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Abstract

In recent years, researchers have proposed a variety of approaches to tackle the problem of orbital
debris. Debris targets are diverse, and prior knowledge may be limited, with unknown uncooperative
debris targets being the most challenging category. A crucial portion of any debris capture scenario is
the observation phase during the approach. During this phase, the chaser spacecraft attempts to learn
as much as possible about the target by using remote sensing, of which relative pose is of particular
interest, to enable the advancement of the mission towards eventual capture.

This research utilizes the fusion of data from a scanning LiDAR with a long-wavelength infrared cam-
era to estimate the relative pose of an unknown uncooperative target. Two separate bespoke pose
estimation algorithms, color-ICP and Feature Matching, were developed and tested with laboratory
experiments mimicking the close-approach phase with a target under various lighting conditions and
relative motion rates. The color-ICP algorithm uses a thermal infrared-infused color-assisted General-
ized Iterative Closest Points method, while the Feature Matching algorithm uses computer vision on
LiDAR point-infused thermal images to track BRISK feature points in each frame to estimate pose.

In general, the color-ICP algorithm deliveredmore accurate results throughout the range of experiments,
though the fusion was slightly detrimental while the target is being heated or cooled. The FeatureMatch-
ing algorithm contains a large amount of tunable parameters, making the estimation highly sensitive yet
versatile, demonstrating that harsh lighting conditions can be mitigated with accurate features tracked
after the implementation of image processing techniques. Overall, the end product shows promise as
a light-agnostic remote sensing and pose estimation solution.

This research contributes to the advancement of active debris removal theory and explores two promis-
ing avenues for LiDAR-infrared sensor fusion for pose estimation, laying the groundwork for further
iterations exploring this sensor pairing. The resulting use case is a conceivable scenario in which these
sensors work together to supplement individual strengths and mitigate disadvantages throughout the
approach phase of a debris removal mission.

Keywords: Active Debris Removal, Remote Sensing, Sensor Fusion, LiDAR, Thermal Infrared, Pose
Estimation, Unknown Uncooperative Targets
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1
Introduction & Overview

This chapter will serve as an introduction to the research performed by introducing key concepts, topics
and ideas relevant to the study. Section 1.1 will define the motivations for the research as well as the
research questions to be answered as a direct result of the work done herein, as well as defining the
scope and application of the research before providing a document outline. Section 1.2 will continue
in introducing concepts that are essential to the research.

1.1. Introduction
This research follows a literature study regarding the state-of-the-art of the key concepts and technolo-
gies relevant to orbital debris removal. Before the lessons and insights gained from this study are
discussed, it is useful to explain the motivation of this work while indicating to the reader what this
research does and does not entail.

1.1.1. Motivation
Our role in space is evolving. This revolutionary step for humanity comes with unique challenges that
must be addressed and mastered before the sector can advance further. The problem of space debris
has garnered attention and there are multiple approaches being considered to tackle the issue, an is-
sue which will require a diverse set of approaches to mitigate the worse case scenario, the so-called
Kessler syndrome.[56] The skills and techniques required to address this issue are, however, applica-
ble to a wider variety of tasks in orbit and deep space. Rendezvous in orbit was first accomplished
by the American Gemini missions, the first of which was flown by Neil Armstrong and almost resulted
in his and his crew-mate’s death.[41] Since then, in-orbit rendezvous have become a routine part of
space flight, most notably with the International Space Station (ISS) which is regularly resupplied and
changes crew. However, these rendezvous have been cooperative, meaning that both the chaser (re-
supply craft for example) and the target (ISS for example) have been built with rendezvous in mind,
having aids and references for precisely this task. In the scenario of docking with the ISS, the ISS
can be categorized as a cooperative known target in that its parameters are known before the docking
procedure and that it cooperates actively (communicating) or passively (reference points) to assist the
chaser in its rendezvous and docking procedure.

Cooperative known targets are an ideal case. However, consider the task of rendezvous and capture
of debris from an orbital collision. This piece of debris may once have been a well known and under-
stood section of a larger system, however after the collision it has changed. Another scenario would
be that of the unexpected failure of a satellite in orbit, such as was the case with the school-bus-sized
Envisat[1], before it is able to discharge its batteries and pressurized internal contents, a process called
passivation. If the satellite is not passivized before contact is lost, it is possible that the resulting loss
of control will lead to heating beyond the design parameters resulting in an explosive breakup of the
satellite.[14] To approach such a target necessitates the assumption that the target is uncooperative

1



1.1. Introduction 2

and unknown as the parameters are likely to have changed and it can not be assumed that any aids or
references are available to assist the chaser. Another example would be the capture of an asteroid.

The uncooperative unknown scenario is the most challenging, and will be the sole scenario considered
in this research.

1.1.2. Research Questions & Proposal
This research is preceded by a literature study preformed to understand the current state of the art in
remote sensing for pose estimation, and to find any potential knowledge gaps worth exploring. This
revealed a perceived lack of attention to pose estimation using thermal infrared sensors, and the fu-
sion of infrared data with other sensors. Many existing pose estimation methods utilize monocular
cameras in the visual spectrum, however these cameras are sensitive to the harsh lighting conditions
in space. Fusing images with LiDAR point-clouds is a common way to resolve scale in an image, but
fusing LiDAR and thermal infrared data would theoretically create a system independent of lighting
conditions. Though LiDAR is able to determine pose on its own, the sensor often contains consider-
able inaccuracies and performs poorly specifically when viewing targets at unfavorable angles, such
as head-on positions and when trying to detect small diameter objects such as antennae. By devel-
oping suitable LiDAR-infrared fusion and pose estimation algorithms and testing them on a diverse
set of target scenarios, this research supports development in the field of spacecraft rendezvous and
proximity operations and form the primary thesis objective: Research the suitability of LiDAR-thermal
infrared fusion to estimate the pose of an unknown uncooperative target. With this objective in mind,
the primary research question can be stated as:

How can data from LiDAR and thermal infrared sensors be fused to estimate the relative pose of an
unknown uncooperative target?

The primary research objective and question are supported by the following sub-questions to provide
a deeper and more thorough understanding, briefly clarified below:

RQ-1 What algorithm best suits the fusion and pose estimation goals?

a. At what point should the data fusion take place?

Data fusion can take place in different phases of the pose estimation process. The
choice of where the fusion takes place is dependent on the specific application and
scenario and can have broader implications on the performance of the wider algorithm.

b. How can the fusion be calibrated?

LiDAR returns 3D data while the thermal infrared sensor returns 2D images, and as they
are not in the same location in space, the alignment of these two reference frames is
crucial to obtaining accurate results.

c. What computer vision tasks can aid the process?

Computer vision is used to gain insights from data obtained from electro-optical sensors
such as LiDAR and thermal infrared. There is a wealth of computer vision and image
processing tools available to assist any potential pose estimation algorithm, however
some are more appropriate than others for this research.

d. How will the pose be estimated?

The result of any pose estimation algorithm should fully describe the 12 degrees of
freedom for relative pose numerically, and be able to be represented in different frames
of reference.

RQ-2 How does the method developed perform?

a. How accurate is the pose estimation?
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Though accuracy is not the primary goal, the estimation should be convincingly similar
to the ground truth recorded during data gathering. If this is not the case then a detailed
explanation of the cause of the inaccuracies will be required.

b. How can an experiment be designed to test the algorithm?

The algorithm must be supplied with data that is specifically gathered for the purpose
of this research to be able to perform a comprehensive test of the method developed.
Laboratory conditions should strive to represent the real-world use case for this research
within reasonable means of terrestrial-bound testing.

c. What are the limitations of the LiDAR and thermal infrared sensors?

Both the LiDAR and thermal infrared sensors have advantages and limitations. Both of
these will be thoroughly explored.

d. What scenario is this method best suited for?

After experimentation, testing and the resulting pose outputs, it should become clear
what this method does well and what its limitations are. A subsequent use case scenario
can then be formulated in which this research can be applied to.

e. What are the advantages and disadvantages of the method?

What are the strengths of this method and what were the contributing factors? The same
analysis can be done on the weaknesses of this method.

This document is intended for researchers, academics and engineers working in the field of active
debris removal, particularly those interested in multi-modal sensor fusion for relative pose estimation
of unknown uncooperative targets. It is also valuable for those developing algorithms for LiDAR-infrared
sensor fusion and those exploring light-agnostic solutions for remote sensing in space applications.

1.1.3. Research Scope & Applications

Figure 1.1: Items included (green) and not included (orange) within the scope of the research presented.

This research will develop and test a method of pose estimation by fusing data retrieved from a thermal
infrared sensor with that of a LiDAR sensor. The targets will be unknown and uncooperative, and the
method developed will operate under the assumption that no prior knowledge of the target’s shape, size
or composition will previously be known before sensing. This research focuses on a specific phase in
the rendezvous process which would occur at relatively close distance between the chaser and target.
The phases before this (such as angles-only approach) and after (such as capture) will not be consid-
ered. Figure 1.1 shows a visual overview of what is and is not included in this research’s scope.
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The discussion portion of this document, specifically Section 3.3.4 will describe a specific use case for
the methods developed during this research as well as some recommendations for further development
in Section 4.3.

1.1.4. Document Overview
Chapter 1 first detailed the background, motivation and main questions of this research, and will con-
tinue with a knowledge-primer for concepts and technologies relevant to the development and results
of the research performed. Chapter 2 will then detail the development of the calibration, fusion and
pose estimation algorithms before describing in detail the various iterations of the verification and vali-
dation experiments, with a special emphasis on the thought process behind the choices made in both.
Chapter3 will then proceed to describe the results of the methods developed and continue to analyse
and discuss the results as they pertain to the stated research questions, also including a discussion of a
possible use case for these methods. Finally, Chapter 4 will revisit and answer the research questions
posed, and draw some conclusions on the results presented as well as recommendations for further
research.

1.2. Remote Pose Estimation Overview
This Section will serve as an introductory primer to the essential concepts utilized and discussed in
Chapter 2 and Chapter 3. Some of these concepts go beyond the usual realm of aerospace subject
matter, with computer vision being a prime example. Section 1.2.2 also serves to show the relevance
of the methods and topics covered by describing missions in orbit that have utilized some of the instru-
ments and technology integral to this research.

1.2.1. Rendezvous & Proximity Operations
The field of rendezvous and proximity operations (RPO) in orbit plays a pivotal role in the broader scope
of space missions, encompassing critical maneuvers and delicate interactions between spacecraft. As
the demand for satellite constellations, orbital servicing, and interplanetary exploration intensifies, mas-
tering the art of precisely controlled RPO becomes indispensable. This section provides a foundational
overview of the concepts, techniques, and significance of RPO in the realm of space exploration.

Rendezvous in orbit refers to the intricate process of bringing two spacecraft together at a designated
location and time. This operation can serve various purposes, such as docking, satellite servicing, or
the formation of satellite constellations. Proximity operations, on the other hand, involve the careful
navigation of spacecraft in close proximity to each other without physical contact. Both rendezvous
and proximity operations demand meticulous planning, precise control, and a thorough understanding
of orbital mechanics.[23]

The importance of RPO in orbit is underscored by its diverse applications across different space mis-
sions. Docking maneuvers are crucial for spacecraft delivering cargo to the International Space Station
(ISS) or assembling large structures in space. Satellite servicing missions leverage RPO techniques to
extend the operational life of satellites, refuel spacecraft or repair malfunctioning components. Further-
more, the formation and maintenance of satellite constellations demand precise proximity operations
to ensure optimal orbital configurations. Of particular interest to this research is the importance of RPO
in Active Debris Removal (ADR).

RPO presents unique challenges due to the complex nature of orbital dynamics and the need for real-
time adjustments. The vastness of space, combined with the high velocities of orbiting objects, requires
advanced algorithms and control systems. Techniques involve utilizing sensors, such as LiDAR, radar
and optical sensors, for relative navigation, as well as implementing autonomous control systems to
adapt to unforeseen changes in the orbital environment.[22]
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1.2.2. Electro-Optical Sensors & Computer Vision
The term electro-optical sensor is used to refer to a diverse group of sensors capable of sensing elec-
tromagnetic radiation (either emitted or reflected) anywhere within a wavelength rage between 0.01
µm and 1000 µm, corresponding to the ultraviolet (UV), visible and infrared (IR) spectra ranges.[24]
Electro-optical sensors have a wealth of flight heritage in space and there are a wide variety of commer-
cial space-rated products available. Electro-optical sensors can be divided into two groups, passive
and active, as discussed below.

Passive Electro-Optical Sensors
Passive sensors do not illuminate their targets, instead simply collecting the EM radiation that enters
the sensor. They are characterized by their relative simplicity and low power consumption, with the
added benefit of being able to be used in inspection tasks.[42]

Monocular cameras, as seen in Figure 1.2b, have one lens and can be sensitive to UV, visible or IR
wavelengths, though almost almost all RPO literature referenced here refer to monocular cameras in
the visible spectrum. As the literature study has shown, there has been much more research on visible-
spectrum monocular cameras for RPO compared to those in other spectra. Monocular sensors return
2D images of the target and can be in color or grayscale. Visible-spectrum cameras benefit from having
comparatively high resolution compared to other electro-optical sensors, however they are extremely
sensitive to lighting conditions and unfavorable phenomenon such as artifacting. All monocular cam-
eras represent the recorded photon wavelengths as pixel values, which is something integral regarding
their suitability for an application.

Stereocameras, seen in Figure 1.2a are essentially two monocular cameras separated by a distance
known as its baseline. This configuration allows for the sensor to output 3D images with the same high
resolution benefit of monocular cameras, however stereocameras are strongly limited by the baseline
as it determines the maximum operating range that it is able to collect 3D data from. Similarly to monoc-
ular cameras, it is also particularly vulnerable to lighting conditions.

(a) A space-rated stereovision system from MCSE[49]
(b) A space-rated visual-spectrum monocular camera

system from MCSE[8]

Figure 1.2: Space-rated passive vision systems available for purchase

It is useful to mention that the above sensors can all be turned into active sensors by supplying their
own artificial illumination. For example, a target in the dark can be illuminated with a flashlight and then
observed in the visible spectrum.

When faced with the choice of passive electro-optical sensor selection, it is important to understand
the source and behavior of electromagnetic radiation in various spectra. For the purposes of RPO and
ADR, visible and UV sensors would detect the light in their spectrum reflected off of the target. IR
sensors, however can detect radiation emitted by the target itself without having to rely on an external
source such as the sun, as all objects emit radiation in the infrared spectrum based on their emissivity
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and temperature as given by Planck’s Law. This is based on the so-called blackbody approximation,
an idealized body that absorbs all incident electromagnetic radiation. Expanding further, Wein’s Law
defines the peak wavelength emitted by an object as being solely dependent on temperature.[24] For
the purpose of ADR, targets are not likely to be ”white hot” so their emissivity will primarily be in the
long-wavelength infrared (LWIR) spectrum, and therefore not require any illumination if observing with
a sensor sensitive to this range. This will be discussed further using academic sources in Section
1.2.3. As shown in Table 1.1, the IR spectrum corresponds to black-body radiation associated with
a specific temperature range. It is important to note that these temperatures correspond to the peak
wavelength, and that an object will also radiate other wavelengths at the same temperature, but with a
lesser intensity.

Figure 1.3: Infrared Spectrum [59]

Division Abbreviation Wavelength Temperature
Near-infrared NIR 0.75 to 1.4 µm 3591 to 1797 ◦ C

Short-wavelength infrared SWIR 1.4 to 3 µm 1797 to 693◦ C
Mid-wavelength infrared MWIR 3 to 8 µm 693 to 89◦ C
Long-wavelength infrared LWIR 8 to 15 µm 89 to -80◦ C

Far infrared FIR 15 to 1000 µm -80.15 to -270.15◦ C

Table 1.1: Peak infrared wavelength corresponding to temperature definitions[38]

Visual spectrum sensors are integral to modern life, and are usually characterized as having a high
resolution compared to other spectra of sensors. However, visual sensors are sensitive to lighting
conditions, being blinded by strong light and darkness. IR sensors do not share this downside. LWIR
sensors are effectively able to see in the dark as it collects the emitted radiation within its spectral tem-
perature range. The downside of LWIR sensors is that they generally have lower resolution, though
the need for very high resolutions may not be necessary for all applications. As LWIR sensors are
highly agnostic to lighting conditions, they offer an attractive proposition for this research. Though
other electro-optical sensors exist in other spectra, as shown in Figure 1.4, only LWIR offers the char-
acteristic light-invariance at non-extreme temperatures.



1.2. Remote Pose Estimation Overview 7

(a) Image in UV and Visible spectra[43] (b) LWIR (top) vs SWIR (bottom) images[24]

Figure 1.4: Imaging in different wavelengths

Active Electro-Optical Sensors
Active sensors emit their own EM radiation that they then collect andmeasure the backscatter of. These
sensors typically use more power than their passive counterparts but have a number of unique benefits.
One active sensor of particular interest is LiDAR.

Figure 1.5: A space-rated LiDAR system from Jena-Optronik
[46]

LiDAR illuminates targets with an infrared laser
source, usually in the Near-Infrared Range (NIR),
and provides both 3D position and intensity data
in the form of point clouds. LiDAR is known
for generating relatively sparse point clouds com-
pared to stereovision’s dense 3D range images,
however this leads itself to being less computa-
tionally burdensome. LiDAR is robust to light-
ing conditions and can operate in eclipse, with
the sun or Earth in the scene, and can im-
age the ”dark” side of the target without issue.
As shown in Figure 1.6, there are two overar-
ching categories of LiDAR, pulsed (sometimes
called time-of-flight TOF) systems and continu-
ous wave (CW) systems. As the name implies
TOF systems operate on the principle of mea-
suring distance through timing the radiation in
reference to the speed of light. CW systems
measure distance by measuring the phase dif-
ference between the emitted signal and the re-
flected echo, exploiting what is known as the
heterodyne principle[42]. CW LiDAR is better
suited for close ranges, however they can expe-
rience problems with blurring due to relative mo-
tion.[24]

An important parameter of any LiDAR is the point density. This refers to the number of points per unit
of area at a target distance. Many LiDAR sensors emit points at a diverging angle from its center line
in order to view a larger scene at distance. However this means that the point density decreases with
distance and, as it will be further discussed in Section 2.2.1, scanning pattern when applicable.
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Figure 1.6: Taxonomy of LiDARs, recreated from [42]

As LiDAR sensors are able to retrieve 3D position information independent of lighting conditions, they
are an attractive option for use in spacecraft, particularly with relative navigation. The choice of LiDAR
type depends on the mission profile, however this research will be interested in TOF scanning LiDAR
due to their high point density (points to m2 related to distance), versatility in scanning pattern type, and
wide availability.

Though there are many attractive strengths, LiDAR sensors can also suffer from small inaccuracies
and noise, particularly with very small or translucent objects. Figure 1.7 below shows a point cloud
in which the points corresponding to a target of interest blend into the space between the target and
the background, while also omitting smaller portions of the target’s geometry. In the following section,
Figure 1.9e shows a LiDAR scan made of a target in orbit, but it appears to have large gaps in the
middle of its solar panels, gaps which do not exist on the physical target. The author of the source
article for this image does not give a reason for this error, however this effect will be seen again during
the course of this research and seems to be a result of to the complicated nature of photons leading to
omissions in the scan. Due to these reasons, LiDAR can benefit from an additional data source when
sensing an unknown uncooperative target. This is a key aspect of this research and reinforces the
value of sensor fusion.

Figure 1.7: Noisy LiDAR recording with points blending from a target of interest into the background
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The next section will examine some relevant examples of the use of electro-optical sensors and includes
an example, MEV-1 & 2, which utilized the TOF scanning LiDAR shown above in Figure 1.5.

Electro-Optical Sensors in Orbit for Non-Earth Observation
There are many examples of spacecraft using electro-optical sensors to observe the Earth from orbit.
As this research focuses on sensing other resident space objects, missions involving non-Earth ob-
servation (which to avoid confusion with Near Earth Orbit, will not be abbreviated) are of much more
relevance. An interesting instrument with flight heritage is the TriDAR (Triangulation + LIDAR) Auto-
mated Rendezvous and Docking instrument flown on the Space Shuttle Discovery during STS-128 and
STS-131, Space Shuttle Atlantis during STS-135,[28] and continues to fly on the Cygnus resupply craft
to the ISS.[40] TriDAR uses two laser-based sensors and a thermal imager to assist in rendezvous and
docking with the ISS. Figure 1.8 below shows real laser-range and thermal IR data obtained by the
TriDAR instrument during STS-135. It is important for this research to note that TriDAR implementation
for pose estimation and navigation relied on a model-based approach,[28] therefore it has only been
used on cooperative known targets.

(a) Thermal image of ISS during undocking and fly around (b) 3D laser range data of ISS during undocking and fly around

(c) False-color thermal image of ISS at 200m (d) 3D laser range data of the ISS docking port

Figure 1.8: STS-135 TriDAR data obtained from [28]. Figures 1.8a and 1.8b are recorded at the same distance, though this
distance is not specified.

The Mission Extension Vehicle (MEV) is an On-Orbit Servicing (OOS) proof of concept vehicle built by
Northrop Grumman with so far two missions (MEV-1 & MEV-2) successfully rendezvousing and attach-
ing to their targets (Intelsat 901 & Intelsat 10-02 respectively) in geostationary orbit. The MEV vehicle
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is designed to remain attached to its target and provide station-keeping propulsion for a duration of
5 years, before potentially continuing on to another target.[45] As the satellites targeted by MEV are
operational and known a-priori, these missions fall into the known cooperative target category as well.

Figure 1.9 shows images captured during MEV-1 & MEV-2 in different phases of approach. MEV has
a sensor suit including a visual spectrum camera set, LWIR camera set and a scanning LiDAR.[44] It
is interesting to see real remote sensing images in orbit, particularly with the Earth in the background
presenting a segmentation and recognition challenge for on-board computer vision tasks expected
in such an OOS mission. Note that Figures 1.9d and 1.9e are a LWIR image and a LiDAR scan
respectively at the same distance, as are 1.9a and 1.9b.

(a) Intelsat 10-02 in the IR spectrum seen
from MEV-2 at a distance of 220m [44]

(b) Intelsat 10-02 in the IR spectrum seen
from MEV-2 at a distance of 220m [44]

(c) Intelsat 10-02 in the visual spectrum seen
from MEV-2 during a calibration approach [19]

(d) Intelsat 10-02 in the IR spectrum seen
from MEV-2 at a distance of 2000m [44]

(e) Intelsat 10-02 point cloud seen from
MEV-2 at a distance of 2000m [44]

(f) Intelsat 901 in the visual spectrum seen
from MEV-1 at its ”far hold” position at a

distance of 80m [45]

Figure 1.9: Images taken by MEV-1 & MEV-2 of their respective targets in geostationary orbit during approach

Both Tridar and MEV offer valuable real-world examples of the fusion between LiDAR and thermal
infrared sensors, which is a key aspect of this research. Particularly with the MEV, the TOF scanning
LiDAR used was able to return accurate range data at distances in excess of 2 km, and the uncooled
microbolometer LWIR used allowed for the tracking of the target in excess of 10 km, with the target
fully resolve at 2 km distance.[44] The performance of these sensor suits was outstanding and gave
the MEV a level of flexibility in approaching the target that surpasses the use of any individual sensor
alone and allowed the chaser to operate independent of lighting conditions. This shows how these
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sensors can be used for RPO in space. Though both the MEV missions and the use of TriDAR have
solely been used for known cooperative targets, their LWIR-LiDAR fusion show great promise towards
implementation in an unknown uncooperative ADR scenario. The MEV missions will also allow for
a comparison between real-world and laboratory conditions, and will be reexamined in Section 3.3.4
once results are obtained.

Computer Vision
Computer vision (CV) is a category of remote sensing that enable the derivation of meaningful informa-
tion from images and data collected from electro-optical sensors.[21] Some common CV tasks involve
object detection and tracking, image processing, facial recognition, segmentation and stitching, classi-
fication, mapping and much more. The CV industry is seeing particular success in a number of areas,
including autonomous vehicles and robotics, medical imagery, sports analysis, military applications,
virtual reality and smartphone applications.[6]

One task in CV that is of particular interest to this research is local feature detection. This refers to
the detection of localized patterns or structures within an image corresponding to a region that differs
from its surroundings in terms of texture, color or intensity. These often correspond to edges, corners,
points or any localized patch. A number of feature detection methods have been developed with dif-
ferent performance metrics in mind, such as detection speed for real-time use, robustness to lighting,
accuracy above all else, or scale-change invariance. Not all of these methods detect the same types of
features. Harris, FAST, ORB and Shi & Tomasi methods detect exclusively corners, while SIFT, SURF,
and KAZE detect blob-features. Blob features refer to descriptors of color intensity and texture.[33]
Choosing the right feature detection method depends of the application in consideration of the distinct
characteristics of each. A number of feature detectors will be studied further and compared in Section
2.1.4.

It is important to note that these features can act as anchor points within each image and can be used
to match and compare images based on matching features having the same descriptors. This will be
referred to as Feature Matching and will become an integral part of this research. Features can be
matched by their descriptors falling within a specified range to indicate similarity, as certain metrics
might differ between images based on lighting, perspective or background for example. The tuning of
both the detector and matcher is a tedious process, as false-matches can come about from using the
wrong tuning metrics.

1.2.3. The Space Environment's Effect on Debris
All missions to space must contend with the harsh and unforgiving environment present above the Kar-
man line. Characteristics of the space environment include ionizing radiation, temperature extremes
and a hard vacuum as altitude rises. With electro-optical sensors in mind, it is useful for this research
to examine the expected temperature ranges of an ADR target in orbit. As the discussion of elec-
tromagnetic radiation highlighted, objects emit radiation in the infrared spectrum at a peak wavelength
based on their temperature, and can be viewed without external illumination by using the correct sensor
corresponding to this wavelength.

Component or Subsystem Operating Temperature (◦C) Survival Temperature (◦C)
General electronics -10 to 45 -30 to 60

Batteries 0 to 10 -5 to 20
Infrared detectors -269 to -173 -269 to 35

Solid-state particle detectors -35 to 0 -35 to 35
Motors 0 to 50 -20 to 70

Solar panels -100 to 125 -100 to 125

Table 1.2: Typical spacecraft component temperature limits [3]

Table 1.2 shows common temperature ranges for spacecraft components, however this table was cre-
ated for engineers to anticipate operational temperature limits in their thermal design. Operational
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spacecraft have electronics and moving parts that contribute to the overall thermal flux, along with ther-
mal input from the sun and Earth, while always managing the fine thermal balance needed to operate
properly. Targets for ADR will be inoperable and no longer able to control their thermal balance, but
also do not receive heat from internal electronics or moving parts. These targets will likely experience
a range of heating and cooling towards a passive thermal equilibrium, with temperatures depending on
their particular orbit and illumination conditions as well as the absorptivity and emissivity of the object
itself.

As a general reference, the temperature of a debris object Tdeb as can be calculated using Kirchhoff’s
Law, the thermodynamic expression for the absorbed and emitted energy, and by assuming the ab-
sorbed and emitted energies are uniformly distributed from the entire surface:

τπr2Einc = ε(4πr2/3)σT 4
deb (1.1)

where r refers to the object’s radius, τ the absorptivity, ε emissivity, Einc the incident flux from the sun
and/or Earth, and σ being the Stefan-Boltzmann constant. The debris temperature can then be given
by:

Tdeb =

[
3τEinc

4εσ

]1/4
(1.2)

thus the temperature does not depend on size and only the ratio of absorptivity and emissivity. An
equilibrium temperature Te independent of object characteristics can be defined as:

Te =

[
3Einc

σ

]1/4
(1.3)

In this definition, the equilibrium temperature is only dependent on the incident flux, and therefore its
orbital height. The debris temperature can be related to the equilibrium temperature with the following
equation: [26]

Tdeb =
(τ
ε

)1/4

Te (1.4)

A Dynetics study on space debris characterization using thermal imaging systems found that debris at
an altitude of 1000 km would have a maximum theoretical equilibrium temperature (independent of τ
and ε) of 315◦K (42◦C) for sunlit and 255◦K (-18◦C) for non-sunlit conditions.[11] This is equilibrium
temperature is well within the LWIR spectrum, which corresponds to temperatures within about -80◦C
to 89◦C, referencing Table 1.1 from Section 1.2.2. Another study of LEO debris thermal characteristics
experimented with varying absorptivity-emissivity ratios in different LEO orbits and found a minimum
temperature of -90◦C and a maximum of 40◦C at both extremes.[60]

These temperature ranges clearly show an opportunity for debris observation in the LWIR spectral
range, as it is the only passive sensor able to detect debris in the expected temperature range inde-
pendent of illumination.
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1.2.4. Sensor Fusion & Calibration
The integration of electro-optical sensors has emerged as a pivotal research area, driven by the demand
for sophisticated sensing systems in applications ranging from robotics to autonomous vehicles. At the
heart of this pursuit lies the challenge of fusing data from diverse optical sensors and ensuring their
accurate calibration. This subsection provides an overview of the fundamental concepts, techniques,
and challenges in electro-optical sensor fusion as a prelude to the subsequent research endeavors.

Sensor Fusion
Sensor fusion is not a new concept. Through evolution, humans have learned to incorporate the fusion
of our own senses to survive, such as viewing, smelling and tasting a potential edible plant, or listening
and looking through a forest for a predator. Furthermore, human sight from two eyes is another exam-
ple of sensor fusion allowing for depth perception, but also can be undermined by irregularities such
as astigmatism. This intuitive anatomical perspective of sensor fusion can be useful for understanding
the electro-optical sensor fusion relevant to this research, as well as its benefits and challenges.

Electro-optical sensor fusion refers to the combination of information derived from disparate optical
sensors, encompassing cameras, LiDAR, and other optical technologies as discussed in Section 1.2.2.
The overarching objective is to harness the complementary strengths of each sensor type to overcome
individual limitations, thereby enhancing the overall perceptual capabilities of the system. In doing so,
the fusion process enables a more complete and accurate representation of the surrounding environ-
ment. Electro-optical sensor fusion sees widespread implementation in a variety of applications, from
autonomous cars[7] to landmine detection for humanitarian de-mining[10], but also for remote sensing
in orbit[50].

Sensor fusion can occur at different stages between the retrieval of raw data and the final application.
The Joint Directors of Laboratories (JDL) Data Fusion Model developed an important standardized
blueprint for data fusion widely used in defense applications as well as other non-military applications,
and describes three main methods for data fusion: direct fusion of sensor data (Figure 1.10a), feature-
based fusion of sensor data (Figure 1.10b), and decision-based fusion of sensor data (Figure 1.10c).
Direct fusion assumes that the sensors are viewing the same entity (association) and combines the
data at the earliest moment, with raw data or after some initial preprecessing. Feature-based fusion
extracts key features from each sensor to match and align the data. Finally, decision-based fusion
combines sensor data after the sensors have made a preliminary determination of the attributes of an
entity in the scene, such as location, classification, identity and size.[4]
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(a)

(b)

(c)

Figure 1.10: JDL Sensor Fusion Model and its various architectures[4]

The choice between these three fusion architectures is dependent on the scenario and application in
which the fusion is being used. Decision-based fusion is useful in very busy scenes in which only a
portion sensed is of interest. In this architecture, the system first identifies objects in the scene before
applying the fusion, effectively segmenting the data into zones of interest. For spacecraft applications,
the expected scene in an RPO mission could have the Earth, Sun, Moon, stars or other small points of
light in the background, however the object of interest will not be in a cluttered environment. For this
reason, the decision-based fusion architecture would not be appropriate for RPO missions, and the
remainder of this research will consider only direct (or data-level) fusion or feature-based fusion.

Calibration
The effectiveness of sensor fusion hinges upon meticulous calibration procedures that address the
inherent differences between optical sensors. Calibration is multifaceted, encompassing intrinsic pa-
rameters such as focal length and lens distortion, and extrinsic parameters for aligning sensors in a



1.2. Remote Pose Estimation Overview 15

common coordinate system. These calibration challenges underscore the need for sophisticated tech-
niques to ensure the accuracy and reliability of the fused sensor data.

Intrinsic calibration focuses on defining the internal characteristics of each sensor, essential for accu-
rate fusion. Techniques like Zhang’s camera calibration algorithm play a crucial role in determining
parameters such as focal length and principal point, while also mitigating lens distortions.[62]

Aligning sensors in the external world coordinate system is achieved through extrinsic calibration. Em-
ploying known patterns, such as the three common patterns shown in Figure 1.11, facilitates simultane-
ous calibration of multiple sensors, crucial for accurate fusion in real-world scenarios. As the sensors
or not located in the same point in space, extrinsic parameters provide a way to define and compensate
for this difference in perspective in the fusion.

(a) Checker/Chessboard calibration pattern (b) Circle-grid calibration pattern (c) ChArUco calibration pattern

Figure 1.11: Commonly used camera calibration patterns[57]

Accurate calibration is essential for this research and will be further discussed in Section 2.2.2.

1.2.5. Pose Estimation & Transformation Representation
Pose is defined as the combination of attitude and position of the target relative to the chaser. Rel-
ative pose consists of 6 degrees of freedom (DOF) parameters, 3 translational DOF (position) and 3
rotational DOF (attitude). Taking the first derivative of these parameters leads to 12 DOF which can be
useful for describing rotational and translational velocities, each with 6 DOF. This can be visualized as
describing an airplane in 3D space, its roll, pitch and yaw angles, and the change in these parameters
with time for a full 12 DOF relative pose description.

Considering now the full range of relative navigation scenarios, such as docking, ADR, formation flying
and orbital servicing, 4 different relevant pose estimation types can be identified:[42]

• Actively Cooperative
• Passively Cooperative
• Uncooperative Known
• Uncooperative Unknown

A target is considered to be cooperative if it was built to aid in pose estimation. An example of actively
doing so would be docking with the ISS. The target (ISS) is actively transmitting attitude and position
data to the chaser to aid in relative pose estimation. An example of passive cooperation would be if a
target had light patterns or scale length markings designed to aid the chaser in pose estimation.

Conversely, uncooperative targets do not contribute to the relative navigation process. In this instance,
the targets can be separated into categories of known and unknown. An example of an uncooperative
known target would be a spent rocket stage that is still intact. It does not contribute to the relative
navigation process, actively or passively, however it is known in the sense that its parameters (length,
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shape, mass) are known from its manufacturing and launch specifications. An example of an uncoop-
erative unknown target would be the remains of a satellite after a collision. It is not able to cooperate
with the chaser and its parameters have changed due to the collision.

Uncooperative unknown targets represent the biggest challenge to potential ADRmissions. As detailed
in the Research Scope, this category of target will be the focus of the research.

Relative Coordinate Systems
When describing the full 12 DOF relative pose, it is important to understand how the change in position
and attitude is describedmathematically in the different coordinate systems present in the chaser-target
system. Two main coordinate systems will be relevant for the remainder of this research: the 3D chaser
world coordinates and the 3D target intrinsic coordinates, a representation of which is shown below in
Figure 1.12.

Figure 1.12: World coordinate axes of the chaser (box), and the intrinsic coordinate axes of the target (cylinder).

The world, or global, coordinate system has three orthogonal spacial position coordinates (x, y, z) with
the origin in the center of the chaser. The LiDAR sensor used in the subsequent Chapter 2 defines the
orientation of these axes in which positive x protrudes directly through the sensor in the direction that
the sensor suite is facing. Positive y is horizontally to the left of the sensor suite, and positive z upwards
vertically. A target in the top left quadrant of the sensor’s field of view will have positive (x, y, z) position
values, while a target in the bottom right quadrant will have positive x but negative y, z values. As the
LiDAR used in this research is forward-facing, a target will not be in the field of view if its x coordinate
is negative as it can not be sensed with this particular type of LiDAR, however there are many rotating
LiDAR sensors with a 360◦ toroidal field of view capable of sensing targets ”behind” (−x) and ”along
side” (small |x|, ±y) the sensor, and see frequent use in autonomous vehicles.

The target intrinsic coordinates also have these three orthogonal (x, y, z) spacial coordinates, but its
origin is in the center of a bounding box containing its perceived volume. As the target is unknown and
uncooperative, the orientation of these axes are aligned to the orientation of the chaser world axes,
with each axis being parallel to their respective world axis. So if the target is in the top left quadrant of
the chaser’s field of view, the chaser’s position in target intrinsic coordinates will have negative (x, y, z)
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values. If the target is in the bottom right quadrant, the chaser’s position will have negative x and
positive y, z values.

The bounding box containing the target’s perceived volume will likely not encompass the entirety of the
target’s actual volume. If the chaser observes a spherical target, it’s initial view will only be that of a
hemisphere. The other side hidden from view cannot be predicted in this initial observation. However,
this center point of the bounding box, the origin of the target intrinsic coordinate system, can either be
updated when more of the target is observed, or remain constant as it is an arbitrary point relating the
two systems. An initial LiDAR scan of the target will return (x, y, z) world coordinate values, and the
minimum and maximum of each axis can be used to compute the center point of the bounding box with
the following equation:

(
xmax − xmin

2
+ xmin ,

ymax − ymin

2
+ ymin ,

zmax − zmin

2
+ zmin

)
(1.5)

The bounding box describes the initial position of the target relative to the chaser as well as its initial
attitude, oriented to align with the world coordinate axes as mentioned. Though it may seem intuitive to
orient the target intrinsic axes based on the target’s geometry, it is useful to remember that the target
has not yet been fully observed, and that an arbitrary initial axis orientation is just as useful if it is
consistently tracked. Consider a spherical target, which would have no intuitive intrinsic axes. This
example makes the decision to implement a consistent arbitrary definition of the target’s intrinsic axes
based on the world axes easier to understand.

Matrix Representation of Transformation
These two coordinate systems are essential for describing not only the position and attitude, but also
the observed relative motion of the target. This observed motion can be described as the relationship
between two target states at two separate observations. The transformation between these two states
can be describe with a transformation matrix A consisting of a rotational matrix R and a translation
matrix T , with A = T • R. The rotation matrix depends on the plane in which the rotation occurs,
with multi-axis rotation leading to a more complicated result. For single-axis rotation, the other two
rotational matrices will simply be 4x4 identity matrices, so that the total rotational matrix will be equal
to the rotational matrix of that axis.

Though the translation matrix is intuitive to interpret, the matrix representation of rotation can seem
confusing and vague. Luckily it can easily be converted to Euler angles, axis angles and quarternions
for a more intuitive visualization.

T =
[
tx ty tz

]
(1.6)

Rx =

1 0 0
0 cosd(θx) −sind(θx)
0 sind(θx) cosd(θx)

 (1.7)

Ry =

 cosd(θy) 0 sind(θy)
0 1 0

−sind(θy) 0 cosd(θy)

 (1.8)

Rz =

cosd(θz) −sind(θz) 0
sind(θz) cosd(θz) 0

0 0 1

 (1.9)

R = Rz •Ry •Rx (1.10)
A = T •R (1.11)

A =


R(1, 1) R(1, 2) R(1, 3) tx
R(2, 1) R(2, 2) R(3, 2) ty
R(3, 1) R(3, 2) R(3, 3) tz

0 0 0 1

 (1.12)
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For example, the chaser observes the target once, and then again after 5 seconds have past and de-
duces that the target has changed position by -1 meter in the world coordinate x-axis, 0.5 meters in the
y-axis, and 0.25 meters in z. This can be described by a translation matrix T in which T = [tx, ty, tz],
which in this case T = [−1, 0.5, 0.25].

This becomes more complicated when considering the intrinsic and world coordinate frames, as the
origin of the target intrinsic frame is dependent on its Euclidean distance to the origin of the world frame.
For example, if a target rotates 5◦ about its z intrinsic body axis and translates -0.5 meters in the y-axis,
this motion can be represented by the following intrinsic transformation matrix:

Aintrinsic =


cosd(5) −sind(5) 0 0
sind(5) cosd(5) 0 −0.5

0 0 1 0
0 0 0 1


However this would not be the world transformation deduced by the observations of the chaser, as
the target does not rotate around the world z-axis and the translation would be different to accommo-
date this perspective shift. The aligning translation matrix Talign is the translation required to position
the origin of the intrinsic coordinate system at the origin of the world coordinate system. The total
transformation matrix relating world coordinated and intrinsic coordinates can be defined as follows:

Aintrinsic = Tintrinsic •Rintrinsic (1.13)

Aalign = Talign •

1 0 0
0 1 0
0 0 1

 (1.14)

Aworld = Talign •Aintrinsic (1.15)
Atotal = Aworld •Aalign (1.16)

This total transformation matrix can be used to describe the change in position and orientation of the
target, which with two observations in time, is used to estimate the full 12 DOF of relative pose.



2
Research Framework

As it has been shown in the previous sections, the fusion of a LWIR camera with a LiDAR sensor of-
fers the enticing possibility to perform remote sensing for the relative pose estimation of an unknown
uncooperative target completely independent of lighting conditions while providing the ability to resolve
scale with both 2D and 3D data. From this prospect, as well as the main research questions defined
in Section 1.1.2, a framework in which to test, challenge and answer these questions can be developed.

This chapter will first detail the algorithms developed for pose estimation of an unknown uncooperative
target using fused LIWR-LiDAR data. After this, the various experiments designed for verification and
validation (V&V) of the algorithms will be described. Special emphasis will be placed on the decision
making process throughout both the algorithm and the experiments’ development. Section 2.1 details
the development and final form of the pose estimation algorithm before Section 2.2 thoroughly explains
how the experimentation and data collection process evolved and improved to better supply relevant
data to the algorithms.

As initial experimentation commenced and the hardware’s abilities and limitations were explored, the
algorithms were improved to better consider the realities of data gathering, instead of operating on
purely theoretical concepts. Due to this, early hardware experimentation influenced many of the deci-
sions made in the development of the algorithm, such as the tuning of algorithmic parameters, which
was critically dependent on the scenarios of each experiment and could only be explored after some
experimentation had taken place. It is for this reason that images from the experiments will be used to
illustrate concepts from the algorithms. Computer vision requires vision after all.

Thus it is important to note that the algorithm developed was not implemented on-line, or live at the time
of experimentation, but after data gathering stopped to be able to tune parameters to achieve accurate
results. The implementation of on-line algorithms is beyond the scope of this research, but would be
of critical importance to a real ADR mission in which autonomy is key.

2.1. Algorithms for Pose Estimation
Initial algorithmic experimentation, particularly with computer vision and point cloud manipulation, was
done using C++ and Python, and included tools such as OpenCV, Point Cloud Library and CloudCom-
pare. However MATLAB demonstrated its value to this research by offering a much more streamlined
and thorough set of tools to achieve exactly what this research sets out to do. MATLAB also provided a
wealth of intuitive documentation and scholarly sources for their tools that made a deeper understand-
ing of the sources of the results possible.

Initial experimentation with calibration, fusion, lighting and target types led to major revelations that

19
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would shape the final product of both the developed algorithms and the experiments designed to verify
and validate them. This Section details the growth and development of these algorithms as well as
their final form, with the following Section 2.2 describing the hardware side of the learning process as
well as the final experiments used for algorithm V&V.

Increasing familiarity with point clouds led to the initial formulation of an Iterative Closest Points (ICP)
algorithm that would attempt to relate an IR-infused reference point cloud to a moving one repeatedly,
effectively describing the change in position and attitude of the target in relation to the chaser over time.
Sensor fusion would add an extra reference dimension to the matching and make for an interesting
pose estimation solution. Once this was explored, it was decided that there could be another approach
to consider in which the LWIR sensor provided more than just color information. This is when the
Feature Matching algorithm was developed, focusing more on computer vision and image processing
with the added benefit of LiDAR range information to track feature locations between images. Sections
2.1.3 and 2.1.4 will detail the inception and development of these algorithms in much greater detail.

Figure 2.1: Process developed for pose estimation

As shown above in Figure 2.1, both algorithms use the same calibration and sensor fusion methods,
and both return a pose estimation for the target. The calibration, fusion and both algorithms with their
resulting pose estimation will be covered in detail in the following sections.

2.1.1. Calibration and Sensor Fusion
The calibration process developed for the LiDAR and IR sensors can be thought of as localized sensor
fusion with subsequent fine tuning. First the intrinsic parameters of the IR camera are estimated as
well as its extrinsic parameters relating to its position in space. As mentioned in Section 1.2.4, intrinsic
parameters relate to the focal length, principal point, lens distortion and other undesirable effects to be
corrected for. After this, the extrinsic parameters relating the IR and LiDAR sensors’ positions in space
are estimated. From this, an initial estimation of the relation between the IR pixels and LiDAR world
points can be made resulting in fusion. The final step is a feature-based fine-tuning of the pixel-world
point relation to achieve the best possible fusion and the most accurate relation between the LiDAR and
image points. The fused data contains 3D world coordinates, pixel coordinates and IR color information
as shown below in Table 2.1. It is important to note that the resolution of the two sensors are not equal
and will result in image pixels without world-coordinates if there is no LiDAR point associated with that
pixel location. This is dependent on the LiDAR point density at the target’s distance and location in the
LiDAR Field-of-View (FOV) and will be further discussed in relation to the hardware available in Section
2.2.1. Figure 2.2 below shows a workflow for the calibration and fusion steps, for which further detail
will be given in the paragraphs immediately below.
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Figure 2.2: IR-LiDAR calibration and fusion process

Data Property Source Sensor
X-world LiDAR
Y-world LiDAR
Z-world LiDAR
X-pixel IR
Y-pixel IR
color IR

Table 2.1: Properties of the resulting fused data points

In MATLAB the detectCheckerboardPoints function used in camera calibration returns a set of argu-
ments detailing the detected checkerboard corner coordinates (cornerPoints) in the image as well as
the details of the checkerboard in terms of the number of squares (boardSize). The boardSize as well
as the size of the squares in mm can be used to create the worldPoints object representing the world
coordinates of the squares. With cornerPoints and worldPoints as inputs, the estimateCameraParam-
eters function returns a cameraParameters object in which the intrinsic, extrinsic and lens distortion
parameters of the camera are stored.[29] The reprojection error per calibration image, as well as a vi-
sualization of the extrinsic parameters can be viewed with the showReprojectionErrors and showExtrin-
sics functions respectively.[31] The calibration function used in MATLAB is known as ”Zhang’s Method”
developed for the Microsoft Corporation[62] and is a widely used standard with lower reprojection error
compared to other methods such as Tsai’s method.[61] Equation 2.1 shows Zhang’s calibration algo-
rithm relating a point in world coordinates (X,Y, Z) to the corresponding image pixel (x, y) used in the
aforementioned MATLAB estimateCameraParameters function. Here, w is an arbitrary scale factor, K
is the camera intrinsic matrix, R is the 3D rotation matrix of the camera and t is the translation of the
camera relative to the world coordinate system.[29] Equation 2.2 defines the camera intrinsic matrix
K with components (x0, y0) being the pixel coordinates of the principal point, α and β being the scale
factors in the x and y axes respectively, and γ representing the skew of the two image axes.[62]

w

xy
1

 = K
[
R t

] 
X
Y
Z
1

 (2.1)

K =

α γ x0

0 β y0
0 0 1

 (2.2)

The next step in the calibration process is to calibrate the LiDAR and camera together. The LiDAR
data acquired from the available Livox Mid-70 sensor is saved as a .lvx file, but can also be converted
to a .las file in the Livox Viewer application. This then needs to be formatted into a file type that can be
used by MATLAB, so the application CloudCompare can be used to convert the .las file into a .ply file.
Now the retrieved LiDAR data can be used in the algorithm.
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The LiDAR point-clouds, in practice, contain many irrelevant points that are of no concern to either
the calibration process or the pose estimation process. The calibration of LiDAR with a camera relies
on the detection of a rectangular plane (the checkerboard) in the scene, and in practice it was often
confused by other rectangular planes in the scene such as walls and boxes. For this reason, the
calibration process relied on manually selecting the section of the point-cloud containing the calibration
target which could be done in MATLAB’s Lidar-Camera Calibrator application, though this leads only
to a ballpark estimate with the result only serving as a preliminary solution before further tuning for an
accurate result.

Procrustes and Fine-tuning the Fusion
Procrustes analysis, also referred to as least-squares orthogonal mapping, gets its name from the myth-
ical Greek inn owner Procrustes and is amathematical technique used in statistics and geometric shape
analysis to align, compare, and analyze the similarity between two sets of geometric shapes. The pri-
mary goal of Procrustes analysis is to find the optimal transformation (translation, rotation, scaling, or
reflection) that minimizes the differences between corresponding points in two sets of shapes.[17]

For the purposes of this research, Procrustes analysis can be used to more accurately calibrate the Li-
DAR and IR sensors by selecting distinct features, such as corners, in the two coordinate systems and
then estimating the transformation between the two sets of feature locations. This in practice leads
to a more accurate transformation compared to the MATLAB LiDAR-Camera Calibration App and is
also a good way to check that the calibration is accurate for each target and dataset. The result of an
accurate calibration is a 2D affine transformation (affinetform2d) that relates each LiDAR point to its
corresponding 2D image pixel coordinate. This can be used to project the LiDAR points onto the IR
image which is something that will be critical in Section 2.1.4.

Checking the calibration with Procrustes analysis gives a good visual indication for successful cali-
bration, but it also returns the procrustes distance, which is a measure of dissimilarity between the
inputted points. This effectively provides a numerical validation of the accuracy of the calibration, with
the minimization of the procrustes distance being the goal for accurate calibration.

(a) LiDAR corners matching image corners (b) The full LiDAR checkerboard can be projected

Figure 2.3: Accurate calibration using Procrustes Analysis

The calibration and initial reference fusion provides a template for data fusion during the experiments.
With the LiDAR and LWIR coordinate frames matched, the algorithms are accurately able to relate the
data obtained from both sensors; undistorted pixels to LiDAR coordinates and vice versa. A projection
of the feature-based tuning and fusion displayed as a projection of LiDAR points on its corresponding
IR image is shown above in Figure 2.3.
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2.1.2. Data Preprocessing
The calibration process could be done with minimal preprocessing. The only problem was that the FLIR
watermark and temperature scale were not able to be removed when collecting data. This means that
every image had to be cropped to the same dimensions which unfortunately reduces the effective field
of view. Cropping these undesirable overlays out reduced the image size from 640x480 to 555x480
pixels.

(a) Raw FLIR image (b) Cropped FLIR image

Figure 2.4: The unfortunate loss of features due to cropping out the FLIR watermark and temperature scale

Another preprocessing step essential to the algorithms described in the following sections is the seg-
mentation of the LiDAR data. This involves defining a region of space outside of which all other points
in a point cloud will not be considered in the analysis. As the experiments were done indoors, this
region would only contain the target and empty space and would remove the floor, ceiling, walls and
anything else in the field of view. Ideally, the point cloud of a target in orbit would only contain points
of the target. Even if there was backscatter from another body in the field of view, the vast distances
in the space environment would make segmentation a simple step to automate in that scenario.

The Delfi-n3xt target used in some of the experiments was connected to a stand via a transparent
plastic rod that tended to reflect very little of the LiDAR’s NIR radiation back to the sensor, effectively
making it almost invisible in the point clouds. The larger Boxsat target had a much more substantial
stand that was very prominent in the point cloud, but this could easily be segmented out by setting the
lower limit of the segmentation bounding box to just under the height of the stand connecting to Boxsat.

Figure 2.5: Resulting bounding box of points after defining the segmentation region
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The preprocessing steps described here are generalized first steps to ready the data for use in the
following sections describing the algorithms developed for pose estimation. The two algorithms below
will make use of additional preprocessing techniques to achieve the best possible results and will be
discussed further in their subsequent sections.

2.1.3. Color-ICP Algorithm
Accurate calibration returns a 2D affine transformation matrix relating each LiDAR point to its corre-
sponding 2D image pixel coordinate. The resulting points are called imPts. By indexing these imPts
and registering the corresponding RGB value of the pixel at their location in the image, an IR-colored
point cloud is returned and can be used to determine pose. An example of the resulting IR-colored
point cloud is shown below in Figure 2.6.

Figure 2.6: Fused point cloud of Delfi-n3xt during the Series J experiment

As it was outlined in Section 1.2.5, the pose of the target can be estimated by locating its position and
orientation in 3D world coordinates and estimating the transformation matrix A describing how the po-
sition and orientation changes over time. One way to do this is by comparing the fused 3D data from
the IR and LiDAR sensors over time with an Iterative Closest Points (ICP) algorithm.

The ICP algorithm estimates the best transformation matrix needed that minimizes the distance be-
tween two point clouds (a fixed/reference point cloud and a moving point cloud), and iterates to reduce
the error between the two.[9] In MATLAB’s ICP function pcregistericp, the metric in which the distance
between the two is minimized can be specified in different ways, two of which are relevant to the fused
IR point clouds: point-to-plane with color, and plane-to-plane with color.[36] This means that the ICP
algorithm that will be used in this research also takes color in to consideration in the minimization pro-
cess and is not solely LiDAR sensor dependent, but actively being assisted by the IR sensor data.

The original ICP algorithm, the so-called Standard ICP, used a point-to-point minimization metric, in
that it attempted to minimize the Euclidean distance between matching point pairs. This works well for
identical point clouds in different locations in space, however it is not ideal for hardware applications in
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which point clouds are not identical and contain noise or small errors. To overcome this, new ICP algo-
rithms were developed utilizing point-to-plane and plane-to-plane minimization metrics. These metrics
take advantage of surface-normal information in the point cloud, which are vectors perpendicular to the
surface at that individual point. The point-to-plane approach only considers the surface normals of the
fixed point cloud, matching the moving points to the plane containing the fixed points. The plane-to-
plane approach, known as Generalized ICP, considers the surface normals of both sets of points and
matches the plane of the moving points to the plane of the fixed points. Further reducing the error, Korn
et al. added color information to the point-to-plane and plane-to-plane approaches and demonstrated
improved performance in a wide range of datasets.[25]

It is this color and surface-normal approach, plane-to-plane with color, that will be used in the bespoke
Color-ICP algorithm developed for this research, as it gives the greatest amount of fused point cloud
variables to be considered in the registration.

Further Preprocessing
After the initial preprocessing described in Section 2.1.2, some further steps are required to ready the
fused data for the Color-ICP registration. Though the point clouds are already segmented, the target
point cloud still contains some noise. The pcdenoise function can be tuned to remove outliers while
maintaining the integrity of the more accurate points, though this step can, in theory, be skipped by
tuning the Color-ICP function itself to ignore outliers.

(a) Original colored point cloud with noise (b) Colored point cloud denoised

Figure 2.7: Effect of the denoise step. The original point cloud has 6,225 points while the denoised point cloud has 5,716.

The next step is critical to the accuracy of the Color-ICP registration. Downsampling the point clouds
effectively reduces the number of points by grouping points in a specified range into voxels, essentially
small 3D boxes in space, and has the added benefit of computing the normals of each point in the new
point cloud. Each voxel will contain only a single point computed based on the downsampling method
selected. There are several downsampling methods, such as random, grid average, and non-uniform
grid sample for the pcdownsample function in MATLAB. Grid average is used in this research, as it
computes the voxel point value as the average of the locations, colors and normals of original points
within the voxel, creating a more uniform shape and reducing unnecessary duplicate points. The non-
uniform grid sample method does not tend to preserve shape while the random method picks a random
point in the voxel as the sole voxel point.[35]
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(a) Original colored point cloud. (b) Colored point cloud denoised and downsampled

Figure 2.8: Effect of downsampling. The original point cloud has 6,225 points, while the denoised and downsampled point
cloud has 869.

Figure 2.8 above shows the result of the Color-ICP preprocessing steps implemented. The number of
points is decreased in relation to the denoising and voxelization steps, with the resulting point cloud
organized into a uniform grid-like structure. With this step implemented on both fixed and moving point
clouds, the algorithm can proceed to the main Color-ICP function.

Color-ICP Tuning and Implementation
MATLAB’s pcregistericp function has multiple metrics to tune for greater accuracy, as shown in the
list below. Inliers are accepted matching point pairs that contribute the the estimation of the resulting
transformation matrix. This is particularly important in the case of a rotating target in which surfaces
disappear between frames. If all points were to be considered as inliers, the algorithm would attempt to
match these points between frames that have no match in reality. The acceptance of these matches as
inliers is dependent either the Inlier Ratio or Inlier Distance Threshold as they cannot be used together
in the function. The algorithm stops depending on which of the Tolerance or Max Iterations conditions
are met first.

• Minimization Metric - As discussed above: point-to-point, point-to-plane, plane-to-plane, point-
to-plane with color, plane-to-plane with color.

• Max Iterations - the maximum number of iterations estimating the transformation matrix, attempt-
ing to reduce the error between the two point clouds.

• Inlier Ratio - Specifies the percentage of matched points to be considered inliers. The default is
100% so it is critical to tune specifically with rotating targets or changes in perspective.

• Inlier Distance Threshold - the maximum distance between a fixed and moving point match to
be considered as inliers.

• Tolerance - the tolerance between the rotation and translation matrices in consecutive iterations.
The algorithm stops when three consecutive iterations are within tolerance.

• Initial Transform - useful if there is already an initial coarse transformation matrix estimate.

The result of the Color-ICP algorithm is a 3D rigid transformation object (rigidtform3d) containing the
total transformation matrix Atotal discussed in Section 1.2.5, as well as the final root mean square error
(RMSE) between the matches that the algorithm attempted to minimize.
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Figure 2.9: Color-ICP Algorithm work flow. Adapted from [36]
.

Figure 2.9 above shows a complete work flow of the Color-ICP algorithm from the process of point
cloud segmentation to the final transformation output.

Control Transform and RMSE
Using the matrix methods of linear algebra described in 1.2.5, a control or ideal transformation matrix
can be calculated based on the target’s expected intrinsic translation and rotation documented in each
experiment.

The control, or expected, transformation matrix and the observed transformation from the Color-ICP
algorithm can be compared by calculating the root mean squared error (RMSE) between both the
translation and rotation matrices. Separating the transformation matrix in this manner gives a better
indication of what the algorithm is better estimating, translation or rotation. The formula for calculating
RMSE is shown below, where C represents the control array, while O represents the observed array.

RMSE =

√√√√ 1

n

n∑
i=1

|Oi − Ci|2 (2.3)

This can be directly implemented to the total translation matrix, however the rotational matrix requires
an extra steps. First the rotation matrices are converted to Euler angles representing the rotation in
each axis, done by using the rotm2eul function which returns a 1x3 matrix in the form of [θxθyθz] in
radians. It is important to specify the order as ”XYZ” as this is not the default and would otherwise lead
to an inaccurate conversion. A preliminary check can be done using Equations 1.7-1.10 relating Euler
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angles to rotation matrices presented in Section 1.2.5. The Euler angle arrays can then be put into the
RMSE equation above for comparison. A perfect match between the control and observed matrices
would return RMSE = 0.

2.1.4. Feature Matching Algorithm
The Color-ICP algorithm benefits from sensor fusion by gaining an extra minimization metric with the
addition of infrared color fused to each point. However this makes the Color-ICP algorithm much more
dependant on the performance of the LiDAR sensor compared to the infrared sensor. Due to this, the
decision was made to develop a new algorithm that would be more dependent on the infrared sensor
and make better use of the fusion between the two.

The concept of the idea was to use image processing and computer vision to find features in the IR
images and track them throughout the subsequent frames, which when fused with the LiDAR point
clouds would mean that the (x, y, z) world coordinates of these matching features could be used to
estimate the position, orientation and movement of the target to retrieve pose. As the target is rigid (not
changing scale or shape in the real world), this movement can be estimated as a 3-D rigid geometric
transformation (rigidtform3d) to estimate the rotation and translation matrices of the target, as was done
in the Color-ICP Algorithm.

As this algorithm tracks features on the pixel level, an accurate calibration between the LiDAR and
image coordinates is essential, the process of which was discussed in Section 2.1.1. When this is
completed as accurately as possible, the algorithm outputs a 2-D rigid geometric transformation (ge-
oform2d) of the LiDAR points in image coordinates, which will be called imPts. These 2D imPts are
indexed with their corresponding 3D LiDAR points for a simple conversion between the two. The two
sensors will likely not have the same resolution, therefore it is probable that not all pixels will have a
corresponding imPt based on the LiDAR point density. As the algorithm depends on features being
registered to imPts, a denser point cloud on the target will help to ensure that strong features are cov-
ered.

(a) Original Image (b) Undistorted Image

Figure 2.10: The subtle difference in location of the same detected corners at the border in the original and undistorted images.
This is a simple Harris corner detection.

With the IR camera intrinsic properties estimated during calibration, the first step is to undistort the
two images being compared using the undistortImage function to rid the images of any negative effects
such as distortion and stretching, as seen above in Figure 2.10. At this point, displaying the undistorted
images and plotting the LiDAR imPts onto the image can show intuitively if the calibration in each case
is sufficient. Remember that the IR camera and LiDAR are not in the exact same point in space, so the



2.1. Algorithms for Pose Estimation 29

two differing views can lead to seemingly exposed areas on the overlay.

Figure 2.11: Well-aligned imPts projected onto Boxsat. The LiDAR sensor is to the right of the IR sensor and therefore sees a
bit less of the edge of the left wing, and more of the right wing compared to the IR sensor.

Many feature detection algorithms require grayscale images for detection (as many are designed to
work on a single color channel),[52] so the IR images are then converted to grayscale using the rgb2gray
function which eliminates the hue and saturation information while maintaining the luminance in the
image.[37] This was done in Figure 2.10 for the Harris corner detection. The images can easily be
changed back to RGB images after detection and matching is complete, though a reverse conversion
is unnecessary as the feature locations found in the grayscale images can simply be plotted onto the
undistorted RGB images for visualization.

Feature Detection
The Feature Matching Algorithm was developed by experimenting with different approaches and eval-
uating the impact and effectiveness of each to choose the best possible approach for the application.
MATLAB has a wealth of feature detection capabilities, with options for the detection and extraction of
SIFT, SURF, KAZE, MSER, ORB and BRISK features.[32] Each of these have fundamental strengths,
as discussed in Section 1.2.2, however the use case in this research is unique and demands an em-
pirical comparison of each to find which method works well for infrared images of the target translating
and/or rotating in direct light, occlusion, noisy scenes and in scenarios in which the target is very dim
due to a strong infrared source in the background. In the list below, remember that scale change does
not refer to a change of scale in an image, as in the target moving closer and farther, but it instead
refers to the target changing size in the real world as a balloon would when it is inflated.
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(a) SIFT (b) SURF

(c) KAZE (d) MSER

(e) ORB (f) BRISK

Figure 2.12: Each of the feature detectors with default parameters displaying the strongest 15 matches. A large radius circle
indicates a strong feature. Note that this image is a luxurious example in that the target is near and clear.
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SIFT Scale-Invariant Feature Transform

Theory: Robust to scale changes and is invariant to rotation and affine transformations.
Works well for images with low contrast and is suitable for feature matching. Computationally
expensive.[20]
Observation: Highly tunable including a Gaussian filter to assist in low contrast images.
Returned the most features but the accuracy was limited. Inability to specify ROI.

SURF Speeded-Up Robust Features

Theory: Designed to increase efficiency compared to SIFT. It is robust to rotation, scale and
illumination.[20]
Observation: Offers good tunability, though not always intuitive. Struggled in the noisy
occlusion scenarios and rotation was not ideal. Returned many features but was not as
accurate.

KAZE Non-linear pyramid-based features

Theory: Robust to scale and affine transformations. It can work well in low contrast and
low-illumination scenarios. Not suitable for real-time applications.[2]
Observation: Octaves are very tunable, but the impact of this is minimal. Options for dif-
ferent diffusion methods helps to easily switch the detection for different lighting conditions.
The threshold parameter is the only other tunable metric.

MSER Maximally Stable Extremal Regions

Theory: Useful for detecting stable regions in an image. May not provide distinct keypoints
for matching and could be more suitable for region-based analysis.[39]
Observation: Feature points describe regions leading to very inaccurate coordinates for
this application. Minimally tunable.

ORB Oriented FAST and Rotated BRIEF

Theory: Optimized for real-time applications and is robust to rotation and scale changes,
but does not provide features as distinctive as other methods.[20]
Observation: ORB returns the least amount of features, many of which are non-intuitive.
Rotation is challenging. Limited parameters make it difficult to tune.

BRISK Binary Robust Invariant Scalable Keypoints

Theory: Designed for real-time applications, and its binary descriptor is efficient. It is robust
to challenging lighting conditions and has a more sophisticated keypoint estimator.[20]
Observation: BRISK preforms particularly well with target rotation and returns accurate
features in all lighting scenarios. Intuitive and highly tunable parameters to adapt to different
lighting conditions.

As each feature detection method has different parameters, a comparison of each with constant pa-
rameters is difficult, however implementing each on a constant range of IR images obtained during
laboratory experiments and tuning to the best possible accuracy for each led to the observations listed
above. Based on the experimental comparison of IR images of targets to be used during the final ex-
periments, the decision was made to implement the BRISK feature detection method due to its intuitive
and high level of parameter tunability, feature point accuracy, and robustness in all lighting scenarios.
BRISK was also evaluated to be the most accurate features specifically for target rotation, returning
numbers that were closest to the expected values. The following list describes the parameters that are
able to be tuned in the BRISK feature detection function:

• Minimum intensity difference between a corner and its surrounding region.
• Minimum accepted quality of corners.
• Number of octaves to implement for multi-scale detection.
• Region of interest in an image. [30]
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Feature Matching
After the BRISK detection, the extractFeatures parameters validates each feature point’s location in the
image and returns a binaryFeature object which can then be used for feature matching between the two
images.[32] The matchFeaturesInRadius function matches these features based on specific matching
parameters relating the two sets of features. As the inputs are binaryFeature objects, the function
uses the Hamming distance to compute the similarity metric between features.[34] One of the tunable
parameters is the radius, which puts a limit on the Euclidean distance (distance in pixel coordinates)
between the two matches, which is useful for filtering out unwanted matches particularly in challenging
lighting conditions where features are not as pronounced. The other parameters used in the matching
function are as follows:

• Matching threshold representing a percent of the distance from a perfect match. Used to filter out
weaker matches.

• Ratio threshold used to reject ambiguous matches.
• ”Unique” flag, which indicates if a single feature can have multiple matches. In this application,
all matches must be unique.[34]

For each experiment scenario, both the detection and matching parameters can be tuned to detect and
match the correct correlating features between each frame. To tune the radius parameter, the algo-
rithm prints the minimum, maximum and mean of the Euclidean distances between the set of matching
points, giving a good indication of if the radius parameter is set correctly.

Figure 2.13: BRISK feature matches between image 1 & 2 in which the target moves 10cm from left to right

Matching Features and imPts
The locations of the matching features detected are in image coordinates and are recorded to the thou-
sandth of a pixel, as are the LiDAR projected imPts. A thousandth of a pixel is an unnecessary level of
accuracy that would lead to zero features corresponding to LiDAR imPts, so both the feature locations
and the imPts are first rounded up to the nearest pixel. By indexing both the imPts and the feature
locations, each feature can be matched to its corresponding imPt if they share the same pixel value,
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and those that do not have a corresponding imPt are discarded, as they then cannot be used in the
following step if they do not have a measurement from the LiDAR sensor.

Figure 2.14: BRISK imPt feature matches

Indexing the imPts and the world coordinate LiDAR points allows for an easy transition between the
2-D image and 3-D world coordinates, however the same can be done with the transformPointsInverse
function using the original affine rigid transformation used to convert the LiDAR points to imPts. Notice
the number of matches listed on top of Figure 2.13 and Figure 2.14. Out of the 42 matching points in
the images, only 16 had imPts registered to precisely the same pixel, again due to the difference in
sensor resolution. Remember that both imPts and feature points were rounded up to the nearest pixel,
and without this rounding there would be no matches. This ratio of matches found and matches used
is why the density of the point cloud on the target is so critical to the success of this algorithm.

Estimating Transformation
With the matching features now translated to their 3-D world coordinates, the points in each image
can be converted into a point cloud with the pointCloud function, and their transformation matrix esti-
mated with the estgeotform3d function, specifying the transformation as being rigid, as the target does
not deform between the two frames. The transformation matrix represents the rotation and translation
between the two scenes. The function needs a minimum of 3 points to be able to estimate the transfor-
mation. LiDAR point clouds can contain small imprecisions in their measurements (specifically in the
x distance axis), so having as many accurate matches as possible is a good way to filter out this effect
and retrieve more accurate transformations.
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Figure 2.15: Threshold for matches to be considered inliers after transformation

As the matching points are not always perfect (recall the discussion of feature points located at the
thousandth of a pixel), a threshold can be set in the form of a maximum distance between matches
to be considered inliers, or valid matches to be considered in the calculation of the transformation
matrix. Ideally, this distance should be as small as possible to ensure the most accurate transformation
estimate. Figure 2.15 shows a visual representation of this maximum distance threshold. As in the
Color-ICP algorithm, the result is a transformation matrix A relating the moving point cloud (second
frame) to the fixed point cloud (first frame) and describes the target’s pose over time.

Control Transform and RMSE
To check the result, a control transformation matrix can be defined. In the LiDAR world coordinates,
the x axis points directly in front of the LiDAR, the y axis laying horizontal with positive y pointing to the
left, and the z axis vertical. So for a target moving from left to right in the frame by 10 cm, the expected
translation matrix would be [0 -0.10 0]. If the target is moving 10 cm directly towards the sensors, the
expected translation matrix would be [-0.10 0 0]. The rotation matrix can also be anticipated for sce-
narios of rotation in different planes, with the scenario of rotation in the x-y plane being shown below.
With the translationmatrix T and rotationmatricesR, the full control transformationmatrixA can be built.

T =
[
tx ty tz

]
R =

cosd(θz) −sind(θz) 0
sind(θz) −cosd(θz) 0

0 0 1



A =


cosd(θz) −sind(θz) 0 tx
sind(θz) −cosd(θz) 0 ty

0 0 1 tz
0 0 0 1


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The control, or expected, transformationmatrix and the observed transformation from the featurematch-
ing algorithm can be compared by calculating the root mean squared error (RMSE) between both the
translation and rotation matrices. Separating the transformation matrix in this manner gives a better
indication of what the algorithm is better estimating, translation or rotation. The formula for calculating
RMSE is shown below, where C represents the control array, while O represents the observed array.

RMSE =

√√√√ 1

n

n∑
i=1

|Oi − Ci|2 (2.4)

This can be directly implemented to the total translation matrix, however the rotational matrix requires
an extra steps. First the rotation matrices are converted to Euler angles representing the rotation in
each axis, done by using the rotm2eul function which returns a 1x3 matrix in the form of [θxθyθz] in
radians. It is important to specify the order as ”XYZ” as this is not the default and would otherwise lead
to an inaccurate conversion. A preliminary check can be done using Equations 1.7-1.10 relating Euler
angles to rotation matrices presented in Section 1.2.5. The Euler angle arrays can then be put into the
RMSE equation above for comparison. A perfect match between the control and observed matrices
would return RMSE = 0.

This RMSE step is the same for both the Color-ICP and Feature Matching algorithms. It has been
detailed in both sections to provide a complete description of each algorithm developed independently.

Preprocessing for Challenging Scenarios
Though LWIR cameras are much less sensitive to lighting conditions compared to visual spectrum cam-
eras, there is a scenario in which the representation of wavelengths (temperatures) in the scene can
make feature detection difficult. LWIR cameras represent the LWIR spectrum wavelengths as RGB
color values in images based on the range of wavelengths present in a scene. High Dynamic Range
(HDR) images store all of the wavelength values observed and allow the user to choose the range of
interest, however this should not be assumed to be available as not all LWIR sensors have the HDR
feature.

If the temperature range in a scene is small, subtle differences will be more visible (dependant on the
sensitivity of the sensor) as the full color range is employed to cover a small temperature scale. In con-
trast, if the temperature range is large, subtle differences are lost as the image representation attempts
to cover a large range.

For this research, the use case this is referring to is a scenario in which the chaser observes a target
with either a large target temperature range, or in which the sun is visible in the frame. Though these
two scenarios seem intuitive, there is more to discuss regarding the sun’s effect on particular LWIR
sensors, which can be found in Section 2.2.1. For now, the sun in-frame scenario can be understood
to drastically enlarge the range of temperatures observed. When this happens, the details of the entire
target are obscured and dimmed. A preview of the experiment developed to simulate this can be seen
below in Figure 2.16a for illustrative purposes. The spotlight in the top-left corner obscures the target
almost entirely.

This is the worst-case scenario for the heavily IR and CV-dependent Feature Matching algorithm which,
while also representing a real use case in the space environment, has the added benefit of testing the
limitations of the algorithm.
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(a) Original grayscale image (b) Brightened image

Figure 2.16: Effect of brightening function imlocalbrightening on the original dim image

As the target in this scenario is very faint, special considerations must be taken to be able to detect and
match accurate features. This is done by implementing certain image preprocessing steps to accentu-
ate the contrast between the target and ambient background while lessening the effect of the strong IR
source in the frame.

The imlocalbrighten function is the first step to enhance the dim and dark target. The next image pro-
cessing technique that is used is referred to as ”clipping”, which limits pixel values to a specified range
and serves to further define the target from the background. The final step is known as ”histogram
equalization”, which further enhances the contrast between pixels in the image. The histogram of an
image refers to a count of grayscale values in an image, which for 8-bit images such as those from
the IR sensor has a grayscale range of 0-255, with 0 being completely black while 255 is completely
white. With images with a strong background IR source, the histogram will have a many more pixels in
the lower part of the graph and then have a spike at the higher end representing the strong IR source.
Histogram equalization attempts to equalize this distribution so that the dim and bright pixels are more
evenly spread, effectively enhancing a very dark image. One effect of this equalization is called ”arti-
facting”, which is the appearance of apparent shapes in empty parts of the image. This is due to the
subtle differences of the regions being equalized, leading to these phantom shapes. Luckily, this is
easily fixed by adjusting the clipping parameters. If a dark void in an image displays artifacting after
histogram equalization, upping the lower limit of the clipping process will erase it completely.
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(a) Effect of clipping in range of 5-200 (b) Histogram equalization with artifacts

(c) Corrected clipping in range of 20-200 (d) Histogram equalization with the corrected clipping metric

Figure 2.17: Correct clipping can rid the histogram equalized image of undesirable artifacts
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(a) Original grayscale (b) Original grayscale zoomed

(c) Brightened (d) Brightened zoomed

(e) Histogram equalization (f) Histogram equalization zoomed

Figure 2.18: Histogram plots the original, brightened, and histogram-equalized images.

Other Preprocessing Methods Considered
There are other preprocessingmethods that were considered and tested to help with the adverse effects
of lighting conditions. For example, in the IR images of a target in occlusion, the images can display so-
called ”striation artifacts” vertically across the image. During initial experimentation, this seems to only
occur in the occlusion scenario, when the target and background are both near ambient temperature
which leads to a very small scale of temperature values represented in RGB values. These artifacts
could potentially be interpreted as edges and subsequently features by the feature detection methods,
leading to an attempt to suppress this undesirable effect. A promising solution was the implementation
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of a Gaussian bilateral filter. By defining a region in the image containing the undesirable artifact and
approximating the variance of the noise in this small region, the bilateral filter smooths the image while
preserving strong edges. This works relatively well in the occlusion scenario, but turns non-edge fea-
tures blurry which can have an adverse effect of the feature recognition phase, and ultimately did not
rid the image of striation. Another technique tested was anisotropic diffusion filtering, which selectively
smooths or preserves features based on their local characteristics. This worked well as it can be tuned
specifically to preserve low-contrast edges and leads to less blur in the target, but once again did not
totally eliminate the striation. However, when each were implemented to preprocess images before
feature detection, neither method produced any distinguishable improvement in performance.

(a) Original grayscale image (b) Anisotropic diffusion filtering

(c) Bilateral filter. Degree of smoothing is 2x patch variation (d) Bilateral filter. Degree of smoothing is 8x patch variation

Figure 2.19: Anisotropic and Bilateral filtering in an attempt to mitigate vertical striation artifacts in the image of the target in
occlusion.
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2.2. Experiment Design
When considering a method of V&V for the pose estimation algorithms, there are numerous options
regarding data sources to achieve this goal. While outlining the scope of this research, Figure 1.1 ref-
erenced four possible sources: experimental data, simulation data, data from literature, and real-world
data from space. The most coveted of these sources is of course the space data option, however this
data is extremely difficult to come by in detail, and is often safeguarded as the proprietary property of
the entities collecting the data. Data from literature can be more accessible, however it is usually highly
specific to the application presented in the literature, and assumptions and setup details can be difficult
to obtain. Both of these two sources do not guarantee relevance to the selected research approach
and are impossible to tune.

Self-designed simulations and laboratory experiments can both be specifically tuned to the scenario of
the research. Simulations are reproducible with 100% accuracy, highly scalable and can be designed to
precisely replicate a desired scenario, but there are also drawbacks to a simulation approach. Though
not always the case, a simulation setting can reveal researcher bias, or a fundamental misunderstand-
ing, in the assumptions made in aspects of the scenario and simulation parameters. Parameters such
as sensor noise can easily be tuned, and the input of a model-based target is fundamentally at odds
with the unknown uncooperative target focus of this research. In this line of reasoning, the laboratory
setting offers the interesting opportunity to experiment with real-world objects put together in an impre-
cise manner to represent random debris found in orbit. The laboratory setting also lends the opportunity
to use real sensors with real noise and imperfections, and is ultimately the best option to more deeply
understand the limitations of the proposed method. Laboratory experimentation also lends a deeper
knowledge of the sensors, with topics integral to this research such as sensor calibration greatly bene-
fiting from experimentation. It is for these reasons that a laboratory experiment is designed as a data
source for the purpose of verification and validation of the pose estimation algorithms.

In contemplating the experimental setup to simulate an RPO mission in orbit, it is clear that conditions
will likely be drastically different from the micro-gravity vacuum in which the application for this research
will be. Though a thermal-vacuum chamber and drop tower would be nice, the argument can be made
that these luxuries aren’t necessary for the scope of this research. It has already been shown in 1.2.3
that the debris targets will likely be at temperatures within the range of -80◦C to 40◦C emitting radiation
in the LWIR spectrum. Rotation and translation rates can bemimicked, and the background in the frame
of a thermal image can be made to be as uniform as possible. Figure 2.20 below shows the blackbody
radiation emittance from objects at different temperatures, supporting the validity of an experiment at
room temperature.

Figure 2.20: Blackbody radiation for 3 different temperatures, including that of the sun. The green region represents the total
amount of LWIR spectrum radiation emitted from an object at -90◦C. [60]
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The design of the experiment to collect data for the pose estimation algorithm changed drastically dur-
ing the course of the experimentation process. A successful experiment would lead to the accurate
calibration of the sensors, and then reliably collect data from the LiDAR and infrared sensors through
a range of environmental and target scenarios to fully analyse the approach. This required some prac-
tice and tuning before a reliable method was put into place for the final 3 days of testing (Eggman 3,
Eggman 4 and Boxsat 1 in Table 2.2 below). However the other testing days, and indeed the many
days learning the intricacies of the hardware preceding that, were not wasted. In fact, these days will
be referenced in Chapter 3 as the most important days for learning the limitations of the system. Table
2.2 outlines the names that will be used in reference to each day of data collection. The design and
reasoning behind each of these experiments will be detailed in subsequent sections.

Session Day Date Target Note
Panda 1 4/8/2023 Delfi-PQ Initial data gathering with Panda arm and a small target
Panda 2 14/8/2023 Delfi-PQ Stop motion data gathering with Panda arm
Eggman 1 15/8/2023 Delfi-n3Xt Initial experimentation with n3XT and Robotnik rover
Eggman 2 16/8/2023 Delfi-n3Xt Data gathered on a wide variety of target motion
Eggman 3 8/9/2023 Delfi-n3Xt New and improved calibration method
Eggman 4 11/9/2023 Delfi-n3Xt Repeated experiments with new calibration
Boxsat 1 12/9/2023 Boxsat Larger target capable of longitudinal rotation

Table 2.2: Session days in which experiments were preformed to estimate pose. Note that the experimentation process
changed as the limitations of the system became clear.

2.2.1. Instrumentation
Hardware experiments are inevitably limited by the hardware available, however the TU Delft (TUD)
Aerospace Engineering (AE) Faculty has a number of relevant instruments that are highly suitable for
this research. The LWIR sensor provided and utilized throughout this research is a Teledyne FLIR
A655sc uncooled microbolometer camera, while the LiDAR sensor utilized is a Livox Mid-70 solid-state
scanning LiDAR. This Section will provide the specifications of these instruments while also discussing
some of their important characteristics relevant to their use in this research.

The sensor setup can be seen in Figure 2.21 which shows how the LiDAR and the FLIR are positioned
as close as possible to each other, minimizing the transform needed to align the point cloud to the IR
image in the algorithm. A laser range finder was used to provide the ground-truth measurement of a
specified reference point on the target to be checked against the LiDAR distance measurement and
was updated and recorded periodically during experiments.
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Figure 2.21: Sensor setup showing from left to right the Livox LiDAR, FLIR IR camera and a laser range-finder for the
ground-truth distance

Livox Mid-70
Available for use at the AE faculty is the Livox Mid-70 high-performance LiDAR sensor. The Mid-70
records 100,000 points per second and can be set to various exposure times, as it is defined as a
scanning LiDAR.[53] The lowest of these times is 100ms, a tenth of a second which would return
10,000 points. The longest exposure time is 3000ms and would return 300,000 points. Though a
longer exposure time records more points, it is not suitable for motion. Figure 2.22 shows a scan of
the author walking near a calibration target, viewed from the right side respective to the LiDAR’s FOV.
It demonstrates the problem with scanning LiDARs with regards to in-scene motion. In the left image,
the exposure time is 3000ms and the motion is seen as a nondescript blur, while the right image has
an exposure time of 200ms and shows the location of the moving author but has lost much of the detail
of the scene, making it difficult to discern objects and features. This effect is known as motion blur.[18]

It is for this reason that the decision was made to record the motion of targets for the experiment in a
stop-motion fashion. In practice, this means that in an experiment mimicking the scenario in which
a target’s relative motion is moving from left to right through the reference frame, the target will be
scanned for a minimum of 3 seconds while it is still, be moved a small distance to the right of the
reference frame, be scanned again, move to the right, etc. Though some experiments were done at-
tempting to record the movement with a lower exposure in one continuous scan, it was decided that
the stop-motion methodology was the only way do retrieve accurate data due to this inherent nature of
scanning LiDARs as well as the lack of synchronization equipment available at the faculty for the Livox
and infrared camera together.
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(a) Movement near a target with an exposure time of 3000ms (b) The same scene with an exposure time of 200ms

Figure 2.22: Low exposure time eliminates motion blur but makes the scene harder to discern

Laser Wavelength 905nm
FOV 70.4◦ (circular)

Close Proximity Blind Zone 0.05m
Distance Random Error 1σ (@20m) ≤ 2cm
Angular Random Error 1σ < 0.1◦
Beam Divergence 0.28◦ (Vertical) x 0.03◦ (Horizontal)

Point Rate 100,000 points/s (first or strongest return)

Table 2.3: Livox Mid-70 specifications[53]

At this point, it becomes necessary to discuss the unique scanning pattern used by the Mid-70 and its
relationship to point density. Point density refers to the amount of points per square meter at a certain
distance. As Table 2.3 shows above, the Mid-70 has a 70.4◦ FOV projecting in a non-repeating pattern,
and has a point rate of 100,000 points per second. As distance increases, the point density will lessen
due to this FOV angle. For many LiDAR systems projecting a uniform pattern, the calculation of point
density with respect to distance would involve simple geometry, multiplying the point rate with sample
time and then dividing by the area in the FOV. However this is not the case for the Mid-70 due to its
unique non-repeating, or quasi-random, scanning pattern shown in Figure 2.23a. Reminiscent of flower
petals, the pattern precedes along the central axis and covers approximately 70% of the field of view
at 1 second of integration time as shown in Figure 2.23.
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(a) Mid-70 points following its non-repeating scanning pattern after 100, 500, 1000 and 3000 milliseconds of integration time respectively.

(b) FOV area covered with respect to integration time, as opposed to non-Livox mechanical scanning LiDARs on the
market.

Figure 2.23: Livox-supplied depictions of its unique non-repeating (quasi-random) scanning technology.[53] Though
interesting, it complicates the calculation of point density dramatically.

Due to the quasi-random nature and non-uniformity of the scanning pattern, the precise point density
can only realistically be estimated and is a function of the converging center point’s distance to the sen-
sor and the distance of the point area to the center. Figure 2.24 shows a scene observing Delfi-n3Xt
in which the point density is represented bu the color scale on the right side of the figure. As expected,
the points are more dense at the center of the scan and progressively spread as the distance from the
center increases. The wall behind is a flat uniform surface that more consistently shows this pattern
than Delfi-n3Xt, whose more complex geometric shape causes some departures in the expected den-
sity.

The distribution of point density can be further analysed using histograms. Figure 2.25 shows this
distribution for the Delfi-n3Xt target (excluding the points of its surrounding environment) as it moves
farther away but remaining at the center of the scan, and as it moves from the left side of the scan to the
right side. Initially it is logical to think that Figures 2.25d and 2.25f should show the same distribution,
however the target’s observed geometry from the point of view of the LiDAR changes as it moves
preventing this. This demonstrates the difficulty in predicting point density with the Mid-70.
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Figure 2.24: Delfi-n3Xt during the Series J experiment. The color scale represents the point cloud density in points per m2.

(a) Target centered at 3m distance (b) Target centered at 4m distance (c) Target centered at 4.7m distance

(d) Target 1m left of center (e) Target center (f) Target 1m right of center

Figure 2.25: Histogram of point density on the segmented Delfi-n3Xt target for a 1 second integration time. The points on the
surrounding environment are excluded. With the target in the center, (a-c) show reduced density with distance. (d-f) show the
density at 5 meters distance drastically changing as the target moves 1 meter to either side of the center. Density is measured

in points per m2.

One way to approximately describe the distribution of the point cloud density with respect to distance
from the center is as a reciprocal squared function, with the center as a high peak at x=0 that rapidly
decreases along the positive and negative x-axis.
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FLIR A655sc & Uncooled Microbolometers
The FLIR A655sc (referred to hereafter as simply FLIR) is a high-resolution LWIR camera with an
uncooled 640 x 480 pixel microbolometer[54] that is available at the AE faculty. Bolometers produce
an electrical signal using an element that changes resistance with temperature.[5] Though it has a high
frame rate at 50 Hz, this is an unimportant metric due to the stop-motion nature of the experiments
imposed by the scanning LiDAR. Much more relevant is its resolution, which allows for the images
captured to be detailed enough for feature recognition and other computer vision tasks in the pose
estimation process. The FLIR is able to be manually of automatically focused to ensure sharp images
at various distances.

Resolution 640 x 480
Detector Pitch 17 µm
Spectral Range 7.5 - 14.0 µm
Detector Type Uncooled microbolometer

Camera f-number f/1.0
Dynamic Range 16-bit

NETD <30mK
Frame Rate 50 Hz

Standard Temperature Range -40◦ C to 150◦ C, 100◦ C to 650◦ C
Focus Automatic or Manual (Motorized)

Table 2.4: FLIR A655sc specs[54]

Briefly discussed in Section 2.1.4 as it relates to the Feature Matching algorithm, an interesting aspect
of LWIR images is the range of temperatures (wavelengths) represented in RGB (or grayscale). Figure
2.26 again shows a challenging scenario in which there is a strong infrared source, in this case a
terrace heater, in the scene with the target. Figure 2.26a shows the automatic higher scale that the
sensor imposes, as the FLIR tries to avoid saturating the upper bounds of the scale to be able to resolve
the features of the hotter object. Due to this, the relatively cold target is completely hidden in darkness.
Manually lowering the scale saturates the upper bounds of the color scale in the image, in other words
something 60◦ C and 70◦ C will both be colored white which is the highest color representation on the
scale. Though this turns the entire IR source white and hides any detail therein, the target is able to be
seen in the image. This specific situation represents the worst-case scenario for the FLIR.

(a) Temperature scale obscures target (b) Temperature scale allows target to be seen

Figure 2.26: Challenging lighting scenario in which the temperature scale is critical

The relevance of this sun in-view experiment seems intuitive, however there is more scientific nuance
to its motivation to examine. At this point it becomes necessary to discuss the nature of uncooled
microbolometer LWIR cameras and how they operate in the space environment, particularly in relation
to the sun. The sun’s radiation emission is dominated by the visible and NIR spectra, with <1% of its
emission coming from the LWIR spectrum.[16] This is still a massive amount, considering the scale of



2.2. Experiment Design 47

the sun, however it is still <1%. It stands to reason, then, that the sun viewed in the LWIR spectrum
would appear as a dim circle or dot since so little radiation is detected in this regime. However this
is not the case for uncooled microbolometers, as exposure to the intense solar rays in vacuum leads
to an effect known as thermal blooming, which can saturate (max out) affected pixels and leave an
artifact in the image for an extended period of time.[27] Figure 2.27b shows the effect of intense thermal
blooming on a 640x480 pixel uncooled microbolometer exposed directly to a laser over time to the
point of permanent detector damage. A previously mentioned RPO mission, MEV-1 & MEV-2, used
an uncooled microbolometer LWIR camera during their missions, but encountered thermal blooming
during a calibration test viewing the Earth, moon and a transiting sun, as seen below in Figure 2.27a.
The resulting artifact left by the sun’s movement across the image is referred to as sun-streaking, a
direct result of thermal blooming affecting the uncooled microbolometer.[44] Though this exact effect is
difficult to reproduce in the atmosphere without a laser and a risk of equipment damage, the Boxsat D,
E and F experiments exist to saturate a part of the frame as it would be during a sun in-view observation
of the target.

(a) LWIR image of the Earth and moon with a thermal
blooming artifact present from the sun’s transition through

the frame during MEV-2 [44]
(b) Bolometer thermal blooming induced by a laser in laboratory

conditions [27]

Figure 2.27: Bolometers suffer from thermal blooming when an intense radiation source saturates a portion of the detector and
can leave an artifact for a considerable amount of time.

Again, the representation of LWIR wavelengths as RGB or grayscale values is dependent on the range
of wavelengths present in the image. When a portion of pixels are saturated, the range expands up-
wards and conceals the rest of the scene as dim and dark, as seen in Figure 2.26a. In addition to
simulating thermal blooming from the sun, these experiments simulate a worst-case scenario and addi-
tionally serve to test the limits of the algorithms’ capabilities, particularly the Feature Matching algorithm
as it relies heavily on FLIR and computer vision to determine pose.

2.2.2. Calibration
The importance of proper calibration for this research cannot be understated. As mentioned before,
each experiment had value in the learning process and directly led to an improvement and refinement
of the method of experimentation, however only the experiments of the Eggman 3, Eggman 4 and
Boxsat 1 days were considered to be valid in delivering reliable data suitable for implementation into
the algorithms. One of the main reasons for this, certainly for days Eggman 1 & 2 was due to incorrect
calibration.

As stated in Section 2.1.1, calibration can be thought of as the sensor fusion process in mini. As the
sensors are next to each other (see Figure 2.21) and not in the exact same point in space, calibration
results in the extrinsic parameters, including the crucial transform function, and the intrinsic parameters
of the FLIR camera. For more background and detail about these parameters, please refer to Section
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1.2.4.

A chessboard (or checkerboard) is a common target for calibration of electro-optical sensors either
individually or together for sensor fusion.[31] There was concern at the beginning of the experimen-
tation process that the IR chessboard images would not be recognized in calibration algorithms, in
which known distances of straight lines between the corners of squares are referenced, however the
chessboards in the IR spectrum were just as likely to be recognized as in the visual spectrum with the
proper care. The chessboards were able to be seen at ambient room temperatures with FLIR, however
shining a spotlight onto the chessboard helped to sharpen the image and accentuate the contrast be-
tween squares, as the black squares absorbed more heat than the white squares. Though potentially
unnecessary, the spotlight was used to ensure distinctive corners for calibration.

However, the calibration process is very sensitive to other aspects of the image. Figure 2.28 shows
two imaging sequences that failed in the calibration process. Figure 2.28a was an early attempt at
LiDAR-camera calibration in the visual spectrum with the Panda robotic arm holding the chessboard
steady for a scan. This failed due to the blinds behind the chessboard. Figure 2.28b was one image in
a series of calibration images that all failed due to the box on-top of which it was placed on, thus that
day’s data could not be used. From this, the lesson was learned to give the chessboard free space with
a simple and uniform background. Figure 2.29 shows two raw IR images that were successfully used
for calibration and two images with the resulting corner detection resultant of successful calibration.

(a) Visual spectrum calibration fail (b) IR spectrum calibration fail

Figure 2.28: Calibration failures due to in-scene interference
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(a) Successful calibration raw image (b) Successful calibration raw image

(c) Calibration corner detection (d) Calibration corner detection

Figure 2.29: Successful calibration with chessboards in the IR spectrum

2.2.3. Panda Experiments
The Panda is a 7-DOF robotic arm made by Franka Emika capable of lifting and manipulating 3 kg.[12]
The Panda was available for use at TU Delft’s AE building and was determined to be a good way to
rotate and translate a target in a precise manner to be viewed and recorded by the LiDAR and IR sen-
sors. The Panda was an attractive option due to the ability to program precise movements and lock
axes for accurate single-axis rotation, however in practice the Panda was prone to undesirable motion
specifically during translation. This made it very difficult to achieve single axis translation over any
distance more than a few centimeters.

Another issue was the Panda-imposed 3kg target weight limit. The initial target chosen was a 1:1 replica
of the Delfi-PQ satellite, which is a 5x5x18 cm TUD-designed satellite launched in January 2022.[55]
The Delfi-PQ was the target for the Panda 1 & 2 experiments in which it completed a series of trans-
lation and rotation maneuvers programmed for the Panda and was recorded by the LiDAR and FLIR
sensors after a program of chessboard manipulation for Panda. Upon viewing the recorded data, a few
issues were discovered and directly led to the improvement of the experiment.
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(a) Delfi-PQ and Panda (b) FLIR image

(c) Point cloud of PQ, Panda, and the desk (d) Closer view of PQ

Figure 2.30: Delfi-PQ held by Panda in the visual, IR and as a point-cloud during Experiment: Panda 2.

Figure 2.30 shows data recorded during the Panda 2 experiment. Notice that the Panda gets rather
warm during operation compared to the target, causing the overall temperature scale to slide and the
RGB representations to shift. Even so, the FLIR is able to distinctly resolve the solar panels on the
side of the target as well as its overall shape. However, the Panda dominates the scene. The point
clouds show the main issue with the Panda 1 and 2 experiments; the point cloud of the target is very
sparse. These points represent a scan of 3000ms (3 seconds) and returns less than 60 points of the
PQ. Because of this, it is very difficult to detect features in the point cloud scene, even though the
PQ’s shape is rudimentary and has distinct planar features, thus making it difficult to register points to
determine pose in either algorithm.

2.2.4. Eggman Experiments
The PQ-Panda issues were alleviated by introducing a new target as well as a new robot that was
recently purchased by the TUD AE department. The robot is the Robotnik Kairos, a rover with a large
flat top on which to place/attach objects. Robotnik is the surname of the villain ”Eggman” in the Sonic
The Hedgehog series, thus these experiments were given the moniker Eggman.[48] The target was a
1:1 replica of the TUD-built Delfi-n3Xt, a 10x10x30cm satellite launched in 2013 that has since become
space debris when transmission ceased after mission success.[13]
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(a) Delfi-n3Xt and the Robotnic rover (b) FLIR image

(c) Point cloud of n3Xt, Robotnik and the floor (d) Closer view of n3Xt

Figure 2.31: Delfi-n3Xt ontop of the Robotnik rover in the visual, IR and as a point-cloud during Experiment: Eggman 1. The
number of PQ points is 5,118.

Figure 2.31 shows how Delfi-n3Xt was mounted onto the rover, while also showing the data collected
by FLIR and the Mid-70. The details in the FLIR image are very sharp and pronounced thanks to the
target’s larger size and minimal interference with the mount. The number of points above in Figure 2.31
(d.) is 5,118, also retrieved from a 3000ms scan. Recall that the PQ scan had less than 60 points. This
is much better for feature detection and point-registration, as it will be shown in the results in Chapter 3.

Eggman 2 starts what are referred to as the ”Series” tests for the Delfi-n3Xt target. These are a series
of recordings and measurements for a specific target encounter scenario. For example, Series J took
place during Eggman 4 and records Delfi-n3Xt as the rover moves it 10 cm at a time from left to right in
the frame for 1.60 meters total distance. Series K records the same motion, the rover travelling 10 cm
at a time from left to right, however with n3Xt this time spinning 20 degrees every 10 cm. The Series
tests are meant to enable the stop-motion recording of a range of translations, rotations, translation-
rotations and under a number of different lighting conditions.

These scenarios are designed to represent the relative motion and conditions involving a chaser-target
pair during an ADR mission. Specific mission profiles will likely differ, however the experiments de-
signed represent translation and rotation over time during the approach. As Delfi-n3Xt is too small
to be the target of an early ADR mission, it is possible to scale its translation to a prime candidate
for removal: Envisat, as mentioned in Section 1.1. The body of Delfi-n3XT (not including antennae
or solar panels) is 30 cm long[13] compared to the 10.02 m long body of Envisat (not including the
solar panel)[47]. This length represents a 33.4:1 ratio in body length, which would represent Envisat
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translating 3.34 m between frames. Table 2.5 describes each Series experiment, with a more detailed
description including start and end states available in Appendix B.

Experiment Session Day Lighting Target Intrinsic Motion
Series A Eggman 2 Direct Translation left-right
Series B Eggman 2 Direct Translation left-right & rotation
Series C Eggman 2 Direct Translation far-near
Series D Eggman 2 Direct Translation far-near & rotation
Series E Eggman 2 Direct Rotation
Series F Eggman 2 Direct Rotation (video)
Series G Eggman 3 Occlusion Translation far-near
Series H Eggman 4 Direct Translation far-near
Series I Eggman 4 Direct Translation far-near & rotation
Series J Eggman 4 Direct Translation left-right
Series K Eggman 4 Direct Translation left-right & rotation
Series L Eggman 4 Direct Closer translation left-right & rotation
Series M Eggman 4 Direct Closer translation left-right
Series N Eggman 4 Occlusion Translation far-near & rotation
Series O Eggman 4 Occlusion Rotation
Series P Eggman 4 Occlusion Closer translation left-right & rotation
Series Q Boxsat 1 Sun simulator Translation left-right & rotation

Table 2.5: Delfi-n3Xt Series tests

Series G was the first test of the target in occlusion, continued in Series N, O, & P. In this scenario the
target was left in a dark room for a minimum of 30 minutes but up to 2 hours (equilibrium temperature
reached within 30 minutes, so no noticeable difference due to longer wait times) to allow it to reach
ambient room temperatures, the result of which can be seen below in Figure 2.32. It should be noted
that the instrument and recording suits run warm, and that ray reflection off of the target’s metallic body
into the FLIR can happen at the right angle.
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Figure 2.32: Delfi-n3Xt during Series O in occlusion

In an attempt to more comprehensively test the performance of FLIR, as well as to use relevant avail-
able resources, it was decided to use an available sun simulator to illuminate the Delfi-n3Xt target for
Series Q. The simulator is small and was built to operate inside a reflective container while emitting
wavelengths closely resembling that of the sun’s visible spectrum. It heats up quickly and can only be
operated for about 45 seconds at a time, and as all the targets were much bigger than the container
designed for the sun simulator it had to be operated outside of the container, simply pointing at the
target. The images (seen in Figure 2.33) closely resemble the images of occlusion, as the simulator
isn’t very strong (nowhere near the spotlight or terrace heater) and could only be operated for a short
time, preventing the target from heating any meaningful amount. However, it was a worthwhile attempt.

Figure 2.33: Series Q sun simulator experiment
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2.2.5. Boxsat Experiments
Boxsat was created to introduce variety and provide a target that was larger and could rotate around its
longitudinal axis. Delfi-n3Xt was attached to a mount along an edge near its center. This means that it
can spin around the axis of the mount through the center, but not longitudinally. The Panda’s grip was
not strong enough to hold neXt and would cover a part of the target if straps were used. A mounting
system was contemplated that would attach to one or both sides, however it would be difficult to again
avoid interference from the mounting as well as damaging the model. So Boxsat was created as a new
target to provide a simple solution. Boxsat attached to a telescopic camera mount with factory-installed
markings of degrees around two separate axes. Through this it was possible to record longitudinal ro-
tation, two-axis rotation and to see how the system performed with a different target. The system is
meant to determine the pose of uncooperative unknown targets after all.

Table 2.6 below lists each Boxsat experiment, with a more detailed description including start and end
states available in Appendix B.

Experiment Session Day Lighting Target Intrinsic Motion
Boxsat A Boxsat 1 Direct Rotation (Longitudinal Axis)
Boxsat B Boxsat 1 Direct Rotation (Off-axis)
Boxsat C Boxsat 1 Occlusion Rotation (Longitudinal Axis)
Boxsat D Boxsat 1 Spotlight in-scene @ 50% Translation left-right
Boxsat E Boxsat 1 Spotlight in-scene @ 100% Translation left-right
Boxsat F Boxsat 1 IR Heater in-scene @100% Translation left-right

Table 2.6: Boxsat tests

(a) FLIR image of Boxsat in direct light (b) Segmented LiDAR scan of Boxsat

Figure 2.34: Boxsat set on its two-axis tripod in the laboratory, and with the LiDAR-IR sensor view
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(a) Boxsat E mounted with the spotlight behind (b) Boxsat E

(c) Boxsat F with the terrace heater in-scene (d) Boxsat F with the terrace heater in-scene

Figure 2.35: Boxsat with strong IR sources in-scene

Boxsat was also chosen to test a difficult scenario, already mentioned in Sections 2.1.4 and 2.2.1
during the discussions of the Feature Matching algorithm and FLIR camera respectively, in which a
strong IR source is also in the scene with the target. Also in Section 2.2.1 it was already discussed
how manually adjusting the temperature scale is essential to be able to view the target under these
conditions. Boxsat D was the first of these tests with the spotlight previously used to illuminate the
targets set at 50% power. Boxsat E increased the spotlight to 100% of its maximum power and was
put on the other side of the scene. These three Boxsat experiments in particular are used to test limits
of the algorithms while simultaneously simulating a space-environment scenario.



3
Results & Analysis

In this chapter, the results of both algorithms will be presented and discussed in depth. Before the
results can be discussed, Sections 3.1 and 3.2 will first present the experimental results as the error
(RMSE) in the average of the calculated transformation estimation compared to the ground truth for
each experiment. With these results presented, Section 3.3 will analyse and discuss the results in
depth and attempt to explain their sources before conclusions are drawn based on these results.

As a reminder of what each experiment entailed, Table 3.1 below defines each valid V&V experiment
used in the algorithms based on the target’s intrinsic motion and lighting conditions.

Experiment Lighting Target Intrinsic Motion
Series H Direct Translation far-near
Series I Direct Translation far-near & rotation
Series J Direct Translation left-right
Series K Direct Translation left-right & rotation
Series L Direct Closer translation left-right & rotation
Series M Direct Closer translation left-right
Series N Occlusion Translation far-near & rotation
Series O Occlusion Rotation
Series P Occlusion Closer translation left-right & rotation
Boxsat A Direct Rotation (Longitudinal Axis)
Boxsat B Direct Rotation (Off-axis)
Boxsat C Occlusion Rotation (Longitudinal Axis)
Boxsat D Spotlight in-scene @ 50% Translation left-right
Boxsat E Spotlight in-scene @ 100% Translation left-right
Boxsat F IR Heater in-scene @100% Translation left-right

Table 3.1: List of experiments with lighting conditions and target intrinsic motion defined

3.1. Color-ICP Algorithm Experimental Results
This section details the results obtained from the Color-ICP algorithm in each experiment. Recall that
the RMSE is a measure of error between the calculated and ground-truth pose, with a higher RMSE
indicating greater inaccuracy in the calculation.

56
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Figure 3.1: Average RMSE for the Color-ICP algorithm during all relevant experiments

Figure 3.1 shows the average RMSE of the Color-ICP algorithm’s estimation of the rotation matrix (gray
bar), translation matrix (orange bar), as well as the RMSE if the minimization metric (blue bar) of the
transformedmoving point cloud and the fixed one. Themaximum andminimum values are listed below:

Metric Value Experiment Lighting Intrinsic Motion
Translation RMSE min 0.019 Series M Direct Closer translation left-right
Translation RMSE max 0.256 Series K Direct Translation left-right & rotation
Rotation RMSE min 0.006 Boxsat E Spotlight in-scene Translation left-right
Rotation RMSE max 0.052 Series K Direct Translation left-right & rotation

Minimization RMSE min 0.007 Boxsat D Spotlight in-scene Translation left-right
Minimization RMSE max 0.063 Boxsat C Occlusion Rotation

Table 3.2: Minimum and maximum average RMSE metrics for the Color-ICP algorithm for all relevant experiments

Figure 3.2 shows the same metrics (minimization in blue, translation in orange, and rotation in gray)
but instead focuses only on the Eggman experiments, as does Table 3.3

Figure 3.2: Average RMSE for the Color-ICP algorithm during the Eggman experiments
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Metric Value Experiment Lighting Intrinsic Motion
Translation RMSE min 0.019 Series M Direct Closer translation left-right
Translation RMSE max 0.256 Series K Direct Translation left-right & rotation
Rotation RMSE min 0.007 Series M Direct Closer translation left-right
Rotation RMSE max 0.052 Series K Direct Translation left-right & rotation
Minimization min 0.007 Seires H Direct Translation far-near
Minimization max 0.034 Series K Direct Translation left-right & rotation

Table 3.3: Minimum and maximum average RMSE metrics for the Color-ICP algorithm during the Eggman experiments

Figure 3.3 shows the same metrics (minimization in blue, translation in orange, and rotation in gray)
but instead focuses only on the Boxsat experiments, as does Table 3.4

Figure 3.3: Average RMSE for the Color-ICP algorithm during the Boxsat experiments

Metric Value Experiment Lighting Intrinsic Motion
Translation RMSE min 0.027 Boxsat E Spotlight in-scene Translation left-right
Translation RMSE max 0.134 Boxsat B Direct Rotation (Off-axis)
Rotation RMSE min 0.006 Boxsat E Spotlight in-scene Translation left-right
Rotation RMSE max 0.025 Boxsat B Direct Rotation (Off-axis)

Minimization RMSE min 0.007 Boxsat D Spotlight in-scene Translation left-right
Minimization RMSE max 0.063 Boxsat C Occlusion Rotation

Table 3.4: Minimum and maximum average RMSE metrics for the Color-ICP algorithm during the Boxsat experiments
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3.2. Feature Matching Algorithm Experimental Results

Figure 3.4: Average RMSE for the Feature Matching algorithm during all relevant experiments

Here, the average rotation matrix RMSE is shown in orange, while the Translation RMSE is shown in
blue.

Metric Value Experiment Lighting Intrinsic Motion
Translation RMSE min 0.079 Series M Direct Closer translation left-right
Translation RMSE max 1.870 Series K Direct Translation left-right & rotation
Rotation RMSE min 0.0263 Series H Direct Translation far-near
Rotation RMSE max 0.749 Boxsat B Direct Rotation (Off-axis)

Table 3.5: Minimum and maximum average RMSE metrics for the Feature Matching algorithm during all relevant experiments

Figure 3.5: Average RMSE for the Feature Matching algorithm in the Eggman experiments

Once again, the average rotation matrix RMSE is shown in orange, while the Translation RMSE is
shown in blue but only for the Eggman experiments.
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Metric Value Experiment Lighting Intrinsic Motion
Translation RMSE min 0.079 Series M Direct Closer translation left-right
Translation RMSE max 1.870 Series K Direct Translation left-right & rotation
Rotation RMSE min 0.0263 Series H Direct Translation far-near
Rotation RMSE max 0.605 Series K Direct Translation left-right & rotation

Table 3.6: Minimum and maximum average RMSE metrics for the Feature Matching algorithm during the Eggman experiments

Figure 3.6: Average RMSE for the Feature Matching algorithm in the Boxat Experiments

And finally, the average rotation matrix RMSE is shown in orange, while the Translation RMSE is shown
in blue but only for the Boxsat experiments.

Metric Value Experiment Lighting Intrinsic Motion
Translation RMSE min 0.127 Boxsat E Spotlight in-scene Translation left-right
Translation RMSE max 1.569 Boxsat B Direct Rotation (Off-axis)
Rotation RMSE min 0.042 Boxsat E Spotlight in-scene Translation left-right
Rotation RMSE max 0.749 Boxsat B Direct Rotation (Off-axis)

Table 3.7: Minimum and maximum average RMSE metrics for the Feature Matching algorithm during the Boxsat experiments

From this data it can immediately be seen that the Feature Matching algorithm did not perform as well
as the Color-ICP algorithm. This is true for both metrics, but particularly for the error in translation. The
next section will interpret these results and provide various insights into their root causes.
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3.3. Discussion
Some of the results obtained defy expectation. In this section, the results of both algorithms developed
will be discussed, and some conclusions will be drawn as to why these results came about as well as
explanations of their possible sources. Section 3.3.1 discusses the expectations against the realities
of the results obtained, after which the accuracy of the algorithms will be discussed in Section 3.3.2
before discussing the potential sources of error in Section 3.3.3. Continuing in the discussion, Section
3.3.4 will describe the limitations of each method before relating to, and learning from, a real-world
RPO mission, finally closing the discussion with a postulated use case for the methods presented in
this research.

3.3.1. Theory vs. Observations
Though this research was not approached with any bias or definite performance expectations, there
were some preemptive ideas on which lighting and movement scenario would benefit each algorithmic
approach. Many of the results were unexpected and proved to be very interesting.

Performance with Respect to Lighting & Motion
One of the main research questions postulated regarded the IR-LiDAR combination’s independence of
lighting conditions. Though this is logical theoretically, the reality of the experiment preformed indoors
introduced some irregularities compared to the real-world use case in the vacuum of space. Figure
3.7 shows the resulting RMSE for both algorithms in direct lighting, while Figures 3.8 and 3.9 show the
RMSE for both in scenarios of occlusion and IR background lighting respectively.

Figure 3.7: RMSE for Color-ICP algorithm and Feature Matching Algorithm for target in direct lighting

Figure 3.8: RMSE for Color-ICP algorithm and Feature Matching Algorithm for target in occlusion
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Figure 3.9: RMSE for Color-ICP algorithm and Feature Matching Algorithm for target with harsh IR background radiation

The Feature Matching algorithm proved to be rather temperamental. Though this is not entirely unex-
pected, as the IR sensor is noisier and more sensitive to background interference, some interesting
and promising results were obtained from the use of this method.

It is interesting to see how the Feature Matching algorithm has such a wide range of results in direct
lighting, as seen in Figure 3.7. Some of its most accurate results are present as well as its most er-
roneous. Series H & I were both in direct lighting at the same distance, however Series I included
target intrinsic rotation. The same is true for Series J & K respectively. It seems that in both cases,
the addition of target intrinsic rotation caused higher RMSE values. It can be seen in Series L that
the performance of the Feature Matching algorithm was drastically improved for the scenario of target
intrinsic rotation and translation when the target was closer to the sensor suit. Series I & N have the
same intrinsic motion (far to near with rotation) but have different lighting conditions. Surprisingly, Se-
ries N performed better in the dark than Series I in direct light. The same can be said for Series L & P,
though not as drastic.

As it was mentioned before, the Feature Matching algorithm is incredibly sensitive to a wide array of
interdependent tuning parameters. From experience, it can be said that the tuning of both the feature
detection and matching parameters is somewhat of a dark art, in that it takes a great amount of under-
standing and patience to tune the algorithm correctly to not retrieve ridiculous results, detecting and
matching features that have no place in a legitimate result. Because of this, it can not be ruled out that
the parameters were not optimized to the fullest for each scenario and measurement, even after so
many attempts. This leads to an outstanding question regarding the potential performance enhance-
ment offered by the implementation of an automated parameter optimization step. This is an active
area of research in the field of computer vision, and techniques range from evolutionary algorithms to
deep learning methods. This topic is diverse and complex, and an academic textbook on the matter
can be found in the following source: [58]. The possibility is intriguing.

One of the most visually striking experiments is that of Series M during the Eggman experiments, shown
below in Figure 3.10. In this scenario, the target (Delfi-n3xt) is close, in high resolution and feature-rich.
This scenario is unsurprisingly one of the more ideal scenarios for the Feature Matching algorithm,
though Series H and Series J are also quite accurate with a far-to-near detection scenario.
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Figure 3.10: Ideal feature detection scenario in Series M

Computer vision is a vast and fast-moving river of possibilities and potential. The anisotropic filtering,
bilateral filtering, and eventually implemented histogram equalization were researched as solely an ap-
plication for the worst case scenario of Boxsat D, E, & F, in which the target is all but hidden due to
the strong background IR source. Upon implementation of the cropping and histogram equalization
detailed in Section 2.1.4, it seems that these techniques actually helped to turn these worst case sce-
nario experiments into one of the more accurate estimations. These methods transformed the images
into something very different visually, but yet the features were maintained and distinct. This distinct
enhancement was consistent throughout the frames and led to a surprisingly low and consistent RMSE.

In ICP algorithms, the addition of color information into the equation is a relatively new concept without a
wealth of prior knowledge indicating its utility in scenarios in which the color range is subtle. Regarding
the Boxsat D, E & F experiments, which were designed to represent an extreme and difficult scenario,
the Color-ICP algorithmmade no use of image processing processing tools such as histogram equaliza-
tion, as was the case in the Feature Matching algorithm, to accentuate the target from the background.
However this appears to not be necessary. When looking at the Boxsat experiment results in Figure
3.3, Boxsat D, E & F all have better accuracy compared to Boxsat A, B &C. One idea is that the neutral-
ization of the color variance experienced in the first three Boxsat experiments assisted in the Color-ICP
registration. One can imagine that the motion of the target in direct light would create inconsistent
heating and therefore color between observation frames. However, it is interesting that the strong IR
source shines onto the target, albeit its backside, during the final three Boxsat experiments leading to
an inconsistent color between frames. This is, of course, to a much lesser extent compared to direct
lighting scenarios. An example of this subtle inconsistency can be seen below in Figure 3.11.
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Figure 3.11: Minimal color variation between point clouds assisting in Color-ICP registration during Boxsat E

Other than the harsh IR background scenario, the occlusion scenario delivered the most consistent
point color between frames. As the targets were left in the dark for a considerable time before the occlu-
sion experiments were performed, the targets remained at ambient room temperature throughout each
experiment, giving a consistent (or minimally variant) color value between frames. One addendum to
this statement is that the sensor could occasionally change RGB temperature ranges between frames
due to the FLIR camera’s fidgety automatic scaling during instances of small temperature ranges in a
scene. Figure 3.12 below shows an example of this. Please note that this was generally a very rare
occurrence and would be immediately rectified when observed. Another exception, which happened
more often, is in the case that IR radiation from elsewhere in the laboratory is reflected by the surface
of Delfi-n3Xt. This is an unfortunate reality of environmental testing limits in experiments. As it was
mentioned before, the Livox and computers for data gathering all run hot, with summer sunshine caus-
ing the dark laboratory curtains to be warm in addition to the author’s own body heat.

Figure 3.12: An example of the FLIR camera unexpectedly changing temperature scales between frames during an occlusion
scenario. Reflected radiation can also be seen.
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In terms of target intrinsic motion, the addition of rotation to translation resulted in a comparatively
higher RMSE for the ICP algorithm. This is not unexpected as it results in a more complicated regis-
tration scenario. As it was discussed in Section 2.1.3, the inlier ratio becomes particularly when when
intrinsic rotation is present, as surfaces visible in one frame disappear in the next. Comparing Series
K & L and J & M shows that a smaller distance to the target also improved performance.

ICP algorithms work by iteratively minimizing the differences between points, with the Generalized
Color-ICP presented here considering the location, surface normals and color of both point clouds
involved in the registration. The addition of color, relating to the fused IR-LiDAR points, could initially
be seen as a boon for the registration process in that it considers an extra variable to assist in the
registration process. However, it is in fact the occlusion experiments (Series N, O, P, Boxsat C) that
have a lower RMSE compared to the experiments exposed to, and being heated by, direct light. This
confirmed an initial suspicion that a change in pose would lead to time-variant heating and cooling
of the target that could be a detriment to the color registration ICP metric. One frame can contain a
surface-point heated in direct light, while the second frame could see that same surface-point being
cooled in the shadow. Therefore it seems that the experiments in occlusion and with harsh background
IR radiation benefit the algorithm slightly due to their consistent or low color variance between frames.
This can be examined more deeply through a review of the L*a*b* color space.

L*a*b* Color Space and the Visual Spectrum
If the Color-ICP algorithm instead used a visible-spectrum camera, would it also suffer from this change
of light incidence? It can be reasoned that the color registration with these sensors would suffer from
the same fate, as the RGB values of a target in the visible spectrum would also change due to changes
in light incidence between frames. A surface in sunlight transitioning into shade will have a different
RGB color value between the two observations. However to better understand how this actually affects
the registration, a deeper look into MATLAB’s Generalized Color-ICP method is required. Based on
the original research that MATLAB’s function is based on, this method does not register a point’s RGB
value. It instead converts pixels from the RGB color space to the L*a*b* color space, and uses these
L*a*b* values as its color metric during registration.

The L*a*b* color space (also known as CIELAB) was introduced in 1976 by the International Com-
mission on Illumination (CIE in French) with L* being Lightness, and a* and b* being red-green and
yellow-blue color-opponent dimensions respectively. The RGB color space is not well suited for de-
scribing differences in colors as it is not perceptually uniform, meaning that the Euclidean distance
between two RGB colors is not proportional to the perceived distance. The L*a*b* color space is more
appropriate to describe color distances as it has more perceptual uniformity and can better describe
high illumination variability.[25]
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Figure 3.13: The L*a*b* color space. Recreated from [25]

As previously discussed, Generalized-ICP algorithms strive to minimize the Euclidean distance be-
tween point locations, normals and, with the Color-ICP method, color as well. The L*a*b* is well suited
for the color component as it better represents the Euclidean distance to be minimized during the regis-
tration. As mentioned above, the L*a*b* strives to be perceptually uniform, meaning that it represents
color in a way that corresponds more closely to human vision. Thinking again about the change in light
incidence of the surface of the target as it rotates and translates, this change would affect the Lightness
(L*) component in particular as the incidence and intensity of light on a target changes with time. With
this rationalization, the L* component in the visual spectrum would be affected as well and the color
registration would again be detrimental to the accuracy of the registration in direct lighting as opposed
to occlusion.

The unique nature and differences between color spaces makes this an interesting aspect of the Color-
ICP algorithm. For use in a real ADR mission, it would be useful to think about how the color of a
target changes in different color spaces in both the visual and infrared spectra, and what each color
space can do to ensure a light agnostic value. Based on the discussion of the L*a*b* space, it would be
interesting to create a Color-ICP algorithm that uses only the a*b* elements, eliminating the Lightness
component that varies so much with light incidence and intensity. Figure 3.14 below shows the same
IR image of Delfi-n3Xt plotted in four different color spaces.
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(a) Image color values plotted in different color spaces

(b) Image color values in the L*a*b* color space

Figure 3.14: Delfi-n3xt in direct light shown in different MATLAB color spaces
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3.3.2. Accuracy & RMSE Comparison

Figure 3.15: RMSE for Color-ICP algorithm and Feature Matching Algorithm together

A quick look at Figure 3.15 shows the drastic outlier that is the translation matrix RMSE of the Feature
Matching algorithm. The rotation matrix of this algorithm is more erroneous compared to the Color-ICP
algorithm as well, but not as drastic. The Color-ICP algorithm seems to be much more accurate by a
large margin. The temperamental nature of the Feature Matching algorithm was discussed above, but
so were the inaccuracies of the color registration.

The translation component of the results appears to be somewhat of an Achilles’s heal for the Color-
ICP algorithm as well, with error results that are higher than that of rotation, though much lower in
comparison to the Feature Matching algorithm. Remember that this is in the world coordinate frame
of reference. Rotation seems to be a metric that is universally more accurate compared to translation,
with the Color-ICP algorithm performing incredibly well across the range of experiments.

Both algorithms saw an increased RMSE in scenarios of target intrinsic translation and rotation com-
pared to their translation-only counterparts. As it was discussed above, this causes the ICP algorithm
to rely more on an accurate definition of inliers, while it decreases the overall usable features in the
Feature Algorithm and makes matching more difficult with this change in perspective.

For the Feature Matching algorithm, recall that it is dependent on having a high LiDAR point density on
the target. The results of experiments reinforces this, with the RMSE of lateral translation experiments
being higher than their far to near counterparts. While the target ventured to less point-dense areas
during the lateral experiments, the far to near experiments saw the target remain in the point clouds
dense center, which continued to get denser as it grew near.

These results are based on the estimated transforms from each algorithm compared with the control
transformation based on the intrinsic motion of the target recorded during the experiments. However,
due to imperfect experimental controls, small errors can creep in. More on this in Section 3.3.3 below.
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3.3.3. Further Potential Sources of Error
As this was a hardware V&V experiment involving bespoke algorithms, there are many real-world and
formulaic sources of error to be considered. Throughout the discussion of the results, various error
sources have already been examined, however the possibilities have not yet been exhausted and in-
clude possibilities that were not anticipated prior to the conclusion of the development process.

The above sections showed that the Feature Matching algorithm was consistently less accurate com-
pared to the Color-ICP algorithm. One reason for this can be explained in the way in which the 3D point
clouds were ultimately used in each algorithm. The Color-ICP algorithm denoised and downsampled
its point clouds, effectively minimizing the intrinsic error in the LiDAR sensor to create uniform and co-
herent shapes, and would register parameters including surface-normals and color.

The Feature Matching algorithm, on the other hand, needed as many LiDAR points as possible to blan-
ket the image pixels in imPts so that the features detected in the image could have a 3D location in the
world coordinates. In this algorithm, there is no denoising or voxelization, as any reduction in the point
cloud count could result in the missed opportunity to register a strong and accurate feature. Therefore,
the noise and inaccuracies of the LiDAR persist throughout the algorithm, leading to more inaccurate
results compared to the Color-ICP algorithm.

One idea to fix this problem is to implement a shape-based interpolation filter. It is possible to detect
various shapes in point clouds such as planes and (semi-)cylinders. It would be interesting to detect
the planar faces in the point clouds of both Delfi-n3Xt and Boxsat, replace points within that plane with
a dense and flat section of points based on the surface normals and colors of their neighbors, and have
that new dense point cloud for use in the Feature Matching algorithm. This would guarantee that more
features have an associated LiDAR point in addition to cleaning the point cloud as voxelization did for
the Color-ICP algorithm.

A separate potential source of error has to do with errors in the experimental setup. Figure 3.16 and
Figure 3.17 on the following page show examples of inaccurate and accurate control transformations
respectively. An accurate control transfer is based on the intrinsic transformation recorded during the
experiment. The experiment was done as accurately as possible, with measurements for target intrinsic
rotation and translation being recorded for every frame. However, as it is the real world, errors can creep
in, as shown in Figure 3.16. These errors were often small, but not insignificant. This is not a case of
cascading error, as the transformation only relates the current fixed and moving point clouds in each
frame without any further time history, so the error form this source should remain relatively constant
as there was no point in the experiment when a drastic translation or or rotation error was recorded.
An explanation for the Series experiments could be the wheels of the Robotnik rover. They are able
to go forwards and backwards as well as laterally, however the wheel design that makes this possible
seems to allow for periodic motion in an unintended direction.
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Figure 3.16: Two offset control transforms due to inaccuracies in the experiment

Figure 3.17: Examples of well estimated control transforms due to accurate experimental configurations
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3.3.4. Limitations, Real-World Examples & Use Case
Now that the methods and results have been discussed, it is possible to draw some some conclusions
on the limitations of each algorithm, while also discussing a relevant real-world mission before a use
case for these methods is postulated.

Limitations
The Color-ICP has performed very well during the experiments. Its main struggles stem from back-
ground interference, such as close proximity to a non-reflective background, noise induced from the
LiDAR sensor, and variance in color from a moving target with respect to a heat source. With all these
things in consideration, the Color-ICP algorithm still drastically outperforms the Feature Matching algo-
rithm. A question still remains about this particular LiDAR sensor’s ability to sense small and distant
objects. The Livox Mid-70 necessitated the use of stop-motion photography, which is a luxury that can-
not be afforded to real-life orbital applications. It also has an unfortunate habit of curving it’s photons
around corners and edges, and registering points in empty space as well as interpolating points be-
tween planes with similar x-axis values. If this particular LiDAR sensor was to be considered for in-situ
pose estimation, it would be inadvisable. A real time sensing, and hopefully more accurate, LiDAR with
a consistent pattern and point density would be much more appropriate.

The FLIR IR sensor was high quality but was still susceptible to sensor noise in indoor occlusion includ-
ing the adverse vertical striration effect in this particular lighting. The strong IR background radiation
source was implemented to challenge the IR sensor, but CV and image enhancing techniques proved
to be, in some cases, more accurate than with the utilization of raw data. Overall this sensor preformed
well under a wide range of conditions, and it has proven that many of the negative assumptions about
the IR sensor’s suitability for CV and pose estimation tasks can be laid to rest.

Considering specifically the instruments used in this research, the Livox LiDAR’s error caused few prob-
lems for the Color-ICP algorithm due to the denoise and downsampling steps. However the Feature
Matching algorithm could not afford to incorporate these steps, as it is dependant on having as many
imPts as possible. This intrinsic sensor error was compounded by the algorithm’s extreme sensitivity
to tuning parameters and led ultimately to a less accurate pose estimation method, albeit a promising
one with intriguing possibilities for improvement.

It is also noticeable in every point cloud recorded of the Delfi-n3xt that the antennae are missing. The
antennae are essentially small-diameter rods, too small for the LiDAR to accurately detect it seems,
with the NIR photons registering the pattern of the antenna as lumps on the wall of the background,
which was in some scenarios more than 4 meters away from the target. Based on the consistency of
this effect, it can be reasoned that without the wall behind the target, the photons influenced by the
antennae would continue on without reflecting back to the sensor.

This leads to an interesting thought experiment about the Livox’s effective range. The product spec-
ifications state that it has a detection range of up to 260 meters, achievable only if the target has a
reflectivity of at least 80%.[53] Recall the discussion in Section 2.2.1 of the Livox’s unique scanning
pattern and point density. The laser emits an ever expanding cone leading to less dense coverage per
square meter as distance from the sensor and cone-center increases. Once again, this would be disas-
trous for the Feature Matching algorithm as it depends on having the densest LiDAR coverage possible.

All of these things will be taken into consideration to formulate a potential use case for the LiDAR-IR
combination after the following Section, in which an interesting RPO mission will be discussed.

Empirical Relevance Supporting These Findings
Laboratory size constraints and terrestrial testing limitations led to the experiments being downsized
compared to the large distances and clear lines-of-sight found in a real ADR scenario. However, the
results from these experiments can be extrapolated to larger distances, with additional data from two
real RPO spacecraft providing empirical evidence to support these deductions. As mentioned before in
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Section 1.2.2 discussing past missions implementing electro-optical sensors for non-Earth observation,
the Northrop Grumman MEV-1 & MEV-2 missions successfully used visual cameras, LWIR cameras
and a scanning LiDAR to approach and attach to separate known cooperative targets in GEO. The
LWIR camera used by the MEV spacecraft is the Malin Space Science Systems ECAM-IR3A utilizing
an uncooled microbolometer with a resolution of 640x480 pixels and a 17µm pitch.[44][51] The FLIR
A655sc used in this research also utilizes an uncooled microbolometer with a resolution of 640x480 pix-
els and a 17µm pitch,[54] leading to a convenient comparison of the experimental data with real-world
data. The main difference is that the MEV used four of these LWIR cameras, two narrow-FOV and two
wide-FOV, to provide resolution at a variety of ranges, while the FLIR camera available had a fixed FOV.

Northrop Grumman states that the narrow-FOV LWIR cameras could detect and track their client target
at a range in excess of 10km, with the target fully resolved (though quite pixelated) at a range of 3.2km,
with the wide-FOV LWIR cameras transitioning for optimal performance within 15m.[44] Figure 3.18
shows LWIR images from the MEV-2 mission demonstrating the resolution of the target at progressively
smaller distances.

(a) Narrow-FOV image of target at 3.2 km
distance

(b) Narrow-FOV image of target at 160 m
distance

(c)Wide-FOV image of target at 4
m distance

Figure 3.18: Intelsat 10-02 GEO target imaged by MEV-2 with its ECAM-IR3A narrow and wide FOV LWIR cameras[44]

As in this research, the MEV also used a scanning LiDAR for remote sensing of its target, however the
target was known and cooperative with a 3D model provided to the chaser beforehand as a reference
with which tomatch points. The Jena-Optronik RVS3000-3D (pictured earlier in this document as Figure
1.5) was used for this purpose and was able to track the target at a distance in excess of 2km.[44] Figure
3.19 below shows data collected during the mission, and though it is not explicitly stated, the scanning
pattern shows neatly ordered lines consistent with line-scanning technology. This is a key difference
to the experiment as the Mid-70, as discussed in Section 2.2.1, used the more complicated and non-
uniform non-repetitive ”flower petal” scanning pattern. As in the experiment, point density from the MEV
data increases as distance to target decreases, and sensor noise and false returns occur in the raw
data. Another aspect of note in this data is the gaps in points recorded mid-length in the solar panels.
The author of the source document does not give an explanation for this omission, but it is consistent
with the experience of this research’s experiments and is instantly recognizable.
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(a) Scan at 2000m distance (b) Scan at 220m distance (c) Scan at 7m distance

Figure 3.19: Intelsat 10-02 GEO target scanned by MEV-2 at various distances[44]. The scanning pattern shown seems
consistent with line-scanning.

This Section further demonstrates the relevance of the experiment developed by referencing real-world
mission data from similar sensors, and allows for a more realistic postulation of a potential use case.

Theorized Use Case
The IR sensor worked well sensing up to 5 meters distance in the experiments due to laboratory size
constraints, however it has been shown in the MEV missions that a LWIR camera with the same reso-
lution is able to detect and track GEO communications satellites at a range in excess of 10km, and fully
resolve the target at 3km. At these distances, the IR sensor’s individual pixels would encompass more
of the target’s area than tested in the experiment. For the Color-ICP algorithm, this would mean that
the color of the target’s details would not be able to aid as much in the estimation of the transformation.
For the Feature Matching algorithm, long distances would render the target as an nondescript blur, with
features becoming more and more difficult to discern at greater distances. However even this blur has
utility for object detection in the beginning of the pose estimation process.

It was noted early on that the Livox LiDAR does not preform well in distances closer than 2 meters.
Conversely, the FLIR sensor seems to only improve the closer the target gets, though there is a limit
based on the size of the target and the FLIR’s FOV.

Occlusion in a space setting would be positive for the Color-ICP algorithm, and the harsh background
IR source as positive for both algorithms through the use of CV and image processing techniques to
create a more defined target separated from its background.

It is for these reasons that the following use case in an ADR mission targeting an unknown uncooper-
ative target is postulated:

10km-2km: IR camera detects and tracks the blurry object, beginning to resolve strong features
such as corners as distance decreases.
2km-300m: LiDAR begins to scan the target while the IR continues to image the target. At this
point the fused Color-ICP algorithm can be used with the IR aiding in registration by providing
large surface area pixel color values.
300m-100m: Begin gathering more accurate data as IR details become clearer and points are
more densely populated. Color-ICP continues while the Feature Matching algorithm starts to
provide accurate feature details.
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100m-2m: Details are sharp and points are dense in this range allowing both sensors to retrieve
the most accurate data. Both algorithm are working in unison.
<2m: Very close range Feature Matching with scale provided by LiDAR data time-history. Feature
Matching with IR camera only, with the LiDAR previously providing transformations from pixels to
world coordinate values without the need for new LiDAR points.

An advantage of this combination is that it works in a wide range of lighting scenarios, which cannot be
said about visual camera methods. It can be used during occlusion, direct sunlight and in cases when
the sun, Earth or moon are in the view-frame.



4
Conclusion

In this final main chapter of the research, the research questions postulated in Section 1.1.2 will be
answered in Section 4.1 with the knowledge and experience gained during the duration of this work.
After this, some resulting conclusions and reflections will be discussed in Section 4.2 before a few final
recommendations for further research will be outlined in Section 4.3.

4.1. Research Questions Revisited
With the research nearing its end, the research questions formulated at the end of the preceding Litera-
ture Study phase can be reexamined and answered in a more succinct way as a result of the previous
Chapters in this document. Sub-questions will reference the particular Section of relevance within this
document to ease navigation.

RQ-1 What algorithm best suits the fusion and pose estimation goals?

• For the fusion of LiDAR and IR data, the ICP plane-to-plane with color retrieved accurate
pose estimations consistently throughout each experiment. For the use case in which visual
cameras would not be able to operate, the Color-ICP algorithm performs even better than in
the direct lighting case, as the colors remain more consistent throughout the frames.

• The Feature Matching algorithm has some very promising aspects, but its use is limited to
medium to close range to the target based on sensor resolution. There is a very-close range
scenario in which the Feature Matching algorithm would work when the Color-ICP would not.

a. At what point should the data fusion take place?

The fusion should take place after some initial preprocessing of both the point clouds and
IR images, followed by feature-based fine-tuning. IR images must first be undistorted,
and in the case of the FLIR camera, cropped to remove the temperature scale and FLIR
watermark. The point cloud was segmented beforehand, however this could also take
place after the fusion. After this initial step, points and pixels can be related by detecting
features in both datasets and estimating a transformation relating the two. Further fine
tuning using Procrustes analysis leads to a more accurate relation, and therefore, fusion.
It is with this final transformation that the datasets are fused. The fusion of raw data
would lead to inaccuracies due to image distortion, and the feature alignment helps to
insure that important reference points are properly aligned. As the ADR environment
is spacious, there is no need to first identify or categorize objects in the scene before
the fusion can take place. Section 1.2.4 introduced various fusion architectures while
Section 2.1.1 detailed how this research question was answered.

b. How can the fusion be calibrated?

The MATLAB LiDAR-Camera calibration app is highly inaccurate and erratic, as are the
fusion functions it provides. Instead, calibration was done by matching corner pairs in

75
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point clouds and images. Procrustes analysis and a geometric transform estimation
provided the fine-tuned transformations to relate the image pixels to LiDAR points, and
LiDAR points to image pixels. This process is described in Section 2.1.1.

c. What computer vision tasks can aid the process?

Histogram equalization and pixel value cropping were essential for detecting the target
in harsh background IR lighting conditions. Anisotropic filtering and bilateral filtering
showed promise in reducing vertical stiration in occlusion scenarios, but the effect on
pose estimation was minimal. The most important CV tools for the research found use
as an integral part of the second algorithm developed, which was feature detection and
matching. Namely BRISK parameters were observed to be the most reliable for rotation.
Section 2.1.4 describes the development of the FeatureMatching algorithm and includes
discussions on all of these CV tools.

d. How will the pose be estimated?

Pose was estimated by use of 3D transformation matrices. These matrices describe
the initial orientation and position of the target in relation to the chaser, as well as its
change in position and orientation over time. A firm understanding of the relationship
between the world coordinates and target intrinsic coordinates is essential for estimat-
ing accurate parameters. The transformation found can be easily converted between
coordinate systems to describe target pose as seen from the chaser and target intrinsic
pose, hence relative pose. This method of observation over time retrieves the full 12
DOF relative pose. Essential to the undertaking of this research, the theory behind this
pose representation was given in Section 1.2.5 while Sections 2.1.3 and 2.1.4 provided
the transformations as they apply to the Color-ICP and Feature Matching algorithms
respectively.

RQ-2 How does the method developed perform?

• The Color-ICP algorithm performed very well through a wide range of scenarios. The most
accurate Color-ICP estimations were done in occlusion and harsh lighting conditions due
to the consistent color of the target between frames. The Feature Matching algorithm was
less accurate, though the accuracy was improved with the assistance of image processing
techniques. For both algorithms, target intrinsic rotation led to less accurate results.

a. How accurate is the pose estimation?

Series K was the most difficult scenario for both algorithms. This involved both intrin-
sic lateral translation and rotation at a greater distance and included target observa-
tion angles in which the point clouds were very messy. The Color-ICP algorithm in
general was very accurate, with its most accurate estimation being medium range
targets and generally preferring large planar surfaces such as that of the Boxsat. The
Feature Matching algorithm saw varying success in terms of accuracy. Its highest
accuracy was in direct lighting scenarios with rich features and head-on translation-
only motion present, though its accuracy was improved in the harsh lighting scenario
with the assistance of image processing techniques. Sections 3.1 and 3.2 display
the results for each of the two algorithms while Section 3.3.2 discusses their accu-
racy.

b. How can an experiment be designed to test the algorithm?

An experiment was designed with two target objects to be observed, Delfi-n3xt and
Boxsat. These range in size and geometry and both are able to rotate by a precise
amount, with the Boxsat also capable of multi-axis rotation. A calibration target, a
chessboard, can be used for the calibration of the IR sensors intrinsic parameters
as well as the extrinsic parameters between the IR and LiDAR sensors. The targets
were translated a precise amount at varying distances with the assistance of the
Robotnik rover. Varying scenarios were designed to capture instances of motion
including rotation, translation, and a combination of the two. Lighting was provided
by a powerful spotlight providing scenarios of direct sunlight on the target, and it
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was also used in combination with a terrace heater in the scenario of a strong IR
source present in the field of view. The targets also preformed a range of motion
in darkness at ambient temperature, the so-called occlusion scenario. The design,
development and reasoning for this experiment setup can be found in Section 2.2.

c. What are the limitations of the LiDAR and thermal infrared sensors?

The LiDAR sensor can be noisy, especially at very close distances as well as in-
stances of unfavorable target observation angles. As a scanning LiDAR was used,
the experiment had to be designed around stop-motion movement, allowing the tar-
get to stay still while being scanned. This particular LiDAR also has a unique scan-
ning pattern that provides a higher point density on a target at the center of its FOV,
disadvantaging scenarios in which the target is on either edge of the FOV. The FLIR
camera experienced striration in instances of occlusion due to the small range of
temperatures present in the scene. Harsh IR lighting conditions were challenging
for the sensor, though this was overcome with image processing. The FLIR also has
relatively low resolution compared to a visual-spectrum camera, therefore it has a
range limitation in which features will become less than the size of a pixel, however
the MEV missions show that this resolution is more than acceptable for in-orbit use
at kilometers distance. The Robotnik robot proved to be very useful, but its unique
wheels were susceptible to unwanted translations affecting overall performance. A
discussion on the inherent characteristics and limitations of the sensors can be found
in Section 2.2.1, with their limitations in conjunction with the algorithms discussed in
Section 3.3.4.

d. What scenario is this method best suited for?

The sensors and algorithms are best used in a scenario in which they can be used
together. The advantage is their ability to see in complete darkness, so it would
be invariant to periodic occlusion. In this use case, the IR camera would detect
the target at 10km distance and begin tracking its motion. At ranges between 2km
and 300m, the LiDAR begins to scan the target performs initial pose estimations
with the Color-ICP algorithm aided by the color provided by the IR camera’s large
surface area pixels. The range between 300m and 100m would see both the algo-
rithms being used as details become sharper and points denser, with the Color-ICP
derived transformations being used as a starting point for the Feature Matching al-
gorithm. As the target closes within 100m, both algorithms supplement each other
and achieve their most accurate estimations. Closer than 2m, the LiDAR would no
longer be reliable, and would necessitate an IR-only pose estimation in which target
scale would have already been determined during the previous phases. This use
case is formulated in greater detail at the end of Section 3.3.4.

e. What are the advantages and disadvantages of the method?

The Color-ICP algorithm is very robust against all lighting conditions and is very
accurate due to the denoising and voxelization steps implemented to negate LiDAR
sensor errors. However very small objects (such as the Delfi-n3Xt antennae) are
not detected in this method. Fusion assists in estimation during occlusion and harsh
lighting conditions, but can be a detriment to direct lighting scenarios involving target
temperature instability. The Feature Matching algorithm can be assisted by a wide
range of CV and image processing techniques and is highly tunable, however this
tunability can be a double-edged sword. The user can also specifically choose what
feature detection methods to use based on the specific use case. This algorithm
requires as many imPts as possible which means that the LiDAR data cannot afford
to be voxalized to negate sensor error. Overall the Feature Matching algorithm is
less accurate compared to the Color-ICP algorithm and could benefit greatly from
automated tuning. Section 3.3 discusses these aspects in great detail and is the
result of the research presented herein in general.
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4.2. Conclusions Summarized
In general, the Color-ICP algorithm was extremely accurate, more so than the Feature Matching al-
gorithm. However the fusion in the Color-ICP algorithm served as a detriment to the estimation in
scenarios of target rotation in direct lighting, as areas would heat up or cool down between frames,
making the inclusion of color detrimental. As it was discussed, it can be reasoned that visual spectrum
images would suffer the same fate due to its sensitivity to lighting in the L*a*b* color space. However
the Color-ICP algorithm excelled in other cases, and some inaccuracy can be put down to experimental
error due to inaccuracies in the experimental setup.

The Feature Matching algorithm makes much more use of the fusion and relies heavily on the perfor-
mance of the IR sensor. It requires asmany LiDAR points as possible, ideally covering each pixel, which
would make the downsampling of the point cloud detrimental to imPt-pixel matching. It is highly tun-
able, which can also be a detriment as it is very sensitive to multiple interlinked detection and matching
parameters, however this also allows for tuning in very specific use cases and makes it highly versa-
tile for a wide range of targets, including non-rigid targets which the Color-ICP algorithm is not able
to estimate. In general, the Feature Matching algorithm shows a lot of promise and deserves to be
researched further for this application and others.

This sensor pairing is able to operate in total darkness as well as in direct sunlight and with background
IR interference. It is robust to objects of no interest in the scene and has been shown to be a promising
option for unknown uncooperative target pose estimation. The methods developed herein serve as an
important stepping stone for further research. The pairing of LiDAR and LWIR sensors has too often
been overlooked in pose estimation research, which this body of work proves to be a grave misjudge-
ment. The advancement of this study has a clear path, with experimental and algorithmic improvement
recommendations made clear throughout this document.

The methods developed herein show promise in applications with unknown uncooperative targets and
should be considered as one potential option for implementation. As it has previously been postulated
in this research, the problem of space debris requires a diverse set of solutions. No one single method-
ology will be appropriate for all targets. It is in this vein that this research can be applied, as one step
towards one of many interesting ways to approach orbital debris.
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4.3. Recommendations
From the results, conclusions and overall experience during this research, the following points are rec-
ommended for further study and consideration:

• Both the Color-ICP and the Feature Matching algorithms should be tested in a much larger envi-
ronment.

Great data and results were retrieved from the experiments presented in this document.
However one burning question remains: at what distances do each algorithms fail with these
sensors? Of course the minimum distance is known due to the Livox’s very close range
inaccuracies and the IR sensor’s field of view, but the other extreme would be interesting
to know. Due to laboratory space constraints, this could not be explored in this research,
though the experience of the MEV missions made it possible to briefly explore and discuss
with real mission data.

• TUDelft Aerospace faculty should consider creating an open-sourceRPOpose estimation dataset.

Open-source tools and information were incredibly important resources for this research.
Open-source datasets are used widely in academia and for general interest hobbyists, such
as the renowned KITTI dataset for LiDAR-Camera fusion in autonomous cars[15], and help
to advance the field without having to collect new data individually. A TU Delft RPO dataset
would be a great resource to advance the field and to spread the name and reputation of the
university.

• The Feature Matching algorithm would benefit from optimized and automated tuning parameters.

The tuning of the feature detection and feature matching parameters is easily the most time-
intensive process of the two algorithms developed. A real space-borne application of this
research would need to be autonomous and have a method of tuning these parameters to
detect strong features and reject bad matches. The development of autonomous tuning
optimization is highly recommended to continue this research.

• A rail-based target translation system would be a more accurate experimental setup.

The Robotnik rover allowed for great mobility, however a rail-based translation system would
allow for more precision in a single axis of motion.

• Consider a custom IR stereovision, or IR-Visual stereovision system.

This would be a very interesting prospect, as stereovision allows for depth estimation with
only 2D images and a IR-Visual combination could provide higher image resolutions with the
possibility of IR pixel interpolation based on the higher resolution visual image. It is strongly
limited by its baseline distance, though, and would only be suitable for close range use.

• Consider developing a new custom Generalized Color-ICP algorithm in an other color space that
is more robust to changes in light incidence.

As it was discussed in the L*a*b* subsection of Section 3.3.1, the Color-ICP algorithm was
affected by changes in light incidence corresponding to the L* (lightness) component in this
color space, which is designed to be perceptually uniform. For the application to an orbital
target-chaser scenario, it would be worthwhile to see how color registration can be made to
be more robust to the changes in color expected of a target point in time-variant illumination.
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A
Source Code

Though the initial research and forays into pose estimation were done in C++, Python and MATLAB,
the final form of both the ICP and Feature Matching algorithms were solely coded in MATLAB. The
development of both algorithms is detailed in Sections 2.1.3 & 2.1.4 respectively. The full scrips
for both algorithms, as well as the calibration algorithm, is located in the following GitHub repository:
https://github.com/ConorCreagh/Pose_ICP-FeatureMatching

MATLAB 2023b is the minimum required version to run this code (with the color-ICP metric being
introduced in this version), and the following packages are required:

• LiDAR Toolbox
• Computer Vision Toolbox
• Image Processing Toolbox
• Statistics and Machine Learning Toolbox
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B
V&V Experiments

Experiment Target Lighting Target
Intrinsic
Motion

Start-End
X Distance

(m)

Start-End
Y Distance

(m)

Number of
Frames
Recorded

Series H Delfi-n3Xt Direct Translation
far-near

5.0-3.0 0-0 21

Series I Delfi-n3Xt Direct Translation
far-near &
rotation

5.0-3.0 0-0 21

Series J Delfi-n3Xt Direct Translation
left-right

5.0-5.0 -0.8-0.8 17

Series K Delfi-n3Xt Direct Translation
left-right &
rotation

5.0-5.0 -0.8-0.8 17

Series L Delfi-n3Xt Direct Closer
translation
left-right &
rotation

3.0-3.0 0.5-(-0.6) 12

Series M Delfi-n3Xt Direct Closer
translation
left-right

3.0-3.0 0.5-(-0.6) 12

Series N Delfi-n3Xt Occlusion Translation
far-near &
rotation

5.0-2.5 0-0 26

Series O Delfi-n3Xt Occlusion Rotation 2.5-2.5 0-0 18
Series P Delfi-n3Xt Occlusion Closer

translation
left-right &
rotation

3.0-3.0 0.5-(-0.6) 12

Boxsat A Boxsat Direct Rotation
(Longitudi-
nal Axis)

4.5-4.5 0-0 18

Boxsat B Boxsat Direct Rotation
(Off-axis)

4.5-4.5 0-0 12

Boxsat C Boxsat Occlusion Rotation
(Longitudi-
nal Axis)

4.5-4.5 0-0 18

Boxsat D Boxsat Spotlight
in-scene @

50%

Translation
left-right

4.5-4.5 -0.3-0.5 9

Boxsat E Boxsat Spotlight
in-scene @

100%

Translation
left-right

4.5-4.5 -0.3-0.5 9

Boxsat F Boxsat IR Heater
in-scene
@100%

Translation
left-right

4.5-4.5 -0.3-0.5 9
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