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Abstract: This paper investigates the photocatalytic characteristics of Ag nanowire (AgNW)/TiO2

and AgNW/TiO2/graphene oxide (GO) nanocomposites. Samples were synthesized by the di-
rect coating of TiO2 particles on the surface of silver nanowires. As-prepared AgNW/TiO2 and
AgNW/TiO2/GO nanocomposites were characterized by electron microscopy, X-ray diffraction,
UV/visible absorption spectroscopy, and infrared spectroscopy. Transmission electron microscope
(TEM) images confirmed the successful deposition of TiO2 nanoparticles on the surface of AgNWs.
The photocatalytic activity of synthesized nanocomposites was evaluated using Rhodamine B (RhB)
in an aqueous solution as the model organic dye. Results showed that synthesized AgNW/TiO2/GO
nanocomposite has superior photocatalytic activities when it comes to the decomposition of RhB.

Keywords: photocatalytic materials; Ag nanowire; surface plasmon resonance; nanocomposite;
Rhodamine B

1. Introduction

Industrial developments, expansion of cities, and worldwide population growth have
put pressure on available water resources. Drinking water safety has become a pressing
issue worldwide, especially in developing countries. Millions of people around the world
have limited access to a safe drinking water source and are threatened by water-borne
diseases annually [1].

Sustainable development solely based on natural water resources is certainly not a
possibility anymore. Wastewater recycling is, therefore, an inevitable choice. Wastewater
treatment is a complex multicomponent process. Removal and decomposition of toxic
agents/components and pollutants necessitate the use of highly functional and efficient
methods. Traditionally, there are different chemical and physical processes for wastewater
treatment. Chemical processes are based on chemicals such as chlorine, ozone, and chlorine
dioxide, whereas physical treatments are based on filtration of water, thermal processes,
and UV radiation methods. A functional wastewater treatment system should primarily be
capable of bringing water back to the consumption cycle.

Among different advanced highly functional wastewater treatment techniques, pho-
tocatalyst materials have recently emerged as a promising method for wastewater treat-
ment [2–5]. Photocatalysts are defined as a class of materials capable of producing transfor-
mations in chemical reaction partners upon light absorption. These transformations happen
as a result of electron–hole pair formation. The energy, required to create electron–hole
pairs, is provided by light radiation, which is often UV light [6,7]. The photo-generated
electrons react with O2, resulting in the generation of active anion radicals, such as O•2−.
The holes, on the other hand, generate active OH• radicals. Produced active radicals
decompose organic compounds, including oil, fat, and dyes. Photocatalysts are very
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promising when it comes to the decomposition and removal of organic pollutants and
microorganisms in wastewater [5,8]. As it has been shown, photocatalytic treatment of
wastewater can also eliminate loads of microbiological contaminations that may transmit
infectious disease [9,10]. Among different photocatalyst compounds, TiO2 is the first and
still one of the most widely used ones. A significant drawback with TiO2 is its relatively
high bandgap, which is a considerable restriction when it comes to making full use of
sunlight [11,12]. Additionally, the low surface-to-volume ratio in TiO2 can also adversely
influence the efficiency of photocatalytic oxidation reactions.

Ag nanostructures, especially Ag nanowires, exhibit exceptional activities in catalytic,
chemical, and biological applications [13]. This is due to their unique chemical, photochem-
ical, and electrical properties, including superior charge mobility. More importantly, Ag
nanowires can immobilize TiO2 nanoparticles. This is extremely important when it comes to
the fixation of TiO2 nanoparticles inside a photoreactor. Additionally, Ag nanowires can act
as a surface plasmon resonance (SPR) photosensitizer, which in turn reportedly increases
photocurrent density [13]. Graphene oxide (GO) is also known to have extraordinary adsorp-
tion properties, helping to increase the concentration of organic pollutants on the surface of
hybrid photocatalyst composite and, therefore, to increase reaction sites [14–18]. GO can
also act as an electron reservoir, resulting in faster electron conduction of electron–hole
pairs towards organic contaminants.

Rhodamine B (RhB) is a widely used xanthene dye with various applications in the
textile, paint, paper, leather, and pharmaceutical industries. As RhB can irritate the skin and
eyes and also cause problems for the alimentary tract and the respiratory system, the proper
degradation of this dye in industrial wastewater is very important before introducing the
wastewater into ecological systems [19]. The goal of this study is to develop a facile
synthesis process for a highly efficient and functional TiO2-based photocatalytic structure,
making use of the non-toxicity and applicability of TiO2 while addressing its limitations
through nanocomposite formation. The plasmonic effects of AgNWs and charge separation
properties of GO are utilized and studied for this purpose. To this end, TiO2 nanoparticles
are synthesized on Ag nanowires, and the effects of the presence of GO nanosheets on
structural and photocatalytic properties of the synthesized materials are evaluated. Finally,
a possible photocatalytic reaction mechanism and degradation process is discussed.

2. Materials and Methods
2.1. Material and Chemicals

Graphene oxide (GO) powder (99.99%) was purchased from Pishgaman NanoMavad
(Mashhad, Iran). GO powder specifications, provided by the supplier, are summarized
in Table 1. Ethylene glycol (C2H6O2, 94.5%), Polyvinylpyrrolidone (PVP, average Mw:
~55,000), M CuCl2, AgNO3, and sulfuric acid (H2SO4, 98.1%) were all purchased from
Merk (Ann Arbor, MI, USA)

Table 1. Characteristics of commercial graphene oxide (GO).

Parameter Values

Thickness 3.4–7 nm
Carbon Purity ~99%

Number of Layers The average number of layers: 6–10
Surface Area (BET) 100–300 m2/g

Bulk Density 1 g/cc
Lateral dimension 10–50 µm

2.2. Synthesis of AgNW/TiO2 and AgNW/TiO2/GO Nanocomposites

Ag nanowires were synthesized based on the polyol method reported in the liter-
ature [20]. In this research, 0.4 g Polyvinylpyrrolidone (PVP) was dissolved in 10 mL
ethylene glycol (EG) in a beaker by vigorous stirring. After complete dissolution, 0.01 M
CuCl2 was dissolved in EG and two milliliters of this solution was added into the PVP/EG
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solution. Then, 0.2 g of AgNO3 was added to the EG, PVP, and CuCl2 mixture. The mixture
was then kept at 160 ◦C for 40 min. The solution was then naturally cooled down to RT,
followed by centrifugation. Ag nanowires, obtained by centrifugation, were washed with
ethanol/de-ionized water to make sure that there was no EG left with nanowires. To
synthesize AgNW/TiO2 and AgNW/TiO2/GO nanocomposites, 0.1 g purified AgNWs
was dispersed in 25 mL of 1:1 water/ethanol solution. Then, 74.7 µL of TTIP was added to
the mixture, followed by stirring at room temperature (for 24 h). The stirring at this stage
was conducted to make sure that a complete hydrolysis/condensation of TTIP was attained.
The pH of the mixture was monitored and kept within 6–7 throughout the synthesis, using
0.1 M NaOH/HCl solutions. AgNW/TiO2 nanocomposite was then attained by adding
commercial TiO2 nanoparticles, while the mixture was centrifuged, followed by 3 times
washing with ethanol to make sure that there was no excess TTIP left in final samples. The
same process was performed for the second vial, and in this case, 0.01g of GO was added
to the mixture. Figure 1 shows the schematics of the mentioned synthesis routes.
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2.3. Characterization

Synthesized nanocomposites were characterized using both a transmission electron
microscope (TEM, JEOL JSM-6710F, Pleasanton, CA, USA) and X-ray diffraction (XRD)
with CuKα radiation (λ = 1.54 Å). Characteristic plasmon resonance of Ag, AgNW/TiO2,
and AgNW/TiO2/GO nanocomposite samples was studied by a Univkon-XL UV–VIS-
NIR scanning spectrophotometer (OR, USA) within 200–1100 nm. Fourier transformed
infrared (FTIR) analysis was carried out using a Perkin–Elmer Spectrum (Princeton, NJ,
USA) 100 series for 200 scans at a resolution of 4 cm−1. The photocatalytic characteristics
of synthesized nanocomposite samples were evaluated in Rhodamine B (RhB)-containing
wastewater. RhB is a well-known contaminant in the textile, plastic, and dye industries.
Releasing RhB-containing wastewater into nature is associated with severe long-term
adverse effects on the environment.

2.4. Photocatalytic Experiments

A 12 mg/L RhB/de-ionized water solution was used to assess the photocatalytic
response of TiO2, AgNW/TiO2, and AgNW/TiO2/GO nanocomposite samples. RhB
solution was added to three quartz cuvettes. Then, 30 mg from each specimen (TiO2,
AgNW/TiO2, and AgNW/TiO2/GO nanocomposites) was mixed with RhB-containing
solution. The contents of photocatalyst samples in all solutions were similar (12 mg/L).
Solutions were then slowly stirred for 2 h in a dark chamber to make sure that photocatalysts
powders and RhB were very well mixed and were in equilibrium. After 2 h stirring,
samples were exposed to light under the Xenon light source of 75.9 KJ/ m2. While exposed
to light, samples were constantly stirred. Figure 2 illustrates the schematic diagram of the
photocatalytic reactor.
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Figure 2. Schematic diagram of the photocatalytic reactor.

3. Results and Discussion
3.1. Characterization of Synthesized Nanocomposites

Figure 3 illustrates the XRD patterns of the purchased GO nanopowder and synthe-
sized AgNW, AgNW/TiO2, and AgNW/TiO2/GO nanocomposites. Figure 3b shows the
XRD pattern of commercial P25 TiO2 nanoparticles comprising both rutile and anatase
phases. The anatase and rutile phases are in good agreement with the JCPDS (Card No:
96-720-6076 for anatase and Card No: 96-900-4143 for rutile phases). The diffraction peaks
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in Figure 3c are very well matched with those of cubic silver in accordance with the JCPDS
(Card No: 96-900-8460), inferring that AgNW was successfully synthesized. The diffrac-
tion peaks at 2θ = 38.1, 44.2, 64.4, and 77.4◦ correspond to (111), (200), (220), and (311)
crystallographic planes of Ag crystal, respectively. The XRD patterns of AgNW/TiO2 and
AgNW/TiO2/GO samples were found to be similar to that of AgNW, except for the peak
at 25.2◦, which is attributable to titania crystal. The characteristic 25.2◦ peak in synthesized
AgNW/TiO2 and AgNW/TiO2/GO nanocomposites, shown in Figure 3d,e, respectively,
indicates the successful formation of anatase TiO2 phase on AgNW structures. The absence
of Ag2O-related peaks in XRD spectra indicates that Ag nanowires were not oxidized
during the reaction. The fact that no peak, related to the GO, is observed in XRD spectra is
attributable to the fact that the GO concentration in AgNW/TiO2/GO nanocomposite is
below the detection limit of the XRD technique.
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Figure 3. X-ray diffraction patterns of (a) GO, (b) P25 TiO2, (c) AgNW (d) AgNW/TiO2, and (e)
AgNW/TiO2/GO samples.

Figure 4 shows TEM images of the synthesized AgNW, AgNW/TiO2, and AgNW/TiO2/
GO samples. Results showed that Ag nanowires with an average length of 3 µm and an
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average diameter of 50 nm were successfully synthesized. Figure 4a shows an example
of a Ag nanowire. Figure 4b shows that TiO2 particles are very well attached to the
surface of AgNWs, which is very well in line with the idea of having firmly coupled
AgNW/TiO2 entities. This ensures that TiO2 nanoparticles are very well kept at their sites
during photocatalytic reactions. Figure 4c shows how GO sheets are distributed inside the
AgNW/TiO2/GO nanocomposite sample. Figure 4d shows size of P25 TiO2, and Figure 4e
illustrates GO samples (image of GO is provided by the supplier,.Some clusters of TiO2
nanoparticles appear to be attached to GO sheets. This enhances electron mobility inside
the composite, and this, in turn, improves the photocatalytic efficiency of the synthesized
composite. Even though GO is electrically insulating due to a disruptive sp2 bonding
network, it can become conductive by restoring the network. More importantly, GO sheets
are expected to significantly enhance the adsorption capabilities in synthesized samples,
due to the large surface-to-volume ratios in GO. In that sense, GO sheets can be seen as
entrapment sites for contaminants. This is a critical point in improving the efficiency of
photocatalytic reactions.
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is provided by the supplier, Pishgaman NanoMavad, Iran).

Figure 5 shows the UV-Vis spectra of both AgNW/TiO2 and AgNW/TiO2/GO sam-
ples. It is seen that upon the integration of Ag nanowires, the optical absorption spectrum
shows a rather significant red shift towards the visible region. Additionally, such improve-
ment in the optical absorption of the AgNW/TiO2 sample is also possibly attributable to
the effects of Ag nanowires on the dielectric constant of the surrounding mixture. When
GO was added to nanocomposites, the optical absorption was further increased within
the visible light region. This can be taken as an indication that the GO-containing sample
has a lower optical bandgap. It is known that there are many unpaired π-electrons inside
GO, due to its lamellar structure. This can result in the binding of free electrons to the
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surface of TiO2, which in turn results in the formation of Ti-O-C bonds. This reportedly
leads to an upward shift of the valance band edge, which ultimately results in a reduced
bandgap [11,12]. Figure 6 shows the Tauc plot of the modified Kubelka–Munk (KM) func-
tion with a linear extrapolation used to calculate the direct bandgap values of P25 TiO2,
AgNW/TiO2, and AgNW/TiO2/GO materials, i.e., 3.46, 3.11, and 3.00 eV, respectively.

Figure 7 depicts the FTIR spectra of the AgNW/TiO2 and AgNW/TiO2/GO nanocom-
posites, as well as AgNW, P25 TiO2, and GO samples. The peaks near 1400 and 650 cm−1

are ascribed to Ti–O–Ti stretching, relating to lattice vibrations of TiO2. Peaks, observed
at 3350 and 1627 cm−1, are assigned to the stretching and bending modes in OH. This
indicates that some OH groups are absorbed over the surface [12]. Only these two peaks
could be detected in AgNWs samples, as expected of a metallic material. The addition of
Ag nanowires resulted in a slight shift in the TiO2 lattice vibration towards 1335 cm−1. This
confirms that Ag–TiO2 bonds formed within the composite. Peaks observed at 3400, 2900,
1975, 1637, 1570, 1375, 1220, and 850–1200 cm−1 are assigned to O–H, CH2, –COOH, C=O,
C=C, COO, C–OH, and C–O functional groups, respectively [21]. The GO-containing sam-
ple showed some extra absorption peaks within the IR range, more specifically 1065, 1155,
1225, and 1375 cm−1. These peaks can be ascribed to C–O, C–OH, and COO–stretching in
GO. The intensities of the mentioned GO-related peaks are rather weak, which possibly
has to do with the possible compound formation between GO and TiO2 [12].
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3.2. Characterization of Photocatalytic Behaviour of Nanocomposites

Photocatalytic reactions, occurring at the surface of the TiO2 nanoparticles, result in
the formation of free radicals, as follows:

TiO2 + hν→ h+
VB + e−CB (1)

e−CB + O2 → O•2
− (2)

O•2
− + H+ → HOO• (3)

h+
VB + H2O→ OH• + H+ (4)

RhB + {O•2
−, HOO• or OH•}→ OOH− or OH− intermediates→ products (5)

In this process, photogenerated e− in the conduction band of the TiO2 catalyst moves
toward the surface and is scavenged by the O2 present in the solution, resulting in the forma-
tion of superoxide anions (O•2

−). Simultaneous protonation of the generated O•2
− results

in the formation of hydroperoxyl radical (HOO•). h+ present in the valance band of the
TiO2 would react with H2O molecules, resulting in the creation of hydroxyl radical (OH•).
Produced active species would then react with RhB, ultimately resulting in wastewater
treatment. Time-dependent UV-visible absorption spectra of the RhB/ AgNW/TiO2/GO
solution sample are shown in Figure 8.
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Figure 8. Time-dependent UV-visible absorption spectra of the RhB solution in the presence of
AgNW/TiO2/GO nanocomposite samples.

The absorption spectra of three other catalysts samples are the same as this one with
different absorbance. The photocatalytic activities of AgNW, AgNW/TiO2, and AgNW
/TiO2/GO samples were evaluated under Xenon light radiation. Figure 9 shows the
changes in relative concentration (C/C0) of RhB. It was found that the Ag-containing
GO/TiO2 sample showed the highest degradation efficiency. One can, therefore, conclude
that the superior photocatalytic performance of AgNW/TiO2/GO nanocomposite is due to
combinatorial contributions of TiO2 and Ag/GO networks. AgNW/TiO2/GO showed the
degradation of RhB with a rate constant of 5.54 × 10−2 min−1, which is two times faster
than the photocatalytic activity of AgNW/TiO2.
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Figure 9. Photo-degradation of RhB for AgNW, P25 TiO2, AgNW/TiO2, and AgNW/TiO2/GO
nanocomposite samples.

Figure 10 shows the kinetics of RHB degradation. The reaction rate constant was
calculated using the below equation:

Ln(C/C0) = −Kt (6)

with C being the instant RhB concentration, C0 the initial RhB concentration, K the
pseudo first-order rate constant, and t the reaction time in minutes. The values for the
degradation rate constant were calculated to be 0.054, 0.026, 0.011, and 0.0003 min−1 for
AgNW/TiO2/GO, AgNW/TiO2, P25 TiO2, and Ag samples, respectively.
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Compared to TiO2 nanoparticles, AgNW/TiO2 nanocomposites display improved
photocatalytic properties because they exhibited a perfect electron exchange between the
photoexcited TiO2 and Ag particles [13,22]. Spherical silver nanoparticles are expected
to have lower photocatalytic efficiency, given that trapping sites on the surface of spher-
ical particles further stimulates the e−/h+ recombination reactions. One-dimensional
AgNWs decrease the charge localization over the surface, associated with reduced e−/h+

recombination. Reduced e−/h+ recombination has positive implications for the photo-
catalytic activities of nanocomposite samples [22]. This improvement can be ascribed to
the localized SPR effect of Ag nanowires. In this phenomenon, when AgNW is irradiated
with light, the charge density is redistributed, which creates a strong coulombic restoring
force resulting in the oscillation of charge density in phase with the incident light [23–25].
Figure 11b shows this effect for AgNWs. This oscillation would then distress the dielectric
constant of the surrounding matrix. The formation of the Schottky barrier at the interface
of the AgNW/TiO2 would also contribute to the transport of excited electrons from the
AgNW interface to the surface of TiO2 due to the strong electric field [26]. Moreover,
metal-semiconductor junction offers several other advantages, including a shorter e−–h+

pair diffusion distance and a more efficient photo-generated charge separation [27]. Ag
nanowire-containing nanocomposite samples are expected to have a space charge region
in the TiO2 side (near the semiconductor/metal junction). This, upon photoexcitation
reaction, provides an additional force in-between holes and electrons, resulting in the holes
and electrons moving in opposite directions when they are generated. This results in an
overall comparatively lower e−–h+ pair recombination [13], which in turn results in the
improved photocatalytic activity of the nanocomposite.

Under UV irradiation, photoexcited electrons from TiO2 nanostructures, in AgNW/
TiO2/GO, move onto the graphene oxide surface (Figure 11c). Consequently, the graphene
oxide sheet acts as an electron acceptor for TiO2, and thus increases the separation of
electron–hole pairs and inhibits their recombination [28]. GO sheets may also act as an
electron conductor that further promotes the electron–hole separation and prompts the rate
of electron migration. Strong oxidizers, such as O2

−• and HO•, can be distributed along
the GO surface, which would, in turn, increase the photo-degradation of pollutants [29].
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Figure 11. Schematic diagrams of (a) AgNW/TiO2/GO nanocomposite structure, (b) localized SPR of AgNWs when
irradiated with visible or UV light, and (c) photocatalytic mechanism of AgNW/TiO2/GO nanocomposites.

4. Conclusions

Ag nanowire (AgNW)/TiO2 and AgNW/TiO2/GO nanocomposites were synthe-
sized for water treatment purposes. The intention was to decorate Ag nanowires with
TiO2 nanoparticles, using an in situ synthesis of TiO2 nanoparticles on Ag nanowires. In
the AgNW/TiO2/GO nanocomposite sample, the idea was to have GO sheets dispersed
within the composite. The photocatalytic activity of synthesized samples was assessed
in Rhodamine B (RhB)-containing aqueous solution. RhB is a widely used dye in differ-
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ent industries. RhB removal from industrial wastewater is of prime importance for the
environment. The following conclusions can be drawn from this investigation:

- The proposed straightforward synthesis method resulted in the formation of Ag
nanowires with an average length of 3 µm and an average diameter of 50 nm. XRD
results also confirmed that TiO2 was successfully synthesized. In the AgNW/TiO2
sample, colonies of TiO2 nanoparticles were very well attached to Ag nanowires.

- In AgNW/TiO2/GO nanocomposite samples, GO sheets were homogeneously dis-
persed within the composite mixture. Clusters of TiO2 nanoparticles were also found
to be attached to GO sheets. FTIR results also confirmed the formation of atomic
bonding at AgNW/TiO2 and GO/TiO2 junctions.

- Results showed that synthesized AgNW/TiO2/GO nanocomposite has superior pho-
tocatalytic activity, compared to AgNW and AgNW/TiO2 samples. This has to do with
higher light-harvesting due to the localized surface plasmon resonance (SPR) effect of
Ag nanowires, lower e−–h+ pair diffusion distance, more effective photo-generated
charge transfer, and more enhanced charge separation.
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