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Cluster growth in two- and three-dimensional granular gases

S. Miller1 and S. Luding1,2,*
1Institut für Computeranwendnungen 1, Universita¨t Stuttgart, Pfaffenwaldring 27, D-70569 Stuttgart, Germany

2Particle Technology, DelftChemTech, TU Delft, Julianalaan 136, 2628 BL Delft, The Netherlands
~Received 28 April 2003; revised manuscript received 18 August 2003; published 30 March 2004!

Dissipation in granular media leads to interesting phenomena such as cluster formation and crystallization in
nonequilibrium dynamical states. The freely cooling system is examined concerning the energy decay and the
cluster evolution in time, both in two and three dimensions. We also suggest an interpretation of the three-
dimensional cluster growth in terms of percolation theory, but this point deserves further study.
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I. INTRODUCTION

Granular media are interesting multiparticle systems w
a rich phenomenology@1–5#. They can form a hybrid state
between a fluid and a solid, where the behavior is contro
by the balance between energy input and energy dissipa
Energy input leads to a reduction of the density due to m
collisions and increasing pressure, so that the material
flow. In the absence of energy input, e.g., in freely cooli
systems, granular materials become denser, i.e., they lo
‘‘solidify’’ due to dissipation. Because of mass conservatio
the local densification is accompanied by a density decre
in other parts of the system, giving rise to complex patte
and structures, with an interesting time evolution. Howev
theoretical approaches are nonclassical and appear ofte
tremely difficult, so there is still active research directed
wards the better understanding of granular media.

The subject of this paper is the pattern formation via cl
tering in a dissipative, freely cooling granular gas@6–12#.
The basic idea of clustering is that in an initially homog
neous freely cooling granular gas, fluctuations in density,
locity, and temperature cause a position dependent en
loss. Due to strong locally inhomogeneous dissipation, p
sure and energy drop rapidly and material moves from ‘‘h
to ‘‘cold’’ regions, leading to even stronger dissipation a
thus causing the density instability with ever growing clu
ters until eventually, clusters reach system size~see Fig. 1!.

We investigate this clustering instability with respect
different dissipation rates and different system sizes. E
though many of our findings are empirical, we attempt
reduce the complexity of the evolution of the system by u
of simple scaling laws.

In Sec. II, we explain in detail the simulation approac
The results of our numerical experiments are discusse
Sec. III. Finally, in Sec. IV a summary and a discussion
given.

II. SIMULATION DETAILS

A granular gas can be idealized as an ensemble of h
spheres in which the energy loss that accompanies the c
sion of macroscopic particles is modeled with a single co
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ficient of restitutionr. In the simplest case the particles a
identical in size and mass and there are no interpart
forces between collisions.

Details about initial and boundary conditions are given
Sec. II A. The microscopic dynamics of the motion and t
collision of the particles is discussed in Sec. II B and t
simulation method is explained in Sec. II C. Section II
deals with the inelastic collapse, a problematic artifact of
hard sphere model with dissipation.

A. Initial and boundary conditions

The simulation volume consists of a box with equal si
length and periodic boundary conditions in two or three
mensions.

An initial state with random particle positions and veloc
ties is prepared in the following way: The particles first sit
a regular lattice and have a Maxwellian velocity distributi
with a total momentum of zero. Then the simulation
started without dissipation and runs for about 102 collisions
per particle. This state is now used as initial configuration
the dissipative simulations.

FIG. 1. Density distribution in a snapshot of a 3D system w
512 000 particles, volume fractionr50.25, and restitution coeffi-
cient r 50.3. Each sphere represents a cell with about 40 parti
in average. The size of the spheres is proportional to the local d
sity; very small spheres~corresponding to low densities! are
omitted.
©2004 The American Physical Society05-1
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B. Microscopic dynamics

Between collisions no forces act upon the particles a
they move at constant velocity. The particles are idealized
hard spheres. This means that collisions take infinitesi
time and involve only two particles. Conservation of m
mentum leads to the collision rule@6,13#

v1/28 5v1/27
11r

2
@ k̂•~v12v2!# k̂, ~1!

where a prime indicates the velocitiesv after the collision,k̂
is a unit vector pointing along the line of centers from p
ticle 1 to particle 2, andr is the coefficient of restitution. The
relative tangential velocity does not change during a co
sion, the relative normal velocity changes its sign and
reduced by a factor 12r . Energy dissipation is proportiona
to l512r 2, so that the elastic limitr 51 impliesl50, i.e.,
no dissipation, whiler ,1 impliesl.0.

C. Event-driven molecular dynamics

The simulation of hard spheres can be handled efficie
with event-driven molecular dynamics@14,15#. The colli-
sions are the events which have to be treated by the a
rithm. Between these collisions the particles move on triv
trajectories and so the algorithm can easily compute the p
of time t12 of the next collision of two particles 1 and 2 a

t125t02r12•v12/v12
2 1A~r12•v12!

22~r 12
2 2d2!v12

2 /v12
2 ,

~2!

where v125v2(t0)2v1(t0) and r125r2(t0)2r1(t0) are the
relative velocities and positions of the particles at timet0,
andd is the diameter of a particle.

The algorithm processes the events one after another
ter a collision the positions and velocities of the two i
volved particles are updated; the state of all other partic
remains unchanged. For the two colliding particles, n
events are calculated and the next future event is store
the event priority queue for both particles. The next even
obtained from the priority queue, the new positions and
locities after the collision for the collision partners are u
dated, and so on. Neighborhood search is enhanced
standard linked cell methods@16#, where the cell change of
particle is treated as a new event type. The details of
algorithm can be found in Refs.@14,15,17#.

D. Avoiding the inelastic collapse with the time cutoff model

Our model makes use of hard spheres with an infinit
stiff interaction potential. This is an idealization of re
physical particles and can lead to the dramatic consequ
of inelastic collapse: An infinite number of collisions occu
in finite time. This singularity is unphysical, of course, and
major drawback for numerical simulations, too. But it h
been shown that one can circumvent this artifact of
model in the following way@18#: If two consecutive colli-
sions of a particle happen within a small timetc , dissipation
03130
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is switched off for the second collision. This time steptc
corresponds to the duration of the contact of physical p
ticles.

There exist other deterministic and random models wh
prevent inelastic collapse. Even though many of them lac
solid theoretical background and physical motivation, th
details should be insignificant for the physical evolution
the system anyway, since only a small negligible fraction
the particles in the system is involved in the inelastic c
lapse. For an extensive discussion see Ref.@18#.

III. NUMERICAL EXPERIMENTS

The simulation is started from a homogeneous syst
prepared as described in Sec. II A. Depending on the di
pation l, the densityr, and the numberN of particles, the
system remains in the homogeneous cooling state~HCS! for
some time, until clustering starts and the system beco
inhomogeneous.

We discuss the evolution of the kinetic energy and
collision frequency of the system in Sec. III A. In Sec. III
we investigate the clustering by means of appropriate m
sures of the cluster size distribution. In Secs. III C and III
we encounter interesting parallels with percolation the
and discuss several critical exponents.

A. Kinetic energy and collision frequency

Dissipative collisions lead to a decay of the kinetic ener
and the collision frequency~see Figs. 2 and 3!. From these

FIG. 2. Decay of the kinetic energyE ~top! and the collision
frequencyf c ~bottom! plotted against scaled timet in a 2D system
with N53162599 856 particles, volume fractionr50.25, and dif-
ferent restitution coefficientsr ~increasingr from top to bottom!.
The thick solid lines correspond to the theoretical predictions
given in the inset.
5-2
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figures three different regimes can be clearly distinguish
They are as follows.

~1! The HCS at the beginning, when no clusters ha
formed yet, is well understood@19,20#. The decay of the
kinetic energyE is governed by the equation

E~t!5
E~0!

~11t!2
, ~3!

with the scaled timet5(l/2D)(t/tE). D is the dimension of
the system andtE is the initial Enskog collision timetE

5(Apd)/@2ADvrgd(r)#. v is the mean velocity of a par
ticle, d its diameter,r is the volume fraction, andgd is the
contact probability. In two dimensions~2D! gd(r)5(1
27r/16)/(12r)2 and in 3Dgd(r)5(12r/2)/(12r)3.

The evolution of the collision frequency per particlef c(t)
with time is given by

f c~t!5tE
21~0!AE~t!

E~0!
~4!

and it is the natural time scale controlling the evolution
the system in the HCS.

~2! When clusters start to grow, the decays deviate fr
these laws. In thecluster-growth regime, the decay of the
kinetic energy slows down. Furthermore, the collision f
quency fluctuates a lot and can even increase. Note tha
collision frequency is no longer a natural time scale of

FIG. 3. Decay of the kinetic energyE ~top! and the collision
frequencyf c ~bottom! plotted against scaled timet in a 3D system
with N58035512 000 particles, volume fractionr50.25, and dif-
ferent restitution coefficientsr ~increasingr from top to bottom!.
The thick solid lines correspond to the theoretical predictions
given in the inset.
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system, since it is mainly determined by cluster-cluster c
lisions, where it increases strongly. The deviation from E
~3! occurs earlier and is more dramatic for larger dissipat
l, i.e., smallerr. However, the cluster-growth regime
characterized by an energy decay aroundE;t21, indepen-
dently of r, cf. Ref. @10#. ~In 3D the exponent might be
slightly larger than unity; a best fit yieldsE;t21.160.1.! In
contrast, the evolution of the collision frequency with tim
depends onr during cluster growth. This regime is mor
distinct for large dissipationl and large system sizesN1/D

and can, e.g., barely be seen forr 50.98 in Fig. 3.
~3! Finally, when the largest cluster in the population h

reached system size in thesaturation regime, the cooling
resembles the homogeneous cooling state in so far
E(t)}t22 and f c(t)}t21, even if the latter still shows
large fluctuations. In Fig. 2 this regime is not clearly visib
because the simulation times are not long enough for
system.

More details of the 2D situation were discussed in Re
@8,18# and references therein. Further studies on the th
dimensional systems are in progress.

B. Cluster growth

The energy loss of the particles first leads to a redu
separation velocity after collision and eventually to the fo
mation of clusters. But the definition of a cluster suffers fro
the fact that it takes an infinite number of collisions for t
particles to stay in permanent contact with each other@9#. So

FIG. 4. Growth of the first momentM1 ~top! and the second
momentM2 ~bottom! of the cluster size distribution plotted again
scaled timet in a 2D system withN599 856 particles, volume
fraction r50.25, and different restitution coefficientsr ~increasing
r from top to bottom!.
s
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FIG. 5. Growth of the first momentM1 ~left! and the second momentM2 ~right! of the cluster size distribution plotted against scaled ti
t in a 3D system withN5512 000 particles, volume fractionr50.25, and different restitution coefficientsr ~increasingr from top to
bottom!.
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we use the following~geometrical! definition: Two particles
belong to the same cluster if their distance is smaller t
s50.1 particle diameters. The choice ofs is arbitrary and
shifts the results; the qualitative behavior of the quantit
discussed below does not depend ons, as long as it is neithe
too small nor too large.1

The momentsMk of the cluster size distribution are de
fined as

Mkª
1

nc
(

i
i kni , ~5!

where nc denotes the total number of clusters andni the
number of clusters of sizei.

In many cases there are a lot of small clusters and
large cluster of sizeNx , which contains a macroscopic frac
tion mxªNx /N of the total numberN of particles. Therefore
we also define reduced momentsMk8 , which do not include
the largest cluster.

In Figs. 4 and 5 the growth of the clusters can be seen
the basis of the first and second moments. After several
lisions, particles start to cluster and the moments of the c
ter size distribution grow until they reach their ‘‘saturation
value.2 A numerical analysis reveals that the increase inM1
and M2 is mainly due to one large cluster which grow
until it reaches its maximum size. In this final state th
cluster contains a macroscopic fractionmx of the particles
~see Fig. 6!.

The onset time of cluster growth and also the final s
mx of the large cluster depend strongly on the restitut
coefficientr ~see Figs. 4 and 5!. At low dissipation rates, for
a long time nothing interesting happens and finally small a
strongly fluctuating clusters appear. High dissipation lead

1For a detailed study of differents in 2D see Ref.@9#; in 3D, the
s dependence of some quantities seems to be stronger than fo
ers.

2Saturation means that there is a transition to a regime wit
much slower change of the moments. The dynamics is not finis
however, since the large cluster still can collect particles or br
into pieces.
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almost immediate cluster growth and a very large cluste
last. On the other hand, the system sizeN does not seem to
affect the behavior of the system provided thatN is not too
small ~see Fig. 6!.

It has been shown@6,8,21# that for infinite system size the
system is always unstable to the formation of cluste
whereas for a finite system size the densityr and the dissi-
pation l512r 2 must not be too small. With our choiceN
>105 andr50.25 we expect no cluster formation below th
critical dissipation lc51024 in our 2D system andlc
51022 in our 3D system@8#. This is in good agreement with
our results for the 3D system, where cluster formation s
can be seen with dissipationl50.04, but not forl50.004
~see Fig. 5!.

As can be seen in Fig. 7~top! the onsettc of the growth
of the large cluster in 2D does not depend on the restitu
coefficientr explicitly. ~Implicitly, tc is dependent onr via
rescaled time, of course.! In contrasttc does strongly depend
on r in a 3D system@see Fig. 7~bottom!#.

An empirical formula, which gives the dependency rath
accurately over orders of magnitude inl, is

tc~l!5t11c
~12l!2

l2lc
, ~6!

th-

a
d,
k

FIG. 6. Growth of the large clustermx in a 3D system withN
particles, volume fractionr50.25, and a restitution coefficientr
50.75.
5-4
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CLUSTER GROWTH IN TWO- AND THREE- . . . PHYSICAL REVIEW E 69, 031305 ~2004!
wheret150.2460.02 andc53665 are fit parameters~for
s50.1).

In the limit l→1, one hastc→t1, wheret1 is propor-
tional to the rescaled collision frequency and correspond
t52Dt1tE /l'1.5tE . This constant stems from the fact th
the particles need at least one collision to cluster, howeve
also depends ons. In the limit l→lc the timetc diverges:
the particles never start to cluster.3

Rescaling time in Fig. 7~top! according to Eq.~6! results
in Fig. 8 ~bottom!. There, the onset of the clustering happe
approximately at the same rescaled time, whereas these t
differ by four orders of magnitude in Fig. 7~right!. The
fluctuations intc are not systematically dependent onr.

Another difference between the 2D and 3D system in F
7 is the fact that the cluster growth in 2D starts ve
smoothly, whereas the beginning of the clustering is v
sharp in 3D.

C. Critical exponents in 3D

As the moments of the cluster size distribution are clea
dominated by the large cluster, we will now study the
duced second momentM28 , which does not include the larg
cluster. Figure 9 shows thatM28 is small most of the time,
except for a peak attc . This gives us a clean definition o
tc . But what is more interesting is that parallels to perco

3Since we focused on strong dissipation in this study, rather t
the limit l→lc , we cannot draw a conclusion on the function
behavior from our limited data.

FIG. 7. Growth of the large clustermx in 2D ~top! and 3D
~bottom! for different restitution coefficientsr.
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tion theory arise. In percolation theory@22# one studies the
scaling behavior of certain quantities depending on the oc
pation probabilityp around the percolation thresholdpc .
One result for the reduced second momentM28(p) is, e.g.,

M28~p!;up2pcu2g, ~7!

whereg is a universal critical exponent. In order to transf
this result to cluster growth, we replacep with t andpc with
tc :

M28~t!;ut2tcu2g. ~8!

Indeed we find in Fig. 9 the same power law behavior.
data for different system sizes collapse on the same ma
curve and even the exponentg51.860.1 is in agreement
with the 3D percolation problem resultg51.80 after the
beginning of clustering.

Now, if we study the amplitude of this peak, percolatio
theory tells us that the maximum sits at

pmax;pc~12aL21/n!, ~9!

whereL is the system size,a is a constant, andn is another
critical exponent. Thus we expect

M28~pmax!;Lg/n. ~10!

n

FIG. 8. ~Top! Scaling behavior of the onsettc of the cluster
growth in 3D depending on the dissipation ratel. The curve is Eq.
~6!. ~Bottom! With rescaled timet/tc according to Eq.~6! the
curves of the growth of the large cluster in 3D almost collapse.
5-5
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As the system sizeL;N1/3, the maximum value of the pea
in Fig. 9 scales as

M2,max8 ~N!;Ng/3n. ~11!

Here we can also verify the power law behavior~see Fig.
10!. Our simulations yield the resultg/3n50.7760.09,
which leads ton50.7860.14. Within the rather large margi
of errors this result is close to the 3D percolation probl
n50.88, too.

FIG. 9. Reduced second momentM28 of the cluster size distri-
bution in 3D systems with differentN, volume fractionr50.25,
and a restitution coefficientr 50.6. The data are averaged ov
10–20 different simulation runs.~Top! The curves show a peak a
the onsettc of the cluster growth.~Bottom! Scaling behavior of
M28(t) againstut2tcu; each data curve has two branches, solid a
dotted lines connect data points fort.tc andt,tc , respectively.
The additional line has a slope of21.8.

FIG. 10. Maximal amplitude of the reduced second momentM28
of the cluster size distribution~see Fig. 9!. The line has a slope
of 0.77.
03130
A third exponent4 q is given by the cluster size populatio
at timetc :

ni~tc!; i 2q, ~12!

whereni is the number of clusters of sizei.
Figure 11 yieldsq52.260.2. This result is in agreemen

with the prediction of percolation theoryq52.2, too.
Is this similarity of clustering in 3D and percolation coin

cidence or is there a deeper reason?

D. Consequences

Percolation theory makes many universal predictions
randomly disordered systems. The particles in a granular
form such a disordered system. There have been othe
tempts to apply percolation theory to granular systems@23#,
and also more advanced phase ordering models have
used to parallel the clustering dynamics@11,12#. Our results
indicate that such attempts can be justified, even though
percolation problem is purely static, whereas the cluster
of granular gases also involves the dynamics, i.e., mom
tum and energy.

The only thing that might seem strange at first sight is
derivation of Eq.~8!. Why can we replace the purely stat
quantityp with time t?

In order to introduce the occupation probabilityp in the
clustering problem, we define it as

p~t!ª
M1~t!2M1~t* !

M1~t!
, ~13!

wheret* !tc is a time shortly after the first few collisions
Now, we examinep(t) aroundtc .

Figure 12~right! shows that in 3D,p is almost propor-
tional tot. If we make use of this linear relation and insert
in Eq. ~7!, we arrive at the postulated formula, Eq.~8!.

In contrast, in our 2D system the growth of the lar

4The common notation for this exponent ist. In order to avoid
name conflicts we call itq.

d

FIG. 11. The points give the numbersni of clusters of sizei at
time tc in a 3D simulation withN5512 000 particles, volume frac
tion r50.25, and a restitution coefficientr 50.75. The line has a
slope of22.2.
5-6
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FIG. 12. ‘‘Occupation probability’’p against scaled timet/tc . ~Left! In 2D the data curves are highly nonlinear.~Right! In 3D the data
curves are almost linear.
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cluster happens at a rather large timetc . ~Note thattc is not
very clearly defined in the 2D case, because the onset o
cluster growth is very smooth.! In this late stage, the relatio
betweenp andt is highly nonlinear, see Fig. 12~left!. Thus
we could not find universal critical exponents fort there.
However, it might be possible to find a linear relation for
different set of parameters, e.g., for a different volume fr
tion, too. Whether a 2D system and a 3D system with
same parameters~such as, e.g., volume fraction! are in fact
comparable is another open issue.

IV. SUMMARY AND DISCUSSION

The evolution of freely cooling granular systems can
divided into three regimes. First, the system is in the HC
Then, in the cluster-growth regime, clusters begin to deve
and grow. Finally, in the saturation regime, the clust
merge to practically one large cluster, which grows unti
reaches system size. Besides the macroscopic fraction of
ticles in the large cluster, there are still many small clust
with interesting statistics.

In the HCS, the decay of the kinetic energyE and the
collision frequencyf c can be described by the simple an
lytical expressionsE(t);(11t)22 and f c(t);(11t)21.
The collision frequency is the natural time scale here, ma
determined by the density and the dissipation rate of
system. For strong dissipation, at short range, particles
ready stay closer together after only one collision, so that
moments of the size distribution change rather early due
~short-range! change in the radial pair distribution~data not
shown!.

In the cluster-growth regime, the collision frequen
shows large fluctuations because of cluster-cluster collis
and cannot be predicted during cluster growth, becaus
changes erratically and discontinuously. The energy deca
characterized byE;t21, where the accuracy of the expo
nent is limited in 3D due to the comparatively short durati
of the cluster-growth regime. However, this regime sho
interesting differences between two and three dimensions
3D, cluster growth can be described by a power law beha
with the same critical exponents as in percolation theory. T
onset of this cluster growthtc is very sharp and doe
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strongly depend on dissipationl. In contrast, we could no
find a similar behavior in 2D, where the onset of the clus
growth is very smooth and depends on dissipationl only
implicitly.

When cluster growth has reached a dynamic equilibri
in the saturation regime, the system is dominated by
large cluster which contains a macroscopic fraction of
system. Note that this regime still has an interesting dyna
ics and smaller clusters interact with the large cluster. N
ther the small clusters nor the large one are static and
latter loses or eats up particles or smaller clusters. Kin
energy and collision frequency still fluctuate, but are go
erned by the equationsE(t);t22 and f c(t);t21. This
means the evolution in time is similar to the homogeneo
cooling state.

A very interesting observation is the similarity of cluste
ing in 3D and percolation with respect to the critical exp
nents. Even for the dynamics of cluster growth we ha
found the same exponents as for the occupation probab
in percolation theory. We have provided a tentative expla
tion which is based on the linear relation of the occupat
probability p and time t around the onsettc of cluster
growth in 3D. In 2D we did not find a power law behavio
because the growth of the large cluster happens when
linear relation betweenp andt has disappeared—at least fo
the given set of parameters.

However, there still remain some open questions: W
doestc depend onr in 3D, but not in 2D? Why does the
growth of the large cluster proceed smoothly in 2D a
rather sharply in 3D? And why are all these differenc
present while the energy decay is proportional tot21 in both
cases? Detailed studies of these questions and also o
cluster size probability distribution are in progress as well
a more systematic study of the cluster definition in 3D.
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