
Technische Universiteit Delft
Faculteit Elektrotechniek, Wiskunde en Informatica

Delft Institute of Applied Mathematics

The Chip firing game

Verslag ten behoeve van het
Delft Institute of Applied Mathematics

als onderdeel ter verkrijging

van de graad van

BACHELOR OF SCIENCE
in

TECHNISCHE WISKUNDE

door

HELEEN SCHUTTE

Delft, Nederland
Juni 2015

Copyright c© 2015 door Heleen Schutte. Alle rechten voorbehouden.

BSc verslag TECHNISCHE WISKUNDE

“The Chip firing game”

HELEEN SCHUTTE

Technische Universiteit Delft

Begeleider

Dr. D. Gijswijt

Overige commissieleden

Dr. F. van der Meulen Dr. B van den Dries

Juni, 2015 Delft

Abstract

We consider the following solitary game. Each node of a graph contains a pile of chips. A move
consists of selecting a node with at least as many chips as the number of outgoing lines. After
we selected a node we have to fire the node. This means that one chips is transported from
the selected node to all the neighboring nodes over the outgoing lines. The game terminates
if there are no more nodes left which can be fired. We analyze the game on directed graphs
and we investigate the finiteness of the game. We introduce some properties of the chip firing
game by associating it with a left-hereditary, permutable and locally free language. We use
these properties to calculate, given an initial position and a final position, how many times we
have to fire each node to finish the game or we can draw the conclusion that the game will
never terminate. We introduce a linear system in terms of the Laplacian to decide finiteness of
the game. In order to set up this system we use some linear algebra to calculate the Hermite
normal form of the linear system. With this Hermite form we can find an integer solution for
the number of steps needed to finish the game. We also introduce a Java applet in which you
can make your own chip firing game and play it.

5

6

Contents

1 Introduction 9

2 Language to describe properties of the chip firing game 11
2.1 The strong exchange property . 12

3 The finiteness of the game 15
3.1 No polynomial bound for the directed chip firing game 15
3.2 Linear algebra for the chip firing game . 18
3.3 A necessary condition for a finite game . 22
3.4 Cramer’s rule . 23
3.5 Hermite normal form . 25

4 Results 27
4.1 Initial position with 13 chips . 27
4.2 Initial position with 12 chips . 29
4.3 Initial position with 11 chips . 33
4.4 Initial position with 14 chips . 38
4.5 Another example graph . 39
4.6 Eriksson graph for each number of nodes . 40

5 Conclusion 43

Bibliography 43

Appendix A Java code 47

Appendix B Maple code 51

7

8 CONTENTS

Chapter 1

Introduction

The process called the chip firing game has been around for more than 30 years now. It has
become an important and interesting object of study for structural combinatorics. In Spencer
introduced the Balancing game [1] on graphs which look like long paths. This game corresponds
to the discrepancy problem of matrices [2]. Later, in [3], the game was defined on a general
graph and the Chip firing game was born. The rules of the Chip firing game are as follows.
Given a graph G = (V,E) we place an integer number of chips on each node. A move consists
of selecting a node with at least as many chips as its outdegree. After selecting this node, we
fire the node, which means that one chip is transported over each outgoing line to a neighbor
node. This way, chips are moved around the graph but the total number of chips is unchanged.

Example 1.1. We give an example of a move in the chip firing game on a undirected Petersen
graph. The number on a node represents the number of chips placed on that node. We fire the
red node in the first figure and we see the result in the second figure.

4

1

1 2

2

3

0 2

3 1

−→

1

1

2 3

2

4

0 2

3 1

After the introduction of the Chip firing game, Bak,Tang and Wiesenfeld introduced a related
process that is known as the Abelian sandpile. This dynamic process was the first one discovered
with self-organized criticality. The idea of self-organised criticality can be illustrated by a pile of
sand. Grains of sand are dropped onto a pile one by one. The pile ultimately reaches a station-
ary ‘critical’ state in which the slope of the pile fluctuates about a constant angle of repose. The
angle of repose is the steepest angle to which a material can be piled without slumping. The
game that corresponds to the Abelian sandpile is similar to the Chip firing game but slightly
different. Merino [6] described it in the following way: the rules are the same for every vertex
except for q, q has a debit of chips equal to the total number of chips on the graph and can only
be fired when every other vertex cannot be fired, then q is fired until some vertex has enough
chips to get fired again. The last rule ensures an infinite game. This game is called the dollar

9

10 CHAPTER 1. INTRODUCTION

game, and dollars are used instead of chips.

In a more sophisticated version of the Dollar game, depths are allowed on more vertices, and the
firing means getting one dollar from all the neighbors, not sending. Here we show an example
of a move in the Dollar game:

Example 1.2. We give an example of a move in the Dollar game on a undirected Petersen
graph. The number on a node represents the number of chips placed on that node. We fire the
red node in the first figure and we see the result in the second figure.

-4

1

-1 -4

4

-5

0 4

5 6

−→

-5

1

-1 -4

4

-2

-1 3

5 6

The chip firing game will be investigated here. It is clear that not every random graph with a
random number of chips on each node gives a terminating game. How can we, given a graph
and an initial position of chips, decide if the configuration is winning/terminating? And can we
find a solution in polynomial time? I will investigate some properties of the chip firing game
related to these questions and in particular the finiteness of the game.

Chapter 2

Language to describe properties of
the chip firing game

To give a good analysis of the chip firing game we need give a ’formulation’ of the chip firing
game in terms of a language L. This idea was introduces by Bj owner and lovás [5]. Let V be
a finite set. A language over V is any set of finite words formed by elements of V . We describe
the sequence of firing nodes as a word, where each letter represents a node.

Example 2.1. If we give each node a number (not the number of chips, just the name of the
node) than we can replace this number by a letter:

1

2

3

4 5

6 −→
a

b

c

d e

f

If we fire node a two times and then fire node b one time we get the word aab. So a combination
of letters is a combination of firing nodes. A subword of a word α is any string obtained by
deleting letters from α arbitrarily. So aba is a subword of ababbc. We also introduce the score
of a word. The score of a word is a vector in which the ith entry represents the number of times
letter i occurs in the word. We denote the score of word α as [α]. We call a word basic if it is
not the beginning section of any other word.

We can write the legal sequences of moves from a given initial chip configuration in a chip
firing game as a language, this language L has three properties:

• The language is left-hereditary
If a word is legal (i.e. corresponds to a legal sequence of moves), then all the beginning
sections of this word are legal. For example let abcda ∈ L than abc ∈ L and abcd ∈ L.

• The language is permutable
If α and β are to words with the same score: [α] = [β] and αx is a legal word in L, then βx
is also a legal word in L. This means that the order in which we fire nodes is not relevant
for the result of the final position after these moves, only the number of times that we fire

11

12CHAPTER 2. LANGUAGE TO DESCRIBE PROPERTIES OF THE CHIP FIRING GAME

each node is important. Let α = abbccdad and β = aabcddbc, if abbccdadd ∈ L than also
aabcddbcd ∈ L.

• The language is locally free
If αx ∈ L and αy ∈ L with x, y ∈ V then also αxy ∈ L and αyx ∈ L. So if we can fire
the nodes corresponding to letter x and letter y after a sequence of moves corresponding
to word α, then we can choose which node we fire first and after this move we can still fire
the other node. Let α = abba ∈ L. If abbab ∈ L and abbac ∈ L then also abbacb ∈ L.

2.1 The strong exchange property

We introduce a basic fact about the finiteness of the chip-firing game established by Björner and
Lovász:

Theorem 2.2 ([5]). Given a directed graph G, and an initial position of chips, either every
legal game can be continued indefinitely, or every legal game terminates after the same number
of moves with the same final position. The number of times a given node is fired is the same in
every legal game.

To prove this theorem we use the following proposition:

Proposition 2.3. Let L be a left-hereditary, permutable and locally free language. Then the
following hold.

(i) If α, β ∈ L then there exists a subword α′ of α such that βα′ ∈ L and [βα′] it the entry-wise
maximum of [α] and [β]. (The strong exchange property)

(ii) If there is a basic word then the language is finite.

(iii) All basic words have the same score (in particular, the same length)

1. If L is finite then two words α, β ∈ L have [α] = [β] if and only if

{γ : αγ ∈ L} = {γ : βγ ∈ L}

Proof. We proof (ii) and (iii) using (i).

1. -

2. We have to prove that if L has a basic word α then there are a finite number of words
in L. Since a basic word is not the beginning section of any other word (i.e. we cannot
add any letters to α). We can on the other hand delete letters from α because L contains
al the subwords of α. We are left with words γ for which [γ]i > [α]i∀i ∈ V . This set of
words cannot be in L. Because of (1) we can add the letters to α which occur more times
in β and γ, but this contradicts that α is a basic word. So if a language L has a basic
word α then L contains only subwords of α and since α has a finite length, the number of
subwords of α is also finite which implies that the language is finite.

3. Assume that we have two basic words α and β with different scores [α] and [β]. Then
because of the strong exchange property there exists a sub word α′ of α such that βα′ ∈ L
and [βα′] is the entry-wise maximum of [α] and [β]. Then β is the beginning section of a
longer word βα′, this contradicts that β is a basic word.

4. -

2.1. THE STRONG EXCHANGE PROPERTY 13

Proof of Theorem 1. We see that the score of a word in the language L determines the position
reached by the corresponding game, because of the permutable property. The order is not of
importance here, only the number of times we fire a node: the score. A word is basic if and only
if that position is terminal. Otherwise we could fire another node, which means that we can add
another letter to our basic word, but this contradicts that the word is basic. So theorem 1 follows
directly form the left-hereditary, permutable, locally free and the strong exchange property.

14CHAPTER 2. LANGUAGE TO DESCRIBE PROPERTIES OF THE CHIP FIRING GAME

Chapter 3

The finiteness of the game

3.1 No polynomial bound for the directed chip firing game

We can ask ourselves how we construct a legal finite game and if we found such a game how
long the game will last before it terminates? It is easy to understand that the game will never
end if we draw a network of nodes connected by lines (graph) and we add more chips on each
node than the total number of nodes. If we add more chips on each node than the total number
of lines leaving each node, than we also have a infinite game.

So what is the maximum number of chips that allows a finite game and what is the mini-
mum number of chips that allows an infinite game? Let G be a connected grap and let V be
the set of nodes and E be the set of lines, n represents the number of nodes and m the number
of (undirected)lines. Fewer than m chips guarantees that the game is finite.[7]

It was shown [5] that more than 2m− n chips guarantees that the games is infinite. Since

m = |E| = 1

2

∑
v∈V

d(u)

we get

2m− n =
∑
v∈V

d(v)− n =
∑
v∈V

d(v)− |V |

Hence if we add all the degrees of every v ∈ V and then subtract the number of nodes, this
every node can have as many chips as his degree minus 1, and as soon as we add one more chip
than there will always be one node that has the same number of chips or more than the number
of outgoing lines.

Theorem 3.1. [7] For every number N of chips on graph G with m ≤ N ≤ 2m− n, there are
initial positions that lead to an finite game and initial positions that lead to a infinite game.

For directed graphs, we can say that the game doesn’t terminate if we have more than m − n
chips on the graph, because each line goes one way, we do not have to take in account both
ways so we we don’t have to double the number of lines. The maximum number of chips that
guarantee that the game will terminate is unknown. We also don’t know how to determine the
minimum number of chips allowing an infinite game on a general digraph. This is not a function
of just the number of nodes and edges.

Eriksson [8] shows that no polynomial bound can be found for the chip firing game on di-
rected graphs. He sets up an example of a bidirected graph for which the final position will be

15

16 CHAPTER 3. THE FINITENESS OF THE GAME

reached, but this will be achieved in a exponential number of moves. In this example he uses a
graph which is set up in the following way. A game is defined for every even positive number n.
Take a bidirected circuit of n − 1 nodes and add a center node with edges to all other nodes,
all but one bidirected, the last one directed from the center node to the top node. The initial
position is 3n− 5 chips on the center node and no chips on the circuit nodes. The final position
is reached when we have n − 2 chips on the center node, 1 chip on the top node and 2 chips
on all other nodes. The game will always end because Eriksson set up this special graph, if the
final position isn’t reached there will always be a node that can be fired.
Eriksson showed that this game will always terminate. Consider the directed graph G and follow
Eriksson’s proof, we add some more detailed arguments.

s

u0

u−1

u−2 u2

u1

All edges are bidirected except su0. Let xk be the number of chips on node k, the chips
distribution on G will be denoted by a sequence of type:

(...x−2, x−1, x0, x1, x2, ...)

The subscripts are modulo (n− 1).Note that d+(s) = n− 1 (center node), d+(0) = 2 (top node)
and d+(i) = 3 (all other nodes). We start with 3n− 5 chips on the center node and 0 chips on
all the other nodes. We can fire this node once, which results in 1 chip on every node except for
the center node. Then we can perform the following sequence:

1. fire the center node

2. fire the top node

3. fire all the other node on the circuit clockwise

4. fire the center node

5. fire the top node

6. fire all the other nodes on the circuit clockwise

7. fire the top node

3.1. NO POLYNOMIAL BOUND FOR THE DIRECTED CHIP FIRING GAME 17

Each node is fired twice except for the top node which is fired three times. So this operation
consists of 2n+ 1 moves and results in a netto flow of two chips from the center node to one of
each of the neighbors of the top node. This operation can be done over and over again with a
few extra steps in between. Starting from the initial position the sequence will look as follows:

fire the center node: ...1111111... P0

2n+ 1 moves ...1121211... P1

2n+ 1 moves ...1131311...
fire the top node’s neighbors and the top node ...1211121...
2n+ 1 moves ...1221221... P2

Let now Pi denote the position with i twos on each side of the top node. Assume that for
i = 1, 2, ..., k − 1 we know sequences of ai moves leading from Pi−1 to Pi. So the game from
position Pk−1 to Pk is as follows:

we start with ...112...212...211... Pk−1
ak−1 moves ...132...212...231...
fire all nodes from left 3 to right 3 (2k − 1) moves

rebuild inner twos
∑k−1

1 ai ...222...212...222... Pk

Let ak be the number of moves from Pk−1 to Pk then we get

ak = ak−1 + (2k − 1) +
k−1∑
i=1

ai for k ≥ 2, a1 = 2n+ 1

Let sk be the total number of moves from initial position to Pk then we have to add the first
time we fire the center node to get: ...111...111...111.... We get the following formula:

sk = 1 +
k∑

i=1

ai

sk − 3sk−1 + sk−2 = 2k − 2

This recurrence has the following solution:

sk =

(
2n√

5
+

1 +
√

5

2

)
·

(
1 +
√

5

2

)2k

+

(
−2n√

5
− 2

1 +
√

5

)
·

(
1 +
√

5

2

)−2k
− 2k

So the number of moves necessary to reach this final position grows exponentially with the
number of nodes:

(2n/
√

5 + (1 +
√

5)/2) · ((1 +
√

5)/2)n−2

Therefore there is no polynomial bound for the chip firing game on a directed graph.

To make the game more visible and check Erikssons algorithm I made a Java applet where you
can play the Chip firing game (see appendix).

18 CHAPTER 3. THE FINITENESS OF THE GAME

3.2 Linear algebra for the chip firing game

Firing a node in the chip firing game means that we decrease the number of chips on the node
by the out degree of the node. At the same time we increase the number of chips on al the
outneighbor nodes by 1. We denote the out degree of a node i by d+(i) and we denote the in
degree of node i by d−(i).

We can now define the Laplacian operator L where we denote the number of edges from node i
to node j by di,j .

Lij =

{
dj,i if i 6= j;

−d+(i) + di,i if i = j.

Example 3.2. We take the following graph as an example:

1

2

3

4 5

6

For this graph the Laplacian will look as follows:

L =

−5 0 1 1 1 1
1 −2 1 0 0 1
1 1 −3 1 0 0
1 0 1 −3 1 0
1 0 0 1 −3 1
1 1 0 0 1 −3

Each column in our Laplacian represents what happens when we fire the node corresponding to
this column.

Theorem 3.3. Given a graph G = (V,E) with initial position B ∈ ZV , if we fire node i xi
times then we find the configuration: B + Lx.

So if we add a linear combination of the columns of the Laplacian, then this represents a sequence
of moves in the game. The first element of vector x represents the number of times node 1 gets
fired, the second element of x represents the number of times node 2 gets fired and so on.
Because adding is a commutative property, we see that the order in which we fire the nodes is
not relevant for the resulting position in the game, only the number of times each node is fired
determines the position.
We can only fire a node a positive integer number of times, so solution x of B + Lx must be a
positive integer solution.

3.2. LINEAR ALGEBRA FOR THE CHIP FIRING GAME 19

If we find an integer solution x of B+Lx = Ewith a negative component then we can transform
this solution into a positive integer solution which still satisfies B + Lx = E with the same E.
We use the theorem of Perron-Frobrenius:

Definition 3.4. a matrix is reducible if and only if it can be placed into block upper-triangular
form by simultaneous row/column permutations.

Theorem 3.5 ([9]). Let A be an nonnegative irreducible n times n matrix (aij ≥ 0 for 1 ≤
i, j ≤ n) the following statements hold:

1. There is a positive real number r, such that r is an eigenvalue of A and for every other
eigenvalue λ: |λ| < r

2. r is a simple root of the characteristic polynomial of A. Consequently, the eigenspace
associated to r is one-dimensional.

3. There exists an eigenvector v = (v1, ..., vn) of A for eigenvalue r such that Av = rv and
vi > 0 for 1 ≤ i ≤ n. Respectively, there exists a positive left eigenvector w for which
wTA = rwT with wi > 0

4. There are no other positive eigenvectors except positive multiples of v, all other eigenvectors
must have at least one negative or non-real component.

Definition 3.6. A graph is strongly connected if every node is reachable from every other node.

Theorem 3.7. [5] Assume G is a strongly connected graph and let L be the Laplacian of G,
then the space of all v ∈ RV such that Lv = 0 has a basis a non-negative vector.

Proof. If D is the maximum out degree of G, then L+DI is a nonnegative irreducible matrix,
which has an all-positive left eigenvector 1 with eigenvalue D. Hence, because the Perron-
Frobenius Theorem tells us that every real square matrix with positive entries has a unique
largest real eigenvalue with corresponding eigenvector which has strictly positive components,
D is the largest eigenvalue of L+DI. Again by the Perron-Frobenius theorem, the right eigen-
subspace of L+DI belonging to D is one-dimensional an spanned by an all-positive eigenvector.
But this eigensubspace is just the null space of L. Hence L has rank n − 1 and its Null space
is spanned by an all-positive vector, which after scaling can be assumed to have integer compo-
nents. So {v|Lv = 0} not only has a basis of nonnegative vectors in case G is strongly connected,
it is spanned by one such vector.

Remark 3.8. If G is strongly connected it follows that the dimension of the Null space is 1 and
that the Laplacian of G is irreducible.

With Theorem 5 we can proof the following Theorem 6:

Theorem 3.9. Let G be a connected graph, let L be the Laplacian of G, let B ∈ Zn be an
initial position on G and let E ∈ Zn be a final position on G . If we find an integer solution to
B + Lx = E then we can always transform this solution into a positive integer solution.

Proof. Suppose u and v are both solutions of B + Lx = E. Then:

L(u− v) = Lu− Lv = E −B − (E −B) = 0

Hence u− v ∈ Null space L. It follows that u− v = c for some vector c in the null space of L.
If we rewrite this we get: if u and v are two solutions of Lx = E − B then u = v + c with c ∈

20 CHAPTER 3. THE FINITENESS OF THE GAME

null space of L.
On the other hand, suppose that z satisfies Lz = E −B and w satisfies Lw = 0 then:

L(z + w) = Lz + Lw = E −B + 0 = E −B

It follows that if x is a solution of Lx = E − B and y is a vector in the null space of L than
x+ y forms another solution of Lx = E − B. Since the null space forms a linear subspace, the
general solution of Lx = E −B is of the form: x+ λy with λ ∈ R where x is a fixed solution of
Lx = E −B and y is a fixed solution of Ly = 0. We want x, y ∈ Q so that we can easily obtain
if an integer point that lies on the line x+ λy.

By Theorem 5 we can always transform x + λy to a positive solution of B + Lx = y because
y > 0.

Example 3.10. In this example we show how a move is the game gives a linear equation. In
our initial position of the game we put 13 chips on node 1 and zero chips on the other nodes. If
we only fire node 1 we get:

13
0
0
0
0
0

+

−5 0 1 1 1 1
1 −2 1 0 0 1
1 1 −3 1 0 0
1 0 1 −3 1 0
1 0 0 1 −3 1
1 1 0 0 1 −3

1
0
0
0
0
0

 =

13
0
0
0
0
0

+

−5
1
1
1
1
1

 =

8
1
1
1
1
1

13

0

0

0 0

0

←

8

1

1

1 1

1

Example 3.11. We use the Erikssons graph to illustrate the necessary condition for a finite
game. This because there exists only one final position for the initial position of 3n− 5 chips on
the center node and because the game will always end. We also know the bound for the number
of moves. Take n = 6, our Erikkson graph will look like our previous example for the Laplacian.

1

2

3

4 5

6

3.2. LINEAR ALGEBRA FOR THE CHIP FIRING GAME 21

We used the same graph in Example 1.1 so our Laplacian is:

L =

−5 0 1 1 1 1
1 −2 1 0 0 1
1 1 −3 1 0 0
1 0 1 −3 1 0
1 0 0 1 −3 1
1 1 0 0 1 −3

We can easily see that there is only one possible final position. Node 1 cannot be fired if the
amount of chips is less or equal to 4, node 2 cannot be fired if the amount is less of equal to 1
and for nodes 3 up to and including 6 the amount must be less of equal to 2. All the upper limits
of the nodes add up to 13. We get the following final position:

≤ 4

≤ 1

≤ 2

≤ 2 ≤ 2

≤ 2

We can write this final position as a vector, where the first element corresponds with node number
1 etc.

E =
[
4 1 2 2 2 2

]T
We can also write the initial position as a vector:

B =
[
13 0 0 0 0 0

]T

To determine if we can reach final position E given the initial position B, we solve the linear
equation:

B + Lx = E → Lx = E −B

22 CHAPTER 3. THE FINITENESS OF THE GAME

3.3 A necessary condition for a finite game

Theorem 3.12. Let G be a connected graph, let L be the Laplacian of G, let B ∈ Zn be the
initial position on G and let E ∈ Zn be a final position on G. If we find a integer solution to
the matrix equation B + Lx = E, then the game terminates.

Proof. If we find a integer solution for B + Lx = E then we have three possible scenario’s:

1. We can only fire node i, which we are not allowed to fire according to xi (i.e. with xi =
0).

2. The game ends before we fired each node i xi times.

3. We get to the final position by firing each node i xi times.

1. Let P be the set of sequences p that are not allowed according to x. We call our chip
distribution C on the moment that we cannot meet with x anymore. At this moment we
can only transform distribution C by firing a node p ∈ V . So we know that:

C + Lp ≥ 0

But then also:
E + Lp ≥ 0

Because E ≥ 0 and Lp ≥ 0.Which implies that if we reach the final position we can still
fire node p, but this contradicts that E is a final position.

2. The game is still finite but ends earlier than integer solution x prescribes. This means that
there is another possible final position which gives a strictly smaller integer solution x. We
can only reach the final position which gives the smallest integer solution x to B+Lx = E.
If we find a negative integer solution or semi negative solution x of B + Lx = E then we
can transform this solution into a positive integer solution which still satisfies B+Lx = E
with the same E because of Theorem 5.

If we can’t find a integer solution then the game is infinite because a basic word gives an integer
solution. Now we can ask ourselves if a graph gives opportunity to several final positions which
give us several integer solutions, can we then always find a smallest integer solution? Can it
be that we find two smallest integer solutions for which one solution is not strictly greater or
smaller than the other solution?

Theorem 3.13. Let G be a connected graph and let L be the Laplacian of G. If G gives
opportunity to several final positions Ek, and if we can find integer solutions xk to the equation
B+Lxk = Ek for final positions Ek, then there will always be one smallest element xj for which
xji < xki .

Proof. If we find several integer solutions x1, x2 then we can only reach the smallest solution,
otherwise we could add the letters from the greater solution to the smallest, which implies
that the smallest solution wasn’t reaching a final position. But if we find two smallest integer
solutions x3, x4 in the partial ordered set of solutions, then we can form two scores of two words
associated with this solutions x3, x4 [α] and [β]. Because they are both a smallest solution, we

3.4. CRAMER’S RULE 23

can say that for some i and j: [αi] < [βi] and [αj] > [βj], than because of the strong exchange
property there exists a subword β′ of β such that [αβ′] is the entry-wise maximum of [α] and
[β]. We can add the nodes that are fired more in β to α and vise versa. This gives us a integer
solution γ with: [α], [β] < [γ]. But this means that if we fired each node as many times as
prescribe by [α] than we can fire the nodes that are fired more times in [β], but this contradicts
that [α] gives a final position, we can still fire nodes, so we can never find two integer solutions
[α] and [β] for which [α] 6≤ [β] and [α] 6≥ [β].

3.4 Cramer’s rule

In order to get the solution x of B + Lx = E and solution y of Ly = 0 to form x + λy with
x, y ∈ Q, we can use Cramer’s rule: an explicit manner to find a solution of a system of linear
equations, with as many equations as unknowns. This method is valid whenever the system
has an unique solution. Our system doesn’t have a unique solution, because we have one free
variable. If we set the free variable (we choose the first entry of x) equal to 1. Then we can
leave out the first row and the first column of L and form matrix L′. We also leave out the first
row of E −B. In this way we find a linear equation that has a unique solution.

Example 3.14. We give an example of a linear system that doesn’t give a unique solution. We
use our Eriksson graph with n = 6 to do this. We try to find an integer solution of the equation
B + Lx = E. The linear equation B + Lx = E doesn’t have a unique solution because we have
one free variable: x6. We can see this in the reduced matrix L in echelon form:

1 0 0 0 0 −0.750
0 1 0 0 0 −1.375
0 0 1 0 0 −1
0 0 0 1 0 −0.875
0 0 0 0 1 −0.875
0 0 0 0 0 0

Theorem 3.15. Cramer’s rule replaces the ith column by the E − B to form Li and than
calculates the ith entry of the vector x by :

xi =
det(Li)

det(L′)

for Ly = 0 the i’th column is a zero column

yi =
det(Li)

det(L′)

Example 3.16. Using our Eriksson graph with n = 6 again and the initial position with 13
chips on node 1:

24 CHAPTER 3. THE FINITENESS OF THE GAME

13

0

0

0 0

0

With maple we find the following solution of the form x+ λy:

1
−187

66
−154

66
−143

66
−143

66
−154

66

+ λ

3
4
11
8
1
7
8
7
8
1

If we make y integer by multiplying it by 8 we get:

8y =
[
6 11 8 7 7 8

]T
now we can easily see that if we choose λ = 91

3 , we find an integer solution:

x+ 9
1

2
y =

[
7 10 7 6 6 7

]T
Since this is not a great number of steps we can check if can fire each node as many times as
x prescribes. We use the java applet (see appendix) to check this. We see that we can fire each
node as many times as x prescribes and that we terminate at the right final position. We can
also check our x solution with Erikssons formula for the total number of steps:

sk =

(
2n√

5
+

1 +
√

5

2

)
·

(
1 +
√

5

2

)2k

+

(
−2n√

5
− 2

1 +
√

5

)
·

(
1 +
√

5

2

)−2k
− 2k

we used the final position: 22122, so k = 2. We get:

s3 =

(
12√

5
+

1 +
√

5

2

)
·

(
1 +
√

5

2

)4

+

(
−12√

5
− 2

1 +
√

5

)
·

(
1 +
√

5

2

)−4
− 4 = 43

and also 7 + 10 + 7 + 6 + 6 + 7 = 43
Now we use the same method for a different initial position:

0

0

0

0 0

13

3.5. HERMITE NORMAL FORM 25

With Cramer’s rule we obtain:

1
3
2
−24

66
−39

66
1
−288

66

+ λ

3
4
4
8
1
7
8
7
8
1

We see that −39

66 and 1 in the x vector have the same slope in the y vector. We can write this
as two linear lines: −39

66 + 7
8λ and 1 + 7

8λ. Whatever value we choose for λ, both linear lines will
never be on an integer point at the same time. So the initial position with 13 chips on node 6
gives an infinite game.
We also consider the initial position where we put 13 chips on node 2:

0

13

0

0 0

0

With Cramer’s rule we obtain:

0
8
2
0
0
2

+ λ

3
4
4
8
1
7
8
7
8
1

We see that if we choose λ = 0, we find a integer solution. This game is also very short, so
we can check if the game really ends. Here we also find the same solution as we found with
Cramer’s rule.

3.5 Hermite normal form

It is not straight forward to decide whether an integer solution exists using the previous method.
We were lucky to find arguments such as: two lines will never be on an integer point at the
same time, but we can wonder if we will easily find such an argument with every general graph.
Another way is to determine the Hermite form of the Laplacian [11]. The Hermite form of a
matrix is an analogue of the reduced echelon form of a integer matrix. It’s goal is to preserve
the integral solutions. A Hermite form can be row-style or column-style. Here we will use the
column-style.

26 CHAPTER 3. THE FINITENESS OF THE GAME

Definition 3.17. We say that a matrix with integer entries is in column Hermite normal form
if:

1. All columns with only zero entries are at the right of the matrix.

2. The pivot, the first nonzero entry from the top, is always on the diagonal

3. All entries in a row to the left of a pivot are nonnegative and strictly smaller than the
pivot

4. All entries in a row to the right of a leading entry are zeroes (implied by the first two
criteria)

The elementary operations we use to get a integer matrix in column Hermite normal form are:

1. We can exchange columns

2. We can add an integral multiple of one column to another

3. we can multiply a column by −1

For the calculation of an integer solution of the equation Lx = B−E we use some properties of
the Hermite matrix:

Theorem 3.18 ([11]). Each rational matrix of full row rank can be brought into Hermite normal
form by a series of elementary column operations.

Theorem 3.19 ([11]). Every rational matrix of full row rank has a unique Hermite normal
form.

Definition 3.20. We say that a matrix A is nonsingular if there exists a inverse matrix A−1

such that AA−1 = I.

Theorem 3.21 ([11]). For each rational matrix A of full row rank there is a unimodular matrix
U such that AU is het Hermite normal for of A. If A is nonsingular, U is unique.

Now we can ask ourselves the following question: does the system Ax = b have an integer
solution? We can answer this question by using the Hermite normal form.

Theorem 3.22. Given a rational matrix A with full row rank and a rational vector b, we can
find a integer solutionx for Ax = b if and only if there is an integer solution y of Hy = b. In
that case, x = Uy is an integer solution to Ax = b.

Chapter 4

Results

We use Theorem 12 to calculate an integer solution for the Eriksson graph that we used in our
previous example.

4.1 Initial position with 13 chips

We have the following initial position:

13

0

0

0 0

0

We want our matrix L to have full row rank. This means that there does not exist a row which
can be formed by a linear combination of other rows. L has one free variable, so we have to
delete the last row. This process does not change the set of solutions of Lx = b with b = E−B.
By deleting the last row of L we form the matrix A. With Maple we find the following Hermite
normal form H for matrix A:

H =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

then we set up the following equation:

27

28 CHAPTER 4. RESULTS

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

y1
y2
y3
y4
y5

 =

4
1
2
2
2

−

13
0
0
0
0

→

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

y1
y2
y3
y4
y5

 =

−9
1
2
2
2

→

y1
y2
y3
y4
y5

 =

−9
1
2
2
4

We set y6 = 1:

y1
y2
y3
y4
y5
y6

 =

−9
1
2
2
4
1

With maple we can also find our unimodular matrix U:

−22 −21 −5 −9 −37 6
−39 −38 −9 −16 −66 11
−29 −28 −7 −12 −49 8
−26 −25 −6 −11 −44 7
−27 −26 −6 −11 −46 7
−27 −26 −6 −11 −46 8

U captures every operation done to create H out of L. So We have to set the solution y that we
found with our above equation back to the solution for Lx = b. We solve the following equation:
A(Uy) = b Where Uy = x.

−5 0 1 1 1 1
1 −2 1 0 0 1
1 1 −3 1 0 0
1 0 1 −3 1 0
1 0 0 1 −3 1
1 1 0 0 1 −3

−22 −21 −5 −9 −37 6
−39 −38 −9 −16 −66 11
−29 −28 −7 −12 −49 8
−26 −25 −6 −11 −44 7
−27 −26 −6 −11 −46 7
−27 −26 −6 −11 −46 8

−9
1
2
2
4
1

 =

4.2. INITIAL POSITION WITH 12 CHIPS 29

−5 0 1 1 1 1
1 −2 1 0 0 1
1 1 −3 1 0 0
1 0 1 −3 1 0
1 0 0 1 −3 1
1 1 0 0 1 −3

7
10
7
6
6
7

 =

−9
1
2
2
2
2

So

E =
[
7 10 7 6 6 7

]T
Is our integer solution, this is the same solution as we saw before for the equation Lx = E −B
with the specific initial position.

4.2 Initial position with 12 chips

We now analyze the case in which we have only 12 chips on our graph. We still have the same
upper limits for a final position:

≤ 4

≤ 1

≤ 2

≤ 2 ≤ 2

≤ 2

We have 6 possible nodes where we can remove one chip compared with the final position in the
case of 13 chips:

4

1

2

2 2

2

So the possible final positions are:

30 CHAPTER 4. RESULTS

3
1
2
2
2
2

 ,

4
0
2
2
2
2

 ,

4
1
1
2
2
2

 ,

4
1
2
1
2
2

 ,

4
1
2
2
1
2

 ,

4
1
2
2
2
1

We will check if each final position can be reached. We assume that our initial position is
as follows:

E =
[
12 0 0 0 0 0

]T
1.

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

y1
y2
y3
y4
y5

 =

3
1
2
2
2

−

12
0
0
0
0

→

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

y1
y2
y3
y4
y5

 =

−9
1
2
2
2

→

y1
y2
y3
y4
y5

 =

−9
1
2
2
4

We set y6 = 1:

y1
y2
y3
y4
y5
y6

 =

−9
1
2
2
4
1

The first final position gives us the same E −B vector as the final position in the case of
13 chips. Therefore we find the same integer solution:

E =
[
7 10 7 6 6 7

]T

4.2. INITIAL POSITION WITH 12 CHIPS 31

2.
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

y1
y2
y3
y4
y5

 =

4
0
2
2
2

−

12
0
0
0
0

→

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

y1
y2
y3
y4
y5

 =

−8
0
2
2
2

→

y1
y2
y3
y4
y5

 =

−8
0
2
2
4

We set y6 = 1:

y1
y2
y3
y4
y5
y6

 =

−8
0
2
2
4
1

−5 0 1 1 1 1
1 −2 1 0 0 1
1 1 −3 1 0 0
1 0 1 −3 1 0
1 0 0 1 −3 1
1 1 0 0 1 −3

−22 −21 −5 −9 −37 6
−39 −38 −9 −16 −66 11
−29 −28 −7 −12 −49 8
−26 −25 −6 −11 −44 7
−27 −26 −6 −11 −46 7
−27 −26 −6 −11 −46 8

−8
0
2
2
4
1

 =

−5 0 1 1 1 1
1 −2 1 0 0 1
1 1 −3 1 0 0
1 0 1 −3 1 0
1 0 0 1 −3 1
1 1 0 0 1 −3

6
9
6
5
5
6

 =

−8
0
2
2
2
2

This is the right final position, so the integer solution to the problem is:

E =
[
6 9 6 5 5 6

]T

32 CHAPTER 4. RESULTS

3.
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

y1
y2
y3
y4
y5

 =

4
1
1
2
2

−

12
0
0
0
0

→

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

y1
y2
y3
y4
y5

 =

−8
1
1
2
2

→ no integer solution

So this final position cannot be reached.

We repeat our calculation with the rest of the final positions and we find that non of them gives
an integer solution. So if we use the initial position of 12 chips on node 1 we have the following
integer integer solutions:[
7 10 7 6 6 6

]T
matching with final position E =

[
3 1 2 2 2 2

]T
and[

6 9 6 5 5 6
]T

matching with final position E =
[
4 0 2 2 2 2

]T
We see that the first integer solution is strictly greater than the second integer solution:[
7 10 7 6 6 7

]T
>
[
6 9 6 5 5 6

]T
If we have word α ∈ L and word β ∈ L, with L a left-hereditary permutable locally free
language, and if [α] < [β], then we can expand α with the nodes who are fired more in β

than in α. So We can expand our solution
[
6 9 6 5 5 6

]T
to
[
7 10 7 6 6 7

]T
But[

6 9 6 5 5 6
]T

already gave us a final position, which means that we cannot fire any more

nodes, we can therefore never reach the final position
[
3 1 2 2 2 2

]T
which matches with

integer solution
[
7 10 7 6 6 7

]T
Our conclusion here is that if we have a initial position

with 12 chips on node 1, we can only end with the following final position:
[
4 0 2 2 2 2

]T
We can see from our Hermite form of L and the first equation towards finding a integer so-
lution for Lx = E −B:

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

y1
y2
y3
y4
y5

 = final position

b1
b2
b3
b4
b5

that there is a small chance that we will find a integer solution y. We can chose y1, y2, y3 and
y4 exactly the same as the final position. It follows that b5 = 6b1 + 6b2 + b3 + 2b4 + 11y5. So in
order to find a integer solution, the final position must meet this specific equation.

4.3. INITIAL POSITION WITH 11 CHIPS 33

4.3 Initial position with 11 chips

We can now ask ourselves if there will be more possible final positions than one that can be
reached during the game. We will check this with an example which gives us a lot more possible
final positions: we leave out one more chip in our initial position

11

0

0

0 0

0

We have 6 possible nodes where we can leave out one chip compared to the upper bounds. After
we chose one node we have again 6 nodes to leave out one more chip. Except for the case in
which we chose remove one more chip from node 2. Node 2 has a upper bound of 1, so we can
leave out 1 chip here, but not two or more. We first chose 1 node out of 6 nodes, then again we
chose 1 node out of 6 nodes except for the case where we chose node 2 the first time, than we
chose 1 node out of 5 nodes. So we have 6 ·6 = 36 possible choices, but we have to disregard the
order. We chose 2 chips so we have to divide our possibilities by 2: 36

2 = 18.Then however, we
also assumed that the possible final positions where we chose the same node in the second round
as in the first round, were counted twice in 36 which is not the case. There are 6 possibilities
where we choose 2 times the same node, so we have to add 3: 18+3 = 21 and we have to remove
the possibility to chose node 2 two times, so we have to subtract 1: 21− 1 = 20. We end with
20 possible final positions:

2
1
2
2
2
2

 ,

3
0
2
2
2
2

 ,

3
1
1
2
2
2

 ,

3
1
2
1
2
2

 ,

3
1
2
2
1
2

 ,

3
1
2
2
2
1

 ,

4
0
1
2
2
2

 ,

4
0
2
1
2
2

 ,

4
0
2
2
1
2

 ,

4
0
2
2
2
1

 ,

4
1
0
2
2
2

 ,

4
1
1
1
2
2

 ,

4
1
1
2
1
2

 ,

4
1
1
2
2
1

 ,

4
1
2
0
2
2

 ,

4
1
2
1
1
2

 ,

4
1
2
1
2
1

 ,

4
1
2
2
0
2

 ,

4
1
2
2
1
1

 ,

4
1
2
2
2
0

We check the Hermite equation for every final position, here we present each final position for
which we found an integer solution:

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

y1
y2
y3
y4
y5

 =

e1
e2
e3
e4
e5

−

b1
b2
b3
b4
b5

34 CHAPTER 4. RESULTS

1.

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

y1
y2
y3
y4
y5

 =

2
1
2
2
2

−

11
0
0
0
0

→

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

y1
y2
y3
y4
y5

 =

−9
1
2
2
2

→

y1
y2
y3
y4
y5

 =

−9
1
2
2
4

Again we take y6 = 1

y1
y2
y3
y4
y5
y6

 =

−9
1
2
2
4
1

and again we find the integer solution

7
10
7
6
6
7

4.3. INITIAL POSITION WITH 11 CHIPS 35

2.

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

y1
y2
y3
y4
y5

 =

3
0
2
2
2

−

11
0
0
0
0

→

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

y1
y2
y3
y4
y5

 =

−8
0
2
2
2

→

y1
y2
y3
y4
y5

 =

−8
0
2
2
4

Again we take y6 = 1

y1
y2
y3
y4
y5
y6

 =

−8
0
2
2
4
1

and again we find the integer solution:

6
9
6
5
5
6

36 CHAPTER 4. RESULTS

3.
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

y1
y2
y3
y4
y5

 =

4
1
1
2
2

−

11
0
0
0
0

→

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

y1
y2
y3
y4
y5

 =

−7
1
1
2
2

→

y1
y2
y3
y4
y5

 =

−7
1
1
2
2

Again we take y6 = 1

y1
y2
y3
y4
y5
y6

 =

−7
1
1
2
3
1

−5 0 1 1 1 1
1 −2 1 0 0 1
1 1 −3 1 0 0
1 0 1 −3 1 0
1 0 0 1 −3 1
1 1 0 0 1 −3

−22 −21 −5 −9 −37 6
−39 −38 −9 −16 −66 11
−29 −28 −7 −12 −49 8
−26 −25 −6 −11 −44 7
−27 −26 −6 −11 −46 7
−27 −26 −6 −11 −46 8

−7
1
1
2
3
1

 =

−5 0 1 1 1 1
1 −2 1 0 0 1
1 1 −3 1 0 0
1 0 1 −3 1 0
1 0 0 1 −3 1
1 1 0 0 1 −3

5
7
5
4
4
5

 =

−7
1
1
2
2
1

We find integer solution:

5
7
5
4
4
5

4.3. INITIAL POSITION WITH 11 CHIPS 37

4.
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

y1
y2
y3
y4
y5

 =

4
1
2
1
1

−

11
0
0
0
0

→

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6 6 1 2 11 0

y1
y2
y3
y4
y5

 =

−7
1
2
1
1

→

y1
y2
y3
y4
y5

 =

−7
1
2
1
3
1

Again we take y6 = 1

y1
y2
y3
y4
y5
y6

 =

−7
1
2
1
3
1

−5 0 1 1 1 1
1 −2 1 0 0 1
1 1 −3 1 0 0
1 0 1 −3 1 0
1 0 0 1 −3 1
1 1 0 0 1 −3

−22 −21 −5 −9 −37 6
−39 −38 −9 −16 −66 11
−29 −28 −7 −12 −49 8
−26 −25 −6 −11 −44 7
−27 −26 −6 −11 −46 7
−27 −26 −6 −11 −46 8

−7
1
2
1
3
1

 =

−5 0 1 1 1 1
1 −2 1 0 0 1
1 1 −3 1 0 0
1 0 1 −3 1 0
1 0 0 1 −3 1
1 1 0 0 1 −3

9
14
10
9
9
10

 =

−7
1
2
1
1
2

We find integer solution:

9
14
10
9
9
10

38 CHAPTER 4. RESULTS

So we found integer solutions:

7
10
7
6
6
7

 ,

6
9
6
5
5
6

 ,

5
7
5
4
4
5

 ,

9
14
10
9
9
10

Now we check if we cannot subtract the solution of Ly = 0 :[

6 11 8 7 7 8
]T

We can subtract y from our fourth solution:

9
14
10
9
9
10

−

6
11
8
7
7
8

 =

3
3
2
2
2
8

We see that this is the smallest solution and therefore the only solution that gives a final position.
So the 20 possible final positions, gave only one final position that can actually be reached:[

4 1 2 1 1 2
]T

4.4 Initial position with 14 chips

If we begin with a initial position with 14 chips, we can easily obtain that the game will never
end. We have the upper bounds on each node for a final game with 13 as the total number of
chips on the graph:

≤ 4

≤ 1

≤ 2

≤ 2 ≤ 2

≤ 2

If we would add one chip, there will always be a node that has a number of chips which is higher
than this upper bounds, this implies that the game will be infinite in this case.

4.5. ANOTHER EXAMPLE GRAPH 39

4.5 Another example graph

For the Erkisson graph with n = 6 and 11 chips on the center node we found 4 solutions which
formed a nice chain. We know that there must always be a smallest integer solution but can we
find a graph example where we get two or more solutions y and z, which are not the smallest
solutions, but for which: y 6≤ z and y 6≥ z. We chose an example for which the Hermite matrix
has a very nice form:

5

6

1

3

2

7

4

L =

−1 0 0 0 0 1 0
0 −1 1 1 0 0 0
0 1 −1 0 0 0 0
0 0 0 −3 0 0 1
0 0 0 0 −2 1 0
1 0 0 1 1 −2 0
0 0 0 1 1 0 −1

Ly = 0→ y =

0
1
1
0
0
0
0

H =

1 0 0 0 0 0 −1
0 1 0 0 0 0 −1
0 0 1 0 0 0 −1
0 0 0 1 0 0 −1
0 0 0 0 1 0 −1
0 0 0 0 0 1 −1
0 0 0 0 0 0 0

We place 3 chips on node 1, our upper bounds are as follows:

40 CHAPTER 4. RESULTS

≤ 1

≤ 1

≤ 0

≤ 0

≤ 1

≤ 0

≤ 2

We have the following final positions:

0
0
0
1
1
1
0

,

0
0
0
2
0
1
0

,

0
0
0
2
1
0
0

,

0
1
0
0
1
1
0

,

0
1
0
1
0
1
0

,

0
1
0
1
1
0
0

,

0
1
0
2
0
0
0

We get the following corresponding integer solutions:

6
0
0
0
1
3
1

,

7
0
0
0
2
4
2

,

6
1
0
2
1
4
9

,

8
0
0
1
2
5
3

,

7
1
0
3
2
5
11

,

10
0
0
1
3
7
4

,

9
1
0
3
3
7
12

We see that we get an integer solution for every final position, this because the Hermite matrix
is very simple. We also see that for instance[

7 1 0 3 2 5 11
]T 6≤ [10 0 0 1 3 7 4

]T
And [

7 1 0 3 2 5 11
]T 6≥ [10 0 0 1 3 7 4

]T
4.6 Eriksson graph for each number of nodes

I made a maple program(see appendix B) which calculates the integer solution for our specific
Erkisson graph with an initial position of 3n−5 chips on the center node. The program gives the

4.6. ERIKSSON GRAPH FOR EACH NUMBER OF NODES 41

integer solution for each n with the hope of finding a pattern in the solutions. For n = 1, 2, ..., 20
we find:

3
3
2
2

 ,

7
10
7
6
6
7

 ,

17
28
20
17
16
16
17
20

,

43
75
54
46
43
42
42
43
46
54

,

111
198
143
122
114
111
110
110
111
114
122
143

,

289
520
376
321
300
292
289
288
288
289
292
300
321
376

,

755
1363
986
842
787
766
758
755
754
754
755
758
766
787
842
986

,

1975
3570
2583
2206
2062
2007
1986
1978
1975
1974
1974
1975
1978
1986
2007
2062
2206
2583

,

5169
9348
6764
5777
5400
5256
5201
5180
5172
5169
5168
5168
5169
5172
5180
5201
5256
5400
5777
6764

The top node and the center node are fired different times but we do see symmetry on the circuit
nodes. We see some interesting pattern of two equal numbers in entry n/2+2 and n/2+3 followed
up by adding 1 for the following entry, 3 for the one after, and we go on with adding, we get the
sequence: 1, 3, 8, 21, 55, 144, 377, 987... we can conclude this paper with the question if we can
give a formula for this sequence and a reason for this behavior? Is this behavior traseable from
our graph? And can we use this to calculate the integer solutions faster?

42 CHAPTER 4. RESULTS

Chapter 5

Conclusion

We found several ways to calculate the finiteness of the chip firing game, given an initial position
and a final position. With only the initial position one can just play the game and see where it
goes. When we also use the possible final position for the graph we can set up the laplacian and
use crammer’s rule or we use the Hermite normal form. The difficulty of the last two described
methods is that we have to know all the final positions and implement all these positions in the
equation to find the final position for our given initial position. In further research about the
chip firing game one can investigate if there is a more efficient way or one can build a algorithm
were al the possible final positions are calculated and plugged in the Hermite equation.
Another method would be to extend the Java applet. One can build in another function which
plays the game for you. You do not have to click on the nodes to fire them, Java will do this
for you until the is finished. The best way to do this is to combine it with an algorithm which
calculates the final position reachable from your chosen initial position and which calculates the
number of steps needed to finish the game. This would be the most efficient way.

another interesting further investigation would be to find a reason for or meaning of the pattern
in the solutions of the Eriksson graph for each n.

I worked with great pleasure on this research. I enjoyed working with my supervisor on a
challenging project which goes way beyond most peoples interest with it’s far-fetched appli-
cations and use for society. Although reality often seemed far away, I managed to get more
applied by making an applet for the game. I was happy to use my first years subject ’Inleiding
programmeren’ for a great goal after all. I regret to stop the research with so many ways for
more investigation, but I’m happy to see that mathematics is in some way also a infinite game,
which will always give us an intellectual challenge and which will always let us continue to play.

43

44 CHAPTER 5. CONCLUSION

Bibliography

[1] Spencer, J. (1976). Balancing Games Journal of combinatorial theory, Series B 23, 68-74

[2] Doer, B. (2000). Vector Balancing Games with Aging. Mathematisches Seminar 2

[3] Anderson, R. Lovász , L. Shor, P. Spencer, J. Tardos, E. & Winograd, S. (1989) Disks, balls,
and walls: analysis of a combinatorial game. Amer. Math. Monthly, 96(6) 481-493.

[4] Biggs, N. (1999) Chip firing and the critical group of a graph. J. Algebraic Combin, 9(1))
25-45.

[5] Björner, A. & Lovász, L. (1992). Chip-Firing Games on Directed Graphs. Journal of Algebraic
Combinatorics, 1, 305-328.

[6] Merino, C. (2001) The Chip Firing Game and Matroid Complexes. Discrete Mathematics
and Theoretical Computer Science Proceedings, 245-256

[7] Björner, A. Lovász, L. & Shor, P. Chip-firing games on graphs. (1991) European Journal of
Combinatorics, 12.4, 283-291

[8] Eriksson, K. (1991). No polynomial bound for the chip firing gem on directed graphs. Pro-
ceedings of the American Mathematical Society, 112 (4).

[9] Minc, H. (1988) Nonnegative matrices, J.Wiley & Sons

[10] Kannan, R. & Bachem A. (1997). Polynomial algorithms for computing the Smith and
Hermite normal forms of an integer matrix. Society for Industrial and Applied Mathematics,
8 (4)

[11] Schrijver, A. (1986) Theory of linear and integer programming. John Wiley & Sons.

45

46 BIBLIOGRAPHY

Appendix A

Java code

The game works as follows, you can click on the screen to place a node. When you have at least
placed two nodes you can click in one node and then click in a other node which gives you an
edge between this two nodes. When you press the right mouse button you can place one chip
on a node by clicking in the node, if click two times in a node you get two chips in the node
ect. You can continue with placing chips on node unitl you press the right mouse button again.
When you pressed the right mouse button for the second time you can fire nodes.

Java class Punt

package bep;

import java.awt.Graphics;

import java.util.ArrayList;

import java.util.List;

import javax.swing.JComponent;

import javax.swing.JTextArea;

public class Punt extends JComponent{

int x;

int y;

int c;

List<Punt> connecties;

public Punt(int x, int y) {

super();

this.x = x;

this.y = y;

this.c = 0;

this.connecties = new ArrayList<Punt>();

}

public void setC(int c) {

this.c = c;

}

public int getC() {

return c;

}

public int getX() {

47

48 APPENDIX A. JAVA CODE

return x;

}

public int getY() {

return y;

}

public List<Punt> getConnecties() {

return connecties;

}

public void addConnectie(Punt connectie) {

connecties.add(connectie);

}

}

Java class rondje

package bep;

import java.awt.Color;

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.awt.Point;

import java.awt.RenderingHints;

import java.awt.event.MouseEvent;

import java.awt.geom.AffineTransform;

import java.awt.geom.Ellipse2D;

import java.util.ArrayList;

import java.util.List;

import javax.swing.JFrame;

import javax.swing.JPanel;

@SuppressWarnings("serial")

public class Rondje extends JPanel {

List<Punt> cirkels = new ArrayList<Punt>();

Punt selected1 = null;

Punt selected2 = null;

int Status = 1;

public Rondje() {

addMouseListener(new java.awt.event.MouseAdapter() {

public void mouseClicked(java.awt.event.MouseEvent evt) {

if(evt.getButton() == MouseEvent.BUTTON3) {

Status = Status + 1;

}

if(Status == 1) {

int x = evt.getX();

int y = evt.getY();

for(Punt p : cirkels) {

if(x > p.x - 15 && x < p.x + 15 && y > p.y -15 && y < p.y +15){

if(selected1 == null) {

selected1 = p;

} else {

selected2 = p;

49

}

break;

}

}

System.out.println(evt.getX());

if(selected1 == null) {

tekenCirkel(x, y);

} else {

if(selected2 != null) {

if(selected1.connecties.contains(selected2)) {

selected1.connecties.remove(selected2);

} else {

selected1.addConnectie(selected2);

if(!selected2.connecties.contains(selected1)) {

selected2.addConnectie(selected1);

}

}

selected1 = null;

selected2 = null;

}

}

} else if(Status == 2) {

int x = evt.getX();

int y = evt.getY();

for(Punt p : cirkels) {

if(x > p.x - 15 && x < p.x + 15 && y > p.y -15 && y < p.y +15){

p.c = p.c +1;

break;

}

}

} else if (Status == 3){

int x = evt.getX();

int y = evt.getY();

for(Punt p : cirkels) {

if(x > p.x - 15 && x < p.x + 15 && y > p.y -15 && y < p.y +15){

if(p.c >= p.connecties.size()) {

p.c = p.c - p.connecties.size();

for(Punt connectie : p.connecties) {

connectie.c = connectie.c + 1;

}

}

break;

}

}

}

repaint();

}

});

}

public void tekenCirkel(int x, int y) {

cirkels.add(new Punt(x, y));

this.repaint();

}

50 APPENDIX A. JAVA CODE

@Override

public void paint(Graphics g) {

super.paint(g);

Graphics2D g2d = (Graphics2D) g;

g2d.setColor(Color.RED);

System.out.println("paint");

for(Punt p : cirkels) {

g2d.drawOval(p.x -15, p.y -15, 30, 30);

g2d.drawString(p.c + "", p.x, p.y);

System.out.println("cirkel" + p.x);

for(Punt other : p.connecties) {

drawArrow(g2d, p.x, p.y, other.x, other.y);

}

}

}

void drawArrow(Graphics g1, int x1, int y1, int x2, int y2) {

Graphics2D g = (Graphics2D) g1.create();

final int ARR_SIZE = 4;

double dx = x2 - x1, dy = y2 - y1;

double angle = Math.atan2(dy, dx);

int len = (int) Math.sqrt(dx*dx + dy*dy) - 20;

AffineTransform at = AffineTransform.getTranslateInstance(x1, y1);

at.concatenate(AffineTransform.getRotateInstance(angle));

g.transform(at);

// Draw horizontal arrow starting in (0, 0)

g.drawLine(0, 0, len, 0);

g.fillPolygon(new int[] {len, len-ARR_SIZE, len-ARR_SIZE, len},

new int[] {0, -ARR_SIZE, ARR_SIZE, 0}, 4);

}

}

Appendix B

Maple code

for i from 4 by 2 to 30 do

K :=Matrix(i,i);

K(1..i) := 1;

K(1,1):= -1*i+1;

K(2,2) := -2;

K(3,2) := 1;

K(i,2):= 1;

K(2,i) :=1;

J := Vector[column](i,2);

J(1):=i-2-(3*i-5);

J(2) := 1;

J(3..i) :=2;

for j from 3 to i do

K(j,j):= -3;

K(j-1,j) := 1;

K(j,j-1) :=1;

K(1,j) :=1;

end do:

l := Vector[column](i,0);

s:=Vector[column](i,1);

nulvec := LinearSolve(K,l, free=’s’);

subs(s=Vector[column](i,1), nulvec);

Noemer:= map(denom, nulvec);

c:= ilcm(op(convert(Noemer,list)));

nulvec :=c*nulvec;

K := DeleteRow(K,i);

H,U := HermiteForm(Transpose(K), output = [’H’, ’U’]);

P:=Transpose(H);

P:=DeleteColumn(P,i);

Q:=Transpose(U);

J:=DeleteRow(J,i);

LinearSolve(P,J);

k:=Vector[column](i);

k(1..i-1) := LinearSolve(P,J);

k(i) := 1;

intopl := Multiply(Q,k);

for b from 1 to i do

while intopl(b) <= 0

do intopl:= intopl+nulvec;

end do:

51

52 APPENDIX B. MAPLE CODE

end do:

mm:=infinity;

for b from 1 to i do

mm := min(mm,floor((intopl(b))/(nulvec(b))));

end do:

intopl := intopl - mm*nulvec;

print(intopl);

end do:

