes for almost half of
the in-band noise, therefore fulfilling the requirements expressed in Section 2.5.5. The noise
figure is therefore close to 3𝑑𝐵. The first stage, as expected, has the largest noise contribution,
amounting to a total of 30%, while the first stage’s feedback resistor 𝑅ᐽ adds 14% of the noise.
The second stage and the biasing both contribute with 3% of the noise.
Since the lower boundary of the bandwidth of interest is in the 𝑀𝐻𝑧 range, the contribution of
flicker noise does not dominate, which helps keeping the area of the analog stages low.
It should be noted that this table only shows an estimation of the noise contributions, as it does
not account for the modulator’s feedback. In other words it is an “open loop” measurement.
In order to get the complete picture, one would have to account for the entire thermal noise
transfer function of each source to the loop filter output. For example, as described in 2.3.1,
the in-band noise added by the first stage is only part of its contribution, as the noise at high
frequencies can fold back to the bandwidth of interest if not properly filtered.

3.6. Element-Level Layout
One of the most important objectives for this project is being able to fit the modulator under-
neath each transducer element. In order for this to be possible, a careful layout procedure is
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Figure 3.20: AC response of the loop filter.

Table 3.3: Noise contributions of the critical transistors and resistors within the pixel.

Device Noise Type Output Noise Percentage
𝑅ᑋᑉᐸᑅᑊᐻ Thermal 4.66𝑚𝑉ᑣᑞᑤ 46.58%
𝑅ᐽ Thermal 2.56𝑚𝑉ᑣᑞᑤ 14.04%
𝑃𝑀Ꮃᑤᑥ ,Ꮃ Thermal 1.84𝑚𝑉ᑣᑞᑤ 7.37%
𝑃𝑀Ꮃᑤᑥ ,Ꮄ Thermal 1.74𝑚𝑉ᑣᑞᑤ 7.37%
𝑁𝑀Ꮃᑤᑥ ,Ꮃ Thermal 1.74𝑚𝑉ᑣᑞᑤ 6.5%
𝑁𝑀Ꮃᑤᑥ ,Ꮄ Thermal 1.74𝑚𝑉ᑣᑞᑤ 6.5%
Biasing Thermal 1.14𝑚𝑉ᑣᑞᑤ 3%
Second Stage Flicker 1.12𝑚𝑉ᑣᑞᑤ 3%
𝑁𝑀Ꮃᑤᑥ ,ᎳᎽᎴ Flicker 1𝑚𝑉ᑣᑞᑤ 2.3%
Total Thermal/Flicker 6.83𝑚𝑉ᑣᑞᑤ 96.7%

just as important as a mindful system-level design. A render of the pixel layout is shown in
Figure 3.21, where the main functional blocks have been highlighted.
The layout is quite tight (all the density checks are met automatically) and there is almost no
free space, as you can see in Figure 3.22.
The majority of the area (44%) is occupied by capacitors: the large test capacitor on the top
right, the second stage feedback, the quantizer DACs and the feedback capacitors on the very
top. Both Metal-Insulator-Metal (MIM) and Metal-Oxide-Metal (MOM) capacitors were used:
MIM caps (pink) were preferred when a high density is required, for example in the feedback
capacitors and for the tunable capacitor, while MOM were selected when a low unit capaci-
tance size was needed (second stage feedback and quantizer DACs). The MIM capacitors
employ Metals 5 and 6, thus their polarity was chosen such that the quieter node is imple-
mented in Metal 6, to avoid any cross-talk with the transducer.
The two OTAs, the comparators and the second stage feedback capacitors were laid out using
the common centroid technique, so that the mismatch effects are minimized, while the layout
of the logic blocks was synthesized using Encounter.
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The passivation opening needed to connect each element to the relative transducer is visi-
ble as an orange shadow on the center-left of the layout. This pad is not horizontally centered,
however, the transducers are built so that the pad is in their center, thus there will be a slight
horizontal offset between the ADC area and that of the relative transducer, as they will not
be perfectly overlapping. This could lead to some cross-talk between adjacent pixels, in case
they are not properly shielded.

This pad, built with 20kÅ thick Metal 6, is the most sensitive node in the whole system,
thus it should be kept far from digital signals or high-swing nodes, or shielded from them. For
this reason, static circuits were placed directly underneath the pad: the biasing block and the
register, which only changes its outputs during the configuration phase. Additionally, the entire
left side of the chip is covered with a Metal 5 shield, to further protect the pad. The feedback
capacitors are also protected by a full layer of Metal 4 below them.
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Figure 3.22: Area contributions of every block.

The signal path follows a clockwise cycle, starting from the previously described pad and
ending with the feedback capacitors. The tracking quantizer’s 7-bit output, which should reach
the feedback inverters, is routed in Metal 4 and passes over the biasing block, which is pro-
tected fully by a Metal 3 shield.
The pixel layout was designed to be modular, so that if an array of these elements is created,
the shared inputs and outputs connect automatically. An easy way to reach the required mod-
ularity is having a grid-like voltage distribution. In this case, the East and South edges of the
pixel were reserved for this purpose: the East edge distributes voltages through Metals 2 and
4 (overlapping), while the South edge uses Metals 1 and 3, so that the vertical and horizontal
lines are interleaved.

Finally, Table 3.4 shows a list of all the inputs and outputs of each pixel. All of these I/Os
are shared between pixels, except for those dedicated to the configuration loading (RCLK_IN,
RDATA_IN, RCLK_OUT and RDATA_OUT), which are routed from pixel to pixel in a daisy
chain (see Section 4.1), and the two digital outputs of the tracking quantizer (OUT0 andOUT1).

Table 3.4: I/O connections for each pixel.

Power Pins VDDA, VDDC, VDDCORE 3
Ground Pins GNDA, GNDC, GNDCORE, GROUND_FOIL 4
Analog References and Signals VREF+, VREF-, VDAC+, VDAC-, V_CM, RF_IN 5
Digital Inputs CLK, CLK2, RST, TGC0, TGC1, RCLK_IN, RDATA_IN 5
Digital Outputs OUT0, OUT1, RCLK_OUT, RDATA_OUT 3
Total 20

3.7. Conclusion
In this Chapter, a description was provided of the implementation details for each of the key
blocks that compose the element-level ΣΔ ADC. A heavy use of current-reuse topologies help
to keep the analog power low, while the digital design was optimized to minimize the delay of
the key components, as well as the power. An effort wasmade to provide the reader with all the
simulation results needed to judge the performance, as well as the robustness of the system.
The following Chapter 4 will describe the path that lead to the full chip implementation.





4
Chip-Level Design

After having discussed the main circuits included in every element, in this Chapter, the blocks
which concern the chip as a whole will be described. This Chapter also includes some chip-
level considerations such as details on the layout and positioning of the transducers.
The array size was decided to be 5 × 4 elements. A smaller size would not allow for a proper
acoustic evaluation, such as the measurement of the delay between two elements, which
would be too low to measure if the maximum distance between elements is reduced. Fur-
thermore, a smaller array would make the transducer fabrication process significantly more
challenging. On the other hand, a larger array would require a greater chip area and cost.
It would also make the routing of the modulator outputs more challenging and in general the
complexity of the array-level design would increase.

4.1. Shift-Register
In order to load the configuration data for the entire chip, a shift register in a daisy chain con-
figuration has been employed, as shown in Figure 4.1.
The big squares represent the element circuits, while the small one stands for the register
used to select the wanted signal as an input of the on-chip analog buffer (see Section 4.4).
Finally, the last flip-flop is used to select which sub-array should be connected to the LVDS
transmitters (see Section 4.2). The output of this last flip-flop is buffered and connected to a
pad, in order to be able to establish if the shift-register is working properly. Each section of the
register, highlighted in the top part of the figure, is composed of several D-flip-flops in series,
and some local buffering inverters to ensure a correct set-up and hold timing. The chosen
protocol only requires the clock and the data lines and omits the enalble line found in a more
traditional SPI protocol. A 3-wire SPI would require an additional set of registers, the area of
which would take a toll in the element’s constrained area budget.
The data and clock lines are routed in parallel through the array, in a snake-like fashion, but
in opposite directions, so that the last register is always the one which gets clocked first.
The in-pixel shift-register sections are composed of 16 flip-flops, the function of which is sum-
marized in Table 4.1.

4.2. LVDS Outputs
In order to convey the modulator’s output bitstreams out of the chip and into the data acqui-
sition system, 20 LVDS transmitters were implemented on chip, as the available standard I/O
pads were not fast enough. This communication protocol was selected for its high speed and
its differential nature, which makes the signal less sensitive to digital cross-talk or electro-
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Figure 4.1: Block diagram of the shift register daisy chain.

Table 4.1: Shift-register bits.

Name Function #bits Per pixel/Global
𝐶𝑇𝑅𝐼𝑀ᎲᎽᎷ Trims the compensation capacitor 𝐶ᑔ 6 Per pixel
𝑅𝑇𝑅𝐼𝑀ᎲᎽᎶ Trims the compensation resistor 𝑅ᑔ 5 Per pixel
𝐼𝑇𝑅𝐼𝑀ᎲᎽᎳ Trims the first stage’s bias current 2 Per pixel
𝐹𝐶𝐴𝑃 Adds a 50fF cap in the first stage’s feedback 1 Per pixel
𝐷𝐼𝑆𝐴𝐵𝐿𝐸 Grounds the transducer and disables the clocks 1 Per pixel
𝑇𝐸𝑆𝑇 Connects the test capacitor 1 Per pixel
𝑀𝑈𝑋_𝐶𝑇𝑅𝐿ᎲᎽᎶ Selects the input for the PMOS analog buffer 5 Global
𝐿𝑉𝐷𝑆_𝐶𝑇𝑅𝐿 Selects the array section to be connected to the LVDS 1 Global
Total 16

magnetic coupling. Every LVDS transmitter drives two pads, while the array is composed of
20 elements, with two digital outputs per element. This would bring the pad count for the LVDS
outputs to 80, thus increasing the chip area and cost.

In order to avoid such a high number of output pads and to reduce the substantial power
drawn by the transmitters, the whole array was divided in two 10-element sections horizon-
tally. Either one of the two sections is connected to the 20 LVDS transmitters, depending on
the LVDS_CTRL bit in the shift-register.
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VDDLVDS

GNDLVDS

LVDS_CTRL

OUTELEMENT1

OUTELEMENT2

PADNPADP

Figure 4.2: Schematic of the implemented LVDS driver and pre-driver.

The schematic diagram of each LVDS transmitter is shown in Figure 4.2: the two outputs from
the top and the bottom parts of the array are multiplexed through the LVDS_CTRL bit. The
result is fed into a pre-driver with a high driving capability, which divides the signal in two parts
with different polarities, but with the same delay. Finally, the pre-driver’s outputs control the
LVDS circuitry, which in turn drives the pads.

The voltages for VDDLVDS and GNDLVDS were chosen to be 1.2V and 0.6V respectively,
so that the NMOS and PMOS get the same overdrive voltage. The average current drawn by
the pre-driver is 160𝜇𝐴 per channel, while the LVDS driver consumes 1.8𝑚𝐴 per channel,
assuming a load capacitance of 20𝑝𝐹 and accounting for the fact that the output does not
necessarily toggle for each clock cycle.

The power consumption for this circuit was not optimized, as a mature product based on
this test chip would have on-chip or in-pixel decimation filters to reduce the sampling rate and
possibly digital beamformers, which limit the amount of information that has to be transmitted
to the data acquisition system.

4.3. Clock Distribution
Since the sampling frequency for the modulators is rather high, it is important to carefully dis-
tribute the two clock signals, so that they reach every element at the same time. These clocks
are needed for the comparators and for the flip-flops within the tracking quantizer. Since the
two clocks need to have a precise phase difference, they must be routed in parallel, so that
the total delay is the same for both. The implemented clock distribution strategy is shown in
Figure 4.3, where the grey squares represent the elements.

A tree-like routing strategy brings the clock signals from the pads to the vertical edges of
the array, then these signals are injected inside the array without further repeaters. This is only
feasible as the array is quite small and the propagation delay along the clock lines between
two adjacent pixels is simulated to be less than 0.1% of the clock period. For bigger arrays
or higher sampling frequencies, an H-like distribution, with repeaters inside the main array
should be adopted.
The clock distribution inverters consume an average of 2𝑚𝐴 from a 1.8V supply, however, this
current can be drastically reduced with a careful sizing of the inverters.
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CLK CLK2

Figure 4.3: Block diagram of the array’s clock distribution strategy.

4.4. Design for Test

Biasing

MUX
32 Signals

32-bit

3.3V1.8V

Shift Register

DATA IN DATA OUT

CLK OUT CLK IN

5V

One-Hot
Decoder

5-bit

Figure 4.4: Block diagram of the PMOS buffer designed for test purposes.

The main testing tool that was included in the chip is shown in Figure 4.4. Its main pur-
pose is to access the most critical nodes of the modulator and buffer them, so that they can
be probed through an oscilloscope.
The desired channel is sent by the measurement equipment together with the configuration
data for the ADCs, and stored in a 5-bit shift register between elements 4 and 5 (the num-
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bering refers to Figure 4.1). A 5-to-32 one-hot decoder turns the binary-weighted bits in the
register into a 32-bit code which selects the signal to be buffered, through a 32-to-1 analog
multiplexer.
Only the four right-most “test” elements (number 5, 6, 15, 16) are connected to the multiplexer,
so that for each of these pixels it is possible to monitor the two inputs of the first stage, its out-
put, the output of the second stage and the two digital outputs. These points are highlighted in
blue in Figure 4.5. Additionally, all the analog references can be selected by the multiplexer,
including the analog ground.

The buffer is designed to provide a very high bandwidth of 200MHz, while offering a low
input capacitance, as a large one could load excessively one of the critical nodes of the ele-
ment, thus disturbing its normal operation. At the same time, the buffer should be able to drive
a large capacitance, estimated to be in the order of 20𝑝𝐹, formed by the pad, the PCB traces
and the oscilloscope probe. For the sake of simplicity, a PMOS buffer topology was chosen,
however, a single stage is insufficient to provide the desired specifications. A transconduc-
tance of roughly 𝑔ᑞ = 2𝜋𝐶ᑠᑦᑥ𝑓ᑔᑦᑥᎽᑠᑗᑗ = 25𝑚𝑆 is needed to meet the bandwidth and loading
requirements, but this 𝑔ᑞ can only be provided by a rather large PMOS, which in turn will offer
a high input impedance (in this case 1.7𝑝𝐹). Thus, a pre-buffering stage is added using the
same topology, which drives the large PMOS buffer while keeping the input capacitance to
only 50𝑓𝐹.

In order to accommodate for the entire voltage range (0 to 1.8V), these followers were
implemented using thick-oxide 3.3𝑉 transistors and were provided with progressively higher
supply voltages, so that a large voltage on the input will not turn off the PMOS. The first stage
is biased by a simplified version of the circuit described in 3.4.1, and is supplied by a dedi-
cated 3.3V supply. On the other hand, the second stage is biased by an external off-the-shelf
current source of around 7𝑚𝐴 on the PCB, through a pad stripped of any ESD protection. The
output offset due to the two 𝑉ᑋ drops can be calibrated out subtracting to every measurement
the output voltage obtained while selecting the analog ground as an input.

Another test feature that has been introduced is an analog input signal (𝑅𝐹ᑀ𝑁) coming from
an external function generator, distributed to every element. This signal reaches one terminal
of a 300𝑓𝐹 capacitor, present in every pixel. The test capacitor is connected on the other
side to the first stage’s inverting input through a switch, controlled by a dedicated bit in the
shift register (the 𝑇𝐸𝑆𝑇 bit shown in Table 4.1). This technique allows for the injection of an
electrical input signal for the modulator, which will keep its NTF unchanged (the test capacitor
will go in parallel with 𝐶ᑤ and needs additional compensation), so it is possible to evaluate the
noise shaping behaviour of the converter even without an acoustic input signal.

4.5. Power Domains
Many different power domains were used for the implementation of this chip. In particular,
the comparators were given a dedicated supply, so that they will not disturb the analog core,
while also being protected from the switching transients in the digital domain. The 1.8V digital
supplies were separated in four parts: the element-level digital circuitry has a separate supply,
so that the current drawn by it can be measured. The pad-ring supply has no connection to
the core, so that it can work at a different voltage level. The supply for the clock buffers and
data repeaters and that of the LVDS pre-drivers were separated, so that, if needed, they can
be tuned independently. A summary of the employed voltage domains is provided below.
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• VDDA, GNDA:Core supply for the element’s analog section and shift registers. Nominal
voltage: 1.8V.

• VDDC, GNDC: Supply voltage dedicated to the tracking quantizer’s comparators. Nom-
inal voltage: 1.8V.

• VDDCORE, GNDCORE: Supply voltage for the in-pixel digital circuitry. Nominal voltage:
1.8V.

• VDD3V3, GND3V3: Supply voltage for the PMOS buffer’s first stage. Nominal voltage:
3.3V.

• VDDD, GNDD: (double pads) Provides voltage for the global clock buffers and data
repeaters. Nominal voltage: 1.8V.

• VDDDESD, GNDESD: Pad-ring post-driver digital supply. Nominal voltage: 2.5V in ac-
cordance with the FPGA specifications.

• VDDLVDS, GNDLVDS: (double pads) Supply voltage for the LVDS drivers. Nominal
voltage: 1.2V and 0.6 respectively.

• VDDLVDSESD, GNDLVDSESD: (double pads) Used for the LVDS pre-drivers. Nominal
voltage: 1.8V.

The whole designed chip has been schematized in Figure 4.5

4.6. Chip Layout & Fabrication
Figure 4.6 shows the full chip layout which has been taped out. The main blocks are high-
lighted by black outlines. The chip measures 2.38𝑚𝑚 × 2.1𝑚𝑚 for a total chip area of 5𝑚𝑚Ꮄ.
The active area, however, is much smaller, and the chip size is mainly defined by the number
of pads (82). The main 4 × 4 array is placed exactly in the center of the chip. The four test
ADCs are placed on the right of the main array, such that they will not have any transducer
above them. This will allow to diagnose any problems related to unwanted cross-talk between
the transducers and the ADCs underneath them. The test circuits (see Section 4.4) are lo-
cated between the main array and the test ADCs.

The main array and the test ADCs are surrounded by many metal rings: each of them is
connected to a pad in the pad-ring and it distributes a voltage across the whole array. The two
outputs of every modulator reach the periphery of the main array, where they are buffered by
data buffers, which in turn drive the lines that finally reach the LVDS transmitters (see Section
4.2), located close to the pad-ring. Each of the transmitters drives two pads, for a total of 40,
located on the top and left edges of the chip. The bottom edge is dedicated mostly to the
digital signals and supplies, while the right one hosts the analog pads.

Immediately on the left of the main array, four pads (highlighted in green in Figure 4.9)
were wired directly to four corresponding pads in the pad-ring, without any connection to any
circuit. Both the pads in the pad-ring and those beside the main array had their ESD protection
removed, so they can be used as transmit elements, which requires a large voltage across the
transducers. These elements can also be used to measure their electrical impedance, simply
by connecting them to an impedance analyzer. The results of this operation will be provided
in Chapter 5
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Figure 4.5: Block diagram of the complete chip
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Figure 4.6: Full Chip Layout

Finally, the empty space between the pad-ring and the core circuits was filled with high
density decoupling capacitors (MIM and MOM overlapping): the ones on the bottom are con-
nected in triplets to each supply (except for the 3.3𝑉 one), while the capacitors on the top and
left are dedicated specifically to the decoupling of the LVDS supplies, which draw the most
instantaneous current.
The chip has been fabricated in TSMC 0.18𝜇𝑚 MS-RF technology. The micrograph of the
ASIC is shown in Figure 4.7a, together with a close-up of the pixel (Figure 4.7b), which can be
easily compared to Figure 3.21. Here, a few structures can be distinguished, implemented in
Metal 6: the pad, the feedback capacitors on the top, the tunable capacitor 𝐶ᑔ on the top-left
and the shield which covers most of the analog and digital circuitry.

4.7. Transducer Integration
In this Section, more details will be provided on the transducer fabrication process and its
integration on the ASIC [14]. A section view of the complete acoustic stack is shown in Figure
4.8.

• As described in Section 3.6, during the standard IC fabrication, an opening in the passi-
vation layer is created for every ADC, so that the designated input pads are exposed for
further post processing.
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(a) Chip micrograph. (b) Zoom on a pixel.

Figure 4.7: Micrograph of the fabricated ASIC.

M6 PadM6 Pad

150μm
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Figure 4.8: Section view of the acoustic stack, divided into layers.

• On each pad, a gold ball is bonded in place.

• The array area is covered with an epoxy layer, acting as a buffer for the dicing procedure.

• The gold balls and the epoxy layer are grinded down, in order to leave a flat surface for
the following steps.

• The conductive glue, PZT and matching layer are sequentially applied, forming the
acoustic stack.

• The acoustic stack is diced, leaving behind stand-alone transducers.

• Finally, an aluminum ground foil is applied on the elements.
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Main Array
Test Elements
Wired Out Elements
Dummies

Figure 4.9: Micrograph showing the transducers on top of the ASIC.

Figure 4.9 shows a picture of the ASIC with PZT transducers integrated on top of it, before the
application of the ground foil (hence the single elements are still visible).
The transducers connected to the main array are highlighted in blue, while the yellow ones
are wired to the relative test ADCs on the right side of the acoustic stack.
The green elements are directly connected to four pads in the pad-ring. Finally, the active
transducers are surrounded by a ring of dummy elements, in order to provide a homogeneous
environment also for the transducers on the edges of the array.

4.8. Conclusion
In this Chapter, the procedure that leads from a single modulator to a full chip has been ex-
plained. In particular, the process of building the array has been desribed, together with the
configuration technique, the strategy that allows each modulator’s output to be transmitted
outside of the chip and the test features that were added for troubleshooting. Finally, the chip-
level layout and the additional fabrication steps needed to build the piezoelectric transducers
on top of the ASIC have been presented.
Chapter 5 will focus on the test set-up and the measurements results.



5
Measurements

In this final Chapter, the test setup, custom built to measure the previously discussed ASIC,
is briefly presented. The measurement results will follow, which will be compared with the
simulations presented in Chapter 3.
Before diving into the measurements, a quick word on the employed samples is due. A total
of seven chips were measured, four of them have transducers built on top, but none of them
can be considered completely “healthy”:

• Samples 1EL, 2EL, 1TR, 2TR: These chips suffered a catastrophic failure: they were
connected to a bench-top voltage reference, which, while powering down, caused the
chips to fail. The measured impedance between 𝑉𝐷𝐷𝐴 and ground is about 2Ω, making
these samples completely useless. The clear mechanism that caused this failure is still
unknown, but all the samples were healthy before this occurred.

• Sample 3EL: Working chip without transducers, used for electrical measurements de-
scribed in Section 5.3.

• Sample 3TR: This chip is electrically functional, but an error in the dicing procedure
made the top half of the array unusable, and many elements on the south-east corner
have been damaged during the bonding process, leaving only 4 measurable elements.
Furthermore, the acoustic stack has been exposed to water, which degrades the iso-
lation between channels. Despite these limitations, this sample was used for the mea-
surements discussed in Section 5.5.

• Sample 4TR: Finally, in this chip the 𝑉𝐷𝐷𝐿𝑉𝐷𝑆𝐸𝑆𝐷 pin (see Section 4.5), which powers
the LVDS pre-drivers (see Section 4.2), draws a high current and causes a malfunction.
However, the chip operates well if this pin is left unconnected. The digital LVDS are then
not functional, however, the performance of the test ADCs can be evaluated through
the on-chip buffer. In particular, the first stage inputs can be probed, and will show
the modulator’s DAC voltage, which will have the same shape and spectrum as the
reconstructed digital output. This sample was used for the measurements in Section
5.4.

5.1. Measurement Setup and PCB Design
Let us start with a description of the measurement set-up that was designed and built. A
schematic representation of the full test set-up is presented in Figure 5.1, while the layout of the
PCBs is provided in the appendix A. There are a number of functionalities to be implemented
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in order for the chip to work properly and to conveniently communicate with a computer, where
further processing takes place:

1. Provide all the supply and reference voltages (see Section 4.5).

2. Drive the on-chip buffer described in Section 4.4 with a constant current source.

3. Create the reference voltages 𝑉ᑉᐼᐽᎼ and 𝑉ᑉᐼᐽᎽ, visible in Figure 2.15

4. Buffer the chip’s high speed LVDS outputs.

5. Generate and send the configuration to the chip, together with the rest of the digital
signals: the two clocks, the reset and the TGC setting.

6. Acquire, save and send to the computer the buffered LVDS outputs.

7. Generate the test input analog voltage, presented at the end of Section 4.4.

8. Acquire and present the analog output voltage of the on-chip buffer.

Many of these functions can be implemented using a custom built PCB which directly connects
to the chip. Since the ASIC needs a post-processing step for the transducers to be built on
top of it (see Section 4.7), a conventional packaging cannot be employed. Instead, the chip,
after the transducer integration step, is directly glued and bonded to a carrier PCB, which is
referred to as daughter board. The design of this PCB is kept very simple, as any component
it hosts should be soldered manually for each chip. Thus, the daughter board only contains 30
decoupling capacitors, that need to be as close to the chip as possible, and two high-speed
connectors, used as both an electrical and mechanical link to the mother board. The top part
of the daughter board, which hosts the ASIC, is kept flat (all the components are placed on the
bottom side); this is important as during acoustic measurements, a water bag will be placed
on top of the acoustic stack (see Figure 5.11), so there should be nothing blocking its way.

Another PCB, the mother board, powered through a 6𝑉 bench-top power supply unit, has
been designed to provide the first four of the functionalities listed above. This board hosts
20 voltage regulators, with a wide range of specifications, to implement function 1. Function
2 is solved by a current reference IC on the mother-board. For the third functionality, a pair
of DACs were used, followed by two OP-AMPs in buffer configuration. This implementation
is necessary as the reference voltages should follow an exponential curve during the receive
phase, as explained in Section 2.6.5. Finally, function 4 is implemented using 20 high-speed
LVDS buffers.

The digital inputs and outputs (functions 5 and 6) are managed by an FPGA (ALTERA Cy-
clone IV GX Development Board), which is linked to the mother board through two high-speed
connectors. A PLL in the FPGA provides the clocks for the modulators, the on-chip shift regis-
ter and the DACs on the mother board. In order to keep the communication between the FPGA
and the computer as simple as possible, an RS-232 protocol was selected. The configuration
data is sent by the computer through an USB cable, using Matlab’s Serial Communication
Toolbox. The data is then converted in RS-232 protocol by an FTDI chip on the mother board,
which in turn sends it to the FPGA. The modulators’ output data, after having been acquired
by the FPGA LVDS receivers and stored in a FIFO, follows the opposite flow from the FPGA
to the computer.
The DACs on the mother board are programmed directly by the FPGA, through an SPI inter-
face.
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The development board only has 17 LVDS input channels, which is not sufficient to acquire
data from the whole array simultaneously, thus some multiplexing was implemented on the
mother-board.

Functions 7 and 8 are implemented by an arbitrary function generator and a digital oscillo-
scope respectively. Both of these instruments are connected to the computer and controlled
via Matlab. The function generator is also connected to the FPGA, which provides it with an
external clock reference and a trigger signal, in order to synchronize the input signal generation
with the start of the receive phase. Thus, the entire set-up is fully automated.

5.2. Transducer Impedance Characterization
5.2.1. Measurements in Air
Before moving on with the description of the modulator’s measurement results, an impedance
characterization of the fabricated transducers is presented, as it is a key piece of information
to understand the measurements that will follow.
A total of four samples went through the transducer integration steps described in 4.7. Each
sample has four transducers directly connected to the pad-ring, thus the total number of mea-
surable transducers is 16. However, only 11 elements show a resonance, while the others
display a capacitive behavior.
Figure 5.2 shows the magnitude and phase response of the transducers, measured in air by
an impedance analyzer. These plots show two evident resonant modes, one around 3.75𝑀𝐻𝑧
and the other at 5.65𝑀𝐻𝑧, both with a relatively high Q factor. Because there are two reso-
nances within the bandwidth of interest, the single-resonance model shown in Figure 1.4 used
so far is no longer viable. Thus, the second resonance ismodeled by an additional 𝑅𝐿𝐶 branch,
in parallel with the first. The best fitting model parameters, obtained using the ZView software,
are listed in Table 5.1, together with their standard deviation.
The transducer’s parallel capacitance 𝐶ᑤ is a fundamental parameter for this design, thus it

Table 5.1: Statistical data of the electrical transducer model parameters, measured in air (11 measured transduc-
ers).

𝐶ᑤ 𝐶Ꮃ 𝐿Ꮃ 𝑅Ꮃ 𝐶Ꮄ 𝐿Ꮄ 𝑅Ꮄ
Mean 1.463𝑝𝐹 472𝑓𝐹 1.8𝑚𝐻 9.8𝑘Ω 319𝑓𝐹 5.8𝑚𝐻 11𝑘Ω
Standard Deviation 182𝑓𝐹 147𝑓𝐹 0.378𝑚𝐻 4.9𝑘Ω 60.8𝑓𝐹 1.1𝑚𝐻 2.97𝑘Ω

has to be estimated carefully. In order to achieve a precise evaluation, the capacitance mea-
sured on a chip without the transducers was subtracted from the one found with the fitting
process (Table 5.1 already shows the de-embedded capacitance). This way, the capacitance
of the PCB traces and the on-chip routing and pads is not accounted for.
In addition to the two dominant resonancemodes, there are a few other peaks, clearly visible in
the phase plot, at 8.2𝑀𝐻𝑧, 15𝑀𝐻𝑧, 18.4𝑀𝐻𝑧, 21.3𝑀𝐻𝑧 and 24.6𝑀𝐻𝑧. These high frequency
resonance modes were anticipated, yet they were not modeled in the design process, as no
information about them was available.

5.2.2. Measurements in Gel
As discussed in Section 1.2, the electrical impedance of the ultrasound transducer also de-
pends on its acoustic environment. Thus, the measurements proposed in the previous Sec-
tion were repeated after placing a drop of gel on top of the acoustic stack. The measured
impedance is shown in Figure 5.3.

The first resonance is attenuated to a point where it is hardly visible, while the second
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Figure 5.1: Block diagram of the implemented measurement set-up.
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Figure 5.2: Measurement of transducer impedance through an impedance analyzer.
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Figure 5.3: Measurement of transducer impedance with and without applying gel.

one slightly shifts to a lower frequency (5.35𝑀𝐻𝑧) and increases its bandwidth. Thus, the
first resonance is thought to be caused by the acoustic impedance mismatch between the
transducer and air. In this case, the single-resonance Butterworth-Van Dyke model (shown in
Figure 1.4) can still be used. The impedance parameters obtained by the fitting are listed in
Table 5.2, where 𝐶ᑤ has already been de-embedded. Luckily, these values closely resemble
the ones for which the system was designed, and are actually slightly better (lower average 𝑅
and 𝐶ᑤ).



80 5. Measurements

Table 5.2: Extracted electrical transducer model parameters, measured in acoustic gel (2 measured transducers).

𝐶ᑤ 𝐶 𝐿 𝑅
Transd. 1 1.525𝑝𝐹 718𝑓𝐹 1.25𝑚𝐻 10.4𝑘Ω
Transd. 2 1.525𝑝𝐹 563𝑓𝐹 1.56𝑚𝐻 5.9𝑘Ω
Expected Parameters 2𝑝𝐹 731𝑓𝐹 1.6𝑚𝐻 9.44𝑘Ω

5.3. Electrical Measurements without Transducers
In this Section, the measurement results obtained from the electrical samples (those that did
not go through the transducer integration process) will be discussed. Of course, without trans-
ducers, the modulator’s loop filter is missing, thus no noise shaping will be visible. However,
some information about the chip functionalities can still be gathered. These measurements
were performed by disabling the modulator’s feedback, by forcing the voltages 𝑉ᑉᐼᐽᎼ and
𝑉ᑉᐼᐽᎽ to the common-mode voltage of 0.9𝑉. In this “open-loop” configuration, the system will
act like a more conventional ultrasound front-end, composed of a TIA, a VGA and a 3-bit ADC.

5.3.1. Open-Loop Spectra
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Figure 5.4: Spectra of the open-loop structure’s output for all TGC configurations.

The expected SNR of such a system is roughly 34𝑑𝐵 (see Equation 2.8). Indeed, mea-
surements at all TGC configurations display a similar performance, as shown in Figure 5.4.
As expected, the spectra are mostly flat, except for the distortion peaks. This behavior can
be easily explained: the linearity is now defined by the quantizer DAC (see Section 3.3.3),
which has a unit capacitor of only 9𝑓𝐹. Furthermore, the comparators’ noise and offset are
dependent on the input voltage (see Section 3.3.1), adding further non-linearity to the system.

5.3.2. Transfer Functions & TGC Measurement
Figure 5.5 shows the measured transimpedance of the first stage. In this measurement, the
frequency response of the on-chip buffer and of the function generator were de-embedded.
Theoretically, the transimpedance should be equal to 𝑅ᐽ at low frequencies and have a pole
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Figure 5.5: First stage transimpedance measurement, compared to post-layout simulations.
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and another after 𝑓ᑤ (see Figure 3.4). However, the additional loading of the buffer
brings the second pole to lower frequencies, such that its influence is already visible at 20MHz,
the maximum frequency that the function generator can provide. The first pole is also at lower
frequencies, with respect to post-layout simulations, possibly due to a parasitic feedback ca-
pacitance larger than expected.

10
6

10
7

5

10

15

20

25

30

35
2nd Stage Measured Transfer Function vs. Post−Layout Simulations

Frequency

M
ag

ni
tu

de
 [d

B
]

 

 

TGC=00
TGC=01
TGC=10
TGC=11
Post−Layout

Figure 5.6: Second stage measured transfer function, compared to post-layout simulations.

The ability of the system to adapt to different input signal levels was also tested. Figure 5.6
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shows the measured transfer functions for the second stage for all the TGC configurations.
The proposed measurements were achieved by using the on-chip buffer and evaluating the
amplitude of the second stage output divided by that of the first stage. The post-layout sim-
ulations presented were performed while loading the second stage with the estimated input
capacitance of the on-chip buffer and the associated routing parasitics. Even accounting for
the extra loading, the measured bandwidth is slightly lower than expected, however, the TGC
low-frequency gains that were decided in the design phase (see Section 3.2.2) are very close
to the measured ones. The measured transfer functions appear to have a slope of less than
the expected 20 ᑕᐹᑕᑖᑔ after 10𝑀𝐻𝑧. This could be caused by the fact that while measuring the
first stage, its second pole is shifted towards low frequencies by the buffer loading, while, when
the second stage output is measured, the first stage is only loaded by the second one.
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Figure 5.7: Measured time-domain trace showing the TGC functionality.

Figure 5.7 shows a transient simulation of the full receive phase (200𝜇𝑠). The input applied
to the pixel-level test capacitor, shown in green, is a 5𝑀𝐻𝑧 sine wave with a decaying ampli-
tude and a sinusoidal envelope. The envelope was added to make sure that at the transition
points between different TGC configurations, no input is applied. As a matter of fact, if this
condition is violated, the biasing point of the second stage could be jeopardized. In order for
this condition to be valid, it was assumed that the ultrasound echoes are sparse enough in the
time domain, so that the probability of receiving a reflection during the TGC switching point is
low. If this assumption is observed to be invalid, a brief reset phase during the TGC transition
can be added, keeping the second stage common-mode voltage under control.

The expected second stage output amplitude is 𝑉ᑠᑦᑥ = 𝑉ᑚᑟ2𝜋𝑓ᑚᑟ𝐶ᑥᑖᑤᑥ ⋅ 𝐴Ꮄᑟᑕᑤᑥᑒᑘᑖ. The
impedance of the test capacitor and of 𝑅ᐽ were designed to be almost identical at 5𝑀𝐻𝑧,
so the first stage acts as a voltage buffer with respect to the test input. The blue curve shows
how the amplitude at the output of the second stage is kept roughly constant by the TGC
functionality.



5.4. Electrical Measurements with Transducers 83

5.4. Electrical Measurements with Transducers
In this Section, the converter performance is evaluated using the electrical test input, as in the
previous section. However, this time, the employed sample has transducer integrated on top,
and the modulator feedback is applied.

5.4.1. Closed-Loop Spectra
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Figure 5.8: Spectra of the reconstructed modulator’s output for all TGC configurations.

Figure 5.8 shows the measured modulator spectra for all TGC configurations, with a full-
scale input. The desired noise shaping behavior can be clearly observed in all cases. The
second and third order distortion peaks are quite high, at around −20𝑑𝐵𝐹𝑆 and −30𝑑𝐵𝐹𝑆 re-
spectively, however this proves only slightly worse with respect the simulation shown in Figure
3.19, where mismatch is not accounted for.
The SNR is very close to the simulated one, or even exceeding the expectations, except in
the highest gain configuration (TGC=00). Here, a SNR of only 40𝑑𝐵 − 41𝑑𝐵 is reached. A
possible reason for this performance degradation is the noise coming from the reference volt-
ages 𝑉ᑉᐼᐽᎼ and 𝑉ᑉᐼᐽᎽ, which enters the modulator at a very critical spot. This noise is the
combination of that of the DAC that generates the reference voltages and the OPAMP that
buffers them, for a total noise of 234𝜇𝑉ᑣᑞᑤ, integrated in the bandwidth of interest. A very
rough estimation of the equivalent integrated noise at the first stage’s input yields a 25 times
higher noise with respect to that of first stage, accounting for the different transfer functions.
This could be an overestimation due to the limited information that can be found in the DAC
data-sheet.

Let us take a closer look at the measured spectrum shape: in Figure 5.9 the modulator
output’s FFT is shown together with the measured phase of the transducer impedance (see
Section 5.2). The correlation between the two plots should be evident. In particular, the band-
width of interest presents two peaks instead of the single resonance that was assumed during
the design phase. This slightly increases the usable bandwidth, but it could harm the SNR, as
the central part between the two peaks will show a high quantization noise.
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Figure 5.9: Spectrum of the modulator output bitstream, combined with a phase plot of that sample’s measured
transducers.

Moreover, the transducer’s high frequency peaks are also visible in the modulator output.
Finally, the downward slope of the spectrum between 10𝑀𝐻𝑧 and 15𝑀𝐻𝑧 could be caused by
a feedback capacitance larger than expected in the first stage.

5.4.2. Dynamic Range Measurement
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Figure 5.10: Measured Dynamic Range for different TGC configurations, ᑚ፟ᑟ ዆ ኾ.ኾፌፇ፳.

Figure 5.10 shows the measured dynamic range for all TGC configurations. The quantity
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on the 𝑥 axis is the first stage’s input current, calculated as 𝐼ᑚᑟ = 2𝜋𝑓ᑚᑟ𝐶ᑥᑖᑤᑥ𝑉ᑚᑟ, where 𝑉ᑚᑟ is the
voltage provided by the function generator. In high gain mode (𝑇𝐺𝐶 = 00) the highest point is
reached at 𝐼ᑞᑒᑩᑚᑟ = 1.2𝜇𝐴, which is similar to the predicted value: 𝐼ᑞᑒᑩᑚᑟ = ᐸᑞᑒᑩᑚᑟ

ᑉ ≈ 1.5𝜇𝐴, where
𝐴ᑞᑒᑩᑚᑟ is the maximum amplitude of the transducer model’s voltage source, derived in Section
2.5.5 and 𝑅 is the resistor. Because of the limited range of the function generator, the point
where the DR plot flattens cannot be measured for the high gain configuration. However, one
can conclude that the dynamic range, accounting for the time gain compensation, exceeds 3
decades (60𝑑𝐵).

5.4.3. Power Consumption

Table 5.3: Comparison between simulated current consumption and measured one

VDDA VDDC VDDCORE VDDLVDS VDDLVDSESD
ITRIM 00 01 10 11 - - - -
Simulations (𝜇𝐴) 247 275 303 331 93 108 1800 160
Measurements (𝜇𝐴) 190 212 233 255 92 138 921 140

Table 5.3 shows a comparison between the expected current consumption and the mea-
sured one. The most important difference is the analog current consumption, which shows
a reduction of almost 30% with respect to simulation. The function of the mentioned power
domains is explained in Section 4.5. The reason for this behavior is still unclear, and it could
be the cause of the bandwidth reduction observed for both the stages. Trimming the first stage
current leads to a variation of 22𝜇𝐴 in the analog current consumption, as opposed to a sim-
ulated value of 28𝜇𝐴. This points towards a problem in the biasing (unit current lower than
anticipated). Moreover, this difference could be also blamed on the indirect measurement that
was performed (total analog current divided by the number of elements).
The core digital current (from VDDCORE) is larger than expected, possibly due to an increase
in the modulator’s activity factor, which was observed during the measurements.
The LVDS pre-drivers show a similar current, drawn by the VDDLVDSESD pin, with respect
to the simulated one. Finally, the 50% difference in current consumption for the LVDS drivers
can be attributed to a load capacitance lower than the expected one.
The total measured per-channel power consumption goes from 756𝜇𝑊 to 873𝜇𝑊 depending
on the selected first stage current, without including the LVDS transmitters.

5.5. Acoustic Measurements
In this Section, the results obtained with an acoustic input will be presented. A few additions
(see Figure 5.11) to the previously described experimental set-up are required in order to
estimate the modulator’s response to an acoustic signal. A “water bag” is laid over the acoustic
stack, which mimics the acoustic impedance of the human body. Additionally, an unfocused
(with no intrinsic directionality) transmit transducer with a center frequency of 5𝑀𝐻𝑧 is placed
inside the water bag. This transducer can either be connected to the function generator, which
has a maximum amplitude of 10𝑉ᑡᑡ, or to a dedicated high-voltage bench-top pulser. The
position of the transmitter relative to the ASIC can be precisely adjusted through an X-Y-Z
stage; furthermore the transmitter can be tilted along one of the directions.

5.5.1. Closed-Loop Spectra with an Acoustic Input
Figure 5.12 shows the FFTs of the modulator output for each TGC configuration. This time,
the input is an acoustic wave sent by the transmitter, directly above the chip. In this case, the
transmitter is connected to the function generator and is driven by a sine wave. These spectra
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Figure 5.11: Block diagram of the set-up that allows for acoustic measurements.
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Figure 5.12: Spectra obtained at different TGC configurations with an acoustic input.

are practically identical to those shown in Figure 5.8, and so are the maximum signal to noise
ratios. This might sound counter-intuitive in view of the discussion introduced in Section 5.2
about the different impedance that should be expected from the transducer in case of water
loading. However, the water bag solution used for these measurements might induce a larger
acoustic impedance mismatch between the transducer matching layer and the surrounding
environment, with respect to the measurements in gel shown in Figure 5.3.
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5.5.2. Transducer and Modulator Transfer Functions
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Figure 5.13: Measured modulator and transducer frequency response with an acoustic input.

Figure 5.13 shows a comparison between the frequency response of the modulator’s dig-
ital output and that of the transducer. The measured elements are not the same in the two
subplots: for the upper plot, the wired-out transducers were employed (see Figure 4.9). This
measurement has been performed by sweeping the transmit frequency of the function gener-
ator, which was connected to the acoustic transmitter, while the amplitude was fixed at 10𝑉ᑡᑡ.
The transmitter was designed to resonate at around 5𝑀𝐻𝑧, thus, the shown results also in-
clude the bandwidth limitations introduced by it. This measurement can be seen as an evalu-
ation of the acoustic STF of the modulator, which should not limit the intrinsic acoustic signal
bandwidth. The general shape of the measured frequency response is similar: the main peak
appears around 4𝑀𝐻𝑧 for the transducers and 4.5𝑀𝐻𝑧 for the modulators. This discrepancy
could be caused by the different transducer loading condition in the two measurements, in
particular, the wired out transducers will have a much higher load capacitance to drive. There
seems to be a second peak at 1𝑀𝐻𝑧, which appears to bemore relevant in the bottom sub-plot.

5.5.3. Time-Domain Acoustic Measurements
Now that the spectral characteristics of the modulator in the presence of an acoustic input
were discussed, some time-domain measurements will be provided.
First of all, it is important to evaluate if the modulator output is a good approximation of the
actual signal that the transducer provides. In order to verify that, the response of the modu-
lator to an acoustic pulse has been compared in Figure 5.14 to the same pixel’s TIA output,
after having disabled the modulator feedback, in the same way as in Section 5.3. In this case,
the TIA provides an amplified version of the transducer’s output voltage. The two responses
show a clear correlation, however they are not perfectly equivalent. A possible explanation for
this effect has been provided in Section 2.6.2: when the modulator’s feedback is applied, the
termination condition for the transducer is changed.
In the measurements, the increase in the transducer’s bandwidth that was anticipated in the
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Figure 5.14: Comparison between the modulator output and the transducer response, for the same pixel.

system-level simulations was not observed, probably because of the limitations of the adopted
Butterworth-Van Dyke model concerning the electro-mechanical conversion performed by the
transducer.
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Figure 5.15: Modulator output with an acoustic pulse as an input, at different distances between the acoustic
transmitter and the ASIC.

Figure 5.15 shows the response of the modulator to an acoustic pulse, while the transmit-
ter position is varied. The starting distance 𝑑 between the acoustic stack and the transmitter is
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around 1𝑐𝑚, which is increased by 0.75𝑚𝑚 at each step. The observed delay (𝑡ᑕ) between two
successive measurements is 500𝑛𝑠, according to expectations: 𝑡ᑕ =

ᑕ
ᑧ =

Ꮂ.ᎹᎷᑞᑞ
ᎳᎷᎲᎲᑞᑤ

= 500𝑛𝑠,
where 𝑣 is the speed of sound in water.
Another important result conveyed by Figure 5.15 is that the measured waveform keeps its
shape constant, even with repeated measurements. This effect is more evident looking at the
filtered outputs: yet another confirmation that, regardless of the modulator’s chaotic behavior,
the in-band quantization noise is low.

18 19 20 21 22 23 24 25
0

2

4

6

Time [µs]

D
ig

ita
l C

od
e 

[L
S

B
]

Modulator Impulse Response

Channel 20
Channel 15

18 19 20 21 22 23 24 25
−2

−1

0

1

2

Time [µs]

D
ig

ita
l C

od
e 

[L
S

B
]

Filtered Impulse Response

Channel 20
Channel 15

Unfocu
se

d Aco
usti

c

5M
Hz T

ran
sm

itt
er

α

Figure 5.16: Arrival delay between two elements, applying an acoustic pulse from a tilted position

Finally, Figure 5.16 shows the response of two different elements to an acoustic pulse
provided by the transmitter, which, this time, is placed in a tilted position. Assuming that the
acoustic wave propagates through spherical wave-fronts, the element highlighted in green
will be reached sooner by the wave with respect to the blue one. Indeed, the measurements
show a different time of arrival for the two pixels. The time difference is approximately equal
to one period (200𝑛𝑠), which corresponds to a mean path length difference of 300𝜇𝑚, while
the physical distance between the two elements along the tilting axis is 600𝜇𝑚. Of course,
the estimated and the physical distance can be different, and their difference is a function of
the tilting angle 𝛼, which in this case was approximately 60ᑠ, and the distance between the
center of the array and the transmitter (2𝑐𝑚). Only with an angle of 0ᑠ with respect to the chip
surface one would measure the actual physical distance between the two elements, but this
proves to be impractical.

5.6. Performance Comparison
This work uses the ultrasound transducer as the loop filter for a 𝐵𝑃ΣΔ converter, thus, the
area typically reserved for the reactive components needed to implement standard loop filters
is saved. This allows the designed converter to be very competitive in terms of area.
Figure 5.17 shows a performance comparison between this work and other ΣΔ converters pub-
lished in two of the most important circuit conferences. The green markers show designs that
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Figure 5.17: Walden Figure of Merit vs. area of modulators published in ISSCC and VLSI [4].

use a feature size smaller than 0.18𝜇𝑚, while the blue ones represent modulators employing
a 0.18𝜇𝑚 technology or an older one. The 𝑥-axis represents the area, while on the 𝑦-axis, the
Walden figure of merit is shown, defined as:

𝐹𝑂𝑀ᑎ = 𝑃𝑜𝑤𝑒𝑟
ᑗᑤ
ᑆᑊᑉ2

ᑊᑅᑉᎽᎳ.ᎹᎸ
Ꮈ.ᎲᎴ

= 800𝜇𝑊
ᎴᎲᎲᑄᐿᑫ
ᎴᎸ.Ꮉ 2

ᎶᎹᑕᐹᎽᎳ.ᎹᎸ
Ꮈ.ᎲᎴ

= 0.583 𝑝𝐽
𝑐𝑜𝑛𝑣 (5.1)

A general trend can be identified, which associates a lower active area with a smaller FOM.
This work achieves by far the lowest area, compared to designs using a similar technology.
Furthermore, only two of the converters employing a smaller feature size achieve a lower area.
The Walden FOM, while being more than one decade above the state of the art, can still be
considered as a competitive result. This is because, in the current implementation, 50% of
the power goes to the digital core and the comparators, which would benefit greatly from a
smaller feature size.
Finally, Figure 5.18 shows a direct comparison between area and power consumption, for
modulators with similar SNR and bandwidth, using any technology node. This work features
the lowest area, as well as the smallest power consumption among all the designs.

5.7. Conclusion
In this Chapter, the implemented test set-up was described and the most relevant measure-
ments were presented and discussed. The electrical and acoustic results are, for the most
part, in line with the expectations, and demonstrate not only that the concept is viable, but
also that the predicted performance can be achieved without significant roadblocks.
Finally, this chip’s measured performance was compared to that of similar works.
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6
Conclusions

6.1. Thesis Contribution
The most important result for this thesis is that using the frequency response of the sensor as
the loop filter of a ΣΔ modulator can inherently save complexity, area an power. This concept
can be theoretically extended to any “flavor” of ultrasound imaging, and is not limited to TEE
probes.
Moreover, this idea, although not entirely new (see Section 1.5.1), can be applied to any field
that requires a sensor with a known and exploitable transfer function. As a matter of fact, sen-
sors showing a capacitive behavior in the bandwidth of interest (see Section 2.2) would be the
preferred candidates for the application of this concept, since the capacitance compensation
techniques used in this design would not be required.

Another interesting aspect of this work is that it does not introduce much additional circuitry
with respect to a more traditional analog front-end. The TIA and the second stage (which acts
as a VGA) are used in the majority of ultrasound readout systems, while the only extra blocks
needed to convert an AFE into a complete ADC are the tunable RC branch, the feedback
DACs and the tracking quantizer. These circuits occupy only 37% of the area and consume
roughly 50% of the power.

The implemented tracking ADC, aside from the problems with the comparators (see Section
3.3.1), represents a power- and area-efficient solution for multi-bit quantizers to be used in a ΣΔ
loop. Its linearity does not directly influence that of the modulator. The number of comparators
is reduced to two, regardless of the required number of bits, furthermore, the full conversion
is completed within one clock cycle, as opposed to SAR converters. The associated digital
logic can be kept rather simple, allowing for the use of such a quantizer even for relatively high
speed applications.

Finally, the Butterworth-Van Dyke model for ultrasound transducers was validated once more,
proving that the purely electrical response of such a transducer can be described by an 𝑅𝐿𝐶
branch in parallel with a capacitance. Of course, more sophisticated models would have been
able to predict other features of the transducer, such as higher order resonances and the
precise conversion coefficients between the mechanical and the electrical domain. These
models could have been used to predict the acoustic STF of the modulator, which is not well
represented by the model that was adopted, as highlighted by the difference between the
expected STF and the measured one.
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6.2. Future Work
The main concepts that were put to a test through the design of this chip have been proven
rather successful. Nonetheless, there are a few aspects of this work that need further atten-
tion, before it can be proposed as a commercial product.

First of all, a strategy to decimate and perform beam-forming, possibly combining these two
functions, must be found. The need for decimation and beamforming is highlighted by the
high power consumption required in the current implementation in order to stream out the 20
differential digital outputs at 200𝑀𝐻𝑧. Solving this issue is fundamental, especially if, like in
most cases, a bigger array is required.

In order to reach a mature prototype, with a higher number of elements, a better strategy for
the routing of the modulator outputs is required. A possible approach would be combining the
pixels in sub-arrays and introduce in every sub-array a decimation filter, which can be partially
shared between elements, and a multiplexer, in order to reduce the amount of outputs to be
routed. Furthermore, the current implementation features two digital outputs per pixel. How-
ever, these two signals could be serialized or combined using tri-state circuits or trivalent logic.

In a second iteration, the additional circuitry needed to implement the acoustic transmitters
could be implemented. This would eliminate the need for an external transmitter and increase
the range of acoustic experiments that can be performed.

The selected capacitance compensation method (see Section 2.4), although effective, is not
very elegant, as it requires a calibration step and an additional bank of capacitors. Further
research on this topic could uncover new, interesting techniques.

A better way to generate and distribute the reference voltages 𝑉ᑉᐼᐽᎼ and 𝑉ᑉᐼᐽᎽ should be
investigated. As a matter of fact, the SNR reached in high gain configuration, in the current
implementation, is limited by the noise on these lines. An on-chip reference generation, with
an eye on noise, could solve the issue.

The implemented two-clock arrangement for the tracking quantizer is somewhat delicate and
unreliable. An in-pixel generation of the second clock, in a process-independent manner,
could benefit the system robustness.

The designed comparator clearly suffers from a data-dependent noise and offset, introducing
many unpredictable non-idealities in the tracking quantizer. The use of a topology which in-
cludes a continuous pre-amplifier could help mitigate this effect.

Finally, a careful evaluation of the electrical and acoustic cross-talk between different elements
should be performed.
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Figure A.1: Daughter-board PCB layout.
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Figure A.2: Mother-board PCB layout.
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