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Cluster growth in two- and three-dimensional granular gases
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Dissipation in granular media leads to interesting phenomena such as cluster formation and crystallization in
nonequilibrium dynamical states. The freely cooling system is examined concerning the energy decay and the
cluster evolution in time, both in two and three dimensions. We also suggest an interpretation of the three-
dimensional cluster growth in terms of percolation theory, but this point deserves further study.
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[. INTRODUCTION ficient of restitutionr. In the simplest case the particles are
identical in size and mass and there are no interparticle
Granular media are interesting multiparticle systems withforces between collisions.
a rich phenomenologyl1-5]. They can form a hybrid state Details about initial and boundary conditions are given in
between a fluid and a solid, where the behavior is controlledsec. 1l A. The microscopic dynamics of the motion and the
by the balance between energy input and energy dissipatioaollision of the particles is discussed in Sec. || B and the
Energy input leads to a reduction of the density due to morsimulation method is explained in Sec. Il C. Section Il D
collisions and increasing pressure, so that the material catteals with the inelastic collapse, a problematic artifact of the
flow. In the absence of energy input, e.g., in freely coolinghard sphere model with dissipation.
systems, granular materials become denser, i.e., they locally
“solidify” due to dissipation. Because of mass conservation,
the local densification is accompanied by a density decrease
in other parts of the system, giving rise to complex patterns The simulation volume consists of a box with equal side
and structures, with an interesting time evolution. HoweverJength and periodic boundary conditions in two or three di-
theoretical approaches are nonclassical and appear often axensions.
tremely difficult, so there is still active research directed to- An initial state with random particle positions and veloci-
wards the better understanding of granular media. ties is prepared in the following way: The patrticles first sit on
The subject of this paper is the pattern formation via clus-a regular lattice and have a Maxwellian velocity distribution
tering in a dissipative, freely cooling granular g&s-12.  with a total momentum of zero. Then the simulation is
The basic idea of clustering is that in an initially homoge-started without dissipation and runs for about t@llisions
neous freely cooling granular gas, fluctuations in density, veper particle. This state is now used as initial configuration for
locity, and temperature cause a position dependent energkie dissipative simulations.
loss. Due to strong locally inhomogeneous dissipation, pres-
sure and energy drop rapidly and material moves from “hot”

A. Initial and boundary conditions

to “cold” regions, leading to even stronger dissipation and i, < $800l
thus causing the density instability with ever growing clus- at ‘jggsog
ters until eventually, clusters reach system $&me Fig. L o878 o % s £o
We investigate this clustering instability with respect to g, ° N Bpfon S Roge
different dissipation rates and different system sizes. Even . oo, 5
though many of our findings are empirical, we attempt to o .2
reduce the complexity of the evolution of the system by use . obhss X 26 i
of simple scaling laws. /o A S >
In Sec. Il, we explain in detail the simulation approach. e °8°§ £ © , “oghe o
The results of our numerical experiments are discussed in  /**%% §%O 58 o8 “
Sec. lll. Finally, in Sec. IV a summary and a discussion are o v Sobe
. % ° o, & 8o
given. Vg BYETES P L 0056800,
M B
Il. SIMULATION DETAILS . L T ggee

A granular gas can be idealized as an ensemble of hard g, 1. pensity distribution in a snapshot of a 3D system with
spheres in which the energy loss that accompanies the colls12 000 particles, volume fraction="0.25, and restitution coeffi-
sion of macroscopic particles is modeled with a single coeftientr=0.3. Each sphere represents a cell with about 40 particles

in average. The size of the spheres is proportional to the local den-
sity; very small spheredcorresponding to low densitipsare
*Email address: S.Luding@tnw.tudelft.nl omitted.
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B. Microscopic dynamics 1

Between collisions no forces act upon the particles and
they move at constant velocity. The particles are idealized as
hard spheres. This means that collisions take infinitesimal
time and involve only two particles. Conservation of mo-
mentum leads to the collision ru[é,13]
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where a prime indicates the velocitiesfter the collisionk

is a unit vector pointing along the line of centers from par-
ticle 1 to particle 2, and is the coefficient of restitution. The
relative tangential velocity does not change during a colli-
sion, the relative normal velocity changes its sign and is
reduced by a factor 2r. Energy dissipation is proportional
toA=1-r2, so that the elastic limit=1 implies\=0, i.e.,

no dissipation, whileg <1 impliesA>0.

fete

C. Event-driven molecular dynamics

The simulation of hard spheres can be handled efficiently T
with event-driven molecular dynamidd4,15. The colli-
sions are the events which have to be treated by the algcg— (bottom plotted against scaled imein a 2D syst
rithm. Between these collisions the particles move on trivial rgquencyfc oror plotied against scajed fmein a <L system

. ) . . ~with N=316°=99 856 particles, volume fraction=0.25, and dif-
trajectories and so the algorithm can easily compute the ponﬁ’

) . 4 erent restitution coefficients (increasingr from top to bottom.
of time t4, of the next collision of two particles 1 and 2 as T ( g P )

FIG. 2. Decay of the kinetic energy (top) and the collision

he thick solid lines correspond to the theoretical predictions as
given in the inset.

t17=to— 12 V1ol 0T+ V(12 Vi) 2 — (15— d?)vi/vds,
(20 is switched off for the second collision. This time step
corresponds to the duration of the contact of physical par-
Where V12:V2(t0)_V1(t0) and I‘12=r2(to)—l’1(t0) are the tiCleS-
relative velocities and positions of the particles at titge There exist other deterministic and random models which
andd is the diameter of a particle. prevent inelastic collapse. Even though many of them lack a
The algorithm processes the events one after another. Agolid theoretical background and physical motivation, their
ter a collision the positions and velocities of the two in- details should be insignificant for the physical evolution of
volved particles are updated; the state of all other particleghe system anyway, since only a small negligible fraction of
remains unchanged. For the two colliding particles, newthe particles in the system is involved in the inelastic col-
events are calculated and the next future event is stored #pse. For an extensive discussion see Ri].
the event priority queue for both particles. The next event is
obtained from the priority queue, the new positions and ve- [1l. NUMERICAL EXPERIMENTS
locities after the collision for the collision partners are up-
dated, and so on. Neighborhood search is enhanced wi
standard linked cell method46], where the cell change of a
particle is treated as a new event type. The details of th

th The simulation is started from a homogeneous system,
prepared as described in Sec. Il A. Depending on the dissi-
Qation)\, the densityp, and the numbeN of particles, the

algorithm can be found in Ref614,15,17. system_remains. in the hpmogeneous cooling <td@S) for
some time, until clustering starts and the system becomes
inhomogeneous.
D. Avoiding the inelastic collapse with the time cutoff model We discuss the evolution of the kinetic energy and the

Our model makes use of hard spheres with an infinitel;f:O"i_Sion ffeq“ency of the system in Sec. I A. In SE.EC' B
stiff interaction potential. This is an idealization of real W& iNvestigate the clustering by means of appropriate mea-

physical particles and can lead to the dramatic consequen(,séjres of the cIulster size d|str|bL|||t|c|)n. “FhSeCS- ”II C andhlll D
of inelastic collapse: An infinite number of collisions occurs W& €ncounter interesting parallels with percolation theory

in finite time. This singularity is unphysical, of course, and gand discuss several critical exponents.

major drawback for numerical simulations, too. But it has o o

been shown that one can circumvent this artifact of the A. Kinetic energy and collision frequency

model in the following way{18]: If two consecutive colli- Dissipative collisions lead to a decay of the kinetic energy
sions of a particle happen within a small time dissipation  and the collision frequencgsee Figs. 2 and)3From these
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FIG. 3. Decay of the kinetic energy (top) and the collision
frequencyf. (bottom) plotted against scaled timein a 3D system
with N=80*=512 000 particles, volume fractign=0.25, and dif-
ferent restitution coefficients (increasingr from top to botton.

The thick solid lines correspond to the theoretical predictions a:

given in the inset.

figures three different regimes can be clearly distinguishe

They are as follows.

(1) The HCS at the beginning, when no clusters hav

formed yet, is well understooffl9,20. The decay of the
kinetic energyE is governed by the equation

©)

with the scaled time= (\/2D)(t/tg). D is the dimension of
the system andg is the initial Enskog collision timeg
=(Jmd)/[2/Dvpgq(p)]. v is the mean velocity of a par-
ticle, d its diameter,p is the volume fraction, andy is the
contact probability. In two dimension$2D) gqy(p)=(1
—7pl16)/(1—p)? and in 3Dgy(p)=(1—p/2)/(1—p)3.

The evolution of the collision frequency per parti€ig r)
with time is given by

E(7)

fo(n) =t (0) \ grg

(4)

and it is the natural time scale controlling the evolution of

the system in the HCS.
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FIG. 4. Growth of the first moment, (top) and the second
momentM , (bottom) of the cluster size distribution plotted against
scaled timer in a 2D system withN=99 856 particles, volume
gractionp=0.25, and different restitution coefficientgincreasing
r from top to botton.

System, since it is mainly determined by cluster-cluster col-

lisions, where it increases strongly. The deviation from Eq.

d3) occurs earlier and is more dramatic for larger dissipation

\, i.e., smallerr. However, the cluster-growth regime is
characterized by an energy decay arold 7, indepen-
dently of r, cf. Ref.[10]. (In 3D the exponent might be
slightly larger than unity; a best fit yields~ 7~ 101 In
contrast, the evolution of the collision frequency with time
depends orr during cluster growth. This regime is more
distinct for large dissipatiom and large system size¢®
and can, e.g., barely be seen fer0.98 in Fig. 3.

(3) Finally, when the largest cluster in the population has
reached system size in theaturation regime the cooling
resembles the homogeneous cooling state in so far that
E(r)x7 2 and f.(r)<7 1, even if the latter still shows
large fluctuations. In Fig. 2 this regime is not clearly visible,
because the simulation times are not long enough for this
system.

More details of the 2D situation were discussed in Refs.
[8,18] and references therein. Further studies on the three-
dimensional systems are in progress.

B. Cluster growth

(2) When clusters start to grow, the decays deviate from The energy loss of the particles first leads to a reduced

these laws. In thesluster-growth regimethe decay of the separation velocity after collision and eventually to the for-
kinetic energy slows down. Furthermore, the collision fre-mation of clusters. But the definition of a cluster suffers from
guency fluctuates a lot and can even increase. Note that thike fact that it takes an infinite number of collisions for the
collision frequency is no longer a natural time scale of theparticles to stay in permanent contact with each ofBgrSo
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FIG. 5. Growth of the first momem! ; (left) and the second momehit; (right) of the cluster size distribution plotted against scaled time
7 in a 3D system withN=512 000 particles, volume fraction=0.25, and different restitution coefficients(increasingr from top to
bottom).

we use the followinggeometrical definition: Two particles almost immediate cluster growth and a very large cluster at
belong to the same cluster if their distance is smaller thatast. On the other hand, the system skeloes not seem to

s=0.1 particle diameters. The choice sfis arbitrary and affect the behavior of the system provided thais not too
shifts the results; the qualitative behavior of the quantitiesmall (see Fig. 6.

discussed below does not dependspas long as it is neither It has been showf6,8,21] that for infinite system size the
too small nor too largé. system is always unstable to the formation of clusters,
The momentsM, of the cluster size distribution are de- whereas for a finite system size the dengitand the dissi-
fined as pation A =1—r2 must not be too small. With our choidé¢
=10° andp=0.25 we expect no cluster formation below the
:i 2 in; | (5) critical dissipation\,=10"% in our 2D system and\

=10 ?in our 3D systeni8]. This is in good agreement with

our results for the 3D system, where cluster formation still
where n. denotes the total number of clusters amdthe can be seen with dissipation=0.04, but not forn =0.004
number of clusters of size (see Fig. .

In many cases there are a lot of small clusters and one As can be seen in Fig. {fop) the onsetr, of the growth
large cluster of siz&l,, which contains a macroscopic frac- of the large cluster in 2D does not depend on the restitution
tion my:=N, /N of the total numbeN of particles. Therefore, coefficientr explicitly. (Implicitly, 7. is dependent om via
we also define reduced moments, , which do not include rescaled time, of courseln contrastr, does strongly depend
the largest cluster. onr in a 3D systenfsee Fig. 7(bottom].

In Figs. 4 and 5 the growth of the clusters can be seen on An empirical formula, which gives the dependency rather
the basis of the first and second moments. After several coRccurately over orders of magnitudeXNn is
lisions, particles start to cluster and the moments of the clus-
ter size distribution grow until they reach their “saturation”
value? A numerical analysis reveals that the increas#/ip (1—)\)2
and M, is mainly due to one large cluster which grows Tc(}‘):Tl”LCﬁ' (6)
until it reaches its maximum size. In this final state this ¢
cluster contains a macroscopic fraction, of the particles

(see Fig. 6. ! T —=— Nsi2000
The onset time of cluster growth and also the final size | = % N=125000
. X 08| 8- N= 32768
m, of the large cluster depend strongly on the restitution
coefficientr (see Figs. 4 and)5At low dissipation rates, for 06 | -
a long time nothing interesting happens and finally small and & F S T8
strongly fluctuating clusters appear. High dissipation leads to 04}

02 r

For a detailed study of differertin 2D see Ref[9]; in 3D, the N
s dependence of some quantities seems to be stronger than for oth- 0 R 1(')2 1(')4 10°
ers.

2saturation means that there is a transition to a regime with a
much slower change of the moments. The dynamics is not finished, FIG. 6. Growth of the large clusten, in a 3D system withN
however, since the large cluster still can collect particles or brealparticles, volume fractiopp=0.25, and a restitution coefficiemt
into pieces. =0.75.
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FIG. 7. Growth of the large clustem, in 2D (top) and 3D FIG. 8. (Top) Scaling behavior of the onset, of the cluster
(bottom) for different restitution coefficients. growth in 3D depending on the dissipation rateThe curve is Eq.

(6). (Bottom) With rescaled timer/ 7. according to Eq.(6) the

. curves of the growth of the large cluster in 3D almost collapse.
where 7;=0.24+0.02 andc=36=5 are fit parameter&or

s=0.1).

In the limit \—1, one hasr,— 7y, Wherer; is propor-
tional to the rescaled collision frequency and corresponds t
t=2D rtg/N~1.5tg. This constant stems from the fact that
the particles need at least one collision to cluster, however,
also depends oa In the limit \ —X\. the time 7, diverges:
the particles never start to cluster. M2(p)~[p—p 7, (7)

Rescaling time in Fig. Ttop) according to Eq(6) results
in Fig. 8 (bottom). There, the onset of the clustering happenswherey is a universal critical exponent. In order to transfer
approximately at the same rescaled time, whereas these tim##s result to cluster growth, we replapavith 7 andp. with
differ by four orders of magnitude in Fig. @ight). The  7¢:
fluctuations inr, are not systematically dependent on

Another difference between the 2D and 3D system in Fig.

7 is the fact that the cluster growth in 2D starts very

smoothly, whereas the beginning of the clustering is very R :
sharp in 3D. Indeed we find in Fig. 9 the same power law behavior. All

data for different system sizes collapse on the same master
curve and even the exponemnt=1.8+0.1 is in agreement
C. Critical exponents in 3D with the 3D percolation problem result=1.80 after the

As the moments of the cluster size distribution are clearlyP®9inning of clustering. _ _ _
dominated by the large cluster, we will now study the re- NOW, if we study the amplitude of this peak, percolation
duced second momeM, which does not include the large theory tells us that the maximum sits at
cluster. Figure 9 shows thatl; is small most of the time,
except for a peak atc_. This give§ us a clean definition of Pmax~ Pe(1—aLl ™), 9)

7.. But what is more interesting is that parallels to percola-

wherelL is the system sizeg is a constant, and is another
critical exponent. Thus we expect
3Since we focused on strong dissipation in this study, rather than
the limit A—\., we cannot draw a conclusion on the functional , Iy
behavior from our limited data. M2(Pmax) ~L”"". (10

tion theory arise. In percolation theof22] one studies the
scaling behavior of certain quantities depending on the occu-
Bation probabilityp around the percolation threshotal, .
i(%)ne result for the reduced second momigtif(p) is, e.g.,

Ma(7)~[7= 1|7 ®
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10000 NS512000 _ FIG._ 11. The_pomtg give the numbens of clgsters of size at
N=250047 —»— time 7. in a 3D simulation withN=512 000 particles, volume frac-
No125000 —x tion p=0.25, and a restitution coefficient=0.75. The line has a
1000 1 slope of —2.2.
-
= A third exponertt q is given by the cluster size population
100 | at time 7:
0 ni(7)~i79, (12)
1 10 100 ) .
et wheren; is the number of clusters of size

Figure 11 yieldsg=2.2+0.2. This result is in agreement

FIG. 9. Reduced second momemt, of the cluster size distri- with th? pr_ed_lctl_on of percol_atlo_n theoy=2.2, too._ )
bution in 3D systems with different, volume fractionp=0.25, _ Is this sn_mlarlty of clustering in 3D and percolation coin-
and a restitution coefficient=0.6. The data are averaged over cidence or is there a deeper reason?

10-20 different simulation rungTop) The curves show a peak at

the onsetr, of the cluster growth(Bottom) Scaling behavior of D. Consequences

M(7) againstr— 7|; each data curve has two branches, solid and
dotted lines connect data points fer 7. and 7<<r, respectively.
The additional line has a slope of1.8.

Percolation theory makes many universal predictions for
randomly disordered systems. The particles in a granular gas
form such a disordered system. There have been other at-
As the system size ~NY3, the maximum value of the peak tempts to apply percolation theory to g_ranular syst¢ass,
in Fig. 9 scales as and also more advanced phase ordering models have been

used to parallel the clustering dynamidd,12. Our results

, - indicate that such attempts can be justified, even though the
M3 max(N)~ N7, (11 percolation problem is purely static, whereas the clustering
of granular gases also involves the dynamics, i.e., momen-

Here we can also verify the power law behavisee Fig. tum and energy

10). Our simulations yield the resuly/3v=0.77+=0.09,

) - . . The only thing that might seem strange at first sight is the
which Ieads. tw=0.78+0.14. Within the rather Iar_ge margin - yerivation of Eq.(8). Why can we replace the purely static
of errors this result is close to the 3D percolation problem

—0.883 quantity p with time 7?
v=0.88, too. In order to introduce the occupation probabilfiyin the
clustering problem, we define it as

10000

My(7)—My(7")

p(7) ==W, (13

1000 |

M2,max

where 7* < 7. is a time shortly after the first few collisions.
Now, we examing(7) aroundr,.

Figure 12(right) shows that in 3Dp is almost propor-
tional to 7. If we make use of this linear relation and insert it
100 : in Eq. (7), we arrive at the postulated formula, ES).

5 6 .
10 " 10 In contrast, in our 2D system the growth of the large

FIG. 10. Maximal amplitude of the reduced second monhét
of the cluster size distributiofsee Fig. 9. The line has a slope  “The common notation for this exponentis In order to avoid
of 0.77. name conflicts we call ig.
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FIG. 12. “Occupation probability’p against scaled time/ . (Left) In 2D the data curves are highly nonline@Right) In 3D the data
curves are almost linear.

cluster happens at a rather large time (Note thatr, is not  strongly depend on dissipation In contrast, we could not
very clearly defined in the 2D case, because the onset of thiind a similar behavior in 2D, where the onset of the cluster
cluster growth is very smoothln this late stage, the relation growth is very smooth and depends on dissipatioonly
betweenp and 7 is highly nonlinear, see Fig. 1@eft). Thus  implicitly.
we could not find universal critical exponents ferthere. When cluster growth has reached a dynamic equilibrium
However, it might be possible to find a linear relation for aijn the saturation regime, the system is dominated by one
different set of parameters, e.g., for a different volume fraciarge cluster which contains a macroscopic fraction of the
tion, too. Whether a 2D system and a 3D system with th&ystem. Note that this regime still has an interesting dynam-
same parametersuch as, e.g., volume fractipare in fact  jcs and smaller clusters interact with the large cluster. Nei-
comparable is another open issue. ther the small clusters nor the large one are static and the
latter loses or eats up particles or smaller clusters. Kinetic
IV. SUMMARY AND DISCUSSION energy and collision frequency still fluctuate, but are gov-
erned by the equationg(7)~ 7 2 and f(7)~7 L. This
The evolution of freely cooling granular systems can bemeans the evolution in time is similar to the homogeneous
divided into three regimes. First, the system is in the HCScooling state.
Then, in the cluster-growth regime, clusters begin to develop A very interesting observation is the similarity of cluster-
and grow. Finally, in the saturation regime, the clustersng in 3D and percolation with respect to the critical expo-
merge to practically one large cluster, which grows until ithents. Even for the dynamics of cluster growth we have
reaches system size. Besides the macroscopic fraction of pgsund the same exponents as for the occupation probability
ticles in the large cluster, there are still many small clustersy percolation theory. We have provided a tentative explana-
with interesting statistics. tion which is based on the linear relation of the occupation
In the HCS, the decay of the kinetic ener§yand the  propability p and time  around the onsetr, of cluster
collision frequencyf; can be described by the simple ana- growth in 3D. In 2D we did not find a power law behavior
lytical expressionsE(7)~(1+17)72 and f(7)~(1+7)"".  pecause the growth of the large cluster happens when the
The collision frequency is the natural time scale here, mainlyinear relation betweep and 7 has disappeared—at least for
determined by the density and the dissipation rate of thene given set of parameters.
system. For strong dissipation, at short range, particles al- However, there still remain some open questions: Why
ready stay closer together after only one collision, so that th@oes ., depend orr in 3D, but not in 2D? Why does the
moments of the size distribution change rather early due to growth of the large cluster proceed smoothly in 2D and
(short-rangg change in the radial pair distributicilata not  rather sharply in 3D? And why are all these differences
shown). ) o present while the energy decay is proportionattd in both
In the cluster-growth regime, the collision frequency cases? Detailed studies of these questions and also of the
shows large fluctuations because of cluster-cluster coIIision§|u5ter size probability distribution are in progress as well as

and cannot be predicted during cluster growth, because § more systematic study of the cluster definition in 3D.
changes erratically and discontinuously. The energy decay is

characterized by~ 7~ 1, where the accuracy of the expo-
nent is limited in 3D due to the comparatively short duration
of the cluster-growth regime. However, this regime shows
interesting differences between two and three dimensions. In This research was funded by the Deutsche Forschungsge-
3D, cluster growth can be described by a power law behaviomeinschaft(DFG) within the special research groups SFB
with the same critical exponents as in percolation theory. Th&82 and SFB 404, and Grant No. LU/450/9-1. We thank
onset of this cluster growthr. is very sharp and does Hans Herrmann and Sean McNamara for helpful discussions.
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