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Abstract
Semantic segmentation of medical imaging delivers important insights to physicians. In recent years,
the application of machine learning models in this field has increased. However, the design with the
best performance of these machine learning models differs for each task and the design process is dif­
ficult and time­consuming. Automated Machine Learning (AutoML) aims to automate this process by
selecting the algorithms and optimizing their hyperparameters for each task. In this thesis, an AutoML
approach was applied to medical image segmentation, using Bayesian Optimization with HyperBand
(BOHB) to optimize hyperparameters of U­net, a commonly used design. In our approach, we also op­
timize several hyperparameters used in preprocessing and the training procedure. To achieve that, we
investigated the effects of hyperparameters on the performance, compared BOHB to Random Search
(RS) and the overall approach was compared to the state­of­the­art, all tasked to segment brain tumors
in a single dataset.

The results show that minimally trained configurations already significantly predict the best per­
forming configurations, a necessary prerequisite for BOHB. Furthermore, we show that BOHB does
not significantly perform differently than RS when applied to a small search space, stressing the need
of matching the search space to the search strategy. We also show that several hyperparameters sig­
nificantly impact the performance for this task, whereas others do not impact the performance directly.

However, this approach does not yet outperform the state­of­the­art, due to several differences,
most importantly in data augmentation. Further research can use our approach on other datasets,
include hyperparameters that were outside our scope, or optimize hyperparameters for other objectives,
such as computational resources or explainability.
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1
Introduction

Medical images, such as made by techniques such as Magnetic Resonance Imaging (MRI), Computed
Tomography (CT), and Positron Emission Tomography (PET), deliver insights to medical specialists
with minimal risks for the patient. One of the techniques to analyze these images is semantic segmen­
tation, i.e. classifying all voxels (3D­pixels) to specific classes, such as organs or tumors. An example
is given in Fig. 1.1. There are several examples where semantic segmentation can be used, one of
them is calculating cardiac parameters such as chamber volume or ventricle mass [55], part of the gold
standard for treating cardiovascular diseases. Another clinical application is analyzing the (changes
in) volume of a brain tumor [26]. Currently, tumor volumes are calculated using a measurement of two
perpendicular diameters. This can only be used as a rough estimation of the volume, since tumors are
not a sphere nor even convex. Using segmented images, more accurate results are possible. Unfortu­
nately, this is typically too time­consuming to be performed manually in a clinical setting [5]. Machine
learning can be used to automate the creation of these segmentations. In particular, deep learning
methods such as convolutional neural networks are used extensively in recent research [1], for exam­
ple U­net [49], OBELISK [20] or one of the many variants of U­net such as 3D­Unet [8] and V­Net [40]
(See Chapter 2).

However, the design of neural networks has its own challenges. The most optimal design of a
network depends on the problem. For example, the size of the training set, the clinical application
and the size of the objects that have to be segmented all influence this design [2]. Furthermore, the
performance cannot be easily predicted [24], which makes the development of these networks a time­
consuming and trial­and­error process. This is further complicated by the fact that there is no clear
consensus which basic architecture is optimal [20] [49].

The same holds for the complete pipeline: different pre­ and postprocessing elements, such as
resampling and normalization of the input images, but also training elements such as the loss function,
have to be optimized for each problem [24]. These steps play a substantial role in the eventual perfor­
mance and therefore need to be designed or adapted to the problem as well. For example, a previous
study showed that a better performance is reached when using percentile clipping normalization for
CT­scans, whereas designs for MRI scans z­scoring is preferred [25].

Automated Machine Learning (AutoML) tries to solve these design problems [24]. This field con­
sists of multiple research domains, such as Network Architecture Search (NAS) and HyperParameter
Optimization (HPO). While these domains overlap, NAS only considers the design of the network itself,
whereas HPO is more general and can consider all design choices. At the moment AutoML is not ex­
tensively applied to problems in medical segmentation [24], with a few exceptions [65] [62]. There are
several optimization strategies, such as CARS [61], DARTS [37] and BOHB [16], which are discussed
extensively in chapter 2.

The Medical Segmentation Decathlon (MSD) [2] was a challenge first published in 2018 that invites
participants to create a system that performs well across a wide variety of ten Biomedical segmenta­
tion datasets. This system cannot have specific code for a dataset and three datasets are hidden and
not available during the training phase. This should encourage participants to develop either a gen­
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2 1. Introduction

Figure 1.1: An example of medical segmentation of a tumor inside the brain (BRATS Dataset [39]). The top row shows different
MRI­modalities and the ground­truth (right image). The bottom row shows results from different implementations [22]. Adopted
from [22].

eral model or use AutoML in their designs. The top performer is nnU­net (no­new­U­net) [25], which
achieved the top score across nearly all MSD tasks. However, nnU­net does not use AutoML; It adapts
itself based on pre­defined rules and the fingerprint of the dataset. Other competitive contestants nei­
ther use AutoML [58] or use a search space for a specific subset of the hyperparameters, for example
K.A.V.athlon [2].

This thesis fills this gap and aims to investigate the use of an AutoML algorithm in medical image
segmentation, more specifically BOHB (see Section 2.5). For such an AutoML algorithm to work as
intended, i.e. for it to be viable, the associated search space needs to be viable too; this search space
needs to be computationally feasible and simultaneously include all configurations that potentially have
the best performance. In other words, it cannot be too large nor too small. One of our research
questions is focused on determining this search space. Furthermore, we have compared BOHB with
Random Search and we compare this approach to the state­of­the­art. In short, this thesis aims to
answer the following questions:

­ What is a viable search space for AutoML strategies when those are applied to problems in
medical segmentation? In other words, what is a viable subset of the complete search space?

­­ Is BOHB, one of the recommended AutoML practices, applicable in this situation and how does
its performance compare with less complicated strategies, such as Random Search?

­ Does AutoML (applied to the problems of the MSD) perform better than the state­of­the­art, such
as nnU­net?



2
Theory

Neural networks for medical segmentation are based onCNN’s for natural images, which wewill explore
first (Section 2.1). Afterward, we will discuss designs for medical segmentation (Section 2.2) and details
about the training process, pre­ and postprocessing in Section 2.3. In the final sections of this chapter
we will discuss nnU­net (Section 2.4) and Automated Machine Learning (Section 2.5).

2.1. Convolutional Neural Networks
Neural networks for medical segmentation are based on those used for semantic segmentation of
natural images. Therefore, to better understand these algorithms, this section explores neural networks
used for analyzing natural images. More specifically, these networks are convolutional neural networks
(CNNs). Wewill first introduce the fundamentals, which are used in advanced image handling networks,
such as region­based networks or fully convolutional neural networks.

2.1.1. Neural networks
Neural networks are a branch of machine learning loosely based on a biological brain. A neural network
processes input (for example, a picture of a handwritten digit) and returns an output, thus the displayed
digit in the example. In other words, it is a function. A network can approximate with arbitrary precision a
large range of (continuous) functions ormappings due to its structure [56]. A network learns by adjusting
weights or parameters. These weights are distributed over layers. In a simple architecture, the output
of a layer is the input for the next layer, but more complicated architectures will be discussed later in this
chapter. One of the simplest layers (fully connected layers) has a weight for each combination of input
and output variable. These weights are multiplied with the input and a bias is added to create the output.
This output is fed into a non­linear function, an activation function, which makes it possible to estimate
non­linear functions. Even a simple neural network has design choices, some of them parameterized,
for example, the number of layers. To differentiate these design choices from the trainable parameters,
we call them hyperparameters.

2.1.2. Convolutional Neural Networks
CNNs have been around for over 30 years [32], and are developed specifically for images. CNNs
use convolution operations in at least some of their layers, hence their name. A convolution can be
interpreted as an operation where a set of weights, i.e. a kernel, slides over the entire input image. For
each pixel in the input image, its surroundings and the pixel itself aremultiplied with the kernel, summed,
and a bias is added to create an output pixel. Convolutional layers incorporate spatial relationships and
some spatial in­variance in their design, which makes them very useful for image analysis. There are
several other types of layers typically used in CNN’s. Pooling [50] and normalization layers, which
improve spatial in­variance and stability respectively. An example of a pooling layer is a max­pooling
layer with a kernel size of 2x2: It represents every 2x2 pixels with the maximum value of those set of
pixels.

3



4 2. Theory

2.1.3. Advanced image­handling neural networks
There are several types of problems associated with CNN’s: Classification, object detection, and seg­
mentation. Classification is detecting that an object belongs to a certain class, object detection is finding
the location of this object and segmentation determining exactly which pixels or voxels belong to that
object. For each of these pieces of information, large databases are made public. For example, Im­
ageNet [14] is a large database with over 20.000 different classes, while COCO [35] has around 80
classes but the images are annotated with the exact location and segmentation masks of each object.

A CNNwith only convolutional and pooling layers stacked in series does either not gain enough spa­
tial in­variance or loses too much local information to accurately segment images or do object detection
[17]. To solve this problem, many solutions have been proposed [6] [47] [48], where we will focus on
Encoder­Decoder [3] networks, since a U­net (See Section 2.2) is an Encoder­Decoder network.

An Encoder­Decoder network is a Fully Convolutional Network, i.e. the output of each layer can
be regarded as an “image”. Besides convolutional layers, an Encoder­Decoder network has pooling
layers which trade local information to be able to find global features [3]. However, both are needed to
create an accurate mask. To have both types of information, the encoder creates, or “encodes”, a set
of features ranging from local (no pooling layers) to global (all pooling layers), which are used by the
decoder to create the segmentation. There are several ways to encode the information of the higher
resolutions. One way of encoding the local information is simply using skip connections to connect the
high­resolution layers of the encoder with those of the decoder. Another way is storing and using the
indices of the selected pixel in the pooling layers [3]. The former is the basic concept of U­net [49],
which is discussed extensively in section 2.2.1.

2.1.4. Blocks
Computational power has become significantly cheaper during the development of CNNs. It therefore
becomes feasible to replace single convolutional layers by blocks, or a subnet of a few layers. This
means the researcher does not need to design the complete architecture, it can instead choose or
design a few blocks and design a high­level architecture separately. There are many kinds of blocks,
such as ResNet [18], DenseNet [21], and Deformable convolutions [12]. Deformable convolutions do
not operate on a set of adjacent pixels, but instead use trainable vectors to determine which pixels are
used to calculate an output pixel. ResNet blocks are also used in variants of U­nets (see Section 2.2)
and are discussed in the next section.

ResNet In a traditional CNN, stacking more layers at a suitably deep model, the performance of
the network drops [18]. Theoretically, however, adding more layers should not make a network less
accurate. If those added layers are an Identity mapping, the evaluations and thus the accuracy of the
network are equal. So if the performance drops with the added layers, the Identity mapping is not found.
ResNet [18], shown in Fig 2.1, tries to solve this problem. It assumes that it is easier to learn a 0­layer,
where all weights are zero, than an identity mapping. In other words, it is easier to learn the residual.
Because of this, the added layers can easily improve the performance, for example by focusing on
edge cases [18]. ResNets are also trained faster than regular networks with a similar number of layers.
This happens because large networks have to mitigate the vanishing gradient problem. This is the
observation that the gradient for the first layers becomes very small, which makes it very hard to train
those layers. Due to the skip­connections, i.e. the multiplication with the identity, the gradients do not
vanish as much, and the network will converge faster.

Figure 2.1: A simple form of a residual network [18].
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2.2. Medical image segmentation designs
Medical image segmentation is similar to semantic segmentation of natural images, but it differs on a
few key points; Medical images are typically three­dimensional, datasets are much smaller and in a
single dataset there are typically only a few classes to segment. Although different base architectures,
such as OBELISK [20] (which is based on deformable convolutions) exist, we will focus on U­net [49].
U­net is used as the base architecture in many solutions submitted to contests [2]. After discussing
U­net [49], we will discuss some variations such as V­Net [40] and U­net GAN.

2.2.1. U­net
A U­net [49] is an encoder­decoder network. A schematic figure is shown in Fig 2.2. It is designed
to capture features of every resolution to create accurate segmentation maps. In the encoder, which
is on the left in the figure, the highest horizontal layer has the highest resolution and the outputs are
downsampled using a pooling operation between each horizontal layer. So, at each layer the image
has a lower resolution but a substantially larger field of view. Simultaneously, the output of each layer
is connected to the part of the decoder with the same resolution. The detector is an encoder in reverse:
it starts with the lowest resolution and ends with the original resolution. At each horizontal layer, data
from both the previous layer in the decoder and the output of the connected encoder­layer is processed
using convolutional and upsample operations until the original resolution is restored and the decoder
generates the segmentation map.

Figure 2.2: The U­net architecture as it was first proposed. The layers at the top have the highest resolution and those at the
bottom have the lowest resolution. Adapted from [49].

2.2.2. Variations on U­net
As discussed above, medical images are typically 3D, while the original U­net paper only introduced a
network that processed 2D images, and it calculated the segmentation map slice for slice. While this
already showed good performance, it removes relationships between slices, which is why V­net and
3D­net replaced the 2D segmentations with the 3D­counterpart. Other approaches [45] [60] trained an
ensemble of 2D networks, each processing a different orientation.

Other variations have also been applied, such as regulating the encoder using a Variational Auto­
Encoder (VAE) [41] or implementing a Generative Adversarial Network (GAN) [9]. a VAE recreates the
original image by using (a subset of) the encoded data. This helps training the encoder, which is helpful
when the dataset is small. This strategy was used to achieve first place in the BraTS 2018 competition
[41].

A GAN is composed out of 2 networks: a Generator and a Discriminator. The Discriminator tries to
tell the output of the Generator and the ground truth (the segmentation labels) apart and the Generator
tries to fool it. In this setting [9], the Generator is a U­net, and the Discriminator is combined with
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a regular loss function, the Dice Loss (See Sec. 2.3.3). Adding a Discriminator to the loss function
improves performance [9], however, it needs additional computational resources and we believe it is
therefore not yet suitable to be implemented in our framework.

2.3. Preprocessing and other Pipeline Considerations
The performance of a trained algorithm does not only depend on the algorithm and design choices in the
network itself such as in the previous Sections (Sec 2.1 and Sec. 2.2), but also on preprocessing, data
augmentation, loss functions, and postprocessing. In other words, it depends on the complete pipeline.
In this section, the focus is not on the algorithms themselves, but rather on the most important design
choices in the rest of the pipeline.

2.3.1. Preprocessing
The most important preprocessing steps include resampling and normalization. Resampling is applied
to ensure that the voxel size (the physical volume represented by one voxel) is equal across the com­
plete dataset. This is necessary because medical scanners and their configurations can differ greatly
in the voxel sizes they produce [59], while the physical volume is relevant information.

Normalization can also improve the learning capabilities of a network significantly [53]. Not only
does it decrease the influence of the mentioned differences between scanners, but it also ensures that
large numerical values in the input do not dominate smaller values, but instead that all features are
weighted equally. There are various normalization methods, the most commonly used methods are
z­score, percentile clipping, and min­max normalization [43]. Z­score normalization scales the image
in such a way that the output has a standard Gaussian distribution. However, z­score normalization is
not optimal when there are outliers present in the data [53]. Percentile clipping [25] is a modification
of z­score normalization. It clips outliers first, for example to the lowest and highest 5 percentile, and
only afterward applies z­score normalization. Finally, min­max normalizes the data by scaling the data
linearly to have a pre­defined minimum and maximum value.

2.3.2. Data Augmentation
Data augmentation, i.e. manipulating the initial data to create more similar data points, is very effective
at increasing both the amount and diversity of data [11]. This helps deep learning a lot since these
techniques rely on large, diverse datasets [44]. There are many different forms of data augmentation
in the field of medical images. These can be categorized as either spatial, kernel­wise, or intensity
space transformations. All these transformations are designed such that they are ’safe’, i.e. the label
or segmentation map is still valid after the transformation. A list of possible data augmentations includes
spatial transformations such as flipping, rotating, shearing, cropping, and elastic transformations [52].
Kernel operations such as sharpening or blurring the image are not used often, since those can also
be represented inside the network itself. Last but not least, intensity­space augmentations include
transformations such as adding Gaussian noise, changing the brightness (adding a bias), or changing
the contrast. If the image has multiple modalities, this can be done separately for each modality.

2.3.3. Loss Functions
Loss functions are an important component of the training process, and there is not a single loss function
that performs well over the complete range of datasets [38]. These loss functions can be classified into
4 categories; Distribution­based losses (i.e. Cross­entropy loss and variants), Region­based losses,
boundary­based losses, and combinations of the previous categories.

Distribution­based losses are all derived from the Cross­entropy loss, which calculates the loss for
each voxel and each class based on ∑𝑁𝑖 ∑

𝐶
𝑐 −𝑔 ∗ 𝑙𝑜𝑔(𝑝), for all classes C (including background) and

all voxels N. The losses for each combination of voxel and class can be combined in several ways, to,
for example, compensate class imbalance (Weighted cross­entropy loss) or increase the importance
of difficult predictions (i.e. Focal Loss [34]).

Whereas Distribution based losses are calculated for each voxel separately, Region based losses
are calculated using the (fuzzy) sets of the ground truth and the prediction. The popular Dice Loss
[15] calculates the loss using the Ground truth set 𝐺 and (fuzzy) Prediction set 𝑃: 1 − 2|𝐺∩𝑃|

|𝐺|+|𝑃| . Other

variants are for example the Intersection over Union ( |𝐺∩𝑃||𝐺∪𝑃| ) and the Generalized Dice Loss [54], which
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compensates for the frequency of different classes.
Boundary losses minimize the distance between the boundary of the ground truth and prediction

segmentation [29]. Using this loss, misclassified voxels far away from the ground truth are penalized
heavily. The Hausdorff loss [23], for example, calculates the distance for each voxel in the prediction
set the distance to the ground truth, and vice versa. The sum of these distances is the complete loss.
To prevent instability, they should always be combined with Region based losses, such as the Dice­loss
[38].

However, typically the best losses are combinations of several losses, for example, the Dice Loss
with the Focal loss or Hausdorff loss [38]. These are the most robust and achieve the best results
across several datasets.

2.3.4. Post Processing
In several preprocessing steps, specific (assumed) a priori knowledge of the medical images is used to
improve overall performance. For example, the a priori knowledge that differences in medical scanners
can be (partly) compensated by normalization is commonly included in preprocessing steps. Similarly,
postprocessing can be used to apply similar knowledge of the segmentation images. Largest Con­
nected Component Analysis is one of those. If the training data only has one object per image, it is
unlikely that unseen images will have multiple objects [25]. Therefore, by only keeping the largest ob­
ject and removing all smaller ones, the usually small objects created by noise are removed and the
overall performance is improved.

Another postprocessing operation applies a priori knowledge of the network itself by ensembling
multiple networks. This reduces the overall error because different networks, with different starting
conditions, will end up in different local minima [64]. There are several types of Ensembling, such as
majority voting and mean ensembling [36].

Even though postprocessing steps can increase accuracy substantially, it is not used during training.
This implies that it is less relevant for Automated Machine Learning since it can be applied after the
network structure is optimized and the network itself is trained.

2.4. nnU­net: A step towards generalization
nnU­net [25] was designed for the Medical Segmentation Decathlon (MSD) [2], where it achieved first
place overall. MSD is a collection of 10 diverse datasets in the medical segmentation field. Most par­
ticipants were not able to generalize to the hidden datasets as is visible in Figure 2.3, but nnU­net was
able to do so. It also participated in other challenges where it showed state­of­the­art results. In total,
its design was validated on 23 datasets and 53 segmentation tasks, often outperforming specialized
pipelines.

NnU­net works by dividing the hyperparameters into three sets; fixed, rule­based, and empirical
hyperparameters. The last set only contains post­processing and ensemble selection and is therefore
only searched through after the network has been trained. Hyperparameters in the rule­based group
are decided by rules based on the fingerprint of the dataset. For example, the depth is taken as large
as possible, as long as the necessary patch size stays similar in size as the original image or 1283,
whichever is smaller. It has similar rules for resampling, normalization, and batch size.

For specific datasets, nnU­net also uses a Cascaded 3D­Unet. This is used for datasets where the
images are large and do not fit into one patch. To be precise, where the median image size has at least
four times as many voxels as the maximum patch size. This is not the case for the Brain dataset of
MSD, which is the dataset in our experiments. A cascaded U­net consists out of two stages, each with
its own network. The large image is resampled to a lower resolution that does entirely fit in one patch.
The network of the first stage is trained on this low­resolution dataset. The second stage upsamples
the output of the first stage and concatenates that with the original image. It then uses this combined
tensor to sample patches from and train the second network.

However, by defining most hyperparameters in either a fixed or rule­based way, these are ultimately
chosen based on heuristics. These heuristics incorporate domain knowledge but might also be biased,
consequently delivering sub­optimal designs. Instead, if these hyperparameters are left to an optimiza­
tion method, the influence of bias can be reduced. In the next sections, several Automated Machine
learning methods are introduced that can optimize these design choices.
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Figure 2.3: Perfomance on the hidden sets of the Medical Segmentation Decathlon [2]. Most participants did not generalize.

2.5. Automated Machine Learning
Algorithms are hard to design, which Automated Machine Learning tries to automate. AutoML has
multiple specialized fields of research, such as Network Architecture Search (NAS), Meta­learning [13]
and Hyperparameter Optimization (HPO). While these fields share overlap, NAS does typically fewer
concessions to the search space [24]. It has several solutions for such a large search space, such as
morphing existing networks one step at a time [57], Block based search [66] where amanually designed
hypernetwork reduces a large part of the search space or simply by defining boundaries between a
macro and micro level, such as in C2FNAS [62], which is an example in the medical segmentation
domain. Meta­learning is the process where the knowledge of previous tasks is used to improve the
learning process for new tasks. We will, however, focus on HPO: finding the most optimal combination
of several hyperparameters, even if some hyperparameters are conditional on others.

2.5.1. HyperParameter Optimization (HPO)
A significant part of any architecture can be described by a set of hyperparameters. Finding the most
optimal set of these hyperparameters, which is crucial for performance, is an optimization problem in a
high­dimensional, diverse search space. Hyperparameters can be categorical, discrete, or continuous
and with sufficient resources, a search space can already span 19 hyperparameters [24]. Furthermore,
evaluating a single configuration to convergence is expensive in terms of computation cost; it is, there­
fore, all the more important that an optimization strategy finds the optimum with as few evaluations
as possible. In this section, we discuss several optimization methods, which can be categorized into
several categories; gradient­based methods, Bayesian optimization methods, and Bandit­based opti­
mization methods. Finally, there are also optimization methods that combine several sub­strategies,
these are discussed in section 2.5.5.
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2.5.2. Gradient based methods
During training, the parameters are optimized using gradient­based methods. DARTS [37] applies
gradient search to hyperparameters. To be able to differentiate the loss function with respect to those
hyperparameters, DARTS has to ensure those are continuous, instead of discrete. DARTS achieves
this by using a softmax function to select the hyperparameter defining an operation. It then uses a
weighted ensemble for each operation with respect to this softmax. To mitigate some of the overfitting,
the weights are updated with the training set and the hyperparameters based on a validation set [19].
An example of DARTS applied to medical segmentation is V­NAS [65]. V­NAS defines a hyper­network
with 21 blocks. Each of these blocks is a softmax­weighted combination of three possibilities: a 2D
convolution, a 3D convolution, or a Pseudo 3D convolution, which is a combination of a 2D and an
orthogonal 1D convolution. One final drawback of DARTS is that it quickly becomes computationally
heavy since for each operation it uses an ensemble that needs to be trained simultaneously. Therefore,
the search space is limited to a small network with only a few options for each operation [65] [37].

2.5.3. Bayesian Optimization
Bayesian Optimization uses an auxiliary model to predict the most optimal hyperparameters [19]. To
achieve that, it uses two models or functions: the auxiliary or (probabilistic) surrogate model and an
acquisition function.

Two popular Bayesian optimizationmethods areGaussian processes andRandomForests. Whereas
Gaussian Processes [46] predict the performance given a specific configuration, Random Forests [4]
predict the likelihood of the configurations given that the performance is either higher or lower than a
threshold. Gaussian Processes predicts a Gaussian function for each configuration, using a covariance
matrix to determine the influence of data points. Unfortunately, Gaussian Processes scale cubically
with the number of observed data points. Random Forests only scale 𝑂(𝑛𝑙𝑜𝑔𝑛), so they are much
better equipped at handling large solution spaces [4]. The acquisition function finds the next configura­
tion the method needs to sample. TPE achieves this by sampling 𝑘 configurations from the probability
function that performs better than the threshold. It furthermore calculates the probability that these
configurations are drawn from the set of “worse” configurations. The acquisition function then selects
the configuration where the probability ratio 𝑃𝑏𝑒𝑡𝑡𝑒𝑟 / 𝑃𝑤𝑜𝑟𝑠𝑒 is the highest. The method continues with
evaluating this configuration and uses this new data point to update the model and threshold.

2.5.4. Bandit Based Optimization Methods
The easiest way to estimate the performance of a CNN is by training it. However, training many CNNs
could reach computation power in the order of thousands of GPU days [24]. In the previous paragraphs,
the computation power was reduced by limiting the number of evaluated configurations. In Bandit­
based methods, the computational power is reduced by reducing the computational power or budget
𝑏 for each evaluation. With a reduced budget, only a rough estimation for the eventual performance
can be made. However, as long as the relative ranking of the architectures stays similar, the most
promising configurations will still be found. These can then be trained completely to find the best
performing architecture.

A basic but powerful strategy is Successive Halving [27]. It starts with a set of 𝑘 random configu­
rations. After training those for a specified budget, the optimizer drops the worst half. It doubles the
budget for the remaining configurations and repeats this process until only one configuration is left. It
performs well, but the researcher has to decide at the beginning how many configurations the strategy
starts with. Too little, and good solutions are missed, too many, the solutions are not trained and the
results are therefore not reliable. This is a trade­off between exploring enough solutions to find the
optimal solution and simultaneously training (exploiting) the selected solution enough to be confident it
is indeed the most optimal solution.
HyperBand [33] tries to mitigate this problem by dividing the budget into several groups. In each of
these groups, a different number of starting solutions and assigned resources for each configuration
are chosen. This ensures that many configurations are tried and that at least a subset of those con­
figurations are trained enough that the predictions have enough fidelity. However, these strategies
have still an important drawback. Both of these strategies work by selecting all solutions at the start.
These methods cannot propose new solutions based on the evaluations of the existing ones. In the
next section, we will discuss methods that mitigate these problems.
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2.5.5. Combinations
One interesting combination is CARS [61] which combines gradient descent with a genetic algorithm. It
uses a super network from which several networks are selected using genetic search. These networks
use gradient descent, like DARTS (Section 2.5.2) to update themselves, and thus the super network.
This greatly reduces the search time necessary than more naive implementations.

Another combination is Bayesian Optimization and HyperBand (BOHB) [16], which combines TPE
and Hyperband. It achieves quickly a reasonable performance by using low fidelities and selection in
Hyperband and a good final performance using Bayesian Optimization. It uses Hyperband to determine
how many configurations are trained and how long each of them is trained. However, instead of select­
ing random configurations, the models are selected by a Bayesian Optimization method. This ensures
that the information found from the first trials is used fully. It starts with a set of random samples since
with little or no observations, there cannot be a valid model. Once 𝑁𝑚𝑖𝑛 observations with a specific
model are made, a TPEmodel is made for that budget. When BOHB samples new configurations, it will
use the model created for the highest budget since that model has the highest fidelity. If performance
can be estimated with low fidelity evaluations, BOHB can be very useful, since it is robust, efficient,
and parallelizable [24].



3
Method

To run our experiments, we developed our framework, which we discuss in Section 3.1. We discuss
the general experimental setup in Section 3.2. We used this framework to test the usefulness of BOHB
(Section 3.4), determine which hyperparameters are useful to include (Section 3.3), and if our imple­
mentation of BOHB outperforms the state­of­the­art (Section 3.5).

3.1. Framework
We developed our framework, AutoMONAI, which uses BOHB to optimize several hyperparameters
of a U­net (See Figure 3.1) and accompanying pipeline. Five hyperparameters describe the network
architecture: the depth (number of horizontal layers in the figure), the number of channels in the first
layer, and its multiplication factor between depth layers (which is two in the figure, i.e. the number of
channels double every depth layer), convolution type (2D vs 3D) and finally the number of convolutions
in each depth layer. Three hyperparameters describe other parts of the pipeline: normalization and
resampling during the preprocessing stage and finally the loss function. All of these hyperparameters
and their respective ranges are discussed in more detail in Section 3.3, where we investigate the
influence of these hyperparameters on the performance. We implemented this in PyTorch [42] and
MONAI [10]. Our experiments ran on our GPU cluster, which allocates its jobs on one of our RTX
2080 Ti 11GB GPUs. This limits the graphical memory to a maximum of 11 GB, which means some
configurations are not possible. In total, several thousand GPU hours were used for these experiments
and the development of AutoMONAI. There is one difference between our implementation of BOHB
with the reported version: our implementation of BOHB does not parallelize.

Figure 3.1: The U­net architecture [49], which is configured in our framework using multiple hyperparameters. See also Section
2.2

11
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3.2. Experimental setup
In this section, we describe all settings that are the same across all experiments. Most of these settings
are equal to the settings used in nnU­net [25], which we used to compare AutoMONAI in Section 3.5, to
ensure performance differences in the final experiment are not based on differences in these settings.
Settings that are different than nnU­net are motivated in Section 3.5.1. We used the Brain Dataset
from the Decathlon challenge [2], which is largely based on the 2018 BraTS Dataset [39], to run our
experiments on. Furthermore, we used the Dice score [15] to compare architectures, since it is widely
used in literature. The randomly sampled patches had a size of 1283 and 1282 for 3D and 2D networks,
respectively. The batch size was 2 for 3D networks and 2 ∗ 128 for 2D networks, so both batches
contained the same number of voxels. After each convolution, instance normalization and LeakyReLU
were applied. These networks were trained by an ADAM optimizer [30] with a learning rate of 3𝑒 − 𝑒4,
a 𝛽1, i.e. first moment weight, of 0.9 and second moment weight 𝛽2 of 0.999. We reduce the learning
rate by a factor 5 whenever the improvement in the last 30 epochs is not at least 0.01%. All networks
were trained 200 epochs, where one epoch is one sample from each image in the training set. The
data was augmented using flipping (along any spatial axis) and adjusting contrast with a 𝛾 between 0.7
and 1.5.

3.3. Determining a viable search space
To answer the first question, ”What is a viable search space for AutoML strategies when those are ap­
plied to problems in medical segmentation?”, we had to find a computationally feasible search space
that includes all configurations that potentially have the best performance. Since “computationally fea­
sible” depends on the available hardware, we will focus on selecting hyperparameters that influence
the performance and are likely to change between problems. Therefore, we had selected a set of can­
didate hyperparameters (introduced in Section 3.1 above) and determined if those were influential on
the performance. We selected a standard configuration where we changed one hyperparameter at a
time. To search around the expected optimum, this standard configuration is based on preliminary ex­
periments and literature. The standard configuration and the range for each hyperparameter are shown
in Table 3.1. In the next sections, we describe the range and motivation used for the hyperparameters
and the analysis of the results.

3.3.1. Hyperparameter selection
We selected five hyperparameters (depth, channels at the first layer, channel multiplier, convolution
type, and the number of convolutions in each depth layer) describing the architecture of the network,
and three describing the rest of the pipeline, those being normalization and resampling during the pre­
processing phase and the loss function.

The depth determines for a large part the eventual field­of­view since this field doubles after each
downsampling layer. It also influences the number of learnable parameters. Both the learnable pa­
rameters and the field­of­view influence the performance. NnU­net use the largest depth that does not
create a larger field­of­view than the original image, with a maximum of depth of 7 for 2D networks
and 6 for 3D networks. NnU­net determines the depth for each spatial axis individually, while we have
chosen to have a single depth for all spatial axes. For MSD’s Brain dataset specifically, nnU­net has a
depth of 6. We have chosen an inclusive range between a depth of 2 and 6 layers.

The number of channels in the first layer, together with the channel multiplier in the next paragraph,
determine the number of channels in the network in this implementation. Theoretically, more chan­
nels always perform better (since unnecessary channels can be weighted in such a way that they do
not influence the prediction), until computational constraints are exceeded. Therefore, a balance has
to be found between the benefit of adding channels and the added computational cost. In literature,
these values range from 16 [40] and 30 [25] to 64 [49]. For this hyperparameter, we have chosen a
logarithmic scale with base 2, since we expect very little difference between two consecutive numbers
and a computational speed­up is possible when the number of channels is a power of 2. Our range is
𝑅𝑓𝑐 = 23, 24, ..., 27.

U­net [49] double the number of channels after each downsampling step, and this choice has been
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adopted in almost all variations [40] [25] [8]. However, we believe the optimal value of this hyperpa­
rameter is influenced by the type of problem. If the solution of a problem does not rely on a lot of
global features, but rather on local features, it is better to allocate resources to those local features and
therefore choose this multiplier to be lower, and vice versa. We have chosen for a range starting at 0.5
(so halving, instead of doubling, at each depth layer) to 3. If the number of channels is not an integer,
it is rounded down.

U­net [49] (See Section 2.2.1) use 2D convolutions, where variations such as V­Net [40] uses 3D
convolutions. Whereas 3D convolutions handle the 3D nature of medical images by design, this can
also be adversarial. For example, when the last dimension adds very little information because the
image is anisotropic [25], it is better to use 2D convolutions. We therefore compare two options for this
hyperparameter: 2D vs 3D.

The number of convolutions in each depth layer is 2 in most variations [49] [40] [25] [8]. How­
ever, more convolutions can potentially extract more information from a certain resolution and provide
a larger field of view. We investigate one to four convolutions, which can be bypassed with a residual
path. Additionally, we use this hyperparameter to investigate the effect of removing the residual path.
This last configuration has one convolutional layer with no residual path.

As mentioned in Section 2.3, normalization can improve performance, but the optimal version differs
for different tasks. For the Brain dataset, nnU­net uses z­scoring. In this experiment, we have included
z­scoring, 99.5 percentile clipping before z­scoring, min­max normalization (with a minimum of 0 and
a maximum of 1), and not applying any normalization.

Resampling ensures the physical size of a single voxel is the same across the dataset, which is
relevant information (see Section 2.3). nnU­net resamples images differently based on the fingerprint
of the dataset [25]. If the image is anisotropic, for example, if the image has a large slice thickness,
nnU­net resamples the out­of­plane axis using nearest­neighbor interpolation. All other axes are re­
sampled using third­order spline interpolation. Our focus is on a different part of resampling, which is
the voxel size the images are resampled to. We have chosen for no resampling, the mean and median
voxel sizes.

There is not a single loss function that trains a network to the best possible Dice score (see Section
2.3.3) for every problem. However, loss functions that combine separate functions, typically score
better. Networks trained using the following loss functions achieve the best Dice score in at least one
out of four tested tasks [38]. These tasks include segmenting the liver, liver tumors, pancreas, and
multi­organ segmentation. These loss functions are: Dice + Cross­Entropy, Dice + Focal Loss, Dice +
Hausdorff loss, Dice + Top K loss. We included these functions in our search space. We also included
the Dice loss and the Generalized Dice Loss, even though these functions did not perform as well in
this study, these are often used in literature (The Dice loss is the most commonly used loss function
in the MSD [2]). nnU­net, which we compared our framework with in the next section, uses a Dice +
Cross­Entropy loss. However, their implementation is exactly 1.0 lower.

3.3.2. Statistical analysis
We are interested in the final Dice score on unseen data, i.e. the test set. Since this score is affected by
noise caused by small changes in the weights, we looked at the steady­state (fully trained) part of the
loss curve. Using the results of preliminary experiments, we assume this condition is true for the last
25 epochs, i.e. the last 5 values. We assume the noise is independent between every 5 epochs and
used the last 5 calculated Dice scores for each configuration as samples of the population associated
with the performance of each configuration. For each hyperparameter, an ANOVA test was applied to
test for statistically significant differences between the performance of the networks using the different
hyperparameter values. To correct for multiple testing, Bonferroni correction was applied. Hence, a
p­value of 0.057 ≈ 0.007 was considered statistically significant.
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Hyperparameter Range Standard configuration
Depth [2, 6] 4

Number of channels in the first layer 23 ... 27 25
Channel multiplier [0.5 , 3] 2
Convolution type 2D or 3D 2D

Number of convolutions [0, 3] 2
Normalization in preprocessing None, z­scoring, percentile

clipping, min­max
z­scoring

Loss function Dice, GDL, DiceCELoss, Dice
+ Hausdorff loss, Dice + Top K
loss, Dice + Focal loss

DiceCE Loss

Table 3.1: The search range for each investigated hyperparameter.

3.4. Investigating the applicability of BOHB
Literature recommends using BOHB as HPO method since it is an efficient method [24]. However,
a prerequisite needs to be true; The performance ranking of partially trained networks needs to be
an estimation for the ranking of fully trained networks. To validate this recommendation, we did two
experiments: One to check if the prerequisite is true in our use case (Section 3.4.2) and a second
experiment where we compare different settings of BOHB and Random Search (RS) (Section 3.4.3).
In preparation for these experiments, we used a grid search across a small search space, discussed
in Section 3.4.1.

3.4.1. Grid search
We computed a grid search across a small search space. This way, we know the complete performance
surface after every 5 epochs of the defined search space, which raw data we analyzed in the first
experiment. We used this data also in the second experiment, where we used this to mock the training
of the networks during BOHB or RS. This speeds up the experiments but has as a side effect that a
configuration always has the same performance, while this is not necessarily true. Several sources
of noise are ignored, such as data augmentation and the initialization of the weights. We believe this
noise to be small and do not influence the steady­state performance.

The small search space is a subset of the search space discussed in the previous paragraph,
consisting out of three hyperparameters: depth, the number of channels in the first layer, and the con­
volution type. These hyperparameters all describe the network architecture, so these hyperparameters
influence each other. This small search space is summarized in Table 3.2. Other hyperparameters are
fixed on their default values, as shown in Table 3.1.

Hyperparameter range
Convolution type 2D or 3D

Depth [2, 6]
Number of channels 23 ... 27

Table 3.2: The hyperparameters of the small search space used to validate the use of BOHB.

3.4.2. Validate a prerequisite
A prerequisite of BOHB is the ability to predict the final ranking of the different configurations based
on the results after the networks have only been trained for a small number of epochs [16]. Using the
results of the grid search, we calculated the ranking every 5 epochs. To compare these rankings, we
used Kendall’s Tau (𝜏) [28], a correlation metric between two rankings. With a correlation of 1, the
rankings are equal, with 0 there is no correlation and a 𝜏 of ­1 indicates a negative correlation, i.e. one
is the reverse of the other. We calculate this correlation between the rankings of the Dice score after
every 5 epochs and the Dice score after the final training epoch, i.e. 200 epochs. For large N (𝑁 > 10),
the formula in Eq. 3.1 follows a normal distribution. This should therefore be larger than 1.96 to have
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a significance level of 0.05.

𝑧 = 3 ∗ 𝜏√𝑁 ∗ (𝑁 − 1)
√2(2𝑁 + 5)

(3.1)

3.4.3. Comparing BOHB and RS settings
We compared different settings of BOHB and RS, which are summarized in Table 3.3. We mocked the
training procedure of the networks using the results of the grid search. We compared three settings
of BOHB. We compare 𝜂 (at each step in an iteration, it keeps 1

𝜂 of the configurations), the number
of iterations, and the optimization function BOHB uses to compare networks. The latter is either the
loss function calculated across patches of the validation set (i.e. the validation loss) or the Dice score
inferred across the complete image of the same set. The validation loss is commonly used to monitor
overfitting, so if it can be used simultaneously to compare configurations, it is not necessary to compute
another metric. We use 1 − 𝐷𝑖𝑐𝑒 because BOHB minimizes this value. For 𝜂, we use the original 2 of
Successive Halving [27] and the more recent 3 [24]. Furthermore, We compared these settings with a
baseline, RS, with two settings for the number of iterations. 19 and 38 RS iterations can train the same
number of epochs as BOHB with an 𝜂 = 3 and respectively 5 and 10 iterations.

Since BOHB starts with randomly sampling configurations until it can build a model, every BOHB run
is different. It will therefore not find the same configuration every run (Every RS run is also different, of
course). Therefore, we compared multiple runs (n=10) for each setting. In total there are 100 different
runs. We define the best Dice score of a fully trained network to be the final result of a run. We
compare the results of the different BOHB andRS runs with a Kruskall­Wallis test [31] with a significance
level 𝛼 = 0.05, since we do not expect the results to be normally distributed; the best loss should
asymptotically reach the best loss of the search space.

Optimizer Metric 𝜂 Iterations
BOHB 1­Dice score 3 5
BOHB 1­Dice score 2 5
BOHB 1­Dice score 3 10
BOHB 1­Dice score 2 10
BOHB DiceCELoss 3 5
BOHB DiceCELoss 2 5
BOHB DiceCELoss 3 10
BOHB DiceCELoss 2 10
RS ­ ­ 19
RS ­ ­ 38

Table 3.3: The different settings used for BOHB and RS. The metric is used by BOHB internally to compare configurations.

3.5. Comparison with the state­of­the­art
Our third research question is: Does AutoML (applied to the problems of the MSD) perform better than
the state­of­the­art, such as nnU­net? To this end, we have compared our framework to nnU­net [25],
the winner of the MSD [2] (see Section 2.4 for more specific details) on the Brain dataset of the MSD.
Many hyperparameters, which are summarized in Table 3.4, are either the same as nnU­net or are
optimized by BOHB. The differences that remain, are discussed in the next section. AutoMONAI uses
the recommended BOHB parameters of 𝜂 = 3, a minimum and maximum budget of 5 and 200 epochs,
and it iterates 5 times, which gives a total budget of 3700 epochs.

3.5.1. Differences with nnU­net
Whereas nnU­net crops images to the region of non­zero values to reduce the memory footprint, our
framework does not have that functionality. We do not believe this has a significant influence on the
performance. While nnU­net adapts its patch size so that it is as large as possible, with a maximum
of 1283 or 1282, we have fixed our patch size to this maximum. If we implemented that our patch
size changes based on the configuration, we would change multiple hyperparameters by only explicitly
changing one. We do not think this has a significant impact since the patch size for this dataset is the
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Hyperparameter nnU­net In search
space

Search range

Preprocessing
Resampling To median voxel size X None, Mean and median voxel

size
Normalization Z­scoring X None, z­scoring, percentile

clipping, min­max
Cropping To non­zero image Not implemented
Data augmentation Rotation, Scaling, Flipping,

Gamma augmentation, elastic
scaling

Fixed: flipping, gamma aug­
mentation, elastic scaling

Patch size 1283 and 1282 Fixed: 1283 and 1282
Batch size 2 and 89 Fixed: 2 and 256
Patch selection No oversampling of fore­

ground classes (in this
dataset)

Fixed: no oversampling (any­
where)

Network architec­
ture
Depth 6 X 2 ... 6

Channels in the first
layer

30 X 23 ... 27

Multiplication factor
channels

2 X 0.5 ... 3.0

Convolution type Both 2D and 3D X 2D and 3D

Number of convolu­
tions

2 X 0 .. 3

Resnet like structure Not applied Fixed: applied
Activation function Leaky Relu Fixed: Leaky Relu
Normalization Instance normalization Fixed: instance normalization
Training proce­
dure
Loss function Dice + Cross Entropy loss X Dice, GDL, DiceCELoss, Dice

+ Hausdorff loss, Dice + Top K
loss, Dice + Focal loss

Optimizer Adam Fixed: Adam
Learning rate (LR) 3e­4 Fixed: 3e­4
LR scheduler Reduce by a factor 5 after 30

epochs if exponential moving
average of the training loss
does not improve by 5e­3

Fixed: reduce by a factor 5
after 30 epochs if best score
does not improve by 0.01%

Epoch definition 250 instances Fixed: all instances in the
training set

Stop definition When LR is lower than 1∗10−6
and exponential moving aver­
age of validation loss does not
improve by at least 5 ∗ 10−3

Fixed: 200 epochs

Cross­validation Five way split Fixed: four way split (60%­
20%)

Postprocessing
Largest connected
component analysis

Applied Fixed: applied

Ensembling Cross­validation ensembling
and ensembling of best
architectures

Fixed: only cross validation
ensembling

Inference Center voxels weighted higher,
50% overlap

Fixed: Gaussian distribution,
50% overlap

Table 3.4: Comparison of the hyperparameters between nnU­net and our framework.
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same for both designs. Similarly, nnU­net tries to use an as large as possible batch size. In this case,
that is 2 for 3D networks and 89 for 2D networks, while we have fixed that to 2 for 3D networks and 256
for 2D networks. The patches for the 2D networks are not randomly sampled. Rather, we randomly
sample 3D patches which we transform into 2D samples by extending the batch axis to include every
sample from the z­axis.

Our data augmentation is also less extensive due to implementation details of MONAI. We did not
implement rotation, elastic deformation, or scaling, which gave unpredictable errors, which we did not
manage to solve.

nnU­net defines an epoch as 250 training batches because it is designed to do the same for each
dataset. However, a dataset with more images can have different design specifications than smaller
sets, so we use the more commonly used definition of training with all images in the training set once.

nnU­net applies five­fold cross­validation across the entire dataset and reports the mean of the
results achieved on each validation set. Furthermore, they provide the results the ensemble of these
five­fold cross­validation achieves on the test set provided by MSD. Since we have not used this test
set, which is something we have reserved for future work, but do we want to implement ensembling we
have chosen to use one fold as a test set. The other four folds are used in a four­fold cross­validation
split, on which we train the networks and ensemble those. We do not report results on the validation
sets, since these metrics are used in BOHB, and the system might overfit on the validation split.

nnU­net reduces the learning rate by 5 if the exponential moving average does not improve with at
least 5 ∗ 10−3 in the last 30 epochs, while our system reduces the learning rate with the same factor
when the loss does not improve by at least 0.01 % in the same time, which is a build­in learning rate
scheduler of PyTorch. We do not believe this difference is very large.

nnU­net ensembles the different architectures it trains (2D and 3D) and ensembles them, to select
the best out of all of these combinations. Our framework does not do that, which we consider future
work. However, nnU­net did not improve the performance by ensembling the different architectures on
the Brain dataset.
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Results

4.1. Determining a viable search space
In this experiment, we did a 1D search to determine which hyperparameter influence the performance.
The loss curves of these experiments are visible in Appendix A. To determine whether the converged
performance is from a different population, we performed multiple ANOVA tests, which results are
shown in Table 4.1. Results are significant when the p­value is (approximately) 7.14×10−3 or lower. Our
experiment indicates that the convolution type (p=5.64×10−6), the number of channels in the first layer
(p= 4.04 × 10−4), the multiplication factor of the channels between each depth layer (p= 4.54 × 10−17
), and the loss function (p= 1.44 × 10−9) are significantly influencing the eventual performance, and
therefore need to be optimized. However, normalization (p=1.42 × 10−1), resampling (p=1.92 × 10−1),
the depth (p=3.93×10−2) and the number of convolutions (p=2.69×10−1) are not significantly influencing
the performance.

Hyperparameter ANOVA p­value
Depth 3.09 3.93 × 10−2

Convolution type 111 5.64 × 10−6
Number of convolutions 1.40 2.69 × 10−1

Multiplication factor channels 3.09 4.54 × 10−17
Channels in first layer 10.8 4.04 × 10−4

Loss function 29.9 1.44 × 10−9
Normalization 2.09 1.42 × 10−1
Resampling 1.81 1.92 × 10−1

Table 4.1: ANOVA values and corresponding p­values for every one dimensional search across each hyperparameter.

4.2. Investigating the applicability of BOHB
In this section, we discuss the results which investigates the applicability of BOHB. First, we discuss
the relationship between intermediate and final rankings of hyperparameter configurations (Sec. 4.2.1).
Afterwards, we discuss the results of the comparison between different BOHB and RS settings (Sec.
4.2.2).

4.2.1. Relationship between intermediate and final rankings
We have trained all configurations in the small search space, which spans the depth, convolution type
and number of channels in the first layer. Fig 4.1a shows the loss functions of all successful configura­
tions. Successful, since some configurations exceeded our computational limits and therefore do not
have loss curves. The loss functions are color­coded based on their final performance; the green lines
have the best final performance, red the worst. The performance curves can be visually split into two
sets, which corresponds with the convolution type; 2D configurations perform better than 3D configu­
rations. Two observations with regards to the ranking can be made from this graph: large shifts (> 10)
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(a) The loss curves of all successful (not exceeding computational
limits) configurations. The curves are color coded based on the
final ranking, with green for the best performance, red the worst.

(b) Kendall’s 𝜏 between the ranking after a varying number of
epochs and after 200 epochs.

Figure 4.1: Comparing results on the small search space (depth, convolution type and number of channels in the first layer).

are almost exclusively in the initial 25 epochs and there are small shifts even in the final stages of the
training process. The latter observation is partially explained by the small performance differences.

These observations can also be shown using Kendall’s 𝜏, plotted in Fig. 4.1b: the correlation rises
quickly, but settles on a level between 0.7 and 0.8. Already at the first data point (5 epochs) with
𝜏 = 0.31, there is a significant correlation. Recalling the formula for transforming Kendall’s tau in a
normal distribution (Eq. 4.1), and filling in 𝑁 = 50, we calculated 𝑧 = 3.17, which is larger than 1.96
and therefore the correlation is statistically significant.

𝑧 = 3 ∗ 𝜏√𝑁 ∗ (𝑁 − 1)
√2(2𝑁 + 5)

(4.1)

4.2.2. Comparing different settings of BOHB and RS
We compared different settings of BOHB and RS. We define the Dice score of a single run as the best
result achieved during the run. The average Dice score and the worst Dice score for every setting of
BOHB and RS are shown in Table 4.2. The best performance achieved by each setting is not shown,
since for almost all settings this was the theoretical maximum of 0.719. Most results are very similar,
which is also shown by the Kruskall­Wallis test, which had a p­value of 0.22, which means that there is
no significant difference between any setting.

Optimizer metric 𝜂 iterations Worst score Mean Dice score
BOHB 1­Dice 3 5 0.691 0.714
BOHB 1­Dice 2 5 0.691 0.713
BOHB 1­Dice 3 10 0.691 0.715
BOHB 1­Dice 2 10 0.708 0.718
BOHB DiceCELoss 3 5 0.691 0.714
BOHB DiceCELoss 2 5 0.704 0.715
BOHB DiceCELoss 3 10 0.714 0.718
BOHB DiceCELoss 2 10 0.691 0.715

Random Search ­ ­ 19 0.700 0.715
Random Search ­ ­ 38 0.714 0.719

Table 4.2: The mean (N=10) and worst Dice score achieved by the different BOHB and Random search settings. The theoretical
(grid search) optimum is 0.719.
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4.3. Comparing AutoMONAI with nnU­net
In this section, we compare the performance of AutoMONAI with the state­of­the­art, nnU­net. The
Dice score achieved on the test set is shown in Table 4.3. This table shows that AutoMONAI performs
slightly worse than nnU­net in two out of three classes (0.77 vs 0.84 and 0.56 vs 0.62) the designs had to
segment. Only for the last class, the enhancing tumor, both designs perform similarly (0.79 and 0.80).
AutoMONAI, which uses 2D convolutions, even slightly outperforms the 2D variant of nnU­net in this
last class (0.77).

Algorithm Brain dataset
1 2 3

nnU­net 3D 0.8391 0.6192 0.7959
nnU­net 2D 0.7860 0.5865 0.7742
AutoMONAI 0.7721 0.5646 0.7925

Table 4.3: The Dice score on the different segmentation classes (1: edema, 2: non­enhancing tumor and 3: enhancing tumor)
of the Brain dataset. Reported data from nnU­net 2D network is from [25].

Figure 4.2 shows the loss curves of nnU­net and the best configuration in our framework. There
are a few differences between the two graphs which do not reflect a difference in performance. The
loss curve calculated in nnU­net is a constant 1.00 lower than calculated in AutoMONAI. This does not
effect the performance, since the gradient is the same. Furthermore, our framework only calculates
the Dice score and validation loss every 5 epochs, to reduce computation cost.

A noticeable difference is that nnU­net converges quicker and to a higher Dice score (0.8 vs 0.7),
unfortunately slightly hidden by the different axes for the Dice score. However, the loss curve of Au­
toMONAI converges to a lower final loss, when corrected for the shift explained in the previous para­
graph. Another interesting detail is the sudden drop in the loss of AutoMONAI around 25 epochs, where
the loss curve of nnU­net drops more gradually. Our model has a validation loss curve that is more
similar to the training loss curve than nnU­net, implying AutoMONAI has less overfitting than nnU­net.

The best configuration found by BOHB is shown in Table 4.4. This configuration shows similarities
with the previous experiments. For example, BOHB best configuration has 2D convolutions, which was
also substantially better than 3D convolutions in the grid search as shown in Section 4.2.

Hyperparameter Value
Depth 3

Convolution layers 1
Channels first layer 26
Channel multiplier 2.05
Convolution type 2D
Normalization Percentile clipping
Resampling None
Loss function DiceTopK

Table 4.4: Best configuration found by BOHB.

The boxplot shown in Figure 4.3 shows the median and lower and upper quartile of the Dice for
each class, which is calculated on the test set. The Figure shows that the Dice score for the second
class is lower and has a larger variance, which is common for the Brain dataset [2]. Both nnU­net
and AutoMONAI achieve similar results on the second class, the non­enhancing tumor. Interestingly
enough, the median of the Dice score achieved by nnU­net on the third class is substantially higher,
while the mean is similar.
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(a) nnU­net’s loss curve.

(b) AutoMONAI’s loss curve.

Figure 4.2: Loss and performance curves of AutoMONAI and nnU­net of a single fold on the Brain dataset. The green curve is
the Dice score, with the axis on the right of the figure, which is different for both figures. The loss curves (Blue for the train loss,
red for the validation loss) have the axis on the left side. The loss of nnU­net is exactly 1 lower due to a difference in calculation.
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(a) nnU­net (b) AutoMONAI

Figure 4.3: Boxplots of nnU­net and AutoMONAI for each class (1: edema, 2: non­enhancing tumor and 3: enhancing tumor) of
the Brain dataset based on the test set. The box extends from the lower to upper quartile of the data, with an orange line for the
median.





5
Discussion

This chapter summarizes the results (Chapter 4) and interprets them to answer the research questions:
(1) What is a viable search space? (Section 5.1), (2) Is BOHB a useful HPO optimizer in this use case?
(Section 5.2) and (3) Does AutoML perform better than the state­of­the­art? (Section 5.3). Finally, we
discuss limitations of this work (Section 5.4).

5.1. Determining a viable search space
The number of convolutions in the first layer, the multiplication factor, the convolution type, and the loss
function significantly influence the performance. The depth, the number of convolutions, resampling,
and normalization do not influence the performance significantly; we will discuss the potential reasons
here. Surprisingly, 2D networks outperform 3D networks in our setting, while literature suggests that
3D networks should perform better [25].

Resampling does not change the Brain dataset, since it is already resampled to have the same voxel
size. Differences in configuration do therefore not result in different computations or performance. The
difference between normalization procedures is not significant, likely because the network itself nor­
malizes after each convolution. An indication in this direction is the fact that the configuration without
any normalization slightly trails behind at the start of the training procedure. Assuming normalization
is beneficial, this configuration learns to rely on the first normalization in the network. One study [51]
showed that normalization is beneficial in general, however, it also showed that the effect of normal­
ization diminishes for more difficult problems, larger samples sizes, and larger networks. these effects
occur when the previously mentioned effect occurs, i.e. when networks are capable of self­scaling.

Increasing the depth or the number of convolutions should theoretically not have a negative impact
on the performance, since a convolution can be an Identity operation and the outputs of the additional
depth layers can simply be weighted zero. However, increasing these hyperparameters does increase
memory usage, which is limited. This means these hyperparameters influence the search range of
other, significant hyperparameters. For example, a higher depth lowers the upper bound of the num­
ber of channels without reaching these limits. The same is true the other way around: by reducing the
memory footprint with regards to insignificant hyperparameters, an optimizer can use the freed memory
to expand the range on a more significant hyperparameter.

Based on these one­dimensional searches, a search space should include at least the convolution
type, the number of channels in the first layer, its multiplication factor between depth layers, and the
loss function, since optimizing those has a significant effect on the performance. We think it is also
useful to include the depth and the number of convolutions since these hyperparameters influence the
range of other hyperparameters. The effect of resampling needs to be investigated on a dataset where
the operation has an effect. Normalization, however, can probably be omitted to make room for other,
not investigated hyperparameters.
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5.2. Investigating the applicability of BOHB
The analysis using Kendall’s Tau shows that the ranking after 5 epochs can be used as a rough es­
timator for the eventual ranking. However, it also shows that the final ranking is influenced by noise,
since Kendall’s tau does not reach 1, but settles between 0.7 and 0.8. Repeating the experiment or
extending the number of epochs, will result in a different final ranking. This noise is caused by small
perturbations in the weights and the small performance differences.

Differences in performances between the different configurations of BOHB and Random Search
are not significant when applied on the used small search space (which has only 50 possible configu­
rations). Even though this could be explained by insufficient statistical power or simply no significant
difference between the methods, even when the search space is sufficiently large, this is not likely.
We used a substantially larger sample size (n=10) than the recommended lower bound (n=5) and the
literature [16] shows there is a difference between these methods when used to optimize neural net­
works for natural images. Therefore, the most likely reason is the small search space. Since there are
only 50 total different options, a Random search with 38 iterations has a 1 − (49/50)38 = 0.53 chance
to find the best solution. BOHB with 10 iterations can potentially explore 128 different configurations,
although many of those only with a small budget. However, if the number of iterations becomes much
lower, it acts as a random search combined with HyperBand, since it cannot build a useful Bayesian
model. Therefore, with such a small search space, the methods largely overlap and differences can
occur when these methods are applied to a larger search space.

5.3. Comparison with nnU­net
The results show that our framework does not perform as well as the state­of­the­art in two out of three
classes, and has similar performance in the last class. This performance difference may be attributed
to several reasons, which we discuss in the next paragraph. However, we also found that AutoMONAI
has less overfitting, since the training and validation loss curve are nearly identical, whereas these loss
curves measured at nnU­net have larger differences.

First of all, the train­test splits were not the same for nnU­net and our framework. This might con­
tribute to these differences, however, it might also partly compensate for a larger difference. More
importantly, we think the difference in data augmentation between our designs is the largest contrib­
utor to the performance gap. We skip rotations and scaling in the data augmentation process, due
to unfortunate problems in the implementation. Other differences, such as the different learning rate
scheduler or the sampling of training patches can also influence performance. Another difference be­
tween the implementation is the sampling of 2D patches. Whereas nnU­net samples 2D patches, we
resize 3D patches to 2D patches. This does not sample all 2D patches equally likely and creates a
large batch size of 2 ∗ 128. Finally, there are differences in the stopping criteria and the learning rate
scheduler. Whereas AutoMONAI stops training after 200 epochs, nnU­net stops training when there is
little improvement and the learning rate is low. This is also influenced by both learning rate schedulers,
which reduces the learning rate in nnU­nets implementation with much lower criteria than in AutoMON­
AIs implementation. Assuming the loss is close to an optimum, nnU­net reduces the learning rate when
the performance improvement is less than 1 × 10−3, whereas AutoMONAI reduces the learning rate
when the performance improvement is less than only 2 × 10−5.

5.4. Limitations and future work
This section discusses the limitations of this work and proposes future work. As mentioned in the
previous paragraph, we use a less extensive data augmentation process, and we think this negatively
impacts the performance. While we do not expect this potential improvement would let AutoMONAI
surpass nnU­net in performance, it should be addressed in future iterations of our framework.

This work is also limited because we have done all of our experiments on a single dataset. This
has consequences for the interpretation of the conclusions. All of our conclusions can only be applied
to MSD’s Brain Dataset. For example, as mentioned in the paragraphs above, the hyperparameter
resampling does not have a significant influence on the performance attributed to the fact that the
experiment ran on this dataset. Since AutoML is applied to many datasets, it is important to note
that our conclusions can only be applied to this single dataset. We suggest future work applies this
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framework to the other datasets of the MSD or other datasets in medical image segmentation.
Finally, due to the heavy computational costs of our framework and experiments, we have been

limited in validating our results. Not only were we limited in applying AutoMONAI to multiple datasets
(as mentioned above), we also have not completely done five­fold test­train cross­validation. We have
trained 4 networks which ensemble evaluated the test set. It would have been more accurate to train 4
networks for each fold and report the performance of each ensemble on the corresponding test set. It
has also limited us in the size of the used search space and comparing BOHB and RS on the complete
search space.

One way to reduce the effect of these computational costs is by parallelizing BOHB, which is what
we have left for future work. This is one of the major advantages of BOHB compared to Bayesian
Optimization methods such as SMAC or TPE [24]. By implementing this feature, it becomes possible to
increase the search space accordingly, compare the performance achieved by different search spaces
or use more iterations for BOHB, to ensure the algorithm is converged.

Another potential future research direction that reduces the time BOHB needs to converge, is using
Meta­Learning. BOHB uses a model with the highest fidelity to sample new configurations and start
without a model, where it uses random sampling. This random sampling can be, for example, be
replaced by a Meta­Model. One of this Meta­models [7] discretizes the configurations investigated in
previous tasks and selects the top­K configurations of this discretized configurations.

Furthermore, the performance of AutoMONAI may be improved by ensembling the top­performing
configurations found by BOHB instead of the single best configuration. nnU­net does something similar;
it ensembles every combination of 2D, 3D, and Cascade­3D (when applicable) networks and selects the
best combination afterward. Since the performance differences between configurations found by BOHB
are very small, an ensemble can improve performance. However, we assume that these configurations
need to be sufficiently diverse, which might be difficult to determine.

Finally, instead of focusing on improving performance or runtime, future work could find solutions
on a Pareto front, where performance is traded against other objectives, such as computational costs
or the explainability of the returned networks. The explainability of any automated system can increase
trust in the system. Various papers have been published on the explainability of CNN’s [63], with several
techniques such as class saliency, activation maps, and guided backpropagation to explain semantic
segmentation. Explainability of the returned models is based on the complexity, for example, by adding
layers, more activation maps are presented to the reviewer of the models, which might make it more
difficult to explain.





6
Conclusion

The goal of this thesis was to investigate the possibilities of implementing BOHB for a medical seg­
mentation problem, which resulted in our framework AutoMONAI. We have investigated several hy­
perparameters to be included in a search space, compared BOHB with RS, and finally compared our
approach with the state­of­the­art. These experiments found several of the mentioned hyperparam­
eters to significantly influence the performance. We have also found that that the ranking after five
epochs is largely correlated with the ranking after 200 epochs. This indicates there is a correlation
between the ranking after five epochs and the final ranking. However, these experiments also showed
that the final ranking is influenced by noise since the correlation between the one before last ranking
and the last ranking is large, but these rankings are not completely equal. This finding shows that the
prerequisite of BOHB is valid, but we did not find a significant difference between any setting of BOHB
or RS on the small search space, which optimized the depth, number of channels, and convolution
type. Finally, our framework achieves a similar performance as nnU­net on MSD’s Brain dataset.
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Figure A.1: The Dice score curves, with a single graph for each hyperparameter. From left to right, top to bottom: Convolution
type, channels in the first layer, channel multiplier, convolutions in each layer, the depth, normalization, resampling and the loss
function.
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