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IDENTIFYING INSAR POINT SCATTERERS CORRESPONDING TO WATER LEVELS
WITHIN THE URBAN ENVIRONMENT

YA. Lumban-Gaol and R.F. Hanssen

Delft University of Technology, Department of Geoscience and Remote Sensing
Delft, 2628 CN, The Netherlands

ABSTRACT

The repeat period of SAR data and its side-looking character-
istics make InSAR time series analysis useful for water level
monitoring applications. The standard approach determines
corresponding scatterers by focusing the study area on the
multipath radar reflections that include the water level. This
paper introduces an alternative approach to identifying such
signals using two metrics: cosine similarity and temporal dif-
ferential coherence. The results show that temporal differ-
ential coherence can detect phase variations similar to water
level by constantly returning high values even when there is
an offset, while cosine similarity yields low scores. Within an
urban environment, this approach finds point scatterers cor-
responding to water level changes in or near water, such as
permanent floating objects, bridges, and buildings adjacent to
water, where the highest differential coherence value was ac-
quired from a permanent floating restaurant in open water.

Index Terms— InSAR, phase similarity, point scatterers,
temporal coherence, water levels

1. INTRODUCTION

Due to the side-looking characteristics of synthetic aperture
radar (SAR) satellites and the interferometric (InSAR) analy-
sis of time series, SAR data can be applied to monitor water
level variations over natural areas, such as vegetated wetland
areas [1, 2, 3, 4, 5, 6, 7] and lakes [8, 9, 10], as well as rivers
under a bridge [11, 12]. The principle is that SAR signals
from double- or triple-bounce scattering, which occurs be-
tween the horizontal water surface and surrounding objects,
lead to coherent scatterers sensitive to potential relative wa-
ter level changes. In this case, the objects in or near the water
cause a significant part of the radar reflection to return into the
direction of the sensor instead of reflecting in a specular way.
The type of objects varies depending on the area of interest,
e.g., vertical wetland vegetation in the case of wetland areas,
a combination of natural rocks and irregular topography in
small lakes within mountainous regions, or bridges crossing a
river.
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Two SAR observation properties can be used for this ob-
jective. The interferometric phase, constructed from pairs of
SAR images [13], can be retrieved from phase observations
from double-bounce scatterers that include water level varia-
tion. On the other hand, it is possible to estimate water level
changes using range changes if the multipath backscatter ac-
cording to water level change is visible on the image stack,
e.g., the case with water under the bridge [11, 12]. In this
case, the variability of the estimated water level depends on
the SAR image’s spatial resolution.

Another approach incorporates the InSAR technique to
generate digital elevation models (DEMs) for water level
monitoring in dam reservoirs [14, 15]. Subsequently, the wa-
terline boundary is detected, e.g., using SAR edge detection
algorithms [14, 16]. Based on the boundaries from different
SAR acquisitions, the slope distance between two acquisi-
tions can be computed, and the water level variations can be
retrieved.

All methods above rely on a straightforward identification
of multipath radar reflections that include the water level. Yet,
in an urban environment, this is far from trivial, while the con-
sequences of varying water levels directly affect a large num-
ber of people. Here we demonstrate that amidst millions of
scatterers in an urban setting it is possible to identify those
scatterers that contain valuable information on the level of
intra-city water bodies.

2. MATERIALS AND METHODS

We use an area of ~1.5x 1.5 km in the center of Amsterdam,
the Netherlands, a dense urban area with many interconnected
canals and indirect connections to the North Sea, neighboring
polders, and natural rivers. The average elevation of the area
of interest varies between 0 and 2 m above mean sea level
[17]. The city’s water level is monitored and recorded using a
level gauge every 10 minutes.

As reference, we use the level gauge data provided by
Rijkswaterstaat. Since all canals in the study area have the
same water level, we use a single level gauge station, at Suri-
namekade, located approximately 3.5 km east from the study
area.
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Apart from the level gauge we use SAR observations from
Sentinel-1A/B using the interferometric wide swath (IW)
mode and a single VV polarization, operating in C-band,
A =5.55 cm, with a repeat period of 12 days. Combining
the two satellites shortens this to six days. We use the single
look complex (SLC) data—to retrieve both the amplitude and
phase—from two different geometries, i.e., descending track
37 and ascending track 88. A total of 154 and 152 acquisi-
tions are available from March 2020 to June 2023 for both
descending and ascending, respectively.

2.1. Time Series InSAR Phase

Considering the condition of the study area, a standard pro-
cessing chain for point scatterers (PS) was used to preprocess
all SAR data to obtain InSAR phases as described in [18, 19].
All data in the stack was initially coregistered, and then, a
single image was selected randomly as a reference in time.
Here, the image on 28 March 2020 was used. Then, all in-
terferometric phases were calculated for all data pairs in the
stack. The normalized amplitude dispersion (NAD) was em-
ployed to filter out points with high dispersion. Considering
water level variations, we use a relatively high threshold of
0.6 to include potential PS related to water. In the end, we
have 25,222 and 22,518 points for descending and ascending,
respectively.

Subsequently, a subset of points was selected to generate
a network to calculate the trend phase parameters. The se-
lection is also based on NAD with a smaller threshold of 0.3,
so points with NAD lower than the threshold were considered.
The parameters were used for the detrending process, and this
corrected phase (ps) was then considered for further analy-
sis.

2.2. Tide Gauge Water Level Processing

Tide gauge stations record water levels every 10 minutes. We
subtract all water levels from the raw data using the same mas-
ter timestamp as the InSAR processing to obtain the relative
water level in time. The descending satellite passes the study
area at 5:50 UTC while ascending at 17:30 UTC, so we se-
lect the data at the same timestamp as the reference. Using
the geometry of InSAR data acquisition in the line of sight
(LoS), we can convert the water level change in cm unit (Ah)
to radians (pgr) using the following equation:

47w Ah cos
por=——1— (D

where incidence angle 6 is ~41° (descending) and ~30° (as-
cending) for this area. Then, using the wrapping operator,

mod (gt + 7, 2m) — m, we obtain the relative water level
change in the same LoS range as InSAR phase (¢gr,,). We
use this wrapped phase as the ground truth to be compared
with InSAR phases. Additionally, the remainder of the mod-
ulo operator was stored as the ambiguities.

2.3. Detection Approach

Based on the assumption that the InSAR phase corresponds to
the relative water level and has a similar phase as the ground
truth, a similarity between these two phases can be measured
using the cosine similarity

N
1
Cps, = N ; cos(QGT,,.,, — PPS;. )5 2

where N is the number of epochs, ogr,, , is the ground truth
phase at n-th epoch, and ps, , is the INSAR phase of i-th
point at n-th epoch. This approach has been used by [20] to
identify PS targets between neighboring radar pixels for sur-
face deformation estimation. By computing the cosine of the
phase difference, the similarity score C ranges from —1 to 1.
A value of 1 represents identical phases, —1 means gt and
wps differ by 7 rad, while 0 describes that they can be uncor-
related or have an offset of 7/2. Since we are interested in
retrieving PS having similar phase variations as water level,
we argue that the similarity score cannot conclude the corre-
sponding PS due to the possibility of a constant phase offset
in the data. Considering this, temporal differential coherence
can be used to measure the degree of similarity between two
phases by returning high differential coherence, even though
the data may have a constant offset. The temporal differential
coherence is expressed as [21]

N
1 .
s, = | nz_:l exp{j(per,., — s ) )

Here, we compute both metrics, analyze the results, and select
potential PS corresponding to water levels based on one of
those measures.

3. RESULTS AND DISCUSSION

3.1. PS Corresponding to Water Levels

Using the ground truth water level in the same LoS range as
InSAR data, the temporal differential coherence and cosine
similarity for the descending track ranges between [0, 0.58]
and [—0.51, +0.57] respectively. In Fig. 1a, red PS have high
cosine similarity with the ground truth water levels. These are
points in or near water associated with objects like houseboats
or multipath reflections near bridges. Blue PS are also re-
flections from those objects and buildings adjacent to canals,
leading to a negative cosine similarity. As a comparison, the
temporal differential coherence results (see Fig. 1b) show that
both the red and the blue PS in Fig. 1a have higher differen-
tial coherence than other points. Moreover, the scatter plot
in Fig. 1c points out that some PS have low cosine similar-
ity scores but high differential coherence values. Most likely,
these experience multipath reflection between water and sur-
rounding objects. On the contrary, PS with high similarity
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Fig. 1. Similarity (a) and differential coherence (b) results of all PS for descending data.
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The scatter plot (c) represents the

distributions of PS against both metrics, which is used to select potential PS associates to water level. The contextual landscape
of the study area shows the spatial distribution of selected PS in colored boxes (d). The yellow area represents points close to
a floating restaurant in open water. The green box is where scatterers correspond to a tower building, Montelbaanstoren, or a

bridge. Similarly, the blue area contains PS associated with a bridge and houseboats.
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and differential coherence values are presumably correlated
to objects directly connected to water level changes, e.g., the
houseboats.

These results suggest that the temporal differential coher-
ence is more suitable for identifying potential PS correspond-
ing to water levels than the cosine similarity, since similar
water level variability in time can still be detected regardless
of an arbitrary constant offset in the data. Accordingly, po-
tential PS selection was performed based on the differential
coherence metric. Here, we selected scatterers with a differ-
ential coherence greater than 0.5 as potential targets. A total
of 30 PS were selected, which can be associated with a bridge
or permanent houseboats (blue area), and a bridge or a tower
adjacent to water (green area), see Fig. 1d. The highest differ-
ential coherence value is obtained from a scatterer associated
with a floating restaurant (the yellow area in Fig. 1d). We
suspect that the reflection of this PS is directly correlated to
water level variations, since the floating restaurant remains at
the same spot, causing the observed phases to follow the wa-
ter levels. Fig. 2 shows how well the InSAR phases of this
PS correspond with the level gauge data, where the similar-
ity of one-third of the data is close to 1. Furthermore, after
phase unwrapping was performed using the remainder of the
modulo operator, the unwrapped water level mainly fits the
ground truth.

Based on these results, it is possible to identify PS corre-
sponding to water level changes using temporal differential
coherence as a metric to detect scatterers with phase vari-
ations similar to water level. However, after PS selection,
phase unwrapping is required to retrieve the full phase cycles
for water level estimation because the water level variability
exceeds the ability of the InSAR fractional phase to observe
those changes.

3.2. Water Level Variations

Based on a multi-year level gauge observations with a tem-
poral sampling of 10 minutes, water levels vary with a vari-
ance of roughly 11 cm. The variability is due to both tidal
effects, water run-off variability, and water draining to the sea
at ebb tides. As the observed InSAR phase is acquired ev-
ery six or 12 days, considering one track only we may have
several phase cycles of difference between consecutive acqui-
sitions. We could combine several tracks to reduce the revisit
period if there is also potential PS corresponding to water
levels in other data. However, after processing the ascend-
ing data, the temporal differential coherence values appear to
be generally much lower than the descending results, with a
maximum of ~0.29. Only a few PS can be identified, and
these scatterers presumably correspond to houseboats, where
some are located in the blue area as in the descending result
(Fig. 1d). Considering the geometry of canals, which mainly
stretched in a northeast-southwest direction, we hypothesize
that the sensor may capture more PS corresponding to water

levels when the the zero-Doppler plane [22] is orthogonal to
the canal (descending).

4. CONCLUSIONS AND FURTHER WORKS

We demonstrated two metrics, i.e., cosine similarity and tem-
poral differential coherence, to measure the degree of similar-
ity between two phase series for identifying InSAR PS associ-
ated with water levels within an urban area. The results show
that temporal differential coherence can detect phase varia-
tions similar to water levels even when the phase data has
an offset. The potential scatterers can be distinguished into
two categories: PS corresponds to objects directly connected
to water level changes, and PS with multipath reflection be-
tween the water surface and surrounding objects. The highest
differential coherence was acquired from the first type of PS,
i.e., a permanent floating restaurant in the open water.

After identifying the points, phase unwrapping is required
to retrieve the full phase cycles for water level estimation.
The accuracy of water level estimation will depend on the
accuracy of ambiguity estimation during phase unwrapping.
A functional model representing the driving factors of water
level variability should be developed to estimate the ambigu-

ity.
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