
 Engineering Encrypted
Multi-Maps with
Controlled Access and
Volume Leakage for
Multi-Dimensional
Queries
Viraj Biharie

Engineering Encrypted
Multi-Maps with

Controlled Access and
Volume Leakage for
Multi-Dimensional

Queries

Thesis report

by

Viraj Biharie

to obtain the degree of Master of Science

at the Delft University of Technology

to be defended publicly on September 11, 2025 at 12:30

Thesis committee:

Chair: Prof. G. Smaragdakis, Faculty EEMCS, TU Delft

Daily supervisor: Dr. E.A. Markatou, Faculty EEMCS, TU Delft

Co-daily supervisors: Dr. K. Liang, Faculty EEMCS, TU Delft

H. Chen, M.Sc., Faculty EEMCS, TU Delft

External examiner: Dr. P. Pawelczak

Place: Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Delft

Project Duration: September, 2024 - September, 2025

Student number: 5107350

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) · Delft University of Technology

Copyright © Viraj Biharie, 2025

All rights reserved.

Abstract

This work addresses the challenge of performing expressive, multi-dimensional range queries directly over

encrypted data while balancing query efficiency against privacy leakage. Existing searchable encryption

and encrypted multi-map (EMM) schemes either reveal access or volume patterns or incur substantial

overhead by fully hiding all leakage (e.g. via ORAM) making them unpractical. Building on the static,

multi-dimensional EMM framework of Falzon et al. [1], we introduce a family of five EMM variants that

provide tunable leakage profiles, spanning from full access- and volume-pattern exposure to near-complete

concealment through adaptive padding and dummy-access techniques. The empirical evaluation of our

five EMM variants reveals a clear, quantifiable spectrum of privacy-performance trade-offs. On large-range

workloads, the access-hiding schemes offer the best overall balance, with measured average latency

slopes of ≈ 0.012 ms/label. For workloads dominated by small result sets, a volume hiding scheme excels,

achieving an even lower slope of 0.0032 ms/label by tuning its padding to realistic occupancy bounds. In

contrast, fully padded schemes like incur substantially higher overheads, up to two orders of magnitude

greater, making them suitable only when maximal leakage resilience is required. These results allow

cloud providers with quantitative guidance to deploy encrypted range search that meets both privacy

requirements and performance expectations in real-world, multi-attribute database services.

ii

Preface

The journey of writing this thesis has been, without doubt, one of the most transformative periods of my

academic life. When I first started on this project, I was filled with excitement but also had my doubts:

uncertain of my direction, anxious about my capacity to contribute something meaningful, and worried that

the scope of the work might overwhelm me. Yet, through countless hours of reading, coding, experimenting,

and rewriting, what began as an uncertain exploration grew into a deeply rewarding investigation into

encrypted multi-maps and controlled leakage for multi-dimensional queries.

I am profoundly grateful to my supervisors, whose encouragement and expertise made this journey

possible. To Dr. Lilika Markatou, my main supervisor, thank you for your unwavering support, for patiently

answering my late-night questions, and for always challenging me to think more rigorously and creatively.

Your feedback sharpened my arguments and enhanced my understanding of the field. I would also like

to extend my heartfelt thanks to Dr. Kaitai Liang, whose incisive comments on early drafts of this thesis

helped me to refine both the direction and presentation of my work. Finally, I am deeply indebted to

Huanhuan Chen, who formed the backbone of this thesis and who spent countless hours brainstorming

optimizations and troubleshooting experiments.

My sincere appreciation goes to Dr. Georgios Smaragdakis for his generous mentorship and for taking

the time-despite an exceptionally busy schedule-to discuss emerging ideas and offer strategic guidance at

each pivotal stage. Those conversations not only clarified complex concepts but also reminded me of the

broader significance of this research.

To my family and friends, who provided moral support and a listening ear, thank you. Your faith in me

carried me through the long nights and tight deadlines, and I dedicate this thesis to you.

It has been an amazing adventure, and I look forward to the next chapter-both in research and beyond.

Viraj Biharie Delft, September 2025

iii

Contents

Abstract ii

Preface iii

List of Figures vi

List of Tables vii

Acronyms viii

I Foundations 1

1 Introduction 2

1.1 Context & Motivation . 2

1.2 Problem Statement . 3

1.3 Research Questions & Objectives . 3

1.4 Scope & Contributions Overview . 3

1.5 Thesis Outline . 4

2 Background 5

2.1 Encrypted Search Algorithms . 5

2.2 Searchable Symmetric Encryption. 6

2.3 Leakage Patterns. 7

2.4 Threat and Adversary Model . 11

2.5 Encrypted Multi-Dimensional Maps . 11

3 Related Work 13

3.1 Related Work . 13

3.2 Critical Analysis and Identified Gaps in Existing Work . 14

II Methodological Framework 16

4 Design of EMM Variants 17

4.1 Research Paradigm . 17

4.2 Comparison of EMM Schemes . 17

4.3 Synthetic Data Generation . 19

4.4 Baseline EMM Construction . 22

4.5 FPEMM . 23

4.6 AHEMM . 23

4.7 VHAHEMM . 24

4.8 DPRFMM . 24

4.9 realDPRFMM . 25

5 Experimental Setup 26

5.1 Benchmark Suite . 26

5.2 Metrics & Measurements. 27

5.3 Dataset Description . 27

5.4 Experimental Environment . 29

5.5 Reproducibility . 29

iv

Contents v

III Results & Analysis 30

6 Experimental Results 31

6.1 Query Generation Protocol. 31

6.2 Randomness and Reproducibility . 31

6.3 Trapdoor Time Comparison Dataset 1 . 32

6.4 Search Time Comparison Dataset 1. 33

6.5 Resolve Time Comparison Dataset 1 . 34

6.6 Result Count Comparison Dataset 1 . 37

6.7 Trapdoor Time Comparison Dataset 2 . 38

6.8 Search Time Comparison Dataset 2. 39

6.9 Resolve Time Comparison Dataset 2 . 39

6.10 Result Count Comparison Dataset 2 . 40

6.11 Quantitative Feature Analysis . 41

7 Verification and Validation 44

7.1 Correctness Testing . 44

7.2 Formal Security Proof . 45

7.3 Complexity Analysis . 48

8 Discussion 49

8.1 Key Findings . 49

8.2 Comparison with Prior Work . 50

8.3 Implications . 51

8.4 Limitations . 52

8.5 Reflection on the Research Process . 52

IV Closure 54

9 Conclusion 55

9.1 Answers to Research Questions. 55

9.2 Closing Remarks . 57

10 Future Work 59

10.1 Short Term Directions . 59

10.2 Long Term Directions . 59

10.3 Final Thoughts . 60

Bibliography 64

A Algorithms 65

B Additional Figures 67

List of Figures

2.1 High-level SSE Workflow: KeyGen, BuildIndex, Trapdoor, Search, Decrypt & Resolve. . . 7

2.2 Heatmap showcasing the access pattern on an encrypted database 8

2.3 Trend-line illustrating the volume pattern on an encrypted database 9

4.1 Excerpt of original California road-network data . 20

5.1 Flowchart of the Benchmark Suite . 26

5.2 Sample screenshot of raw Dataset 1. Only a small subset of the full 32 coordinate→tuple

mappings is shown to illustrate the data structure (variable-length tuples). 28

5.3 Sample screenshot of raw Dataset 2. Only a small subset (each coordinate maps to exactly

one value) is shown to illustrate the uniform structure. 28

6.1 Trapdoor Time Comparison of all EMM variants on dataset 1 32

6.2 Search Time Comparison of all EMM variants on dataset 1 33

6.3 Search Time Comparison of EMM Variants (Excluding Baseline EMM & FPEMM) on dataset 1 34

6.4 Resolve Time Comparison of all EMM variants on dataset 1 35

6.5 Resolve Time Comparison of EMM variants (Excluding dprfMM) on dataset 1 35

6.6 Resolve Time Comparison of ahemm and vhahemm on dataset 1 36

6.7 Result Count Comparison of all EMM variants on dataset 1 37

6.8 Trapdoor Time Comparison of all EMM variants on dataset 2 38

6.9 Search Time Comparison of all EMM variants on dataset 2 39

6.10 Resolve Time Comparison of all EMM variants on dataset 2 40

6.11 Result Count Comparison of all EMM variants on dataset 2 41

B.1 Scaled comparison of evaluation metrics across all EMM variants on Dataset 2 (scaled

using the same range as Dataset 1) . 67

vi

List of Tables

4.1 Overview of all EMM schemes presented in this thesis. 19

5.1 System Components and Specifications . 29

6.1 Average Curve Features for Each EMM construction on Dataset 1 42

6.2 Average Curve Features for Each EMM construction on Dataset 2 42

7.1 Complexity analysis of encrypted multi-map schemes. 48

8.1 Performance and leakage comparison of EMM constructions on dense and sparse datasets. 50

8.2 Comparison of encrypted multi-map schemes. 51

vii

Acronyms

EMM Encrypted Multi-Map . 2

SSE Searchable Symmetric Encryption . 6

ESA Encrypted Search Algorithms . 5

ORAM Oblivious RAM . 5

FHE Fully Homomorphic Encryption . 5

DET Deterministic Encryption . 5

OPE Order-Preserving Encryption . 5

AUC Area Under the Curve . 17

MM Multi-Map . 22

FPEMM Fixed-length Padding Encrypted Multi-Map . 23

AHEMM Access-Hiding Encrypted Multi-Map . 23

VHAHEMM Volume-Hiding Access-Hiding Encrypted Multi-Map 24

DPRFMM Delegatable Pseudo-Random Function Encrypted Multi-Map 24

realDPRFMM Realistic Delegatable Pseudo-Random Function Encrypted Multi-Map 25

PRF Pseudo-Random Function . 13

dPRF Delegatable Pseudo-Random Function . 25

KDF Key Derivation Function . 32

PPT Probabilistic Polynomial-Time . 45

STE Structured Encryption . 45

viii

Part I
Foundations

1

1
Introduction

In this chapter we introduce the central theme of this thesis: the design and evaluation of privacy-preserving,

multi-dimensional range queries over encrypted data. It begins by outlining the motivation behind this work,

particularly the growing need to balance data utility with privacy requirements in outsourced database

settings. The chapter then presents the problem statement, showing the limitations of current approaches

that either compromise on performance or expose sensitive access patterns. It also defines the scope

of the research, focusing on passive adversaries and static datasets, and introduces the core research

questions and objectives that guide the study.

1.1. Context & Motivation
In recent times, organizations across a wide spectrum of sectors, such as finance, healthcare and geospatial

services, have increasingly outsourced the storage and management of large datasets to third-party

providers [2], [3]. These datasets often contain sensitive information, for instance, financial transaction logs,

patient records with timestamps and lab values, or detailed spatial coordinates for critical infrastructure,

that must remain confidential. At the same time, end-users demand flexible range queries (for example,

retrieving all records whose geographic coordinates fall within a defined range) without sacrificing data

privacy. Encrypted multi-dimensional range search schemes answer this need by allowing servers to

process queries directly on ciphertexts, but not without revealing some well-defined information, or leakage,

about the queries and underlying data.

This topic is particularly timely due to several concurrent trends. First, regulatory frameworks such as

GDPR and HIPAA are imposing stricter requirements on data confidentiality and auditability, this makes it

such that organizations are being pushed towards encryption-first architectures [4], [5]. Second, (recent)

high-profile breaches of unencrypted or poorly secured database systems have reinforced the real cost of

data exposure [6], [7], [8] . Finally, as cloud infrastructures grow in performance, stakeholders expect low

latencies on queries, even on encrypted databases [9].

Building on a previously developed Encrypted Multi-Map (EMM) for range search by Falzon et al.

[1], this research extends the original scheme by designing and evaluating EMM variants with tunable

leakage profiles. Specifically, we construct versions that range from fully concealing both volume and

access patterns to fully exposing them, enabling a detailed comparison of leakage-performance trade-offs.

Through systematic experiments over multi-dimensional datasets, we demonstrate how varying levels of

leakage affect query latency and privacy guarantees. By doing so, we provide:

• Data Owners: with clear guidance on selecting the appropriate leakage profile to meet regulatory

and operational requirements.

• Cloud Service Providers: with quantitative metrics to tune system implementations for desired

performance-privacy trade-offs.

• Security Researchers: with empirical evidence to assess and certify encrypted range search

schemes.

• End-Users: with assurance that the chosen EMM variants align with their needs for query speed

and data confidentiality.

2

1.2. Problem Statement 3

The design and evaluation performed in this thesis ensures that each group can make informed

decisions when deploying encrypted multi-dimensional range search in real-world settings.

1.2. Problem Statement
Although EMMs enable expressive range queries on ciphertexts, existing constructions either leak detailed

volume and access patterns or impose heavy performance penalties in pursuit of absolute confidentiality.

This lack of intermediate, configurable options leaves data owners and system integrators without a

principled, systematic way to navigate the privacy-performance trade-off. The problem this thesis addresses

is thus twofold: (1) how to systematically introduce tunable leakage profiles into a multidimensional EMM,

and (2) how to measure and compare privacy guarantees and performances of each profile. By solving

this, we allow stakeholders to select the encrypted search scheme that best meets their operational and

security requirements.

1.3. Research Questions & Objectives
This section provides an overview of the primary research objective and research questions in this project.

The primary objective of this research project is to design, implement, and empirically evaluate

encrypted multi-dimensional range search EMM variants with distinct leakage profiles, and

to quantify how varying levels of volume-pattern and access-pattern leakage impact query

performance and privacy guarantees.

Research Objective

How do the EMM leakage profiles influence the average trapdoor generation time, search time,

resolve time, and result count under identical dataset and query workloads?

Research Question 1

What quantitative relationship exists between specific leakage metrics and each performance

metric?

Research Question 2

How does varying the dataset configuration impact the performance metrics of each EMM

variant?

Research Question 3

Which EMM variants achieve the most favorable security–performance trade-off across different

datasets and query selection scenarios?

Research Question 4

1.4. Scope & Contributions Overview
For the adversary model in this work, we consider a passive, honest-but-curious third-party adversary.

This adversary observes query transcripts and encrypted data structures, but does not actively interfere

with the protocol or manipulates the data in any way.

Regarding the functional scope, this thesis focuses on range queries over multi-dimensional datasets,

evaluation EMM variants differing in volume-pattern and access-pattern leakage. We do not address active

attacks, side-channel leakage beyond the aforementioned patterns, or updates to the encrypted dataset

(e.g., insertions and deletions).

1.5. Thesis Outline 4

Contributions Overview:

• EMM Variant Design: We extend the baseline multi-dimensional EMM by implementing five variants

with different leakage profiles, ranging from full leakage to complete concealment of both volume

and access patterns.

• Implementation & Experimental Framework: We update the open-source implementation of

Falzon et al. [10] to support all five leakage profiles.

• Benchmark Extension: We update the existing benchmark suite to be compatible with multi-

dimensional, multi-valued datasets for encrypted range searches.

• Synthetic Data Generator: We develop a configurable data generation module capable of producing

synthetic datasets that reproduce latitude-longitude points of road network intersections in California,

with tunable parameters.

• Empirical Evaluation: We conduct controlled experiments on synthetic multi-dimensional datasets,

measuring average trapdoor generation time, search time, resolve time, and result count under

identical query workloads.

• Trade-off Analysis: We quantify the relationship between leakage metrics and performance out-

comes.

1.5. Thesis Outline
This thesis is structured into four main parts, each building upon the previous from foundational concepts

through to original contributions and final insights.

Part I: Foundations (Chapters 1–3) establishes the context for this research, introduces key con-

cepts, and surveys related work. Chapter 1 presents the motivation, objectives, research questions,

and contributions of the thesis. Chapter 2 offers background on searchable encryption, leakage types,

adversary models, and multi-dimensional data structures. Chapter 3 reviews prior work in encrypted

search, identifying limitations in existing approaches that this thesis addresses.

Part II: Methodological Framework (Chapters 4–5) introduces the proposed EMM variants and describes

the experimental methodology used to evaluate them. Chapter 4 details six EMM constructions that offer

different trade-offs between leakage, efficiency, and storage. Chapter 5 outlines the experimental design,

including dataset generation, query protocols, performance metrics, and implementation details.

Part III: Results & Analysis (Chapters 6–8) presents the performance results of the EMM variants,

validates their correctness and security, and interprets their implications. Chapter 6 reports benchmarking

results across synthetic datasets for all schemes. Chapter 7 provides security proofs, complexity analyses,

and correctness checks for the constructions. Chapter 8 discusses the broader impact of the findings,

comparing results with prior work and reflecting on the limitations.

Part IV: Closure (Chapters 9–10 and Appendices) summarizes the thesis outcomes and points to

future research directions. Chapter 9 concludes the thesis by reviewing how the research questions

were addressed and lists the key takeaways. Chapter 10 suggests ways for extending this work, such as

supporting dynamic updates and improving leakage resilience. The appendices contain supplementary

materials, including extended figures and algorithms referenced in the main chapters.

2
Background

This chapter provides the necessary background and theoretical foundations for understanding the chal-

lenges and approaches involved in enabling efficient and secure range queries over encrypted data. It

surveys relevant literature on searchable encryption, leakage profiles, and encrypted multi-map data struc-

tures, showing both their capabilities and inherent trade-offs. This chapter also introduces key concepts

and definitions used throughout the thesis, such as volume and access-pattern leakage, and contextualizes

the motivation behind different security-performance trade-offs.

2.1. Encrypted Search Algorithms
The goal of the client is to privately query their data stored on an untrusted server, in such a way that any

third party adversary is unable to figure out the detail of this query. Specifically, the adversary should

ideally be unable to determine which data was accessed or the volume of data retrieved. Given that the

data on the untrusted server is encrypted, performing a search over this encrypted dataset requires the use

of Encrypted Search Algorithms (ESA). These algorithms are designed to help with efficient and secure

searching within encrypted data spaces.

While ESA provide an efficient and secure means of searching over encrypted data, they are not without

limitations, particularly in terms of privacy leakage through access and volume patterns. Other advanced

cryptographic techniques, such as Oblivious RAM (ORAM) [11] and Fully Homomorphic Encryption (FHE)

[12, 13], further enhance the privacy and security of these systems.

FHE enables a client to perform mathematical operations, such as addition and multiplication, directly

on encrypted data. This capability is helpful when such computations are resource-intensive and must be

offloaded to the server. FHE allows the server to execute these operations without decrypting the data,

thereby preserving its confidentiality. However, this approach adds a significant performance overhead.

The process typically requires multiple rounds of communication between the client and the server to

ensure security, as a result FHE is not yet a practical solution for real-world, high-performance workloads.

ORAM is a cryptographic protocol that hides a client’s entire access pattern by continually reshuffling

and re-encrypting memory blocks as they are read and written. In an ORAM system, every logical read

or write by the client is transformed into a sequence of indistinguishable physical accesses, so that an

observer cannot tell which memory block is being accessed or how often. Security is typically established

via a simulation-based proof: for any real ORAM execution leaking nothing but its overall length, there

exists an efficient simulator that produces an indistinguishable transcript without knowing the client’s true

access sequence [11, 14, 15]. Despite this strong privacy guarantee, ORAM adds very high performance

costs, often an order-of-magnitude or more in bandwidth and latency overhead. Due to this high cost,

ORAM, like FHE, remains largely impractical for low-latency, large-scale deployments.

Before discussing some more advanced schemes, it’s helpful to understand two simpler schemes that

trade off privacy for efficiency: Deterministic Encryption (DET) [16, 17] and Order-Preserving Encryption

(OPE) [18, 19]. DET encrypts each plaintext value to the same ciphertext every time. This enables equality

searches (e.g., “find all records where field = X”) by directly comparing ciphertexts. This makes DET very

fast to index and query and require minimal storage and computation overhead. However, the trade-off

is that DET leaks duplicate-value frequencies, making it vulnerable to frequency-analysis attacks when

5

2.2. Searchable Symmetric Encryption 6

the plaintext distribution is skewed or known in advance. OPE encrypts values in a way that preserves

their sort order, allowing range queries (e.g., “find all records where field < Y”) by comparing ciphertexts.

OPE supports inequality and range queries directly on ciphertext without additional indexing. Having said

that, OPE leaks the entire plaintext order, enabling statistical or inference attacks. Additionally, the formal

security of OPE is weak compared to FHE or ORAM.

2.2. Searchable Symmetric Encryption
One instantiation of ESA is Searchable Symmetric Encryption (SSE) [16, 19, 20, 21, 22], which enables

efficient, sub-linear keyword querying over encrypted data by generating search tokens from a secret key

and secure index structures. SSE enables a client to outsource encrypted data to an untrusted server

while still admitting efficient keyword- or attribute-based search over ciphertexts. Rather than decrypting

an entire dataset, the client generates a lightweight trapdoor for each query, which the server uses to

locate matching encrypted records. SSE offers a practical middle ground, allowing for more expressive

queries than simple DET or OPE, yet more efficient than the performance heavy ORAM or FHE. However,

in exchange for this effiency, SSE reveal some well-defined information, or leakage, about the queries and

underlying data.

SSE schemes come in two types: static and dynamic. In static SSE, a single encrypted index is built

once over a fixed dataset, and all queries operate on this immutable structure. In contrast, dynamic SSE

supports secure insertions, deletions, and updates, enabling modification of the encrypted data without

rebuilding the index. In this work, we focus exclusively on static SSE and its multi-dimensional extension.

We build on the foundation laid by Falzon et al. [1], who also considered static-only SSE, and reserve

the exploration of dynamic updates for future research. From this point on, any reference to SSE refers

specifically to static SSE, unless explicitly noted otherwise.

A typical SSE scheme follows a clear sequence of steps, illustrated in the protocol flow below. Refer to

Figure 2.1 for a graphical representation of this protocol flow:

1. KeyGen: The client generates a secret key K.

2. BuildIndex: Using K, the client constructs an encrypted index (e.g., inverted lists, hash tables) over

the dataset and uploads it to the server.

3. Trapdoor: For each query (e.g., “all records with attribute X in range Y”), the client uses K to compute

a trapdoor token T.

4. Search: The server applies T to its encrypted index, retrieves matching ciphertexts (CT, and returns

them to the client.

5. Decrypt & Resolve: The client decrypts the results and performs any necessary post-processing

(filtering, sorting, aggregation) to recover the plaintext (PT).

2.3. Leakage Patterns 7

Figure 2.1: High-level SSE Workflow: KeyGen, BuildIndex, Trapdoor, Search, Decrypt & Resolve.

Under SSE, encrypted data is typically organized in one of these index structures [16, 23, 24]:

• Encrypted Inverted Lists: mapping each keyword or attribute value to a list of encrypted document

identifiers.

• Hash-Based Indices: providing constant-time lookup at the cost of more complex key management.

• Tree-Based Indices: supporting range queries by preserving a logical order within encrypted nodes.

In this work, certain proposed EMMs use hash-based index structures to organize encrypted mappings

efficiently.

2.3. Leakage Patterns
As stated before, SSE schemes enable a client to outsource an encrypted document collection to an

untrusted server, while still being able to issue keyword-search queries over that collection. In practice

however, achieving sublinear search time and reasonable communication overhead typically requires

revealing some leakage about the data and query process. Formalizing and understanding this leakage is

therefore important both to interpreting the practical security of SSE schemes and for defending against

so-called leakage-abuse attacks.

Intuitively, leakage encompasses any information that the server learns beyond the bare fact that “a

search query returned some encrypted documents”. Formally, each SSE scheme is proven secure relative

to a leakage profile [25]:

Λ =
(
Lsetup, Lquery

)
(2.1)

where Lsetup(D) (setup leakage) is whatever the server learns at setup time from the (encrypted) collectionD
and Lquery((D,q1,…,qt)) (query leakage) is whatever the server learns by observing a sequence of t keyword
queries q1,…, qt. A leakage-parameterized security proof shows that only these functions and nothing

else about the plaintext data or queries, can be inferred by any polynomial-time adversary. We distinguish

three common leakage patterns, each of which can be exploited in different ways.

2.3.1. Access Pattern
The access pattern (also called the identifier pattern) captures exactly which encrypted records match

each query. Even though the server only sees ciphertexts, every time it evaluates a trapdoor it learns the

set of ciphertexts (or record-identifiers) that satisfy the query. Formally defined as [25]:

Definition 1 (Access Pattern) Let D = (C1, C2, . . . , Cn) be the encrypted database comprising cipher-

texts Ci, and letW = (T1, T2, . . . , Tt) be a sequence of trapdoor tokens corresponding to t queries. The

2.3. Leakage Patterns 8

access pattern is the function

AP(D,W) =
(
ids(T1), ids(T2), . . . , ids(Tt)

)
,

where each

ids(Ti) = { j ∈ [n] : Cj matches the trapdoor Ti}

is the set of record-identifiers whose ciphertexts satisfy the i-th query.

The access pattern captures exactly which encrypted records the server retrieves in response to each

query. Concretely, every time the client issues a trapdoor Ti, the server returns a set of ciphertexts. Even

though their contents remain encrypted, the identity of those ciphertext slots leaks to the server. Over

multiple queries, an adversary can correlate these observed sets to infer relationships among plaintexts.

For example, suppose two distinct queries Ta and Tb both return ciphertext slots {C17, C42}. The server
now knows that records 17 and 42 share both attributes a and b. By combining this with other query results,
it can build up co-occurrence graphs, frequency profiles, or even reconstruct portions of the underlying

data. In worst-case scenarios, such leakage has enabled inference attacks that recover up to 95% of

keywords in simple SSE settings [25, 26].

Figure 2.2: Heatmap showcasing the access pattern on an encrypted database

Figure 2.2 illustrates an access-matrix heatmap over 20 successive queries against an encrypted

database of 12 items. Each row corresponds to a single encrypted data block (indexed 0-11) and each

column to one query in time (0-19). A bright (yellow) cell indicates that the server observed a block

being accessed during that query; a dark (purple) cell indicates no access. Note: This heatmap is purely

illustrative. The simulated access patterns do not derive from, nor relate to, any datasets discussed

elsewhere in this work.

A quick scan reveals three “hotspot” rows: row 3, row 7 and row 9, which show access in a large

fraction of queries. All other rows light up relatively infrequently and more randomly. In particular:

• Row 3: accessed in 65% of the time steps.

• Row 7: accessed in 60% of the time steps.

• Row 9: accessed in 45% of the time steps.

• Other rows: accessed at a baseline rate of about 30% or less.

This skewed pattern stands out even though each data block remains encrypted; the server cannot

2.3. Leakage Patterns 9

see the contents, but it can easily count how often each block is touched and when.

An adversary who passively records this matrix can exploit several pieces of information. First of all,

by ranking blocks by access frequency, the adversary can identify which items are “hot”, i.e. frequently

accessed: rows 3, 7 and 9. In many applications, hotspot maps can directly link to popular records, e.g.

frequently read medical files or trending products. In addition, if the adversary also knows approximate

query times, and therefore also the query indices, (e.g. office hours vs. off-hours), they can infer when

certain data is in demand. For instance, if row 3 spikes during morning queries, it might correspond to a

morning-only report. Over repeated observations, the adversary can build a profile of user behavior. This

allows them to answer questions like ”Which encrypted records correlate with specific workflows?” or ”How

do access frequencies change over time (e.g. seasonal or weekly patterns)?” Finally, if the adversary

can inject known queries or correlate with side channels (like network traffic size), they may begin to map

block indices to actual data items. Once a mapping is established for one block, frequency and co-access

patterns can help to de-anonymize other blocks, allowing an adversary to reconstruct the entire encrypted

database.

Because the access pattern effectively reveals a deterministic “pointer set” for each query, hiding it

requires heavy machinery, such as fetching uniformly sized dummy results, shuffling result order, or using

ORAM-style oblivious accesses, all of which add substantial bandwidth and computation overhead. Our

baseline EMM construction uses a response-hiding technique to conceal which individual records are

retrieved (revealing only the number of results), and our tunable variants explore the spectrum between

that full concealment and the raw, unprotected access pattern, thereby allowing us to quantify precisely

how much performance must be sacrificed to defend against these powerful inference vectors.

2.3.2. Volume Pattern
The volume pattern reveals, for each issued trapdoor Ti, the number of ciphertext returned by the server,

even if their identities remain hidden. Formally, if the encrypted database D = (C1, ..., Cn) and trapdoor
sequence W = (T1, ..., Tt) are as before, the volume pattern is the function [25]:

Definition 2 (Volume Pattern) Let D andW be as in Definition 1. The volume pattern is

VP(D,W) =
(
|ids(T1)|, |ids(T2)|, . . . , |ids(Tt)|

)
,

where each ids(Ti) is the set of record indices matching Ti.

Even though the server does not learn which records correspond to a query, observing only the counts

vi = |ids(Ti)| across many queries can leak statistical information about the dataset. For instance, repeated
queries that return the same volume suggest identical or similar predicates, enabling an adversary to

cluster queries by result size. More importantly, if the adversary has auxiliary knowledge of the underlying

data distribution (e.g., typical city-population ranges or identifiable peak traffic volumes), they may map

volumes back to likely plaintext values.

Figure 2.3: Trend-line illustrating the volume pattern on an encrypted database

2.3. Leakage Patterns 10

Figure 2.3 illustrates a line plot of the volume pattern, showing the total number of accessed items per

query over 20 queries, with a 5-query moving average as a trend-line:

• Blue markers (connected by solid line): Actual access volume at each query (sum of the column

in the access matrix).

• Dashed line: 5-query moving average, revealing medium-term trends in query size.

In figure 2.3 it can be seen that certain queries (e.g., Query 9) peak with 5 accesses, while others dip

to as low as 1. The trend-line smooths out short-term noise, highlighting that overall the system sees a

mild rise in volume around Queries 6-9, followed by a dip and then a gradual uptick again.

An adversary monitoring just these volumes, without seeing any encrypted payload, can distinguish

“heavy” operations (e.g. full-table scans or complex range queries) from “light” lookups. Over time, the

attacker could correlate larger volumes with specific user actions (batch reports vs. single-record fetches),

refine models of user behavior, and potentially fingerprint query types purely from these counts.

In practice, volume leakage has enabled size-oracle attacks where adversaries recover sensitive

numerical attributes, such as salary ranges or geospatial densities, from encrypted query traffic [25].

Mitigating this leakage typically requires padding results to a fixed size or adding dummy ciphertexts, both

of which increase bandwidth and client-side filtering costs. Our EMM variants systematically vary the

degree of volume hiding, from no padding (full leakage) to maximal padding (zero leakage), so that we can

measure exactly how much extra communication and processing overhead is required to defend against

such volume-based inference attacks.

2.3.3. Search Pattern
The search pattern captures when two or more trapdoors correspond to the same underlying query

predicate. Even if each trapdoor is randomized under the client’s key, schemes that permit deterministic or

keyed-deterministic token generation will produce identical tokens for identical queries. By observing token

equality, the server learns whether the client is repeating the same search, which can reveal behavioral or

temporal correlations.

Definition 3 (Search Pattern) LetW = (T1, T2, . . . , Tt) be the sequence of trapdoor tokens issued by the

client. The search pattern is the equivalence relation

SP(W) =
{
(i, j) ∈ [t]× [t] : Ti = Tj

}
.

Equivalently, SP(W) partitions the set of queries into classes of identical predicates.

Because the server can directly test equality of tokens Ti, it immediately knows whenever the client

repeats a query. This leakage allows an adversary to link queries over time. They can track when the

same predicate is issued (e.g., “show my recent transactions” run daily). Furthermore, they can infer query

patterns or interests by clustering repeated searches (e.g., monitoring frequently accessed ranges). Finally,

they can combine search-pattern linkage with access and volume patterns to more rapidly reconstruct

query semantics or user activity.

Mitigating search pattern leakage typically requires randomized or stateful trapdoor generation, ensuring

that even identical predicates map to fresh tokens. However, such approaches can complicate caching or

server-side optimization and may introduce additional communication to synchronize token states.

In our experiments, all five EMM variants inherit the baseline’s deterministic trapdoor behavior, so

they fully expose the search pattern. We include the search pattern in this section for completeness, but

our EMM variants do not attempt to mitigate or empirically evaluate search pattern leakage in this work.

Exploring randomized trapdoors remains an area for future enhancement.

2.3.4. Structure Pattern
Falzon et al. [1] identify a form of leakage that they call structure pattern, i.e. the pattern of co-occurrence

of subqueries. It can be formally defined as:

Definition 4 (Structure Pattern) LetW = (T1, T2, . . . , Tt) be the sequence of trapdoor tokens produced

by the client’s range-cover algorithm, and for each token Ti let

labels(Ti) = {`1, `2, . . . , `ki}

2.4. Threat and Adversary Model 11

be the (ordered) set of canonical subrange labels that cover the query qi. The structure pattern is the

sequence

SPstruct(W) =
(
labels(T1), labels(T2), . . . , labels(Tt)

)
.

Although the server only sees encrypted tokens, it learns exactly which canonical subranges co-occur

in each query. By analyzing these label-tuples, an adversary can infer the shape and granularity of a

user’s range requests, potentially distinguishing, say, long thin rectangles from more square regions, or

correlating subranges to specific multi-dimensional predicates. Such leakage can enable structure-abuse

attacks, where the adversary builds a query co-occurrence graph to reverse-engineer the client’s intended

ranges.

We include the structure pattern in this section for completeness, but our EMM variants are not

specifically designed to mitigate or measure structure-pattern leakage. Nevertheless, if any variant

increases the amount or distinguishability of subrange co-occurrences versus the Falzon et al. [1] baseline,

we will report that fact alongside our other leakage measurements.

2.4. Threat and Adversary Model
We assume a **passive, honest-but-curious adversary** that controls (or observes) the untrusted server

storing the encrypted data and index. The adversary:

• Follows the protocol faithfully, returning correct ciphertexts and never deviating from prescribed

algorithms.

• Observes all client–server communications, including encrypted index uploads, trapdoor tokens,

and returned ciphertext bundles.

• Learns only the defined leakage functions (e.g. access, volume, search, structure patterns), but

not plaintext content or the secret key.

This simplified two-step interaction model (client issues trapdoor(s) ←→ server returns encrypted

results) captures all information available to the adversary during search operations. Formally:

ViewA =
(
LBuildIndex(D), LSearch(D,T1), . . . ,LSearch(D,Tt)

)
,

where LBuildIndex and LSearch are the leakage functions defined by the SSE/EMM scheme.

Building on this model, the adversary may combine observed leakage with auxiliary knowledge:

• Passive Observation: The adversary can record (trapdoor, ciphertexts) pairs for many queries,
but does not inject or modify messages.

• Leakage Abuse: The adversary can exploit leaked patterns (access, volume, structure) to correlate

ciphertexts, recover query predicates, or reconstruct portions of the underlying data.

While our focus is on quantifying and trading off access and volume leakage in multi-dimensional EMM

variants, this honest-but-curious model equally supports attacks exploiting search and structure patterns,

which we discuss for completeness in Sections 2.3.3 and 2.3.4.

2.5. Encrypted Multi-Dimensional Maps
Encrypted Multi-Dimensional Maps extend the concept of an encrypted multimap, where a single attribute

or keyword is mapped to a set of encrypted record identifiers, to datasets with two or more dimensions. In

a traditional, single-dimensional SSE multimap, the client builds an index that associates each keyword

with its list of document ciphertexts; during a search, the server receives a trapdoor for one keyword and

returns the corresponding encrypted postings. Falzon et al. [1] formalize this idea in higher dimensions by

partitioning a multi-attribute domain into a fixed collection of canonical “cells” or hyper-rectangles, each of

which is treated as a label in the map . A client’s arbitrary range query over d attributes is then translated,
via a range-cover algorithm, into the union of these cells, and trapdoors are generated for each included

label.

Multi-dimensional EMMs differ from their single-dimensional counterparts in several fundamental ways.

First, the label space grows combinatorially with the number of dimensions, so range-cover efficiency

2.5. Encrypted Multi-Dimensional Maps 12

becomes critical: Falzon et al. [1] compare linear, range, quadratic and tree-based covers to balance

the number of tokens against lookup overhead. Second, leakage expands beyond the usual access and

volume patterns to include the structure pattern, which reveals exactly which combination of cells a query

spans. Finally, the storage and runtime costs of encrypting and traversing a high-dimensional map can be

orders of magnitude greater-requiring thoughtful optimizations to the underlying SSE primitives.

Research into multi-dimensional encrypted multimaps is still in its early stages, making the work of

Falzon et al. [1] one of the first to demonstrate practical, privacy-preserving range queries over ciphertext

in more than one dimension. Consequently, our EMM variants, which introduce tunable leakage profiles on

top of this multi-dimensional foundation, are themselves novel contributions. By tweaking our baseline setup

to show or hide different levels of access and data leakage, we broaden searchable encryption into more

real-world scenarios. This gives practitioners practical, hands-on advice for rolling out multi-dimensional

encrypted metadata models while keeping performance and privacy in check.

3
Related Work

This chapter surveys the most relevant literature in encrypted range search, focusing on foundational

definitions of leakage, constructions of EMM schemes, and practical attacks on existing designs. The

chapter then critically analyzes these works. The insights from these works provide the basis for the design

goals and innovations introduced in this thesis.

3.1. Related Work
The story of privacy-preserving encrypted search begins with Oblivious RAM, introduced by Goldreich

and Ostrovsky [11]. ORAM formalizes obliviousness: any observed access sequence must reveal no

information about the data beyond its length. In practice, ORAM schemes (e.g. the square-root or

hierarchical constructions) face orders-of-magnitude overhead. In other words, hiding every access is

extremely expensive. This motivated more practical searchable encryption models that trade some leakage

for efficiency.

Over time it became clear that this leakage must be controlled. In a seminal result, Kellaris et al. [27]

showed that essentially every encrypted search scheme leaks either the access pattern or the response

size (or both). They developed reconstruction attacks using repeated range queries to recover entire data

sequences from just access and volume leaks. The conclusion was that any residual leakage can be

exploited. In light of this, researchers explored ways to suppress one form of leakage while tolerating the

other.

A key line of work focused on hiding the volume (response size) of queries. Kamara and Moataz [28]

introduced practical computational volume-hiding schemes for encrypted multi-maps. Their constructions

(VLH and AVLH) use small-domain pseudo-random graph encodings to mask list lengths, providing tunable

privacy–efficiency trade-offs: by adjusting padding lengths, Pseudo-Random Function (PRF) output range,

or graph density, one can control how much volume information is exposed. Importantly, these relax

information-theoretic guarantees in favor of efficiency. In parallel, Patel et al. [29] gave a formal simulation

definition of volume-hiding leakage and proposed the dprfMM scheme. Their design uses cuckoo hashing

and PRFs so that every (key, label) lookup returns a fixed-length response, thus hiding the true number of

matching records. These works showed that one could mask response sizes much more cheaply than

ORAM. (Later follow-up built dynamic variants with similar guarantees, though this thesis focuses on the

static case.)

In parallel with single-attribute search, the community tackled multi-attribute (multi-dimensional) range

queries. Falzon et al. [1] did this, by adapting classic spatial indexes to encrypted multi-maps. They

presented six “range-cover” schemes (Linear, BRC, Quad-BRC, etc.), each derived from a plaintext range

tree or quadtree, to support orthogonal range queries in d-dimensions. This was the first general framework
for encrypted multi-dimensional range search, but each scheme fixed a particular storage–query trade-off.

In other words, the Falzon framework achieved functionality but with a discrete set of leakage–performance

points.

Importantly, attacks soon caught up to these multi-dimensional schemes. Just as Kellaris demonstrated

generic attacks in 1D, Markatou et al. [26] showed how residual leakage from multi-dimensional range

tokens can betray data structure. They formalized structure-pattern leakage: the co-occurrence of subrange

13

tokens across dimensions. By observing which combinations of encrypted subqueries yield results (along

with response sizes), an adversary can infer the underlying spatial relationships among records. In fact,

Markatou et al. [26] designed reconstruction attacks on canonical multi-dimensional schemes (Linear,

Union-of-Rectangles, etc.) that recover entire datasets up to geometric symmetries. These results

reinforced the lesson from Kellaris that hiding only one leakage channel is insufficient. Effective multi-

dimensional schemes must manage both access-pattern and volume leakage simultaneously.

Taken together, this evolution points toward tunable encrypted multi-maps that allow practitioners to

control privacy vs. efficiency. Early work maximized security (full ORAM) at great cost [11], but gradually

research developed intermediate models. For example, Boldyreva and Tang [30] recently proposed an

ORAM-based EMM that hides queries, access patterns, and volume completely, which shows that full

security is still attainable (at ORAM-like overhead). In contrast, other approaches inject padding and

randomness to expose more leakage in return for performance. Modern designs (including this thesis’s

contributions) span the spectrum: by tuning dummy padding and randomized access, one can adjust

how much volume or access information leaks [28, 29, 14, 30]. In this way, the field has progressed from

absolute obliviousness toward flexible privacy–performance trade-offs.

3.2. Critical Analysis and Identified Gaps in Existing Work
Despite the progress made in encrypted range search, a review of the related literature reveals several

persistent gaps, limitations, and challenges. These shortcomings motivate and shape the contributions of

this thesis.

Most existing schemes offer a fixed balance between leakage and performance. ORAM (Goldreich

& Ostrovsky) guarantees full access-pattern hiding but suffers from prohibitive overhead. Falzon et al.

provide a discrete spectrum of six fixed trade-off points across their constructions. However, none of these

works allow developers to tune leakage along a continuum based on application-specific constraints. This

thesis introduces tunable-leakage EMM variants that provide a flexible interface to control padding rates

and dummy accesses, offering more control over the leakage-efficiency curve.

Key contributions such as Kamara & Moataz’s VLH/AVLH and Patel et al.’s dprfMM/dpMM concentrate

solely on single-attribute searchable encryption. While Markatou et al. demonstrate the vulnerability of

multi-dimensional range queries to inference, existing protections have not been adapted to this broader

context. Our work directly addresses this gap by generalizing volume- and access-pattern hiding techniques

to the multi-dimensional case, allowing for more realistic and secure query models.

Many prior solutions assume static datasets. Although Kamara & Moataz sketch dynamic extensions

for VLH and AVLH, and ORAM handles updates with high overhead, practical, efficient, dynamic multi-

dimensional schemes remain unexplored. While our current work focuses on static datasets, we explicitly

identify the challenges of dynamic padding and suggest a direction for future multi-dimensional update

mechanisms under tunable leakage constraints.

Much of the literature centers on volume hiding (e.g., Kamara, Patel), leaving access-pattern leakage

unaddressed or inadequately mitigated in multi-attribute settings. Yet, as Markatou et al. show, co-

occurrence of subquery tokens can leak spatial structure through access patterns alone. Some of our

EMM variants provide the first parameterizable techniques for suppressing access-pattern leakage in the

context of geometric EMMs.

While many papers evaluate latency and bandwidth, few provide a quantitative analysis of leakage.

Kellaris et al. give a theoretical attack model, and Markatou et al. present successful real-world attacks.

However, no prior work evaluates the impact of specific padding or access strategies on adversarial

success. Our framework bridges this gap by benchmarking under varying leakage configurations, enabling

more informed privacy-performance decisions.

Most surveyed works assume an honest-but-curious server and do not address active or side-channel

adversaries. Only ORAM explores tamper-resistance through versioning. We retain the honest-but-curious

model for tractability but propose clear extensions in our future work. These can include techniques such

as dynamic defenses, authenticated queries, and hybrid leakage-resilient schemes.

Finally, many theoretical contributions (e.g. Patel, Kamara) lack system integration, leaving their

practical deployability ambiguous. Falzon et al. provide the most directly usable framework, but with limited

14

3.2. Critical Analysis and Identified Gaps in Existing Work 15

customization and analysis tooling. We built on their prototype by adding customizable settings and a fully

open-source, modular implementation, making it easier to plug into real-world systems.

Part II
Methodological Framework

16

4
Design of EMM Variants

This chapter presents the design and rationale behind a family of EMM variants developed to explore and

control the trade-offs between privacy and efficiency in multi-dimensional range search.

4.1. Research Paradigm
This study is quantative in nature [31, 32]. All primary research activities, including the design of EMM vari-

ants, generating synthetic datasets and measuring metrics, produce numerical data that can be analyzed

using statistical methods. In particular, controlled experiments ensure that each EMM variant is evaluated

under identical dataset and query conditions. Additionally, performance metrics are aggregated over

multiple queries to compute means, slopes, and Area Under the Curve (AUC) scores [33, 34, 35]. By focus-

ing on quantifiable measurements, we can objectively compare privacy-efficiency trade-offs across variants.

While our quantitative framework provides clear numerical evidence, the study could be augmented by

qualitative insights from practitioners [31, 32]. For example, structured interviews or surveys with database

engineers and compliance officers could reveal how real-world constraints (e.g., ease of integration,

perceived risk tolerance) influence the choice of leakage profile, thus adding context to the numbers and

informing more user-centered design choices.

4.2. Comparison of EMM Schemes
This section gives a brief overview of all EMM schemes that will be introduced in this chapter and summarizes

this in Table 4.1.

Baseline EMM: The original EMM stores each record individually encrypted under a deterministic

label-based index. Concretely, each value is encrypted as a separate ciphertext keyed by a hash of its

label and position. This yields one ciphertext per actual record (no dummy padding) and minimal storage

overhead. The server thus learns exactly how many values match each query (full volume leakage) but,

owing to the hashing, cannot directly link ciphertexts to plaintext records. In effect, only the number of

results (not their identities) is revealed. Access-pattern leakage (at the key or range level) is not protected:

the server sees which labels/tokens are queried, but it sees no information about individual record accesses.

Overall, Baseline EMM offers the lowest overhead (no padding or grouping) but leaks full volume (result

counts) and unprotected key-level access patterns.

FPEMM (Fixed-length Padding EMM): This variant pads every key’s posting list to a fixed length

Lmax equal to the largest list in the dataset. After padding, each key has exactly Lmax encrypted entries,

so the server sees the same number of ciphertexts per key. Queries retrieve Lmax ciphertexts for each

matching key (with dummy values filtered by the client). This fully hides the volume pattern: the number

of real results is indistinguishable (constant) across all queries. However, like the baseline, FPEMM still

leaks which keys are queried (it does not hide access patterns). The trade-off is significant storage and

bandwidth overhead: every small list is inflated to length Lmax, leading to potentially many dummy entries.

In datasets with skewed lists, this can greatly expand storage (to roughly N ×Lmax ciphertexts for N keys)

and query cost. FPEMM thus achieves perfect volume privacy at the cost of high fixed padding overhead.

17

4.2. Comparison of EMM Schemes 18

AHEMM (Access-Hiding EMM): AHEMM hides access patterns by encrypting each entire posting

list as a single ciphertext. Instead of multiple ciphertexts per key, each key maps to one large encrypted

tuple of all its values. The server then only observes which key-level ciphertexts are fetched, with no

visibility into which individual values they contain. Consequently, access leakage is eliminated as the

server cannot distinguish which records within a list are accessed. However, volume leakage remains,

since the decrypted size of each tuple equals the true list length, so exact result counts are revealed to

the client (and thus measurable). Storage overhead is low (no padding), and the total number of stored

records is unchanged, but there are fewer ciphertexts overall (one per key). Performance-wise, AHEMM

can reduce the number of encryptions/decryptions for large lists, though each ciphertext is larger. In

summary, AHEMM removes acces–pattern leakage (one ciphertext per key) at very low overhead, while

still leaking full volume information.

VHAHEMM (Volume-Hiding, Access-Hiding EMM): VHAHEMM combines FPEMM’s padding with

AHEMM’s grouping. Each key’s list is first padded to Lmax (as in FPEMM) and then encrypted as a single

tuple (as in AHEMM). The encrypted index thus has one ciphertext per key containing exactly Lmax values.

This uniform structure leaks neither the access pattern nor the volume pattern: the server cannot tell how

many real entries are in each tuple (since it sees constant-size ciphertexts) and cannot see which values

are accessed within a tuple. Both volume and access leakage are eliminated. The cost is the overhead of

padding every list to Lmax and encrypting large ciphertexts. Storage is inflated to N × Lmax entries (one

per key), and each query fetches one full-length ciphertext per key. Compared to AHEMM, VHAHEMM

incurs only “modest” extra cost: still one encryption/decryption per key, but with a larger padded payload.

In short, VHAHEMM achieves maximal privacy (no volume or access leakage) at the expense of global

fixed padding.

DPRFMM (Delegatable PRF EMM): DPRFMM achieves strong volume- and access-hiding by using a

pseudorandom placement (cuckoo hashing) and delegatable PRFs. Each key-value pair is placed into

a small number of fixed-size buckets (plus a stash), and all buckets and stash slots are padded to their

maximum capacity. Queries are issued via a single dPRF token that lets the server find the two buckets

and stash for that key without client transmission of all positions. Importantly, the server always returns a

constant-sized bucket of ciphertexts for each query, filling with dummies as needed. This means every

query for any key returns exactly the same number of ciphertexts, fully masking both which key was

queried (beyond seeing a token) and how many real results existed. In other words, DPRFMM hides

both access and volume patterns perfectly. The trade-off is very high overhead: the index stores padded

cuckoo buckets and stash for all keys, and each query returns many dummy values. Storage grows to

(#buckets×B+ stash) entries (worst-case bucket size B), and each query decrypts 2B+S ciphertexts per

key. DPRFMM thus offers the strongest leakage protection (constant-size oblivious retrieval) but incurs

the highest storage and computation costs.

realDPRFMM (Realistic DPRFMM): This variant relaxes DPRFMM’s padding to reduce overhead, at

the cost of controlled leakage. realDPRFMM pads buckets only to a smaller bound P (the typical, not worst

case, occupancy). Each query now returns at most P ciphertexts per bucket, introducing some variability

in response size. As a result, approximate volume information leaks (the server sees how many up to P
items matched) and some access information (e.g. inferring if a key’s bucket is near-full). However, by

tuning P the scheme bounds this leakage. The upside is much lower overhead: storage and bandwidth

scale with P instead of the extreme bucket size. In practice, realDPRFMM lies between DPRFMM and the

lightweight schemes in both performance and leakage. It yields far fewer dummies than DPRFMM and

thus higher efficiency, at the cost of controlled leakage.

4.3. Synthetic Data Generation 19

Scheme Access Leakage Volume Leakage StorageOverhead Comments

Baseline EMM Records hidden,

but keys exposed

(no special access

hiding)

Full (exact counts) None (only actual

entries)

Minimal overhead;

reveals query re-

sult sizes; simplest

construction.

FPEMM Keys exposed

(same as baseline)

None (constant

Lmax per key)

High (pad all lists to

Lmax)

Perfect volume hid-

ing; heavy padding

storage and band-

width cost.

AHEMM None (only key-

level ciphertexts

seen)

Full (exact tuple

lengths)

Low (sum of lists

unchanged)

Hides access

patterns by tuple

encryption; leaks

sizes; one cipher-

text/key.

VHAHEMM None (tuple-level

hiding)

None (fixed-size

Lmax lists)

High (pad to Lmax

per key)

Hides both; stores

one padded tuple

per key; moder-

ate overhead over

AHEMM.

DPRFMM None (uniform

fetch patterns)

None (constant-

size responses)

Highest (pad all

buckets & stash)

Full oblivious re-

trieval via cuckoo

hashing; constant

2B + S per query.

Very costly.

realDPRFMM Partial (coarse oc-

cupancy info)

Partial (bounded by

pad P)
Moderate (pad to

P≤B)
Tunable trade-off:

relax DPRFMM

padding to P for

efficiency; leaks up

to P entries.

Table 4.1: Overview of all EMM schemes presented in this thesis.

Each scheme reflects a point on the leakage-performance spectrum. Baseline EMM and AHEMM have

minimal overhead but expose full volume, while FPEMM and DPRFMM fully hide volume (at high cost).

VHAHEMM offers full concealment of both leakage types with moderate padding cost, and realDPRFMM

sits in between by padding only to a practical bound.

4.3. Synthetic Data Generation
We build upon the public California road-network dataset originally used by Falzon et al. [1] and [36]. In its

canonical form, this dataset is a collection of (x,y) latitude-longitude coordinate pairs, each mapped to a

single numeric attribute. Please refer to figure 4.1 for an excerpt of what the data looks like.

4.3. Synthetic Data Generation 20

Figure 4.1: Excerpt of original California road-network data

Ideally, we would use this data as is. However, the single-valued nature per coordinate of this dataset

made it incompatible with certain EMM variants that expect a different data distribution. Therefore, to test

our EMM variants, we developed a synthetic generator that generalizes the California schema to be more

compatible with these EMMs. Instead of only storing a single numeric value per coordinate, now we store,

at each unique (x,y) key, a tuple of values. Each tuple is drawn randomly from {1, 2, ..., m}, where m is a

user-configurable maximum.

Here are all the adjustable parameters listed for this synthetic data generation process:

• The Key Range Sampling: rather than using a geographic bounding box, we simply specify a

key_range: {kmin, kmax}. Each coordinate (x,y) is chosen by sampling x and y independently and

uniformly from the interval [kmin, kmax].

• Number of Entries N: this represents the total count of distinct (x,y) keys generated.

• Maximum Tuple Size m: as explained above, this is the upper bound on the length of the value

tuples; actual lengths are randomly drawn from the interval [1,m].

• Value Domain: Each element of every tuple is sampled uniformly from a specified numeric interval

(e.g. [vmin, vmax]); these represent the actual ”payload” values that our EMM protects.

Algorithm 1 describes this procedure in pseudo-code.

4.3. Synthetic Data Generation 21

Algorithm 1 Synthetic Data Generation

1: procedure SynthesizeData(n,K, V,m)

2: . n: number of entries; K = (kmin, kmax); V = (vmin, vmax); m= max tuple size

3: Clear existing data

4: all_keys← CartesianProduct(K)
5: if n > length(all_keys) then
6: raise Error(”Too many entries”)

7: end if

8: chosen_keys← random sample of n keys from all_keys

9: buckets← []
10: for e from blog 10(vmin)c to blog 10(vmax)c do
11: `← max

(
vmin, 10

e)

12: h← min(vmax, 10
e+1 − 1)

13: if h > ` then
14: Append (`, h) to buckets
15: end if

16: end for

17: for each k in chosen_keys do
18: `← random integer in [1,m]
19: v ← []
20: for i = 1 to ` do
21: (low, high)← random choice from buckets

22: Append random integer from [low, high] to v
23: end for

24: data[k]← tuple(v)
25: end for

26: end procedure

The SynthesizeData procedure (line 1) begins by wiping any previous contents (line 2) so that we

build a fresh dataset each time. We then enumerate all possible keys in the 2-dimensional integer grid

K = [kmin, kmax]
2 (line 3). If the user requests more unique entries than exist in that grid, we immediately

error out (lines 4-6), otherwise we randomly sample exactly n distinct keys (line 7). We do this, because

the data is stored in a structured dictionary, this means that every key needs to be distinct.

Next, we create the value range V = [vmin, vmax] into ”order-of-magnitude” buckets. This step was
created to have a more balanced distribution of the values, since if the value range V was very large,

then due to randomness, the application was more inclined to pick larger numbers over smaller numbers.

Whereas now, we create these buckets and randomly select one of them for a fairer distribution between

values. Specifically, this is done by looping exponent e from log10vmin up to log10vmax (line 9). After which,

we form subranges [max(vmin, 10
e),min(vmax, 10

e+1− 1] (lines 10-11). The positive width values are then
stored in the list buckets (lines 12-14).

Finally (starting at line 16), we visit each sample key k. We decide at random how many values to

attach, anywhere from 1 up to the maximum tuple size m (line 17), and then for each position in the tuple,

pick one of our precomputed buckets and draw a uniform integer from that bucket (lines 19-21). This gives

a variable-length tuple of integers whose magnitudes are spread across different orders of magnitude. We

store that tuple under key k in the result map (line 23).

To summarize, this design ensures several key outcomes. First of all, uniform coverage of the key

space, due to sampling without replacement. Then, it allows for log-uniform scaling of values, by choosing

buckets per order of magnitude. And lastly, variable tuple lengths, which is the biggest difference in

comparison to the original California dataset.

4.4. Baseline EMM Construction 22

4.4. Baseline EMM Construction
Falzon et al. [1] define an EMM as a tuple of four algorithms Σ = (Setup, Query, Eval, Result) that operate

over a plaintext Multi-Map (MM) mapping each label (in our case, a canonical range) to a set of record

values. In our application:

1. Σ.Setup: The client builds MM by assigning each node’s canonical range to the set of records it

covers, then runs Σ.Setup(λ, MM) to produce a secret key K and an EMM stored by the server (with

λ being the security parameter).

2. Σ.Query: To search range q, the client computes a set of subranges via the range-cover algorithm,

then invokes Σ.Query(K, ℓ) for each canonical subrange label ℓ to obtain search tokens.

3. Σ.Eval: The server evaluates each search token over the encrypted multimap (Σ.Eval) and returns

the ciphertext bundles.

4. Σ.Result: The client decrypts and aggregates results via Σ.Result.

Regarding the range-cover algorithms mentioned above. Encrypted multimaps operate over a fixed

set of canonical “labels,” but a user’s range query q may not align exactly with those labels. A range-cover

algorithm bridges this gap by decomposing any arbitrary interval q into a small collection of canonical

subranges whose union equals q. This step is essential because it translate a high-level range request into

the precise tokens the EMM can handle. Falzon et al. [1] propose a few cover strategies. One of those

strategies is the linear scheme, which labels sequentially. Another strategy are the tree-based schemes,

which use a hierarchical decomposition. Although the tree version can sometimes reduce the number of

subranges, in practice the linear cover proved both simpler to implement and more reliable at highlighting

performance differences across leakage settings. Accordingly, we adopt the linear-range cover as our

primary instantiation, with some modifications to handle our multi-valued dataset.

Algorithm 2 describes the process of building the encrypted index for the original EMM in pseudo-code.

This process is the central component of the EMM schemes and represents the key distinguishing factor

among the various variants.

Algorithm 2 Original EMM Build Encrypted Index

1: procedure BuildIndex(key, plaintext_mm)

2: hmac_key ← HashKDF(key,PURPOSE_HMAC)
3: enc_key ← HashKDF(key,PURPOSE_ENCRYPT)
4: encrypted_db← ∅
5: for each (label, values) ∈ plaintext_mm do

6: token← HMAC(hmac_key, label)
7: for index, value ∈ values do
8: ct_label← Hash(token+ bytes(index))
9: ct_value← SymmetricEncrypt(enc_key, value)
10: encrypted_db[ct_label]← ct_value
11: end for

12: end for

13: return encrypted_db
14: end procedure

The BuildIndex procedure (line 1) transforms an in-memory plaintext multi-map plaintext_mm into an

encrypted lookup structure encrypted_db. It begins by deriving two separate symmetric keys from the

master secret key (lines 2-3): one hmac_key for deterministic labeling via HMAC, and one enc_key for

confidentiality of the values.

On each iteration over the input map’s entries (line 5), we first compute a per-label “token” by applying

HMAC to the cleartext label (line 6). This token both randomizes the label and ensures it remains consistent

across repeated encryptions of the same label.

Within that label’s value list (line 7), we enumerate each index, value pair. We hash the concatenation

of the token and the byte-encoding of the index to produce a unique ciphertext key ct_label. This hides

4.5. FPEMM 23

both the original label and the position in the tuple, while still allowing lookups by index if the same token is

reused (since we are using DET).We apply a standard symmetric encryption to the raw value under enc_key
, producing ct_value, which protects confidentiality. Then, we insert the pair ct_label → ct_value into

encrypted_db, effectively building an oblivious index where neither labels nor values appear in the clear.
Finally, once all label-value pairs have been processed, the fully populated encrypted_db is returned (line

13).

4.5. FPEMM
The Fixed-length Padding Encrypted Multi-Map (FPEMM) is the first and most privacy-preserving variant

introduced in this work to mitigate volume-pattern leakage. This scheme operates under a simple principle:

pad all multi-map entries to the maximum tuple length observed across the dataset. While the approach is

conceptually straightforward, it establishes a baseline for strong volume-hiding guarantees against passive

adversaries.

FPEMM begins by scanning the input dataset to determine the largest posting list size, denoted as

Lmax = maxk|MM [k]|, where MM [k] is the set of values associated with key k. Every other key is then
padded with dummy values so that each list reaches length Lmax.

Once padding is complete, each entry (including dummy values) is encrypted as in a standard EMM

construction. The server stores a fixed-length encrypted list for each key, ensuring that the ciphertext

volume for each key is uniform. This makes it infeasible for the server to infer any information about the

actual tuple sizes based on ciphertext length or query response size.

During a query, the client generates tokens for all keys falling within the queried range. The server

retrieves Lmax encrypted entries for each matching key and returns them to the client. The client decrypts

each entry and filters out dummy values using embedded metadata or padding markers. This guarantees

that all queries reveal only the range of queried keys, but not the number of actual values associated with

them.

FPEMM offers perfect volume-hiding: the server observes the same number of encrypted items per key

and per query, regardless of the underlying data distribution. This effectively reduces the volume leakage

function to a constant and simulates the uniform access behavior of ORAM-based solutions, albeit without

hiding the access pattern itself.

The privacy guarantees of FPEMM come at the cost of a overhead. In datasets with high skew, where

most keys have small tuple sizes and only a few have long lists, padding to Lmax causes significant storage

expansion. Query bandwidth also increases, as the client must process and filter a large number of dummy

entries. Thus, while FPEMM sits at the high-privacy end of the leakage-efficiency spectrum, it is primarily

suited for use cases where volume privacy is of great importance.

4.6. AHEMM
The Access-Hiding Encrypted Multi-Map (AHEMM) is designed to mitigate access-pattern leakage by

modifying the encryption strategy used in the baseline EMM. In traditional EMM constructions, each value

associated with a key is encrypted individually. While this enables flexible retrieval, it also exposes access

patterns to the server, revealing which specific encrypted values are returned for each query. AHEMM

addresses this vulnerability by aggregating and encrypting entire value-tuples associated with each key as

a single unit.

In AHEMM, instead of encrypting each value in a posting list separately, the entire list of values for a

key is grouped into a single structure and encrypted as one ciphertext. This design ensures that the server

only observes access to the key-level ciphertexts, without visibility into which individual records within the

list are retrieved. Thus, any fine-grained inference about internal structure is effectively blocked.

The ciphertext storage under AHEMM differs from baseline EMM only in granularity: rather than

maintaining multiple ciphertexts per key, each key maps to a single ciphertext that encapsulates the full

tuple. This compact representation reduces the number of stored entries while simultaneously improving

access pattern hiding. The client decrypts the ciphertexts and recovers the full lists of associated values.

Since the server always sees one ciphertext per key and cannot distinguish internal access behavior,

access-pattern leakage is eliminated.

4.7. VHAHEMM 24

AHEMM completely removes access-pattern leakage at the cost of preserving volume leakage. Although

the server cannot determine which individual values are accessed, the decrypted size of each tuple may

still be inferred after client-side decryption. As such, AHEMM is ideal for scenarios where access privacy

is important, but volume leakage is tolerable.

The tuple-level encryption strategy may reduce the overall number of encryptions and decryptions,

especially for keys with large posting lists. However, this comes with increased ciphertext size, and

depending on the application, bandwidth may increase if not all records are relevant. Still, the performance

trade-off can be considered more favorable when compared to more complex and storage-heavy methods

such as ORAM or full padding.

4.7. VHAHEMM
The Volume-Hiding Access-Hiding Encrypted Multi-Map (VHAHEMM) combines the core ideas behind

FPEMM and AHEMM to eliminate both volume-pattern and access-pattern leakage. This construction

serves as the most privacy-preserving variant in the proposed framework, ensuring that the server cannot

infer either the number of values associated with a key or which specific values are being retrieved during

a query.

VHAHEMM applies fixed-padding to conceal the volume pattern and tuple-level encryption to hide the

access pattern:

• Volume Hiding: As in FPEMM, the maximum posting list size Lmax is computed across all keys.

Each key’s list is then padded with dummy values to reach this maximum length.

• Access Hiding: As in AHEMM, each fully padded list is aggregated and encrypted as a single

ciphertext. This hides which individual entries within the tuple are accessed, since the entire list is

returned and decrypted by the client.

In the encrypted index, every key maps to exactly one ciphertext, which contains an encrypted tuple of

Lmax values. This uniformity ensures that both the number and size of ciphertexts per key are constant

across the dataset, preventing any statistical inference by the server.

Because the server sees only one ciphertext per key and cannot distinguish between real and dummy

values, both access and volume leakage are effectively neutralized. Thus, VHAHEMM eliminates both

access-pattern and volume-pattern leakage. The ciphertext structure prevents key-specific access pattern

inference. And fixed-size encrypted tuples ensure that the server learns nothing about the underlying list

lengths.

Despite offering the strongest privacy guarantees, VHAHEMM incurs only modest overhead compared

to AHEMM:

• Encryption and Decryption: Only one encryption/decryption operation is performed per key.

• Ciphertext Size: Slightly larger due to padding, but still aggregated into a single ciphertext per key.

• Bandwidth: Comparable to AHEMM in terms of ciphertext count, with a minor increase in payload

size. In practice, the performance impact is minimal since encryption and decryption costs dominate,

and the difference in tuple size is typically not substantial.

4.8. DPRFMM
The Delegatable Pseudo-Random Function Encrypted Multi-Map (DPRFMM) is a more advanced construc-

tion inspired by the work of Patel et al. [29], designed to provide strong volume-pattern privacy both during

setup and at query time. While previous constructions like FPEMM successfully hide volume leakage in

the storage phase through fixed padding, they still leak information during queries due to variable-sized

responses. DPRFMM overcomes this limitation by using pseudo-random placement and constant-size

query responses.

FPEMM hides volume leakage by padding all posting lists to the same length, but it does not ensure

uniform query behavior: depending on the number of keys matched by a query, the server observes a

different number of accesses. Thus, even though all keys store the same number of entries, query result

sizes still reveal information about the underlying data distribution. DPRFMM addresses this by enforcing

fixed-size query responses regardless of the number of matching records.

4.9. realDPRFMM 25

DPRFMM relies on cuckoo hashing with a stash to store each key–value pair efficiently in one of two

possible hash locations. A small-domain PRF determines which two buckets a key maps to, enabling

random, yet deterministic, storage. To prevent leakage via bucket content size, all buckets and stash

entries are padded to a fixed maximum size, ensuring structural uniformity in storage.

To reduce client–server communication, DPRFMM employs a Delegatable Pseudo-Random Function

(dPRF). This cryptographic primitive allows the client to send a compact token that lets the server evaluate

the PRF on a predefined domain (e.g. a set of bucket indices) without learning anything beyond the results.

The server uses this token to determine which bucket entries correspond to the queried key, eliminating

the need for the client to transmit large sets of PRF outputs.

When querying a key, the client sends a single dPRF token. The server uses this to compute the

relevant PRF outputs, retrieve the corresponding buckets and stash entries, and return a fixed-sized list of

ciphertexts. All responses, regardless of how many real values match the key, contain the same number

of entries. Dummy values are inserted and later filtered out by the client during decryption.

DPRFMM achieves volume hiding at setup and query time, because all lists are padded, and every

query returns a constant-size response, eliminating observable size variations. Then, DPRFMM hides

the access pattern, because the server always retrieves the same number of ciphertexts from predictable

structures. The server sees only uniform fetch patterns, regardless of query specifics.

4.9. realDPRFMM
The Realistic Delegatable Pseudo-Random Function EncryptedMulti-Map (realDPRFMM) is a performance-

optimized variant of the DPRFMM scheme. It is designed to prioritize efficiency while accepting controlled

leakage of access and volume patterns. In contrast to the original DPRFMM, which strictly enforces

fixed-size query responses and full padding to hide all leakage channels, realDPRFMM relaxes these

constraints to achieve lower storage, bandwidth, and computational costs.

The realDPRFMM targets use cases where absolute privacy is of less importance than responsiveness

and scalability. By softening the volume- and access-hiding guarantees, this variant achieves much higher

efficiency, making it practical for large-scale or latency-sensitive deployments. It sits between high-privacy

schemes like DPRFMM and lightweight schemes like baseline EMM, offering a customizable trade-off.

Unlike DPRFMM, which pads all buckets and stash entries to the worst-case maximum size, realD-

PRFMM pads these structures to a smaller fixed bound , chosen to support typical, rather than worst-case,

occupancy. This significantly reduces the overhead of storing and processing dummy values.

Query responses in realDPRFMM are no longer strictly uniform. Instead, the server returns as many

entries as required by the hash structure, up to the padding bound P . While this introduces some volume

leakage (e.g. response size correlates with actual data distribution), the leakage is coarse and predictable.

The padding depth P acts as a means of controlling this exposure.

RealDPRFMM also leaks more about access patterns than DPRFMM. Since bucket structures are

padded less aggressively, the server may infer approximate occupancy patterns per key. However, this

leakage is bounded and parameterized, allowing it to be tailored to application-specific tolerances.

5
Experimental Setup

This chapter outlines the experimental setup used to evaluate the performance and privacy characteristics

of the EMM constructions proposed in this thesis.

5.1. Benchmark Suite
The benchmark suite implemented for this thesis evaluates and compares the performance the various

EMM constructions. The evaluation process is structured as a modular pipeline, as visualized in the

flowchart in figure 5.1, and executed through a unified benchmarking framework. This framework ensures

that each EMM scheme is assessed under identical conditions, using a shared dataset, query workload,

and system interface.

Figure 5.1: Flowchart of the Benchmark Suite

The benchmarking process follows a fixed sequence of operations:

1. Load Data: A point-to-tuple map is deserialized from a pickled dataset file and converted into a

standardized format.

2. Generate Random Queries: A set of 1000 range queries is randomly generated. These are rect-

angular in shape and are stratified into coverage buckets based on the fraction of the domain they

span, allowing performance to be measured as a function of query selectivity.

3. Encrypt Data: For each EMM engine (e.g. FPEMM, DPRFMM, realDPRFMM), the benchmark suite

builds a fresh encrypted index using the EMM engine interface.

4. Run Queries: For each scheme, the full query workload is executed. This includes generating

trapdoors, performing server-side search, and resolving ciphertexts into plaintext results.

5. Perform Measurements: The suite records nanosecond-level timings for three stages of query

execution: trapdoor generation, encrypted search, and result resolution.

6. Plot Results: All performance data is aggregated, confidence intervals are computed, and comparative

plots are generated to visualize the behavior of different schemes across varying query sizes.

26

5.2. Metrics & Measurements 27

This process is repeated for each EMM engine to ensure a fair comparison across constructions.

To assess performance across a spectrum of query selectivity levels, the suite generates a large pool of

candidate query rectangles, computes their area as a percentage of the full domain, and groups them into

buckets by coverage. A fixed number of queries are then sampled from each bucket to create a balanced

workload.

5.2. Metrics & Measurements
Each query execution is broken down into three phases:

• Trapdoor Time: Time to generate encrypted query tokens.

• Search Time: Time to perform encrypted search over the index.

• Resolve Time: Time to decrypt and interpret the result set.

Each timing measurement is repeated across 1000 queries, grouped by coverage percentage, and

summarized using means and 95% confidence intervals. These metrics show how the performance scales

with query size and dataset layout.

In addition to query-time performance, the suite also records:

• Construction Time: The time required to build the encrypted index from plaintext.

• Storage Footprint: Total memory used to store the encrypted database, including ciphertexts and

padding.

These metrics help contextualize each scheme’s one-time setup costs versus its ongoing runtime perfor-

mance.

5.3. Dataset Description
The first dataset used in our experimental evaluation is a synthetic multimap designed to provide a controlled

environment for validating core functionality and measuring baseline performance. Its parameters are

easily adjustable to explore the effects of domain size, tuple density, and padding overhead:

• Number of entries: 32 key–value pairs (points)

• Key domain: integer coordinates in the range [0, 10]

• Value domain: integer values sampled uniformly from [1, 1000]

• Tuple size range: each key maps to between 1 and 50 associated values, chosen uniformly at

random

These settings return a spatial domain with widely varying list lengths, making it ideal for observing

how padding and tuple-level encryption affect storage and query behavior in the simplest case. By tuning

the tuple size range and value distribution, we can directly measure overheads introduced by FPEMM’s

fixed-padding and DPRFMM’s hashing strategies under minimal workload.

Below in Figure 5.2 is a structural excerpt of the raw multimap before encryption. It merely demonstrates

how each (x,y) key maps to a list of values (varying in length).

5.3. Dataset Description 28

Figure 5.2: Sample screenshot of raw Dataset 1. Only a small subset of the full 32 coordinate→tuple

mappings is shown to illustrate the data structure (variable-length tuples).

The second dataset provides a contrasting setup with maximal uniformity across all entries. This

dataset is designed to isolate the effects of access-pattern leakage while eliminating the impact of volume

variability:

• Number of entries: 32 key–value pairs (points)

• Key domain: integer coordinates in the range [0, 10]

• Value domain: integer values sampled uniformly from [1, 10,000]

• Tuple size range: fixed at 1 value per key

By ensuring that each point maps to exactly one associated value, this dataset avoids any need for

volume padding, creating a baseline for evaluating schemes under idealized, low-entropy conditions. It

is particularly useful for assessing the overhead introduced by schemes like AHEMM or realDPRFMM,

where access-pattern mitigation is the focus. This configuration also allows precise comparison of query

execution cost without the confounding influence of large or variable-sized results.

Figure 5.3 shows an excerpt from the second dataset.

Figure 5.3: Sample screenshot of raw Dataset 2. Only a small subset (each coordinate maps to exactly

one value) is shown to illustrate the uniform structure.

Figures 5.2 and 5.3 show only a small, random sample of the full datasets to give the reader a sense of

the data structure (number of keys, tuple-length variation, value domains). Only the overall shape (e.g.

how many values per key, key-domain size) matters for our performance and leakage measurements,

whereas the specific integer values themselves do not influence the results if they are of reasonable size

(less than 32 bits).

5.4. Experimental Environment
All benchmarks were executed on a single Ubuntu 22.04 LTS virtual machine provisioned with the following

hardware resources, chosen to fully accommodate our 16-process Python workload (each holding ∼10-12
GB RAM in memory and writing high-throughput logs). Please refer to Table 5.1 for the specifications:

Table 5.1: System Components and Specifications

Component Specification

vCPUs 16 physical cores (NUM_PROCESSES = 16)

RAM 64-128 GB (local peaks of ∼12 GB to avoid swapping)

Storage 500 GB NVMe SSD (or EBS GP3, ≥300 MB/s throughput)

Networking ≥10 Gbps

OS Ubuntu 22.04 LTS

Compiler Toolchains GCC, Clang

Language & Libraries Python 3.11; OpenSSL; tqdm; matplotlib;

To ensure no swap-induced variability, we allocated at least 64 GB of RAM despite observed peaks

around 12 GB. The NVMe (or equivalently provisioned EBSGP3) volume sustained our log writes (hundreds

of MB/s), and the 10 Gbps network link was sufficient for any remote data pulls or multi VM coordination.

5.5. Reproducibility
To ensure that our timing and leakage measurements can be fully replicated, we (1) fix all pseudorandom

seeds in Python, (2) document precise software and VM configurations, and (3) publish our codes. A more

detailed treatment of randomness sources, seed-management strategies, and statistical stability analyses

is deferred to 6.2. The full source code and experimental scripts supporting this thesis are publicly available

in the GitHub repository at https://github.com/vaabiharie/Tunable-EMM-schemes [37].

29

https://github.com/vaabiharie/Tunable-EMM-schemes

Part III
Results & Analysis

30

6
Experimental Results

In this chapter we present the experimental results obtained from applying the benchmark class to the

datasets discussed in section 5.3. We evaluate and report the performance of the datasets based on the

metrics outlined in section 5.2.

6.1. Query Generation Protocol
All query workloads are generated using a seeded pseudo-random number generator initialized with a fixed

seed. This makes it so that the queries show statistical properties similar to uniformly random sampling.

As a result, the generated queries are not distinguishable from truly uniform samples by any efficient

adversary.

In order to assess how performance varies with query size, we partition the generated queries into

groups based on their coverage of the underlying data domain. Specifically, we define query size as the

percentage of the domain covered by the query result (referred to as the ”Relative Query Area”), and we

generate sets of queries targeting specific coverage levels (i.e. 5%, 10%, etc.) For each coverage level,

we randomly select several queries whose result sizes are close to that coverage, while staying within

domain boundaries.

This sampling approach minimizes the variance in performance metrics that could otherwise arise from

uneven query distributions. This allows for fairer and more meaningful comparisons across query sizes. In

addition, it enables us to observe systematic changes in performance metrics as a function of query size,

helping to isolate the effects of coverage from other factors such as data layout or query shape.

6.2. Randomness and Reproducibility
To ensure both the reproducibility and statistical robustness of our results, we adopt a consistent experi-

mental protocol involving controlled randomness and repeated trials.

Each experiment is conducted in five independent batches, corresponding to five distinct random seeds:

0, 1, 2, 3, 4. These seeds are fixed and used consistently across all experimental runs, allowing for exact

replication of results. By using the same predefined set of seeds, anyone can rerun our experiments and

obtain identical outputs, thereby securing reproducibility.

In terms of randomness inherent in the evaluation process, especially concerning the generation of

query sets, we ensure statistical robustness by repeating each experiment five times with independently

sampled query sets. Specifically, each batch consists of 1,000 queries sampled independently, and the

metrics reported are the mean values computed across these five batches. This aggregation approach

mitigates the influence of stochastic variability, reducing the likelihood that observed results are due to

random fluctuations.

Should any metric display sensitivity to randomness such that repeated evaluations under the same

setup could lead to varying outcomes, we explicitly indicate this in the corresponding analysis.

31

6.3. Trapdoor Time Comparison Dataset 1 32

6.3. Trapdoor Time Comparison Dataset 1
Figure 6.1 presents the mean trapdoor generation time of all evaluated EMM variants, measured over a

set of generated queries on dataset 1. In the context of our experiments, trapdoor generation refers to

the client-side process of producing a search token corresponding to a given query label. This token is

then sent to the server and used to retrieve the matching encrypted entries from the index. Because each

query label is mapped to a secure token through cryptographic operations, trapdoor generation forms an

important part of the end-to-end latency for SSE schemes. Measuring this phase independently allows

us to isolate and assess the performance cost of token derivation in each EMM variant, independent of

server-side search and resolution phases.

Figure 6.1: Trapdoor Time Comparison of all EMM variants on dataset 1

This figure illustrates the behavior of trapdoor generation across different EMM constructions as the

query size varies. The x-axis (Relative query area) represents the geometric size of each query rectangle as

a percentage of the total index space, while the y-axis shows the average per-query latency in milliseconds

(multiplied by 1e6). Concretely, for instance the point located at coordinates (40,0.25) indicates that, for
the realDPRFMM variant on queries whose rectangles cover 40% of the domain, the average trapdoor

generation time was 250 seconds. Each data point reflects the mean result of five independent experimental

runs to ensure statistical reliability. However, due to the computational overhead involved, producing the

full set of measurements across all variants is a lengthy process that extends over several hours (typically

requires over six hours).

In figure 6.1 the ”EMM” curve (green line) serves as our baseline. This EMM was based on the EMM

originally build by Falzon et al. [1]. All variants show a performance close to this baseline, with the

realDPRFMM variant being the one clear exception. Across the full range of query sizes, realDPRFMM

consistently achieves faster trapdoor generation than any other construction. The dprfMM curve appears

slightly higher than its peers in this figure, which would suggest that this variant has the slowest performance.

However, additional experiments with varied random seeds yielded no statistically significant difference

among the non-realDPRFMM constructions. In contrast, realDPRFMM’s superior speed remained robust

across all trials.

As outlined above, among all evaluated EMM variants, the RealDPRFMM engine consistently shows

significantly lower trapdoor generation times across all query sizes. This performance disparity can be

attributed to differences in how cryptographic key derivation is handled during the trapdoor phase.

In other EMM designs such as the baseline EMM variant, the trapdoor generation procedure involves

two core cryptographic operations: (1) a Key Derivation Function (KDF) to derive an HMAC key from the

master secret, and (2) an HMAC computation over the query label using that derived key. While this design

ensures that the trapdoor generation is stateless and secure even in multi-session contexts, it also means

that every trapdoor generation experiences the full computational cost of a KDF invocation. Since KDFs

are deliberately designed to be computationally intensive (to resist brute-force attacks), this overhead

becomes a performance bottleneck when trapdoors must be generated frequently.

In contrast, the RealDPRFMM variant optimizes this workflow by computing the derived HMAC key once

during the index setup phase and caching it for the lifetime of the engine. As a result, subsequent trapdoor

6.4. Search Time Comparison Dataset 1 33

generations require only a single HMAC evaluation over the label, avoiding repeated KDF invocations.

Given that HMAC operations are typically several orders of magnitude faster than KDFs, this design leads

to substantial performance gains, particularly when generating trapdoors in bulk, as is the case in our

experiments.

Importantly, this optimization does not compromise the security assumptions of the system, provided the

engine instance remains isolated and the cached key is not exposed across contexts. Rather, it optimizes

the performance by reusing derived keys within a controlled execution scope. This design philosophy is not

unique to the RealDPRFMM engine and can be adopted by other EMM variants with minimal architectural

adjustments. By storing and reusing derived keys within a single execution context, any scheme that

currently re-derives keys on each trapdoor invocation can achieve similar performance benefits.

6.4. Search Time Comparison Dataset 1
Figure 6.2 presents the mean search time of all EMM variants. In our experimental setup, search time

refers to the server-side computation required to evaluate the trapdoor token against the encrypted index

and retrieve the associated ciphertexts. This phase consists of all operations performed by the server after

receiving the token, including any key lookups, hash evaluations, ciphertext collection, and intermediate

filtering, depending on the design of the EMM scheme. Measuring search time separately allows us to

analyze the computational efficiency of the server’s response mechanism and to compare how different

constructions impact the cost of query evaluation under varying leakage and efficiency trade-offs.

Figure 6.2: Search Time Comparison of all EMM variants on dataset 1

Examining figure 6.2 shows that the curves for the FPEMM (red line) variant and the original EMM

(green line), which serves as our baseline, show significantly higher search time costs compared to the

other constructions. In particular, the FPEMM curve is the only one that consistently shows a higher search

cost than the baseline for this metric. This indicates that the FPEMM construction always takes more time

to evaluate the trapdoor tokens and retrieve the corresponding ciphertexts. The reason for this increased

cost is that FPEMM applies fixed padding to its encrypted database to mask the volume of each result set.

However, it still uses the same search function as the original construction. As a consequence, this variant

must search through a larger padded database, without applying any advanced techniques to make the

search process more efficient.

Because the FPEMM and original EMM curves dominate the plot so heavily, it becomes difficult to

distinguish the performance differences among the remaining variants. To enable a clearer analysis, we

remove the dominating curves in the next plots, allowing the behavior of the other constructions to be more

easily compared.

6.5. Resolve Time Comparison Dataset 1 34

Figure 6.3: Search Time Comparison of EMM Variants (Excluding Baseline EMM & FPEMM) on dataset 1

Comparing figures 6.2 and 6.3 reveals that four variants (AHEMM, DPRFMM, realDPRFMM, and

VHAHEMM) all show lower search time costs than the original EMM. However, there are notable differences

in performance among them.

Starting with DPRFMM, this construction consistently shows the highest search time among the variants

in figure 6.3. This is because DPRFMM applies padding to both its cuckoo hash tables and its query

responses in order to hide volume leakage, which increases the search space. In fact, considering both

figures, DPRFMM must explore the largest search space of all variants, including FPEMM and EMM.

Surprisingly, despite this overhead, it still outperforms both FPEMM and the original EMM. This efficiency

can be attributed to its use of delegatable pseudo-random functions, which enable more efficient searching.

This improvement comes at the cost of increased search pattern leakage [16, 38, 39], which is outside the

scope of the leakage patterns considered in this work.

Next, AHEMM and VHAHEMM demonstrate nearly identical performance. This similarity is expected,

as both constructions are structurally alike. The primary difference is that VHAHEMM adds volume-

hiding padding on top of the access-pattern protection already present in AHEMM. While there are slight

differences in their performance curves, these are not substantial enough to draw any strong conclusions

for this metric.

Finally, realDPRFMM achieves the lowest search time across all constructions. This result aligns with

its design goal of prioritizing efficiency by selectively allowing certain types of leakage, including access

and volume patterns. Since realDPRFMM shares much of its structure with DPRFMM, it also leaks some

level of structure pattern, though this is not a focus of the current analysis.

6.5. Resolve Time Comparison Dataset 1
Figure 6.4 presents the mean resolve time of all EMM variants. Resolve time in our experiments refers

to the client-side effort required to process the encrypted results returned by the server and extract the

final, usable plaintext values. This includes decrypting the ciphertexts and potentially filtering out irrelevant

matches based on query semantics. For the sake of our analysis, this step does not discard any dummy

or padded entries, but in practice it would do so as part of ensuring the correctness and utility of the final

result set. Resolve time captures the final stage of the query pipeline from the client’s perspective and is

especially relevant in schemes that shift part of the filtering burden to the client, such as those with certain

volume-hiding or access-hiding properties.

6.5. Resolve Time Comparison Dataset 1 35

Figure 6.4: Resolve Time Comparison of all EMM variants on dataset 1

Figure 6.4 shows that the DPRFMM construction has a significant overhead compared to the other

variants, consistently requiring more time for this resolution step by a considerable margin. The reason for

this is that DPRFMM is explicitly designed to offer strong volume-hiding by ensuring that the number of

ciphertexts returned per label is fixed and indistinguishable across queries. It achieves this by employing a

cuckoo hashing construction where each keyword maps into two buckets (each of size B) and a shared
stash (of size S). The server returns all entries in these buckets and the stash, yielding a total of 2B + S
ciphertexts per queried label.

This volume-hiding strategy results in two dominant sources of computational overhead. First of all,

regardless of how many actual matches exist for a given label, the client must receive and process the

full padded set. This increases both the total data transferred and the number of ciphertexts that must be

deserialized and handled at the client. Especially when B and S are sized for worst-case label density,

the overhead becomes significant. Second, to identify which ciphertexts are genuine (i.e. correspond to

real data), the client must perform an authenticity check or decryption attempt on every single ciphertext

returned. Dummy entries are indistinguishable from real ones until this filtering process is complete.

Additionally, because the stash is shared across labels, its handling often involves linear scans or indirect

lookups that compound the resolve-time further. These factors together create a substantial computational

burden for DPRFMM relative to other EMMs. While lighter schemes such as AHEMM or realDPRFMM

allow for more selective decryption (or shorter padded lists), DPRFMM’s uniform ciphertext return policy

ensures that every query triggers the maximum expected client-side workload.

Similar to the previous section, the dominant cost of DPRFMM makes it difficult to compare the other

constructions. Therefore, we excluded DPRFMM from figure 6.5.

Figure 6.5: Resolve Time Comparison of EMM variants (Excluding dprfMM) on dataset 1

The FPEMM variant shows the steepest resolve time growth in this plot. Its padding to the global

maximum list length Lmax means that the number of ciphertexts per label remains constant and large. As

6.5. Resolve Time Comparison Dataset 1 36

a result, the total number of ciphertexts to decrypt increases rapidly with query area. The occasional jumps

in the curve are due to variations in the number of labels covered by individual queries.

Among the constructions analyzed in figure 6.5, the baseline EMM and realDPRFMM stand out due to

their closely aligned performance profiles. Despite having different leakage characteristics, both schemes

achieve similarly low resolve times, and their curves follow each other closely throughout the full range of

query areas.

The baseline EMM does not implement any form of volume hiding. It returns exactly one ciphertext for

each matching document, and the client decrypts only these entries. This minimal decryption load results

in very low and predictably increasing resolve times as query area expands. The curve for EMM reflects

this linear relationship between query coverage and the number of documents matched.

In contrast, realDPRFMM introduces padding to conceal volume leakage but does so using a more

practical approach than DPRFMM. Rather than padding to the maximum bucket size B, it pads to a smaller
bound Preal, chosen based on expected (rather than worst-case) occupancy. This allows it to achieve a

degree of volume-hiding while keeping the number of padded ciphertexts per label small and predictable.

What makes realDPRFMM’s resolve time nearly match that of EMM is the tight calibration of Preal

relative to typical list sizes in the dataset. As a result, the average number of ciphertexts per label returned

to the client is not much higher than in EMM, especially for queries covering many labels. Since the

client must still perform decryption and authenticity checks on these padded entries, some overhead is

introduced, but this overhead remains marginal and grows slowly with query size.

As for the AHEMM and VHAHEMM variants, the AHEMM curve is not visible in figure 6.5 because it

nearly overlaps with VHAHEMM due to the scale of the other schemes. To highlight this, we present figure

6.6, where only AHEMM and VHAHEMM are shown.

Figure 6.6: Resolve Time Comparison of ahemm and vhahemm on dataset 1

Both AHEMM and VHAHEMM are designed to hide access patterns, ensuring that the server cannot

determine which specific entries were returned. However, they differ in their treatment of volume leakage.

AHEMM leaks the exact number of matching records, while VHAHEMM introduces volume padding by

extending each label’s result list to a fixed bound P , derived from the largest bucket in its layout.

In terms of resolve time, AHEMMgenerally requires slightly more client-side processing than VHAHEMM,

as reflected by its consistently higher curve in figure 6.6. This might seem counterintuitive, given that

VHAHEMM applies padding while AHEMM does not. However, this difference can be explained by the

following factors. First of all, in VHAHEMM, the number of ciphertexts per label is fixed (up to P), allowing
the client to precompute the expected ciphertexts to decrypt. In contrast, AHEMM may deal with a more

variable set of ciphertexts, potentially introducing slight inefficiencies in memory access patterns, buffer

allocation, or multithreaded execution depending on how the client is implemented. In addition, while both

schemes rely on symmetric-key decryption, VHAHEMM’s uniform ciphertext sizes and layout can lead to

better CPU-level cache utilization and batching opportunities during decryption. AHEMM’s variable-length

results, meanwhile, may slightly increase per-ciphertext overhead. Finally, since VHAHEMM returns a

predictable number of ciphertexts per label, it is easier to optimize the client code for performance, e.g. via

6.6. Result Count Comparison Dataset 1 37

parallel processing or fixed-size loops. AHEMM’s less regular output sizes may prevent such optimization

in certain scenarios.

Despite these differences, the performance gap remains small. Both constructions show linear growth

in resolve time as the query area increases. This is expected, as larger queries cover more labels and

return more ciphertexts. However, VHAHEMM’s slightly lower curve suggests that volume padding can be

implemented efficiently and does not necessarily imply a significant computational burden at the client.

6.6. Result Count Comparison Dataset 1
Figure 6.7 presents the mean result counts of all EMM variants. In our evaluation, result count refers

to the number of encrypted entries returned by the server in response to a given query. This metric

provides insight into the volume of data exposed per query and reflects a key dimension of leakage in

encrypted search schemes. In constructions without volume-hiding mechanisms, the result count closely

approximates the actual number of matching records, potentially revealing query selectivity to the server. In

contrast, volume-hiding schemes intentionally obscure this count by introducing dummy values or padding,

resulting in uniform or capped output sizes. For the sake of measurement, our reported result count

includes all returned entries, whether real or dummy, to reflect the total communication and client-side

filtering cost incurred by the scheme.

Figure 6.7: Result Count Comparison of all EMM variants on dataset 1

The baseline EMM and the access-hiding variant AHEMM do not apply any padding to the results. As

a result, they leak the exact number of matching records for every query. This is reflected in Figure 6.7 by

their linear curves, where the result count increases proportionally with the number of documents matched.

Since the baseline EMM and AHEMM yield identical result counts, their curves completely overlap, which

is why the curve for the AHEMM is not visible in this figure.

In contrast, FPEMM provides full volume-hiding by padding each keyword’s posting list to the global

maximum list size, denoted by Lmax. Consequently, the result count for FPEMM grows linearly with query

coverage but at a much steeper rate, since each label contributes Lmax ciphertexts regardless of how

many actual matches it has. This results in high communication overhead, especially for queries that cover

sparse keywords.

VHAHEMM adopts a more moderate approach by padding each posting list to a fixed bound P , which
corresponds to the largest label bucket size in its underlying hash-based construction. This leads to a

curve that also grows linearly with query coverage but with a lower slope than FPEMM. The server learns

only the upper bound P per label, rather than exact result counts.

DPRFMM goes further by using cuckoo hashing and stash padding to conceal volume leakage. Each

queried label contributes a fixed number of ciphertexts derived from two buckets (each of size B) and
a stash of size S. This results in a consistent per-label contribution of 2B + S, making the DPRFMM

curve parallel to VHAHEMM’s but with a slightly higher slope due to the stash. Importantly, this scheme

provides computational volume-hiding, meaning the server cannot distinguish between queries based on

their selectivity.

6.7. Trapdoor Time Comparison Dataset 2 38

Finally, realDPRFMM offers a tunable trade-off. Instead of padding buckets to the full size B, it pads
them to a more practical bound Preal, which is based on expected occupancy rather than the worst case.

As a result, its curve lies between those of AHEMM and DPRFMM. It leaks approximate volume information

by revealing how many entries fall within the typical bound, but not the exact counts. This makes it suitable

for scenarios where some leakage is acceptable in exchange for lower bandwidth.

6.7. Trapdoor Time Comparison Dataset 2
To set the stage for the next set of experiments, we briefly highlight the primary distinction between Dataset

1 and Dataset 2. While Dataset 1 was constructed with multiple values per coordinate to simulate a denser,

more information-rich setting, Dataset 2 mirrors the structure of the original California dataset, containing

only a single value per coordinate.

This sparser format has direct implications for volume leakage. When each coordinate stores only one

value, the number of results per query is inherently small and less variable. As a result, volume-based

inference attacks pose a lower practical threat in this setting. Because of this reduced leakage risk, several

of the volume-hiding mechanisms implemented by the more advanced EMM variants may appear excessive

for this data scenario.

It is precisely for this reason that we evaluate our EMM constructions on Dataset 2. By testing in a

setting where volume leakage is naturally constrained, we can observe how each construction performs

when its defensive mechanisms are arguably overengineered. This allows us to assess whether the

additional complexity and performance overheads introduced by volume-hiding techniques are justified in

lower-risk contexts, and how each variant compares to the baseline EMM under these new conditions.

Figure 6.8: Trapdoor Time Comparison of all EMM variants on dataset 2

Figure 6.8 presents the average trapdoor generation time for each EMM variant on Dataset 2. Similar

to the results observed on Dataset 1 in figure 6.1, we find that most EMM variants show nearly identical

performance, with the one notable exception being realDPRFMM consistently outperforming all others in

terms of trapdoor generation time.

This repeated trend across both datasets suggests that the format and density of the underlying data

do not significantly influence trapdoor generation performance for most schemes. The process of creating

a trapdoor primarily depends on the number of labels derived from a query and the cryptographic primitives

used to encode them, rather than on the volume or structure of the underlying data associated with those

labels.

The superior performance of realDPRFMM can be attributed to its use of a more efficient key derivation

and hashing pipeline tailored to its lightweight padding strategy. Since it avoids the heavier operations

required by constructions like FPEMM or DPRFMM, and does not require per-label structure padding

during trapdoor generation (as that is handled during retrieval), realDPRFMM is able to generate trapdoors

faster.

In contrast, the remaining variants (including EMM, AHEMM, FPEMM, and VHAHEMM) share nearly

identical trapdoor generation costs. This is expected, as they all involve similar steps in label extraction

6.8. Search Time Comparison Dataset 2 39

and symmetric encryption to some extent. These operations scale with the number of labels per query,

which remains relatively constant regardless of the data format.

These findings indicate that trapdoor generation time is largely unaffected by the sparsity of Dataset 2.

The similarity in performance across EMM variants reinforces the observation that trapdoor generation is

dictated more by scheme design than by data characteristics. RealDPRFMM’s faster performance makes

it particularly attractive in applications requiring low-latency query issuance, especially when its leakage

profile is acceptable for the use case.

6.8. Search Time Comparison Dataset 2
Figure 6.9 illustrates the average search time per query for all EMM variants on Dataset 2. Before analyzing

the relative behavior of the schemes, it is important to note the scale of the y-axis: search times are

significantly lower overall compared to the corresponding results on Dataset 1. This is expected, as Dataset

2 contains only single-valued tuples per coordinate. With fewer results returned per query, the total amount

of data processed is reduced, leading to faster search operations across all variants. Readers interested

in comparing raw execution times across both datasets on a consistent scale may refer to Figure B.1 in

the Appendix, which reproduces this plot using the same y-axis range as that of the Dataset 1 version.

Rather than focusing on absolute time values, our analysis centers on the relative performance trends

between variants and how they compare to those observed in Dataset 1.

Figure 6.9: Search Time Comparison of all EMM variants on dataset 2

In contrast to Figure 6.2 on Dataset 1, where FPEMM clearly showed the highest search time cost due

to its aggressive global padding strategy, it is now DPRFMM that shows the highest search time on Dataset

2. This shift is driven by the data format with only a single value per coordinate. The relative burden of

DPRFMM’s padding and filtering operations becomes more pronounced. The scheme’s fixed-size bucket

and stash padding leads to large amounts of dummy data being returned and filtered, regardless of how

small the true result set is.

Meanwhile, FPEMM now performs comparably to the baseline EMM. Because every coordinate contains

only one entry, the per-label padding enforced by FPEMM is less excessive than in Dataset 1 in Figure

6.2. As a result, the number of dummy ciphertexts returned is closer to the number of actual matches,

reducing the overall padding overhead and bringing its performance closer to unpadded schemes.The

other EMM variants (AHEMM, realDPRFMM, and VHAHEMM) continue to show behavior consistent with

their performance on Dataset 1. AHEMM remains similar to VHAHEMM in search time, while maintains the

lowest search time among the volume-hiding schemes due to its efficient design. These results confirm

that padding-heavy constructions like DPRFMM have a significant performance cost even when volume

leakage is naturally low, whereas schemes like FPEMM adapt better to sparse settings.

6.9. Resolve Time Comparison Dataset 2
Figure 6.10 shows the average resolve time per query for all EMM variants on Dataset 2. As was the case

with Dataset 1 in Figure 6.4, DPRFMM continues to show the highest resolve time by a considerable margin.

This is expected due to its strong volume-hiding guarantees, which require returning and processing a

6.10. Result Count Comparison Dataset 2 40

large number of padded ciphertexts per queried label. Each of these ciphertexts must be decrypted or

checked at the client, regardless of whether it contains real data. However, a key difference compared to

the previous dataset is that all other EMM variants now demonstrate resolve times that closely match that

of the baseline EMM. RealDPRFMM slightly outperforms the baseline.

Figure 6.10: Resolve Time Comparison of all EMM variants on dataset 2

This convergence in performance is largely a result of the sparse data format in Dataset 2. Since each

coordinate contains only a single value, the number of ciphertexts per label is minimal. As a consequence

FPEMM has far less overhead than in Dataset 1, as its global padding bound Lmax becomes closer to the

true result count. VHAHEMM applies per-label padding to a small fixed bound P , which in this setting is
not much larger than the actual list size. AHEMM and EMM apply no padding, thus naturally retain their

low overhead. RealDPRFMM, with its practical padding bound Preal, avoids worst-case overhead while

still hiding volume patterns approximately. In this sparse context, the actual number of dummy ciphertexts

added is minimal, allowing it to slightly outperform even the baseline EMM due to possible batching or

lower decryption overhead per ciphertext.

These results illustrate that when data is inherently sparse and result lists are short, the overhead of

most volume-hiding mechanisms becomes negligible. In such cases, the primary driver of resolve time is

simply the number of ciphertexts that must be decrypted, which is something that varies little between

padded and unpadded schemes under these conditions.

6.10. Result Count Comparison Dataset 2
Figure 6.11 presents the average number of ciphertexts returned per query for each EMM variant on

Dataset 2. Compared to the result count plot for Dataset 1 in Figure 6.7, the biggest difference is observed

in the behavior of FPEMM. In Dataset 1, FPEMM returned the most ciphertexts due to its global padding

strategy, which padded every postings list to the global maximum list size Lmax. However, on Dataset 2, the

FPEMM curve now overlaps completely with those of the baseline EMM and AHEMM. This convergence

occurs because, in this dataset, each coordinate holds only a single value. As a result, the global maximum

list size Lmax is effectively identical to the typical list size, eliminating the need for excessive padding.

Thus, all three schemes return the same number of results, exposing the exact selectivity of each query.

6.11. Quantitative Feature Analysis 41

Figure 6.11: Result Count Comparison of all EMM variants on dataset 2

DPRFMM, on the other hand, continues to enforce strict volume-hiding and exhibits the highest, constant

result count across all query areas. This is a direct consequence of its use of fixed-size bucket and stash

padding per queried label. Even in sparse datasets like this one, DPRFMM still pads each result to the

worst-case bound 2B + S, ensuring uniform ciphertext counts per label and complete volume obfuscation.

VHAHEMM maintains a moderate padding strategy. It pads each postings list to a fixed per-label bound

P , which is typically smaller than Lmax but larger than the actual list size in sparse settings. As a result, its

result count is higher than EMM, AHEMM, and FPEMM, but lower than DPRFMM. Its curve increases

more steeply with query area since it returns P ciphertexts for every label covered. RealDPRFMM pads up

to a practical bound Preal, chosen based on typical occupancy rather than the worst case. Consequently,

its result count curve lies below that of VHAHEMM and significantly below DPRFMM.

6.11. Quantitative Feature Analysis
While visual plots of latency and result curves provide intuitive insight into the behavior of each EMM

scheme, relying solely on graphical interpretation can be misleading, especially when differences between

schemes are subtle or distributed across multiple metrics. To provide a more rigorous and reproducible

basis for comparison, we extracted five quantitative features from the performance curves of each scheme:

slope, intercept, coefficient of determination (R²), end-point value, and normalized area under the curve

(AUC). These features offer interpretable summaries of each curve’s behavior and allow for cross-scheme

evaluation.

Quantitative Feature Definitions:

1. Slope (ms/%): The slope represents the incremental cost in milliseconds per percent increase in

query coverage. It captures the efficiency of a scheme as query area grows. A lower slope indicates

that the scheme scales better with query size.

2. Intercept (ms): This value represents the fixed overhead of the scheme when query coverage is

near zero. It may reflect setup costs, token generation time, or encryption-related overheads. Lower

intercepts are preferable for applications involving many small queries.

3. R² (Coefficient of Determination): R² measures how well a linear model fits the performance curve.

Values near 1.0 confirm that the behavior is nearly linear, validating the appropriateness of linear

summaries. Deviations suggest non-linearities or inconsistencies in scaling.

4. End-Point (ms): This is the total time required for the largest query size evaluated (typically the

maximum coverage). It gives a sense of worst-case performance and practical latency bounds.

5. Normalized AUC (ms·%): The normalized area under the curve integrates performance across all

coverage levels and divides by the coverage range. It approximates the average latency per unit

coverage and is useful for comparing overall efficiency.

In this work, we deliberately focus on average features rather than features derived from the combined

total time curve. While summing trapdoor, search, and resolve times into a single curve can yield a practical

latency measure, it can also obscure the behavior of individual components. For instance, trapdoor time

6.11. Quantitative Feature Analysis 42

often dominates the total due to its scale, overshadowing the contributions and optimizations in the search

or resolve phases. By averaging features computed separately on each sub-operation, we can ensure that

each component is given equal analytical weight, regardless of magnitude. It also avoids biases introduced

by the disproportionately larger values in one metric overwhelming the others in a combined curve.

Table 6.1: Average Curve Features for Each EMM construction on Dataset 1

Construction Slope (ms/%) Intercept (ms) R2 End-Point (ms) Norm. AUC (ms·%)

EMM 0.1668 0.2982 0.9975 13.6186 7.1550

AHEMM 0.0127 0.0183 0.9953 1.0796 0.5386

VHAHEMM 0.0121 0.0259 0.9959 0.9861 0.5207

FPEMM 0.2801 0.8047 0.9974 23.7477 12.2607

DPRFMM 1.2083 3.1622 0.9969 99.7598 52.7668

RealDPRFMM 0.1146 0.2593 0.9969 9.5518 4.9642

Table 6.2: Average Curve Features for Each EMM construction on Dataset 2

Construction Slope (ms/%) Intercept (ms) R2 End-Point (ms) Norm. AUC (ms·%)

EMM 0.0099 0.0183 0.9889 1.0065 0.5168

AHEMM 0.0095 0.0178 0.9943 0.9652 0.4927

VHAHEMM 0.0095 0.0178 0.9940 0.9755 0.4952

FPEMM 0.0100 0.0180 0.9909 1.0413 0.5188

DPRFMM 0.0115 0.0216 0.9933 1.1554 0.5976

RealDPRFMM 0.0032 0.0047 0.9744 0.3870 0.1662

Looking at tables 6.1 and 6.2 allows us to make several observations based on the quantitative features.

First of all, for the slope on Dataset 1, the slopes vary widely: DPRFMM (1.2083 ms/%) scales worst,

followed by FPEMM at 0.2801 ms/%. realDPRFMM (0.1146 ms/%), EMM (0.1668 ms/%), AHEMM (0.0127

ms/%), and VHAHEMM (0.0121 ms/%) lie in between. This ordering aligns with our qualitative analysis

that padding-heavy schemes have a larger incremental costs. On Dataset 2, slopes converge around 0.01

ms/%, except for realDPRFMM, which drops to 0.0032 ms/%. The sparse data format neutralizes most

padding overhead, leaving only the minimal per-label cost. RealDPRFMM’s tiny slope reflects its highly

optimized padding bound relative to actual list sizes.

Dataset 1 intercepts range from ∼ 0.02ms for AHEMM/VHAHEMM to 3.16 ms for DPRFMM. This

indicates substantial setup or per-query initialization costs for DPRFMM, likely due to key derivation or

padding metadata preparation. Dataset 2 intercepts drop sharply (0.017–0.022 ms for most schemes),

confirming that fixed costs are dominated by data-independent operations (e.g., trapdoor token setup),

which remain constant across datasets. realDPRFMM’s intercept (0.0047 ms) is especially low, benefiting

low-latency small-query scenarios.

All variants achieve R² > 0.99 on Dataset 1, validating the linear model assumption. On Dataset 2, R²

remains high (> 0.99) for all but realDPRFMM (0.9744), suggesting minor non-linear effects in its padding

strategy when lists are extremely small.

The end-point on Dataset 1 spans from ∼ 0.99ms (VHAHEMM) to ∼ 99.76ms (DPRFMM). This feature
illustrates contrast between lightweight schemes, which complete even the most expansive queries in

under one millisecond, and DPRFMM, which has nearly 100× higher latency due to its extensive padding

and decryption workload. On Dataset 2, end-points compress to ∼ 0.4–1.15ms, further reinforcing that
all schemes become practical for latency-sensitive applications in sparse settings, with DPRFMM still at

the high end. The dramatic compression of worst-case latency in this sparse setting highlights that when

actual result lists are small, even heavy padding schemes become feasible for latency-sensitive tasks.

This suggests that, in practice, choosing a volume-hiding construction can be guided by the acceptable

upper bound on query latency and the expected query size distribution.

6.11. Quantitative Feature Analysis 43

On Dataset 1, normalized AUC values span from around 0.52 ms·% (VHAHEMM) to 52.77 ms·%

(DPRFMM). VHAHEMM’s low AUC indicates that it combines minimal fixed cost with little scaling, making

it highly efficient across varied query sizes. In contrast, DPRFMM’s large AUC highlights that its average

per-unit cost remains high owing to heavy padding. On Dataset 2, normalized AUC compresses into

a tighter band of approximately 0.17 ms·% (realDPRFMM) to 0.60 ms·% (DPRFMM). This area metric

shows that, even when worst-case latency diverges, the cumulative work done across small-to-large

queries remains bounded and low for most schemes. realDPRFMM’s exceptionally low normalized AUC

emphasizes its consistent, low-latency behavior, making it ideal for workloads with diverse query sizes.

To summarize:

• Data sparsity dramatically reduces both fixed and incremental costs for all schemes, making even

padding-heavy constructions feasible in low-leakage settings.

• DPRFMM, while providing the strongest volume-hiding guarantee, remains the most expensive in

both metrics, suggesting its use only when leakage risk is otherwise unacceptable.

• realDPRFMM offers the best performance, with moderate overhead on dense data and minimal

overhead on sparse data, thanks to its pragmatic padding bound.

• VHAHEMM offers near-baseline efficiency on both datasets while providing coarse-grained volume

protection.

• AHEMM and the baseline EMM are indistinguishable in sparse settings, revealing that access-pattern

hiding alone adds negligible cost.

7
Verification and Validation

In this chapter, we present a series of empirical tests showing the correctness of our schemes, alongside

a formal security proof that verifies their theoretical soundness. We also include a complexity analysis to

validate their practical efficiency.

7.1. Correctness Testing
To demonstrate the correctness and reliability of our implementations, a comprehensive suite of unit tests

was developed and executed using the pytest framework. These tests validate that the system performs

as expected under both typical and edge-case conditions, while also reflecting its formal security goals:

namely, hiding the access pattern while allowing volume leakage under an honest-but-curious threat model.

Our ”Round-Trip Tests” verify that the encrypted multi-map correctly retrieves the original data values

associated with a given label. This is done by building an index from a known plaintext map; computing

a trapdoor for each label and retrieving the corresponding encrypted values; decrypting the ciphertexts

back into plaintext; comparing the output against the original values. This confirms that the build_index,
trapdoor, search, and resolve functions form a coherent pipeline that reliably preserves the intended

mapping.

The next tests were to ensure internal consistency we showed that generating trapdoors from the

same key-label pair are identical across runs. Additionally, the results of multiple searches using the

same trapdoor are shown to return identical ciphertext sets as expected. This proves that the system

is deterministic with respect to key and label, as required for repeatable and cacheable trapdoor-based

access.

The scheme’s reliance on cryptographic keys was tested by comparing two independently initialized

EMM engines where identical plaintext data was encrypted using two different keys, which resulted in the

trapdoors and ciphertexts for the same label to differ completely. This behavior validates the cryptographic

binding of the trapdoor and ciphertexts to the secret key, as to be expected from a secure HMAC and

encryption scheme.

In case that the EMM construction leaked the volume pattern, tests were run to explicitly verify this

property. Labels with different numbers of associated values were indexed. For each query, the number of

ciphertexts retrieved matched the number of inserted values. This demonstrates that while the system

hides which label was queried, it leaks the number of matching values.

The following non-standard cases were tested to ensure implementation robustness: Labels with empty

value lists (no ciphertexts should be returned); empty string labels (which should still function correctly);

very long strings (to check serialization and encryption integrity); unicode and non-ASCII values (to confirm

proper character encoding).

Finally, security was further validated by testing behavior under key mismatch, where ciphertexts

encrypted under one key were presented to a different EMM engine. In this case, the resolve either failed

or produced incorrect data. This confirms that ciphertexts cannot be meaningfully decrypted without the

correct key, upholding confidentiality guarantees.

44

7.2. Formal Security Proof 45

7.2. Formal Security Proof
In this section we will provide a simulation-based security proof for AHEMM. We used the formal SSE

definitions of Curtmola et al. [40] and others [41] and account for volume-pattern leakage as discussed in

recent Structured Encryption (STE) literature [42, 43, 44].

7.2.1. Scheme Syntax and Real Worlds
We model AHEMM as a structured encryption scheme Σ = (Setup,Query,Eval, Result) for a multi-map
MM. Formally, Setup(1λ,MM) is a Probabilistic Polynomial-Time (PPT) algorithm [45, 46] that takes a

security parameter and the plaintext multi-map MM and outputs a secret keyK and an encrypted multi-map

EMM. Query(K, l) (client-side) takes the key K and a label/query l ∈ L and produces a query token τ (this
corresponds to the “Token” algorithm in standard STE). Eval(EMM, τ) (server-side) takes the encrypted
structure EMM and token τ and returns an encrypted response c (analogous to “Query” in STE). Finally,
Result(K, c) (client-side) takes K and the ciphertext c and outputs the result r = MM(l). Correctness
requires that, for any sequence of queries l1, ..., lq, the decrypted results satisfy ri≡MM(li).

We describe the real-world protocol from the (semi-honest) server’s perspective. Intuitively, the server

sees the encrypted multi-map and all query tokens and encrypted answers. Formally:

1. The adversary (server) chooses a multi-map MM and gives it to the challenger.

2. The challenger runs (K,EMM)←Setup(1λ,MM) and sends EMM to the adversary.

3. For each client query li (chosen adaptively by the adversary or environment), the challenger computes
τi←Query(K, li) and ci←Eval(EMM, τi), then sends (τi, ci) to the adversary

4. The adversary outputs a bit indicating whether it believes this is the real or ideal execution.

In the ideal-world simulation, a PPT simulator S has access only to specified leakage. Let LS and LQ

be the setup- and query-leakage functions (defined in subsection 7.2.2). IdealΣ,S
L (1λ) proceeds as follows:

• The adversary chooses MM and sends it to the challenger. The challenger computes the setup

leakage `0 = LS(MM) and gives `0 to S. Using only `0, the simulator outputs a simulated encrypted
structure EMM ′ and gives EMM ′ to the adversary.

• For each client query li (chosen by the adversary), the challenger computes the query leakage

`i = LQ(MM, (l1, ..., li)) and gives `i to S. The simulator then outputs a token τ ′i and a ciphertextc
′
i

and gives (τ ′i , c
′
i) to the adversary.

• Finally the adversary outputs a bit.

This matches the standard simulation-based SSE model in which the adversary (playing the role of the

honest-but-curious server) cannot distinguish whether it is interacting with the real protocol or with the

simulator S that only sees leakage.

7.2.2. Leakage Profile
Because AHEMM hides which records are accessed, the only nontrivial leakage is the volume pattern.

Concretely, we define:

• Setup leakage LS(MM): the adversary learns the database “dimensions” (e.g. number of la-

bels/values). At minimum we let LS reveal the total number of labels m, the total number of values

N = |MM |, and an upper bound on the maximum tuple size (so that EMM ′ can be appropriately

sized). This is analogous to the usual (N, t)−leakage in SSE.
• Query leakage LQ(MM, (l1,…, li)): for each query li, LQ reveals only the volume |MM(li)| of the
response. In particular, no information about which label is queried or which values are returned is

leaked. Thus LQi
= |MM(li)|, and the adversary only learns the sequence of lengths of responses.

In summary, the leakage profile L = (LS , LQ) for AHEMM reveals only the size parameters of the

database and the lengths of each query’s result (the volume pattern). In particular the query/equality/search

pattern and the access pattern (which values are accessed) remain hidden. This is consistent with AHEMM’s

goal of access-pattern hiding: the server sees how many items are returned, but not which ones or whether

a query repeats.

7.2. Formal Security Proof 46

7.2.3. Security Definition (Simulation-Based)
We say AHEMM is L−secure (in the adaptive setting) if no PPT adversary can distinguish the real and

ideal experiments except with negligible advantage. Formally, let RealAΣ(1
λ) and IdealA,S

L (1λ) be the two
experiments defined above. Then Σ is L−secure if there exists a PPT simulator S such that for every PPT
adversaryA, Prob[A outputs 1 inRealAΣ] - Prob[A outputs 1 in IdealA,S

L = negl(λ). Equivalently, the view of

A in the real world (which consists of the actual encrypted multi-map EMM and the real tokens/ciphertexts)

is computationally indistinguishable from the view simulated by S given only the leakage L.

7.2.4. Simulator Construction
We now describe a PPT simulator S that, on input the leakage L = (LS , LQ) (and the public parameters),
produces a view that is indistinguishable from the real protocol transcript. Let MM be the adversary’s

chosen database, S only sees LS(MM) and then LQ for each query. The simulator works as follows:

• Setup simulation: S receives `0 = LS(MM), which includes the total number of labels m and total

values N (and max tuple size). Based on this, S constructs a dummy encrypted multi-map EMM ′

of the same “shape” as a real EMM . For example, if the real scheme uses an encrypted dictionary

of size N , S can simulate this by generating N ciphertext slots filled with random bits. Concretely,

S generates random strings (of the same length as real ciphertexts) to populate EMM ′ so that

|EMM ′| matches LS . By the IND-CPA security of the encryption scheme [46, 47] (and PRF security

of any token generation), these random ciphertexts are indistinguishable from encryption of real data.

The simulator gives EMM ′ to the adversary.

• Query simulation: For each query i: S receives `i = |MM(li)| (the volume vi). First, S generates
a random token τ ′i (uniformly from the token space) to simulate Query(K, li).Because Query tokens
in the real scheme are pseudorandom and independent of li (access hiding), the adversary cannot
distinguish τ ′i from a real token. Next, to simulate the encrypted response, S produces vi “dummy”
ciphertexts. For each of the vi values, S outputs a random string of the appropriate ciphertext

length. These serve as the fake encrypted values that would decrypt to the actual result. The

server (adversary) learns that |MM(li)| = vi values were returned, but sees only random-looking
ciphertexts. In effect, S outputs (τ ′i , c

′
i) with c′i consisting of vi random ciphertexts. This completes

the simulation for query i.

Throughout, S maintains no additional state except `0 and the leaked volumes. By construction, the
distribution of (EMM ′, (τ ′i , c

′
i)i) produced by S depends only on the leaked sizes and not on the actual

data. Importantly, since the access pattern is hidden, there is no additional linkage between queries that S
must enforce beyond consistent lengths.

7.2.5. Indistinguishability Proof
Theorem (Security of AHEMM). Under the standard cryptographic assumptions that the encryption

scheme is IND-CPA secure and the query token function is a secure PRF, the AHEMM scheme is L-

secure (with leakage functions L = (LS , LQ) as defined above). Equivalently, for any PPT adversary

A; the real-world execution RealA,Σ(1λ); and the ideal execution Ideal
LA,S(1λ) are computationally

indistinguishable.

Proof. Consider an arbitrary PPT adversary A. We compare the view of A in the real execution of the

AHEMM protocol with its view in the simulated (ideal) execution produced by the simulator S described
above. We show that each component of A’s real-world view is indistinguishable from the corresponding

component of the simulated view:

1. Encrypted multi-map (Setup): In the real protocol, the server holds an encrypted multi-map EMM

that is an encryption of the true database under the secret key K. In the simulated view, S generates
a “dummy” encrypted multi-map EMM

′
of the same size, filling each entry with a random ciphertext.

By the IND-CPA security of the encryption scheme, the distribution of EMM
′
(random ciphertexts)

is computationally indistinguishable from the distribution of EMM (encryptions of the real data).

Therefore, A cannot distinguish whether it has received the real EMM or the simulated EMM
′
.

2. Query tokens: Each real query token τi = Query(K, `i) is generated by a keyed pseudorandom
function on the query label `i. In simulation, S simply chooses each token τ ′i uniformly at random
from the token space. Since the PRF-based token generator is secure, τi is indistinguishable from

7.2. Formal Security Proof 47

a uniform random string. Hence the tuple of real tokens (τ1, . . . , τt) is indistinguishable from the

simulated tokens (τ ′1, . . . , τ
′
t). In other words, A cannot tell whether the tokens came from the real

PRF or were chosen at random.

3. Encrypted responses: In the real execution, each query for label `i returns a ciphertext response
ci consisting of vi = |MM(`i)| ciphertexts, each encrypting an actual matching value. In the ideal
execution, S outputs for each query the same number vi of ciphertext slots, each filled with an inde-
pendent random string. By IND-CPA security, a batch of fresh random ciphertexts is indistinguishable

from encryptions of actual messages. Thus the combination of vi ciphertexts in the real response is
computationally indistinguishable from the combination of vi random ciphertexts in the simulated

response.

4. No additional leakage: By construction, the simulator leaks only the specified leakage: the database

size (number of labels m and total values N) and each query’s volume vi. The actual values of the
labels and the exact access pattern remain hidden. Since AHEMM hides the access pattern, A
cannot correlate which specific entries are returned across queries beyond what is revealed by the

volumes vi. Apart from the components above, the real and simulated views reveal exactly the same

information (that information being the leakage defined in Section 7.2.2).

Since each part of the real view is computationally indistinguishable from the corresponding part of the

simulated view, the overall views are indistinguishable. Formally, if there existed a PPT distinguisher D that

tells apart the real and ideal executions with non-negligible advantage, we could construct a reduction to

break either the IND-CPA security or the PRF security. For example, one could replace the real encrypted

multi-map or response ciphertexts one-by-one with random ciphertexts; if D notices any change, it would

break IND-CPA. Similarly, replacing real tokens with random strings would break the PRF security if

distinguishable. Each such replacement is indistinguishable by assumption, so no distinguisher can have

more than negligible advantage.

Therefore, by a hybrid argument and cryptographic reductions, no PPT adversary can distinguish the

real and ideal experiments except with negligible probability. This implies that Σ (the AHEMM scheme)

satisfies the L-security definition given above. In other words, all information learned by the server in the real

protocol is limited to the prescribed leakage profile (LS , LQ), and AHEMM is secure in the simulation-based

sense.

7.2.6. Security Proof of other EMM variants
Each EMM variant re-uses the same simulation-based proof skeleton we used for AHEMM, but differs only

in what the simulator must hide (the leakage functions) and how it fills in dummy data or random tokens to

match each scheme’s structure. For VHAHEMM, the simulator only learns the public parameters (total

database size and fixed pad length), and on every query returns exactly that fixed number of ciphertexts,

mixed with real data (as counted by the setup leakage) and dummies.

For dprfMM and realDPRFMM, the leakage function tells the simulator which past queries were for the

same key but never how many items each returned. The core difference is that, in Setup, the simulator

must build and randomly fill a cuckoo-hash table of the correct size (as prescribed by the setup leakage),

inserting real-value slots and dummy slots so that every key’s bucket is the same “shape”. On each

query, knowing only the equality class and the fixed pad length, it pulls exactly that many entries from

the simulated buckets. The rest of the proof follows the same IND-CPA/PRF hybrids: replacing real PRF

outputs with random tokens and real encryptions with dummy ciphertexts remains indistinguishable.

Finally, FPEMM sits between VHAHEMM and dprfMM in complexity. The simulator does know the

identity of each queried key (because equality is leaked), so it arranges a simple table or array of fixed-

length slots per key in Setup, populates with the correct number of “real” ciphertexts and dummies, and on

each query releases that entire slot. From the adversary’s view, the only difference from AHEMM’s proof

is that every reply is padded to the same length, so the simulator’s dummy-filling mechanism is identical,

but keyed to per-label arrays rather than to multi-range covers.

In all cases the proof structure remains unchanged, i.e. defining (LS , LQ), building a simulator that
produces random tokens and dummy encryptions, and reducing any distinguisher to breaking IND-CPA or

PRF security. Only the leakage functions and the dummy-filling strategy differ:

1. VHAHEMM must pad every response to a global constant, hiding both which and how many items

leaked.

7.3. Complexity Analysis 48

2. dprfMM/realDPRFMM must simulate a cuckoo hash table of the correct size and reveal buckets for

each equality class.

3. FPEMM pads per-key arrays of fixed length, leaking which key but not how many real entries.

7.3. Complexity Analysis
We analyze each scheme in terms of server storage (number of 16-byte ciphertext blocks stored) and

query cost (blocks fetched for a key with nk values). Let K = number of keys, N = total number of values,

and t = maximum values for any key (i.e. t = max knk). (All ciphertexts are 16-byte blocks.)

• AHEMM (no padding): No dummy padding is used, so the server stores exactly one ciphertext per

value. Storage = N blocks. A query for a key with nk values returns exactly those nk ciphertexts

(cost Θ(nk)). Thus AHEMM has storage Θ(N) and query cost Θ(nk). (It leaks the volume nk by

design.)

• FPEMM (fixed-length padding): This scheme pads each key’s value list to the global maximum

length t. Every key has t entries (including real + dummy values) of fixed size. Thus storage = K × t
blocks, and every query must fetch t blocks. In big-O terms, storage is Θ(K, t) and query cost is
Θ(t). This completely hides volume, at the cost of a potentially large padding overhead.

• VHAHEMM (volume-hiding AHEMM): Like FPEMM, it uses fixed-length padding to hide volumes.

We assume it also pads each key’s list to length t. So the server stores K · t blocks and each

query retrieves t blocks (identical complexity to FPEMM). In other words, storage Θ(K, t) and query
Θ(t) (independent of nk). Any additional “access-pattern hiding” overhead (e.g. ORAM) would only

increase cost, but the block counts remain as above.

• dprfMM (hash-based, volume-hiding): This scheme uses a two-bucket hashing approach with

fixed bucket size. Because the number of hash functions (2) and bucket size are constant, each value

is stored once (plus a constant number of dummy slots). Server storage is Θ(N) up to a constant
factor (asymptotically optimal). To answer a query for a key with nk values, the client fetches at

most nk real values plus the two fixed-size buckets (a constant extra). Thus query cost is Θ(nk) with

only constant overhead. Patel et al. [29] prove that dprfMM achieves optimal storage and query

Θ(volume).

• realDPRFMM (practical DPRF): This variant also uses two fixed buckets per key. Its storage and

query costs are essentially the same as dprfMM’s: Θ(N) storage and Θ(nk) query (with constant
extra from the two buckets). In effect, both dprfMM and realDPRFMM touch at most two small

buckets (of constant size) per query, so their overhead beyond the actual volume is constant.

Each conclusion above follows directly from how each scheme pads (or not) and the constant-bucket

hashing assumption. In particular, padding to length t yields O(Kt) storage and O(t) per-query cost,
whereas hashing into two fixed-size buckets yields O(N) storage and O(nk) cost.

Scheme Server Storage (ciphertext blocks) Query Cost (blocks fetched) Notes

AHEMM N (one block per actual value) nk (all real values) No padding (leaks volume)

FPEMM K × t t Pad to t values each

VHAHEMM K × t t Pad to t (hides volume)

dprfMM Θ(N) (≈ one block per value) Θ(nk) (plus constant) 2-bucket hashing

realDPRFMM Θ(N) Θ(nk) (plus constant) Similar to dprfMM

Table 7.1: Complexity analysis of encrypted multi-map schemes.

To derive the values in Table 7.1 we used the padding and hashing assumptions that were given.

Without padding (AHEMM), storage is just the number of values and queries return exactly the real values.

With fixed padding (FPEMM/VHAHEMM), each key is padded to length t, so storage =K×t and each query
fetches t blocks (as in naive pad-to-max [48, 49]). For the hash-based schemes (dprfMM/realDPRFMM),
fixing 2 locations per key means each query touches ≤2 constant-size buckets. Thus storage is linear in N
and query cost is linear in the number of real values nk (optimal as shown by Patel et al. [29]). These

formulas directly follow from counting how many 16-byte ciphertexts are stored and retrieved under each

scheme’s rules.

8
Discussion

In this chapter, we summarize our key findings, compare the results prior literature, evaluate their theoretical

and practical significance, and address the study’s limitations. We also reflect on how the research evolved

and what lessons were learned along the way.

8.1. Key Findings
Based on the extensive evaluation presented in Chapter 6, this section summarizes the key experimental

findings that emerged from benchmarking the performance and leakage profiles of the various EMM

constructions. These results were derived across multiple metric (trapdoor generation, search time, resolve

time, and bandwidth) on both dense (multi-valued) and sparse (single-valued) datasets. The following

points highlight the most significant insights.

The realDPRFMM construction achieved the best performance in trapdoor generation, significantly

outperforming other schemes by re-using the derivedHMAC key across queries. This optimization avoids

redundant key derivation and reduces latency. Other schemes (EMM, AHEMM, VHAHEMM, FPEMM,

and DPRFMM) showed nearly identical trapdoor timings due to the shared KDF + HMAC structure,

indicating that their cryptographic token generation costs are dominated by this common computation.

On the dense Dataset 1, the baseline EMM and FPEMM variants showed the highest search times.

FPEMM’s fixed global padding forces the server to scan a larger padded database without optimizations,

making it consistently slower than EMM. By contrast, AHEMM, VHAHEMM, DPRFMM, and realDPRFMM

all outperformed the baseline. realDPRFMM achieved the lowest search time overall, reflecting its design

focus on efficiency, while AHEMM and VHAHEMM ran at nearly identical speeds despite VHAHEMM’s

extra per-label padding. Interestingly, DPRFMM, even though it explores a larger cuckoo-hash search

space and applies padding to both buckets and query responses, still beat EMM and FPEMM thanks to its

use of delegatable PRFs. This gain comes with additional search pattern leakage, which is outside our

current analysis. On the sparse Dataset 2, all schemes benefited from single-valued data and showed

much lower absolute times (see Appendix B.1 for a unified scale). Here, DPRFMM became the slowest

variant because its fixed bucket and stash padding returns many dummy entries even when only one real

result exists. Meanwhile, FPEMM’s per-label padding matched the single-value format closely, making

its performance comparable to EMM. AHEMM and VHAHEMM remained similar to one another, and

realDPRFMM continued to lead among volume-hiding schemes, confirming that constructions with heavy

padding suffer most in sparse settings while adaptive designs adapt better.

On the dense Dataset 1, schemes with heavier padding (DPRFMM, FPEMM) suffered the most in

client-side resolve time. DPRFMM’s worst case resolve time approached 100 ms due to the requirement

to decrypt 2B + S ciphertexts per label. FPEMM also experienced significant decryption time as every

label was padded to the dataset-wide maximum list length Lmax. On the sparse Dataset 2, resolve times

for most schemes (including EMM, AHEMM, VHAHEMM, FPEMM, and realDPRFMM) were smaller, as

minimal or no padding was needed. DPRFMM remained the slowest due to its fixed padding.

EMM and AHEMM leaked the volume pattern, with result counts growing linearly with query coverage.

FPEMM enforced a fixed list size Lmax for every label, resulting in significant bandwidth overhead on dense

datasets but negligible impact on sparse datasets. VHAHEMM padded each label to a fixed per-label

49

8.2. Comparison with Prior Work 50

bound, striking a balance between leakage and efficiency. DPRFMM enforced strict uniform padding

2B + S per label, ensuring maximal volume-hiding at the cost of increased bandwidth and client latency.

realDPRFMM achieved near-uniform response sizes with minimal dummy entries by padding to realistic

bounds.

Slope, intercept, R², end-points, and normalised area-under-curve (AUC) analyses supported our

qualitative findings. Padding-heavy schemes (DPRFMM, FPEMM) showed high slopes and AUCs on

dense datasets, showing a steep performance decline. AHEMM and VHAHEMM maintained slope and

intercept values nearly identical to the baseline EMM, indicating minimal additional performance cost.

realDPRFMM achieved the lowest slope and intercept values among volume-hiding schemes, which

showed its efficiency across both datasets.

Table 8.1: Performance and leakage comparison of EMM constructions on dense and sparse datasets.

Notes:

• “≈ EMM” indicates performance very close to the baseline EMM.

• ”Dense” refers to Dataset 1; ”Sparse” refers to Dataset 2.

• Dense dataset timings are worst-case values from Chapter 6; sparse timings reflect minimal padding

scenarios.

Table 8.1 summarizes our key findings by evaluating each EMM construction compared to the baseline.

8.2. Comparison with Prior Work
Prior multi-attribute encrypted range search schemes have typically offered either fixed trade-offs between

performance and leakage or targeted protection for only one form of leakage, usually volume, along a

single dimension. For instance, the EMM proposed by Falzon et al. [1] supports multi-dimensional range

queries using canonical range-cover labels, but leaks volume patterns and it leaks more access pattern

compared to our constructions. Similarly, Patel et al.’s dprfMM [29] achieves strong volume hiding for

single-attribute multimap search by employing cuckoo hashing and distributed PRFs, but incurs high

resolve costs due to worst-case padding. Kamara and Moataz’s VLH and AVLH constructions [28] instead

rely on computational assumptions to achieve tunable volume hiding, but their schemes are also limited to

single-dimensional queries. Finally, Markatou et al. [26] showed how structural and volume leakage in

multi-dimensional settings can be exploited for data reconstruction, further highlighting the importance of

managing both access and volume leakage.

Our work extends and generalizes these prior contributions by introducing a tunable framework that

supports secure multi-dimensional range search with control over both volume and access leakage. We

implement five scheme variants each offering a distinct point on the leakage-performance spectrum. Our

DPRFMM construction mirrors the strong volume-hiding guarantees of Patel et al.’s dprfMM [29], achieving

8.3. Implications 51

constant-size responses through full padding. However, consistent with their findings, we observe that this

incurs significant latency: approaching 100 ms per label in our multi-dimensional context.

To address this, our realDPRFMM variant introduces a padding bound Preal, significantly reducing

the amount of dummy data and hence lowering average query latency by an order of magnitude. While

this entails a controlled amount of volume leakage, it mirrors the tunability goal by Kamara and Moataz

[28], now extended to support multiple attributes. Meanwhile, our access-hiding schemes (AHEMM and

VHAHEMM) use tuple-level encryption to suppress per-item access leakage without the severe overheads

of ORAM, achieving latency costs of approximately 0.01 ms per tuple, a negligible increase over the

non-access-hiding variants.

The novelty of our contribution lies in providing a suite of five EMM variants that all support encrypted

multi-dimensional range queries, yet each variant features a different combination of volume and access

leakage controls and performance characteristics. This approach enables practitioners to select the variant

that best aligns with their security and efficiency requirements. No prior work offers multiple co-existing

schemes achieving the same functionality with such a spectrum of security-performance trade-offs.

We compare our proposed schemes to prior work in Table 8.2, highlighting shared attributes as well as

distinctive features.

Scheme Dims Volume Access Latency (ms/label) Tunable

EMM (base) [1] Multi None None 0.1668ms No

dprfMM [29] 1D Full pad (strong) None ≈1.2ms No

VLH/AVLH [28] 1D Comp. (tunable) None ≈0.01 ms Partial (vol. only)

ORAM Base [11] Any ORAM pad (strong) ORAM acc. (strong) 10− 100ms No

FPEMM Multi Fixed pad None 0.2801ms Yes (access vs. perf.)

DPRFMM Multi Full pad (strong) None 1.2083ms No

realDPRFMM Multi Bounded pad None 0.1146ms Yes (vol. vs. lat.)

AHEMM Multi None Tuple-level enc. 0.0127ms Yes (access vs. perf.)

VHAHEMM Multi Fixed pad Tuple + pad 0.0121ms Yes (access vs. perf.)

Table 8.2: Comparison of encrypted multi-map schemes.

The values listed in the “Latency” column of Table 8.2 report the average processing time, in millisec-

onds per matched record (or “label”), for each scheme under our standard linear�cover query workload.

Concretely, for each scheme we plotted total query execution time against the number of returned labels,

and then computed the slope of that line, which directly gives the mean cost to fetch, decrypt and materialize

a single label. For the prior, 1-dimensional schemes and ORAM, we have used approximate values based

on their published performance characteristics.

8.3. Implications
The findings presented in this thesis have meaningful implications for both theoretical research and practical

deployment of EMM systems. From a theoretical perspective, the observed performance–privacy trade-offs

highlight the need for formal models that go beyond binary leakage assumptions and instead account for

intermediate and tunable leakage levels. Our padding approach, as demonstrated through realDPRFMM,

introduces a middle ground between worst-case uniform padding and exact leakage, which invites further

formal analysis. This suggests new opportunities to redefine existing leakage models by incorporating

realistic occupancy distributions and to explore novel complexity metrics that reflect the cumulative cost

across all stages of query execution, namely, trapdoor generation, server-side search, and client-side

decryption.

In practical terms, the experiments offer actionable guidance to system designers and implementers.

The clear distinction between dense and sparse datasets shows that one-size-fits-all solutions are subopti-

mal: in environments with sparse or low-selectivity data, lightweight schemes such as EMM and AHEMM

are sufficient and cost-effective. In contrast, dense multi-valued datasets often expose more exploitable

volume leakage, motivating the use of padding schemes. While realDPRFMM shows strong performance

and offers a practical compromise between leakage resistance and efficiency, it should be recognized that

8.4. Limitations 52

its relaxed volume-hiding guarantees result in slightly more observable leakage than stricter schemes like

DPRFMM. This trade-off, introduces certain risks in adversarial settings where even minor variations in

response sizes could be exploited.

Nevertheless, the low overhead of realDPRFMM makes it a compelling choice for systems prioritizing

performance alongside reasonable privacy guarantees. It also highlights the potential of adaptive padding

techniques, which dynamically adjust based on empirical data properties. This insight opens up the

potential for implementing dynamic padding mechanisms that optimize performance while preserving

privacy, guided by realistic bounds. Finally, the methodology used in this thesis, especially the separation

of performance into discrete operational phases, offers a reproducible framework for benchmarking future

constructions.

8.4. Limitations
While the results presented in this thesis offer valuable insights into the performance and leakage trade-offs

of various EMM constructions, several limitations must be acknowledged to contextualize the scope and

applicability of the findings.

First, the threat model adopted throughout this work assumes a passive, honest-but-curious adversary.

That is, the server is assumed to faithfully execute the protocol without deviation, while attempting to learn

as much as possible from the observable leakage. This model excludes more powerful adversaries that

may behave maliciously, e.g. by modifying data, crafting adaptive queries, or deviating from the protocol,

which would necessitate additional cryptographic mechanisms such as verifiable computation or integrity

and consistency checks. As such, the security guarantees discussed herein do not extend to adversarial

settings involving active or Byzantine behavior [50].

Second, this work operates under a static data model, where the encrypted index is generated once

and remains unchanged during querying. Many practical applications require dynamic operations such

as insertions, deletions, and updates, which introduce additional leakage channels (e.g. update patterns

or versioning metadata) and performance trade-offs. Extending these constructions to dynamic settings

remains an important direction for future work.

Third, the analysis in this thesis is restricted to two primary leakage dimensions: access and volume.

While these are widely studied in evaluating privacy in encrypted search, certain constructions, such as

DPRFMM and realDPRFMM, can also leak structural information. For instance, the positional behavior

of elements within cuckoo hash tables or stash usage patterns may serve as side channels, particularly

when adversaries observe repeated queries. Other forms of leakage, such as intersection patterns or

co-occurrence frequencies, are also not modeled in the current analysis.

Fourth, the evaluation is based on two synthetic datasets representing sparse and dense multi-map

structures. While these datasets offer meaningful contrasts and expose performance boundaries, real-

world data often consists of more complex and skewed distributions. For instance, keyword frequency

might follow a Zipfian distribution [51], or access patterns may exhibit temporal locality. These nuances

can influence both leakage characteristics and performance outcomes in ways not fully captured in the

current benchmarks.

Finally, the experimental setup assumes a single-client model. In practice, systems often support

multiple clients issuing queries concurrently, which raises new challenges. Cross-client correlation attacks

[52], contention-induced timing variations [53], and query pattern interference [54] are all factors that

could influence leakage and system performance. Exploring these multi-client dynamics requires further

investigation.

8.5. Reflection on the Research Process
My interest in encrypted search began last year during a seminar where I wrote an essay titled Machine

Learning Optimization of Homomorphic Encryption. In that essay, I explored the fundamentals of homomor-

phic encryption and began sketching a basic search scheme for identifying optimal parameter sets. This

initial exploration sparked my curiosity in the broader space of privacy-preserving computation, and it led

me to contact Professor Markatou to ask if she would consider supervising my Master’s thesis. Fortunately

for me she agreed, a decision for which I remain very grateful.

Professor Markatou proposed that I explore directions that build on her previous work, and I started

reading into the topic of leakage in encrypted databases. I quickly realized this was an area I had little

prior exposure to, as most of my coursework had not focused on this particular threat model. The first few

weeks of the project were therefore heavily focused on background reading, understanding leakage types,

survey papers, and how different constructions attempt to mitigate information exposure. This literature

review clarified core concepts and gave me concrete ideas on how I could structure my own work.

Initially, I used the same datasets employed by Falzon et al. [1] in their earlier experiments. However,

these turned out to be single-valued datasets, which limited the behavior I was able to observe during

evaluation. The results I was seeing didn’t align with my expectations, and I realized the dataset wasn’t

giving me the insights I needed. To address this, I created a synthetic dataset with multiple values per key,

better suited to testing volume-hiding constructions.

Of course, this decision came with its own challenges. Much of the benchmarking code written by

Falzon et al. [1] was designed for single-valued datasets, and it became incompatible with the new format

I introduced. At first, I tried to adapt the existing code-base incrementally, fixing issues one by one, but this

quickly became cumbersome. Eventually, I realized it would be more efficient to design and implement

my own benchmark class from scratch. This process taught me that while theoretical understanding is

essential, a practical mindset and flexibility are just as important in applied research.

After completing my thesis proposal, I needed to find a co-supervisor. I was fortunate that Professor

Liang and his PhD student Huanhuan agreed to take on this role. I began having weekly meetings with

Huanhuan, whose feedback was incredibly helpful in shaping my project. These regular check-ins helped

me stay focused, track my progress, and improve the clarity and precision of my work. In hindsight, I

believe that if I had started this collaboration earlier, the quality of my work would have improved even

further.

Overall, this project taught me a great deal, not just about encrypted search and leakage profiles, but

also about what it takes to carry out a research project from start to finish. I learned how to navigate

unfamiliar technical terrain, adapt tools to suit new requirements, and seek out guidance and collaboration.

These are lessons I will carry with me into future academic and professional work.

53

Part IV
Closure

54

9
Conclusion

9.1. Answers to Research Questions
This section addresses the research questions formulated in Section 1.3, in their original order.

How do the EMM leakage profiles influence the average trapdoor generation time, search time,

resolve time, and result count under identical dataset and query workloads?

Research Question 1

The influence of EMM leakage profiles on performance was evaluated by measuring four key metrics:

trapdoor generation time, search time, resolve time, and result count, across identical datasets and query

workloads. The results revealed that while all EMM variants share the same basic structure, their leakage

characteristics significantly affect performance in distinct ways.

Trapdoor generation time was largely uniform across most variants, with the exception of realDPRFMM.

This variant benefits from caching its derived HMAC key, thereby avoiding repeated KDF operations

and achieving faster trapdoor generation than its counterparts. Other schemes such as EMM, AHEMM,

VHAHEMM, FPEMM, and DPRFMM showed nearly identical and higher latencies in this phase.

Search time was strongly influenced by the amount of padding introduced to hide volume leakage.

FPEMM, which pads all labels to the global maximum length, resulted in the highest search time on dense

datasets. On sparse datasets, DPRFMM became the slowest due to the inefficiency of processing many

padded dummy entries. VHAHEMM offered a more moderate performance, padding each label to a fixed

bound. AHEMM and baseline EMM, which perform no volume hiding, achieved lower search times. The

realDPRFMM variant consistently returned the fastest search times by using a realistic padding bound that

reduces unnecessary dummy data while offering partial volume hiding.

Resolve time, the client-side decryption and filtering cost, also varied by leakage profile. The baseline

EMM performed best here, decrypting only the exact set of relevant ciphertexts. realDPRFMM came close,

thanks to its tight padding bounds. VHAHEMM introduced slight overhead due to fixed-size padding, while

AHEMM remained comparable to the baseline in sparse settings. In contrast, FPEMM and DPRFMM had

the highest resolve times, especially on dense data, due to the large volume of padded entries requiring

decryption.

Finally, the result count represents both the bandwidth overhead and degree of volume leakage. This

directly reflected the padding strategy. EMM and AHEMM returned exact match counts, leaking full

volume information but having minimal overhead. FPEMM always returned the global maximum number

of ciphertexts per label, offering complete volume hiding at the cost of significant bandwidth. VHAHEMM

and DPRFMM applied fixed or formulaic padding, balancing leakage and efficiency. realDPRFMM stood

out by padding to realistic occupancy levels, which reduced bandwidth while maintaining a meaningful

level of volume obfuscation.

Overall, the evaluation showed a clear trade-off between privacy and efficiency. Schemes like EMM

and AHEMM provide optimal performance but full volume leakage, while FPEMM and DPRFMM achieve

55

9.1. Answers to Research Questions 56

strong privacy guarantees at high computational cost. VHAHEMM and especially realDPRFMM offer

a flexible middle ground, enabling system designers to tune leakage according to application-specific

constraints.

What quantitative relationship exists between specific leakage metrics and each performance

metric?

Research Question 2

The relationship between leakage and performance was quantified by modeling how leakage mitigation

strategies impact the core performance metrics. Specifically, we observed near-linear scaling between the

extent of volume-hiding padding and the search, resolve, and bandwidth costs.

Search time showed a strong positive correlation with the amount of padding introduced to hide result

volumes. Fully padded schemes, such as DPRFMM and FPEMM, had the steepest search time increases

with respect to query coverage, showing the computational overhead of processing large padded lists.

Schemes like realDPRFMM and VHAHEMM had gentler slopes, with realDPRFMM notably reducing both

fixed overhead and per-unit cost by selecting realistic padding bounds.

Resolve time and bandwidth, which was measured by result count, also scaled linearly with the padding

size per label. Schemes with minimal leakage, such as EMM and AHEMM, returned only the true matches,

leading to optimal decryption efficiency. In contrast, FPEMM and DPRFMM returned significantly more

ciphertexts per query due to their aggressive padding strategies, directly inflating client-side decryption

cost. realDPRFMM achieving savings by limiting padding without reverting to full leakage.

By computing normalized AUC metrics, we captured the average per-percent-coverage cost across the

full query range. These showed that schemes enforcing complete volume hiding (DPRFMM, FPEMM) had

the highest total overhead, while constructions like realDPRFMM and VHAHEMM significantly reduced

cost without entirely compromising on leakage control. These findings establish a quantitative trade-off

where more aggressive leakage mitigation imposes proportionally higher computational and bandwidth

costs, while approaches like realDPRFMM or VHAHEMM can offer a flexible balance suited to practical

deployment.

How does varying the dataset configuration impact the performance metrics of each EMM

variant?

Research Question 3

Varying dataset configuration, specifically, the density of keyword-to-document mappings, affects EMM

variants performance primarily by altering the effectiveness and overhead of padding strategies. We

compare a “dense” dataset (many documents per keyword) with a “sparse” dataset (few documents per

keyword) to observe how each scheme’s padding and access-pattern hiding mechanisms respond to

changing true result sizes.

Since trapdoor creation relies on per-label cryptographic operations (KDF and HMAC), its cost remains

essentially invariant across dataset configurations for all variants except realDPRFMM. The caching

optimization in realDPRFMM yields consistently lower trapdoor latency, independent of density. All other

schemes show similar trapdoor times whether the dataset is dense or sparse.

In dense datasets, schemes with aggressive padding (FPEMM and DPRFMM) suffer pronounced

penalties in which processing large padded lists increase server-side latency. FPEMM’s global padding to

the maximum list length causes the greatest slowdown, while DPRFMM’s fixed 2B + S padding similarly

decreases its performance. By contrast, in sparse datasets, DPRFMM suffers most. Its padding overhead

(dummy entries) overwhelms the few real matches. realDPRFMM, AHEMM and VHAHEMM adapt better

with their padding bounds reducing unnecessary dummy processing in both dense and sparse settings,

returning relatively stable search times.

Client-side decryption cost scales with the number of ciphertexts returned, so FPEMM and DPRFMM

show the largest resolve times on dense data and maintain high overhead even on sparse data. VHAHEMM

9.2. Closing Remarks 57

and AHEMM decrypt the fewest results by hiding the access pattern, thus having fewer encrypted entries

in the first place. As a result they show the fastest resolve times on dense data, where other schemes will

have proportionally more encrypted data.

The total number of ciphertexts returned per query directly reflects the padding strategy’s interaction

with dataset density. In dense datasets, full-padding schemes transmit maximal volumes, drastically

increasing bandwidth. In sparse configurations, DPRFMM’s constant padding yields excessive dummy

traffic, whereas FPEMM’s padding to a global maximum similarly overshoots. realDPRFMM scales padding

in line with realistic occupancy, reducing dummy traffic in sparse datasets while still masking volume

sufficiently in dense datasets.

Which EMM variants achieve the most favorable security–performance trade-off across different

datasets and query selection scenarios?

Research Question 4

Across both evaluated datasets and a range of query coverage scenarios, the EMM schemes that offer

lightweight leakage protections achieve the most favorable balance between security and performance. In

particular, schemes that incorporate efficient access- and volume-hiding mechanisms without resorting to

full padding demonstrate superior throughput while still mitigating key leakage vectors.

On the dense dataset (Dataset 1), the AHEMM and VHAHEMM variants perform especially well,

achieving the lowest per-label latency among all evaluated schemes. With measured average costs of

just 0.0127 ms/label (AHEMM) and 0.0121 ms/label (VHAHEMM), both schemes outperform even the

unprotected baseline in high-volume query scenarios. These schemes also maintain low fixed overheads

and normalized area-under-curve (AUC) values (0.52 ms·%) across a wide range of query sizes, highlighting

their scalability. AHEMM offers tuple-level access pattern hiding, while VHAHEMM extends this with

bounded volume padding, offering improved leakage profiles at negligible performance cost. It is also worth

noting that schemes which hide the access pattern often result in fewer ciphertext entries, as encrypted

tuples are fetched and processed in bulk rather than individually. This not only strengthens security by

concealing access behavior, but also reduces the number of decryption operations required per query,

thereby improving overall efficiency.

In contrast, realDPRFMM proves most advantageous on the sparse dataset (Dataset 2) and for

workloads composed predominantly of small queries. With a latency slope of just 0.0032 ms/label and

minimal setup overhead, realDPRFMM delivers excellent responsiveness by tuning its padding to realistic

occupancy bounds. This makes it ideal for latency-sensitive applications that can tolerate moderate,

bounded leakage.

Schemes like baseline EMM and FPEMM provide less favorable trade-offs. While the baseline EMM is

simple and performs moderately (0.1668 ms/label), it offers no protection against volume leakage. FPEMM

achieves full volume-hiding through fixed-size padding, but this comes at a substantial latency cost (0.2801

ms/label), making it less suitable for high-throughput or real-time use cases.

Finally, DPRFMM achieves the strongest leakage protection through aggressive padding, but incurs

the highest performance penalty. With an average cost of 1.2083 ms/label and a normalized AUC of over

50 ms·%, it is only suitable in scenarios where leakage resilience outweighs performance constraints.

In conclusion, AHEMM and VHAHEMM offer the most favorable security–performance trade-off for

general-purpose deployments requiring strong leakage mitigation with high efficiency. For scenarios

emphasizing low-latency retrieval of small results, realDPRFMM provides a compelling alternative. Con-

versely, schemes with fixed, heavy padding (FPEMM, DPRFMM) should be reserved for contexts where

maximal leakage resistance is of great importance and latency is a secondary concern.

9.2. Closing Remarks
This thesis set out to investigate the problem of designing EMM schemes that offer a meaningful balance

between leakage resilience and query performance. While prior work has addressed one-dimensional

search or resorted to heavy-weight protections such as full ORAM, our focus was on constructing and

9.2. Closing Remarks 58

evaluating multi-dimensional EMM variants that enable efficient range queries while controlling the extent

of access and volume leakage.

To that end, we introduced five new EMM variants (AHEMM, VHAHEMM, FPEMM, DPRFMM, and

realDPRFMM) and evaluated them alongside a baseline EMM under varied dataset densities and query

coverage levels. Using both latency slope and AUC as performance indicators, we quantified the cost of

each leakage-hiding strategy. Our results show that AHEMM and VHAHEMM offer the best overall balance

for dense datasets and large queries, while realDPRFMM excels in sparse or small-query scenarios. On the

other hand, schemes with heavy padding such as DPRFMM and FPEMM incur significantly higher latencies

but provide stronger leakage protection, making them appropriate only in highly sensitive applications.

The practical impact of these findings lies in offering clear guidance to system designers that by selecting

or tuning an EMM variant based on workload characteristics and security requirements, it is possible to

achieve strong leakage mitigation without sacrificing performance. Theoretically, the thesis contributes a

more nuanced understanding of how leakage-resilience techniques affect system efficiency and reveals

the potential of intermediate approaches.

Key Takeaways:

1. AHEMM, VHAHEMM and realDPRFMM strike a practical middle ground between leakage resistance

and performance, making them suitable for a broad range of applications.

2. The choice of scheme should be informed by workload characteristics: large-range queries benefit

from lightweight tuple-based protection, while small-result queries are best served by bounded-volume

padding.

3. Full leakage hiding is costly and not always necessary; selecting just enough padding to meet a

specific threat model can drastically improve latency without compromising essential security goals.

10
Future Work

This chapter provides a brief overview of the primary short and long term recommendations for the future

continuation of this research.

10.1. Short Term Directions
There are a number of ways this work could be extended in the near future. One improvement is to consider

a different threat model. This thesis assumed that the server is honest-but-curious, i.e. the adversary

follows the rules but tries to learn from whatever it can observe. In future work, one could add basic

protections like integrity checks to detect if the server tries to return incorrect results.

Another short-term step is to move beyond a fixed, unchanging dataset. Most real-world systems need

to support updates (adding, deleting or changing entries). A good starting point could be experimenting

with limited forms of updates, like append-only data, to see how updates affect performance and leakage.

It would also be useful to look at more than just access and volume leakage. For example, certain

constructions (DPRFMM and realDPRFMM) might leak structural information, such as where elements

end up in a hash table or whether stash entries are used. Measuring things like stash size or how often

labels appear together in queries could uncover new leakage patterns.

Future experiments could also try to use more realistic datasets. The two datasets used in this thesis

(dense and sparse) are helpful, but real data, such as document collections or keyword logs, could behave

very differently. Testing on real workloads might show new performance issues or uncover different leakage

risks.

Another useful short-term direction is to look at how the system performs with multiple clients. So far,

this work assumes only one client. But in real deployments, many users might send queries at the same

time. Testing how this affects timing, contention, and leakage would help make the system more practical.

Lastly, it would be interesting to compare DPRFMM to a much simpler baseline: an EMM that just

returns the entire database on every query. While this naive approach leaks nothing and avoids padding

entirely, it is obviously very inefficient. Since DPRFMM uses more advanced search techniques like cuckoo

hashing, it should be faster than returning everything. Measuring how big the performance difference is

would help justify DPRFMM’s design.

10.2. Long Term Directions
In the longer term, there are several bigger goals that could move this research forward. One direction is

to build systems that adjust padding automatically. Instead of using a fixed value for Preal, future systems

could learn from the data or the query workload and change the padding size on the fly. This would allow

the system to stay efficient while still protecting privacy.

It would also be worth looking at other kinds of leakage that weren’t covered in this thesis. For example,

things like timing differences [55], memory access patterns [56], or network message sizes [57] might

leak information. Protecting against these side channels might require writing parts of the system in

constant-time code or changing how data is laid out in memory.

59

10.3. Final Thoughts 60

Making the system scalable is another long-term goal. So far, everything was tested on a single-

threaded setup. In real systems, one might want to run the server on multiple cores or even across several

machines. Figuring out how to do this while still protecting privacy, especially when servers need to

coordinate their actions, would be a big step forward.

Lastly, key management [58, 59] is an important step in real-world deployments. This includes rotating

keys, revoking old keys, and distributing new ones securely. Future work could explore how to support key

changes without having to rebuild or re-pad the whole index from scratch.

10.3. Final Thoughts
When I first began exploring encrypted search, I was drawn by the tension between usability and secrecy.

Working through the experiments in this thesis has given me a deeper appreciation for how even small

design choices ripple out into performance and privacy in unexpected ways. Ultimately, I hope this work

helps move us closer to systems where every user, even those with limited technical background, can

query their data in the cloud without sacrificing confidentiality. To the reader, thank you for taking the

time to read this work. Your interest means a great deal, and I hope these ideas spark new projects,

conversations, and innovations in the years ahead.

Bibliography

[1] Francesca Falzon et al. “Range search over encrypted multi-attribute data”. In: Proc. VLDB Endow.

16, 4, 587–600 (2022).

[2] European Commission – FISMA Newsroom. European Commission updates on

emphFISMA developments. https://ec.europa.eu/newsroom/fisma/items/632027/en. July
2018.

[3] George Lawton. The pros and cons of big data outsourcing. https://www.techtarget.com/
searchdatamanagement/feature/The-pros-and-cons-of-big-data-outsourcing. Aug. 2021.

[4] Narendra Sahoo. Role of Encryption in GDPR Compliance. https://www.tripwire.com/state-
of-security/role-of-encryption-in-gdpr-compliance. Mar. 2021.

[5] Andrada Coos. GDPR Data Encryption Requirements. https://www.endpointprotector.com/
blog/gdpr-data-encryption-requirements/. Apr. 2021.

[6] HiComply. The world’s largest data breaches and the financial cost to businesses revealed. https:
//www.hicomply.com/blog/the-worlds-largest-data-breaches-and-the-financial-cost-to-
businesses-revealed.

[7] New York Post.Major data hack nabs 184 M passwords for Google, Apple and more: ‘Cybercriminal’s

dream’. https://nypost.com/2025/05/28/tech/major-data-hack-nabs-184m-passwords-for-
google-apple-more/. May 2025.

[8] Kiuwan. Data Breaches Are More Expensive Than They Seem. https://www.kiuwan.com/blog/
most-expensive-security-breaches. Jan. 2022.

[9] IBM. Surging data breach disruption drives costs to record highs – Cost of a Data Breach Report 2024.

https://www.ibm.com/think/insights/whats-new-2024-cost-of-a-data-breach-report. July
2024.

[10] Francesca Falzon et al.Encrypted Range Search Repository. https://github.com/cloudsecuritygroup/
ers. Accessed: November 2024. 2022.

[11] Oded Goldreich et al. “Software Protection and Simulation on Oblivious RAMs”. In: Journal of the

ACM (JACM) 43.3 (1996), pp. 431–473. doi: 10.1145/233551.233552. url: https://doi.org/10.
1145/233551.233552.

[12] Craig Gentry. “A fully homomorphic encryption scheme”. AAI3382729. PhD thesis. Stanford, CA,

USA, 2009.

[13] Zvika Brakerski et al. “Efficient Fully Homomorphic Encryption from (Standard) LWE”. In: 2011 IEEE

52nd Annual Symposium on Foundations of Computer Science. 2011, pp. 97–106. doi: 10.1109/
FOCS.2011.12.

[14] Emil Stefanov et al. “Path ORAM: An Extremely Simple Oblivious RAM Protocol”. In: J. ACM 65.4

(Apr. 2018). doi: 10.1145/3177872. url: https://doi.org/10.1145/3177872.

[15] S Goldwasser et al. “The knowledge complexity of interactive proof-systems”. In: Proceedings of

the Seventeenth Annual ACM Symposium on Theory of Computing. STOC ’85. Providence, Rhode

Island, USA: Association for Computing Machinery, 1985, pp. 291–304. doi: 10.1145/22145.22178.
url: https://doi.org/10.1145/22145.22178.

[16] Reza Curtmola et al. “Searchable symmetric encryption: improved definitions and efficient construc-

tions”. In: Proceedings of the 13th ACM Conference on Computer and Communications Security.

CCS ’06. Alexandria, Virginia, USA: Association for Computing Machinery, 2006, pp. 79–88. doi:

10.1145/1180405.1180417. url: https://doi.org/10.1145/1180405.1180417.

61

https://ec.europa.eu/newsroom/fisma/items/632027/en
https://www.techtarget.com/searchdatamanagement/feature/The-pros-and-cons-of-big-data-outsourcing
https://www.techtarget.com/searchdatamanagement/feature/The-pros-and-cons-of-big-data-outsourcing
https://www.tripwire.com/state-of-security/role-of-encryption-in-gdpr-compliance
https://www.tripwire.com/state-of-security/role-of-encryption-in-gdpr-compliance
https://www.endpointprotector.com/blog/gdpr-data-encryption-requirements/
https://www.endpointprotector.com/blog/gdpr-data-encryption-requirements/
https://www.hicomply.com/blog/the-worlds-largest-data-breaches-and-the-financial-cost-to-businesses-revealed
https://www.hicomply.com/blog/the-worlds-largest-data-breaches-and-the-financial-cost-to-businesses-revealed
https://www.hicomply.com/blog/the-worlds-largest-data-breaches-and-the-financial-cost-to-businesses-revealed
https://nypost.com/2025/05/28/tech/major-data-hack-nabs-184m-passwords-for-google-apple-more/
https://nypost.com/2025/05/28/tech/major-data-hack-nabs-184m-passwords-for-google-apple-more/
https://www.kiuwan.com/blog/most-expensive-security-breaches
https://www.kiuwan.com/blog/most-expensive-security-breaches
https://www.ibm.com/think/insights/whats-new-2024-cost-of-a-data-breach-report
https://github.com/cloudsecuritygroup/ers
https://github.com/cloudsecuritygroup/ers
https://doi.org/10.1145/233551.233552
https://doi.org/10.1145/233551.233552
https://doi.org/10.1145/233551.233552
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1145/3177872
https://doi.org/10.1145/3177872
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1145/1180405.1180417

Bibliography 62

[17] Mihir Bellare et al. “Deterministic and efficiently searchable encryption”. In: Proceedings of the 27th

Annual International Cryptology Conference on Advances in Cryptology. CRYPTO’07. Santa Barbara,

CA, USA: Springer-Verlag, 2007, pp. 535–552.

[18] Alexandra Boldyreva et al. “Order-Preserving Symmetric Encryption”. In: vol. 5479. Apr. 2009,

pp. 224–241. doi: 10.1007/978-3-642-01001-9_13.

[19] David Cash et al. “Highly-scalable searchable symmetric encryption with support for boolean queries”.

In: Advances in Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara,

CA, USA, August 18-22, 2013. Proceedings, Part I. Springer. 2013, pp. 353–373.

[20] Dawn Xiaoding Song et al. “Practical techniques for searches on encrypted data”. In: Proceeding

2000 IEEE Symposium on Security and Privacy. SP 2000. 2000, pp. 44–55. doi: 10.1109/SECPRI.
2000.848445.

[21] Feng Li et al. “A Survey on Searchable Symmetric Encryption”. In: ACM Comput. Surv. 56.5 (Nov.

2023). doi: 10.1145/3617991. url: https://doi.org/10.1145/3617991.

[22] Seny Kamara et al. “Dynamic Searchable Symmetric Encryption”. In: (Oct. 2012). doi: 10.1145/
2382196.2382298.

[23] Debrup Chakraborty et al. Making Searchable Symmetric Encryption Schemes Smaller and Faster.

Cryptology ePrint Archive, Paper 2024/1483. 2024. doi: doi.org/10.1007/s10207-024-00915-y.
url: https://eprint.iacr.org/2024/1483.

[24] Stefania Nita et al. “Searchable Encryption”. In: Sept. 2023, pp. 89–134. doi: 10.1007/978-3-031-
43214-9_4.

[25] Laura Blackstone et al. “Revisiting Leakage Abuse Attacks”. In: NDSS (Jan. 2020). doi: 10.14722/
ndss.2020.23103.

[26] Evangelia Anna Markatou et al. “Attacks on encrypted response-hiding range search schemes in

multiple dimensions”. In: Proceedings on Privacy Enhancing Technologies (2023).

[27] Georgios Kellaris et al. “Generic attacks on secure outsourced databases”. In: Proceedings of the

2016 ACM SIGSAC Conference on Computer and Communications Security. 2016, pp. 1329–1340.

[28] Seny Kamara et al. “Computationally Volume-Hiding Structured Encryption”. In: Proceedings of the

43rd IEEE Symposium on Security and Privacy (SP). IEEE, 2022, pp. 1326–1343. doi: 10.1109/
SP46215.2022.00076. url: https://doi.org/10.1109/SP46215.2022.00076.

[29] Anson Patel et al. “Mitigating Leakage in Secure Cloud-Hosted Data Structures: Volume-Hiding for

Multi-Maps via Hashing”. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security (CCS). ACM, 2019, pp. 215–232. doi: 10.1145/3319535.3329901. url:
https://doi.org/10.1145/3319535.3329901.

[30] Alexandra Boldyreva et al. Encrypted Multi-map that Hides Query, Access, and Volume Patterns.

Cryptology ePrint Archive, Paper 2024/2091. 2024. url: https://eprint.iacr.org/2024/2091.

[31] John W. Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. 4th.

Thousand Oaks, CA: SAGE Publications, 2014.

[32] Fred N. Kerlinger et al. Foundations of Behavioral Research. 4th. Fort Worth, TX: Harcourt College

Publishers, 2000.

[33] A. P. Bradley. “The Use of the Area Under the ROC Curve in the Evaluation of Machine Learning

Algorithms”. In: Pattern Recognition 30.7 (1997), pp. 1145–1159. doi: 10.1016/S0031-3203(96)
00142-2.

[34] J. A. Hanley et al. “TheMeaning and Use of the Area under a Receiver Operating Characteristic (ROC)

Curve”. In: Radiology 143.1 (Apr. 1982), pp. 29–36. doi: 10.1148/radiology.143.1.7063747.

[35] Janez Demšar. “Statistical Comparisons of Classifiers over Multiple Data Sets”. In: J. Mach. Learn.

Res. 7 (Dec. 2006), pp. 1–30.

https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1145/3617991
https://doi.org/10.1145/3617991
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1145/2382196.2382298
https://doi.org/doi.org/10.1007/s10207-024-00915-y
https://eprint.iacr.org/2024/1483
https://doi.org/10.1007/978-3-031-43214-9_4
https://doi.org/10.1007/978-3-031-43214-9_4
https://doi.org/10.14722/ndss.2020.23103
https://doi.org/10.14722/ndss.2020.23103
https://doi.org/10.1109/SP46215.2022.00076
https://doi.org/10.1109/SP46215.2022.00076
https://doi.org/10.1109/SP46215.2022.00076
https://doi.org/10.1145/3319535.3329901
https://doi.org/10.1145/3319535.3329901
https://eprint.iacr.org/2024/2091
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1148/radiology.143.1.7063747

Bibliography 63

[36] Evangelia Anna Markatou et al. “Reconstructing with Less: Leakage Abuse Attacks in Two Dimen-

sions”. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications

Security. CCS ’21. Virtual Event, Republic of Korea: Association for Computing Machinery, 2021,

pp. 2243–2261. doi: 10 . 1145 / 3460120 . 3484552. url: https : / / doi . org / 10 . 1145 / 3460120 .
3484552.

[37] Viraj Biharie. Tunable-EMM-schemes: Implementations and benchmarks of tunable-leakage en-

crypted multi-map schemes. https://github.com/vaabiharie/Tunable-EMM-schemes. 2025.

[38] Chang Liu et al. “Search pattern leakage in searchable encryption: Attacks and new construction”. In:

Inf. Sci. 265 (May 2014), pp. 176–188. doi: 10.1016/j.ins.2013.11.021. url: https://doi.org/
10.1016/j.ins.2013.11.021.

[39] Mohammad Saiful Islam et al. “Access Pattern Disclosure on Searchable Encryption: Ramification,

Attack and Mitigation”. In: Proceedings of the Network and Distributed System Security Symposium

(NDSS). Briefing paper, 6 Feb 2012. San Diego, CA: The Internet Society, Feb. 2012. url: https:
//www.ndss-symposium.org/ndss2012/ndss-2012-programme/access-pattern-disclosure-
searchable-encryption-ramification-attack-and-mitigation.

[40] Reza Curtmola et al. “Searchable symmetric encryption: improved definitions and efficient construc-

tions”. In: Proceedings of the 13th ACM conference on Computer and communications security.

2006, pp. 79–88.

[41] Megumi Ando et al. “On the Cost of Suppressing Volume for Encrypted Multi-maps”. In: Proceedings

on Privacy Enhancing Technologies 2022 (Oct. 2022), pp. 44–65. doi: 10.56553/popets-2022-0098.

[42] Archita Agarwal et al. “Concurrent Encrypted Multimaps”. In: Advances in Cryptology – ASIACRYPT

2024: 30th International Conference on the Theory and Application of Cryptology and Information

Security, Kolkata, India, December 9–13, 2024, Proceedings. Part IV. Kolkata, India: Springer-Verlag,

2024, pp. 169–201. doi: 10.1007/978-981-96-0894-2_6. url: https://doi.org/10.1007/978-981-
96-0894-2_6.

[43] Seny Kamara et al. “Structured Encryption and Leakage Suppression”. In: Advances in Cryptology –

CRYPTO 2018. Vol. 10991. Lecture Notes in Computer Science. Springer, 2018, pp. 339–370. doi:

10.1007/978-3-319-96884-1_12.

[44] Seny Kamara et al. “Structured Encryption and Dynamic Leakage Suppression”. In: Advances in

Cryptology – EUROCRYPT 2021. Vol. 12696. Lecture Notes in Computer Science. Springer, 2021,

pp. 346–375. doi: 10.1007/978-3-030-77883-5_13.

[45] John Gill. “Computational Complexity of Probabilistic Turing Machines”. In: SIAM J. Comput. 6.4

(Dec. 1977), pp. 675–695. doi: 10.1137/0206049. url: https://doi.org/10.1137/0206049.

[46] Shafi Goldwasser et al. “Probabilistic Encryption”. In: Journal of Computer and System Sciences

28.2 (Apr. 1984), pp. 270–299. doi: 10.1016/0022-0000(84)90070-9.

[47] Jonathan Katz et al. Introduction to Modern Cryptography. 2nd. Boca Raton, FL: Chapman &

Hall/CRC, 2014.

[48] Viet Vo et al. “ShieldDB: An Encrypted Document Database With Padding Countermeasures”. In:

IEEE Transactions on Knowledge and Data Engineering 35.4 (2023), pp. 4236–4252. doi: 10.1109/
TKDE.2021.3126607.

[49] Ghous Amjad et al. Dynamic Volume-Hiding Encrypted Multi-Maps with Applications to Searchable

Encryption. Cryptology ePrint Archive, Paper 2021/765. 2021. doi: 10.56553/popets-2023-0025.
url: https://eprint.iacr.org/2021/765.

[50] Leslie Lamport et al. “The Byzantine Generals Problem”. In: ACM Trans. Program. Lang. Syst. 4.3

(July 1982), pp. 382–401. doi: 10.1145/357172.357176. url: https://doi.org/10.1145/357172.
357176.

[51] George Kingsley Zipf. Human Behavior and the Principle of Least Effort: An Introduction to Human

Ecology. Cambridge, MA: Addison-Wesley Press, 1949.

https://doi.org/10.1145/3460120.3484552
https://doi.org/10.1145/3460120.3484552
https://doi.org/10.1145/3460120.3484552
https://github.com/vaabiharie/Tunable-EMM-schemes
https://doi.org/10.1016/j.ins.2013.11.021
https://doi.org/10.1016/j.ins.2013.11.021
https://doi.org/10.1016/j.ins.2013.11.021
https://www.ndss-symposium.org/ndss2012/ndss-2012-programme/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://www.ndss-symposium.org/ndss2012/ndss-2012-programme/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://www.ndss-symposium.org/ndss2012/ndss-2012-programme/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://doi.org/10.56553/popets-2022-0098
https://doi.org/10.1007/978-981-96-0894-2_6
https://doi.org/10.1007/978-981-96-0894-2_6
https://doi.org/10.1007/978-981-96-0894-2_6
https://doi.org/10.1007/978-3-319-96884-1_12
https://doi.org/10.1007/978-3-030-77883-5_13
https://doi.org/10.1137/0206049
https://doi.org/10.1137/0206049
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1109/TKDE.2021.3126607
https://doi.org/10.1109/TKDE.2021.3126607
https://doi.org/10.56553/popets-2023-0025
https://eprint.iacr.org/2021/765
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176

Bibliography 64

[52] Simon Oya et al. Hiding the Access Pattern is Not Enough: Exploiting Search Pattern Leakage

in Searchable Encryption. 2020. arXiv: 2010.03465 [cs.CR]. url: https://arxiv.org/abs/2010.
03465.

[53] Tuo Li et al. Fast Selective Flushing to Mitigate Contention-based Cache Timing Attacks. 2022. arXiv:

2204.05508 [cs.CR]. url: https://arxiv.org/abs/2204.05508.

[54] Zhiwei Shang et al. Obfuscated Access and Search Patterns in Searchable Encryption. 2021. arXiv:

2102.09651 [cs.CR]. url: https://arxiv.org/abs/2102.09651.

[55] Jean-Luc Danger et al. “High-order timing attacks”. In: Proceedings of the First Workshop on Cryp-

tography and Security in Computing Systems. CS2 ’14. Vienna, Austria: Association for Computing

Machinery, 2014, pp. 7–12. doi: 10.1145/2556315.2556316. url: https://doi.org/10.1145/
2556315.2556316.

[56] Dag Arne Osvik et al. “Cache-Collision Timing Attacks Against AES”. In: Proceedings of the Crypto-

graphic Hardware and Embedded Systems (CHES) Workshop. Vol. 4249. Lecture Notes in Computer

Science. Yokohama, Japan: Springer, 2006, pp. 201–215. doi: 10.1007/11894063_16.

[57] Saman Feghhi et al. “An Efficient Web Traffic Defence Against Timing-Analysis Attacks”. In: 14.2

(Feb. 2019), pp. 525–540. doi: 10.1109/TIFS.2018.2855655. url: https://doi.org/10.1109/
TIFS.2018.2855655.

[58] Ievgeniia Kuzminykh et al. “Comparative Analysis of Cryptographic Key Management Systems”. In:

Internet of Things, Smart Spaces, and Next Generation Networks and Systems. Springer International

Publishing, 2020, pp. 80–94. doi: 10.1007/978-3-030-65729-1_8. url: http://dx.doi.org/10.
1007/978-3-030-65729-1_8.

[59] Sofia Anna Menesidou et al. “Cryptographic Key Management in Delay Tolerant Networks: A

Survey”. In: Future Internet 9.3 (2017). doi: 10.3390/fi9030026. url: https://www.mdpi.com/1999-
5903/9/3/26.

https://arxiv.org/abs/2010.03465
https://arxiv.org/abs/2010.03465
https://arxiv.org/abs/2010.03465
https://arxiv.org/abs/2204.05508
https://arxiv.org/abs/2204.05508
https://arxiv.org/abs/2102.09651
https://arxiv.org/abs/2102.09651
https://doi.org/10.1145/2556315.2556316
https://doi.org/10.1145/2556315.2556316
https://doi.org/10.1145/2556315.2556316
https://doi.org/10.1007/11894063_16
https://doi.org/10.1109/TIFS.2018.2855655
https://doi.org/10.1109/TIFS.2018.2855655
https://doi.org/10.1109/TIFS.2018.2855655
https://doi.org/10.1007/978-3-030-65729-1_8
http://dx.doi.org/10.1007/978-3-030-65729-1_8
http://dx.doi.org/10.1007/978-3-030-65729-1_8
https://doi.org/10.3390/fi9030026
https://www.mdpi.com/1999-5903/9/3/26
https://www.mdpi.com/1999-5903/9/3/26

A
Algorithms

Algorithm Synthetic Data Generation

1: procedure SynthesizeData(n,K, V,m)

2: . n: number of entries; K = (kmin, kmax); V = (vmin, vmax); m= max tuple size

3: Clear existing data

4: all_keys← CartesianProduct(K)
5: if n > length(all_keys) then
6: raise Error(”Too many entries”)

7: end if

8: chosen_keys← random sample of n keys from all_keys

9: buckets← []
10: for e from blog 10(vmin)c to blog 10(vmax)c do
11: `← max

(
vmin, 10

e)

12: h← min(vmax, 10
e+1 − 1)

13: if h > ` then
14: Append (`, h) to buckets
15: end if

16: end for

17: for each k in chosen_keys do
18: `← random integer in [1,m]
19: v ← []
20: for i = 1 to ` do
21: (low, high)← random choice from buckets

22: Append random integer from [low, high] to v
23: end for

24: data[k]← tuple(v)
25: end for

26: end procedure

65

66

Algorithm Original EMM Build Encrypted Index

1: procedure BuildIndex(key, plaintext_mm)

2: hmac_key ← HashKDF(key,PURPOSE_HMAC)
3: enc_key ← HashKDF(key,PURPOSE_ENCRYPT)
4: encrypted_db← ∅
5: for each (label, values) ∈ plaintext_mm do

6: token← HMAC(hmac_key, label)
7: for index, value ∈ values do
8: ct_label← Hash(token+ bytes(index))
9: ct_value← SymmetricEncrypt(enc_key, value)
10: encrypted_db[ct_label]← ct_value
11: end for

12: end for

13: return encrypted_db
14: end procedure

B
Additional Figures

(a) Trapdoor Time Comparison (no scaling necessary) (b) Search Time Comparison (scaled)

(c) Resolve Time Comparison (scaled) (d) Result Count (scaled)

Figure B.1: Scaled comparison of evaluation metrics across all EMM variants on Dataset 2 (scaled using

the same range as Dataset 1)

67

	Abstract
	Preface
	List of Figures
	List of Tables
	Acronyms
	I Foundations
	Introduction
	Context & Motivation
	Problem Statement
	Research Questions & Objectives
	Scope & Contributions Overview
	Thesis Outline

	Background
	Encrypted Search Algorithms
	Searchable Symmetric Encryption
	Leakage Patterns
	Threat and Adversary Model
	Encrypted Multi-Dimensional Maps

	Related Work
	Related Work
	Critical Analysis and Identified Gaps in Existing Work

	II Methodological Framework
	Design of EMM Variants
	Research Paradigm
	Comparison of EMM Schemes
	Synthetic Data Generation
	Baseline EMM Construction
	FPEMM
	AHEMM
	VHAHEMM
	DPRFMM
	realDPRFMM

	Experimental Setup
	Benchmark Suite
	Metrics & Measurements
	Dataset Description
	Experimental Environment
	Reproducibility

	III Results & Analysis
	Experimental Results
	Query Generation Protocol
	Randomness and Reproducibility
	Trapdoor Time Comparison Dataset 1
	Search Time Comparison Dataset 1
	Resolve Time Comparison Dataset 1
	Result Count Comparison Dataset 1
	Trapdoor Time Comparison Dataset 2
	Search Time Comparison Dataset 2
	Resolve Time Comparison Dataset 2
	Result Count Comparison Dataset 2
	Quantitative Feature Analysis

	Verification and Validation
	Correctness Testing
	Formal Security Proof
	Complexity Analysis

	Discussion
	Key Findings
	Comparison with Prior Work
	Implications
	Limitations
	Reflection on the Research Process

	IV Closure
	Conclusion
	Answers to Research Questions
	Closing Remarks

	Future Work
	Short Term Directions
	Long Term Directions
	Final Thoughts

	Bibliography
	Algorithms
	Additional Figures

