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Summary
Wind turbines are operating in harsh environmental conditions, especially offshore. An
implication of these conditions, caused by the impact of precipitation, is the development
of leading edge erosion (LEE). This leads to degraded blade surfaces that result in lower
aerodynamic performance. Leading edge erosion is researched in many ways but remote
detection is still underdeveloped. Therefore, this thesis investigates the possibility to develop
a LEE detection method by analysing real-life data from operational turbines in the field.
High frequency data is aggregated to 10-minute statistical data. It is then filtered and
corrected for events that are known to cause deviation from normal behaviour. Where
possible, the IEC61400-12-1 standard is followed to comply with industry standards.
The hypothesis of this thesis is that, due to the lower aerodynamic performance caused by
LEE, apart from the power signal the pitch and rotor speed signal should show signatures
of degradation as well. Therefore, the three SCADA1 signals; power, pitch angle and rotor
speed are chosen to monitor the performance of the turbine. A reference period is defined
from the start of a turbine’s lifetime where it is assumed to be free from LEE. By using the
binning method, a reference curve is extracted from this period. Residuals can be computed
for incoming measurements that are translated along a linear segment within each bin to the
bin-center. Subsequently a normalisation is applied to convert all bins to a standard normal
distribution.
Deviating performance of the three different signals of interest are tracked by using control
charts. Monitoring the exponentially weighted moving average (EWMA) of the normalised
residuals, gives a good indication of long term distribution shifts. Control limits are com-
puted to define a threshold where the signal is said to be out of control.
A Monte Carlo simulation is used to generate synthetic data with an artificial degradation
to verify the model. It is necessary to verify the model and evaluate its performance for each
individual turbine since it is dependent on the variance of the data in the reference period.
Depending on this reference period, the model shows consistently low average detection times
for the rotor speed signal up to the minimum degradation tested of 0.5%. The power and
pitch signal showed reliable detection, with low false negative rates, for degradation values
from 5% and 2 – 5% respectively.
Underperformance is detected for all three signals using real-life data from operational tur-
bines. However, it can not be validated that this periods are caused by LEE. In fact, the
results are suggesting that LEE impact is not significant enough to cause a deviation in the
signals compared to the first year of operation which is taken as normal behaving reference
period and assumed to be free of LEE. Therefore, it is recommended to perform a validation
study on periods of data where LEE is detected during an inspection followed by a repair to
investigate the reaction and behaviour of the different signals.

1Supervisory Control And Data Acquisition (SCADA), a well-known term in wind industry for the system
that gathers all the data of a turbine
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1

1 | Introduction
Yearly global reports show that wind energy is one of the main energy sources that hu-
mankind relies on for supplying an ever growing part of the total energy-demand [Lee and
Zhao, 2020]. In Europe alone, it already supplies 15% of the total energy demand [Komu-
sanac et al., 2020]. The vast majority of machines used to capture this wind energy, by
converting the kinetic energy of the wind into electrical energy, are horizontal axis wind tur-
bines (HAWT). These wind turbines play a vital role in the transition to a fossil free energy
market worldwide. Driving down the costs will keep contributing to the competitiveness of
wind turbines within the energy market and therefore to cleaner energy. Unexpected main-
tenance is one of the causes for extra costs that negatively impacts the return of investment
(ROI) for a wind turbine operator.
Numerous papers are written in the area of structural health monitoring (SHM), fault di-
agnosis methods (FDM) and remaining useful life (RUL) estimations for wind turbines to
overcome these unexpected maintenance events [Amirat et al., 2009, Si et al., 2011, Chun
Piu Lau et al., 2012, Dhanraj et al., 2016]. Especially, condition monitoring (CM) for gener-
ators and gearboxes are well represented in literature [De Azevedo et al., 2016, Hossain et al.,
2018]. A plausible explanation is that these techniques are already used in other, much older,
industries. Nowadays, data to analyse abnormal behaviour of generators and gearboxes, such
as oil temperatures or vibration sensors, are available in the supervisory control and data
acquisition (SCADA) system for most turbines [Zaher et al., 2009]. Depending on different
studies these two components are responsible for a fair amount of failures and downtime.
However, depending on which publication one looks at, a component that appears to be
responsible for as much or even more failures and downtime are the blades [Pinar Pérez
et al., 2013]. The blades are the most important part in the structure to convert the kinetic
energy from the wind into a rotating motion of the whole rotor which in the end gets trans-
lated into electrical energy by the generator. Failure of the blades to perform this task or
to perform this task less efficient will reduce the amount of energy that is harvested by the
turbine. Different damage detection methods have been developed to monitor the integrity
of wind turbine blades [Li et al., 2015, Du et al., 2020]. These techniques, however, are not
yet widely implemented in industry which means that the vast majority of blade inspections
are still traditionally done by visual inspections of experts [Nielsen et al., 2020]. Neverthe-
less, multiple strategies are developed to cope with this rather qualitative data taken from
expert maintenance reports [Leimeister and Kolios, 2018, Nielsen and Sørensen, 2018]. A
close link with the applicability of SHM, FDM and CM on blades is with the underlying
driver to prevent underperformance of a wind turbine. A phenomenon which is still quite
underdeveloped in literature is leading edge erosion (LEE). Damages like cracks and pits
that compromise the structural integrity do not necessarily influence the power output and
thereby the performance. LEE on the other hand, is not a cause for direct failure and will
only compromise the structural integrity in rare occasions when the erosion is accumulated
over multiple years and advanced up to a state where the laminate is exposed. Moreover,
LEE gradually influences the performance and therefore the annual energy production (AEP)
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and ROI of a wind turbine in the long run [Schramm et al., 2017]. Multiple research areas
are explored to investigate and mitigate the impact of LEE. These areas are categorised in
three directions; prevention, imitation and prediction of LEE. A fourth area for which not
much literature can be found, is identified namely the detection of LEE. Therefore, this the-
sis tries to develop a LEE detection method in order to measure the impact. A data-driven
approach is chosen by exploiting the vast amounts of SCADA data produced by turbines
nowadays. Successful detection of LEE would make it possible to measure the impact on
annual energy production (AEP). From this perspective of underperformance, a business
case could be made to calculate if it is worthwhile to repair the blade(s) or not.
The report is structured in the following chapters:

• Chapter 2 covers a summary of the literature study that is performed. As mentioned
above several research areas are distinguished to give structure to the variety of liter-
ature that is found. This chapter is concluded with a more precise description of the
research gap and what methods from literature can be used to build upon.

• Chapter 3 states the formulated research questions and objectives that follow out of
the literature study. Multiple sub objectives are mentioned to break up the bigger goal
into smaller pieces.

• Chapter 4 covers the data exploration. Different data sources are gathered and dis-
cussed in detail. A description of each signal that will be used in the analysis, including
frequency, is given.

• Chapter 5 describes how the data is prepared in order to get a data-set that is consid-
ered to be in ’normal’ operational state. An aggregation of the high frequency SCADA
data is used to construct 10-minute intervals which is a standard format used in the
wind industry. The IEC61400-12-1 standard is used as a guideline for the rejections
and corrections to comply with industry standards. Several techniques are used and
developed to filter the data.

• Chapter 6 is devoted to the modelling part. Three signals of interest; power, pitch
angle and rotor speed are described which are analysed with a residual model. Control
charts are constructed to monitor these signals.

• Chapter 7 is focused on the verification of the model. Two simulation techniques are
developed to generate synthetic data. An artificial degradation is used to evaluate the
performance of the model.

• Chapter 8 covers the application of the model on real data. Several turbines are
evaluated to get a broader view of the actual results and therefore the applicability of
the model on real life data.

• Chapter 9 is the final part of this thesis where conclusions are drawn from the results.
Shortcomings of this research together with the opportunities are brought together in
the recommendations that are made.
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2 | Literature study
In this chapter the literature study will be presented together with the current state-of-the-
art. Different research fields in leading edge erosion are identified and summarised. The
research gap that this thesis tries to fill is presented in the end.

2.1 Current research fields

Leading edge erosion is currently one of the major issues the wind turbine industry is facing
[Bartolomé and Teuwen, 2019]. Research shows that the impact velocity of precipitation
is the main factor causing the erosion [Keegan et al., 2013]. It is typically described as a
monotonic process that starts with small pitting in the coating and without maintenance,
finally results in delamination of the structure. Mainly the outer parts of the blades, the tip
sections, are affected due to the high relative speeds that are reached. Especially offshore,
ever growing rotor diameters cause tip-speeds to increase making the problem even more
relevant [Yang et al., 2014, Herring et al., 2019].

Prevention

Multiple perspectives can be identified to contribute to a solution for decreasing or eliminat-
ing the negative impact, on the power production of a wind turbine, caused by LEE. The
first solution at hand is to improve or modify the blade leading edge material to protect it
from erosion in the first place [Chen et al., 2019]. Research is performed in enhancing the
protective (gel) coatings that are applied directly into the mould while producing the blades
[Slot et al., 2015]. Another option to strengthen the leading edge is by applying dedicated
protective tapes or aluminum shielding.

Imitation

A second field of research is aimed at imitating the physical phenomenon by making use of
special lab experiment set-ups [Zhang et al., 2015], numerical methods [Keegan, 2014], CFD
analysis [Han et al., 2018] or wind tunnel tests [Sareen et al., 2014]. Once a relationship is
established, impact calculations on the annual energy production (AEP) are performed. A
common finding in all these experiments is that LEE causes a decrease in lift and an increase
in drag. The quantification of this drop in lift and increase in drag, however, varies through
different studies. The wind tunnel tests performed by Sareen et al. [2014] for three different
classes of erosion degradation, three stages of severity per class and for three Reynolds
numbers each, showed very clear Cl/Cd and Cl/α curve differences. A drag increase in the
range from 6-500% is reported depending on the studied severity of erosion. Substantial
decrease of the lift coefficient is mainly experienced at higher angles of attack. It is argued
that the annual energy production (AEP) loss ranges from 3-25%. Care must be taken since
an assumption is made that the erosion is equally distributed over the whole blade-span
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whereas literature and field research shows that it is predominantly present at the tips of
the blades. By making use of CFD simulations with an eroded blade tip, Han et al. [2018]
reported a lift reduction and drag increase up to 53% and 314% respectively. This in turn
resulted in an AEP reduction of 2-3.7%.

Prediction

A third area of research is focused on prediction of LEE. Martinez et al. [2019] developed a
machine learning (ML) framework by using an extensive database with 84000 defects from
approximately 1100 turbines in 17 wind farms. It was concluded that rain is a significant
factor in the development of LEE which confirms previous research from Keegan et al. [2013].
However, clear quantified predictions of LEE were not presented. Letson et al. [2020] pro-
posed a generalised framework to design an erosion atlas by making use of open-source
noncommercial data. A tool was developed to predict the erosion potential per location to
facilitate anticipation in planning of future wind farms.

2.2 Research gap: Detection

A research gap is identified concerning the detection of LEE. Therefore, this is proposed
as fourth pillar of research where this thesis will focus on. Inspections of turbines are not
planned on a regular basis since, especially off-shore, this comes with high costs. Successful
identification and detection of LEE would not only open up the opportunities for operation
and maintenance strategies to minimise the impact on ROI, but also monitoring possibilities
of the development of LEE which could be useful in the earlier mentioned research areas.
Furthermore, it could serve as a sound basis to make predictions on further progression of
LEE.
Although a gap is identified there is some research that touches upon the subject and de-
veloped some very useful techniques that could be used as a starting point. Caselitz and
Giebhardt [2005] developed algorithms to monitor the condition of the rotor including sur-
face roughness. They verified their algorithm describing an icing condition. However, no
condition was mentioned where leading edge erosion played a role. Butler et al. [2013]
demonstrated the potential of using SCADA data to monitor (power) performance by tak-
ing one year of historical data to define an assumed fault-free baseline. This could be called a
normal behaviour model (NBM) which is more often used in condition monitoring. Gaussian
processes with two inputs, namely 10 minute averages of both wind speed and air density,
are used as NBM. Cambron et al. [2016] proposed a method for monitoring the generator by
analysing the power curve. The research presented also touches upon detection of underper-
formance and thereby surface erosion. As Butler et al. [2013] suggested they filter out the
data-points above the nominal wind speed to remove interference with pitch control. A ref-
erence power curve is constructed using the binning method described in the IEC 61400-12-1
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standard1. Not only the wind speed is corrected for air density but also a correction factor
for turbulence is implemented based on Albers et al. [2007]. Besides that, the measured
power values are translated such that the power curve is linearised in each segment in order
to use one control chart. Important to mention is that the validation data is simulated with
the assumption that all the bins suffer the same relative shift due to underperformance. Al-
though, this could be valid to simulate the underperformance of a generator, it will not hold
for underperformance of the blades caused by LEE since earlier discussed research clearly
shows wind speed dependent impact due to aerodynamic effects. Nevertheless, it is used to
simulate both a step and ramp change where it is claimed that the ramp change amongst
other things represents the effect of blade erosion. With this simulated ramp shift a change
of 1% could be detected over an average of 234 days. A short section is devoted to an ap-
plication on real data. A quick conclusion is drawn that the underperformance, which was
visible in the control chart for the wind turbine generator, could be explained by leading
edge erosion. Although this shows that the method could be useful for detecting LEE, it
is concluded that the method itself does not provide the real source of underperformance.
Together with the study done by Astolfi et al. [2020] which shows a clear impact of an aged
gearbox on the underperformance, it becomes clear that an effort must be taken to separate
different factors leading to underperformance of a wind turbine.
Despite the research results on the effects of LEE, that show better signatures in the rated
power region due to higher aerodynamic losses, most publications discussed above discard
the data which is in the rated power area because of pitch interference. It is interesting to
investigate if it is possible to come up with a normalisation of pitch effect or using a pitch
reference curve to monitor the degradation in order to minimise data-waste and maximise
impact detection. Successful implementation would open up the possibility to design a hybrid
model for both the non-rated (partial load) and rated area (full load).

1IEC 61400-12-1:2017 Wind energy generation systems - Part 12-1: Power performance measurements of
electricity producing wind turbines
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3 | Research framework
As stated in the literature review, a research gap is identified concerning detection of LEE.
First, a research hypothesis is formed. Thereafter, an approach is outlined to fill the research
gap by formulating research questions and objectives set out to be answered in this thesis.

3.1 Research hypothesis

The literature study showed that leading edge erosion causes the lift coefficient (Cl) and drag
coefficient (Cd) to decrease and increase respectively. By drawing a vector decomposition of
this impact it is straightforward to conclude that the tangential vector, which causes the rotor
to rotate, decreases due to the tilted resultant vector (see figure 3.1). A smaller tangential
vector means less torque which will result in less generated power for the same wind speed.
The additional hypotheses formed in this thesis, is that at the same wind speeds:

• the rotor speed will decrease in the below-rated area, due to LEE, since the pitch angle
is kept constant.

• the pitch angle will decrease in the above-rated area due to LEE since the rotor speed
and power output are kept constant. Another way to state it is that the pitch angle
required to produce the same (rated) power, with respectively lower and higher Cl and
Cd values, should be lower.

Figure 3.1: Example of vector decomposition with a smaller lift vector and bigger drag vector
in red.1

1Base figure taken from Rommel et al. [2020] under CC BY 4.0 license. Changes are made.
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These two signals, rotor speed and pitch angle, are considered to be a more direct indicator
of LEE. Solely a lower power output could also be caused by defects or degradation in the
generator or gearbox.

3.2 Research question(s)

In order to fill the research gap that is outlined in chapter 2 the main research question is
formulated as follows:

To what extent is it possible to detect and quantify underperformance of a variable-
speed pitch-controlled wind turbine due to leading edge erosion using SCADA
data?

Multiple sub-questions can be formulated to contribute to the answer of the main question:

1. To what extent is it possible to isolate the impact of LEE on the performance?

2. Is it possible to find LEE signatures in a wind speed versus pitch angle curve?

3. Is it possible to find LEE signatures in a wind speed versus rotor speed curve?

4. Is it possible to detect a monotonic shift in the data despite the complex environment
and the induced uncertainty in SCADA signals?

Due to the possibility that multiple wind turbine components can degrade over time it
is possible that not only LEE is contributing to the underperformance of the wind turbine
(subquestion 1). In more common power curve analysis research, the above rated wind speed
region is discarded due to the interference of pitching the blades. As mentioned in chapter
2 this research tries to investigate the possibility to use the pitch and rotor speed signal as
monitoring entities to exclude other possible degradation factors such as the generator or
gearbox (subquestion 2 & 3). Since the development of leading edge erosion is irreversible and
not self-healing it is expected that the effect on performance will be monotonic (subquestion
4).

3.3 Research objective(s)

The ultimate objective of this thesis research that follows out of the identified research gap
together with the research questions stated in the above section, is:

To design a leading edge erosion indicator in order to calculate the energy pro-
duction loss by exploiting SCADA data using data-driven models.
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In order to achieve this main objective, multiple sub-goals are defined. First, the available
data needs to be explored, processed and structured. When the right data is gathered,
known deviations such as yaw errors, pitch errors, idling phase and transition phase data-
points must be filtered out in order to maximise the accuracy. Corrections must be applied to
account for different air densities and turbulence intensities. After constructing a reference
curve to compare new measurements with, residuals can be calculated. The residuals will be
scattered and need to be normalised in order transform all residuals within different bins to
a standard normal distributions. Underperformance can then be identified by constructing
control charts, with control limits, to monitor the shift in a distribution. A novel LEE
indicator can be designed to relate the underperformance with energy production loss.
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4 | Data exploration
The following chapter describes the data that is used during this thesis research. Different
data sources are coupled to make this research possible which is desribed in section 4.1.
The most extensive used database is the one from Vattenfall where the SCADA signals and
alarms are fetched from (section 4.2). To make use of homogeneous environmental data,
across wind farms, the Climate Data Store of the European Union is used to fetch hourly
data from the ERA5 reanalysis (section 4.3). Various inspection reports were available and
are discussed in section 4.4.

4.1 Availability

This thesis research is performed in cooperation with Vattenfall1. The author was part of
the analytics team within the off-shore wind unit. That created a lot of opportunities to
explore the data, owned by Vattenfall. Full access was provided to SCADA data and partial
access to inspection data. Both quantitative and qualitative sources were present. The
SCADA data, which is a common collective name in the wind industry for the data signals
generated by each individual turbine, was stored in a database which could be entered via
Structured Query Language (SQL). Inspection reports were available which made it possible
to check whether a turbine suffered from LEE or not. In addition to the data of Vattenfall
the Climate Data Store (CDS) from the European Union is used to fetch environment data.
The CDS database is available through an Application Programming Interface (API) which
makes it easy to request the data through Python.

4.2 SCADA data

Supervisory Control And Data Acquisition (SCADA) is a broad term in the wind industry
that describes in general almost all information that is taken from a wind turbine. To narrow
down the actual data used from this extensive system section 4.2.1 describes all relevant
high frequency signals which are direct measurements from the turbine itself. Whereas
section 4.2.2 describes logged time intervals with registered events.

4.2.1 High frequency signals

The data was available in a long format table. To speed up the query to request the data for
the life-time of a turbine the code automatically separates it into smaller requests per month
which are aggregated and optimised to reduce the storage size by approximately 98%. This
makes it possible to store it efficiently in local cache files. The following signals were fetched:

1Utility company active in multiple countries in western Europe: https://group.vattenfall.com/

https://group.vattenfall.com/
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Nacelle mounted anemometer wind speed

The nacelle mounted anemometer wind speed is available for every turbine which makes it
easy to work with. There are, however, some drawbacks. As the measurement device is
located behind the blades it is influenced by a turbulent flow. This is partly solved by using
a Nacelle Transfer Function (NTF) which is determined by the OEM during the instalment
of a turbine. The NTF is nothing more then determining a linear relation between an
anemometer which is located in the free stream wind speed, usually on a metmast, and the
nacelle mounted anemometer. By using the nacelle anemometer of each individual turbine
it does not matter, in the scope of this research, if it suffers from a systematic error since
historic data is used as a reference which should include this error as well. Since a ten
minute average is used in this research the random error reduces too. Furthermore, the
moving averages constructed in the final control charts will act as a low pass filter reducing
the frequency and thereby improving the stability.

Yaw angle

The yaw angle is a calibrated signal with north as zero point. A clockwise and anti-clockwise
direction is used to describe the spectrum from 0◦ to 180◦ and 0◦ to –180◦.

Wind direction

To measure the wind direction a weather vane is located at the top of the nacelle. This vane
measures the direction with respect to the nacelle orientation which is measured and logged
in the yaw angle signal. By combining these two measurements the wind direction can be
computed.

Power

The power output of a turbine is measured since this is the end product and purpose of
energy harvesting. Furthermore, this signal is also used to control certain aspects of the
turbine such as the pitch angle.

Pitch angle

When the power is reaching its rated value2 the pitch system is activated. Actuators are
pressurised in order to rotate the blades "away" from the wind to relieve loads and thereby
keeping the power output stable. The effective rotation is logged as pitch angle to know how
many degrees a blade is pitched at a certain moment in time. Every individual blade has its
own signal which means that there are three different pitch signals.

2The maximum power a turbine is allowed to produce, a design limit.
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4.2.2 Other signals

Other signals were available per event and are present to flag known deviations from normal.
A time range with a begin and end timestamp masks the affected time period. The two
signals that were used are:

Curtailment

Curtailment is defined as restricting the power output of a turbine or farm. Curtailment
can be applied by different parties. The Transmission System Operator (TSO) can enforce
curtailment due to capacity problems of the grid or other grid associated issues. An OEM
can enforce curtailment, for example, due to mechanical problems with an individual turbine.
Finally, the operator itself can also curtail farms or turbines, not only for mechanical issues
but for financial reasons as well. The curtailment flags in the database have a begin and end
timestamp.

Alarms

Every turbine is prone to defects and errors. By using pre-programmed checks and protocols
most of these defects and errors are captured by specific alarms. All these alarms are captured
in the database with a begin and end timestamp.

4.3 CDS data

The Climate Data Store (CDS)3 from the European Union is freely accessible and provides
amongst other things a reanalysis with hourly weather data from 1979 up till now, called
ERA5. In order to use consistent weather data for different wind parks several signals are
fetched through the ERA5 API. These environmental signals are used to correct for changing
conditions in order to make the SCADA signals as comparable as possible through time. To
correct for air density the pressure and relative humidity are needed. The relative humidity
can be calculated with the temperature and dew point temperature. CDS has an excellent
data catalogue with high quality parameter descriptions:

Sea level pressure

"This parameter is the pressure (force per unit area) of the atmosphere at the surface of the
Earth, adjusted to the height of mean sea level. It is a measure of the weight that all the
air in a column vertically above a point on the Earth’s surface would have, if the point were
located at mean sea level. The units of this parameter are pascals (Pa)."4

3https://cds.climate.copernicus.eu

https://cds.climate.copernicus.eu
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Temperature

"This parameter is the temperature of air at 2m above the surface of land, sea or inland
waters. It has units of kelvin (K)."4

Dew point temperature

"This parameter is the temperature to which the air, at 2 metres above the surface of the
Earth, would have to be cooled for saturation to occur. It is a measure of the humidity of
the air. Combined with temperature and pressure, it can be used to calculate the relative
humidity. This parameter has units of kelvin (K)."4

Hourly data from the ERA5 reanalysis is used since it is the finest sub set available. This
means that later on a mapping from one hour to 10-minute SCADA signal measurements is
needed.

4.4 Inspection reports

The partial access to inspection reports revealed blade defects, such as leading edge erosion,
that were supplemented with pictures. It was possible to relate the defects to a specific
turbine blade through an internal identification code describing the park and turbine location.
Since no access was available for service and repair data it was not possible to validate the
model with real-life events and to prove or disapprove the detection of leading edge erosion at
certain moments in time. However, suggestive qualitative conclusions are drawn by taking
the available pictures of leading edge erosion, together with the date of inspection, and
comparing the signals of different turbines within that specific park.

4https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=
overview

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
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5 | Data preparation
Multiple steps are needed to go from raw data to data that is suitable for modelling. At first
some practical modifications were needed in order to make it easier to work with the data
(section 5.1). Next is to aggregate the high frequency signals to 10-minute statistical data
(section 5.2). It is necessary to reject certain data to be sure that later on the inputs that go
into the model are free from (known) errors and non-physical values (section 5.3). In order
to extract a degradation pattern, as purely as possible, caused by leading edge erosion, it
is important to exclude other external factors that might cause a deviation from a normal
reference state. Certain phenomena are corrected (section 5.4) whereas other external factors
need to be filtered out (section 5.5). Various rejection, correction or filtering strategies are
taken from or inspired by the IEC 61400-12-1 standard. The impact of all preparations are
shown in example figures of a power curve. The power curve is a widely used relation in
the wind industry to characterise a turbine’s power output. It is the relation between the
power (P) produced by the turbine and the wind speed (v) at that time which is described
by equation 5.1.

P =
1

2
ρCpAv3 (5.1)

Where A is the swept area of the rotor, ρ the air density and Cp the power coefficient.
However, due to operational constraints this relation only holds between the cut-in and
rated wind speed as shown in figure 5.1. The cut-in wind speed is the moment when the
turbine is able to start-up. According to the cubic law (eq. 5.1) the power increases up till
the rated wind speed where it reaches rated power which can be seen as a design limit. From
that point the turbine will pitch its blades to keep the power output steady on rated power
until it reaches its cut-out speed where the turbine is shut down.

Figure 5.1: Theoretical power curve with characteristic points.



16

5.1 Modifications

Some of the raw signals, queried from the Vattenfall database and the CDS, were not suitable
for direct use. Therefore, a few modifications were necessary to transform it into useful
signals.

Angular SCADA signals

There are multiple angular signals that are used in the model which are prone to discontinuity
errors when the data is aggregated. Therefore, the signals are transformed into vectors before
the aggregation takes place. The composition of both the horizontal and vertical vector are
then used to reconstruct the mean angular value. The angular SCADA signals that were
transformed with this procedure are:

• Wind direction

• Yaw angle

Pitch signal

The pitch signal is logged for every single blade. To reduce the complexity of the problem
a decision is made to reduce these three signals into one pitch signal by taking the mean.
More in depth analysis of detecting leading edge erosion for each individual blade might be
possible in the future by not doing so.

Environmental signals from CDS

As mentioned in 4.3, three environmental signals are taken from the Climate Data Store
(CDS). Both temperature and pressure need to be corrected for a height difference to be
representative at hub-height of the turbine under investigation. According to the Interna-
tional Standard Atmosphere (ISA) the temperature can be corrected as follows:

Tcorrected = Tsea–level + (h · L) (5.2)

with

L = –0.0065 [◦C/m]

where T is the temperature in celsius, h is the hub-height in meters and L is the lapse-rate
in degree celsius per meter. The pressure is corrected using the barometric formula:

Pcorrected = Pb

(
Tb + Lb · (h – hb)

Tb

)–g0·M
R·Lb (5.3)
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where b is a subscript for reference values, P is the pressure in Pascal, T is the temperature
in Kelvin and h is the height in meters. The following constants are applicable for the
barometric formula:

Symbol Value Description

Lb -0.0065 [K/m] lapse rate
g0 9.80665 [m/s2] gravitational constant
M 0.0289644 [kg/mol] molar mass of Earth’s air
R 8.3144598 [J/(mol · K)] universal gas constant

The relative humidity is calculated using the temperature and dew point temperature by
computing the ratio of both saturation vapor pressures using the Buck equation:

Ps = 6.1121 · exp

((
18.678 –

T

234.5

)(
T

257.14 + T

))
(5.4)

where Ps is the saturation vapor pressure and T is the temperature.

5.2 Aggregation

The high frequency SCADA signals are aggregated. It is common in the wind industry to
aggregate this high frequency data to 10-minute statistical data for multiple reasons. This
means that sections of 10 minutes are aggregated to extract the mean, standard deviation,
minimum value, maximum value and a count of how much measurements are aggregated.
This improves the speed in which one can handle vast amounts of data but also reduces
the random error caused by the complex environment in which turbines are operating. It
smooths the signal so to say. Furthermore, it is not rare that the data is incomplete and
therefore aggregation makes the data set more robust. The drawback of aggregating data
is that one loses information of fast changing phenomena (higher frequencies). Since this
research is looking into the long term trend or shift of a distribution from a specific signal
this drawback is accepted.
A more practical advantage of this aggregation is the handling size of the data set for the
complete lifetime of a turbine. Transforming the high frequency data into 10-minute statis-
tical data decreases the size by approximately 95%. By using another datatype optimisation
in python it was possible to decrease the size even further by more than 50%. This com-
bination made it possible to compress a month of data in approximately 1MB. So for a
turbine lifetime of ten to fifteen years the data set comprises 120 – 180MB which is still easy
to handle on an average laptop nowadays.
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5.3 Rejections

There are a different reasons to reject certain measurements. This section elaborates on
these reasons.

Missing data

With almost no exception databases are not 100% complete which means that missing data
needs to be handled or ignored. Depending on the signal and the amount of missing data
points in a row a filter is applied. The following list of crucial signals that need to be present
is composed in order to be able to fulfil the analysis:

• Wind speed

• Power

• Pitch

Another possibility to consider is to preserve more data by interpolating missing values. A
drawback of interpolation is that it becomes an estimation instead of a measurement. Since
the analysis spans over a range of years instead of days or months it is chosen to stick to
filtering instead of interpolation.

Operating range

Every turbine has an operating range imposed by the design limits. This translates into a
cut-in and cut-out wind speed. At cut-in wind speed the turbine is able to start producing
power. The cut-out wind speed is a maximum at which the blades are already pitched at its
maximum and therefore the only option to relief loads is to shut down the entire turbine.
Both wind speeds are enforced to keep a data set that falls in between these two values.

Free wind sector(s)

Turbines are not rarely surrounded by obstacles or neighbouring turbines. Since this analysis
is focused on off-shore wind parks the latter is accounted for. By retrieving the geographic
coordinates of all turbines in the park it is possible to compute the free wind sector(s) for
the turbine of interest. The method is based on the IEC 61400-12-1 standard, Annex A. A
schematic overview is given in fig. 5.2.
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Figure 5.2: Schematic overview of filtering the free wind sector(s).

A complete wind rose example can be seen in figure 5.3 whereas figure 5.4 shows a "left-over"
wind rose after applying the filtering method.

Figure 5.3: Example of a wind rose for a
specific park.

Figure 5.4: Example of the "left-over" wind
rose after applying the free wind sector filter.

5.4 Corrections

In order to bring all measurements to a comparable state two corrections are applied accord-
ing to the IEC 61400-12-1 standard.

5.4.1 Air density correction

The air density varies through different seasons which makes it necessary to correct for it.
The IEC 61400-12-1 standard prescribes a procedure to correct for different air densities by
correcting the wind speed using a sea-level reference air density with the following equation:

VC = VM

(
ρ

1.225

)1
3 (5.5)
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with

ρ = 1.225

(
288.15

T

)(
B

1013.3

)
(5.6)

Where VC and VM are, respectively, the corrected and measured wind speed in m/s. ρ is
the air density with T as ambient temperature in Kelvin and B as atmospheric pressure in
mbar. An example of the impact is shown in fig. 5.5. It appeared that, for the wind farm
investigated in this research, the correction had a small impact.

Figure 5.5: Example power curve with and
without air density correction.

Figure 5.6: Example power curve with and
without turbulence correction.

5.4.2 Turbulence correction

A turbulence correction is applied to counteract the negative side-effect of 10-minute aver-
aging of the data. The goal is to make measurements at different turbulence intensities more
comparable. Turbulence is defined as the unsteady movement of air. In the wind energy
industry this is quantified using the Turbulence Intensity (TI) measure defined as:

TI =
σv

v
(5.7)

Where v is the average wind speed and σv the wind speed standard deviation of a 10-minute
period. As explained in the beginning of this chapter, the relation between power (P) and
wind speed (v) is explained by:

P =
1

2
ρCpAv3 (5.8)

Where A is the swept area of the rotor, ρ the air density and Cp the power coefficient. As
this relation is non-linear, the 10-minute averaging skews the measured power output, below
rated wind speed, in two ways:
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• The lower area of the power curve where the power increases proportionally with
the wind speed (the so-called ankle); the power output increases with an increasing
turbulence intensity.

• The upper area of the power curve where the power does not increase proportional
to the wind speed anymore (the so-called knee); the power output decreases with an
increasing turbulence intensity.

The method to correct for this turbulence is nicely described in the IEC 61400-12-1 stan-
dard, Annex M. With this method, depending on the lifetime of the turbine, one would
need to integrate hundreds of thousands measurements to correct the complete data set.
Using ordinary integration functions in python is therefore impossible. By making use of a
Monte-Carlo method this process is still possible to perform on an ordinary laptop. A more
elaborate explanation of the programming solution is documented in appendix section A.2.
An example of the impact is shown in fig. 5.6.

Assumptions made in this normalisation procedure are1:

• At each moment the wind turbine follows a certain power curve that is independent of
the turbulence intensity.

• Wind speed fluctuations over the entire rotor area are characterised by the TI at hub
height.

5.5 Filtering

The goal with filtering the data is to get a set of measurements that are in a "normal"
comparable state. Therefore, measurements that are deviating from this normal state caused
by external factors, are filtered out. There are different causes why a measurement is not
considered as normal. These causes and the ways of filtering are described in the following
sections.

Alarms

As discussed in section 4.2.2 all kinds of different alarms will occur during the lifetime of
turbine. These alarms are logged in the database with a begin and end timestamp in order
to be able to filter the data such that known erroneous measurements can be removed. The
time span between these two timestamps is converted to affected 10-minute intervals to be
able to flag the 10-minute SCADA measurements. An example for an easy programming
solution is documented in appendix A.1. Figure 5.7 shows an example of a turbine where the
affected intervals, caused by alarms, are flagged. For the scope of this research the flagged

1IEC 61400-12-1, Annex M: Power performance measurement of electricity producing wind turbines
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measurements are removed to be sure that no affected data is present. Alternatively, one
could track down certain alarm codes, by using an alarm guide, to be more specific and make
a more precise distinction between useful and not useful data.

Figure 5.7: Example of flagged alarm measurements.

Curtailment

In the non-rated area of the power curve the rotor speed is increasing with higher wind speeds
and the pitch angle of the blades should be constant under an optimised design angle which
is often slightly negative. Curtailment data is filtered by applying logicals based on pitch
activity by checking the data for not exceeding a pitch angle of higher than zero degrees and
a maximum power that is below the rated power. Since curtailed data is not representative
for the analysis all these flagged points are filtered out (see figure 5.8).

Figure 5.8: Example of flagged curtailments. Figure 5.9: Example of flagged yaw mis-
alignments.



23

Yaw misalignment

By taking the absolute difference between the wind direction and the yaw angle it is possible
to compute the yaw misalignment. This measure indicates the degrees of misalignment of
the turbine with the wind. From an aerodynamic point of view this will cause different per-
formance than a fully aligned turbine. A threshold of 5 degrees is set to flag a measurement
as yaw misalignment. Figure 5.9 shows an example of the variety of measurements. For
illustration purposes a threshold of 20 degrees is used to construct this figure.

Non-operational phases

From an operational point of view one can imagine that a turbine has different stages in
which it operates. The fact that it has a cut-in and cut-out wind speed means that there
are limits to which the turbine can operate and produce energy. Three phases are specified:

• Idling phase

• Transient phase

• Operational phase

The idling and transient phase must be flagged as it is not qualified as normal data. Idling is
defined as a rotating turbine without delivering power. This is done when the turbine is not
allowed or able to enter the operational phase, as alternative to enabling the brake in order
to relieve the rotor from unnecessary loads. For the sake of simplicity, measurements that
are both not rotating and not producing energy are also marked as idling phase. Figure 5.10
shows flagged measurements that are identified as falling in the idling phase. The logical
rules that are used for every 10-min interval are:

Powermax <= 1 [kW]

Powermin <= 1 [kW]

The transition from idling to operational is called the transient phase. It is tracked by looking
at the minimum and maximum power values of a 10-minute measurement. The maximum
power should be above 1kW where the minimum should be less than or equal to 1kW. In
figure 5.11 an example of measurements that fall in the transient phase are shown.
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Figure 5.10: Example of flagged idling phase
measurements.

Figure 5.11: Example of flagged transient
phase measurements.

Outliers

This research is focused on longer term distribution shifts and not on single measurements
that deviate. Therefore, as last step in the filtering process the Local Outlier Factor (LOF)
algorithm, proposed by Breunig et al. [2000], is used to remove outliers. The algorithm is
based on local density where local is defined by its ’k’ nearest neighbors. A value of 20
is chosen for ’k’ which resulted in approximately 1% of additional data that was filtered.
Figure 5.12 shows an example of the effect.

Figure 5.12: Example of flagged outliers by
the local outlier factor (LOF) algorithm.

Figure 5.13: Example of a final clean power
curve after all filters.
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Final clean power curve

Finally a clean power curve is obtained as can be seen in figure 5.13. The actual 10-minute
measurements follow the same trend as the warranty curve but do show a certain spread.
The bin average line shows the average value of this spread for a width of 0.5m/s bins.
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6 | Data modelling
After extensive preparation of the data, the modelling can start. First, the motivation
behind choosing the three signals of interest is explained. Thereafter, the method to compute
residuals and at last, the monitoring method using control charts.

6.1 Signals of interest

Three SCADA signals are chosen to monitor the performance of a turbine: (active) power,
rotor speed and pitch angle. Active power is the most direct signal to indicate underper-
formance since the goal of a wind turbine is to produce an "x" amount of power at wind
speed "y". However, a degradation in the power signal can be caused by many things and
therefore it is hard to relate it directly to leading edge erosion. The research of Sareen et al.
[2014] shows that due to LEE the Cl and Cd values1 of a blade at the same wind speeds will
drastically decrease and increase respectively. The hypotheses described in section 3.1, and
repeated here, are stating that due to the loss of efficiency at the same wind speed:

• the rotor speed will decrease in the below-rated area, due to LEE, since the pitch angle
is kept constant.

• the pitch angle will decrease in the above-rated area due to LEE since the rotor speed
and power output are kept constant. Another way to state it is that the pitch angle
required to produce the same (rated) power, with respectively lower and higher Cl and
Cd values, should be lower.

Therefore, the two signals, rotor speed and pitch angle, are suspected to be a more direct
measure of the performance of the blades and could therefore potentially show a better
signature of LEE. For each signal a region of interest is defined as can be derived from the
hypotheses mentioned above. The region of interest for both the power and rotor speed
signal is the below-rated area since pitch interference needs to be excluded. It naturally
follows that for the pitch signal the above-rated area is defined as the region of interest.

6.2 Residual model

In order to compute residuals a reference is needed. The complex environment in which a
turbine is operating makes it impossible to draw conclusions from individual measurements.
Although the data is prepared extensively, random variation will always be present. The
solution to overcome this is to take the data of the first operational year as a reference.
It is assumed that in this first year of operation, no leading edge erosion is present or has
developed yet. In this way the reference is a distribution covering the random variation

1Lift and drag coefficient, respectively.
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that is "normal" for the complex environment. The binning method is chosen to construct
a reference curve. Bins of 0.5m/s are taken as advised in the IEC61400-12-1 standard. An
advantage of this method is that it is straightforward and easy to explain which makes it
more attractive to industry.
After the reference curve is constructed all measurements within each bin are translated,
along a linearised segment from the left bin edge to the right bin edge, to the bin-center (see
fig. 6.1-6.3). It is assumed that the data is normally distributed after the translation.

Figure 6.1: Example of bin translation for
power signal.

Figure 6.2: Example of bin translation for
rotor speed signal.

Figure 6.3: Example of bin translation for pitch signal.

Residuals can now be computed by subtracting the bin-center of the reference curve from
the translated bin values. In order to treat all residual data in one monitoring system each
bin is normalised to get standard normally distributed residuals.
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6.3 Control charts

The end goal of using control charts, to monitor the normalised residuals, is to eliminate
variability in the process by assigning causes to "special variation" (outside control limits) in
contrast to "normal variation" (within control limits) which is inherently present in real life
processes. In other words it distinguishes abnormal variation from background noise. For
the purpose of detecting leading edge erosion, control charts are used to monitor the three
SCADA signals mentioned in section 6.1; (active) power, rotor speed and pitch angle.
As mentioned in section 6.1 each signal has its region of interest for which the data is filtered
before computing the control charts. Since this research is focused on a long term shift
in the distribution of the signal it is additionally smoothed with a moving average (MA)
over a month (30 days). This was necessary to reduce the noise to an acceptable level. A
drawback of this operation is that the signal reacts slower to a change and thereby increases
the chance on false negatives (Type II error). However, after the incubation of mass loss
the phenomenon of LEE is characterised by a monotonic linear process (Bartolomé and
Teuwen [2019]) which means type II errors induce a higher average detection time (ADT)
instead of no detection. Nevertheless, up to which extent it is possible to detect degradation
is dependent on the variability of the reference year. An exponentially weighted moving
average (EWMA) is finally computed to monitor the signal in a control chart. In statistical
process control (SPC) the EWMA is a well known method and firstly introduced in 1959
by S. Roberts, later on republished in Roberts [2000]. It is characterised by the following
equation:

zi = λx̄i + (1 – λ)zi–1 (6.1)

with

0 < λ ≤ 1

where zi is the value of the EWMA at time period i, x̄i is the incoming measurement from
the process and λ the smoothing factor. The smoothing factor can be tweaked to find a
balance in minimising the ADT and both the type I & II errors. z1 is set to be the average
of the first day of 10-min, which comes down to 144 measurements. The control limits are
computed according to the following equations:

UCL = μ0 + k · σzi (6.2)
LCL = μ0 – k · σzi (6.3)

with

σzi = σx̄

√
λ

(2 – λ)
(6.4)
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where μ0 is zero since the residuals are standard normally distributed, k is chosen to be
3 which is often used in statistical process control, σzi is the standard deviation of zi and
σx̄ is the process standard deviation taken from the reference year. UCL and LCL are
abbreviations for the upper and lower control limit respectively. Figure 6.4 shows an example
of a control chart for the power signal. Essentially the control chart is a continuous way of
testing a null hypothesis. The null hypothesis is defined as the process being in a state of
statistical control. When the signal is in between the two control limits it is failing to reject
the null hypothesis. Crossing one of the control limits is equivalent to rejection of the null
hypothesis that says it is in statistical control [Montgomery, 2020].

Figure 6.4: Example of power signal control chart.

To rephrase it in a more practical way; if the EWMA is crossing the upper control limit
(UCL) it is said to overperform. This means that the signal (power, pitch angle or rotor
speed) is on average higher than in the reference period. For crossing the lower control limit
(LCL) the exact opposite is true; the signal is on average lower than in the reference period
and therefore said to underperform.

6.4 Dependencies

The model has three dependencies that influence the performance:

• Variance of the residuals in the reference period

• Length of the reference period

• EWMA smoothing parameter λ
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The first one is inherent to the data and the other two are adjustable. Adjusting the per-
formance of the model comes down to a combination of smoothing the signal and setting
the width of the control limits. The variance of the residuals, during the reference period, is
leading for the width of the control limits. It induces the variance of the EWMA signal as
outlined in equation 6.4. The smoothing parameter λ is an additional factor that influences
the width of the control limits and can be used to find a balance between Type I & II errors.
A more elaborate study on the effect of λ is performed in section 7.4. Finally, it is chosen
in this study to take the first year of data as reference period in order to cover all seasons.
This makes sure that all seasonal phenomena, that are not yet filtered out or normalised, are
represented in the reference curves created which makes the model more robust. In the ideal
situation all possible seasonal effects are filtered out during the data preparation phase. If
that is the case one could examine the possibility to use shorter reference periods.
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7 | Model verification
A verification of the model is necessary in order to proof that it is performing as it should.
Moreover, it is interesting to know how well the model is performing quantitatively. Two
techniques, with different assumptions, are used to generate synthetic data. Section 7.1
elaborates on the first technique using a Monte Carlo (MC) simulation with standard nor-
mally distributed random samples. The second technique using a Fourier simulation with
randomised phases is explained in section 7.2. Section 7.3 elaborates on two variations of
implementing an artificial degradation with the preferred Monte Carlo simulation in order
to show the impact from different perspectives. A sensitivity study for the model smoothing
parameter λ is performed in section 7.4. It is important to note that a verification study
needs to be performed for every individual turbine since the performance of the model is
dependent on the reference period. The example figures generated in this chapter are all
based on one turbine.

7.1 Monte Carlo simulation

The Monte Carlo method is based on repeated random sampling in order to simulate a
random process. By using this method it is assumed that the normalised residuals in the
reference period are random, independent and normally distributed and can be modelled
by simulating white noise. Figure 7.1 shows the steps that are taken to generate synthetic
data-sets.

Figure 7.1: Monte Carlo simulation scheme.

Three years of data are simulated for each iteration. A degradation is applied in the second
simulated year and is kept steady for the following (third) simulated year. This process is
repeated 100 times to produce reliable statistics for the performance values that are tracked.
The following performance values are computed:

• Average detection time (ADT)
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• False negative rate (FNR)

• False positive rate (FPR)

The false positive rate is computed by using the same simulation without the introduction of
an artificial degradation. As discussed in section 6.3, the false positive rate strongly depends
on the smoothing factor λ that is chosen. Section 7.4 will elaborate on the discussion of
choosing the right λ-value.

7.2 Fourier simulation

It could be argued that over or underperformance is dependent on the environmental con-
ditions that have a possible time-dependency. The MC-simulation assumes uncorrelated
normalised residuals (white noise) where all frequencies have equal intensities. A Fourier
simulation on the other hand preserves time dependency of the data by preserving the va-
riety in intensity per frequency. The process of generating synthetic data with the Fourier
simulation is almost the same as with the Monte Carlo simulation except for the generation
of the standard normal random samples. The scheme in figure 7.2 shows how the synthetic
normalised residuals are generated which should be seen as a replacement for the first block
in the bottom left of figure 7.1.

Figure 7.2: Fourier simulation scheme.

Because of the filtering process in section 5.5, the time series is not complete anymore. This
means that the correlation in the signal gets lost. The maximum length of consecutive
measurements in the data set, after filtering, is approximately 180 10-min measurements,
i.e. 30 hours. This is too short to represent the majority of the spectrum and include low-
frequency information. The loss of information is shown, in figures 7.3-7.8, by plotting the
autocorrelation for an incomplete time series of the reference year and a complete time series
for a sub-set in the reference year that has consecutive measurements.
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Figure 7.3: Autocorrelation plot for the
power signal with a complete consecutive
sub-set of the reference year.

Figure 7.4: Autocorrelation plot for the
power signal in the reference year (incom-
plete time series).

Figure 7.5: Autocorrelation plot for the
pitch signal with a complete consecutive sub-
set of the reference year.

Figure 7.6: Autocorrelation plot for the
pitch signal in the reference year (incomplete
time series).

Figure 7.7: Autocorrelation plot for the ro-
tor speed signal with a complete consecutive
sub-set of the reference year.

Figure 7.8: Autocorrelation plot for the ro-
tor speed signal in the reference year (incom-
plete time series).
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Due to the incompleteness of the data it is not possible to use a valid Fourier simulation. For
this reason it is chosen to proceed with the Monte-Carlo method to simulate the normalised
residuals as white noise.

7.3 Artificial degradation

Two different variations of the progression of degradation are simulated in order to show the
impact from multiple perspectives. Firstly, a linear ramp degradation applied over one year
and secondly a step degradation. The degradation is directly applied on the signal of interest
(power, rotor speed and pitch) as shown in figure 7.1. Since the analysis is focused on the
long term permanent impact of LEE, detection is defined as the signal that is out of control
for a period of 1400 consecutive data entries (10-min measurements). This translates into
approximately 10 days which can slightly vary because of missing or filtered measurements.

Simulated ramp degradation

Since the development of erosion is a gradual process it is believed that a ramp degradation
is a good approximation of the reality. The degradation is applied linearly over one year. An
example of average detection times can be seen in figure 7.9. The vertical error bars indicate
the standard deviation of the simulation results. Not all signals have a value for every
degradation step which is explained by a false negative rate (Type II error) of 100% which
can be seen in figure 7.10. This means that these degradation values cannot be detected by
the model.

Figure 7.9: Example of average detection
time for a range of simulated ramp degra-
dation values with a MC-simulation.

Figure 7.10: Example of false negative rates
for a range of simulated ramp degradation
values with a MC-simulation.
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Simulated step degradation

The analysis of a step degradation is performed in order to get a better feeling for how fast the
model reacts. Figure 7.11 shows the average detection times that are, not surprisingly, lower
then with a ramp degradation. The false negative rates, shown in figure 7.12, are almost
the same as with a ramp degradation. It is expected to converge when more iterations
are performed since the smoothing factor lambda and the reference period are the same.
Therefore the ramp degradation should only differ in performance of detection times and
not in precision.

Figure 7.11: Example of average detection
time for a range of simulated step degrada-
tions with a MC simulation.

Figure 7.12: Example of false negative rates
for a range of simulated step degradations
with a MC simulation.

7.4 Sensitivity analysis

The smoothing parameter of the EWMA signal (λ) makes it possible to optimise the perfor-
mance of the model to certain user preferences. A balance must be found between minimising
the average detection time, the false positive rate (Type I errors) and the false negative rate
(Type II errors). The latter is translated, in this case, to not detecting a certain degree of
degradation. A sensitivity analysis is performed with different lambda values for all three
signals of interest. Figure 7.13 shows the result for the power signal. The other two signals,
pitch and rotor speed, showed the same trend and can be seen in appendix B. Interesting
to note is that when λ = 1 the EWMA control chart reduces to a Shewhart control chart.
Literature indicates that EWMA control charts perform better in detecting smaller shifts
than Shewhart control charts. This difference in behaviour can clearly be seen in figure 7.13.
However, as lambda is decreasing the false positive rate is increasing which is shown in figure
7.14. It is up to the end-user to decide what level of Type I errors is allowed and thereby
accepting the fact that smaller degradations are not detected. It is chosen to continue with a
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lambda value of 0.3 for the remainder of this research as that seems to be around the change
point where the false positive rate starts increasing exponentially. Moreover, for all three
signals the false positive rate stays within 1%.

Figure 7.13: Lambda sensitivity for the
power signal.

Figure 7.14: False positive rate (Type I
errors) for the power signal with varying
lambda values.
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8 | Data evaluation
The verified model is applied on real data to evaluate the usability. Unfortunately, detailed
information on the history of repair and maintenance events were not available during this
research which made it impossible to validate actual detection of LEE. The code is gener-
alised in such a way that it is possible to run an analysis for every turbine in the portfolio of
Vattenfall. However, to limit the scope of this research several interesting turbines, from one
park, are chosen to prevent an overload of information. The actual names of the turbines
are replaced by random denotations. For internal use a mapping is given in the dedicated
appendix for Vattenfall.

This specific wind farm is chosen because two inspection reports, from the end of 2017 and
begin 2021, were available with clear pictures of leading edge erosion at several turbines. It
is interesting to check whether, towards these inspection dates, a clear trend can be found
for the turbines that suffer from LEE. A vertical blue line is drawn in the control charts to
mark the dates of inspection. The model parameters were set as shown in table 8.1 based
on section 6.4 and 7.4. Turbines at the edge of the farm are chosen in order to have a free
wind sector.

Table 8.1: Model settings

Parameter Value Unit

reference period 1 [year]
EWMA smoothing factor (λ) 0.3 [–]

8.1 Turbine 1

The inspection documents of turbine 1 report several smaller damages and one substantial
damage due to LEE for the inspection in 2017. Furthermore, damage and peeling of the
foil is reported. Moreover, the most recent inspection in 2021 shows severe LEE. Pictures
of these damages can be seen in appendix section C.1. After preparation of the data, 36.9%
is left for the analysis. Figures of the preparation process, comparable to what is shown in
chapter 5, can be found in C.1 .

Results

Figures 8.1-8.3 show the control charts of the power, pitch and rotor speed signal respectively.
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Figure 8.1: Power signal control chart, turbine 1.

Figure 8.2: Pitch signal control chart, turbine 1.



41

Figure 8.3: Rotor speed signal control chart, turbine 1.

Looking at the control charts one can see that despite the extensive data preparation and
smoothing techniques used, the signal is still very unstable and shows a lot of variability. The
power and pitch signal are clearly getting out of control at the start of 2016. The distribution
made a shift downward which caused a crossing of the control limit. This means that for
the same wind speeds both signals consistently show lower values. As explained in section
6.1 such an event could potentially be due to LEE. Due to the lack of access to repair and
maintenance data, in this research, it is hard to explain the recovery and thereby providing
evidence for LEE. More importantly, the signal does not show clear signs of degradation at
the time of the inspection where there is hard evidence of LEE (see table 8.2). Furthermore,
a big drop is detected at the end of 2019 which lasts until the end of 2020. It recovers slowly,
against expectations, towards the second inspection where severe LEE and even voids are
detected.

Table 8.2: Summary of turbine 1 control chart signal during inspections.

Signal Inspection LEE state In/Out of control Monotonic behaviour
(prior to inspection)

Power 2017 Substantial Out of control No
2021 Critical Out of control No

Pitch 2017 Substantial In control No
2021 Critical In control No

Rotor speed 2017 Substantial In control No
2021 Critical In control No
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Verification

The Monte Carlo simulation without degradation factor generated false positive rates as
shown in table 8.3. A lower lambda value could be used to realise lower average detection
times. This would, however, increase the false positive rates as shown in section 7.4. It is
up to the user to decide on what false positive rates are acceptable.

Table 8.3: False positive rates (Type I errors) with MC-simulation, turbine 1

Signal Value Unit

Power 0.0 [%]
Pitch angle 0.07 [%]
Rotor speed 0.0 [%]

The ramp degradation modelled with a Monte Carlo simulation is chosen as representative
situation, as mentioned in chapter 7. Results for the step degradation are shown in appendix
section C.1. Figure 8.4 shows the average detection times (ADT) for different degradation
intensities. Missing ADT values for both pitch and power are explained by a 100% false
negative rate shown in figure 8.5. This means that the model was not able to detect these
degradation intensities.

Figure 8.4: Average detection time perfor-
mance of model for ramp degradation with
Monte-Carlo simulation, turbine 1.

Figure 8.5: False negative rate (Type II er-
ror) performance of the model for a ramp
degradation with Monte-Carlo simulation,
turbine 1.
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8.2 Turbine 2

Turbine 2 is located at the south-west corner of the wind farm which is the most optimal
place according to the wind rose. 39.3% of the data is preserved after filtering which can be
seen in figures C.22-C.30. The inspection in 2017 shows light LEE with additional peeling
of the protecting leading edge foil. Severe to critical damage is detected in the inspection of
2021 where the core of one blade tip is visible.

Results

Figures 8.6-8.8 show the control charts of the power, pitch and rotor speed signal respectively.

Figure 8.6: Power signal control chart, turbine 2.
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Figure 8.7: Pitch signal control chart, turbine 2.

Figure 8.8: Rotor speed signal control chart, turbine 2.

During the inspection of 2017 all three signals are across the upper control limit. This means
that, for the same wind speeds, those measurements are higher than during the reference
period. Moreover, it is remarkable that, at the time of the inspection in May 2021 where
severe and critical LEE is discovered, the power signal is in control and therefore no shift
of the distribution is detected in this signal. In fact, the signal seems to be very similar to
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the years before. Also the pitch and rotor speed signal are not deviating substantially from
other years. These findings are summarised in table 8.4.

Table 8.4: Summary of turbine 2 control chart signal during inspections.

Signal Inspection LEE state In/Out of control Monotonic behaviour
(prior to inspection)

Power 2017 Light Out of control No
2021 Critical In control No

Pitch 2017 Light Out of control No
2021 Critical In control No

Rotor speed 2017 Light Out of control No
2021 Critical Out of control No

Verification

The false positive rates computed with a Monte Carlo simulation are shown in table 8.5.

Table 8.5: False positive rates (Type I errors) with MC-simulation, turbine 2

Signal Value Unit

Power 0.5 [%]
Pitch angle 0.0004 [%]
Rotor speed 0.0006 [%]

The rotor speed signal is very stable in the reference period which is reflected in high per-
formance of degradation detection with low average detection times up to a degradation of
0.5% (see figure 8.9). 3% degradation for the power signal still shows a low false negative
rate but the average detection time suggests that it is detected due to randomness since it is
much longer than a year (365 days) in which the degradation is implemented. So a reliable
detection for the power is possible up to a degradation of 5% (see figure 8.10). The pitch
signal shows reliable results up to 2% of degradation.
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Figure 8.9: Average detection time perfor-
mance of model for ramp degradation with
Monte-Carlo simulation, turbine 2.

Figure 8.10: False negative rate (Type II er-
ror) performance of the model for a ramp
degradation with Monte-Carlo simulation,
turbine 2.

8.3 Turbine 3

Multiple substantial damages were reported for this turbine, at the inspection of end 2017, as
can be seen in figure C.33-C.35. The erosion has advanced up to a state where the laminate
is exposed to the environment. Leading edge erosion is also found at the inspection of April
2021 (fig. C.36-C.37). The wind rose of this farm is not in favour of this turbine what results
in a smaller free wind sector. Only 23.5% of the data is left after filtering (fig. C.38). The
impact of every filter is shown in figures C.39-C.46.

Results

Figures 8.11-8.13 show the control charts of the power, pitch and rotor speed signal respec-
tively.
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Figure 8.11: Power signal control chart, turbine 3.

Figure 8.12: Pitch signal control chart, turbine 3.
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Figure 8.13: Rotor speed signal control chart, turbine 3.

At the time of the inspection in 2017 all three signals are out of control. However, the power
and rotor speed signal show overperformance instead of expected underperformance. As it
is a very sudden and temporary increase, it is suspected that something is wrong with the
measurements or measurement devices. Furthermore, on average the power signal seems to
be degraded from 2015 up till the sudden jump in 2017. Because of the variability in the
signal it jumps in and out of control depending on the time of the year. During this period
the pitch signal seems to be degraded on average as well, whereas the rotor speed signal stays
noisy around the zero-line. A possible explanation could be that, according to Sareen et al.
[2014], degradation effects are more visible at higher angles of attack (above rated area) and
thus should be visible in the pitch signal earlier in this analysis according to the hypothesis of
this research. From mid 2020 a large decrease in the power and rotor speed signal is visible.
No measurements are available for the pitch control chart because everything is curtailed
before it reaches rated power and therefore it is filtered by the model. The fact that the
turbine is curtailed for a longer period suggests that there is a known problem. Interesting
enough, the power and rotor speed signal seem to recover after the inspection date which is
against expectations just as with turbine 1. The findings for the control charts during the
inspection dates are summarised in table 8.6.
Furthermore, deviating groups of outliers are visible in the rotor speed signal from 2015
onward. After investigation this was the case at multiple turbines that are investigated.
Section 8.4 elaborates on this issue.
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Table 8.6: Summary of turbine 3 control chart signal during inspections.

Signal Inspection LEE state In/Out of control Monotonic behaviour
(prior to inspection)

Power 2017 Severe Out of control No
2021 Substantial Out of control No

Pitch 2017 Severe Out of control No
2021 Substantial - -

Rotor speed 2017 Severe Out of control No
2021 Substantial Out of control No

Verification

The simulations without degradation factor generated false positive rates as shown in table
8.7. Since lambda is kept constant during runs for different turbines it can be seen that a
balance must be found between minimising both the ADT and FPR.

Table 8.7: False positive rates (Type I errors) with MC-simulation, turbine 3

Signal Value Unit

Power 0.2 [%]
Pitch angle 0.2 [%]
Rotor speed 0.8 [%]

Figure 8.14 and 8.15 indicate that a power degradation of more than 5% should always be
detected for this turbine. One trend that can be seen is that a more stable reference period
contributes on average to lower detection times.
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Figure 8.14: Average detection time perfor-
mance of model for ramp degradation with
Monte-Carlo simulation, turbine 3.

Figure 8.15: False negative rate (Type II er-
ror) performance of the model for a ramp
degradation with Monte-Carlo simulation,
turbine 3.

8.4 General findings

During the analysis of the rotor speed control charts, from different turbines, it was observed
that consistent deviations were present from approximately 2015 onward. For example in the
upper part of figure 8.13. Through investigation of individual bin control charts it became
clear that most probably a software update was implemented. The lower wind speed bins,
up to 6 m/s indicated a sudden step change in the mean rotor speed as can be seen in figure
8.16 and 8.17.

Figure 8.16: Rotor speed bin control chart,
turbine 3, with sudden step change.

Figure 8.17: Rotor speed bin control chart,
turbine 3, with sudden step change.

Such a sudden change increases the variance in the EWMA signal of the complete control
chart. As described in section 6.3; control charts are useful to eliminate variability in the
process by assigning causes to ’special variation’. This finding is a good example of how it
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can be implemented in practice. Figure 8.18 shows the control chart signal without this step
change in comparison to the control chart that still includes the step change (fig. 8.19). For
operational use it would be useful to correct for this new status quo instead of removing the
whole period of deviating data.

Figure 8.18: Rotor speed control chart, tur-
bine 3, without sudden change in lower wind
speed bins.

Figure 8.19: Rotor speed control chart, tur-
bine 3, with sudden change in lower wind
speed bins.

8.5 Discussion

To generalise the different out of control periods in the control charts it is suggested to divide
them into three categories:

• Short periods that are out of control
These are probably caused by unexplained variance in the signal that is not filtered
out or corrected as discussed above.

• Sudden step changes
These are probably explained by software updates or sudden errors in measurement
devices.

• Monotonic decreasing periods
This is the most interesting case to investigate as it is thought to be explained by
degradation of sub-components of the turbine.

It is clear that significant changes of the signal distributions can be detected (out of control
periods). However, without access to validation data, in the form of repair histories, it is
hard to identify root cause events. Moreover, although hard evidence of LEE is present
from inspection reports, no unambiguously monotonic behaviour can be detected prior to
the inspection.
In some cases the EWMA is not oscillating around the zero line. Especially in the reference
period where it is assumed that the turbine is still free from defects this would mean that
there are still phenomena present that are not filtered out or corrected during the preparation
phase. In several cases it even seems like seasonal behaviour. According to a wind resource



52

expert within Vattenfall it could be related to icing or low-level jets which are seasonal
events.
The fact that the EWMA signal is not oscillating around the zero line means that there
is still some dependency in the signal which is confirmed, for small time windows, by the
autocorrelation plots in section 7.2. That also explains deviation of the turbine specific type
I error rates compared to a probability belonging to three standard deviations away from the
average. These probabilities are calculated by assuming independent normally distributed
data. However, not satisfying this assumption in the reference period could contribute to
different limits and therefore different probabilities of exceedance.
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9 | Conclusion &
Recommendations

Based on the results outlined in chapter 8 the research questions are answered in the con-
clusion which can be found in section 9.1. Furthermore, section 9.2 is devoted to recommen-
dations that followed out of these conclusions. Specific recommendations for Vattenfall are
available in a dedicated appendix.

9.1 Conclusion

The blades are a critical component of a wind turbine to convert the kinetic energy from the
wind into electric energy. Due to the long exposure to harsh environmental conditions, de-
velopment of leading edge erosion (LEE) on the blades is a common phenomenon nowadays.
Performance degradation due to LEE is shown in previous research but detection of LEE for
operational turbines is underdeveloped. This thesis investigates the possibility to develop a
detection method by utilising the data that is gathered by the supervisory control and data
acquisition (SCADA) system of the turbine.
Periods of underperformance are clearly detected in the lifetime data of several turbines for
the three signals of interest; power output, pitch angle and rotor speed. However, due to
the lack of access to validation data, these underperformances can not be linked to specific
events and thereby not to leading edge erosion. In fact, the model results from several
turbines, where clear pictures of (severe) LEE are available from on-site inspections, suggest
that the impact of LEE is not significant compared to other unknown factors that cause
deviation from normal behaviour. These outcomes question conclusions from literature where
significant underperformance is said to be caused by leading edge erosion. This means that
if a validation of the results in this research confirm that LEE does not have a significant
impact on the performance, a repair would only be justified by concerns about the structural
integrity of the blade.
Although an interesting correlation between a deviating power signal and both pitch and
rotor speed signal seem to be present. It cannot be proven that both the pitch and rotor
speed signal are good signatures for LEE. Monotonic behaviour of the signals is visible in
some of the periods where underperformance is detected. However, for the turbines that are
analysed in this research no clear monotonic period is present prior to the inspection dates
where LEE is detected.
The verification of the model shows that the performance of detecting degradation is in
the first place strongly dependent on the variability of the data in the reference period of
the turbine. Furthermore, by tuning the model parameters a balance must be found, by
the user, to minimise both the average detection time and type I errors (false positives).
Average detection times are consistently low for the rotor speed signal up to the minimum
degradation tested of 0.5%. For the pitch signal, reliable detection with a low false negative



54

rate is possible for a degradation of 2 – 5%. The power signal shows reliable detection for
degradation of 5% or higher.
All these findings together show that the method is capable of detecting deviating behaviour
of the power, pitch and rotor speed signal. By using control charts a distinction can be made
between normal variation and special variation in the signals of interest. However, to assign
causes to these periods of special variation, repair histories of turbines are needed in order
to investigate the root cause. The method is calibrated on its own reference period and
compares incoming data to detect relative shifts. Furthermore, the data is normalised for
environmental conditions. Therefore the method can be used with arbitrary turbine types
and geolocations. However, areas where the blades are affected by icing are excluded since
this is not covered in the filtering process.

9.2 Recommendations

It would be interesting to investigate the behaviour of the different signals after repairs of
LEE. A sudden jump could explain the impact caused by the LEE that was present before
the repair. Moreover, this could be placed in perspective to other degradation in the history
of the turbine to prioritise efforts to reduce underperformance. However, to explain these
other deviating periods a complete history of the turbine repairs is needed. When this is
available one can also try to explain the periods of underperformance that are present in
the pitch and rotor speed signal. Especially the rotor speed signal would be an interesting
indicator since it is very stable over time which makes it possible to detect small deviations.
Other recommendations can be made regarding the improvement of the model. It would be
worthwhile to perform a variance reduction study on the impact of each filter. If a filter
does not have much impact on the variance of the signal it would be possible to preserve
data instead of removing it. Especially the impact of the free wind sector would be an
interesting case. When it turns out that disturbed sectors do not have a large impact on the
long term trend of the signal it can be considered to neglect this filter. This would make it
possible to monitor turbines that are not on the boundaries of a wind farm. Furthermore,
it is also mentioned in section 8.5 that additional unexplained phenomena and seasonality
should be filtered out or corrected. It is known that some wind parks are equipped with
ice-detection sensors or algorithms. This would be a good additional filter to add to the
preparation phase of the model. More sophisticated residual models can also be explored.
For example, artificial neural networks could give a more stable result since such a model is
not discretised, it is able to explain variance and able to capture seasonality if present. This
could potentially lead to a residual distribution with a smaller spread which makes it possible
to detect smaller changes. As an alternative it is also possible to include the measured air
density and turbulence intensity as a feature instead of applying a simplified correction.
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A | Programming solutions
This appendix is an addition to the chapters written in the report for the reader who is
interested into the more programmatic challenges that arose with the methods used. Two
big challenges that were present during the whole process were keeping the code/analysis;
generalised, to be able to use it for different turbines and parks, and also lean and fast
since handling the data for the lifetime of a turbine becomes very slow if one does not pay
attention.

A.1 Affected time intervals

In order to facilitate the flagging of deviating events such as turbine alarms and curtailment,
a time range must be converted to affected 10-minute intervals. A fast solution, by converting
all events at once, is presented instead of using slow for-loops to check every measurement.

1

2 def affected_intervals(config , df):
3 """
4 Transform time range of database events (alarms , curtailments , etc.)

into affected intervals which match
5 with the SCADA data requested.
6

7 Args:
8 config (.yaml): Config file with all project specific information.
9 df (DataFrame): Dataframe containing from_utc and to_utc

timestamps.
10

11 Returns:
12 aff_intervals (Series): Series with affected rounded timestamps

according to given scada_resolution given in
13 data_config.yaml.
14 """
15 # convert scada resolution (seconds) to nanoseconds
16 interval_resolution = config["scada_resolution"] * 1_000_000_000
17

18 # calculate how many intervals (scada resolution) fit into time range
of event

19 from_utc_rounded = ((df["from_utc"]. astype(np.int64) //
interval_resolution) * interval_resolution).to_numpy(

20 dtype=np.int64
21 ).reshape(-1, 1)
22 to_utc_rounded = ((df["to_utc"]. astype(np.int64) //

interval_resolution) * interval_resolution).to_numpy(
23 dtype=np.int64
24 ).reshape(-1, 1)
25 nr_intervals = ((( to_utc_rounded - from_utc_rounded) /

interval_resolution) + 1).astype(np.uint32)
26
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27 # create affected intervals for each time range (event)
28 interval_arr = np.empty (( nr_intervals.sum(), 1), dtype=np.int64)
29 idx_arr = np.append ([0], nr_intervals.cumsum ())
30 for i in range(len(from_utc_rounded)):
31 intervals = np.arange(
32 from_utc_rounded[i, 0],
33 to_utc_rounded[i, 0] + interval_resolution ,
34 interval_resolution
35 ).reshape(-1, 1)
36

37 interval_arr[idx_arr[i]: idx_arr[i + 1]] = intervals
38

39 interval_arr_unique = np.unique(interval_arr)
40 aff_intervals = pd.to_datetime(pd.Series(interval_arr_unique.flatten ()

, dtype=np.int64))
41

42 return aff_intervals

A.2 Turbulence correction

The IEC 61400-12-1 standard, Annex M, describes how to correct measurements for Tur-
bulence Intensity (TI). In this process the wind speed distribution within a 10-minute mea-
surement is integrated to compute the so called ’simulated power’. In order to facilitate this
operation for a large data set (lifetime of a turbine) a Monte Carlo method is used.

1. 1000 random uniform distributed samples are created for each measurement.

2. These samples are converted with the percent point function (PPF), also known as the
inverse of the cumulative distribution function (CDF), from the normal distribution to
get normally distributed samples.

3. The wind speed mean values are multiplied with the turbulence intensity to compute
the standard deviation which is then multiplied with the normally distributed samples
and added to the wind speed mean. Now 1000 normally distributed wind speed samples
are obtained for each measurement.

4. Then the power is computed for all simulated wind speed samples where after the
average is taken over these 1000 samples per measurement to get the simulated power.

With this method it is assumed that the wind speed will be Gaussian distributed within a
10 minute measurement window.

1

2 def simulated_power(df , max_cp , rated_power , rated_speed , turbine):
3 """
4 Compute the simulated power for given inputs.
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5 Args:
6 df (DataFrame): DataFrame with 10-min aggregated measurements.
7 max_cp (float): Maximum pressure coefficient.
8 rated_power (float): Rated power of turbine.
9 rated_speed (float): Rated wind speed of turbine.

10 turbine (object): Turbine object with information about turbine.
11

12 Returns:
13 power_sim (array): Array with simulated power for each measurement

.
14 """
15 rho_ref = 1.225
16 rotor_area = (1 / 4) * np.pi * (turbine.rotor_diameter **2)
17 nr_samples = 1000
18

19 # create windspeed samples with Monte Carlo sampling
20 samples = np.random.rand(nr_samples , len(df))
21 ppf_samples = norm.ppf(samples)
22 windspeed_samples = (
23 df["WindSpeed", "mean"]. to_numpy ().reshape(-1, 1) * df["TI", "

mean"]. to_numpy ().reshape(-1, 1)
24 ).T * ppf_samples + df["WindSpeed", "mean"]. to_numpy ().reshape(1, -1)
25

26 # multiply with power
27 power_zt = np.zeros ((nr_samples , len(df)))
28 rated_bool = windspeed_samples < rated_speed
29 power_zt = power_zt + rated_bool.astype(np.int) * (0.5 * rho_ref *

max_cp * rotor_area * (windspeed_samples ** 3))
30 power_zt = power_zt + (~ rated_bool).astype(np.int) * rated_power
31

32 # sum and divide by number of samples
33 power_sim = (power_zt.sum(axis =0) / nr_samples).T
34

35 return power_sim
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B | Sensitivity analysis

Figure B.1: Lambda sensitivity for the pitch
signal.

Figure B.2: False positive rate (Type I
errors) for the pitch signal with varying
lambda values.

Figure B.3: Lambda sensitivity for the rotor
speed signal.

Figure B.4: False positive rate (Type I er-
rors) for the rotor speed signal with varying
lambda values.
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C | Data evaluation
C.1 Turbine 1

Figure C.1: Inspection Oc-
tober 2017, turbine 1, blade
1.

Figure C.2: Inspection Oc-
tober 2017, turbine 1, blade
2.

Figure C.3: Inspection Oc-
tober 2017, turbine 1, blade
3.

Figure C.4: Inspection April 2021, turbine
1, blade 2.

Figure C.5: Inspection April 2021, turbine
1, blade 3.
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Figure C.6: Overview of filtering statistics, turbine 1.

Figure C.7: Free wind sector for turbine 1. Figure C.8: Flagged alarms for turbine 1.
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Figure C.9: Flagged yaw errors for turbine
1.

Figure C.10: Flagged transient phase mea-
surements for turbine 1.

Figure C.11: Flagged idling phase measure-
ments for turbine 1.

Figure C.12: Flagged curtailment for turbine
1.

Figure C.13: Flagged outliers for turbine 1. Figure C.14: Final clean power curve for tur-
bine 1.
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Figure C.15: Average detection time perfor-
mance of model for step degradation with
Monte-Carlo simulation.

Figure C.16: False negative rate (Type II
error) performance of the model for a step
degradation with Monte-Carlo simulation.

C.2 Turbine 2

Figure C.17: Inspection
November 2017, turbine 2,
blade 1.

Figure C.18: Inspection
November 2017, turbine 2,
blade 2. Figure C.19: Inspection

November 2017, turbine 2,
blade 3.
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Figure C.20: Inspection April 2021, turbine
2, blade 2.

Figure C.21: Inspection April 2021, turbine
2, blade 3.

Figure C.22: Overview of filtering statistics, turbine 2.
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Figure C.23: Free wind sector for turbine 2. Figure C.24: Flagged alarms for turbine 2.

Figure C.25: Flagged yaw errors for turbine
2.

Figure C.26: Flagged transient phase mea-
surements for turbine 2.

Figure C.27: Flagged idling phase measure-
ments for turbine 2.

Figure C.28: Flagged curtailment for turbine
2.
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Figure C.29: Flagged outliers for turbine 2. Figure C.30: Final clean power curve for tur-
bine 2.

Figure C.31: Average detection time perfor-
mance of model for step degradation with
Monte-Carlo simulation.

Figure C.32: False negative rate (Type II
error) performance of the model for a step
degradation with Monte-Carlo simulation.
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C.3 Turbine 3

Figure C.33: Inspection
November 2017, turbine 3,
blade 1.

Figure C.34: Inspection
November 2017, turbine 3,
blade 2.

Figure C.35: Inspection
November 2017, turbine 3,
blade 3.
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Figure C.36: Inspection April 2021, turbine
3, blade 2.

Figure C.37: Inspection April 2021, turbine
3, blade 3.

Figure C.38: Overview of filtering statistics , turbine 3.
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Figure C.39: Free wind sector for turbine 3. Figure C.40: Flagged alarms for turbine 3.

Figure C.41: Flagged yaw errors for turbine
3.

Figure C.42: Flagged transient phase mea-
surements for turbine 3.

Figure C.43: Flagged idling phase measure-
ments for turbine 3.

Figure C.44: Flagged curtailment for turbine
3.
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Figure C.45: Flagged outliers for turbine 3. Figure C.46: Final clean power curve for tur-
bine 3.

Figure C.47: Average detection time perfor-
mance of model for step degradation with
Monte-Carlo simulation.

Figure C.48: False negative rate (Type II
error) performance of the model for a step
degradation with Monte-Carlo simulation.
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