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A Matheuristic for the Integrated Disruption
Management of Traffic, Passengers and

Stations in Urban Railway Lines
Nikola Bes̆inović , Yihui Wang , Songwei Zhu , Egidio Quaglietta, Tao Tang , Senior Member, IEEE,

and Rob M. P. Goverde , Member, IEEE

Abstract— In big cities, the metro lines usually face great pres-
sure caused by huge passengers demand, especially during peak
hours. When disruptions occur, passengers accumulate quickly at
stations. It is of great importance for dispatchers to take passen-
ger flow control into consideration for the traffic management to
ensure passengers’ safety and to maintain their satisfaction. This
paper proposes an integrated disruption management model,
which incorporates train rescheduling and passenger flow control.
In this model, the train services can be short-turned, cancelled
and rerouted, while the number of passengers entering a station
is managed by controlling the station gates with consideration
of the capacities of platforms and trains. Moreover, the number
of passengers arriving at a station is calculated according to the
origin-destination matrices. The objectives are to recover the
train operation to the original timetable as soon as possible and to
minimize the waiting time of passengers outside the stations. With
the interaction between train services, passengers and station
gates, an iterative metaheuristic approach is proposed to solve the
integrated disruption management problem. Based on the data of
a Beijing metro line, numerical experiments are conducted to test
the proposed algorithm. The results demonstrate the importance
of integrated disruption management and the effectiveness of our
solution method.

Index Terms— Railway, disruption, resilience, passengers,
trains, stations.

I. INTRODUCTION

URBAN rail transit systems are the main arteries of large
cities and take a significant share in public transportation

systems. Everyday, millions of passengers commute by trains
and the passenger demand continues to increase. Urban rail
transit lines are more commonly characterised with high
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Nikola Bes̆inović, Egidio Quaglietta, and Rob M. P. Goverde are with
the Department of Transport and Planning, Delft University of Tech-
nology, 2600 GA Delft, The Netherlands (e-mail: n.besinovic@tudelft.nl;
e.quaglietta@tudelft.nl; r.m.p.goverde@tudelft.nl).

Yihui Wang, Songwei Zhu, and Tao Tang are with the State Key Lab-
oratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Bei-
jing 100044, China (e-mail: yihui.wang@bjtu.edu.cn; 18120297@bjtu.edu.cn;
ttang@bjtu.edu.cn).

Digital Object Identifier 10.1109/TITS.2021.3093570

frequency operations and maximum capacity use. Under such
conditions, it is inevitable that failures in the system occur,
such as a track blockage, signal failure or train door malfunc-
tion. Even short disruptions of 10-15 minutes can cause sig-
nificant damage to operations including multiple trains being
cancelled or heavily delayed, and stations and trains being
overcrowded. In such cases, dispatchers have to react quickly
to adjust train services as promptly as possible as well as
to inform and (re)direct passengers in the network. However,
dispatchers typically make decisions only locally, which may
be of poor quality on the network level. Even more, train and
platform capacity tend to become critical for disruption man-
agement. As a result, passengers may spend drastically longer
time in the metro system and even many may have to be denied
from the system due to extreme overcrowding in trains and
stations which generates a great dissatisfaction to passengers.
Therefore, these conditions raise the importance of combining
train and station control in the disruption management of
metro systems. To support dispatchers in real-time operations
and particularly during disruptions, mathematical optimization
models and algorithms can bring benefit to resolve these
challenging problems efficiently and more effectively.

This paper presents an integrated methodology for trans-
port disruption management of busy metro systems including
jointly train services, passenger demand and station control,
and we refer to it as an Integrated Disruption Management
(IDM). The model formulation incorporates train rescheduling
together with controlling passenger flows in the system, with
the objective of minimizing the total delay of passengers, train
service cancellations and the recovery to planned operations
after the disruption ends. In particular, a phase-specific objec-
tive function is introduced that distinguishes between different
phases of a disruption. On the train side, the arrival and
departure times and routing of train services can be adjusted,
train services can be cancelled and when necessary cancelled
train services reinserted again. On the passenger side, taking
system capacity constraints into account, passenger flows
through the system are being adjusted, and station gates
are controlled to manage the inflow of passengers entering
stations. We solve this new problem by applying an iterative
matheuristic approach. The approach is tested on a real-life
metro line in Beijing.
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The main contributions of the paper are fourfold. First,
a new mathematical formulation for addressing integrated
traffic, passenger and station management. Second, an iterative
matheuristic for solving the integrated transport management
problem. Third, the model combines two types of headways,
namely frequency-based and schedule-based as required at
metro systems. Fourth, we demonstrate the developed model
on a real-life line at Beijing metro.

The remainder of the paper is as follows. Section II
presents the literature review. Section III defines the considered
problem. Section IV describes the proposed mathematical
model of the integrated disruption management (IDM) prob-
lem Section V presents an algorithm for solving the IDM.
Section VI demonstrates the applicability of the algorithm and
Section VII gives concluding remarks.

II. LITERATURE REVIEW

Regarding disruption management of metro and railway
systems, only limited research exists and most com-
monly papers tackle either traffic management, i.e. trans-
port supply, or passenger assignment, i.e. transport demand.
Cacchiani et al. [1] gave an extensive review of rescheduling
and disruption management approaches in railway system,
where most approaches consider only train traffic manage-
ment. More generally, Bešinović [2] defined resilience of the
rail transport systems as the ability to withstand disruptions
as well as to recover as quickly as possible. It distinguishes
between the transport phases during disruptions: survivabil-
ity (from disruption occurrence to reaching the stable state,
the first phase), response (a steady state with regular reduced
services during disruption period, the second phase) and recov-
ery (returning from disruption to regular conditions, the third
phase). Resilience can be typically tackled both at planning
level and operations level, while disruption management is
part of the latter.

Some research focused exclusively on recovery – For exam-
ple, Jespersen-Groth et al. [3] determined the best reinsertion
strategies for cancelled services into the network after a
disruption finished, survivability – Hirai et al. [4] tackled
finding the best stop locations for trains that are cancelled due
to a disruption and response – Van Aken et al. [5] solved
adjusting timetables due to multiple planned disruptions.
In [6], the authors considered an incident in a subway line and
formulated an optimization model to calculate the rescheduled
timetables with the objective to minimize the total delay time
of trains. In addition, van Lieshout et al. [7] developed a new
line plan to operate in an isolated disrupted area to address
response in out-of-control situations. To solve all three sub-
problems of disruption management together, authors consid-
ered rescheduling actions from a disruption start to returning
to the original state again ( [8]–[11]). Veelenturf et al. [8]
proposed an integer linear programming model for solving
the timetable rescheduling problem which minimizes the
number of cancelled and delayed train services while adher-
ing to infrastructure and rolling stock capacity constraints.
Ghaemi et al. [9] proposed a microscopic train disruption
management model deciding the optimal short-turning sta-
tions, platforms and routes based on the available capacity.

Ghaemi et al. [10] proposed a mixed integer linear program-
ming model for the macroscopic rescheduling model covering
all three phases of a disruption and the choice of short-turning
station. In addition, Liu et al. [11] incorporated train circu-
lations. Passenger demand is not considered in these papers.
Some researchers took the passengers’ behavior into consider-
ation. Cadarso et al. [12] proposed a train rescheduling model
accounting for the passenger demand behavior to minimize
the operating costs and the number of denied passengers,
where the probability that passengers choose different paths
in the rapid transit network is considered. Considering the
uncertainty of passenger demands, Yin et al. [13] proposed
a stochastic programming model to minimize the passenger
delay, passengers’ traveling time and operating costs, where
the energy consumption was also taken into consideration.
In Veelenturf et al. [14], a train rescheduling model was
proposed to minimize the total passenger delay with a waiting
time limit for passengers. With the objective of maximizing
passenger satisfaction, minimizing, the operational costs and
the deviation from the undisrupted timetable, Binder et al. [15]
formulated the train rescheduling problem as an Integer Linear
Program. And ε-constraints were used to find the Pareto fron-
tier. Ghaemi et al. [16] investigated the impact of railway dis-
ruption prediction and used a multinomial logit choice model
to determine the passenger route choices together with the
macroscopic MILP rescheduling model of Ghaemi et al. [10]
in an iterative framework. Zhu and Goverde [17] proposed
a schedule-based passenger assignment model to distribute
passengers. Zhu and Goverde [18] used this model to deter-
mine passengers’ paths and the passenger-dependent weights
in the objective function, with the aim of minimizing the can-
celled trains, number of skipping stops and passenger delays.
Zhu and Goverde [19] extended this approach to an integrated
timetable rescheduling and passenger reassignment model,
and they proposed an Adapted Fix-and-Optimize algorithm
to solve the MILP. During disruption, the large number of
passengers in a metro line will cause severe congestion and
increase the passengers’ waiting time. To increase passengers’
satisfaction, it is better to take passenger flow control into
consideration. To our best knowledge, there are only several
studies about train rescheduling in which the passenger flow
control strategy is applied. Li et al. [20] proposed a state-
space model to solve the train rescheduling problem, where
the constraint of train capacity is considered and the passenger
entering rate can be decreased by implementing a control
strategy. In their model, when a train stops at a station,
the number of alighting passenger is proportional to the
number of onboard passengers, according to a proportionality
factor estimated based on the passenger demand original-
destination(OD) matrices. Model predictive control method-
ology was applied to solve the problem. Jiang et al. [21]
proposed a skip-stopping strategy with coordinated passenger
flow control. The constraints of train capacity and platform
capacity are considered in this model. A Q-learning based
approach was applied to minimize the frequency of passenger
being stranded.

Railway traffic management problems have been tack-
led recently in integrated or iterative setups in order to
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incorporate more practical constraints and/or generate better
quality solutions. Caimi et al. [22] modelled train rescheduling
problems introducing different variants of the conflict graph
modelling formulation and successfully solved some real-
life instances of busy corridors of Swiss railway networks.
They concluded that the models are capable of considering
many alternative routing possibilities and departure timings
and, in particular, are applicable to real-time applications.
Gao et al. [23] proposed an optimization model to reschedule
a metro line with an over-crowded passenger flow during a
short disruption, where a stop-skip strategy is formulated in
the model and an iterative algorithm is used to solve the
model. Corman et al. [24] addressed the problem of solving
train and passenger rescheduling during minor disturbances.
They proposed a mixed integer programming (MIP) model
where trains and passengers were rescheduled/rerouted using
an alternative graph-based model formulation. To solve this
MIP, they further developed an iterative approach. Recently,
Bešinović et al. [25] presented the first attempt to address
the IDM problem including station control. They proposed
a heuristic approach, and a simple objective for recovering
from disruption. In the current paper, we propose an exact
mathematical model formulation, a phase-specific objective
function to reinsert cancelled services and control station gates
with the consideration of train capacity and station capacity.

Detailed dynamic passenger assignment models (i.e. include
timetable-dependent passenger behavior) are complex and
require particular attention [18]. Such models can represent
passenger behavior more accurately. However, this comes at
the expense of higher computation time [15] that is usually
not acceptable in practice. To efficiently address the chal-
lenging and complex railway problems that arise in practice
simulation-based optimization approaches are needed [26].
In particular, these are useful for complex problems where
issues are time-consuming and simulation is used.

III. PROBLEM DESCRIPTION

In this paper, we tackle a complete open-track disruption
between two stations. Some practical examples for such cases
are power outage of a local power station or a fire in the
tunnel. If a track between two stations is blocked then, trains
need to short-turn and circulate on shorter distances. Busy
metro networks typically suffer from passenger overcrowding
even during regular peak hour operations. Passengers often
encounter the inability to board the first few departing trains as
they may be already full and need long waiting time to get on
board [23]. Even more, particularly during disruptions, when
less train services are provided, stations experience overflow of
passengers and thus train operators may decide to control the
number of incoming passengers due to the station capacity
and in the most extreme situations even completely close a
station [27]. We focus on train and stations operations of one
metro line while passengers originating/ending and traveling
to other train lines in the network are considered as well.

In metro operations, operators aim at different objectives
during survivability and response on one side, and recovery
on the other. For the former, the main objective is to provide

Fig. 1. Layout of the metro line.

regular/balanced services that are equally spaced in time with-
out considering the original timetable, i.e. to (try to) balance
demand peaks, and for the latter, the aim is to return to the
original scheduled services (as soon as possible). We adopt and
implement these two objectives in the model. Also, considered
dispatching measures for adjusting train services are rerouting,
retiming, replatforming, cancelling and reinserting (cancelled)
train services.

We consider a metro line as shown in Figure 1. Typically,
one side of a station has a depot to park rolling stock during
non-operating hours. During operating hours, this allows a
train service to be cancelled and moved away to the depot.
In addition, an additional reserve rolling stock unit may be
stored in a depot to be potentially used due to a disruption
(e.g. A failed rolling stock).

A train route is defined as a set of consecutive resources
associated with running and dwell times and planned departure
and arrival times including platforms at origin and destination
stations. A train service is a train operating in one direction
between origin and destination stations with a corresponding
train route. Each train service exclusively reserves a train route
preventing its resources to be used by other trains. Station
gates are important facilities for the station management. The
passenger flow can be controlled via the opening and closing
of gates. Each station gate has a maximum passing rate for
passengers. When the passenger arrival rate is higher than
the sum of maximum passing rate of opening gates, some
passengers need to queue outside the station until more gates
are opened or less passengers arrive at this station.

Considered assumptions in the paper are: 1. If a train
service is running when a disruption occurs, it cannot be
cancelled and will continue its running. 2. Running and dwell
times are assumed fixed. 3. All platforms at all stations are
island platforms. 4. All passengers that started their journey
will end it, without leaving the system prematurely due to
the disruption. 5. The number of passengers is real-valued
numbers to simplify the computation of passengers (because
the number of passengers is usually big, the error introduced
by this approximation is negligible).

IV. MATHEMATICAL FORMULATION

To solve the train rescheduling and passenger flow man-
agement problem, we propose the integrated traffic manage-
ment (IDM) model. This section presents first a problem
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formalisation including sets, parameters and decision variables
(Section IV-A), as well as modelling related to train manage-
ment (Section IV-B), station control (Section IV-C) passenger
flows (Section IV-D), the objective function (Section IV-E).
Finally, Section IV-F summarises the IDM model formulation.

A. Sets, Decision Variables and Parameters

Let us define a set of trains services Z and a single train
service i ∈ Z . Train services in outbound direction are in
subset Zo and services in the inbound direction are in Zi. The
set of stations is defined as M and a single station m ∈M . The
set of stations traversed by train service i , is defined as Mi .
A disruption time period is defined as [Tstart,Tend]. The sets of
train services are partitioned based on their scheduled timing
relative to the disruption period to services during disruption
Zb and services in recovery phase Zb, i.e. after disruption
ends. Services Zb are short-turned in stations closest to the
disrupted link and represent the remaining parts of the original
non-disrupted services on both sides of disruptions. Services
Zr correspond to the original services. Also, an additional
set of reinserting train services is denoted Za, which may
be used as soon as the recovery phase begins. Finally, Z =
Zb ∪Zr ∪Za. The planned departure and arrival times of train
service i are denoted by d̄i,m and āi,m , where m ∈ Mi . We note
that if train service i is cancelled, then Mi = ∅. For short-
turned services, the planned departure and arrival times are
assumed the same as for the original ones.

A set of routes is defined as J and a single route j ∈ J .
Subset Ji represents all routes available to train service i and
includes different routing options (e.g. platform use) and/or
timing options made by its alternative routes. The set C
includes all pairs of conflicting routes, where ( j,l) ∈ C if
routes j and l are in conflict. For each train service i one route
j can be used. We define a binary decision variable xi j for
each train service i ∈ Z using a route j ∈ Ji. If a service xi j

is chosen, then xi j = 1, otherwise it equals 0. For cancelling
a train service, a virtual route q is defined. The additional
variables representing the actual departure and arrival times of
train service i are denoted by di,m and ai,m , where m ∈ Mi .
In addition, each xi j is associated with its departure time at
the origin station τi j .

The passenger demand is described by a series of time-
varying origin-destination matrices [28], [29]. The disruption
period [Tstart,Tend] is discretized into a set of intervals, where
the length of each interval is |�T | and [Tn,Tn+1) with n ∈
1,2, · · · N . Based on that, we have Tstart = T1 and Tend =
TN+1. We use matrix �n to denote the OD matrix for time
interval [Tn,Tn+1). We denote the entering rate of station
m in [Tn,Tn+1) for passengers that have station m′ as their
destination as ζm,m′,n with ζm,m′,n ≥ 0. To avoid the passenger
congestion problems, a gate control strategy is adopted. Hence,
decision variable βm,n is used to denote the gate control factor
at station m in [Tn,Tn+1).

To calculate the passenger waiting times, we introduce an
event-driven passenger flow formulation, where the events
include train departure events, train arrival events and short-
turning events. er is used to denote the r -th event, and τr

is the time when the r -th event happens. To describe the

passenger alighting and boarding process, we use wbefore
mr ,m′(τr )

(wafter
mr ,m′(τr )) to represent the number of passengers that are

waiting inside station mr and have destination m′ immediately
before (after) event er occurs. Parameter C train

max is the maximum
capacity of a train and Csta

m is the capacity of station m.
The number of passengers boarding train ir at station mr is
denoted by ηboard

ir ,mr
and the remaining space on the train after the

alighting process of passengers is denoted by ηremain
ir ,mr

. Finally,
decision variable wout

m represents the number of passengers
outside the station m, and decision variable tout

m represents the
waiting time of these passengers.

The notation used in the paper is given in Appendix.

B. Trains

1) Routes Rescheduling: The train traffic management aims
to generate feasible rescheduled timetables while minimizing
passenger dissatisfaction. Train traffic management is based
on the extended conflict graph formulation introduced by [30].
In essence, this model decides on scheduling optimal routes
for train services. Each train service i has a set of alternative
train routes over the remaining available infrastructure that
incorporates traffic management measures such as rerouting
and retiming and if necessary, cancellation. Each train service
needs to satisfy ∑

j∈Ji

xi j + xiq = 1, ∀i ∈ Z . (1)

Due to shared infrastructure, trains need to satisfy safety
constraints. Therefore, For every conflicting pair in C , only
one service can be chosen as

xi j + xkl ≤ 1, ∀i,k ∈ Z , j,l ∈ J ,( j,l) ∈ C . (2)

In this way, conflicts are prevented while ensuring feasibility
of the route plan. Typically, a bigger minimum headway
is necessary in short-turning stations as opposed to regular
(non-disrupted) operations.

Platform Selection: Given the limited station capacity, plat-
form use and selection is considered in the model. Each route
consists of a dedicated platforms at origin and destination
stations. Platform choice is part of train routes J so no
explicit modelling is required.

2) Rolling Stock Connections: Rolling stock connections
are also considered to satisfy vehicle circulations in the system.
If a service from a terminal station is cancelled then a service
in the opposite direction needs to be cancelled as well since
a rolling stock is not available to run that service. Therefore,
the number of services during a disruption in both directions
should be equal to maintain a feasible rolling stock circulation.
To satisfy this,∑

i∈Zo

xiq −
∑
i∈Zi

xiq = 0, ∀i ∈ Z , (3)

which ensures that the number of cancelled services in out-
bound direction i ∈ Zo is equal to the number of cancelled
services in inbound direction i ∈ Zi.

3) Reinserting Cancelled Train Services: When a train
service is cancelled then its rolling stock is stored in the depot
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until the disruption finishes. Once a blockage is over, then
such rolling stock could be reinserted to provide additional
train services in order to return to the planned operations and
mitigate accumulated passenger demand as fast as possible.
During a disruption, in the worst case all short services,
i.e. short-turning services, denoted as ns could be cancelled.
Therefore, at most ns services may need to be reinserted after
a disruption finishes. Therefore,∑

i∈Zb∩Zo

xiq −
∑

e∈Jr

xke ≥ 0, ∀i ∈ Zb, ∀k ∈ Za. (4)

which states that the number of (outgoing) cancelled train
services during the disruption is considered for reinsertion in
the recovery phase. Jr is the set of routes after disruption
and Za is the set of available (outgoing) reinsertion services.
If some services are cancelled in Zb, then they will be
reinserted after the blockage is over.

Without loss of generality, it is sufficient to use reinserting
train services after a disruption ends since the model formu-
lation already minimizes the number of cancelled trains. and
thus during the disruption, only the bare minimum will be
removed, i.e. services will use the capacity in the best way
possible. Therefore, no additional services could be inserted
while a disruption is present. After that, spare capacity may
exist only after the infrastructure network is brought back to
its normal conditions, i.e. the blockage is fixed.

4) Train Arrival and Departure Times: The actual departure
times of train service i depend on the selected train route xi j .
Therefore, the departure from the origin station di,1 takes the
value of the selected route,

di,1 ≤ τi j + M(1 − xi j ), ∀i ∈ Z ,∀ j ∈ Ji, (5)

δi = di,1 − d̄i,1, ∀i ∈ Z . (6)

Inequality (5) only holds for xi j = 1, and otherwise,
the associated big-M value is turned on and thereby eliminates
the constraint. Since one of the objectives (defined in IV-E) is
to minimize deviation from the original timetable, the actual
departure time di,1 is driven to take values as close as possible
to the original departure time d̄i,1. Therefore, the inequality in
(5) is sufficient. Equation (6) defines the actual deviation δi

from the original departure time from the origin for each route
j of train i . Therefore, for the other stations, the arrival and
departure times are defined as:

ai,m = āi,m + δi , ∀i ∈ Z ,m ∈ 2, .., |Mi |, (7)

di,m = d̄i,m + δi , ∀i ∈ Z ,m ∈ 2, .., |Mi |− 1. (8)

C. Passenger Arrival Rate and Gate Control Strategy

Time-varying OD matrices denote the passenger demands.
For a metro line with M stations, the OD matrix for time
interval [Tn,Tn+1) can be written as

�n =

⎡
⎢⎢⎢⎢⎢⎣

0 λ1,2,n · · · λ1,M,n

λ2,1,n 0 · · · λ2,M,n
...

...
. . .

...
...

0
λM,1,n λM,2,n · · · 0

⎤
⎥⎥⎥⎥⎥⎦

, (9)

where λm,m′,n is the arrival rate of passengers that arrive
at station m and have station m′ as their destination in
[Tn,Tn+1). The passenger arrival rate, i.e. the number of
arriving passengers per second, for station m during the
disruption period [Tstart,Tend] can be formulated as a piece-
wise constant function, i.e.,

λm,m′(t) = λm,m′,n, ∀t ∈ [Tn,Tn+1), n ∈ 1,2, .., N. (10)

A decision variable βm,n is defined as a gate control factor
for station m and the time interval [Tn,Tn+1). Note that the
gate control βm,n corresponds to controlling with respect to the
passenger arrival rate, and not to the opening and closure of
the physical gates explicitly. For βm,n > 0, (some) passengers
are allowed to enter the station. In particular, for βm,n = 1,
the entering rate is equal to the passenger arrival rate, which
means that all the passengers can enter station m immediately
after arrival and at the same time, the number of passengers
queuing outside the station (if any) does not change. For
0 < βm,n < 1, some of the passengers cannot enter station
m immediately after their arrivals during [Tn,Tn+1), but need
to queue outside the station. In this case, the entering rate
of passengers at a station is smaller than the arrival rate of
passengers. More passengers would queue outside the stations.
In addition, if βm,n > 1, the number of passengers entering
station m during [Tn,Tn+1) could be larger than the number
of newly arriving passengers in this period, which means
some or all the queuing passengers can enter the station.
Finally, for βm,n = 0, i.e., all the ticket gates of station m
are closed, no passengers can enter station m during this time
period, leading to a fully closed station.

The relationship between the passenger arrival rates and the
passenger entering rates, i.e. controlled by βm,n , at station m
in [Tn,Tn+1) is denoted by

ζm,m′,n = βm,nλm,m′,n . (11)

Note that the gate control strategy does not distinguish the
destinations of passengers but treats them in the same way.

There exists a maximum entering rate, i.e., ζ max
m , of station

m for passengers when all ticket gates are open; so we have
∑M

m′=1
ζm,m′,n(t) ≤ ζ max

m , t ∈ [Tstart,Tend]. (12)

With the introduction of the passenger arrival rates and
entering rates, the number of passengers waiting (or queuing)
outside the ticket gates is computed by

wout
m (t) =

∫ t

tstart

(∑M

m′=1
λm,m′ (τ )

)
dτ

−
∫ t

tstart

(∑M

m′=1
ζm,m′(τ )

)
dτ, (13)

where ζm,m′(·) can be defined similarly as λm,m′(·) as given
in (10). In the IDM model, one of the objectives is to minimize
the total waiting time of the passengers queuing outside the
stations. At time instant t , the waiting time of the passengers
queuing outside station m is computed as follows:

tout
m (t) =

∫ t

tstart

wout
m (τ )dτ. (14)
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The total waiting time of the passengers queuing outside
the stations is computed by

tout,total =
∑

m∈M

tout
m (Tend). (15)

Remark: Note that the gate control variables can also be
introduced to depend on the traveling directions or even
depend on the destinations of passengers. However, this would
require more assistance from the station staff and tend to be
impractical for real-life application.

D. Passenger Flow

The numbers of boarding, alighting, and waiting passengers
inside the stations highly depend on the departure and arrival
times of train services, i.e., di,m and ai,m for train service
i ∈ Z and station m ∈ M . Even though the number of passen-
gers changes continuously with time in practice, we ignore the
detailed evolution process of passengers and present an event-
driven passenger flow model, where the number of passengers
varies suddenly when a train arrives at or departs from a
station. However, these sudden changes can be simulated by
e.g. a uniformly change over time. To describe the operation of
trains from the passengers’ perspective, we propose an event-
driven model consisting of the following three types of events:

• departure events: representing the departure of a train at
a station,

• arrival events: representing the arrival of a train at a
station,

• short-turning events: representing the short turning oper-
ation of a train at an intermediate station with turnaround
facilities.

The r -th event er occurring in the event-driven system is
denoted by a tuple as follows:

er = (τr , yr , ir ,mr ), (16)

where r is the event counter, τr is the time instant at which
event er occurs, yr is the event type, which has three possible
values (i.e., ‘d’, ‘a’ and ‘s’ corresponding to a departure event,
an arrival event and a short-turning event), ir is the train
service index, and mr is the station index. All the events
for the event-driven passenger flow model are specified in
the rescheduled timetable. Set R is the set of all events. The
occurrence time of event er can be determined as follows:

τr =

⎧⎪⎨
⎪⎩

dir ,mr if er = ′d′

air ,mr if er = ′a′

air ,mr if er = ′s′
. (17)

In the event-driven passenger flow model, the state of the
system, particularly the numbers of boarding, alighting, and
waiting passengers, should be updated when events occur. The
number of waiting passengers needs to be updated when an
event of any type occurs. The update of other states, e.g.,
the number of boarding passengers and the number of alighting
passengers, depends on the event type of the occurring event.
The updating process for the departure events, arrival events,
and short-turning events is described in detail in the following
sections.

1) Updates of Waiting Passengers for All Events: Before
any event occurs, denoted by (τr , yr , ir ,mr ), the number
of passengers that are waiting inside station mr and have
destination m′ is updated as follows:

wbefore
mr ,m′(τr ) = wafter

mr ,m′(τr ′ )+
∫ τr

τr′
ζmr ,m′(t)dt, (18)

where τr ′ is the event time of the predecessor event er ′ that
occurred at station mr . The total number of waiting passengers
at station mr can be computed by

wbefore
mr

(τr ) =
M∑

m′=1

wbefore
mr ,m′(τr ). (19)

However, we need to distinguish their destinations and to
decide whether they take the train services in the up or down
directions. The numbers of passengers waiting at station mr

for train services in the up and down directions are computed
as follows:

w
before,up
mr (τr ) =

M∑
m′=mr +1

wbefore
mr ,m′(τr ), (20)

and

wbefore,dn
mr

(τr ) =
mr −1∑
m′=1

wbefore
mr ,m′(τr ). (21)

We use twait
mr

(τr ) to denote the waiting time of passengers at
station mr when event er occurs, which can be calculated by

twait
mr

(τr ) = twait
mr

(τr ′)+
∫ τr

τr′
wbefore

mr
(t)dt, (22)

where τr ′ is the event time of the previous event er ′ that
occurred at station mr .

2) State Updates for Arrival Events: When an arrival event
occurs, denoted as er = (air ,mr ,

′a′, ir ,mr ), then train ir arrives
at station mr at time air ,mr . The number of passengers getting
off train service ir depends on whether station mr is the first
station of the train service or not.

• If station mr is the first station of train service ir , then
there is no passenger getting off the train, i.e.,

η
alight
ir ,mr

= 0. (23)

Moreover, the number of passengers ηbefore
ir ,mr ,m′ that are

on board train ir at station mr and have station m′ as
destination is also equal to zero, i.e.,

ηbefore
ir ,mr ,m′ = 0. (24)

• If station mr is not the first station of train ir , the number
of passengers getting off the train can be computed by

η
alight
ir ,mr

= ηafter
ir ,ρ(mr ),mr

, (25)

where ηafter
ir ,ρ(mr ),mr

is the number of passengers with
destination mr after the boarding process at predecessor
station ρ(mr ) has completed. Moreover, we have

ηbefore
ir ,mr ,m′ = ηafter

ir ,ρ(mr ),m′ , ∀m′ ∈ {mr + 1, · · · , M},
(26)
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if we consider train service ir traveling in the up direction.
Furthermore, the total number of passengers on board
train ir before the boarding process is

ηbefore
ir ,mr

=
M∑

m′=mr +1

ηafter
ir ,ρ(mr ),m′ . (27)

The equations for the calculations the train services in
the down direction can be formulated in a similar way.
Furthermore, the number of passengers waiting at the
station to board train services immediately after the
arrival events is the same as that immediately before, i.e.

wafter
m,m′(τr ) = wbefore

m,m′ (τr ), (28)

because the boarding process of passengers is considered
when a departure event happens.

3) State Updates for Departure Events: When a departure
event occurs, denoted as er = (dir ,mr ,

′d′, ir ,mr ), then train ir

departs from station mr at time dir ,mr . The number of passen-
gers boarding train ir (a train service, e.g., in the up direction)
at station mr is equal to the minimum of the number of waiting
passengers w

before,up
m (τr ) and the remaining space ηremain

ir ,mr
on

the train after the alighting process of passengers, i.e.,

ηboard
ir ,mr

= min(w
before,up
m (τr ),η

remain
ir ,mr

), (29)

The remaining space ηremain
ir ,mr

on train ir is computed by

ηremain
ir ,mr

= C train
max −ηbefore

ir ,mr
, (30)

where C train
max is the maximum capacity of a train and ηbefore

ir ,mr
is the number of passengers onboard train service ir after the
alighting process but before the boarding process at station mr .
The computation of ηbefore

ir ,mr
is given in Section IV-D.2. The

number of waiting passengers at station mr should be updated
as follows:

wafter
mr

(τr ) = wbefore
mr

(τr )−ηboard
ir ,mr

. (31)

In particular, since train service ir is a train service in the
up direction, so we also have

w
after,up
mr (τr ) = w

before,up
mr (τr )−ηboard

ir ,mr
. (32)

We assume that the proportion of the passengers with
different destinations with respect to the total number of
waiting passengers does not change after the boarding process,
i.e., the passengers with different destinations have the same
probability to board the train service. So we have

wafter
mr ,m′(τr ) = wbefore

mr ,m′(τr )
w

after,up
mr (τr )

w
before,up
mr (τr )

,

∀m′ ∈ {mr + 1, · · · M}. (33)

The number of passengers with destination m′ that board
train ir at station mr is

ηboard
ir ,mr ,m′ = wbefore

mr ,m′(τr )−wafter
mr ,m′(τr ), (34)

and the number of onboard passengers with destination m′
after the boarding process can be updated as

ηafter
ir ,mr ,m′ = ηbefore

ir ,mr ,m′ +ηboard
ir ,mr ,m′ , (35)

where ηbefore
ir ,mr ,m′ is the number of passengers that have station

m′ as destination immediately before the boarding process.
Moreover, the total number of passengers onboard train ir at
station mr can be calculated by

ηafter
ir ,mr

= ηbefore
ir ,mr

+ηboard
ir ,mr

. (36)

It is noted that the number of boarding passengers at the
final station of the train service is equal to zero.

4) State Updates for Short-Turning Events: When a short-
turning event occurs, denoted as er = (air ,mr ,

′s′, ir ,mr ), then
train ir (a train service, e.g., in the up direction) arrives at
station mr at time air ,mr . This train will end its service at
station mr and turns around to the other direction. Hence,
all the passengers that are on board this train should get off
at station mr . The alighting passengers that have not arrived
at their destinations will wait at station mr to board other
train services heading to their destinations. So the number of
alighting passengers is

η
alight
ir ,mr

=
M∑

m′=mr

ηafter
ir ,ρ(mr ),m′ . (37)

The number of passengers onboard train ir before the
boarding process is

ηbefore
ir ,mr

= 0. (38)

In addition, the boarding process is not allowed for this
short-turning train services. The number of waiting passengers
at the station should also be updated as follows

wafter
mr ,m′(τr ) = wbefore

mr ,m′(τr )+ηafter
ir ,ρ(mr ),m′,

∀m′ ∈ {mr + 1, · · · , M}. (39)

5) Station Capacity Constraints: For simplicity, we assume
that the type of platforms at all stations of the considered metro
line is an island platform. This means that the passengers
waiting for the train services in up and down directions are
actually in the same area. Based on the event model proposed
before, we only check the capacity of the station at the discrete
times when the events occur. For the arrival events and the
short-turning events, the constraint of station capacity can be
written as

wbefore
mr

(τr )+η
alight
ir ,mr

≤ Csta
mr

(40)

where Csta
mr

is the capacity of station mr . For station j , from
the time when an arrival event occurs to the time immediately
before a departure event occurs, the number of passengers in
station j will increase, because of the new passengers entering
the station and passengers alighting from a train. For the
departure events, there is also a constraint of station capacity,
which can be formulated as

wbefore
mr

(τr )+κ ·ηalight
ir ,mr

≤ Csta
mr

(41)

where κ is a coefficient used to denote the percentage of
alighting passengers that are still inside the station when the
train departs from the station.
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E. Objective Function

The objective of IDM consists of both train- and passenger-
related objectives. In the model, a distinction has been made
between response phase, and recovery phase and phase
specific objectives have been introduced. These different
objectives are supported by planner requirements. Considering
train-related objective terms, in the response phase, the focus is
on cancelling the least number of train services, and balancing
headways between consecutive trains, i.e. having frequency-
based operations. In the recovery phase, after the blockage is
over, the model aims at returning as fast as possible to the
original train services, i.e. having schedule-based operations.
Considering passenger-related objective terms, the model is
to minimize the total waiting time of the denied passengers
that are waiting outside stations while satisfying the capacity
constraints of trains and stations over both phases.

To model the objective function, we introduce additional
notation. For the disrupted phase, parameter H̄ represents a
response headway for a given disrupted line. The rescheduled
headway Hij,kl between two train services is defined as equal
to a time duration between two departures, for a pair of
train routes xi j and xkl . An auxiliary binary variable yi j,kl

is introduced which is equal to 1 if both routes xi j and
xkl are selected. Headway H̄ is computed as the maximum
of the minimum headway hmin and the scheduled/original
headway hsch. For example, in a busy line during a disruption,
infrastructure often becomes limited, and thus the minimum
headway tends to be more restrictive. However, on less busy
lines, the scheduled headway tends to remain the preferable
one. For the recovery phase, planned departure times d̄i,1 are to
be achieved in the shortest possible time. Parameter τi j is the
departure time from the origin station associated with a train
route xi j . Also, Xh denotes the summed headway deviation
computed as:

Xh =
∑

i,k∈Z , j,l∈J

|H̄ − Hij,kl yi j,kl | (42)

The objective function of the IDM problem is then defined
as follows:

Minimize
∑
i∈Zb

ωiq xiq + ω̄Xh

+
∑
i∈Zd

∑
j∈Ji

ωd
i j xi j +ωouttout,total. (43)

In (43), the first term defines the number of cancelled trains,
the second relates to regular services during the disrupted
period, the third is the difference from the original timetable
and the fourth is the total waiting time of passengers queuing
outside the station during the considered time period. In the
recovery phase, if a train route xi j is not selected, then the
corresponding departure time penalty becomes 0. Parameter
ωiq represents a cancellation penalty. Parameter ω̄ represents
a weight for the irregular services. Parameter ωd

i j defines the
relative importance of train service xi j to conform with the
planned schedule, which 1) defines an increasingly higher
importance to stick to the planned time as a train service is
further away from the disruption end, and 2) sets a higher

value for a bigger deviation from the schedule. To do so,
we assume a recovery period that the schedule needs to recover
to the original one. Such recovery period has a starting time
sT , which is equal the end of the disruption, and an ending
time eT . Then the weights ωd

i j are computed as

ωd
i j = |τi j − d̄i,1|

eT − sT
d̄i,1 (44)

where |τi j − d̄i,1| is an absolute time deviation from the
planned timetable departure and train service departure from
the origin station. Note that in a metro system, the actual
departure/arrival times can occur both before and after the
planned time, thus the absolute operator is needed. Multiplying
by planned departure time d̄i,1 gives more importance to the
train services departing later in time, i.e. to force them to
return to their scheduled time.

In addition,

xi j + xkl ≤ 1 + yi j,kl , ∀i,k ∈ Z , j,l ∈ J (45)

Equation (45) secures that an auxiliary variable yi j,kl

becomes 1 when both train routes xi j and xkl are selected.
Since the objective is to minimize a non-negative cost times
the variable yi j,kl , there is an incentive to set yi j,kl = 0.

F. Overall IDM Model

The resulting integrated disruption management problem
is a nonlinear programming problem. The model finds the
optimal set of train-related decisions (cancellations, adjusted
arrival and departure times), and passenger-related decisions
(passenger flows through the system and station/gate closures)
by solving the objective function (43) such that (1)-(4),
(11)-(12), (18)-(41), (45) and xi j ∈ {0,1}, ∀i ∈ Z , j ∈ J .

The IDM model is a nonlinear and computationally-
expensive problem, which is hard to address.

V. SOLVING INTEGRATED DISRUPTION MANAGEMENT:
MATHEURISTIC APPROACH

We propose a new matheuristic approach for integrated
disruption management (IDM) to optimize railway timetables
and passenger flows during disruptions. First the models are
introduced, and then the solution algorithm is presented. The
matheuristic algorithm includes two mathematical models: a
train traffic management (TTM) model and a passenger flow
management (PFM) model.

The train traffic management (TTM) model is a mixed
integer program (MIP) based on a conflict graph formulation
which reroutes, retimes, short-turns, and cancels train services.
The TTM minimizes the number of cancelled trains and
schedule deviations, while considering fixed passenger flows
in the network. The objective function of TTM is defined
in (43), satisfying constraints (1)-(4). Objective function (43)
minimizes the number of cancelled train services, headway
irregularity during the disrupted phase, timetable deviation
during recovery, and the number of denied and waiting pas-
sengers. The objective function of TTM is denoted as f .

The passenger flow management (PFM) model is a nonlin-
ear programming problem based on the time-dependent OD
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passenger demand, where passengers could wait at platforms,
board/alight trains, be on-board trains, or be denied by over-
crowded stations (i.e. waiting outside due to station gates
closure). The objective of the PFM model is to minimize
the total waiting time of the passengers queuing outside the
station. For the calculation of the PFM model, the train
schedule is considered to be fixed by the TTM model. The
PFM is defined as follows:

Minimize
∑

m∈M

∫ tend

tstart

wout
m (t)dt, (46)

while satisfying constraints (11)-(12) and (18)-(41). The
resulting nonlinear passenger flow management problem
can be solved using e.g., sequential quadratic programming
(SQP) or interior-point methods. In this paper, we use function
fmincon in Matlab with the SQP algorithm.

Algorithm 1 IDM Algorithm
Input: services Z , routes J , stations M , OD demand �n ,
disruption [Tstart,Tend], āi,m , d̄i,m , ωiq , ω̄, ωout, ωd

i j , H̄

Output: xk
i j ,ak

i,m ,dk
i,m ,wout,k

m ,wbefore,k
m ,βk

m,n
Initialization. k = 0
Step 1. compute all x0

i j , a0
i,m , d0

i,m , and f 0 running TTM with
uniform number of passengers assigned to train services.
repeat
k=k+1;
Step 2. solve PFM and obtain new passenger flows, passen-
gers waiting outside wout,k

m and gate decisions βk
m,n

Step 3. compute total waiting time of passengers outside the
stations tout,total

k
Step 4. solve TTM using weight tout,total

k and obtain f k , and
all xk

i j , ak
i,m , dk

i,m
until k = nmax or f k ≥ f k−1

Return all xk
i j ,ak

i,m ,dk
i,m , wout,k

m ,wbefore,k
m , βk

m,n

A. The Algorithm

The IDM algorithm is shown in Algorithm 1. Given are
train-related input like train services Z , routes J , the original
timetable represented by the scheduled arrival and departure
times for all train services āi,m , d̄i,m , train capacity C train

max ,
stations M , and passenger-related input such as original
OD demand �n and station capacity Csta

m . Also, given are
disruption start and end time Tstart,Tend, the maximum number
of iterations nmax, weights ωiq , ω̄, ωout and ωd

i j and the optimal
headway H̄ . We define for a given iteration k: xk

i, j as the train
services in iteration k, ak

i,m , dk
i,m as a rescheduled timetable

including arrival and departure times, wout,k
m (wbefore,k

m ) as
passengers waiting outside (inside), βk

m,n as gates control
strategy, and f k as the objective value in iteration k.

In step 1, the TTM model is solved assuming a uniform
number of passengers, since passenger flows and distribution
are not known at this point. The original timetable is adjusted
by delaying, short-turning and cancelling train services. The
objective of TTM is to find a new timetable such that train

services are affected the least by a disruption. Output of TTM
is a rescheduled timetable. In addition, the TTM assumes a
fixed passenger distribution in the network.

In step 2, the new rescheduled timetable is given as input
to the model for passenger flow management (PFM). Based
on the fixed rescheduled timetable and the passenger demand,
the PFM model decides gate controls and computes the num-
ber of boarding/alighting passengers, the number of waiting
passengers and the number of passengers that are denied at
stations. Output are gate control factor βm,n for each station,
number of passengers waiting outside wout,k

m , and number of
passengers waiting in the station m, wbefore,k

m as

wout,k
m =

∑
r∈R

wout,k
m (τr ), (47)

wbefore,k
m =

∑
r∈R

wbefore,k
m (τr ), (48)

where R is the set of all events. In step 3, to use adjusted
passenger flows into TTM, waiting passengers (i.e. onboard,
in station and denied/out-station) are summarized over all
stations along all train services. In each iteration k, tout,total

k
represents the waiting times outside all stations. This waiting
time is estimated by the PFM and thus, computed as:

tout,total
k =

∑
m∈M

∫ tend

tstart

wout
m (t)dt (49)

In step 4, TTM is run again using new weighted passenger
waiting time tout,total

k . Over the iterations, TTM delivers the
departure and arrival times of train services at stations to PFM.

After step 4, the algorithm terminates if nmax is
reached or the objective function f k , computed in iteration
k by (43), does not improve. In essence, if nmax is not
reached, then the new solution of TTM f k is compared
with the solution obtained in the previous iteration f k−1.
If the solution does not improve, i.e. f k−1 − f k ≥ 0, then
the algorithm terminates. Within the algorithm, the conver-
gence is not proven guaranteed. However, based on previous
similar implementations and our experiments, the interaction
of the two models terminate, i.e. stop improving the solution,
in a few iterations (as shown for traffic management under
disturbances in [24]).

The algorithm and models are implemented in Matlab with
the Yalmip toolbox. The TTM is solved by the optimization
solver Gurobi, while the nonlinear PFM is solved using
function fmincon in Matlab with the SQP algorithm.

VI. EXPERIMENTS

A. Setup

We demonstrate the IDM approach on real-life cases of
Line 9 of Beijing Metro. Line 9 consists of 11 stations. The
total length is 16.5 km, and the average daily passenger volume
is approximately 520,000 passengers. A depot for keeping
cancelled rolling stock is at station GGZ. Figure 2 gives the
layout of Line 9. The stations are numbered sequentially from
GGZ to NL, e.g. GGZ is station 1 and QLZ is station 6.

We test the model against different durations of disruption
as well as varied passenger demand. We assume that the
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Fig. 2. Line 9 layout.

disruption occurs between QLZ and LLQ (see Figure 2).
Since metro services operate with high frequency, we assume
a single starting time of a disruption. All disruptions occur
at 8:03 and the time period for rescheduling considered is
then from 8:03 to 9:13. We consider various test cases, where
disruption duration is 10, 15 and 20 minutes, the relative
ratio of passenger demand ranges from 60% to 125% in
steps of 5%, and extra services can be inserted or not after
the disruption. Hence, a scenario refers to a combination of
these 3 parameters being duration, passenger demand and
extra services. This resulted in 84 scenarios in total. In the
results, each point represents an outcome from one scenario.
In addition, we ran an IDM variant without gate control to
determine the transport capacity limitations and use it as a
benchmark to evaluate the benefits of IDM. Passenger demand
represents a realistic demand in the network as multiple
proportional demand variants are created representing 60% to
125% of the original one.

Parameters of the IDM algorithm and the corresponding
models are the following: number of iterations is set to nmax =
10, ωiq = 1,000,000, ω̄ = 1, ωout = 2,000, the train capacity
is set as 1440, the station capacity is set as 2700 and κ is
set as 0.7. The maximum entering rate ζ max

m is 10 persons
per second for every station. The time interval is set as 180s.
Moreover, the passenger arrival rates and the train schedule are
constructed based on the data of Beijing Metro Line 9. During
the considered time period in our case study, the passenger
demand is constant, which is reasonable for peak periods. The
values in OD matrices are shown in Table I. For generating
alternative routes, a time granularity of 10 s is used. For each
train service, the alternative routes are defined around the
originally scheduled departure time and so they do not overlap
with the alternative routes of neighbouring train services. The
total number of alternative routes (without the dummy ones)
is 1575, 1701 and 1827 for 10, 15 and 20 min disruption
duration, respectively. In addition, for three extra reinserting
train services, a total of 120 alternative routes has been
included.

B. Results

In the following, the applicability of the developed algo-
rithm is presented over the defined scenarios including number

TABLE I

THE PASSENGER DEMANDS IN THE CASE STUDY (PERSON PER SECOND)

of passengers waiting inside and outside of stations, time
under (partial) gate closures, and number of stations requiring
gate control for different scenarios. In the end, we report the
computational performance of the algorithm.

Without gate control, the system can operate and provide
solutions only for limited demand and shorter disruption
durations. In particular, when solving the problem without gate
control, only disruptions of 10 min (except 120% demand) and
15 min with small demand (up to 65%) can be solved. As soon
as the demand (and/or duration) increases further, a station
(or more) becomes overcrowded, with the passengers ending
up in a deadlock meaning that the station capacity is fully
used and a full train is dwelling to alight the passengers. Then
the solution of PFM, and thus IDM (without gate control),
is infeasible. In such cases, the gate control is necessary to
manage passenger flows in the system and prevent deadlocks
at busy stations. Therefore, the gate control in IDM provides a
higher passenger throughput of the network, i.e. allows more
passengers to be transported.

Figure 3 shows the number of passengers waiting in stations
during the disruption and recovery phase. Clearly, the number
of affected passengers grows with increasing disruption length
(3 line colors). It can be seen that reinserting train services
(dashed lines) is beneficial in reducing the number of passen-
gers waiting inside stations for disruptions of 15 and 20 min.
In particular, when passenger demand exceeds 110% for the
former, and 90% for the latter. Instead, for 10-min disruption,
reinserting train services does not reduce passengers waiting
time (solid and dashed lines overlap).
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Fig. 3. Number of passengers waiting in stations.

Fig. 4. Number of passengers waiting outside stations.

Figure 4 shows the number of passengers waiting outside
stations during the disruption and recovery phase. It can be
seen that for 10 min disruption no passengers are waiting
outside, and thus, no gate control was required. For 15-min
disruption, passengers start accumulating outside for demand
bigger than 65%, while for 20-min disruption, only until
60% demand no passengers are waiting outside. For both
15 and 20-min disruptions, the increase in pax waiting is
steep and seems quadratic/exponential. Clearly, the metro
line cannot accommodate all passengers at its stations during
disruptions and represents a significant bottleneck. Observed
is also that reinserted services do not impact (much) the
passengers waiting outside. This is due to the fact that pas-
sengers primarily queue during disruptions while reinserting
services was possible only after the disruption was resolved.
In general, passengers will queue outside the station if the
gate control strategy is adopted. The reinserting services are
scheduled only after the disruption is resolved, i.e. during
the recovery phase. When the disruption duration is long and
the passenger demand is large, there will be a large number
of passengers accumulated in some stations. Without extra
services, the gate control strategy is still adopted during the
recovery phase for these stations, because there are many
passengers in the stations and the station capacity is limited.
So, the number of passengers waiting outside the station may
keep increasing after the disruption phase. If there are extra

Fig. 5. Number of stations controlled.

services, more passengers can be served, which means the
number of closed gates can be smaller and more passengers
can enter the station. However, for a disruption with short
duration or small passenger demand, the number of passengers
accumulated in the stations is not large. The gate control
strategy is not required during the recovery phase. In this
case, the extra services have no influence on the passengers
waiting outside the station. In Figure 4, it can be seen that
the extra services can decrease the number of passengers
waiting outside the stations for the 20-min disruption with
large passenger demand. Instead, for the 15-min disruption,
the extra services do not affect the number of passengers
waiting outside the stations.

It can be observed in Figures 4 and 5, while gates are not
controlled, all passengers can enter the stations, i.e. the number
of passengers waiting outside stations is zero. The numbers of
passengers inside stations coincide to the ones obtained by the
IDM. With increasing demand, in order to avoid deadlocks,
station control is used and passengers start to queue outside.
Note that the results for IDM that do not require gate control
(e.g. 10-min disruption, except 125% demand), are equal to
the ones of operations without gate control.

Figure 5 shows the number of stations applying gate control
over the scenarios. It is seen that for 10-min disruption, only
1 station required to be controlled for demand of 125%,
while for the rest, no gate control was needed, meaning that
stations were able to withstand passengers arriving and waiting
inside. For 15 and 20-min disruption instead, multiple stations
required some sort of control, either complete or partial closure
of station gates. More interestingly, in many cases it was
required to manage not only the stations right next to the
disrupted track section, but also further along the line. Such
control of multiple stations allowed for the best (highest)
flows of passengers in the network. For 15-min disruption,
somewhat less stations were controlled for cases between
60 and 90% of demand scenarios. And for the rest, both
15 and 20-min disruptions required control of 6 stations.
In fact all, 6 stations are on the same side of the disruption,
on the segment GGZ-QLZ, while no stations on the segment
LLQ-NL was closed. This is due to the fact that infrastructure
on GGZ-QLZ becomes significantly reduced by the disruption
(see Figure 1). At entering QLZ, only 1 track remains available
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Fig. 6. Gates closed.

Fig. 7. Occurrence of station control over demand scenarios.

due to limited interlocking in the area. The dashed lines are
below the solid lines of the same color, which means that
the number of station controlled do not depend on the extra
services.

Figure 6 reports gate control, computed as summed gate
control factor βm,n multiplied by the duration of the measure.
This way, complete gate closure is weighted more. It shows
behaviour similar to passengers waiting outside in Figure 4.
Due to the overcongested line, reinserting train services does
not relief much passengers waiting outside of stations. For
20-min disruption, a slightly shorter gate control is required
with extra train services. This is due to the fact, that passengers
remain stranded in stations (one or more) for a longer time, and
thus some are benefiting from (being transported by) inserted
extra services. For 15-min disruption, that is not the case,
as the passenger queues outside stations were resolved earlier.

Figure 7 visualises stations controlled along the line.
It shows the occurrence of each station being controlled over
demand scenarios, i.e. the number of scenarios in which each
station had βm,n 
= 1 at any point of time. Only stations on the
segment GGZ-QLZ are given, as no other stations required
to be controlled. For 10-min disruption only station QLZ,
the closest to the disrupted track section, is controlled for
demand of 125%. For 15 min, stations GGZ, FTNL and QLZ,
are equally often used to control passenger flows. Station
GGZ, the first station on the line, is relatively often chosen and
thus passengers prevented from entering the network at this

Fig. 8. Gates control and passengers queuing at FTDJ (left) and QLZ (right)
for 15-min scenario with extra services with 80% demand.

Fig. 9. Gates control and passengers queuing at FTDJ (left) and QLZ (right)
for 15-min scenario with extra services with 100% demand.

station in order to allow passengers traveling between inter-
mediate stations and avoid passenger deadlocks, i.e. excessive
number of passengers in a station and onboard requiring to
alight at the station. For 20 min, station QLZ is controlled
most often, i.e. in all demand scenarios.

Figure 8 shows gates control and passengers queuing at
the two consecutive stations just before the disrupted section
FTDJ (left) and QLZ (right) for a 15-min scenario with extra
services with 80% demand. It can be seen that in QLZ, gates
are being closed completely (βQ L Z ,n = 0) due to capacity
constraints within the station, i.e. number of passengers in
a station reaches the station capacity of 2500 at certain point
and then, passengers start queuing outside the station. After the
disruption is over, the gates are being open, including addi-
tionally available gates, βQ L Z ,n′ > 1 (time instance n′ > n).
And after some time, the passenger queue dissipates and
the gate control returns to its normal gates rate βQ L Z ,p = 1
(p > n′ > n). Instead, in FTDJ, the station preceding QLZ,
gates are being closed even though only limited number of
passengers is present at the station and even for longer time
than at QLZ. This is due to the limiting capacity at the station
downstream. Thus, to prevent having a deadlock at QLZ, i.e.
a full train arriving at the station at a fully occupied station,
FTDJ is getting fully closed. Note that at the beginning of the
disruption also a partial gate control is applied at the beginning
of the disruption, followed by a limited opening of additional
gates. Later on, a complete closure was required to limit
passengers traveling to QLZ and avoiding a deadlock. Figure 9
shows gates control and passengers queuing for the 15 min
scenario with extra reinserting services and 100% demand.
Due to the higher demand, it depicts an extended gate control
at QLZ, also after the disruption ends, and more passengers
waiting outside for a longer period. At FTDJ, it shows a
slightly longer gate closure and some more passengers waiting
outside.
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Fig. 10. Rescheduled timetable for 15-min scenario with extra services with
80% demand.

Figure 10 presents the disrupted timetable for 15-min
scenario with extra services with 80% demand. It shows
retimed existing train services (blue line), rerouted train ser-
vices (green line), added extra services (purple line), number
of passengers onboard (line width), and disruption duration
(red line). As expected, most crowded are trains right after the
disruption, as they collect all regular demand plus additional
ones that have been denied and waiting out of stations during
disruption, e.g. at QLZ. Additionally, one extra train service
helps to reduce overall delays to passengers.

Regarding the computational performance, the IDM algo-
rithm typically terminated after at most 4 iterations. Looking at
the computational time of the algorithm, per iteration, the PFM
model takes on average 3 min, and the TTM model takes
around 10 s. In total, the CPU time of the IDM algorithm was
always under 13 min.

VII. CONCLUSION

We proposed a novel integrated disruption management
model for simultaneously rescheduling trains and controlling
passenger flows for a given disruption. Our IDM model
incorporates train traffic management, station gate control, and
an event-driven passenger flow model to simulate passengers
moving through the network. The model aims to minimize
the total delay of passengers, reduce the number of denied
passengers, minimize cancellations and adjustments to train
services, and recover as quickly as possible. Trains can be
short-turned, cancelled and rerouted; stations can be closed
partially/fully, or open additional gates; and passengers can
wait at stations, depart later, or queue outside of stations
according to a disrupted timetable and controlled station gates.
To solve the IDM, an iterative heuristic approach is designed.

We tested our integrated disruption management approach
on real-life cases of Beijing metro. The results showed the
necessity of controlling station gates, by closing them par-
tially or fully during a disruption in order to allow the best
passenger flows through the line. The current model could
support dispatchers in determining the best train and station
control measures as well as determining the necessary number
of additional services to be inserted in order to minimize
passenger waiting times and denied passengers. Finally, IDM
allows a higher passenger throughput of the network during
disruptions.

TABLE II

NOTATION OF THE MODEL FORMULATION

Due to the current computation times, the IDM algorithm
could be used in the planning process to generate contin-
gency plans, i.e. precomputed rescheduled timetables, before
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TABLE II

(Continued.) NOTATION OF THE MODEL FORMULATION

disruptions happen, but not yet as a real-life application.
Planners could run the IDM algorithm multiple times for
different times of day and different demands to determine
effective strategies for controlling stations, trains and passen-
gers. Alternatively, for using the IDM algorithm real-time,
railway operators shall acquire a higher computation power
by using cloud computing (e.g., [31]) or supercomputers
(e.g., [32]).

As future work, computation times could be improved by
applying advanced simulation-based optimization approaches
or decomposition techniques such as rolling horizon. In addi-
tion, passenger demand could be approximated by clustering
in passenger groups instead of modelling single passengers
as in [19]. Moreover, linearizing PFM model can also be
explored. Extensions toward more flexible short-turning pos-
sibilities and applying the model to metro networks could be
considered. For the latter, passenger transfers shall be included
as well. Finally, to deal with limited transport capacity in metro
lines and networks during disruptions, new measures such as
bus bridging services may be introduced.

APPENDIX

NOTATION OF THE MODEL FORMULATION

See Table II.
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