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Abstract
Human Pose Estimation using Millimeter Wave
radars has emerged as a promising alternative to
traditional camera-based systems, addressing
privacy and deployment constraints. While
state-of-the-art Deep Learning models
predominantly focus on spatial feature extraction
to determine the positions of key points in the
human body, this research investigates the effects
of incorporating temporal dynamics in such
models. It focuses of modifying an existing
state-of-the-art spatial model to account for
temporal dynamics and compares the performance
of the two models. Long Short-Term Memory
networks are used to capture temporal
dependencies between frames of point clouds
which significantly boosts the precision of key
point detection. The proposed temporal model
demonstrates a 53% reduction in Mean Absolute
Error and a 45% reduction in Root Mean Squared
Error compared to state-of-the-art model.
Moreover, these improvements were achieved with
a less complex model architecture and similar
training times. The robustness of the model was
further validated on a different dataset, showcasing
its potential for broad application in fields such as
healthcare, sports analysis, traffic monitoring and
robotics. This study underscores the efficacy of
temporal dynamics in pose estimation, and
showcases the advantages of accounting for
temporal dependencies when evaluating more
complex movements.

1 Introduction
Human Pose Estimation (HPE) refers to algorithms that
determine the spatial positions of key points in the human
body and using these points to reconstruct the digital
skeleton of the person being analyzed. The applications of
such algorithms are extended across a diverse range of fields,
including healthcare, for monitoring patients posture during
rehabilitation exercises, gesture recognition, sports analysis,
robotics, military applications and traffic monitoring systems
[1–5].

There are three main technologies that are used for human
pose estimation: Computer Vision (CV), Wearables and
Wireless sensing. Over the years, the number of cameras in
public places has been increasing, with uses from security
and surveillance, to entertainment. The presence of cameras
in public spaces is something that people are growing
increasingly wary about, and the European Union is taking
action to limit camera deployments in public spaces. This is
why Computer Vision systems, while effective, present
significant drawbacks such as privacy concerns, and
stringent deployment conditions regarding lighting and
placement [1].

The second commercially available solution are wearable
sensors, which pose an inconvenience to the users due to the

Figure 1: From left to right the figure shows the mmWave point
cloud representation and estimated pose for one frame [1].

necessity of regular charging, while also limiting the user’s
flexibility [6]. These wearable devices, or inertial sensors,
suffer from higher noise levels, making it more difficult to
accurately classify activities [1].

To address the drawbacks posed by current solutions,
wireless sensing systems are gaining popularity, particularly
systems using Millimeter Wave (mmWave), with
state-of-the-art systems performing on par with, if not
superior to, camera-based solutions. The benefit of using
these radar-based systems is that the data collected is in the
form of point clouds, from which personally identifiable
information cannot be retrieved [7]. Moreover, radar-based
systems also require less storage compared to a
camera-based solutions, because point clouds retain less
information compared to an image, as can be seen in
Figure 1.

State-of-the-art systems for Human Pose Estimation using
mmWave radars investigate either spatial dynamics or
temporal dynamics, but not the effect of extending a spatial
model by including temporal data. This paper aims to
contribute to the existing body of research by analyzing the
impact of incorporating temporal information into human
pose estimation models. Specifically, investigating how
accounting for the temporal domain influences the
performance and complexity of state-of-the-art spatial HPE
models. By addressing this aspect, this paper aims to provide
insights that can inform the development of more robust and
efficient human pose estimation systems.

This research builds upon an existing Human Pose
Estimation model, referred to as MARS: mmWave-based
Assistive Rehabilitation System1 [1]. This model was
proposed to assist in rehabilitation of patients with motor
disorders and provide feedback on their movement. The
model was extended in this research by incorporating Long
Short-Term Memory (LSTM) Networks to capture temporal
dynamics. This new temporal model was then trained and
compared with the MARS model, with the experimental
results demonstrating a significant overall reduction of the
localization errors. Importantly, this precision improvement
was achieved with negligible impact on computational
complexity.

1MARS model available at https://github.com/SizheAn/MARS

https://github.com/SizheAn/MARS


2 Related Research
Human Pose Estimation is the task that involves detecting
and predicting the spatial positions of key points, or
landmarks, in the human body from images, videos, or
sensor data. These key points typically include joints such as
the elbows, wrists, hips, knees, etc. and are used to
reconstruct the digital skeleton of the person being analyzed.

The evolution of Human Pose Estimation systems has
been marked by significant advancements in both hardware
and software technologies, leading to more accurate and
efficient methods. The success of deep learning in CV-based
HPE models is mainly due to the availability of big data,
superior representation capability of deep neural networks,
and high-performance hardware [9]. Comparing the
CV-based HPE solution seen in Figure 2 with the point cloud
data from Figure 1, the increased difficulty of performing
pose estimation from mmWave radar data becomes more
apparent.

For the purpose of this research, HPE models can be
divided in two main categories: spatial models and temporal
models. mmWave radar solutions for Human Pose
Estimation emerged with spatial models employing Deep
Learning techniques that predict 15 key points in the human
body with similar performance to camera-based solutions
[5, 10]. Following this, the MARS system introduced in
2021 further advanced the field by integrating more complex
algorithms and processing techniques, such as Convolutional
Neural Networks, and extending the number of key points
estimated to 19 [1]. At the same time, researchers started
publishing temporal models with comparable performance,
leveraging Recurrent Neural Network architectures, such as
LSTM or GRU, to capture temporal dynamics [3, 6, 11].
Because the architectures of these temporal models were
significantly different from those of the spatial models, the
impact of temporal dynamics is not immediately apparent.
Currently, research is being done into a third category of
HPE models, which is the so called Fusion Models that
employ a spatial and a temporal model, along with a

Figure 2: Human Pose Estimation using Computer Vision [8]

”fusion” between the two, resulting in more complex
architectures [12, 13].

The field of wireless sensing for human pose estimation is
relatively new, which means there are no major open-source
datasets widely used by researchers. This lack of
standardized datasets makes it difficult to compare existing
spatial and temporal models to establish the importance of
temporal data. The absence of benchmark datasets hampers
the ability to validate and replicate findings, highlighting the
need for collaborative efforts to develop and share
comprehensive datasets in this emerging field. Addressing
these challenges is essential for advancing the state of the art
in HPE and enabling more consistent and comparable
evaluations of different methodologies [7, 14].

As mentioned before, both spatial and temporal models
for HPE have been proposed by researchers with promising
results. Despite this a critical knowledge gap remains:
understanding the impact of temporal data on spatial models,
specifically, if LSTM can be used to enhance the
performance of existing spatial models by capturing
temporal dynamics. Temporal models, which incorporate
sequential data, have demonstrated the ability to enhance
model performance by capturing the dynamics of human
motion over time. However, the specific influence of
temporal data on the accuracy and computational complexity
of spatial HPE models has not been thoroughly investigated.
This research aims to fill this gap by analyzing how
incorporating temporal information, particularly through
LSTM networks, affects the performance and computational
complexity of a state-of-the-art spatial model.

3 Problem Statement
As mentioned before, this research aims to address the
following main question: How does incorporating Temporal
Dynamics in mmWave radar-based Human Pose Estimation
models impact the performance and complexity of the
model? To address this overarching question, the research is
guided by two sub-questions:

• How does the inclusion of temporal data enhance the
precision of HPE in comparison to models that do not
use temporal data?

• How does the complexity of HPE models change when
temporal data is incorporated?

By systematically investigating these sub-questions, the
research seeks to provide a comprehensive understanding of
the effectiveness of temporal dynamics in improving pose
estimation accuracy and the associated computational costs.

4 Methodology
This chapter outlines the approach taken to investigate the
impact of temporal dynamics on mmWave-radar based
Human Pose Estimation models. This study integrates
LSTM networks into an existing state-of-the-art model
which focuses solely on spatial feature extraction. By
leveraging temporal dependencies inherent in sequential
data, the modified model aims to achieve superior accuracy
in predicting the spatial positions of key points in the human



body. In the following sections the datasets used in this
research are introduced, followed by a description of the
MARS model, alongside the model performance that forms
the baseline for the comparisons in section 6.

4.1 Datasets
mmWave radars collect data in the form of 5D time-series
point clouds, as seen in the left side of Figure 1, meaning
that at each time step the radar registers points with 3D
coordinates(x, y, z), and additionally it records the Doppler
Velocity and Signal Intensity for each point, resulting in 5
dimensions [15]. The additional dimensions provide
information about the direction and speed of each point,
enabling more accurate and robust models.

The first dataset that is used in this research is the one
from the MARS paper, that uses a Microsoft Kinect V2 for
the ground truth reference and the Texas Instruments (TI)
IWR1443 Boost mmWave radar [16] for the radar
processing. The dataset contains ten gestures: Left upper
limb extension, Right upper limb extension, Both upper
limbs extension, Left front lunge, Right front lunge, Squat,
Left side lunge, Right side lunge, Left limb extension and
Right limb extension. Four different users performed each
movement for 2 minutes resulting in a dataset with 2.28
million reference data points from Kinect V2 and 3.81
million data points from mmWave data.

The second dataset that was used in this research is one
gathered by a master student from TU Delft2. This dataset
focuses on five different movements performed by 15
participants: Static Waving, Normal Walking, Combined
Walking and Waving, Static Movement and Free Movement.
The benefit of including this dataset is that it provides more
variety to the data and provides tests for moving targets,
which the MARS dataset does not include.

4.2 MARS Model

Figure 3: Overview of MARS model architecture [1]

The MARS model, a system designed for assistive
rehabilitation in patients with motor disorders, serves as the
baseline state-of-the-art spatial model for this research. It
uses point cloud data to estimate the 3D coordinates of 19
key points in the human body, corresponding to 57 outputs.
This model primarily focuses on data pre-processing and
feature extraction using a CNN architecture. The
performance metrics used to evaluate the MARS model are

2This dataset is currently private. A reference to it will be added
once it becomes publicly available.

Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE). The MARS Model has a total of 3,255,469
parameters, of which 1,084,793 are trainable.

Data Pre-processing: At each time step, the mmWave
radar stores at most 64 points to form a data frame. Since the
points are stored in random order, one way of standardizing
between frames is to sort the points in ascending order of
their x, y and z coordinates. This means the points are sorted
in ascending order of their x coordinates, then the points
with the same x coordinate are sorted by their y coordinates,
and finally, the points with the same x and y coordinates are
sorted by their z coordinates. The shape of the resulting data
frame is 64x5, which through the matrix transformation in
Figure 3 is rearranged in 5 channels, each with an 8x8
feature map.

CNN Architecture for Feature Extraction: The model
employs a CNN architecture that incorporates Batch
Normalization (BN) and Dropout layers to enhance
performance and prevent overfitting. The Convolutional
layers in Figure 3 extract features from the input mmWave
point cloud data. The Batch Normalization layers are used to
stabilize and accelerate the training by normalizing the input
of each layer, improving the convergence and preventing
overfitting. Dropout layers are used to randomly set a
fraction of the input units to zero during training to prevent
overfitting by reducing reliance on specific neurons. Finally,
the output is passed through the fully connected layers to
output the predicted coordinates of the 19 key points at that
frame.

Performance Metrics: The performance of the MARS
model is evaluated using metrics such as Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE).
Figure 4 shows the baseline MAE that the temporal model
will be compared to. To evaluate the quality of a prediction
the absolute error for each key point is calculated by taking
the distance between the ground truth and the predicted
coordinates. The sum of these errors is then divided by the
number of key points giving the MAE for that prediction.
MAE treats all errors equally, providing a balanced view of
the average error. On the other hand, RMSE is more
sensitive to outliers because it squares the errors before
averaging them. This means that if the RMSE is much

Figure 4: Mean Absolute Error for each key point in MARS model



higher than the MAE, it suggests that there are some large
errors in the predictions. These metrics along with the
number of parameters and computational complexity
provide a baseline for comparing improvements with the
incorporation of temporal dynamics.

5 Temporal Human Pose Estimation Model
5.1 Modifying MARS to account for Temporal

Dynamics
Long Short-Term Memory (LSTM) is a type of recurrent
neural network (RNN) architecture that was designed to
address the vanishing gradient problem in traditional RNNs.
The LSTM model, proposed by Hochreiter and Schmidhuber
in 1997 [17], includes a special unit known as the memory
cell that serves as an accumulator or a gated leaky neuron.
This memory cell can learn long-term relationships and has
the unique ability to remember or forget information,
making it highly effective for sequence prediction tasks.

Initially developed for sequence data such as word and
sentence prediction, LSTM networks have been adapted to
handle time-varying data, aligning well with the continuous
and time-dependent nature of the pose estimation problem.
By extracting the dynamics from the data, the LSTM
network can effectively track the temporal dependencies
between different poses thereby improving the precision of
Human Pose Estimation.

Figure 5: Overview of modified MARS architecture incorporating
temporal dynamics

The Temporal Model builds on top of the existing MARS
model to incorporate temporal dynamics by making some
modifications to the model architecture. Figure 5 shows the
architecture of the temporal model, with the pre-processing
strategy used for MARS, alongside two main changes.
Firstly, after the pre-processing, a sequencing step is added.
This step divides the data into sequences of frames, with the
length of the sequence representing the amount of memory
the LSTM has. The second change comes in the feature
extraction step, where after the Convolutional layers of
MARS, an LSTM layer is added to capture the temporal
dynamics of the data, followed by the fully connected layer
as output. The modifications to the MARS model result in a
temporal model with 1,208,248 total parameters, of which

402,386 are trainable. In comparison, the original MARS
model contains 3,255,469 total parameters with 1,084,793
being trainable. This represents a substantial reduction in
model complexity, with a 62.88% decrease in total
parameters and a 62.90% decrease in trainable parameters.
Despite this reduction, the Temporal Model significantly
improves the pose estimation performance, demonstrating its
efficiency and effectiveness in capturing temporal
dependencies.

To accurately compare with the MARS model, the
Temporal Model must be optimized. From the modifications
brought to MARS there are two main parameters that need to
be fine-tuned:

• Sequence Length: This determines how many frames
the LSTM can remember. It is essential to find the
optimal sequence length that balances memory capacity
and computational efficiency.

• Number of LSTM Units: This defines the output
dimensionality of the LSTM layer. For instance, 32
units means the LSTM layer output will have 32
neurons. The optimal number of units needs to be
determined to ensure the model’s effectiveness.

By systematically exploring these parameters and
configurations, this research aims to determine the most
effective way to integrate temporal data into HPE models,
thereby enhancing their performance and understanding the
trade-offs in computational complexity. Once an optimal
temporal model is found, section 6 shows the comparison of
this model with respect to MARS.

5.2 Optimization of LSTM Parameters
The LSTM model’s performance is subject to the
optimization of two parameters: sequence length and the
number of LSTM units. The sequence length determines the
number of frames the LSTM layer processes at a time, which
must be optimized to balance memory capacity and
computational efficiency. The number of LSTM units, which
defines the output dimensionality of the LSTM layer is also
subject to fine-tuning to ensure optimal performance.

With the goal of optimizing the parameters for LSTM, a
series of tests was conducted to ascertain the most effective
options. The sequence lengths were varied between 2 frames

Figure 6: Localization error and training time plotted against LSTM
memory size



and 32 frames, with the results of this experiment shown in
Figure 6, proving that the optimal sequence length is
approximately 16 frames of memory. With memory sizes
larger than 16 frames, the computational complexity
increase outweighs the improvement in precision. The
underlying hypothesis for these tests is that the sequence
length does not need to extend beyond half of a gesture, and
that any additional information will result in increased
computational complexity and negligible reduction of the
error, diminishing returns. As for the number of LSTM
units, the values tested were 32, 57, 128 and 256, the results
being shown in Figure 7. From this, it can be seen that 32
units results in a loss of information, while more than 128
units results in increased computational complexity.
Analyzing the figure, the hypothesis that increasing the
dimension may result in increased computational complexity
and training time, while having a small dimension for the
LSTM output may result in loss of information is confirmed,
and the optimal number of LSTM units for the temporal
model was chosen to be 57. This value was used as 57 is the
number of outputs of the model as well, meaning that the
LSTM layer can learn dependencies of the 3 coordinates of
the 19 key points throughout the movements.

Figure 7: Localization error and training time plotted against LSTM
units

For these tests, the performance of the temporal model
was evaluated using the Mean Absolute Error (MAE).
Additionally, the training time, number of parameters and
computational complexity were also take into account, as
these factors are crucial in practical applications. In
section 6, the optimized temporal model is compared to
MARS on the MARS dataset, as well as the second dataset,
compiled by a master student at TU Delft.

6 Experimental Setup and Results
6.1 Experiment Setup
The programming language chosen for this research was
Python, utilizing TensorFlow and Keras as the primary
frameworks. The datasets used when conducting the
experiments were split into three subsets: 60% of the data
was used for training, 20% was used for validation, and 20%
for testing. To ensure the robustness of the results, the
implemented training loop trained 10 models for 150 epochs,
using batches of size 128. The accuracy for each model was

saved, and the average of the 10 models was taken to
eliminate any outliers and improve reproducibility. This
section evaluates the optimized Temporal Model against the
state-of-the-art spatial model MARS on the dataset used in
MARS, underlining the benefits of temporal dynamics for
human pose estimation. Following this, a second analysis is
performed, on the Moving Target Dataset of a TU Delft
student, to evaluate the model’s performance on more
complex movements.

6.2 Testing Temporal Model on MARS dataset
Figure 8 compares the localization error of the
state-of-the-art spatial model with that of the optimized
Temporal Model using the two metrics: MAE and RMSE. It
can be seen that the Temporal Model performs better on the
MARS Dataset, with an average MAE of 3.04, 2.37 and
2.85cm for the x-, y- and z-axes respectively. The overall
MAE of the Temporal Model of 2.75cm shows a 53%
improvement over the 5.87cm MAE of the MARS model.
Moreover, looking at the Root Mean Squared Error box
plots, it can be seen that the Temporal Model represents an
improvement over the MARS model, with the overall RMSE
reduced by 45%, from 8.10cm to 4.44cm.

The temporal model not only improves the overall
accuracy, as evidenced by the 53% reduction in MAE, but
also significantly reduces larger errors, as shown by a 45%
reduction in RMSE. This indicated that the temporal model
is effective in minimizing both typical and more substantial
errors in human pose estimation.

Figure 8: Box plot comparing MARS and Temporal Model on
MARS Dataset

6.3 Testing Temporal Model on Moving Target
Dataset

To evaluate the generalizability of the optimized model, it
was tested on a more complex dataset gathered by a master
student at TU Delft. This dataset, is comprised of 5 distinct
movements: static waving, normal walking, combined
walking and waving, static movements and free movement.
This data was instrumental in assessing the model’s



robustness and adaptability to previously unseen scenarios.
By applying the optimized model to this dataset, the study
aimed to verify whether the improvements achieved during
the optimization phase could be consistently reproduced
across varied and untrained data samples.

The accuracy of the two models evaluated on the Moving
Target Dataset is found in Figure 9. From the box plots it can
be seen that the optimized Temporal Model achieves a 34%
reduction in MAE, representative of an overall prediction
improvement. Moreover, MARS performs much worse in
terms of RMSE, with outliers of over 100cm from the
ground truth location, accentuated by the logarithmic scale
of the y-axis in Figure 9. The temporal model offers an 82%
improvement over the RMSE of the MARS model, from
which it can be concluded that the Temporal Model is much
more effective at handling and reducing large errors in pose
estimation.

Figure 9: Box plot comparing MARS and Temporal Model on
Moving Target Dataset

The results of the two models on the Moving Target
Dataset emphasize the potential of Temporal Dynamics in
Human Pose Estimation. They show that by incorporating
this aspect of the data, more accurate and versatile models
can be created, while keeping the architecture simple and the
training times low. The increased error MARS achieved on
this second dataset, underlines the importance of fully
utilizing the different aspects of the data, and in the case of
time series, temporal dynamics are an important one.

7 Responsible Research
The MARS dataset used in this research is open source. The
second dataset, Moving Target Dataset, is currently under
development, therefore it has not been published at the time
of writing. The ethical and consent considerations, as well as
the data collection procedures associated with these datasets
are addressed in the respective research papers referenced in
this report.

To ensure that the experiments have been conducted
transparently and that they are reproducible, the
experimental setup is detailed in section 6 of this report. The

code used for this research is publicly available on GitHub3.
The repository includes the models, the MARS dataset,
training loops and other necessary components to replicate
the experiments conducted in this study.

In conducting this research, care was taken to avoid
introducing or perpetuating bias. The datasets used are
diverse and cover a range of human poses and activities,
helping to ensure the generalizability of the models.
Validation and testing were performed rigorously to assess
the fairness and accuracy of the models, minimizing the risk
of biased outcomes.

The computational resources used for this research were
optimized to balance performance and environmental
impact. By leveraging efficient algorithms and model
architectures, the research aimed to minimize energy
consumption while maintaining high standards of precision
and efficiency. The results of this study have the potential to
benefit various fields, including healthcare, sports analysis,
robotics and traffic monitoring, by providing more accurate
and efficient human pose estimation models.

8 Conclusions and Future Work

The results of this research demonstrate that incorporating
temporal dynamics into human pose estimation models
significantly improves precision while also decreasing the
model complexity. By leveraging LSTM networks to capture
temporal dynamics, the enhanced model exhibited a
reduction in MAE and RMSE of 53% and 45% respectively,
when compared with the state-of-the-art spatial model on the
MARS dataset. This improvement underscores the value of
temporal information in enhancing the accuracy of pose
estimation, making the approach viable for applications in
healthcare, sports analysis, and many others. Additionally,
the model’s performance on the Moving Target dataset
validated its robustness and adaptability, reinforcing its
potential for broader application. The performance gap
between the two models when evaluated on the Moving
Target Dataset, proves that Temporal Dynamics significantly
improve the model performance in more complex
applications.

Future work in this field can focus on exploring alternative
architectures that further capture temporal dynamics, such as
Temporal Convolutional Networks. This exploration would
aim to balance precision and computational efficiency while
potentially offering improvements over the current
LSTM-based approach. Moreover, the integration of spatial
and temporal models into a unified framework, or ”fusion
models”, represents a promising direction for future
research. These models could combine the strengths of both
domains, providing even more accurate and efficient human
pose estimation systems. Another avenue for future research
includes the development and sharing of standardized,
open-source mmWave-radar datasets to facilitate the
validation and replication of findings across the research
community.

3https://github.com/dansavastre/MARS LSTM

https://github.com/dansavastre/MARS_LSTM
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