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Extended Isogeometric Analysis of Cracked Piezoelectric
Materials in the Presence of Flexoelectricity

Gokul Krishna Unnikrishnan,* Saurav Sharma, Himanshu Pathak, Vishal Singh Chauhan,
and Satish Chandra Jain

To accurately analyze the fracture behavior of piezoceramics at small length
scales, flexoelectricity must be considered along with piezoelectricity. Due to
its dependence on size, flexoelectricity predominates at the micro- and
nano-length scales. Additionally, crack tips having the largest strain gradient
state cause large flexoelectricity around them. Different approaches are
employed in the past to model cracks computationally. However, extended
isogeometric analysis (XIGA) is proven to be an accurate and efficient
method. C1 continuity requirements for modeling gradients in flexoelectricity
are met by non-uniform rational B-splines (NURBS) basis functions used in
XIGA. In this work, XIGA-based computational model is developed and
implemented to study the fracture behavior of the piezoelectric-flexoelectric
domain. An in-house MATLAB code is developed for the same. Several
numerical examples are studied to ensure the efficacy and efficiency of the
implemented model, and crack behavior is presented in the form of an
electro-mechanical J-integral. The analysis is carried out to investigate how
cracks behave for different flexoelectric coefficients under different electrical
and mechanical loading combinations. J-integral is also analyzed against crack
parameters such as crack orientation and length. It is observed that boundary
loads and flexoelectric material constants significantly influence J-integral.
Results also show a considerable amount of fracture toughening in the
presence of flexoelectricity. The peak value of J-integral is found to be reduced
with an increase in the flexoelectric coefficient. A significant reduction in
J-integral, as much as 45%, is observed when the flexoelectric constant varied
from 0.5 to 2 µCm−1.

1. Introduction

Smartmaterials are extensively employed for fabricating sensors,
actuators, and energy harvesters. These materials are known for
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their ability to react to external stimuli
in a useful, reliable, and reproducible
manner.[1,2] External stimuli can be me-
chanical, chemical, electrical, magnetic
etc. Piezoelectric materials are widely
used smart materials for sensing and
actuation applications. They have been
widely used in MEMS/NEMS devices as
micro/nano-sensors, actuators, and energy
harvesters.[3–5] The reversible coupling be-
tween mechanical deformation and electric
potential makes piezoelectrics desirable for
these applications. Piezoelectric behavior
comes with a special requirement known
as a non-centrosymmetric crystal structure.
Also, for ferroelectric-piezoelectric mate-
rial, piezoelectricity is shown only below
Curie temperature.[6] Dielectrics also pos-
sess another electro-mechanical coupling
phenomenon known as flexoelectricity.
Flexoelectricity is defined as the effect of
generating electric potential proportional
to strain gradient and, in a reverse man-
ner, mechanical strain from electric field
gradients. Flexoelectricity does not require
a non-centrosymmetric crystal structure,
making it a more general property than
piezoelectricity.[7] Due to its universal pres-
ence regardless of crystal structure, flexo-
electricity has recently been getting lots of
research attention from both theoreticians

and experimentalists.[8–11] The flexoelectric effect in solids was
first identified in 1957 byMashkevich and Tolpygo.[12] The frame-
work for defining flexoelectricity as a phenomenon was devel-
oped by Mindlin in 1968.[13] Researchers investigated flexoelec-
tricity in sensing,[14] actuation,[15,16] and energy harvesting.[17–19]

Since it is a gradient-dependent phenomenon and gradients in-
crease with reducing length scale, its effect is high at micro and
nano levels.[20] Even flexoelectricity competes with piezoelectric-
ity in many nanotechnology applications.[9] So it is essential to
incorporate flexoelectricity while designing micro and nano-level
piezoelectric devices.[21]

Since flexoelectricity is prominent in places with higher strain
gradients, holes, cracks, thin films, and inclusions are naturally
targeted for their presence.[22–24] Stress fields are singular at
crack tips, and the high value of stress reduces at a minimal
distance resulting in high strain gradients around the tip. The
high strain gradient will allow flexoelectricity to act and generate
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electric potential proportional to it.[25] An earlier Investigation
of flexoelectricity associated with cracks was carried out in ice by
Petrenko et al.[26] and was given as the reason for polarization
associated with cracks and dislocation in ice, a centrosymmetric
crystal that does not possess piezoelectricity. The name “pseudo
piezoelectricity” was given to the phenomenon then. In their
2015 study, Mao et al.[25] investigated flexoelectricity associated
with defects and cracks. Some recent studies also found that
flexoelectricity contributes to the healing and repairing of cracks
in bones. Vasquez-Sancho et al.[27] quantified the flexoelectricity-
induced electric fields around crack tips in bone minerals and
concluded that they are sufficiently large for osteocyte apoptosis.
Núñez-Toldrà et al.[28] conducted detailed cellular-level experi-
ments focusing on the mechanism of the healing process and
concluded that flexoelectricity triggers an apoptotic response
and induces bone rebuilding.
Crack behavior depends only on mechanical boundary loads

for structures made with materials having prominent mechan-
ical characteristics. In the case of fracture mechanics of piezo-
electric materials, the crack behavior is influenced by both me-
chanical and electrical boundary loading, such as traction and
electric charge density at the boundary. While designing using
piezoelectricmaterials, their low strength and brittle naturemust
be considered to prevent fracture against electrical and mechan-
ical loading.[29,30] Fracture mechanics of piezoelectric materials
has been widely investigated in the past.[31] Many researchers
have used the finite element method (FEM)[32] and the extended
finite element method (XFEM) to implement fracture studies
on piezoelectric materials under electro-mechanical and thermal
loading.[33–38] In some of the recent contributions, Zhu et al.
conducted dynamic fracture analysis of inhomogeneous piezo-
electric materials[39] and piezoelectric composites.[40] Compared
with piezoelectricity, fracture mechanics of domains with flex-
oelectricity is still a less explored area.[24,25] Gradients must be
considered when modeling flexoelectricity, and XFEM’s linear
Lagrange-based finite elements cannot be employed.[41] Isogeo-
metric analysis (IGA) using NURBS as smooth basis functions
can interpolate gradients and higher-order fields. A MATLAB-
based implementation of IGA for various problems was devel-
oped by Nguyen et al.[42] Their computational framework covers
linear elastic fracture mechanics and structural mechanics prob-
lems.
Different computationalmodels have been developed tomodel

flexoelectricity in the past.[41,43] In one of the early works, Abdol-
lahi et al.[20] implemented a numerical model using the mesh-
free method for analysis of the flexoelectric effect in beams and
truncated pyramids. IGA, capable of modeling gradients, was ap-
plied to capture flexoelectricity in many works.[21,44–48] Yvonnet
et al.[49] used Argyris elements in their study, which provides C1

continuity to the displacement field. Similar to XFEM was de-
veloped for solving fracture problems, XIGA was developed to
solve crack problems using isogeometric analysis.[50] Partition of
unity character of NURBS allows adding enrichment functions
to approximations in knot span in a similar way as that of XFEM.
XIGA is similar to XFEM, and the major difference is that the
Lagrange polynomial basis and derivatives were straightforward
to implement, while a separate algorithm has to be implemented
for NURBS derivatives. XIGA has been applied to piezoelectric
problems in some previous works,[34,51] and J-integral was em-

ployed to study the behavior of the crack.[52,53] Since most ferro-
electric materials are brittle, we can ignore crack tip plasticity in
them, and the J-integral developedwould equal the energy release
rate.[54] Sladek et al.[55] developed an FE-based formulation for
higher-order piezoelectric fracture problems. The length scale pa-
rameters were used for incorporating gradients into the coupling,
and the model was implemented using COMSOL.[56] In another
contribution, Abdollahi et al.[57] investigated cracked domains us-
ing meshless method at different length scales with piezoelec-
tricity and flexoelectricity. The energy release rate was used for
studying the crack behavior and noted a significant amount of
fracture toughening and asymmetry at specific length scales.
The literature review found that different computational and

analytical models have been used to model cracks in flexoelec-
tric domains, such as meshless methods and FEM with adap-
tive meshing. Although, an efficient and robust computational
technique is needed to analyze the fracture behavior of flexo-
electric medium under electro-mechanical loading conditions.
Therefore, this work focused on the extension of XIGA formula-
tion and their implementation to predict fracture parameters in
the flexoelectric medium. In the present study, the XIGA frame-
work for fracture analysis of piezoelectric materials is enriched
by adding flexoelectric physics to it. The model will help to im-
prove the understanding of crack behavior at micro and nano
length scales where flexoelectricity dominates over piezoelectric-
ity. The framework can also investigate cracked non-piezoelectric
dielectrics that show flexoelectricity at crack tips. The higher-
order XIGA formulation was implemented as an in-house de-
veloped MATLAB code. The numerical code is tested for mesh
independency and further validated by comparing it with exist-
ing literature. Several parametric studies have been carried out
to investigate how cracks behave for different flexoelectric coef-
ficients under electrical and mechanical loading combinations
using electro-mechanical J-integral. Both center and edge crack
geometries are investigated for different crack orientations and
lengths. Further, a crack interaction study was carried out to un-
derstand the behavior of multiple edge cracks.

2. Formulation

2.1. Constitutive Equations and Weak Form

Different approaches can be seen in the past literature to analyze
flexoelectric domains computationally.[20,41,48,58,59] We begin our
formulation with electric enthalpy density defined in an electro-
mechanical continuum as a function of strain, electric field, and
respective gradients.[20] Electric enthalpy density  in a domain
with both flexoelectricity and piezoelectricity can be defined as


(
𝜀ij, Ei, 𝜀jk,l, Ei,j

)
= 1
2
∁ijkl𝜀ij𝜀kl − eiklEi𝜀kl + dijklEi,j𝜀kl

+fijklEi𝜀jk,l −
1
2
𝜅ijEiEj (1)

The sum of five terms can be seen on the right-hand side of the
equation. The first term on the right-hand side is the elastic strain
energy density, defined by fourth-order elastic tensor ∁ijkl and
strain tensor 𝜀ij. The second term shows the coupling between
the electric field Ei and mechanical strain 𝜀kl. Here Ei = −𝜙,i
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Figure 1. a) The arbitrary domain under consideration with different boundary loads and b) the coordinate system considered in the problem.

where 𝜙 is the electric potential and eikl is the third-order piezo-
electric tensor. The third and fourth terms show flexoelectric cou-
pling. The fourth-order converse flexoelectric constant dijkl cou-
ples strain 𝜀kl with the electric field gradient Ei,j. Also, fourth-
order direct flexoelectric tensor fijkl couples electric field Ei with
strain gradient 𝜀jk,l. The last term defines electrostatic energy,
which has the second-order dielectric tensor 𝜅ij and electric field
Ei. A simplified representation of the problem domain with crack
is given in Figure 1a. The local coordinate axis along the crack
and global coordinate axis are shown in Figure 1b. The direct
and converse coupling terms in the above expression can be com-
bined into a single term by applying integration by parts and then
the Gauss divergence theorem.[20,21,60] This modification will pro-
duce a new energy expression with no electric field gradient term.
So, the new electric enthalpy density function can also be written
using a single flexoelectric material constant 𝜇ijkl as

[20]


(
𝜀ij, Ei, 𝜀jk,l

)
= 1
2
∁ijkl𝜀ij𝜀kl − eiklEi𝜀kl − 𝜇ijklEi𝜀jk,l −

1
2
𝜅ijEiEj (2)

Where 𝜇ijkl = diljk − fijkl; Due to the presence of flexoelectric-
ity along with regular stress 𝜎̂ij and electric displacement D̂i,
higher-order stress 𝜎̃ijk and electric displacement D̃ij fields are
also present and given as

𝜎̂ij =
𝜕

𝜕𝜖ij
, D̂i = −𝜕

𝜕Ei
, 𝜎̃ijk =

𝜕

𝜕𝜖ij,k
, D̃ij =

𝜕

𝜕Ei,j
(3)

The net stresses 𝜎ij and the electric displacements Di can be
written as

𝜎ij = 𝜎̂ij − 𝜎̃ijk,k = ∁ijkl 𝜀kl − ekijEk + 𝜇lijkEl,k (4)

Di = D̂i − D̃ij,j = eikl 𝜀kl + 𝜅ijEj + 𝜇lijk𝜀jk,l (5)

Dirichlet and Neumann boundary conditions for the electric
potential are given as follows

𝜙 = 𝜙̄ onΓ𝜙 (6)

Di ni = −𝜔onΓD (7)

Here 𝜙̄ is the applied potential, and 𝜔 is the applied electric
charge density; ni is the normal unit vector; also Γ𝜙

⋃
ΓD = 𝜕Ω

and Γ𝜙 ∩ ΓD = ∅. Mechanical boundary conditions are given as
follows[20,41]

ui = ūi on Γu (8)

tk = nj
(
𝜎̂jk − 𝜎̃ijk,l

)
− Dj

(
ni𝜎̃ijk
)
−
(
Dpnp
)
ninj 𝜎̃ijk = t̄k onΓt (9)

t̄k and ūi are values of applied traction and displacement at the
respective boundaries. Dj = 𝜕j − njD

n is the surface gradient op-
erator.Dn = nk 𝜕k is the normal gradient operator. Γu

⋃
Γt = 𝜕Ω

and Γu ∩ Γt = ∅. Other types of boundary conditions that arise
due to strain gradients are given as follows

ui,j nj = v̄i on Γv, ninj 𝜎̃ijk = r̄k on Γr (10)

v̄i and r̄k are the prescribed normal derivative of displacement
and higher-order traction, respectively. ui,j is the gradient of dis-
placement field. We ignore these higher-order tractions in the
present study and take them as zero. Also here: Γv

⋃
Γr = 𝜕Ω

and Γv ∩ Γr = ∅. Applying the principle of virtual work will re-
sult in a weak form as follows[20]

∫
𝛀

(
Cijkl𝛿𝜀ij𝜀kl − ekijEk𝛿𝜀ij − 𝜇lijkEl𝛿𝜀ij,k − 𝜅ij𝛿EiEj

)
d − ∫

Γt
t̄i𝛿uidS

+ ∫
ΓD

𝜔𝛿𝜙dS = 0 (11)

Here 𝛿 is the variational operator. The weak form can be used
further for numerical analysis.

2.2. Isogeometric Analysis

2.2.1. NURBS and B-Splines

Parametric curves such as NURBS are widely used to represent
different smooth geometries in computer-aided geometric de-
sign (CAGD) applications. In splines-based geometric modeling,
control points are given as inputs, and curves and surfaces are
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approximated using a smooth polynomial basis.[61] For the given
n + 1 control points with non-negativeweightwi and a knot vector
containing m + 1 knots, the NURBS curve of degree p is defined
as

C (t) =
n∑
i=0

Ri,p (t) Pi (12)

Pi is control points, t is the parameter that varies from 0 to 1.
Here the relation m = n + p + 1 is held. The coefficient Ri,p is
the NURBS basis function and is defined as

Ri,p (t) =
Ni,p (t)wi∑n
j=0 Nj,p (t)wj

(13)

The B-spline basis functions of degree p, Ni,p(t) is defined re-
cursively using the Cox-de Boor recursion formula

Ni,0 (t) =
⎧⎪⎨⎪⎩
1 if ti ≤ t ≤ ti + 1

0 otherwise
(14)

Ni,p (t) =
t − ti
ti + p − ti

Ni,p−1 (t) +
ti + p + 1 − t

ti + p + 1 − t i + 1
Ni + 1,p − 1 (t) (15)

Here ti ≤ t ≤ ti+1 is the ith knot span of the curve. The first
part of the formula in Equation (15) defines step functions equal
to one in knot span and zero everywhere else in the paramet-
ric space. It can be seen that NURBS basis functions are ratio-
nal in t and they have properties such as local support and par-
tition of unity, which are useful in different numerical analysis
applications. Also, note that if the degree is p then p + 1 basis
functions will be non-zero on that knot span. B-spline basis func-
tions can be considered special cases of NURBS basis functions.
TheNURBS basis functions will becomeB-spline basis functions
when weights are equal to one. Increasing the weight will result
in a curve beingmore pulled toward the control points. ANURBS
surface is defined as

P (r, s) =
nx∑
i=0

ny∑
j=0

Ri,p (r) Rj,q (s)Pi,j (16)

WhereP = {x, y} is the surface andPi,j = {xij, yij} is the control
point. For a surface, there are two-knot vectors, one in r and the
other in s. The surface is defined with nx + 1 control points in one
direction and ny + 1 in the other direction. Also, p and q are the
degrees in each direction. As wemove ahead, the term “element”
will be used to represent knot spans and surface patches.

2.2.2. Displacement and Voltage Approximations

In IGA, surface patches are treated the same way as elements in
finite element analysis. They are mapped to the parent element
suitable for Gauss quadrature for integration. In the case of FEA,
we needed a single mapping from parent space to physical space,
while in IGA, we require one extra mapping from parametric

space to parent space. Using IGA approximations, we can evalu-
ate the mechanical displacement and electric voltage field inside
a surface patch [ri, ri + 1) × (si, si + 1) that has (p + 1) × (q + 1) con-
trol points associated with it as

u (r, s) =
nx∑
i=0

ny∑
j=0

Rp,q
i,j
(r, s) ui,j (17)

𝜙 (r, s) =
nx∑
i=0

ny∑
j=0

Rp,q
i,j
(r, s) 𝜙i,j (18)

Where u = {ux, uy} are the displacement field, and 𝜙 is the
voltage field, ui,j and 𝜙i,j are the values of displacements and elec-
tric potentials at control points. Also, nx = p + 1, ny = q + 1 and
Rp,q
i,j (r, s) = Ri,p (r)Rj,q(s).

2.3. Extended Isogeometric Analysis

Using enrichment terms in approximations in a similar way as
that of the extended finite element method (XFEM) for elements
containing crack faces and crack tips, we get displacement and
voltage field as[50,51]

uh (x) =
nc∑
j=1

Rj (X) uj +
ms∑

h = 1

Rh (X) [H (X) −H
(
Xh

)
]ah

+
mt∑

k = 1

Rk (X)

(
nf∑

l = 1

[
Fl (X) − Fl

(
Xl

)]
blk

)
(19)

𝜙h (X) =
nc∑
j=1

Rj (X)𝜙j +
ms∑

h = 1

Rh (X)
[
H (X) −H

(
Xh

)]
𝛼h

+
mt∑

k = 1

Rk (X)

(
nf∑

l = 1

[
Fl (X) − Fl

(
Xl

)]
𝛽 lk

)
(20)

Here nc is the number of control points associated with the ele-
ment;ms andmt are control points associated with elements that
have a crack face and crack tip;H(X) is the Heaviside enrichment
function and Fl(X) are the crack tip enrichment functions; nf is
the number of these crack tip enrichment functions per degree
of freedom; ah b

l
k, 𝛼h, and 𝛽 lk are the additional degree of free-

dom associated with enrichment terms. We used conventional
fourfold enrichment functions since they have proven accurate
for the electro-mechanical domain.[62] Converting the weak form
given in Equation (11) to matrix notations will result in the fol-
lowing equation

{𝛿u}T
(
∫
Ωe

[
Bu

]T [C] [Bu

]
d
)
{u} + {𝛿u}T

(
∫
Ωe

[
Bu

]T [e]T [B∅
]
d
)
{∅}

+ {𝛿∅}T
(
∫
Ωe

[
B∅
]T [e] [Bu

]
d
)
{u} + {𝛿u}T

(
∫
Ωe

[
Hu

]T [𝜇]T [B∅
]
d
)

{∅} + {𝛿∅}T
(
∫
Ωe

[
B∅
]T [𝜇] [Hu

]
d
)
{u}
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− {𝛿∅}T
(
∫
Ωe

[
B∅
]T [e] [B∅

]
d
)

{∅}

= {𝛿u}T ∫
Γte

[
Nu

]T
{t}d°C − {𝛿∅}T ∫

ΓDe

[
N∅
]T
{𝜔}d°C (21)

And the finite element equation is given as follows[
Kuu Ku∅
K∅u K∅∅

] [
U
∅

]
=
[
fu
f∅

]
(22)

where

Kuu = ∫
Ωe

[
Bu

]T [C] [Bu

]
d (23)

Ku∅ = ∫
Ωe

[
Bu

]T [e]T [B∅
]
+
[
Hu

]T [𝜇]T [B∅
]
d (24)

K∅u = ∫
Ωe

[
B∅
]T [e] [Bu

]
+
[
B∅
]T [𝜇] [Hu

]
d (25)

K∅∅ = ∫
Ωe

[
B∅
]T [e] [B∅

]
d (26)

fu = ∫
Γte

[
Ru

]T
{t̄}d°C (27)

f∅ = ∫
ΓDe

[
R∅
]T
{𝜔}d°C (28)

Also here:

[
Bu

]
=
⎡⎢⎢⎢⎣
Ri,x 0
0 Ri,y

Ri,y Ri,x

⎤⎥⎥⎥⎦ (29)

Here Ri,x is the first derivatives of the basis functions with x
and Ri,y is the first derivative of the basis functions with respect
to y; also,

[
Hu

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

Ri,xx 0
0 Ri,yx

Ri,yx Ri,xx

Ri,xy 0
0 Ri,yy

Ri,yy Ri,xy

⎤⎥⎥⎥⎥⎥⎥⎦
(30)

[Hu] contains second derivatives of basis functions. Here Ri,xx is
the second derivative of Ri etc. Also

[
B∅
]
=
⎡⎢⎢⎣
Ri,x
Ri,y

⎤⎥⎥⎦ (31)

To transform the derivatives from physical space to parametric
space following steps are carried out{

Ri,𝜉
Ri,𝜂

}
=
[
x𝜉 y𝜉
x𝜂 y𝜂

] {
Ri,x
Ri,y

}
(32)

Here x and y represents the physical space; 𝜉 and 𝜂 represent
parametric space. Also[
x𝜉 x𝜂
y𝜉 y𝜂

]
=
{
xi
yi

} {
Ri,𝜉 Ri,𝜂

}
(33)

The higher-order derivatives can be obtained from the follow-
ing set of equations

⎡⎢⎢⎣
(
x,𝜉
)2

2x,𝜉y,𝜉
(
y,𝜉
)2

x,𝜉x,𝜂 y,𝜂x,𝜉 + y,𝜉x,𝜂 y,𝜉y,𝜂(
x,𝜂
)2

2x,𝜂y,𝜂
(
y,𝜂
)2
⎤⎥⎥⎦
⎧⎪⎨⎪⎩
Ri,xx
Ri,xy

Ri,yy

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩
Ri,𝜉𝜉
Ri,𝜉𝜂
Ri,𝜂𝜂

⎫⎪⎬⎪⎭ −
⎡⎢⎢⎣
x𝜉𝜉 y𝜉𝜉
x𝜉𝜂 y𝜉𝜂
x𝜂𝜂 y𝜂𝜂

⎤⎥⎥⎦{
Ri,x
Ri,y

}
(34)

In Equation (34), Ri,xx and Ri,𝜉𝜉 represent the second-order
derivatives and in the RHS:

⎡⎢⎢⎣
x𝜉𝜉 y𝜉𝜉
x𝜉𝜂 y𝜉𝜂
x𝜂𝜂 y𝜂𝜂

⎤⎥⎥⎦ =
⎡⎢⎢⎣
R𝜉𝜉 R𝜉𝜉

R𝜉𝜂 R𝜉𝜂

R𝜂𝜂 R𝜂𝜂

⎤⎥⎥⎦
[
xi 0
0 yi

]
(35)

For a material having both piezoelectricity and flexoelectricity,
Equations (4) and (5) can be converted into matrix form as{

𝝈

D

}
=
[
C −e
e 𝜿

] {
𝜺

E

}
+
[
0 𝝁E
𝝁S 0

]{
∇𝜺
∇E

}
(36)

Here C,e, and 𝜿 are matrices containing elastic piezoelectric
and dielectric material constants. ∇𝜺 and ∇E are the gradients of
strain and electric field. For Piezoelectric material poled in the y
direction, e can be written as:

[e]T =
⎡⎢⎢⎣
e11 e21
e12 e22
e15 e25

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0 e21
0 e22
e15 0

⎤⎥⎥⎦ (37)

The dielectric constant matrix is given as

[𝜅] =
[
𝜅11 0
0 𝜅22

]
(38)

Flexoelectric material constants are given as

[
𝜇S

]
=
[
𝜇11 𝜇12 0
0 0 𝜇44

0 0 𝜇44
𝜇12 𝜇11 0

]
(39)

[
𝜇E

]
=
⎡⎢⎢⎢⎣
𝜇11 0 0
𝜇12 0 0
0 𝜇44 𝜇44

𝜇12
𝜇11
0

⎤⎥⎥⎥⎦ (40)

For modeling flexoelectricity, second-order derivatives of en-
richment functions along with first-order derivatives at crack tips
are needed. The coordinate axes used in the problemdomain con-
taining the crack are shown in Figure 1. Here (x1, y1) is the local

Adv. Theory Simul. 2023, 2200846 © 2023 Wiley-VCH GmbH2200846 (5 of 15)
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coordinates of the crack tip, whereas (x, y) is the global coordi-
nates. (r, 𝜃) are circular coordinates defined about the crack tip
as the origin. (x1, y1) and (r, 𝜃) are related as follows

tan 𝜃 =
y1
x1

(41)

r =
√
x21 + y21 (42)

And,(
x1, y1

)
= (r cos 𝜃, r sin 𝜃) (43)

Fi is the set of four crack tip enrichment functions and their
derivatives about (x1, y1) is defined as:

𝜕Fi
𝜕xi

=
𝜕Fi
𝜕𝜃

𝜕𝜃

𝜕xi
+

𝜕Fi
𝜕r

𝜕r
𝜕xi

(45)

Their first and second-order derivatives of enrichment func-
tions in r and 𝜃 are shown in Appendix A (Table 2). The deriva-
tives of the product of shape functions and enrichment functions
are shown below

𝜕
(
R
(
Fi − F̄i

))
𝜕x

= 𝜕R
𝜕x

(
Fi − F̄i

)
+ R

𝜕Fi
𝜕x

(46)

𝜕
(
R
(
Fi − F̄i

))
𝜕y

= 𝜕R
𝜕y

(
Fi − F̄i

)
+ R

𝜕Fi
𝜕y

(47)

Where

𝜕Fi
𝜕x

=
𝜕Fi
𝜕x1

𝜕x1
𝜕x

+
𝜕Fi
𝜕y1

𝜕y1
𝜕x

(48)

𝜕Fi
𝜕y

=
𝜕Fi
𝜕x1

𝜕x1
𝜕y

+
𝜕Fi
𝜕y1

𝜕y1
𝜕y

(49)

Here Fi is the set of four enrichment functions and F̄i is the
nodal values of the enrichment function. R is the shape func-
tion associated with the node. We assume the crack is straight
andmake an angle 𝛼 with the global (x, y) coordinate system. The
second-order derivatives will be

𝜕2
(
R
(
Fi − F̄i

))
𝜕x2

= 𝜕2R
𝜕x2
(
Fi − F̄i

)
+

𝜕Fi
𝜕x

𝜕R
𝜕x

+
𝜕Fi
𝜕x

𝜕R
𝜕x

+ R
𝜕2Fi
𝜕x2

(50)

𝜕2
(
R
(
Fi − F̄i

))
𝜕y2

= 𝜕2R
𝜕y2

(
Fi − F̄i

)
+

𝜕Fi
𝜕y

𝜕R
𝜕y

+
𝜕Fi
𝜕y

𝜕R
𝜕y

+ R
𝜕2Fi
𝜕y2

(51)

𝜕2
(
R
(
Fi − F̄i

))
𝜕x𝜕y

= 𝜕2R
𝜕x𝜕y

(
Fi − F̄i

)
+

𝜕Fi
𝜕y

𝜕R
𝜕x

+
𝜕Fi
𝜕x

𝜕R
𝜕y

+ R
𝜕2Fi
𝜕x𝜕y

(52)

Where

𝜕2Fi
𝜕x2

=
𝜕2Fi
𝜕x21

cos2𝛼 − 2
𝜕2Fi
𝜕x1y1

cos 𝛼 sin 𝛼 −
𝜕2Fi
𝜕y21

sin2𝛼 (53)

𝜕2Fi
𝜕xy2

=
𝜕2Fi
𝜕x21

sin2𝛼 + 2
𝜕2Fi
𝜕x1y1

cos 𝛼 sin 𝛼 +
𝜕2Fi
𝜕y21

cos2𝛼 (54)

𝜕2Fi
𝜕x𝜕y

=
𝜕2Fi
𝜕x21

cos 𝛼 sin 𝛼 +
𝜕2Fi
𝜕x1y1

cos 𝛼 cos 𝛼 −
𝜕2Fi
𝜕x1y1

sin 𝛼 sin 𝛼

−
𝜕2Fi
𝜕y21

cos 𝛼 sin 𝛼 (55)

2.4. J-Integral

Strains, stresses, electric fields, electric displacement values, and
their gradients are obtained as the results of numerical simu-
lation. Using these parameters, we can calculate the energy re-
lease rate from the crack tip using a path-independent electro-
mechanical J-integral. The integral’s path-independent property
is related to the crack faces being traction free and electrically
impermeable. The line-integral form of J-integral is converted to
an area integral suitable for numerical evaluation, which is cal-
culated in the post-processing step of analysis.[52,53,63–65] Higher-
order stresses and electric displacements are ignored for the sim-
plicity of the solution. However, they will still include strain and
electric field gradients through the electric enthalpy density term
to the J-integral. The electro-mechanical J-integral in the area
form is given as

J = ∫
A

(
𝜎ij

𝜕ui
𝜕x1

+ Dj
𝜕𝜙

𝜕x1
−𝛿1j

)
𝜕q
𝜕xj

dA (56)

Where  is given as

 = 1
2
∁ijkl𝜀ij𝜀kl − eiklEi𝜀kl − 𝜇ijklEi𝜀jk,l −

1
2
𝜅ijEiEj (57)

Here ui is displacement field x1 is the horizontal coordinate in
local coordinate system of the crack. Dj is the electric displace-
ment, 𝜙 is the electric potential, is the strain energy density or
enthalpy term. 𝛿1j is the Kronecker delta. q is the weighting func-
tion that is defined as a zero inside the path and one outside the
path. J-integral can be written in the following form using matrix
notations

J = ∫
A

({
𝜕u
𝜕x

𝜕v
𝜕x

}[
𝜎x 𝜏xy
𝜏xy 𝜎y

]
−
{

𝜕𝜙

𝜕x

}{
Dx Dy

}
−
{
1 0
})

{
𝜕q

𝜕x
𝜕q

𝜕y

}
(58)

Making some rearrangements will result in the following

J = ∫
A

({
𝜕u
𝜕x

𝜕v
𝜕x

}[
𝜎x 𝜏xy
𝜏xy 𝜎y

]{ 𝜕q

𝜕x
𝜕q

𝜕y

}
−
{

𝜕𝜙

𝜕x

}{
Dx Dy

}{ 𝜕q

𝜕x
𝜕q

𝜕y

}

−
{

𝜕q
𝜕x

})
(59)
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Figure 2. Geometries analyzed in the study are shown. The a) center crack geometry and b) edge crack geometry studied is shown with loading and
boundary conditions.

Table 1.Material constants used in the study.

Material properties Symbol Values Reference

Elastic constants c11 12.6 × 1010 Pa [55,66]

c13 5.3 × 1010 Pa

c33 11.7 × 1010 Pa

c55 3.53 × 1010 Pa

Piezoelectric material constants e31 −6.5 C m−2

e33 23.3 C m−2

e15 17.0 C m−2

Dielectric constants 𝜅11 15.1 × 10−9

C2 N−1 m−2

𝜅22 13.0 × 10−9

C2 N−1 m−2

Flexoelectric coefficient (𝜇12) 𝜇12 1.0 × 10−6 C m−1 [11]

3. Results and Discussion

3.1. Convergence Study and Validation

Convergence and validation are essential steps before the para-
metric study to ensure the accuracy of the developed model. The
geometries used for the analysis are shown in Figure 2a,b. The
materials, loading, and boundary conditions are explained in de-
tail in the next section.

3.1.1. Convergence Study

The developed numerical model is investigated for convergence.
A convergence study of both primary variables, that is, displace-
ment, and voltage, is performed for both center and edge crack
geometries. Figure 4a,b shows the displacement variation at the
top surface with the number of elements for center and edge

Figure 3. a) Meshed center crack domain with IGA control points and b) Gauss points inside triangulated tip element in parent space.

Adv. Theory Simul. 2023, 2200846 © 2023 Wiley-VCH GmbH2200846 (7 of 15)
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Figure 4. The convergence study for the displacement of a) center crack geometry and b) edge crack geometry; convergence study for voltage of c)
center crack geometry and d) edge crack geometry.

crack problems. Figure 4c,d shows the top surface voltage with
the number of elements for both center and edge crack domains.
It was found that center crack geometry converges ≈10 000 ele-
ments and edge crack geometry converges ≈30 000 elements.

3.1.2. Validation

The accuracy of the presented model is ensured by comparing
it with previously published works. Due to the unavailability of
exactly a similar formulation in IGA, the developed formulation
is compared with the gradient elasticity model in the FEM
framework conducted by Sladek et al.[55] The same geometry,
material, crack orientation, loading, and boundary conditions
of the reference study are applied to the XIGA model, and J-
integral values are compared. The exact enter crack geometry in
the reference paper is used for comparison. The cracks are kept
at horizontal positions with a crack length of a = 1 × 10−7m
and L = D = 10a was used. Lead zirconate titanate (PZT)
was used as the piezoelectric material, and its piezoelectric and
flexoelectric material constants are shown in Table 1. Mechanical
traction of t̄ = 1.17 × 106 Pa is applied at the top surface. During
the comparison, the flexoelectric constant was taken as 𝜇12=
1 × 10−6 C m−1.[11] The reference study used strain gradient size
factor q, through which the effect of the scaling parameter was
implemented in the formulation. We compared the results ob-
tained when q = 4, and found good agreement with the current

Figure 5. Validation of present XIGA model with flexoelectricity by com-
paring with previous publication; Sladek et al. 2017.[55]

work. Results are compared in a wide range of electric charge
densities varying from−4 to 12 Cm−2. The comparison is shown
in Figure 5. The results produced by the current model are in
excellent agreement with that of previous work with minimal de-
viation. A slight variation was found only at extreme positive and
negative charge densities. In the presented work, for accurately

Adv. Theory Simul. 2023, 2200846 © 2023 Wiley-VCH GmbH2200846 (8 of 15)

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202200846 by T

u D
elft, W

iley O
nline L

ibrary on [14/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 6. The flowchart of the numerical algorithm proposed for fracture
analysis of flexoelectric materials using XIGA.

capturing the fields at the crack tip and along the crack path
sub-triangulation technique is employed, while in the literature
compared, adaptive meshing was used. The sub-triangulation
implemented at the tip element is shown in Figure 3b.

Figure 7. Electrical and mechanical fields in a domain with a center crack under combined electro-mechanical loading are shown: primary variables a)
displacement in x direction, b) displacement in y direction, c) electric potential and secondary variables, d) electric displacement in y direction, e) stress
in y direction, f) shear stress in x–y plane are shown.

3.2. Fields in the Pure Piezoelectric Domain

The present formulation has coupled the piezoelectric and flex-
oelectric effects together by incorporating the gradient terms in
the weak form, as shown in Equation (11). The domain can be
converted into pure piezoelectric by giving a value of “zero” to
flexoelectric constants. The presented numerical formulation’s
flexibility allows us to study different problems using a single
code, such as pure piezoelectric, pure flexoelectric, and combined
flexoelectric-piezoelectric problems. The flowchart for the pro-
posed algorithm is shown in Figure 6. XIGA analysis was carried
out for pure piezoelectric material, and different electrical and
mechanical variable fields such as displacements, voltage, elec-
tric displacements, and stresses are plotted. The geometry and
loading conditions are shown in Figure 2. The same geometry,
material properties, and crack length in Section 3.1.2 are used
here also. The material properties of PZT are shown in Table 1.
The cracks are kept at horizontal positions with a crack length of
a = 1 × 10−7m and L = D = 10a for center crack geometry
and, L = D

2
= 5a for edge crack geometry was used. Mechan-

ical traction of t̄ = 1.17 × 106 Pa and an electric charge density
𝜔 = 5 × 10−4 C m−2 are applied at the top surface. The distribu-
tion of important electrostatic and elastic fields, such as stresses,
displacements, and electric displacement field components ob-
tained after simulation in the center crack and edge crack do-
mains, are shown in Figures 7 and 8. Fields inside a domain with
two edge cracks of the same length are shown in Figure 9. How

Adv. Theory Simul. 2023, 2200846 © 2023 Wiley-VCH GmbH2200846 (9 of 15)
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Figure 8. Different fields inside the domain with edge crack: primary variables a) displacement in x direction, b) displacement in y direction, c) electric
potential and secondary variables d) electric displacement in y direction, e) stress in y direction, f) shear stress in x–y plane can be seen.

different mechanical and electrical variables interact with the dis-
continuity and how fields are affected by the presence of a crack
in the domain are shown.

3.3. Numerical Studies

A numerical study was conducted in both center and edge
crack geometries, considering piezoelectricity and flexoelectricity
within the domain. Analysis can be divided into five sections. In
the first two analyses, electrical and mechanical loads are varied,
and J-integral for different flexoelectric material constants are in-
vestigated. In the next three analyses, crack parameters, namely,
crack orientation and length, are studied against energy release
rate for both center and edge crack geometries with different ma-
terial constants. The problem geometries used in the numerical

analysis, along with loading and boundary conditions, are shown
in Figure 2. Standard geometries from the previous publications
were used for numerical analysis. For the domain with a center
crack of crack length, a, geometric parameters are; L = D = 1 ×
10−6 m; a = 1 × 10−7m. For the edge crack domain the crack pa-
rameters are; L = 5 × 10−7m;D = 1 × 10−6 m; a = 1 × 10−7m.
One of the most utilized piezoelectric materials, lead zirconate
titanate (PZT), was used in this analysis. Piezoelectric material
properties of PZT are given in Table 1. Material properties were
taken from previous publications.[55,66]

Flexoelectric material properties of PZT are given in Table 1.
In the parametric study section effect of a range of flexoelectric
constants on the fracture behavior of the material was studied.
An assumption of plane-strain condition is applied in the study.
Important steps in the algorithm and data flow are shown in
Figure 6. Poling is assumed in the second direction, that is y-

Adv. Theory Simul. 2023, 2200846 © 2023 Wiley-VCH GmbH2200846 (10 of 15)
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Figure 9. Different electrical and mechanical fields inside a domain have two edge cracks. How fields generated by two cracks interact also can be
seen; primary variables a) displacement in the x direction, b) displacement in the y direction, c) electric potential, and secondary variables d) electric
displacement in the y direction, e) stress in y direction, f) shear stress in the x–y plane.

direction in the current 2D framework. The domain has meshed
with sufficient elements obtained from the convergence study for
both geometries. A representation of meshed domain is shown
in Figure 3a. Also, in the same figure, split-enriched and tip-
enriched control points along the crack can be seen. TheNewton–
Raphsonmethodwas used to numerically obtain the crack tip in a
parent element. Triangulation is done in the parent element, and
the gauss points are shown in Figure 3b. The problem domain
is investigated under combined electrical and mechanical load.
Dirichlet–Neumann-type boundary conditions are applied to the
problem in both displacement and electric potential fields. The
bottom surface is fixed with displacement ū = 0, and earthing is
given so that the primary variable 𝜙 = 0. The following section
presents a parametric analysis where electric and mechanical
loading is varied for different material properties and crack
geometries, and corresponding fracture behavior is analyzed.

3.3.1. Variation of J-Integral with Electric Charge Density

This section analyzes the fracture behavior of edge and center
crack geometries under varying electrical and fixed mechanical
loading. A constant, uniformly distributed mechanical traction
t̄ = 1.17 × 106 Pa is applied on the top surface. Electric charge
density that varies from −5 × 10−4 to 12 × 10−4 C m−2 is also
applied along with the constant mechanical load. Analysis was
carried out for flexoelectric constants: 𝜇12= 0.5, 0.7, 1.0, 1.5, and
2.0 𝜇C m−1. Variation of J-integral in a central crack geometry
is shown in Figure 10a, and that of edge crack is shown in Fig-
ure 10b. For both center and edge crack geometries, the maxi-
mum value of the J-integral can be seen to decrease with the in-
crease of flexoelectric material constant. Also, a shift in the max-
imum value of J-integral with material constant can be seen. For
center crack geometry at 𝜇12= 0.5 𝜇C m−1 the maximum value of

Adv. Theory Simul. 2023, 2200846 © 2023 Wiley-VCH GmbH2200846 (11 of 15)

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202200846 by T

u D
elft, W

iley O
nline L

ibrary on [14/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 10. variation of J-integral with applied electric charge density for a) center crack problem and b) edge crack problem.

Figure 11. Variation of J integral with mechanical load applied as traction in y direction on the top boundary in a) center crack and b) edge crack.

energy release rate was found to be at 5 C m−2 while for 𝜇12= 2
𝜇C m−1 the maximum value of energy release rate was found to
be at 2 C m−2. In the case of edge crack geometry, shown in Fig-
ure 10, a similar trend is observed. When 𝜇12= 0.5 𝜇C m−1, the
maximum value of energy release rate 7.2 J m−2 occurs at 4 Cm−2

and reduces to 4.6 J m−2 when flexoelectric constant increased to
𝜇12= 2 𝜇C m−1. The reason for reduction in energy release rate
around the crack tip can be attributed to the local flexoelectric
toughening.[55,57]

3.3.2. Variation of J-Integral with Mechanical Load

The energy release rate from the crack tip is studied against trac-
tion load varying from −2 to 2 MPa in y direction for different
flexoelectric constants that vary from 𝜇12= 0.5 to 2.0 𝜇C m−1.
The electric charge density at the top edge was kept constant as
𝜔 = 5 × 10−4 C m−2 throughout this analysis. Figure 11a shows
the variation of J-integral with mechanical traction load for a cen-
ter crack geometry, while Figure 11b shows the J-integral varia-
tion for edge crack geometry.

Under tension, J-integral increases with load, while under
compressive loading, J-integral first reduces and then increases.
J-integral can take negative values at a particular load range in
both center crack and edge crack geometries. As an example,
in the case of center crack geometry for 𝜇12 = 1 𝜇C m−1, the
J-integral is negative from 0.5 to −1.5 MPa. Beyond this range
in positive and negative loading, there is a drastic increase in J-
integral. It can also be observed that the energy release rate be-
comes zero at two particular mechanical loads, one compressive
and another tensile, for a constant electric charge density applied
at the boundary. It can be seen that changing flexoelectric con-
stants under varying mechanical loads have less effect than that
under varying electrical loads. Piezoelectric fracture toughening
is known to be negligible under pure mechanical loading, and a
similar effect is also visible in a combination of both flexoelectric
and piezoelectric domains.[67]

3.3.3. Variation of J-Integral with the Angle of Crack

In this parametric study, we varied the angle of the crack with hor-
izontal, 𝛼 for both central and edge crack problems. J-integral
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Figure 12. Variation of J integral with the crack angle in a) center crack geometry and b) edge crack geometry.

Figure 13. Variation of J-integral with crack length in the a) center crack domain and b) edge crack domain.

was calculated at different angles for different flexoelectric con-
stants. In order to fully understand the impact of crack orienta-
tion, the angle of the crack is varied from 0° to 90°, taking into ac-
count the problem’s symmetry. Mechanical traction and electric
charge density was kept fixed as follows: t̄ = 1.17 × 106 Pa and
𝜔 = 5 × 10−4 C m−2. In this study also, flexoelectric material pa-
rameters are varied as follows: 𝜇12= 0.5 to 2.0 𝜇C m−1. Figure 12a
shows the J-integral analysis for the center crack, and Figure 12b
shows the results for the edge crack geometry. It is observed that
for both the center crack and edge crack, the J-integral first in-
creases and reaches a maximum value. For the center crack, the
maximum value is attained at ≈5°, while for the edge crack, the
maximum value is reached at ≈15°. After a slight fluctuation, the
J-integral approaches zero at 90◦.

3.3.4. Variation of J-Integral with crack length

In this study, J-integral is investigated against crack length. The
central crack and edge crack problems are investigated at differ-
ent flexoelectric material constants, as shown in Figure 13a,b.
The crack length was varied from 1 × 10−7 to 3 × 10−7m for cen-
ter crack and 1 × 10−7 to 2.5 × 10−7m for edge crack. Mechanical
traction and electric charge density was kept constant as follows:
t̄ = 1.17 × 106 Pa and 𝜔 = 5 × 10−4 C m−2. Here also flexoelec-
tric material parameters vary from 𝜇12= 0.5 to 2.0 𝜇C m−1. The

drastic increase in the energy release rate with crack length incre-
ments along the horizontal direction is seen. For the edge crack
(Figure 13b), the J-integral tends to stabilize after a certain crack
length which is not observed in the case of the center crack. This
behavior is more prominent in the material having a higher flex-
oelectric constant and can be due to the additional fracture tough-
ening at the crack tip caused by flexoelectricity.

3.3.5. Crack Interaction Study

A domain with two edge cracks has been investigated for the
crack interaction study. The edge cracks are placed on the
opposite side of the domain, and the crack length on the right
side has been increased. The energy release rate from both the
crack tips is investigated at different flexoelectric constants. The
geometry of the domain is the same as that used in the previous
edge crack analysis except for the additional edge crack. The
crack length of the left edge crack was increased from 1 × 10−7

to 3 × 10−7m. The electrical and mechanical loading was kept at
constant values of: t̄ = 1.17 × 106 Pa and 𝜔 = 5 × 10−4 C m−2 .
The analysis was conducted at different flexoelectric values
varying from 𝜇12= 0.5 to 1.5 𝜇C m−1. The domain under analysis
and the results are shown in Figure 14. J-integral at both crack
tips is found to increase with the increment of crack length of
the second crack. At the first crack tip, the J-integral increased

Adv. Theory Simul. 2023, 2200846 © 2023 Wiley-VCH GmbH2200846 (13 of 15)
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Table 2. Derivatives of enrichment functions.

Functions F1 = r
1
2 sin 𝜃

2
F2 = r

1
2 cos 𝜃

2
F3 = r

1
2 sin 𝜃

2
sin 𝜃 F4 = r

1
2 cos 𝜃

2
sin 𝜃

Derivatives

𝜕Fi
𝜕x1

−r−
1
2

2
sin 𝜃

2
r
− 1
2
2

cos 𝜃

2
−r−
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2
sin 3𝜃

2
sin 𝜃 −r−
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2

2
cos 3𝜃

2
sin 𝜃
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2
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2
2

(cos 𝜃

2
+ cos 3𝜃
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2
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)

Figure 14. The J-integral values of two edge crack tips on the opposite
sides are shown. The domain is shown with the loading and two edge
crack tips .

smoothly, while at the second tip, it fluctuated, indicating
toughening.

4. Conclusion

Crack analysis of a 2D domain with both piezoelectricity and flex-
oelectricity has been carried out using XIGA. NURBS-based ex-
tended isogeometric analysis helps to capture the gradient terms
associated with flexoelectricity. A second-order NURBS basis is
used for analysis, which is sufficient to model gradients of strain
and electric field. A MATLAB code capable of investigating both
flexoelectric and piezoelectric domains individually and in a cou-
pled manner was developed based on the formulation. The nu-
merical model was validated using previous work and found ac-
curate. A convergence study was also conducted to ensure the
performance of the code developed. Electro-mechanical J-integral
was analyzed by applying a wide range of electrical and mechan-
ical loading. J-integral was also examined in relation to several
crack parameters, including crack length and angle. Two geome-
tries with a center crack and an edge crack were investigated.
Parametric studies were conducted in a broad range of flexoelec-
tric coefficients, varying from 𝜇12= 0.5 to 2.0 𝜇C m−1.
The analysis has led to the following conclusions:

• It was found that flexoelectric material constants greatly in-
fluence the energy release rate from the crack tip and the
crack’s tendency to extend further under the influence of elec-
tric charge density applied at the boundary.

• It is observed that the flexoelectric effect plays a significant
role in crack behavior due to strong gradients surrounding the
crack tip. This behavior was found to increasewith the increase
of the flexoelectric constant.

• A reduction in the peak value of J-integral or a toughening
phenomenon was observed with an increase in flexoelectricity.
This phenomenonwasmore prominent under varying electric
loads than in varying mechanical load conditions.

• It is also observed that J-integral becomes zero at lower electric
charge densities as with increasing flexoelectricity. This indi-
cates a possibility of controlling the crack growth by applying
suitable electric loads at boundaries.

• Since flexoelectricity is a more general phenomenon in di-
electrics, these observations can be further investigated for ap-
plications such as structural health monitoring (SHM).

Appendix A
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